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SECTION 1.
INTRODUCTION AND SUMMAPRY

1.1 BACKGROUND

Deep basing concepts attempt to increase the survivability
of strategic reserve forces or command systems by placing such
facilities several thousand feet underground, depending on atten-
uation in the geologic media to reduce the ground shock from

nuclear bursts on or near the surface to acceptable levels.

In homogeneous media, the depths required to attenuate peak
overstresses to a given level have been estimated by Cooper! from

underground test data:

VER V2 13 W2
Hard rock: W o x $Ds W o o (1)
VY ) VRNV
: s
Soft rock: 0.4W o6 . w <D < 2.8W O nax (2)
where
W = yield (Mt) of a shallow~buried burst
Omax = peak overstress level (kb)
D = depth (kft)

For a shallow burst of W = 7.5 Mt and a peak overstress level of

G hax = 1.5 kb, the estimated depths are:

1600-3200 ft (500-1000 m)

In hard rock: D
650-1300 ft (200-400 m)

In soft, dry rock: D

An optimum deep basing geology might consist of a relatively
thin hard rock surface layer (to discourage use of earth pene-

trators) . over a thick, fairly uniform layer of dry, porous soft
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rock (to provide rapid shock attenuation), over a hard bedrock
(to provide structural resistance). A geology of this nature can :
be found, for example, in Idaho and eastern Oregon, where a basalt ‘
flow overlies a thick pumice layer over a hard bedrock?. Suitable

geologies without the surface rock are common in the Southwest.

The occurrence of dry, porous sites with promising shock

attentuation characteristics (with or without the surface rock)

does not, however, assure that such sites are available nor desir-

able for deep basing. Alternative geologies may be preferable for

operational or other practical reasons. The existence of support

facilities, for example, may make it desirable to locate deep base Y’
facilities at or near existing Minuteman sites, providing that the
deep facility is survivable in Minuteman geologies. These typi-
cally consist of multiple layers of shales and softer sedimentary
rocks over a hard basement at 2000-4000 feet (600-1200 m). Unfor-
tunately, the water table in generally shallow, and ground shock
attenuation through saturated porous media is more gradual than in
dry porous media. There is some question whether Minuteman
geologies, or any other saturated porous geclogies, are practical
for deep basing, since stresses sufficient to destroy structures

(say Cnax 1.5 kb) may be experienced to unacceptably large depths.

The distinct stratigraphic layering at typical Minuteman sites,

however, may provide an additional mechanism to reduce the stresses ‘
at depths. There are fairly large impedence mismatches between
layers which will produce some lateral diffraction of stress waves,
leading to more rapid stress wave attenuation with depth. Whether
or not the degree of diffractional attenuation in such geologies
will be sufficient to reduce the ground shock environment at

practical depths to tolerable levels is the key technical question

addressed herein.




SECTION 2.
APPROACH
2.1 GFEOLOGIC PROFILES

Three finite difference calculations were performed of the
stress wave propagation and ground motions bencath a 7.5 Mt shallow-
buried burst, using the geologic profiles in Figure 1, and the
properties in Figure 2. The detailed material models are described
in the Appendix. The basic profile {Case 1) contains several
layers of saturated, soft sedimentary rock above a hard bedrock.

Its dimensions and properties were constructed using data provided

by J. 2Zelasko of Waterways Experiment Station?®.

In Case 1, the major geoclogic layers were separately defined
in the computational grid, and all the layers were totally saturated

(i.e., there was no air-filled porosity).

In Case 2, layers between the surface layer and the bedrock
were homogenized into a single layer having weighted-average
properties. Comparisons between the layercd vs homogenized models
in Case 1 vs Case 2 permit assessment of the effects of reflection
and diffraction processes at interfaces upon stress attentuation

beneath the burst.

Even in nominally-saturated porous media, there is probably a
small amount of air entrapped in cracks and pores. To assess the
possible importance of such air-filled porosity, lv hysteretic
compaction in the soft rock layers above the bedrock was specified

in Case 3.

2.2 SOURCE CONDITIONS

In selecting the burst condition, it was assumed that a 30-Mt
surface burst would be a credible threat against a deep-based
facility. To avoid the need for calculating the details of energy

coupling from such a surface burst, it was further assumed that a

i
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surface burst produces the same ground motion effects as a shallow-

buried burst of 1/4th the yieldz. The source was therefore repre-
sented as 7.5 Mt of energy uniformly distributed in a 6-m radius
sphere of Layer 1 material centered 10 m below the surface. This
gave an initial pressure of 140 Mb. The effects of airblast on
the surface were modeled by application of the Brode overpressure

function to the upper boundary of the grid, using W = 7.5 Mt.

2.3 NUMERICAL METHOD

The three 2-D problems were run using the CRALE (California ‘
Research Arbitrary Lagrangian-Eulerian) code, an axisymmetric
finite~differencing time-marching program. In this code, the grid
motion algorithm allows the user to rezone the grid points each
eycle in order to maintain reasonable zone sizes and shapes. For
the problems in this study, the initially vertical lines were
required to ramain vertical. The initially horizontal interfaces
separating layers were treated as Lagrangian grid lines, i.e., the
grid lines were displaced as the interfaces deformed. Between
these interfaces, the initially horizontal grid lines moved so as
to remain equally spaced. Thus, material was transported across
grid lines within each layer, but not across interfaces. Material

at the ground surface moving upward at high velocity was allowed

to pass through the top of the grid.




SECTION 3.

RESULTS

3.1 DEVELOPMENT OF GROUND MOTIONS

Development of the ground motions is illustrated by the f
velocity vector fields in Case 1 at 78 and 123 msec after the
burst. By 78 msec (Figure 3), the main shock front is approxi-
mately 1000 ft from the source and the peak stress is about 7.5 kb.
At this time, the layering does not appear to significantly affect
the propagation of the diverging wave. By 123 msec (Figure 4), .
the main shock has reached a depth of about 1500 ft and the peak
stress has attenuated to about 4 kb. The layering is still not

significantly perturbing the shock front, but there is some rota-
tion of particle velocities behind the shock just below the 705 ft
interface, due to differences in the yield condition in materials

above and below that interface.

The velocity field at 113 msec for Case 2, in which layers
between 410 ft and the bedrock at 2300 ft were homogenized, show
a very pronounced interface effect at 410 ft depth (Figure
5). This is because the homogenization of properties for layers
below 410 ft led to a relatively large mismatch of properties
across that interface (see Figure 2). In particular, stresses
were still sufficient to cause yielding above that interface (where
the Mises yield surface, Y = 0.1 kb), but were insufficient to
produce yielding in the much stronger material below the interface
(in which ¥ = 1.5 kb). The result is a discontinuity in particle
velocities. In addition, the substantially higher wave velocity
beneath the interface led to the outrunning condition which is
evident in Figure 5. These phenomena at the shallow interface did

not, however, substantially affect the stresses and ground motions
at depth.
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3.2 STRESS, VELOCITY, AND DISPLACEMENT WAVEFORMS BENEATH BURST

The similarity of basic ground motions beneath the burst in
the three geologic profile cases is illustrated by comparing the
near-axis stress, velocity, and displacement histories in the soft |
rock at 1300 ft depth and in the bedrock at 2460 ft depth.

At the station in the soft rock (Figure 6), there are only
minor differences between the waveforms. At the deeper station
(Figure 7), the effects of the large mismatch of properties at
the bedrock interface in the homogenized profile (Case 2) results ‘
in a sharper, somewhat stronger stress pulse entering the bedrock.
Peak displacements in the homogenized profile, by contrast, are
somewhat lower than in the corresponding layered profile (Case 1).
In the layered geology with 1% hysteretic compaction {(Case 3),
stresses and velocities drop more quickly, due to the higher ﬁ
velocity of relief maves in the hysteretic model. Displacements !

in Case 3 are therefore smaller.

Peak stresses vs depth for near-axis locations are shown in
Figure 8. Differences between the three cascs re relatively amall
at all depths. At depths down to the bedrock interface at 2300 ft,
the calculated stresses attenuate approximately as the square of
the depth, i.e, o .« p~2. 1In the layered geology (Case 1), stresses
incident upon the bedrock are slightly higher than in the homogenized
geology (Case 2), but the smoother match of properties across the
softrock-bedrock interface in Case 1 results in lower stresses

entering the bedrock, and this difference persists. Thus layering

in media above the bhedrock (as in Case 1) reduces the stresses in '
the bedrock (as compared with homogeneous media), but only by
10-15%.

The introduction of 1% hysteretic compaction to account for

a small degree of air-filled porosity does not significantly affect

the peak stress vs depth.
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Figure 9 shows peak stress contours for the three cases.

Comparison of Cases 1 and 2 shows that layering reduces the maximum
depths and ranges in the bedrock at which damaging peak stresses

are experienced, but not by significant margins. For example, when
there is an unlayered medium above the bedrock, 1.5 kb peak stresses
are experienced to a maximum of 2705 ft depth, and to a maximum

range (from the axis) in the bedrock of 1310 ft. When there is
layered media above the bedrock, 1.5 kb peak stresses extend only

to 3345 ft depth, and to 1150 ft range in the bedrock. With 1%
hysteresis in the layered media, the maximum depth is further reduced
to 3180 ft, and the maximum range in the bedrock to 1000 ft.

Figure 10 shows peak displacements. The differences are small,
except in the 1% hysteretic geology (Case 3), where much smaller
displacements occur in the bedrock. This is because the unloading
arrives relatively sooner in the hysteretic geology, thereby short-

ening the downward pulse.
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The three parameters
defined in the sketch are
used to summarize key
findings of the analyses

in the following tabu-

SECTION 4.

CONCLUSIONS

W\WVWWWW

Peak stress enterin
bedrock at
2300 ft

€ 1.5 kb peak
stress contour

lation.
Max. depth exper~ Max. range in
iencing Omax bedrock exper-
1.5 kb * iencing
omax = 1.5 kb
Peak Stress Max. Depth Max. Range
Entering Experiencing in Bedrock
Bedrock g = 1.5kb Experiencing
max
o = 1.5 kb
max
Case 1. JBasic lavered, 2.6 kb 3345 £t 1150 ft
u P (1020 m) (350 m)
Case 2. Homogenized
- - e 2.9 kb 3705 ft 1310 ft
media above bedrock (1120 m) (400 m)
Case 3. Same as Case 1,
but with 1% hysteretic 2.4 kb 3180 ft 1000 ft
compaction (970 m) (305 m)
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The trends seen in this tabulation are as would be expected;
sedimentary layering or hysteretic compaction will indeed reduce
stresses on a deep facility beneath a near-surface burst. However,

the differences are relatively small, of the order of 10-15%.

Futhermore, the calculated maximum depths where 1.5 kb peak
stresses are experienced in geologies with saturated, layered soft
rocks over deep bedrock correspond roughly with the deepest values
predicted from empirical data for stress attenuation in hard rock

(Equation 1).
The following conclusions are drawn from these results:

1. The effects of layering, involving typical
differences in properties between sedimentary,
saturated soft rock layers, do not substantially
reduce peak stresses beneath near-surface bursts.

2. Deep base facilities located in geologies consis-
ting of saturated layers of sedimentary soft rock
above deep bedrock (typical of Minuteman sites)
would need to be placed at depths equivalent to
those required in hard rock geologies.
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APPENDIX |-
GEOLOGY AND MATERIAL MODELING !

Case 1. Representative Saturated Layered Geology

The dimensions and properties for the representative satur-
. ated layered profile for Case 1 in Figure 1 were constructed using
j | data provided by J. Zelasko of Waterways Experiment Station (WES)?3.

E Typically there are several layers at shallow depths; we chose to
model these using a single homogeneous surface layer extending .
down to 125 m because the very strong shock waves from the burst
in this region would not be significantly affected by the relatively !

small impedence mismatches.
The interfaces between layers were assumed to be welded.*

The soil layers and bedrock were modeled with an updated
version of the Schuster—Isenberg“ equations of state used exten-
sively in nuclear and chemical explosive cratering studies.
Basically, the stress-energy-strain behavior is decomposed into a 1
mean stress or pressure relationship plus the deviatoric stress
tensor. The mean stress is further decomposed into two terms, i.e., 1

P=Pg +P (al) !

where P, represents the solid or liquid phases and P, the vapor.
Hysteresis, low-energy thermal effects, and reversible solid-solid
phase changes are incorporated into the calculation of Ps.

* pifferential displacements across interfaces in a layered media
pose separate hazards to structures which penetrate through
such interfaces; this aspect of siting in layered media was not
considered in the current study.

-
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For non-hysteretic materials,

Py = Ky = (KyRghu” (1-e™/V7) (A2)

where KO and Km are the initial and maximum bulk moduli, pu* is a

material parameter, and

u = = excess compression

The thermal energy dependence of the solid is incorporated by
adding the effect of thermal expansion to u so that it becomes
p+BE, where B is the coefficient of thermal expansion and E the
energy density. This is equivalent to the Grunisen correction used
in other models, with a variable Grunisen gamma. At a solid-solid
phase change, the effective u is again altered to reflect the
decrease in dP/du. Hence u is replaced by H=l, where

My = 5(u-up) (A3)

and § and up are phase change parameters.

The vapor term, P+ is computed using a variable gamma-law gas,

- - *
PV = (y-1)pE (A4)

where
y-1 = .4 + .23 log p + [.35 log(E*/p) - .464]1% (A5)

and E* is an effective energy density,

E-E
m
-(——) E 2 E
(E-Bm) l-e ™
E* = (A6)




Incremental deviatoric stresses are computed from changes

in the deviatoric strain tensor using the elastic equation

doij = —ZGdei (A7)
where the shear modulus G is assumed to be constant. The second
invariant of the deviatoric stress tensor, /3;, is then compared
to a von Mises type plastic yield surface, Y. If /3; exceeds Y,
the material has yielded and the deviatoric stresses are reduced
by the standard Drucker-Prager flow rule, i.e., without volumetric

strain.

Values of the constants for the materials in each layer are
listed in Table A-1. To assure correctness of seismic speeds in
the various layers, the constrained moduli and Poisson's Ratio
provided by Zelasko were used to determine the zero pressure moduli
in the equations of state. However, the bulk modulus in each layer
increased exponentially with compression to a single high pressure
( >100 kbar) value consistent with the available Hugoniot data.

Case 2. Partially Homogenized Geology

For Case 2, layers 2, 3, and 4 were homogenized and given
the weighted avevrage properties for density, bulk moduli, and
sound speed shown in Table A-1. To verify that these average
properties would give approximately the same waveform incident to
the bedrock interface at 700 m depth as the explicitly modeled
layer properties used for Case 1, comparative 1-D spherical
analyses were run. The results shown in Figure Al indicate that
both models produce the same nominal waveform in a spherically
diverging geometry; any differences in the 2-D solutions of Cases 1
and 2 can therefore be attributed to the diffractional effects

of the interface planes.
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Case 3. Near-Saturated Layered Geology

Even in nominally-saturated porous media, there is probably

a small amount of air entrapped in cracks and pores. To assess
the possible importance of such air-filled porosity, 1% hysteretic
compaction in Layers 1-4 was allowed in Case 3. To retain the
basic characteristics of the Case 1 materials, the loading moduli
and hence the sound speeds were not changed. Upon unloading,
however, K_ in Equation A2 was replaced by Ké (Table A-1) so that .
|

o
the effective modulus was much higher and the material returned

to zero pressure at a density up to 1% higher than initial density,

as shown in this sketch.

P 1.01 p

The value of P+ the minimum pressure required to collapse all
of the air-filled voids increased with the depth of the layers 0
(Table A-1) to be consistent with the increase in the initial

loading moduli.
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