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Gio Wiederhold, Anne Bectem, and Garrett Short
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October, 1980

I.  Introduction

The design of a VLSI device involves the manipulation of a large volume of diverse interrclated
data. For a given design task, such as simulation or layout, some data may be gencrated through
cither computation or through recording of interactively made human designer decisions. In current
design mcthodologics, these design tasks operate on different representational levels of the same
device, ranging from overall functional or logical descriptions [Hi1180] down to the physics of
individual sitching cclls. A single task may carry out verification within onc level, may gencrate
lower level units by expansion of more abstract definitions, or otherwise necessitate movement
between different representational levels. In addition, if complex designs are to be produced in a
tolerable time frame, then sceveral design specialists must be allowed to work concurrcotly on
distinct scctions or at distinct levels. All this causcs the management of the design data to become
increasingly difficult since not only will data requirements overlap, but one design task will often be
dependent on the data being manipulated in another area, ‘This data communication effort probably
contributes significantly to the increase in cffort from 4 to 30 man-ycars for microprocessor designs,
and makes single-designer oriented methodologies infeasible [Sch79). ‘The exponential growth of
design cost while production costs diminish - as stated by Faggin and Moore in [Rob80] - is
changing the outlook of the microprocessor industry, pointing to the need for more cffective

handling of dcsign data.

Database technology has dealt with both the management of large volumes of data and the
problems caused by concurrency of data access. Many existing database systems support inter-arca
communication functions; instances are found of systems dealing with inventories, where production
and sales issucs interface, or patient management, where individual care and global hcalth care
concerns come together. Databases are used as well to resolve the multidisciplinary design issues in
aircraft design [IFul80] and to manage the problems of cngineering changes in computing systems
[Sic80). Given this background, we foresee that databases may provide tools to serve the VISH
designers;  however, the tool is complex and will not be cffective unless well understood and
adapted to the demands of this application.

We have identificd several issues that have to be addressed if databases are to become effective
tools in VLSI design. (The interested reader may wish to compare these to [T.ey79) which has a

somewhat  diffcrent approach.)
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1) The database system must support a varicty of design methodologies. ‘The support of a top-

down approach is most casily achicved, but processes at a lower lcvel may contribute information to
higher levels,  Also, a designer may nced to make changes at any level, which have to be reflected
throughout the design levels. An example of the first exception to a purc top-down mcthod is the
handling of timing data than can be produced only after a detailed layout is available, while gates
have been dimensioned using simple assumptions of intergate transit times. A sccond casc arises
when a particular gate of a scries is changed to satisfy special interface demands or terminating
conditions.

2.} Explicit storage for all attributes of all clements at lower levels must be avoided in order to
permit effective management of change emanating at a higher level.  Excessive replication of lower
level clements vitiates the benefits of hierarchical design methods, and creates cxcessive storage
demands. This implics that the database system must be able to fetch actually instantiated data or
compute potential, non-instantiated data using stored algorithms.

3) The database must be able to provide a convenient interface to a wide and changing variety of
programs. ‘This interfacc should not change as the database is developed and extended.

4) ‘I'he performance of the database system has to be such that the degradation of performance
relative to an isolated design file operation is proportional to the benefits gained.

II. Approach

‘The approach we are using in our work includes the use of commercial database systems to
assess the general suitability of database approaches to *VLSI design data.  One objective is to
determine whether commercial database systems, used knowledgeably |, can perform adequately, or
if they do not, where the bottlencecks are.  The current sct of experiments uses a network system,
DECTs DBMS-20. This is a system based on the published CODASYI. database definition, which
has a strong orientation to well-understood business applications, such as inventory management,
The database designer can, through schema specification, select which of the logically appropriate
linkages should be implemented [WEMBS80).  As a successor experiment in this arca we plan to
investigate use of a relational database system, RIMS, with strong automatic query optimization
capabilities [Sim80].

After having demonstrated replacement of a custom design by an cquivalent database
representation, we explored implementation of novel data management facilitics not provided by
speciatized dcesign files.  Specifically, as is necessary in order to operate in the mode for the VISI
design enviromnent, the database system has to be augmented with communication paths between
levels.  These paths may ultimately be oriented in any combination of directions.  We are
investigating the constituent directions, viz, down hicrarchical level, up to higher level units, and

sidewdys.




In the downward direction, a method must exist to create the cffect of lower level instantiation
using procedures and higher level descriptions. It is desirable that the query interfaces which access
the lower levels do not have to distinguish between actual or computed data clements.  Along these
same lines, we intend to look at the issues and possibilities of when and how we wish o store
redundant or computed data.

Communication in the upward direction relates detail to more abstract specifications.  ‘The
creation or modification of lower level instances has to be bound to the appropriate higher level
clements. An initial approach we consider promising and have implemented is signalling such
changes to the next levels up in the hicrarchy. Multiple structures may become involved because an
clement may be defined by an association of several higher level entities [Wie77): a simple example
is an clement that is defined from the cxpansion of a functional component and a library
description,  'The signal creates an exception flag at the higher structures. At a later time, when the
level to which the signal was directed is acc.  ~d by its owner, the system can provide a warning,
An appropriate action could then be taken; for example, verification of continued correctness of the
design at that level, or the introduction of a new version of = component, or a new paramelerization
of the library descriptions.  With experience, sclected types of changes could trigger automatic
updates.

While the need and techniques for up and down passing of information are relatively clear,
travel in the orthogonal dircetion is not ncarly so, yet may be cssential in the future design system.
To explain the need consider the following scenario.  Suppose we are designing a microcomputer
chip with an AT.U composcd primarily of registers , dense RAM and ROM, a finite statc PLA
controller, some random logic, etc.  Designing this chip with only onc methodology would be a
terrific waste of time and cnergy as, although there are design tools which can fairly cfficiently
model. for example, random logic, it would very inefficient to design a regular structure like a
PLA using random logic techniques. It would be far more effective to altow a sub-module to be
designed or simulated in its most appropriatc manncr.  Allowing for generalized  sideways
communication could then greatly increase the overall flexibility and cfficiency of a design system.
Current working design systems give no consideration to this sideways communication issue, but the
rescarch has begun (see [Be80) for example) . We hope to fearn from it and incorporate these new
idcas into our databasc system.

I11. Current Work and Results

Before we to discuss what actual work we have done, it must be noted that due to availability
of data, programs, and otherwise existing material at hand, we are using data from conventional
circuit board design to modcl the VLSI design process.  Even so, many of the problems are similar
and as such, we belicve that the results are validly applicable to the VISI design process as well,
More importantly, by using this data, we were able to make benchmark comparisons with existing

o




specialized design files and programs on the same data. "This is essential for measuring the relative

performance of commercial databasc systems. We fecl that we have gained insight into the problems
involved in a database oriented design system, and in particular, have demonstrated the viability and
cfficiency of using commercial databasc systems at least until the complete model of the dcesign
process and its communication requirements is well understood. So, without further ado let us
describe exactly what we have done so far.

Reading from a Database

First, an cvalution was made of DEC's DBMS-20 performance on data retricval times.
Specialized design files of circuit information were used as the control to the experiment. The user
begins with his design written in SDI. (Structural Design Language [vC79} ), a straightforward
hicrarchical description language.  T'he SDI. description is input to the SDI. compiler, which then
produces a dump file containing the logical description of cach component described in the dcsign.
This design methodogy is strictly hicrarchical: the logical description of one component is described
in terms of smaller lower level components. For example, gates are described in terms of transistors,
tlip-flops arc described in term of gates, registers are described in terms of flip-flops, ctc. Each
description levet is given an unique name in the design file. Figure 1 shows the hicrarchical
structure of the PDP-11 processor, as described in SDI, [S1.79]. The dump file from the compiler is
loaded into the SPRINT databasc [Ste79], the specialized control subject, via a “hardwired’ schema.

Level Components

cpu PDP-11

reg BLEG, PROCOUNT, BUSCOUNT, RAMI6X16, ALU, STATUS, AMUX
rfl . PRIOARB, TIMER

f2 TCFF2, RAMIG, 40181, 40182

ff TCFE, LFE16, DFF4, BUSD16, MUXI16, RAM

gate DEt, LIF, XOR, BUSD, MUX

trans TRANSP, INV, NAND, 3NAND, 4NAND, NOR, 3NOR, 4NOR
bottom TN, TP, PLA-SMALIL, PLA-MED, PLA-LARGE

Figure 1

Initially the CODASY!. schema was modeled very closely to the SPRINT schema, and duce to
SPRINT's hicrarchical structure, CODASYL nctwork capabilitics were not utilized in the first
iteration. Later the schema was modified to take advantage of network structurcs:  this cffort

provided linked access to the library file of components. A loader program was then written to load
the same dump filc produced by the SDIL. compiler into the DBMS-20 database. Comparison of
loading times showed the SPRIN'T database to be quicker, as expected, but DBMS times were quite
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acceptable.  The initial loading of the PDP-11 cxample took SPRINT about one minute and
required about four minutes for DBMS-20.

For the actual test of the retricval times, a macrocxpander program [Pay80] was used. This
program rcads the logical description of a high level component from the database. ‘The user then
specifies the levels to be expanded. Thus, if the user specified the program to expand all levels
down to the traristor, then the resulting output will be the logical description of the original
component described totally in terms of transistors. This form of description may not be very uscful
to the designer, but could be the input to, for example, a simulator program. Also, in the VLSI
cnvironment, this could bc the first step in producing the layout diagram.

The macrocxpander program needs to do a tremendous amount of random read operations,
especially if the component that is being expanded is large and described at a high level. The
following arc the results of expanding the ALU and the PDP-11;

SPRINT DBMS-20 records read words read
ALU [O time 2l s 33s 1514 7754
CPU time 30 45
POP-11 10 time 66 115 5925 28501
CPU time 120 190

‘These results show less than a factor of two degradation in performance of the DBMS-20. This is an
acceplable trade-off for the increased flexibility and gencrality of CODASYI., and disputes the
original theories that there would be at least an order of magnitude difference in performance,

Writing into the Database

We next cvaluated DBMS-20 performance in writing back into the database. In order to
simulate a rcal application of VLSI design, we considered how the database would handle
instantiations. Scecing how this might be done requires a closer louk at the schema. Figure 2 shows
a subset of the network diagram of the schema. This is a version of the SPRINT schema, with a fow
changes to more closely model VLSI design. For each component described in the database there is
a Logical Description record containing its name. ‘This ficld is used as the key to find the record
directly via a hashing function. Records are connected to related records through three distinet
rings of pointers, forming a complex network. Onc of the rings off” of the ogical Description
record describes cach cxternal pin, with a unique name and its function (i.c. input, output, tristate).
‘The cquivalent-group ring describes the cquivalence botween pins and scts of pins. ‘The remaining
ring off of the logicat description record supplics the internal description of the part. For cach
Internal Description record, a General Information record is kept describing general characteristics.
The attribute ficlds, creator, a time stamp, level, purpose, and version number arc mcant to fully
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6
describe the corresponding internal description. i
In order to excrcise the representation, the macroexpander program was modified so that it
could write back into the database. When working in this mode, after the program cxpands a
component, it stores the new representation as another internal description along with a gencral
information record with the appropriate data. In the design atmosphere, suppose one is working on [
a component at another level or perhaps at the same level. ‘The user makes some changes from the ’
original description and stores his version into the database. This may be done to scveral or all the
componcnts. Now when a higher level component is expanded, the program can sclectively choose
the appropriatc intcrnal description to usc. 'The above scenario was tested on the AlLU with : 1
following results: ;
|
The upper level deseription of the ALLU contains the following picees and levels:
40181 2
40181 2
MUX gate {
XOR gate
INV trans
NAND trans
4NAND trans
NOR trans
4NOR trans
The following is some of the data on expanding the picees of the ALU:
40181: ‘Total read time = 17.4 seconds.
record name quantity }
net 152 ﬁ
component 127
comp-pin 564 7
Total rcad 843 (4432 words)
Total writc time = 41.3 seconds. i
record name quantity
net 154
net-pin 898
component 293
comp-pin 898

Total written

2243 (10136 words)




40182: Total read time = 8.78 seconds
record name quantity
net 79
i component 67
comp-pin 268
Total read 414 (2240 words)
Total writc time = 8.82 scconds
record name qQuantity
net 38
, nct-pin 186
component 59
comp-pin 186
Total written 469 (2128 words)

The mux and the XOR picces were also expanded. Then the ALU was expandced again with the
cxpanded version of the lower level picces in the database.

Total read time = 48.0 scconds.

record name quantity

net 341

component 41

comp-pin 1575

Total read 2357 (12745 words)

Total write time = 203 scconds.

. record name quantity
: nct 721
! net-pin 4384
component 1441
comp-pin 4384
Total written 10930 (49364 words)

The current state of the SPRINT design system docs not allow writing instantiations back into the
database, so no parallel experiments were done, but again the DBMS-20 implementation showed an
aceeptable  performance,

Signalling Changes in the Database
The next and most recent test on DEC DBMS-20 was to flag the neccessary upper level picces
regarding changes made to lower level components. A straightforward approach to this problem




would be to have cach component keep track of the upper level parts that use that component. To
implement this in CODASYL, we would like to have cach Logical Description record own other
lLogical Description records in a owners set, as such:

X

Logical Description owners

name linkset
changed

L

Besides causing cyclic errors, this structure is not allowed in the CODASYI. definition. The
technique used was to add another record off the logical description to indirectly find the owners,
iflustrated bclow.

Logical Description

name
changed
pieces owners
linkset linksct
PointerBox
marked

The following example illustrates how upper level picces arc warned of lower level changes.
Suppose the multiplexer (MUX) has been changed and we wish to flag all the components that use
the multipicxer. In the databasc there arc scveral parts that use the multiplcﬁcr, and for cach onc of
these there is a PointerBox record in the multiplexer’s owners linkset. Some of these include the
ALU, status register, and a 16-input multiplexer (MUX16), scc figure 1. These same PointerBox
records arc in the picces linkset of the parts that use the multiplexer. The multiplexer itself is made
up of inverters and transistor pairs (TRANSP). Thus there are two PointerBox records in the picces
linkset of thc multiplexcr. The flagging process begins by marking the first record of the owners
linksct, in this casc say it is the ALU. Here the field marked of the PointerBox is incremented.
Next, the owner record of the pieces linksct of the current PointerBox is found. Each PointerBox
record has a pointer dircctly to the owner record of both the picces linkset and the owners linkset.
At this time, the logical description record of the AU is located and the field change is
incremented. Flagging continucs from the ALLU in a recursive manner. When a logical description
record with a ecmpty owners linksct is found, the upper most level has been reached. The flagging
must then move back to the previous level by finding the next PointerBox record of the owners

linksct.
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This method of flagging upper level components is best characterized as "height-first”. This
method requires more record accesses, sincc many of the same records are retricved many times,
than a possible level or breath-first flagging, but the hcight-first method allows morc information to
be stored.

Consider the following example: Suppose the multiplexer and the inverter are changed and
their upper level picces are notificd. As shown in figuse 1, the multiplexer and the inverter are
described on different levels of the hicrarchy, and a change to the inverter will also affect the
multiplexer. If you now query the PDP-11 data record as to whether any changes have been
flagged, only the inverter will show up as an altered component, [f the upper level pieces of the
inverter are unflagged (decrement the change and marked ficlds), and the PDP-11 data record is
quericd again, the multiplexer will be identified as the modified component since correcting for the
inverter does not resolve the othere multiplexer modification.  Now, suppose the multiplexer and
the NAND gate, which is described on the same level as the inverter, are changed. A subscquent
query from the PDP-11 record will reveal that both the NAND gate and the multiplexer h~ve been
changed. The multiplexer is caught in this situation because none of its lower level picces were
changed. Thus this flagging algorithm allows easy detection of all the lowest level independent
modifications. Also, cvery component can be unflagged uniquely by reversing the flagging
proccdure. The time to carry out this flagging algorithm depends on the level at which the process
is started. Here arc some samplc flagging times:

Picce _Level Time  (scconds)
ALU reg 13

MUX, XOR gate 9

INV trans 7.1

TN bottom 21.

1V. Conclusion

With the successful implementation of flagging, we have taken time out to write this paper and
so wce shall summarize our findings and predict our next moves. T.ooking back over our work, we
believe our initially stated approach to be most promising: the commercial databasc system allowed
us to implement both initial designs and modifications rclatively quickly and easily. Coupled with
the discovery that performance is not badly affected, this has allowed us to experiment productively.
This ability to experiment is important to obtain the knowledge nceded for  dcesigning useful
database systems for VI.SI dcsign. As we, and designer - *hemselves, gain more insight into the
design process, we hope to develop a database supporting « the types of communication paths for
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many different kinds of interlocking design tasks. ‘The final long range goal is, of course, a usable,
flexible, expandable, and cfficient databasc oriented VI.SI design system.

Further cxperiments are in progress to complete the tasks outlined in Scction 1l. ‘The
immediate task is to manage querics that access portially instantiated and partially computable
clements. Work by others is in progress on the relational database approach and a comparison will
provide further insights and dircctions for future work.
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