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SUMMARY

Systems that have demonstrated the capability to maintain high heat
. transfer capability for extended periods include:

1. For aluminum:

a. A 29-mm experimental brush operating on a 4-hour cycle.
b. A 29-mm "soft" ball operating on a 15-minute cycle in a clean

tube subject to chlorination (1 ppm total chlorine residual/
15 minutes daily).

c. Low chlorine dosing (1 ppm total chlorine residual/l5 minutes
daily) followed by periodic "shock" chlorination.

2. For titanium:
a. A 28-mm brush operating on 4-, 6-, or 8-hour intervals.

b. Twenty-nine millimetre "soft" balls operating on 15-, 30-, and
60-minute cycles.

c. Twenty-nine millimetre "soft" balls operating on a 120-minute
cycle with pipe subject to 0.5 ppm residual chlorine concentra-
tion for 15 minutes daily.

d. Five tenths parts per million or higher total chlorine residual
for 15 minutes daily.
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INTRODUCTION

In response to a request for support from the Department of Energy's
(DOE) Technical Agent, Argonne National Laboratory, the Naval Coastal Systems
Center (NCSC) has conducted field tests in support of Ocean Thermal Energy
Conversion (OTEC). Between September 1978 and May 1980, field tests evaluated

§ the performance of three in-situ cleaning techniques in two potential heat
L exchanger materials. The cleaning techniques consisted of flow-driven brushes,
f recirculating sponge rubber balls, and chlorination along with combinations of

each mechanical system with chlorination. Each system was tested in both
aluminum (Alloy 5052) and titanium pipe. Tests sought to maintain the fouling

resistance (Rf) at <3 X 10-4 ft2-hr-°F/BTU, a stringent cleaning requirement.

BACKGROUND

With an energy crisis facing America, the search for alternative energy
sources has taken on national importance. The oceans have long offered the
promise of renewable, clean energy and many techniques to extract energy from
the oceans have been proposed. Most prominent among these are (1) thermal
gradiénts, (2) geostrophic currents, (3) ocean currents, and (4) wave/tide
energy.

Ocean Thermal Energy Conversion (OTEC) is an ambitious program to tap
the vast potential of the oceans' thermal resources. The OTEC concept seeks
to utilize the thermal difference between warm surface waters and cold deep
waters. For OTEC, this thermal difference should exceed a thermal span of
30°F; hence, potential OTEC sites are found between 35 degrees North and
South latitudes.? 3 Since the thermal efficiency of proposed OTEC plants is
low (<3 percent) compared to coal-fired plants (~30 percent), the ocean

1Sea Technology, August 1980, "OTEC Leads The Way In Ocean Energy,"
pp. 13-18.

2Griffin, 0. M., 1977, "Power From the Oceans' Thermal Gradients,"
Sea Technology, August, pp. 35-42.

3Hartline, B. K., 1980, "Tapping Sun Warmed Ocean Water For Power,"
Science 209: 794-796.
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thermal power plant must transfer about 10 times as much heat for the same
power output. This necessitates an extremely large heat exchanger surface
area of great heat transfer efficiency.

The inherent promise of OTEC is that its fuel, warm seawater, is free and
virtually unlimited in quantity.3 A closed-cycle system proposed by OTEC
features the Rankine power cycle operating on a span of 20°F temperature
differential.* System components consist of turbine, pumps, condenser, and
evaporator. This system requires a working fluid with (1) good heat transfer
characteristics and (2) a high vapor pressure at seawater temperatures.
Ammonia is a leading candidate for the working fluid. The working fluid is
vaporized in the evaporator, thus generating power by expansion through the
turbine. The vapor, at low pressure, is condensed in the heat exchanger and
routed back to the evaporator for reuse.

Advantages of such a system are that power turbines can be smaller due to
(1) low design pressures and (2) low working fluid densities as well as elimi-
nation of the requirement to remove dissolved gasses as is the case in open-
cycle systems. These advantages are partially offset by (1) thermal losses in
using a secondary working fluid, (2) requirement for extensive heat exchanger
surface area of high heat transfer efficiency, and (3) problems associated
with the working fluid such as corrosion, handling, and safety.

Due to low thermal efficiencies, extensive heat exchanger surface areas,
and parasitic power losses (i.e., power required to operate the plant), the
success of OTEC will depend on maintaining a high heat transfer coefficient.
The waterside surfaces of any heat exchanger exposed to natural seawater will
accumulate a film of slime comprised of living and dead microbial cells,
cellular debris, organic molecules and secretions, and inorganic precipitates.
This layer, coupled with formation of a corrosion layer, serves as a resistance
to heat transfer due to the lower thermal conductivity of such layers. The
fouling factor (Rf) is thus a measure of the thermal resistance of a fouling
layer and is the re¢iprocal of the heat transfer coefficient (h) measured in
the presence of the fouling film.

The inevitability of fouling has resulted in an initial requirement that
Rf be maintained at or below 5 X 10-4 ft2-hr-°F/Btu.5 & This standard has

3ibid.
4Springer, P. C. and Owens, W. L., 1980, "A Measurement Technique for
Condenser Tube Biofouling," In Condenser Biofouling Control, Eds:

Gary, J. F., Jordon, R. M., Airken, A. H., Burton, D. T., Gray, R. H.,
Ann Arbor Science, Ann Arbor, MI, pp. 3-42.

5Sleicher, C. A. and Rouse, M. W., 1975, "A Convenient Correlation for
Heat Transfer to Constant and Variable Propeirty Fluids in Turbulent
Pipe flow," Int. J. Heat Mass Transfer 18: 677-683.

6Bell, K., "The Effect of Fouling on OTEC Heat Exchanger Design, Construction
and Operation," in Proc. OTEC Biofouling and Corrosion Symposium, R. H. Gray,
Ed. Seattle, Washington, pp. 19-29 (1978).
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4

been subsequently modified to restrict Rf to less than 3 X 10 ' ft2-hr-°F/Btu.?

In addition, Bell has proposed an even more stringent requirement of 1 X 10-4
ft2-hr-°F/Btu.® Note that a biofilm 0.002 inch (50 pM) thick represents an

Rf of 5 X 10'“ ft2-hr-°y Btu and a 15 to 20 percent reduction in heat exchanger
efficiency. It is evident that such stringent cleaning requirements mandate
provisions to inhibit formation of the slime layer or to remove any fouling
that does form.

FOULING PROCESS

Fouling is generally defined as the formation of inorganic or organic
deposits on surfaces. Fouling involves complex hydrodynamic and microbial
processes as well as surface electrochemical reactions. Four types of fouling
are generally recognized:

1. Formation of inorganic salts by precipitation

2. Corrosion

3. Attachment of particulates to surfaces

4. Biological fouling (biofouling)$
This report primarily concerns biofouling since the major OTEC interest is to
maintain a high heat transfer coefficient in heat exchangers by inhibiting or
removing biological films (biofilms). According to Corpe,® biofouling, as a

process, consists of four phases:

1. Chemical conditioning or molecular fouling

6ibid.

7Cohen, R., 1978, "An Overview of the U. S. OTEC Development Program,"
Proceedings of the ASME Energy Technology Conference, Houston, TX,
1978 November 6-9.

8Corpe, W. A., and Winters, H., 1980, "The Biology of Microfouling of Solid
Surfaces with Special Reference to Power Plant Heat Exchangers," In

Condenser Biofouling Control, Eds: Gary, J. F., Jordon, R. M., Airken, A. H.,
Burton, D. T., Gray, R. H., Ann Arbor Science, Ann Arbor, MI, pp. 3-42.
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2. Attachment or colonization by microorganisms (Microfouling)
a. Pioneer bacteria
b. Other bacteria

3. Colonization by other microorganisms {Macrofouling)

4. Accumulative (Both micro- and macrofouling)

Microfouling, the primary mechanism for degradation of heat exchanger
performance, consists of five components:9

1. Organic absorption
Transport of particles
Attachment

Growth

o W N

Re-entrainment

The first stage of microfouling imvolves the virtually instantaneous
sorption of molecules from the flowing water onto the metallic surfacei thus
"preconditioning" this surface for bacterial adhesion.8 9 10 11 12 13 14

8ibid

SCharacklis, W. G., Bryers, J. D., Trulear, M. G., and Zelver, N., 1980,
"Biofouling Film Development and Its Effect on Energy Losses: A Laboratory
Study," In Condenser Biofouling Control, Eds: Gary, J. F., Jordon, R. M.,
Aitken, A. H., Burton, D. T., Gray, R. H., Ann Arbor Science, Ann Arbor, MI,
pp. 49-76.

10Marshall, K., "Solid-Liquid and Solid-Gas Interfaces,” In Interfaces in
Microbial Ecology (Cambridge, MA: Harvard University Press, 1976) pp. 27-49.

11Fletcher, M., and Loeb, G. I., "The Influence of Substratum Surface Properties
on the Attachment of a Marine Bacterium," in Colloid and Interface Surface,
Vol. 3, M. Kerker, Ed. (New York: Academic Press Inc., 1976), pp. 459-469.

12Bajer, R. E., "Influence of the Initial Surface Condition of Materials on
Bioadhesion," in Proc. 3rd Int. Congress Marine Corrosion and Fouling,
R. F. Acker et al., Eds. (Evanston, IL: Northwestern University Press,
1973), p. 633.

13L0eb, G., and Neihof, R., "Marine Conditioning Films," Adv. Chem. Ser.
(145):319 (1975).

14Baier, R. E. "Surfaces Properties Influencing Biological Adhesion in
Biological Systems," in Adhesion in Biological Systems, R. S. Manley,
Ed. (New York: Academic Press, Inc., 1970).
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Turbulent flow past the metallic surface provides nutrients, organic mol-
ecules, and a supply of seed organisms as well as entrained particles that
can be incorporated into the slime matrix. Organic molecules modify the
surface to make it more wettable and electronegative, thus increasing surface
capability to further concentrate organic molecules from flowing water.3
Molecular fouling does not exceed 0.1 pM and has no effect on fluid flow or
heat transfer.15

Following surface preconditioning with organic nutrients, initial bac-
terial colonizers are transported by flow into contact with the metallic
surface. Although Brownian movement and cell mobility are important to
attachment in stagnant or low flow velocity situations,'® OTEC's high flow
range (v6 feet/second) eliminates these processes as magor transport mechan-
isms. Rather, transport is due to molecular diffusion,® eddy transport® and,
to a lesser extent, chemotaxis.!® 17 18 19

Initial attachment is reversible when microorganisms "settle" but
exhibit Brownian movement and may spontaneously move away from the metallic
surface.2® However, periphytic colonizers quickly develop that adhere firmly
and irreversibly. Adherence is mediated through production of polymeric

8ibid.
%ibid.

15Characklis, W. G., 1980. "Fouling Biofilm Development: A Process
Analysis," submitted to Biotechnology and Bioengineering.

16paniels, S. L., 1980, "Mechanisms Involved in Sorption of Micro-
organisms to Solid Surfaces," in Absorption of Microorganisms to
Surfaces, John Wiley & Sons, New York, NY, pp 7-58.

17pdler, J., "Chemoreceptors in Bacteria," Science 166:1588-1597 (1969).

18Chet, I., and Mitchell, R., "Ecological Aspects of Microbial Chemotactic
Behavior," Ann. Rev. Microbiol, 30:221-239 (1976).

1%oung, L. Y., and Mitchell, R., "The Role of Chemotactic Responses in
Primary Film Formation," in Proc. 3rd Int. Congress on Marine Corrosion
and Fouling, R. F. Acker et al, Eds. (Evanston, IL: Northwestern
University Press, 1973), pp 617-624.

20Fletcher, M., 1978, "The Attachment of Bacteria to Surfaces in Aquatic
Environments," In Adhesion of Microorganisms to Surfaces, Academic
Press, New York, NY, pp. 87-108.
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fibrils2?0 21 22 23 24 yhich may form at the cell's poles, thus orienting the
cell at right angles to the metallic surface and presenting maximum surface
area to flow.2% 21 Fjrm adhesion is an energy-requiring process that is
dependent on protein synthesis.?2!

During growth, the initial colonizers are small, motile, gram-negative
rods?3 24 25 yhich have a selective advantage in irreversible sorption?® and
are cagable of irreversible attachment and reproduction at low nutrient
level.%? Since bacteria absorbed to a surface are metabolically more active
than those in suspension,?® probably due to nutrient concentration from

20ihid.

21Marshall, K. C., "Mechanisms of Adhesion of Marine Bacteria to Surfaces,"
in Proc. 3rd Int. Congress Marine Corrosion and Fouling, R. F. Acker
et al, Eds. (Evanston, IL: Northwestern University Press, 1973),
p. 625.

22Costerton, J. W., Geesy, G. G., and Ching, K. J., "How Bacteria Stick,"
Scientific Am., 238: 86-95 (1978).

23Corpe, W. A., 1974, "Periphytic Marine Bacteria and the Formation of
Microbial Films on Solid Surfaces,'" in Effect of the Ocean Environment
on Microbial Activities, Eds: R. Colwell and R. Y. Morita, Univ.
Park Press, p 397-417.

24Gerchakov, S. M., Marszalek, D. S., Roth, F., and Udey, L., "Succession
of Periphytic Microorganisms on Metal and Glass Surfaces in Natural
Seawater,”" in Proc. 4th Int. Congress Marine Corrosion and Fouling,
V. Romanovsky, Ed., Antibes, France, P 203 (1976).

25Little, B. J. and Lavoie, D. M., 1980, "Gulf of Mexico Ocean Thermal
Energy (OTEC) Biofouling Experiment." In Condenser Biofouling Control,
Eds: J. F. Gary, R. M. Jorden, A. H. Aitken, D. T. Burton, and
R. H. Gray, Ann Arbor Science, Ann Arbor, MI, pp 121-140.

26pjSalvo, L. "Contamination of Surfaces by Bacterial Neustonm,"
Limnol, Occeanog. 18: 165-168 (1973).

27Friedman, B. A., Duggan, P. R., Pfuster, R. M., and Remsen, C. C.,
"Structure of Exocellular Polymers and Their Relation to Bacterial
Flocculation," J. Bacteriol, 38: 1328-1334 (1969).

28Hendricks, S. W., "Sorption of Heterotrophic and Enteric Bacteria to
Glass Surfaces in a Continuous Culture of River Water," Appl. Microbiol.
28: 572-578 (1974).
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flow,2? 30 31 5 proliferation of micro-organisms occurs with consequent
increase in capsular material (i.e., extracellular polysaccharide). Micro-
organisms are generally contained as discrete units or cell aggregates within
the slime matrix of capsular polysaccharides and form less than 10 percent of
the biofilm.!5 This capsular material, in turn, attaches any particulate
matecrial presented to the film by flow and incorporates the particulates into
the biofilm. The adhesion of entrained particles results in (1) increasing
film thickness, (2) degradation of the heat transfer coefficient, (3) entrap-
ment of further particles for growth, (4) corrosion, and (5) an increase in
frictional resistance. The slime matrix aids the microorganisms by resisting
stresses in the environment.

Secondary periphytic bacteria follow the initial colonizers and grow
better in the presence of the pioneer bacteria than without them.2? These may
include filamentous, stalked, or budding bacteria which can, under proper
conditions, form bacterial mats.® 23 These microbes gain an ecological advan-
tage as the biofilm develops since they increase the surface area in contact
with turbulent flow and provide attachment sites for primary colonizers.l® 32

In the accumulative phase of biofouling, film characteristics such as

thickness, density, and rate of formation will be controlled by nutrient
transport, pipe surface temperature, shear forces (flow velocity), light, pipe

8ibid.

15ibid.
20ibid.
23ibid.

2920bell, C. E. "The Effect of Solid Surfaces Upon Bacterial Activity,"
J. Bacteriol, 46: 39-56 (1943).

30Z0Bell, C. E. "Substratum as an Environmental Factor for Aquatic
Bacteria, Fungi and Blue-Green Algae," in Marine Ecology, Vol. 1,
Environmental Factors, 0. Kinne, Ed. (New York: John Wiley & Sons,
Inc., 1972), pp 1252-1270.

31Characklis, W., "Attached Microbial Growths - I. Attachment and
Growth,"” Water Res. 7: 1113-27 (1973).

3213Motta, E. J., "Kinetics of Growth and Substrate Uptake in a Biological
Film System," Appl. Environ. Microbiol. 31: 286-293 (1976).
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composition, and water quality (e.g., pH, Og, numbers and kinds of organisms,
types of suspended particles). Film thickness is further dependent on the
width of the viscous sublayer.® The viscous sublayer is a stagnant, transition
region between the metal surface and turbulent flow. Its width is a function
of flow velocity and tube diameter. Turbulent flow-induced shear stress will
not affect slime layers whose thickness is less than that of the viscous
sublayer. When the slime layer exceeds the viscous sublayer width, consider-
able shear forces are extended on the slime layer that may result in
re-entrainment.

Surface shear and sloughing are two mechanisms of re-entrainment.
Surface shear, described above, acts to remove susceptible portions of the
slime layer. As the film accumulates, the second mechanism, sloughing,
becomes evident. Sloughing is a massive removal of slime attributed to
oxygen and/or nutrient depletion deep within thicker, denser biofilms.® 32 33 .
Transport of oxygen and nutrients is by passive diffusion. As layer thickness
increases, the maximum distance over which passive transport is effective is
exceeded, resulting in anoxia or nutrient depletion.3% 1In either case,
anaerobes will proliferate, resulting in losses to the film as well as inten-
sifying corrosion due to acid production.8 °

When portions of the film are lost or removed by cleaning, the precon-
ditioned surface with available nutrients is suitable for a rapid regrowth.
This regrowth is frequently more rapid than that from clean surfaces and is
illustrated by Detwiler,3® who reported that condensers, manually cleaned,
experienced at least 15 to 20 percent reduction in heat transfer after only
10 hours following re-exposure to flowing seawater.

Once completed, primary film formation (microfouling) is succeeded by

initial macrofouling in the form of holozoic protozoa such as ciliates and
amoeba.® Flagellates also occur which utilize lytic products of the film.

8ibid.
%ibid.
325bid.

33Hohen, C. H. and Ray, A. D., "Effects of thickness on Bacterial Film,"
Journal WPCF 45:11, November 1973. .

34Kirkpatrick, J. P., McIntyre, L. V., and Characklis, W. G., 1980, "Mass
and Heat Transfer in a Circular Tube with Biofouling," Water Research
14: 117-127.

35petwiler, D. S., "Improving Condenser Performance with Continuous
In-Service Cleaning of Tubes," American Societv for Testing Materials
Publication STP 538.
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The so-called primary foulers--barnacles, bryozoans, and hydroids--quickly
follow. Finally, secondary foulers such as anemones, ascidians, and musse's
occur. Macrofouling results in restricted flow due to biomass accumulation as
well as sediment entrapment.

At least 72 percent of the total resistance to heat transfer in condenser
tubes is attributed to waterside resistances. The waterside resistances, in
turn, are composed of resistances derived from the viscous or stagnant sub-
layer located between turbulent flow and the pipe wall (39 percent) and
biofouling (33 percent). Heat transfer is accomplished by two mechanisms,
each of which is influenced by biofilm development. Conductive heat transfer
through condenser walls is one heat transfer mechanism severely affected by
biofilm thickness. Since the biofilm is 98 to 99 percent water,!5 the slime
matrix has the thermal conductivity of water. It is therefore likely that
corrosion products and inert suspended solids presented to the slime by sea-
water flow may be incorporated into the slime matrix, reducing the thermal
conductivity (conductive heat transfer).3®

The second mechanism of heat transfer is convective heat transfer. This
is heat removed through fluid mixing or motion. Biofilm development above a

critical thickness increases frictional resistance between the pipe and seawater

flow, resulting in a pressure drop and an increase in electrical consumption.

In summary, microfouling results in a slime layer which degrades con-
denser performance. For OTEC to succeed, an in-situ biofouling countermeasure
(cleaning technique) must be used to prevent or remove the slime layer.

BIOFOULING COUNTERMEASURES

With the problem of slime accumulations in mind, a biofouling counter-
measures program was established at the Naval Coastal Systems Center (NCSC),
Panama City, Florida. Many techniques have been proposed as countermeasures
systems such as (1) flow-driven brushes ,37 38 39 (2) recirculating sponge

15ibid.
3€Characklis, W. G., 1979, "Biofilm Development and Destruction In
Turbulent Flow," Ozone: Science and Engineering 1: 167-181.

37Rice, M. S., Hagel, D., Conn, A. F., 1977, "Methods for Cleaning
OTEC Heat Exchangers,” Report #7701-1, Hydronautics, Inc., Columbia, MD.

38Fritsch, A., Adamson, W., and Castelli, V., "An Evaluation of Mechanical
Cleaning Methods for Removal of Soft Fouling from Heat Exchanger Tubes
in OTEC Power Plants," Proc S5th OTEC Conference, Seattle, WA, October 10-12,
1977, pp 159-166.

39Conn, A. F., Rice, M. S., and Hagel, D., "Ultra Clean Heat Exchangers -
A Critical OTEC Requirement," Proc. 4th OTEC Conference, New Orleans, LA,
March 22-24, 1977, pp. VII-11 to VII-l4.
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rubber balls,37 38 39 (3) chlorination,37 38 39 (4) vater jets,37 38 39

(5) abrasive slurries,*® 4! (6) ultrasonics,3? 42 and (7) copper toxicity.43

Of these, three systems were recommended for immediate application to in-situ
cleaning of heat exchangers with "off-the-shelf" components. These were
flow-driven brushes, recirculating sponge rubber balls, and chlorination, as
well as combinations of each mechanical system with chlorination. Each system
was tested in both aluminum (Alloy 5052) and titanium pipe. A test was assumed
to be succecsful when fouling-induced thermal resistance (Rf) remained at or

near the target level of 1 X 10-4 ftz-hr-°F/Btu (Rf = 0.0001 or Rf = 1.0).
Except for limited biological tests in which the maximum Rf was 5.0, cleaning
tests were terminated when Rf exceeded 3.0.

FLOW-DRIVEN BRUSHES

This cleaning system has been described elsewhere.4* Basically, however,
the system involves the use of brushes slightly larger in diameter than that
of the pipe. Each pipe is equipped with a cage at each end of the tube. The
brush normally resides in the downstream cage. Periodically the flow is
reversed, driving the brush to the opposite end of the pipe where it is again
captured in the opposite cage. The brush remains trapped briefly in the cage
and then, upon return of normal flow, returns to the starting position; i.e.,

3 downstream cage. Cleaning results from shear forces generated by brush move-
ment. These forces should be sufficient to prevent or remove biofilm
accumulations.

37ibid.

38ibid.

3%ibid.

40Kineiski, E. H., 1978, "Review of OTEC Test Facilities,'" Proceedings of the 4
Fifth OTEC Conference, Seattle, Washington, October 10-12, 1977, pp 1-6. .=

41Mann, M. J., 1979, "Possible Cu-Ni-Clad Steel Material and Abrasive "1
Slurry Cleaning System for Plate-Fin-Type OTEC Heat Exchangers," in
Proceedings of the Sixth OTEC Conference, Washington, DC, June 19-22,

42pandolfini, P. P., Avery, W. H., and ﬁill, F. K., "Experiments on i
Ultrasonic Cleaning of a Shell-less Folded Aluminum Tube, OTEC Heat
Exchanger," Proceedings of the Sixth OTEC Conference, Washington, DC,
June 19~-22, 1978, pp 12.8-1 to 12.8-6. ] Lf

435mith, €. W., Kirk, B. J., and Blume, W. J., "Possible Use of the Cathelco
System to Control Fouling in OTEC Systems," Proceeding of the Sixth OTEC
Conference, Washington, DC, June 19-22, 1979, pp 12.11-1 to 12.11-3.

44Nubel, E. D., "Automatic Tube Cleaning System - Brush and Cage Principle,"
In Proceedings of the Fourth OTEC Conference, March 22-24, 1977, pp VII-61
to VII-63.
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Advantages of using this system include:

1. Each pipe has its own brush
2. Off-the-shelf components
3. In-situ cleaning
4. Estimated brush life of 5 years
5. Automated, requiring little monitoring
6. Can be used with finned tubes
. 7. Flow reversal frees foreign objects
8. Disrupts the stagnant laminar water film within the pipe,
increasing heat transfer and reducing rate of fouling
9. Compatible with chemical cleaning37 38 39 42 44 45
: Problems of such a system include:
: 1. Complex systems required for flow reversal
2. Abrasion of pipes
r
3. Cleaning system (cage/brushes) becomes fouled
4. Questions of brush wear in contrast to the expected brush life
5. Prone to clogging due to fouling accumulations and debris from
water flow
6. Basically an intermittent cleaning system
37ibid.
38ibid.
39ibid.
42ibid.
44ibid.
45Burton, D. T., "Biofouling Control Procedures for Power Plant Cooling

Water Systems," In Condenser Biofouling Control, Eds: Gary, J. F.,
Jordon, R. M., Aitken, A. H., Burton, D. T., Gray, R. H., Ann Arbor
Science, Ann Arbor, MI, pp 49-76.
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7. Debris screening may be required
8. Removal of protective oxide film within the pipe

9. Head losses due to flow restriction through cages,
etc.37 38 39 42 44 45

RECIRCULATING SPONGE RUBBER BALLS

Recirculating sponge rubber balls (SRBs) are designed to provide con-
tinuous mechanical cleaning during normal condenser operation. In a large
scale system, slightly oversize balls are injected into fluid flow where dis-
tribution into individual pipes occur. Ball distribution is thus dependent
(1) upon the specific gravity of cooling fluid and SRBs and (2) on the number
of balls used. Each tube should receive a ball on the average of every
5 minutes. Ball movement is controlled by (1) flow velocity and (2) a pres-
sure differential between fluid inlet and outlet. During movement, the over-
size ball is compressed thus providing an extended cleaning area. Cleaning
results from a continuous "wiping" of the pipe's interior. As balls exit the

pipes, they are screened out of flow and pumped back to the injectors for
reuse.

SRBs are described by their diameter and demsity. Thus, a 28-mm diameter
ball may be "soft," "mormal," or "hard" in demsity and may also have an abra-
sive coating. Density designations are arbitrary classifications made by the
supplying company (Amertap Corporation).

Advantages of this system include:

1. Essentially continuous cleaning

2. In-situ cleaning

37ibid.
38;ibid.
39ibid.
42ibid.
44ibid.

45ibid.
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3. Off-the-shelf components

4. No requirement for reversed flow

5. Great variety in ball resiliency and abrasiveness

6. Disrupts laminar film

7. Automatic ball collection for injection

8. Compatible with chemical cleaning 37 38 39 46
Disadvantages include:

1. Random ball distribution

2. Weekly maintenance required

3. Short ball life

4. Slight head loss due to screening

5. Debris screening required

6. Power penalty for ball injection and capture

7. Not suitable for finned tubes

8. Removal of protective oxide films37 38 39 46

CHLORINATION
Historically, chlorine has been the technique of choice for disinfection
and biofilm control in waste water/power plant applications. Chlorine acts

in two ways: (1) actual disinfection or killing of microbes and (2) oxidation
of biofilm capsular components, weakening the film for removal by shear forces.

37ibid.
38ibid.
39ibid.
46Kern, W. I., "Increasing Heat Exchanger Efficiency Through Continuous

Mechanical Tube Maintenance," In Proceedings of Fourth OTEC Conference,
March 22-24, 1977, pp VII-64 to VII-78.




NCSC TM 298-80

The effectiveness of chlorine is well documented.37 38 39 47 48 Tperefore,
chlorine use is not so much a question of effectiveness as of minimization
since excessive oxidants can have serious environmental effects in receiving
waters.

The chlerine system consists of electrolytic cells positioned upstream 4
operating either intermittantly or continuously. Sufficient chlorine is |
generated to satisfy the chlorine demand of fluid flow and to provide a mean
daily average residual chlorine concentration of <0.25 ppm. Residual con-
centration is automatically monitored at the condenser exit by the system
controller which, in turn, controls chlorine generation.

Advantages of chlorination include:

1. On-site generation without storage requirements

2. Documented effectiveness

3. Automated, simple system

4. Limited maintenance

5. Availability of off-the-shelf components i
6. In-situ cleaning ;Z
7. Compatibility with mechanical systems 37 38 39 47 48 3

8. Suitable for finned systems

Disadvantages include:

1. Parasitic power losses
2. Incompatible with brass and many aluminum alloys

3. Environmental effects/restrictions

37ibid.

38ibid.

39ibid. St
4’Norrman, G., Characklis, W. G., and Bryers, J. D., "Control of Micro-

bial Fouling in Circular Tubes with Chlorine," Dev. Ind. Micobiol. 18,
581-590 (1977).

48Faua, J. A. and Thomas, D. L., 1978, "Use of Chlorine to Control
OTEC Biofouling," Ocean Engineering, Vol. 5: 269-288.
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4. Not effective against inorganic fuling and, to a lesser
extent, established macrofouling

5. May promote corrosion or scaling

6. Less effective against established biofilms at feasible chlorine
concentrations37 38 39 47 48

TEST SITE CHARACTERIZATION

The Panama City OTEC site is located on St. Andrew Bay (Figure 1), an
estuary approximately 100 miles east of Pensacola, Florida. The estuary
consists of meandering, deep water channels surrounded by extensive Thalassia
beds. The central portion of the bay, upon which the test site is located,
varies from 35 to 50 feet in depth. This depth, coupled with a limited fresh
water feed source, makes the St. Andrew Bay system unique among Gulf Coast
estuaries.*® The bay is classified as a positive estuary, although fresh
water input barely exceeds evaporation.®® This limited fresh water input
contributes to the high salinities (24 to 30 percent range) recorded at the
test site. Water quality conditions within the bay and coastal waters have
been described elsewhere.®! 52 53 54 Hoyever, during the course of this

37ibid.
38ibid.
39ibid.
47ibid.
48ibid.
49Bense, J. A., "A Swift Creek-Weeden Island Village Complex in the

St. Andrew Bay System of the Northwest Florida Gulf Coast," 34th
Annual Southeastern Archaelogical Conference, Lafayette, LA, 1977.

SOMcNulty, J. K., Lindall, W. N., and Sykes, J. E., Cooperative Gulf of
Mexico Estuarine Inventory and Study, Florida: Phase I, Area ‘
Description, NOAA Technical Report NMFS CIRC-368, Seattle, WA, 1972. ié

Slyater Quality Study--St. Andrew Bay, Florida, EPA, Office of Enforcement,
National Enforcement Investigations Center, Denver, CO, 1975,

525alsman, G. G. and Ciesluk, A. J., "Environmental Conditions in Coastal
Waters Near Panama City, Florida,”" NCSC Technical Report 337-78, 1978.

53Loftin, H. G. and Lott, D. F., 1980, "A Summary of Results of the
NCSC Data Base Survey of Water Quality: January 1975 to October 1979,"
NCSC Technical Note, May 1980.

54Lott, D. F. and Tuovila, S. M., "Fouling Countermeasures - Status of
Two Mechanical Cleaning Systems and Chlorination," Proceedings of
Sixth OTEC Conference, Washington, DC, June 19-22, 1979.
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study, test site characterization was performed for selected water quality
parameters. Average values for water quality data are summarized in Table 1
with a detailed graph of each parameter included as Appendix A.

The data in Table 1 describe a relatively nonpolluted environment with an
extensive microbial community. Predictably, primary film formation was rapid
year-round. The advantages of this estuarine site, although not characteristic
of typical OTEC sites where strong vertical thermal gradients prevail, were
heavy year-round fouling and avoidance of many problems that plague testing at
remote sites. Estuarine testing here is thus a worse case situation and it
has been conjectured that continued operation of a moored OTEC platform may
sufficiently alter its local environment to resemble such an estuarine
situation.%%

Because of chlorination testing, two further considerations must be
addressed during test site characterization: (1) surface currents and
(2) chlorine demand of bay waters.

Dye tracer studies were made of surface currents and their effect on ;
locations of the water intake for test systems. This was particularly '
important in chlorination studies where reuse of chlorinated water is pro-
hibited. Six dye tracer studies were carried out at the NCSC OTEC site 0
(Ammunition Pier-AP). Each study used a surface release of fluorescein dye g%
at various stations surrounding the test site. A composite of surface cur- "
rents is illustrated in Figure 2. Results indicate that flow down the ship 0
channel dominates wind-induced surface currents. By siting the water intake
on the north arm of the pier, reuse of chlorinated water was minimized.

Chlorine demand measurements were also important for chlorination minimi-
zation studies and for comparisons with other OTEC test sites. In order to
minimize the chlorine produced yet have enough chlorine available for primary
film prevention and removal, it was essential that information on variability
in chlorine demand be determined. This information would allow eventual }
automatic control of chlorine generation. Two studies were done. The first
addressed variability in chlorine demand over a 24-hour period. Seawater
samples were collected at hourly intervals and analyzed ampherometrically for
chlorine demand at contact times of 0, 0.5, 1, and 5 minutes. Variability
over a 24-hour period was generally less than 1 ppm for all contact times
tested (Figure 3). Although chlorine demand increased somewhat with time,
little real difference was noted in demand at the various contact times. In
addition, differences between chlorine demand at zero minutes and 5 minutes \
seldom exceeded 1 ppm. X

55Loeb, George, Sixth OTEC Conference Biofouling and Corrosion Panel
Discussion.
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The second study involved variations in chlorine demand at tidal extremes
over a 5-day period. During the study period, tidal range was 1.6 feet (0.5 m),
a maximum for St. Andrew Bay. The variability in chlorine demand at low
(Figure 4) and high (Figure 5) tide was determined for a variety of chlorine
contact times. Results indicated that chlorine demand increases with contact
time but was less than 1 ppm difference for the contact times tested. Vari-
ability in chlorine demand at high and low tides is indicated in Figures 6
through 9 for 0, 0.5, 1, and 5 minutes, respectively. High tide did reduce
chlorine demand, but the demand decreased by less than 1 ppm in most cases.
This meant chlorine demand varied over a narrow range for St. Andrew Bay and
offered hope that automatic control of chlorine generation is feasible.

TEST SYSTEM

TEST FACILITY

The Panama City test facility is shown in Figure 6. The major components
include: (1) seawater intake, (2) suction pumps, (3) seawater manifold,
(4) control units, (5) chlorination units, (6) recirculating sponge rubber
ball units, (7) flow-driven brush units, (8) instrumentation building,
(9) instrumentation trailer, and (10) data acquisition system. The system
was a single stage pumping system operating at a pressure of 30 psig and
supplied with feed water from an intake depth of 7 feet (2.1 m).

This facility was extensively modified from that conceived and built by
Fritsch, et al.38% System components were continually upgraded or modified to
eliminate problems encountered during testing. Detailed documentation of
electronic and mechanical subsystems may be found in separate papers published
elsewhere.5¢ 57

DATA COLLECTION

Data acquisition and reduction was done by the Digital Electronics
Corporation PDP 11/34 computer. The software used for data acquisition and

38ipid.

56Lott, D. F., "Ocean Thermal Energy Coversion - Electronic Systems,"
Naval Coastal Systems Center Technical Memorandum 296-80, December 1980.

57Lott, D. F., "Ocean Thermal Energy Coversion - Mechanical Systems,"
Naval Coastal Systems Center Technical Memorandum 297-80, December 1980.
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analysis was also extensively modified from that of Fetkovich,®8 Fritsch
et al,3® apd Boswell.5? Changes to system software are documented in reports
on software configuration and data analysis.®0 61

Determination of fouling resistance was based on the transfer of heat
from pipe walls to flowing seawater. Resistances to heat transfer were assumed :
to result from increases in the primary film located at the pipe/seawater i
interface and resistances in both the copper block and the copper block/pipe f
wall interface were assumed to be negligible. Thus, as fouling increased, '
changes in resistance were compared to baseline resistances established by the b
Wilson plot for the clean tube.52 , ]

Data acquisition began by heating each pipe until the pipe walls
stabilized at a temperature slightly above that of flowing seawater. Heaters :
were then turned off and the pipe monitored for voltage decay of the cooling |
curve. From the raw cooling curve data, a time constant (A) was calculated ) .
through linear regression of the natural logarithm of each data point. The
cooling constant was used to calculate an uncorrected heat transfer coefficient
(HUNCOR) using

HUNCOR = A + B (1nA) + C (1aA)2 + D (1nA)3

where A, B, C, and D are physical constants of the tube.®® The HUNCOR was

then corrected for heat losses other than that attributed to seawater flow

(air loss/axial loss). Finally, to allow for comparisons between values of h

calculated at different times, h was referenced to a nominal water temperature b
(70°F) (21°C) and flow velocity (6 feet/second) (1.8 m/sec) and yielded HRNOM.

Fouling resistance (Rf) was calculated using:

Rf = (1/HRNOM) - (Hintercept + Hslope " (6%%(-0.8)).

38ibid.
S8Fetkovich, J. F., "A system for Measuring the Effect of Fouling and Cor-

rosion on Heat Transfer Under Simulated Conditions,”" Report C00-4041-10,
Carnegie-Mellon University, December 1976.

59Boswell, David, "Data Acquisition System Design and Integration for
the Ocean Thermal Energy Conversion Biofouling Test,'" David Taylor Naval
Ships Research and Development Center Report (under preparation), 1980.

-

80Tyovila, S. M., "Data Analysis for Ocean Thermal Energy Conversion (OTEC),"
Naval Coastal Systems Center Technical Memorandum TM 271-79, November 1979.

€1Tyovila, S. M., "Software Configuration of Ocean Thermal Energy Conversion
(OTEC) at Panama City Florida," Naval Coastal Systems Center Technical
Memorandum (In preparation).

62yilson, E. E., "A Basis for Rational Design of Heat Transfer Apparatus,"”
American Society of Mechanical Engineers Transactions, 37, 1477 (1915).
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Thus, measurements of foi.ling resistance were not made on individual heat
transfer measurements of great accuracy but rather on changes in the heat
transfer coefficient over the clean tube state.

Calibration of Heat Transfer Monitors (HTM)

As stated, all pipes were subjected to a Wilson plot before and, as
circumstances allowed, after a biofouling experiment. The Wilson plot estah-
lished the zero baseline for resistances other than biofilm accumulations.%?
These contact resistances are attributed to the interface between the pipe
wall and heater block. The magnitude of this resistance was determined by
measuring fouling resistance at a variety of flow velocities. The inverse of
the velocity is plotted against fouling resistance and subjected to a linear

regression. Line slope should be approximately 3.44 X 10-3 and the ideal

intercept should be zero.®® However, a deviation between the intercept and
zero results that is a measure of contact resistance (i.e., nonbiological
resistance) and is velocity independent.®3

All available Wilson plots are attached as Appendix B. Plots are identi-

fied as to pipe condition (clean versus fouled), pipe material (see Table 2
for code numbers), slope, intercept, correlation coefficient, and date.

tIELD TESTS

Three major field tests were conducted by NCSC:
1. 1978-1979 experiment covering flow-driven brushes

2. 1979 experiment covering flow-driven brushes and recirculating
sponge rubber balls

3. 1979-1980 experiment covering flow-driven brushes, recirculating
sponge rubber balls, chlorination, and system combinations

60ihid.
62ibid.

63Bird, S. P., 1980, "Uncertainties in Heat Transfer Measurements Obtained
with the Carnegie-Mellon University Biofouling Device," In Condenser
Biofouling Control, Eds: Gary, J. F., Jordon, R. M., Aitken, A. H.,
Burton, D. T., and Gray, R. H., Ann Arbor Science, Ann Arbor, MI,
pp 185-204.
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TABLE 2

CODE FOR HTM PIPE PURPOSES AND MATERIALS

|
|
Tube HTM l
# Purpose Material i
1 Control, cleaned daily Aluminum 5052% i»
2 Control, cleaned daily Titanium ;
3 Control, freely fouling Aluminum 5052 i‘
4 Control, freely fouling Titanium i‘
5 Flow-Driven Brush Aluminum 5052 g
6 Flow-Driven Brush Titanium L
7 Recirculating Sponge Ball Aluminum 5052 ;_
8 Recirculating Sponge Ball Titanium f
0dd tube numbers denote aluminum HIMs; even tube numbers, titanium HTMs. ;f
* Aluminum 6061 in the 1978-79 experiment.

1978-1979 EXPERIMENT

In late August 1978, Argonne National Laboratory, the US Department of
Energy's technical agent for OTEC, asked NCSC to assume overall responsibility
for the biofouling countermeasures effort. The initial field experiment )
utilized system hardware and software devised by David Taylor Naval Research
and Development Center for evaluation of flow-driven brushes. This field
effort began in late September and ended in mid-December, a span of 62 days,
with results presented at the OTEC Workshop on Biofouling and Corrosion.®%*

64Braswell, J. A., Lott, D. F., and Hedlicka, S. M., 1979. Preliminary
Evaluation of Flow-Driven Brushes for Removal of Soft Biofouling from
Heat Exchanger Tubes in OTEC Power Plants. In: Proceedings of the
Ocean Thermal Energy Conversion (OTEC) Biofouling, Corrosion and Materials
Workshop, January 8-10, 1979, Rosslyn, VA, ANL. OTEC-BCM-002, pp. 101-120.
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Flow-Driven Brushes

Figure 11 is a diagram of the flow-driven brush system. The brush,
slightly larger in diameter than the pipc, was contained in the downstream
cage. Following the timing pulse, electrically operated valves were actuated
which reversed flow, thereby driving the brush to the opposing cage (the
upstream cage during normal flow) where it remained for 15 seconds. There-
after, the valves cycled back to their normal position, returning the brush
to the downstream cage. Flow reversal followed by normal flow thus provided
a single cleaning cycle.

The initial test of flow-driven brushes evaluated the commercially
recommended (28 mm bristle diameter) brush operating on an 8-hour cleaning
cycle. The brush used is seen in Figure 12.

Controls

Four control units, fed simultaneously from the same seawater header,
were used in all three experiments. Each unit consisted of an aluminum or
titanium pipe equipped with a flowmeter and HTM. One aluminum and one
titanium control unit were cleaned daily, while a second pair was allowed to
foul freely. These controls thus represented the extremes in Rf values.

Input Flow Timer

2——*—'!! T

r——-- '\:——-Normal Flow — l
1 Three-way

Ball Valve

# H.T.M.

i
CAGE
CAGE Three-way G
Ball Valve
amr———— —-—-" P -
————— Normal Flow g 1 ~—|
— —~— -»Reverse Flow \ o \ d
Flow Control Flowmeter
Valve Section

FIGURE 11. FLOW-DRIVEN BRUSH CLEANING SYSTEM
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The control pair that was cleaned daily provided the zero baseline and
served as an internal check of the data-gathering system. The Rf value of

this control seldom exceeded 1.0 X 10-4 ftz-hr-°F/Btu. Cleaning was affected
by 20 passes of the nylon-bristle bottle brush on an extended handle. The
brush was designed to fill the tube tightly to exert a considerable shear force
on the tube walls.

The second pair of controls was allowed to foul freely. This con-
trol was used to determine fouling rate and was not cleaned until a Rf of

5.0 X 10-4 ft2-hr-°F/Btu was observed. At that time, HTMs were cleaned and
returned to service.

1979 EXPERIMENT

The 1979 experiment began on 10 May 1979 and ended on 8 July 1979. The
flow-driven brushes and recirculating sponge rubber balls were tested during
this period. Hardware problems prevented any tests of chlorination. The
60-day test period provided 13,556 cooling curves for analysis and results
were presented at the Sixth OTEC Conference.$%

Flow-Driven Brushes 4

The system tested was essentially the same as used in the previous
experiment except that the brush was operated on a reduced cycle interval of
4 hours. In addition, the effectiveness of brush replacement on reducing Rf
was explored.

Recirculating Sponge Rubber Balls

The system for recirculating sponge rubber balls used unidirectional flow
by peristaltic pumps*as shown in Figure 13.

Ball movement was controlled by a variable timer. When the specified
cycle interval had lapsed, the timer started the peristaltic pump which drove
a single ball into the HTM loop, through the HTM, and into the ball catcher.
The catcher diverted the ball past the optical sensor which simultaneously cut
off the peristaltic pump and reset the timer. This system was used from 10 May
to 25 May. A failure of peristaltic pumps necessitated a new system for ball
circulation. On 7 June the ball evaluation was restarted using a new system

85Lott, D. F. and Tuovila, S. M., "Fouling Countermeasures - Status of
Two Mechanical Cleaning Systems and Chlorination,"” Proceedings of the
Sixth OTEC Conference, Washington, DC, June 1979.
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Flowmeter
H.T.M. Section
Input Flow | 1 ——
/2,
= . Shut-Off
Valves
[} 21 /B\all
L d - ] 774 Catcher
— Peristaltic - — - —
Pump y N
Optical
——> Normal Flow Ball
~=~* Ball Path Sensor
Timer Flow Regulator
Electronics Valve
LJJ
Outflow

FIGURE 13. PERISTALTIC PUMP SYSTEM FOR BALL CIRCULATION

for ball movement designed by Argonne National Laboratory (ANL) (Figure 14)
and with electronics supplied by NCSC. The system controller was a variable
timer that provided the pulse triggering the movement of electrically operated
valves to the release position. Flow pressure, greater than that in the HTM
loop, drove the ball into the HTM loop, through the HTM, and past an optical
sensor. The optical sensor caused the valve to return to its original (i.e.,
catch) position and reset the timer. The ball, meanwhile, was shunted into a
bypass loop by a strainer. Finally, water flow through the valve caused the
ball to move into the valve in preparation for the next cleaning cycle.

Tested during this period were 28 mm "hard" balls and a 15-minute
cleaning cycle.

Controls

Controls were the same as those used in the 1978-1979 experiment.

1979-1980 EXPERIMENT

The 1979-1980 experiment began on 18 September 1979 and ended on 31 March
1980. This experiment evaluated the systems described below as well as com-
binations of each mechanical system with chlorination. The experiment provided

35
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an unbroken series of tests over the 195~day period and resulted in 56,479
cooling curves. Major portions of the work were presented at the Seventh OTEC
Conference. 86

Flow-Driven Brushes

The brush system pictured in Figure 11 was modified from that described
previously. The major change was an improved brush catcher housing (Figure 15a)
that eliminated low flow velocity areas (Figure 15b). The constriction that
resulted on the HTM ends made it necessary to filter the flow so as to reduce
the marine biomass prevalent in the influent from St. Andrew Bay. The system
used flow reversal to drive a single brush back and forth through a heat
transfer unit. Cleaning interval and brush parameters such as bristle composi-
tion, length, and number were selected for testing. Since a 4-hour interval
is the minimal practical interval between cleaning cycles by a full-scale
plant,%4 initial tests used this 4-hour cycle and varying brush parameters.

Selection of a brush for testing was based on 1978-1979 experimental
results. Those results indicated acceptable Rfs could be obtained with the
commercially recommended brush (28 mm diameter bristle) in the titanium
pipe operating on either 4- or 8-hour cleaning cycles. The aluminum pipe,
however, demonstrated poor Rfs for all cleaning cycles tested. Although there
are few brush types available for testing, Water Services of America supplied
some experimental (28 mm diameter bristle) brushes that differed from the
commercial brush in bristle composition, stiffness, and number of bristles.
Late in the test program, very limited testing was done with a 29 mm diameter
brush that differed from the experimental brush solely in brush diameter.

Recirculating Sponge Rubber Balls

Many deficiencies were noted in the previous tests of recirculating
sponge rubber balls. Problems such as failure of the peristaltic pumps,
failure of flexible tubing within the pumps, electronics failures, and ball
distortion by the pumps prevented an evaluation of the cleaning system (balls).

Most of those problems identified in the previous tests were eliminated
by redesigning the system to deliver unidirectional flow for ball movement
but providing a mechanism for ball injection and capture (Figure 16). Fol-
lowing a timing pulse, relays were activated which drove a plunger containing
the sponge rubber ball into the water flow. The ball was forced into the
Heat Transfer Monitor (HTM) past the optical sensor which simultaneously reset

445bid. v

66Lott, D. F. and Tuovila, S. M., 1980, "In-Situ Cleaning of OTEC Heat ,
Exchangers," Proceedings of the Seventh OTEC Conference, Washington, DC,
June 1980.
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FIGURE 15 MODIFICATION TO FLOW-DRIVEN BRUSH SYSTEM
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FIGURE 16. NCSC MECHANICAL SYSTEM FOR BALL CIRCULATION

the timer, incremented the counter, and moved the plunger to catch position.
In the cleaning system tested, a cleaning cycle consisted of the passage of
a single ball through the HTM.

Parameters tested include ball diameter, ball stiffness, and cycle
interval. The minimum time between ball cycles was determined to be 15
minutes.4® In contrast to 1978-1979 test results, the commercially recom-
mended ball (28 mm "medium" ball for l-inch pipe) was not used in favor of a
29 mm "soft" ball that increased shear forces at the pipe wall.

Chlorination

The initial test system featured continuous chlorination of identical
parallel loops for aluminum and titanium pipe serviced by a single chlorine
generator (Figure 17). Test results, however, showed insufficient flow
available for continuous chlorination. This problem was eliminated by pro-
viding a system for intermittent chlorine dosing (Figure 18). Testing of
intermittent dosing was severely limited by tests performed in conjunction
with the mechanical systems as well as biological tests. These problems
resulted in a long-term test of a single chlorine dosage for each material.

4€;bid.

e eer oy

PO

v




NCSC TM 298-80

& Header ﬁ

| An.lyzerLl— Wmlve
Elect 1

[Signal Transmiccer] nlogytic
Generator

[Proportion Controller|

:

. Flow Cell with
“Chlorine Generator
"TF‘ 4
M
H.T.M. H.T.M I
| ] |
70 Ft i
. 70 Ft.
Loop Loop
pt——— | = ' == C — : E |
H.T.M. H.T.M. "
I o |
' J 1
]
| S|
Flow  ( Chlorine 5 Flow
Meter Monitor Chlorine Meter
Section - Monitor Section
Flow Regulator ' Flow Regulator
Valve ) ‘ Valve
Outflow Outflow
ALUMINUM LOOP TITANIUM LOOP

FIGURE 17. CONTINUOUS CHLORINATION SYSTEM

AL HTM Overbd ——> L
Sampling
Port
Flowmeters y
i
Ti HTM = 0vbd

L=

'~ p
Flow j‘-‘ Flow ;

FIGURE .18. INTERMITTENT CHLORINATION SYSTEM




NCSC TM 298-80

»
r
¥

Controls

The controls were identical to those utilized in the 1978-1979 tests.
In addition, a number of biological tests were performed using these pipes
and are reported elsewhere.87 68 69

RESULTS AND DISCUSSION

! Results are presented as date (or days) versus fouling resistance (Rf)

\ values for each HIM tested. On all Rf figures, the target Rf of 0.0001 ft2-
hr-°F/Btu equals 1.0 R Foul *(E-04). Each Rf plotted represents the mean
daily average for that day. Each average was calculated from cooling curves
that fell within data specifications such as low flow rate standard deviatioms,
good curve fits, and proper operating conditions.

The results discussed below were taken from the Sixth and Seventh OTEC
Conferences®5 66 as well as the ANL Biofouling and Corrosion Workshop.64 In
addition, details not previously available have been included. This report

thus represents a summary.of all field tests conducted by NCSC in support of
OTEC and serves as a final report.

e ey e e

64iphid,

€55bid.

e e mtr e e =

€6ibid.

67white, D. C., Bobbie, R. J., Nickels, J. S., Parker, J. H., Smith, G. A.,
Davis, W. M., Lott, D. F., and Benson, P. H., 1980b. Assay and Correlation
Between Mirobial Fouling and OTEC Cleaning of Surfaces Exposed to Seawater.

Extended Abstracts of Seventh Ocean Energy Conference, Washington, DC, 1
June 1980. :

68Bobbie, R. J.; White, D. C.; and Benson, P. H., 1980, "Biochemical Analysis
of the Response of the Marine Microfouling Community Structure to Cleaning
Procedures Designed to Increase Heat Transfer Efficiency." Proceedings of

the Fifth Int. Congr. of Marine Corrosion and Fouling, Barcelona, Spain,
PP- 391-400.

-y

€9hite, D. C., 1980, "Assays of Microfouling Community in OTEC Simulation
System Modified to Include Effects of Cleaning Techniques on the Biomass,
Physiological State and Population Structure of the Primary Microbial
Biofouling of the OTEC Simulation System." Final Report ANL Contract
No. 31-109-38-4502.
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RESULTS FOR 1978-1979 EXPERIMENT

Flow-Driven Brushes

In this, the initial test of flow-driven brushes, the manufacturer
approved all test procedures both before and after tests. However, several
factors affected NCSC tests that may not apply to potential OTEC sites.

First, both kinds and quantities of fouling organisms at the test site may
differ significantly from those of potential OTEC sites. Presumably, the
bacterial genera which constitute the primary film formers at these flow

rates (6 feet/second) would not differ significantly.’® However, the concen-
tration of micro-organisms is probably much greater at this shallow-water,
inshore test site than at a potential OTEC deep-water intake. Secondly, the
design of the test apparatus led to low velocity areas near the test pipe.
This resulted in substantially increased macrofouling, which directly affected
the operation of the brush cages and contributed to the volume and composition
of debris passing through the tubes. Though some low velocity areas will
inevitably occur in the design of an OTEC plant, their proximity to and
influence upon the heat exchanger tubes should be less dramatic than the
oyster-dominated communities in the NCSC test apparatus.

The buildup of debris from these macrofouling communities completely
stopped the movement and cleaning action of the brush in the aluminum pipe.
Fortunately, the obstruction occurred near the end of the experiment and valid
results were obtained for a suitable long test period (approximately 2 months).
However, both brushes exhibited an accumulation of debris that would not be
expected in a normal OTEC operation.

Despite the accumulation of foreign material in the brushes, both
systems showed a substantial degree of cleaning effectiveness (Figure 19 and
Figure 20). In the titanium pipe, the flow-driven brush (28-mm brush/8-hour
cycle) satisfied the manufacturer's claim, and maintained a fouling resistance
near 0.0001 ft2-hr-°F/Btu throughout most of the test period (Figure 19).
Visual inspection and borescope observations of this pipe at the end of the
3-month test period confirmed that the pipe was shiny and clean on the interior.

The brush (28-mm brush/8-hour cycle) was somewhat less effective for the
aluminum pipe (Figure 20). Even before the brush became stuck in its nylon
cage, fouling resistance in the aluminum pipe began to exceed the acceptable

limit of 5.0 X 10-4 ftz-hr-°F/Btu. Visual inspection and borescope observa-
tions of this tube revealed a noticeable film at the end of the test. Even
after hand brushing and chemical cleaning (sodium hydroxide followed by
nitric acid), the interior of this tube exhibited a hard scale. This residue
may indicate that fouling resistance in the aluminum tube was due primarily

to inorganic deposits.

700'Neill, T. B., Personal communication, 1977.
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Although the flow-driven brush system performed well in this evalu-
ation, there was evidence of brush fatigue even at the end of this relatively
short test period. Measurements of bristle length before and after the test
showed an average decrease of 0.014 inch (0.34 mm) in bristle length. Micro-
scopic examination revealed a distinct flattening of the bristle ends due to
wear. Thus, bristle wear rate will become a significant design factor in
the effectiveness of this brushing system.

Controls

The strongly negative values shown in Figure 21 for aluminum pipe are
believed to result, in part, from inadequate Wilson plot parameters. Thermal
resistance between the seawater flowing through the tubes and the temperature
sensor in the tube wall is estimated from a Wilson plot. The method is
generally accurate but has certain limitations for fouling studies. In addi-
tion to the problems cited by Fritsch et al,38 initial formulation of the plot
may suffer from the amount and accuracy of data available. In addition, the
vigorous daily cleaning to which this aluminum tube was subjected may have
removed oxide layers from the tube wall. This repeated scouring of the pipe
surface may have resulted in an actual decrease in the thermal resistance of
the pipe after the Wilson plot was taken. Hence, values based upon the
original plot have become negative.

Cleaning of the aluminum pipe was abandoned late in the test period
to study the problem of negative data for the tube. Fouling resistance values
then increased considerably but remained negative throughout the study. This
evidence indicated that both wall scouring and a faulty Wilson plot were
responsible for offsetting Rf values (Figure 21) to yield negative values.

Conversely, Figure 22 (the titanium pipe) shows results expected for
a tube cleaned daily. The fouling resistance of this tube was maintained near
0.0001 ft2-hr-°F/Btu for most of the study period. This was well within the
range sought for this experimental control (<0.0005 ft2-hr-°F/Btu). Removal
of an oxide layer, which is believed to be partially responsible for the
negative data for aluminum (Figure 21), apparently was insignificant in the
vigorously cleaned titanium tube.

It is significant that a fouling resistance indicative of a residual
thermally resistant layer was maintained despite the vigorous cleaning. The
nature of this layer was not determined. The pipe wall appeared clean upon
visual inspection and in borescope photographs taken after the test. It is
probable that the material was mostly inorganic since it is unlikely that much
biological material could have remained after such vigorous cleaning.

385bid.
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Figures 23 and 24 (aluminum and titanium, respectively, the free-fouling
controls) also show results which were close to those anticipated. The fouling
resistance increased to high levels and a thermally resistant layer was main-
tained throughout the test period. Variations in the fouling resistance
occurred suddenly, indicating occasional sloughing off of portions of the
fouling film.

A comparison of aluminum and titanium pipe is of interest since it
appeared that titanium fouled more rapidly and to a greater extent than did
aluminum. This observation is confirmed by the biological data as well as by
measurements of thermal resistance. Results obtained over the 3-month period
generally indicate higher values for alkaline phosphatase, total organic
carbon (TOC), and adenosine triphosphate (ATP) from titanium pipe sections.
However, on test completion, substantial soft fouling was seen in each pipe
material and appeared on borescope photographs.

COMMENT

Following this experiment, a detailed data analysis was undertaken to
explain the unusual plots seen as Figures 19 through 24. The plotting of
individual data points should result in a linear increase or decrease in Rf.
The vertical nature of plotted points was indicative of a problem.

Through the efforts of Glenn Popper (ANL), Glenn Granneman (formerly
of Carnegie-Mellon University), and Susan Tuovila (NCSC), a problem was identi-
fied in stepping between channels by the flowmeter which was eliminated in
later tests. These initial data are therefore questionable.

RESULTS OF 1979 EXPERIMENT

Flow-Driven Brushes

This test of flow-driven brushes consisted of two parts. The first
involved an evaluation of the commercially recommended brush (28 mm bristle
diameter) operating on a 4-hour cleaning cycle. At the end of 34 days

(13 June), the aluminum unit (Figure 25) had an Rf of 3 X 10'“ ft2-hr-°F/Btu.
This unit also showed a gradually increasing trend in Rf throughout the test
period. Fouling resistance in the titanium unit, on the other hand, oscil-

lated between 0.0 and 1.0 X 10-4 ft2-hr-°F/Btu throughout the test period
regardless of brush condition (Figure 26).

In contrast to information available in the literature,4? brush
wear is definitely a factor for design consideration. At the end of 34 days,

44ibid.
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the aluminum pipe (Alloy 5052) showed a loss of 0.098-inch brush bristle
length (241 passes) while the titanium pipe showed a loss of 0.126 inch (246
passes). This represents a decrease in bristle length of 9.5 percent and
11.6 percent, respectively, and reproduced previous results (1978-1979
experiment).

The second part of this test was a logical extension of the normal
operation of the cleaning system. At various times, brushes have to be
replaced since wear on bristle length will directly affect system performance.
Therefore, new brushes were placed in the system on 13 June. This mimicked
system maintenance (brush replacement) during normal operation and did not
involve cleaning the pipes. Results indicated that in both pipe materials
Rf showed an initial decrease but quickly re-established itself to previous
levels. Brush replacement has limited value for lowering Rf as brushes wear
out.

In general, the aluminum pipe showed an increasing trend in Rf over
the 60-day test period. A decrease was observed in Rf toward the end of this
test, but it is not known whether the decrease was transient or, in fact, a
real long-term reduction. In the titanium pipe, Rf remained between 0 and

1.0 X 10-4 ftz-hr-°F/Btu although Rf showed a very slow increasing trend over
the test duration. It appears that a longer test might be required to deter-
mine the nature of the sharp increase in Rf toward the end of the test.

Recirculating Sponge Rubber Balls

Performance of the 28 mm "hard" ball is shown in Figure 27 for aluminum
and Figure 28 for titanium pipe. For the period 10 to 24 May, ball recir-
culation was by peristaltic pumps. With this system, the aluminum pipe showed

a gradual increase in Rf to 2.0 X 10-4 ft2-hr-°F/Btu in 2 weeks. Results in
the titanium tube were not so clear. Oscillations in the curve represent
problems with ball movement that occurred in this test system. Peristaltic
pumps were inadequate for evaluation of ball cleaning effectiveness. During
the 14-day period, there were five major problems preventing ball movement
and affecting cleaning performance. Tests were finally terminated when the
pump motor burned out (24 May).

At least two candidate systems were evaluated to replace the peris-
taltic pumps for recirculating the sponge balls. The system selected was
designed by A. P. Gavin, Argonne National Laboratories, and was similar to
those proposed for OTEC-1.

On 7 June, a test with the 28 mm "hard" ball operating on a 15-minute
cycle was initiated using the ANL designed system. Results are seen in
Figure 27 (Alloy 5052) and Figure 28 (Ti). Although subject to pertubations,
the aluminum pipe showed a gradual increasing trend in Rf throughout the 34-day

test period. At the end of 34 days, Rf approached 2.5 X 10'“ ft2-hr-°F/Btu.
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The tendency toward a gradual increase was similar to that seen with flow-
driven brushes.

The titanium pipe, on the other hand, experienced what appeared to
be exponential fouling development. After a lag of 10 to 12 days, explosive
increases in Rf occurred. This result was quite different from that with
flow~driven brushes and represented the first clear instance of enhanced heat
transfer cagability followed by a sigmoidal increase in Rf as predicted by
Characklis!® and reported by Nimmons’! and Springer.* It is believed that
enhancement results from an increase in microroughness within the stagnant
sublayer thus increasing surface areas available for convective heat transfer.
As long as these roughness elements and the biofilm thickness is less than the
viscous sublayer, changes in convective transfer do not affect frictional
resistance. When the roughness exceeds the viscous sublayer, increases in
frictional resistance occur that are reflected in a diminished heat transfer
capability.

Two major problems occurred with the ANL test system which affected
system performance and resulted in oscillations in Rf plots for each pipe
material. The first of these involved the destruction of test balls during
ball release. As 'soon as rotation from the catch to release position com-
menced, a suction holding the ball in the catcher was released. The loose
ball would become trapped between the ball catcher and the catcher housing.
This destroyed the ball and jammed the catcher. This problem was eliminated
by installing a pedestal in the catcher that compressed the ball, holding it
in the catcher when suction was released. No further problems with ball
destruction occurred.

The second and major problem encountered was a tendency for the catcher
to "hang open" in the release position. This resulted from an inadequate
pressure differential between the seawater header and HTM. Several modifica-
tions were attempted but none prevented reoccurrences of the problem. Use of
this system was discontinued in later tests.

Controls

Controls, Cleaned Daily. Control results with both systems (Figure 29
for aluminum and Figure 30 for Ti) cleaned daily indicate Rf remained below

1.0 X IO-A ft2-hr-°F/Btu for 60-day test period. Toward the end of the
experiment, there was a tendency for the Rf to increase. Intensive manual

4ibid.
15ibid.

7INimmons, M. J., 1979, "Heat Transfer Effects in Turbulent Flow Due to
Biofilm Development,” M. S. Thesis, Rice University, Houstom, Texas.
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brushing could not return Rf to initial values. Also evident in the plots are
oscillations (i.e., sharp increases in Rf) due to weekends over which manual
brushing was not performed.

Controls, Free Fouling. Results shown in Figure 31 for aluminum and
Figure 32 for titanium indicated that titanium fouled to a greater degree than
aluminum per unit time. In addition, the titanium pipe could be cleaned to
the initial Rf value following a growth cycle. This could not be done in
aluminum pipe. This indicated the presence of a thermal insulating layer in
aluminum resistant to manual cleaning.

Comment

During this experiment, the long time required to reach an Rf of
5.0X 10-4 ft2-hr-°F/Btu became evident. With the change in cleaning require-

ment from 5.0 to 3.0 X 10-4 ft2-hr-°F/Btu, the opportunity to decrease the
time required per test was presented. Therefore, in all subsequent experi-

ments tests were terminated when Rf exceeded 3.0 X 10_4 ft2-hr-°F/Btu.

RESULTS OF 1979-1980 EXPERIMENT

Flow-Driven Brushes

Nine tests were completed using flow-driven brushes for cleaning. Four
of these tests (Tests 1 through 4) were in aluminum pipe and five (Tests 5
through 9) were in titanium. Parameters for each of these tests are presented
in Table 3 with results summarized in Figure 33 for aluminum and Figure 34 for
titanium pipe. In addition, detailed monthly plots of Rf are attached as
Appendix C for alupinum and Appendix D for titanium.

ikl e

TABLE 3
TEST PARAMETERS USING FLOW-DRIVEN BRUSHES AS A CLEANING SYSTEM
Test Figure | Duration Brush Tube** Cycle Chlorine
No. No.* (Days) | (Size-In.) { Condition ! (Hrs.) | (ppm/15 Min. Daily)
1 33 35 1.05 C 4 0.0
2 33 48 1.05 F 4 1.0
3 33 63 1.05 C 4 1.0
4 33 47 1.15 c 4 0.0
5 34 36 1.05 c 4 0.0
6 34 75 1.05 F 6 0.0
7 34 31 1.05 F 8 0.0
8 34 39 1.05 F 4 0.5
9 34 12 1.15 C 4 0.0

*See appropriate figure for results achieved using the stated test parameters.
**Tube

C 4 .2

hemically cleaned tube usually_xithza Rf < 1.0 X 10 ' ft“~hr-°F/Btu.

=C
F = Fouled tube whose Rf > 1.0 X 10 ft -hr-°F/Btu.
59
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Test 1. This initial test used a 28 mm diameter brush in a clean pipe
operating on a 4-hour cleaning cycle. Under these conditions, the Rf rapidly
increased with the target level exceeded within 5 days.

Test 2. When chlorine (1 ppm total residual/15 minutes daily) was added
to the fouled pipe of Test 1, there was a transient decrease in Rf followed
by a sharp increase.

Test 3. Since Rf continued to increase under Test 2 conditions, the
pipe was recleaned, recalibrated, and restarted using the 28-mm brush, a
clean tube, and chlorination. Though increases in Rf were significantly
delayed, they ultimately reached similar levels of Rf as when chlorine was
not used. The low level of chlorine used (0.0l ppm average daily residual),
therefore, was not effective.

Test 4. The single test of the 29-mm diameter brush in a clean tube
operating on a 4-hour cycle provided the best results achieved to date in
aluminum pipe. Under these test conditions, Rf was kept below target levels
for 47 days.

It was apparent that for the conditions tested in the aluminum pipe, the
28-mm brush could not keep Rf at target levels, while the larger (29 mm) brush
performed well. Further testing is required to determine how long Rf would
stay below target levels using this larger brush.

Test 5. The initial test in titanium used the 28-mm brush in a clean
pipe operating on a 4-hour cycle. Excellent results were obtained, with Rf
remaining well below target levels for 36 days.

Test 6. On day 37, the cleaning cycle interval was switched from
4 to 6 hours. Rf, although erratic, remained at or near the target level of
1.0 X 10™* ft2-hr-°F/Btu.

Test 7. Since Rf had not greatly exceeded the target level, the
cleaning cycle interval was increased from 6 to 8 hours. Results were much
4 $t2-hr-°F/Btu.

more erratic and Rf averaged 1.5 X 10~

Test 8. In an effort to reduce Rf to target level, the cycle interval
was reduced to 4 hours and chlorination was begun. These test conditions had
no apparent effect on reducing Rf.

Test 9. Following Test 8, the pipe was chemically cleaned, recalibrated,
and run on a 4-hour cycle with the 29 mm diameter brush. This brush performed
poorly in contrast with results it achieved in aluminum pipe.

It was evident that, for conditions tested, target levels of Rf could be
achieved in titanium pipe using the 28-mm brush operating on a 4, 6, or 8-hour
cycle. Further study is required, however, concerning the response of titanium
to (1) cleaning effectiveness and (2) seasonal rates of fouling. It should be
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noted that most of the tests were conducted during colder months (September
through January). During this period, titanium pipe consistently outperformed
aluminum in heat transfer. Results during those transition months in which
both air and water temperatures were warming indicated that aluminum trans-
ferred heat better than titanium.

Much of the biofilm accumulation problem results from the cleaning
process. White®d has found that cleaning aluminum pipe with flow-driven
brushes is selective for specific bacterial components within the fouling
community and is responsible for an increase in exopolymer production. The
exopolymer resists stresses from the environment while a gradual accumulation
of the selected bacteria occurs. This would be reflected as a diminished heat
transfer capability. C(leaned titanium pipe, in contrast, yields a diverse
biofilm rich in filamentous bacteria and blue-green algae but with a reduced
exopolymer content. Thus the increased fouling rate seen with titanium is due
to a general increase in all classes of microorganisms and not selection for a
specific bacterial class.

Recirculating Sponge Rubber Balls

Thirteen tests were completed using recirculating sponge rubber balls for
cleaning. Six were completed in aluminum (Tests 1 through 6) and seven were
completed in titanium pipe (Tests 7 through 13). Test descriptions appear in
Table 4 with results plotted in Figure 35 for the aluminum tests and Figure 36

TABLE 4

TEST PARAMETERS USING RECIRCULATING SPONGE
RUBBER BALLS AS A CLEANING SYSTEM

Test Figure Duration Cycle Tube** Chlorine
No. No.* (Days) (Min.) Condition (ppm/15 Min. Daily)
1 35 43 15 c 0.0
35 40 30 F 0.0
3 35 28 30 F 1.0
4 35 35 15 F 1.0
5 35 33 15 C 1.0
6 35 10 15 F 2.0
7 36 41 15 c 0.0
8 36 36 30 F 0.0
9 36 33 60 F 0.0
10 36 50 60 F 0.5
11 36 10 120 F 0.5
12 36 6 60 F 0.5
13 36 10 60 F 1.0

*See appropriate figure for test results achieved using stated test parameters.
#*Tube

C = Chemically cleaned tube usually with a Rf < 1.0 X 10
F = Fouled tube whose Rf > 1.0 X 10™% ft2-hr-°F/Btu.

4 ft2-hr-°F/Btu.

€9ibid
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for the titanium tests. Detailed monthly plots of the Rf are attached as
Appendix E for aluminum and Appendix F for titanium.

Test 1. The initial test used a clean tube on a 15-minute cleaning
interval. At these conditions, the Rf steadily increased with the target
level being exceeded within 20 days.

Test 2. After 43 days, the cleaning interval was increased from 15 to
30 minutes. This interval was an attempt to increase the fouling rates so
that ongoing biological sampling could be performed. Note that the biological

tests had a higher target Rf (Rf = 5.0 X 10-4 ftZ-hr-°F/Btu) than the cleaning
tests. From the results, it was apparent that doubling the cycle interval had
no effect on the rate of fouling.

Test 3. When chlorine (1.0 ppm total chlorine residual for 15 minutes
daily) was added to the fouled tube reset to a 15-minute cycle from the
30-minute cycle used in Test 2; the Rf stabilized but at a value significantly

higher than the target level of 1.0 X 10-4 ft2-hr-°F/Btu.
Test 4. In an attempt to reduce the Rf in Test 3 to tolerable levels,

the cleaning interval was reduced from 30 to 15 minutes. This reduction
between cleaning cycle intervals had no effect on the Rf, however.

Test 5. Since the addition of chlorine to the fouled tube operating on
either 15- or 30-minute cycles did not reduce the Rf to target levels, the pipe
was recleaned, recalibrated, and run on a 15-minute cycle with chlorination.
Results indicated that the Rf would stabilize under these conditions at or near
the target level.

Test 6. Toward the end of field tests, the chlorine concentration was
doubled from 1 ppm to 2 ppm total chlorine residual for 15 minutes daily.
Doubling the chlorine concentration had no effect on the stabilized Rf.

It was apparent from our tests in aluminum pipe that only one test combination
kept the Rf at target levels: a 15-minute cleaning cycle in a clean pipe sub-
jected to chlorination. However, short~term problems which prevented ball
movement significantly affected Rf values. Thus, questions arise concerning
the effectiveness of chlorine once a pipe has fouled which should be the
subject of future studies.

Test 7. This initial test of titanium pipe used a clean tube operating
on a 15-minute cycle. In these conditions, Rf stabilized around 0.6 X

10‘4 ft2-hr-°F/Btu which was well below the target levels.

Test 8. This test extended the cleaning cycle interval from 15 to
30 minutes. Doubling the interval did not affect stabilized Rf which remained

pear 0.6 X 10”2 £t2-hr-oF/Btu.

PRI
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Test 9. Test 9 sought to further increase the interval between cleaning
cycles. Increasing the interval from 30 to 60 minutes increased the Rf to

approximately 1.5 X 10-4 ft2-hr-°F/Btu and stabilized the Rf at that value.

Test 10. In an attempt to reduce the Rf back to the target level,
chlorine was added to the fouled tubes operating on the 60-minute cycle.

Chlorine addition reduced the Rf from 1.5 to 0.5 X IO-A ft2-hr-°F/Btu. The
Rf appeared to stabilize but system problems, such as prevention of ball ;
movement, seriously affected the Rf values. ‘

e e e R 2

Test 11. This test doubled the cycle interval from 60 to 120 minutes in
the fouled pipe subject to chlorination. Again Rf increased but stabilized at

a value (0.6 X 10-4 ft2-hr-°F/Btu) significantly below target levels.

Test 12. In an effort to reduce Rf from 0.6 X 10-4 ft2-hr-°F/Btu to a
lower value, the cycle interval was reduced to 60 minutes while continuing
chlorination. No effect could be seen on the Rf.

Test 13. The final test doubled the chlorine concentration from 0.5 to
1.0 ppm total residual for 15 minutes daily. The doubling of chlorine appeared
to have little effect on the Rf. However, a major power failure occurred i
27 March that prematurely ended data collection.

In summary, a number of options resulted in acceptable Rf values in
titanium pipe. The sponge rubber ball alone operating on a 15, 30, or -
60-minute cycle performed well. When chlorine was added at a dosage of
0.5 ppm total residual for 15 minutes daily, the cycle interval could be
extended to 120 minutes. Throughout these tests, the mechanical systems for
ball recirculation performed well. This allowed evaluation of cleaning effec-
tiveness of the ball but not an evaluation of the reliability of mechanical
control of the ball's movement.

At least once during field tests of recirculating sponge rubber balls in
combination with chlorination, a brown residue formed on the waterside surfaces
of both the aluminum and titanium pipes. This phenomenon has been previously
reported.4® 72 The residue consisted of silicone dioxide, an inorganic car-
bonate, and manganese.’3 Although the residue would reduce or prevent fouling,

48ibid.
72pdamson, W. L., 1976, "Marine fouling of Titanium Heat Exchangers," .

David W. Taylor Naval Ships Research and Development Center, Annapolis,
MD, Report No. PAS-75-29.

73Mangum, D. and McIlhenny, W., 1975. Control of marine fouling in intake
systems--a comparison of ozone and chlorine. In Aquatic Applications of
Ozone, Edited by Blogoslawski, W. and Rice, R., pp. 138-153. Internatl. P
Ozone Ianst.
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its own thickness would severely reduce heat transfer. Although the residue
was easily removed by brushing between experimental runs, it is normally
removed by the action of flowing seawater once chlorination ceases.’?

During Test 1 of the recirculating sponge rubber balls, pipe samples
were removed and sent to Dr. D. C. White for analysis. White®? concluded that
cleaning of the aluminum pipe with the recirculating ball system under Test 1
conditions resulted in a progressive increase of filamentous microbes with
exposure. Titanium showed similar results with microbial filaments shorter
and less pervasive than those in aluminum pipe.

Chlorination

Four tests were completed using chlorination alone as a biofouling
countermeasure. These tests are described in Table 5 with results presented
in Figures 37 and 38 for aluminum and titanium pipe, respectively. Concurrent
testing with mechanical systems prevented a wider range of tests with chlorine
alone. Detailed monthly plots of Rf are attached as Appendix G for aluminum
and Appendix H for titanium.

TABLE 5

TEST PARAMETERS USING CHLORINATION AS A CLEANING SYSTEM

Test Figure Duration Tube** Chlorine Dosage
No. No.* (Days) Condition (ppm/15 Min. Daily)
1 37 179 c 1.0
2 37 15 F 2.0
3 38 179 C 0.5
4 38 15 F 1.0

*See appropriate figure for results achieved with test parameters stated.
**Tube

C = Chemically cleaned tube usually with a Rf < 1.0 X 10-10 ft2-hr-°F/Btu.
F = Fouled tube whose Rf > 1.0 X 10~% ft2-hr-°F/Btu.

69ibid.

72ibid.

70

-




NCSC T™M 298-80

4dId WANIWNTV NI SISIL NOILVNIWOTHD ‘ILVA SNSYAA IONVLISISAA ONI'IN0OA * L€ F4ADIA

3140
(o2} n o n @© w @ L3 w
D i < M o) (=) ] Zz O n
0 D m D m m O O m
A ¢ to z O O < ~ T
v T Tyl rrrrrTYeTrT oy Ty oy yry ey Ty ﬁlc

¢ 1S3lL

1ae




NCSC T™ 298-80

4d1d WAINVLIL NI SLS3L NOILVNINOTHD ‘dIVA SNSYdIA ADINVISISHY ONITNOL

3180

ddd 9@
d3S 61

9

| £ 1831
¥ 1831 -
-
N — - [y - ~N n n -
[\ ~ [4} n fus ] (4] — [¢2]
Lend n ond n s
SABd

'8¢ MANOI4

5 0T X ¥

72




NCSC TM 298-80

Test 1. The initial chlorination test of aluminum pipe used 1.0 ppm
total chlorine residual for 15 minutes daily. This level of chlorination
resulted in a steadily increasing Rf. At the end of 180 days, Rf approached
4

2.7 X 10 ' ft2-hr-°F/Btu.
Test 2. Test 2 doubled the chlorine concentration in an effort to "shock"
the pipe and return the Rf to acceptable levels (<1.0 X 10'“ £t2-hr-°F/Btu).

Doubling the chlorine residual reduced the Rf to zero; however, whether this
decrease was transient or long-term was not determined due to the termination
of field tests.

The results in aluminum thus indicate that the Rf may be returned to
acceptable levels with higher chlorine dosages. This assumes an acclimation
of the fouling community to the daily chlorination regime. The conclusion is
that "shock" chlorination may be useful in returning a pipe to acceptable
levels from the fouled state. This could eliminate costly breakdowns and
associated cleaning of the heat exchangers.

Test 3. The titanium pipe was subjected to a chlorine dosage of 0.5 ppm
total chlorine residual for 15 minutes daily. This pipe remained below target
levels for 156 days after which there was a sharp increase in Rf. This increase
may be related to an increase in ambient temperature and thus an increase in
fouling rate.

Test 4. The final test in titanium involved an increase of the chlorine
residual from 0.5 to 1.0 ppm for 15 minutes daily. Doubling the chlorine
residual had no effect on Rf.

In summary, a chlorine residual of 0.5 ppm for 15 minutes daily kept the
Rf in titanium pipe below target levels for 156 days. Further work should
be done to determine a "shock" chlorine residual that would return the fouled
pipe to an acceptable Rf.

The results achieved with very low dosages of chlorine alone were star-
tling. Although the high seawater flow rate enhanced the effect of chlorine,
the low mean daily average chlorine dose (0.0l ppm total chlorine residual
15 minutes daily) was significantly lower than the effective antifouling
dosage of 1 ppm free-residual chlorine for 1 hour every 8 hours reported by
Fava.4® The rapid regrowth experienced in many cases following chlorination
is due to a failure to carry oxidation of the biofilm to completion.3®
Remaining biofilm constituents are responsible for the regrowth phenomenon.
This is partially bornme out by Martin’% who reported that gelatinous

3€ipid.
48ipid.

74Martin, R. B., 1938. Chlorination of Condenser Cooling Water. Trans.
Amer. Soc. Mech. Engrs pp. 475-483.
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slime-formers were more susceptible than nongelatinous slime-formers when
exposed to chlorine dosages of <0.5 mg/l and contact times ranging from
10 seconds to 60 minutes.

Controls

Controls, Cleaned Daily. Coatrols performed as expected during the
tests. For both the aluminum and titanium tubing cleaned daily (Figures 39
and 40), the Rf remained at or near target levels. During the latter por-
tions of the test program, pipes were allowed to foul to higher levels to
test the response of the data-gathering system to the Rf increases. Detailed
monthly plots of the Rf in these controls are attached as Appendix I for
aluminum and Appendix J for titanium.

Controls, Free Fouling. The free-fouling controls experienced nine
fouling cycles for aluminum (Figure 41) and 10.5 for titanium (Figure 42)
during the 195 days of field tests. Biological tests utilizing these controls
were performed in conjunction with Dr. D. C. White, Florida State University,
and have been reported in separate papers.®7 68 69 pRegylts indicate that
fouling per unit time is greater in titanium than in aluminum. Conn3°
theorized that the greater fouling rate exhibited by titanium was related to
the roughness of waterside surfaces and the protected settlement sites offered
by such surfaces. White has shown a greater profusion of filamentous microbes
on titanium waterside surfaces than on aluminum ones. Thus, the effect of
filamentous microbes on frictional resistance may be the mechanism directly
responsible for increases in heat transfer resistance.

Throughout the field experiments, aluminum proved difficult to clean.
After marually brushing the free-fouling pipes, a residual film of filamentous
organisms remained on or under the aluminum corrosion gel.®® These protected
microbes form the basis for a quick regrowth of the biofilm and high initial
"nonbiological resistances" determined in some Wilson plots.

Fouling communities on titanium and aluminum are similar in that both
pipes exhibit communities rich in filamentous bacteria. Titanium pipe, however,
yields a more diverse fouling population with both blue-green algae and
microeukaryotes abundant.8®

Monthly plots of the Rf for aluminum and titanium are contained in
Appendices K and L.

39ibid.
€7ibid.
€8ibid.

€9ibid.
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Comment

Field testing ended with the scheduled termination of all experiments on
31 March 1980.

CONCLUSIONS

Maintenance of OTEC heat exchangers at high heat transfer efficiencies
appears feasible with a variety of cleaning systems. These options are:

a. Aluminum Pipe ¥

(1) Flow-Driven Brushes. Results indicate that a 29-mm diameter
experimental brush kept the Rf at target levels while the 28-mm brushes (the
commercially recommended brush and the experimental brush) did not. Further
study is needed to verify the seasonal effectiveness of the 29-mm brush.

(2) Recirculating Sponge Rubber Balls. Using a variety of
recirculation systems, i.e., peristaltic pumps, ANL pressure system, or NCSC
mechanical system, the sponge rubber ball alone did not prevent an increase
in Rf. However, Rf increases were prevented using this system in conjunction
with chlorination. Specifically, a clean pipe operating on a 15-minute
cleaning cycle subject to chlorination of 1 ppm total chlorine residual for
15 minutes daily kept the Rf near target levels. Further study is needed to
verify effects of short-term problems affecting ball movement.

(3) Chlorination.. Chlorine alone significantly delayed
increases in Rf. Initial results of "shock" chlorination indicated the
potential value of this technique for returning fouled pipes to acceptable Rfs.

b. Titanium Pipe

(1) Flow-Driven Brushes. Both 28-mm diameter brushes were
effective in preventing Rf increases when the pipe was cleaned on 4-, 6-, or ,
8-hour intervals. The 29-mm brush was not effective in preventing Rf I
increases in comparison to the results reported for aluminum. '

(2) Recirculating Sponge Rubber Balls. Sponge rubber balls L;
performed well when the pipe was cleaned at 15-, 30-, and 60-minute cycles.
Chlorine addition extended the cycle interval to 120 minutes.

(3) Chlorination. A 0.5 ppm total chlorine residual kept the - ]
Rf below target levels for 156 days. Doubling the residual had no effect on i
the Rf.

In conclusion, the prospects are good for maintaining the heat exchanger
efficiency so critical to the success of OTEC. Further work is required,
however, to study specific questions raised in field tests such as seasonal
effects of fouling, duration of cleaning effectiveness by candidate cleaning
systems, and chlorine's startling effectiveness at low dosages.
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; APPENDIX B

WILSON PLOTS FOR 1979 AND 1979-80 FIELD EXPERIMENT




Appendix B contains Wilson Plots performed during the 1979 and 1979-80
field experiments. Each Wilson Plot for the clean tube defines the non-
biological resistances inherent in the heat transfer monitor. These resistances
are determined by the 1/H intercept when 1/H is plotted versus v (-0.8) and data
is subject to linear regression. Ideally, the intercept should be zero but in

practice the value approaches 0.75 to 1.5 X 10-3ft2—hr-0F/BTU. Line slope
should remain constant for a particular tube and biofouling will offset the
1/H intercept to a value greater than that seen over the clean tube state.

A comparison of Wilson Plots obtained for clean and fouled tubes (Page B-4
to B~11) indicated that a majority of the tubes conform to theory. Variations
in line slope occurred that were attributed to accuracy of flow measurement.
Deviations in flow accuracy are of greater signifiance at high rather than low
flow rates and thus cause a steeper line slope when plotted. Flow accuracy in
sonic flowmeters is affected by flowmeter drift, acoustic noise, bubble for-
mation, and the sonic coupling compound located between the flowmeter and pipe
section.

Tubes 7 and 8, page B~10 and B-11l, respectively, do not conform to theory.

The fouled tubes show a decrease in the 1/H intercept when compared to the
clean tube state. This problem has been reported previously. The technique
for heat transfer measurement assumes that system contact resistances remain
constant during a test. However, it is likely that the constant heating and
cooling of HTM's, the mechanical cleaning of pipe sections, handling the test
units, or corrosion development between heaters and tube walls could change

the initial contact resistance.

Comparisons of clean tubes following periodic chemical cleaning are
included for Tubes 1 - 10, pages B~12 through B-21, respectively. The graphs
show that the non-biblogical resistances fall within a narrow range for a
particular tube. The range probably results from the formation of an in-
organic scale (i.e., corrosion gel) that is resistant to chemical and/or
mechanical cleaning.

Finally, individual Wilson Plots are found in pages B~22 through B-96.
These plots show the spread of data used for calculation of slope and inter-
cept for individual tubes and form the zero baseline for calculation of
fouling resistance.

ek i, ket
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TABLE B-1

LIST OF WILSON PLOTS PERFORMED DURING THE

1979 AND 1979-80 FIELD EXPERIMENTS

DATE TUBES COMMENT
10 May 1979 1-8 Clean Tubes - Beginning of 1979 Experiment
9 Jul 1979 1-28 Fouled Tubes - End of 1979 Experiment
13 Jul 1979 1 -8 Clean Tubes - Test aborted due to
electrical storm on 17 July 1979 '
26 Jul 1979 1-8 Clean Tubes - Test aborted due to ;}
electrical storm on 5 August 1979 |7
g
14 Aug 1979 1-8 Clean Tubes - test aborted due to pump "5
failure on 25 August 1979 ;*
i
19 Sep 1979 l1-10 Clean - Beginning of 1979-80 Experiment fﬁ
q
3 Oct 1979 10 Clean -4
10 Dec 1979 S and 9 Fouled - 9 not cleaned. 1In preparation J
for chlorination ‘
11 Dec 1979 5 Clean - Restarted on 4-hour cycle, clean
tube with intermittant chlorination
8 Jan 1980C 5, 7-9 Fouled Tubes - 7 changed to 15-minute
cycle. 8 connected to chlorination
7 Feb 1980 5-10 Fouled Tubes - 6 connected to chlorine 3
10 =~> 8 —> 6 —> overboard
9 —> 5 —> 7 —> overboard
13 Feb 1980 5 and 7 Clean Tubes. 1.15-inch brush added to 5
(4-hour cycle), 7 has 29mm "soft'" ball '
on a 15-minute cycle with chlorination L
- 18 Mar 1980 6 Fouled Tube - Chlorine concentration
doubled
30 Mar 1980 1 and 2 Fouled Tubes - Preparation for end of i
. field tests i;
. 31 Mar 1980 3-5 Fouled Tubes - End of field tests
8§ - 10
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