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A CCMPLETE AN'ALYSIS OF A MODL NONLINEAR SINGULAR PERTUR1ATION PROBLEM

HAVING A CONTIN UOUS LOCUS OF SINGULAR POINTS*

Nancy Kopell
( l) and Seymour V. Parter

(2 )

1. Introduction

The nonlinear boundary value problem

cy"(t,c) = [2(t,c) - t
2 
lylt,c) , (1.1)

y(-1,E) = A, y(0,C) = B , (1.2)

C > 0, was introduced by Howes and Parter [21 as a model problem having a continuous
A2

locus of potential "turning points", i.e. points t at which y 2(t,C) - t2 = 0. The main

questions raised by (1.1), (1.2) cpncern the multiplicity of solutions for a given A

and B, and the asymptotic behavior of these solutions as c - 0.

In [2], Howes and Parter showed that, if 0 4 B < A < 1, the only possible constant

limiting solutions are , y S A, y M B and y M i1r3. A further analysis was carried 'out by

Kedem, Steuerwalt and Parter r3l, who studied the case A > B = 0. This work was motivated

by a conjecture of Sutton [5], who has made computational experiments based on the methods

of [21. Her conjecture was: Suppose 0 4 B < 1//3 < A ( 1. Then for C sufficiently

small, there exist at least three solutions, having A, B and 1//3 respectively as

limiting values for t E (-I,0). (Howes [I] has since given a proof of the conjecture.)

In (3] it was shown that there is always at least one solution to (1.1), (1.2). If

A - 1, B = 0, the number of solutions tends to - as c - 0: in addition to the

solution y = -t, for each positive integer j and c = c(j) sufficiently small, there

are at least two distinct solutions which cross y - -t exactly j times in (-1,0). The
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limiting behaviour of these solutions is described by step functions. For A It 1, B

necessary and sufficient conditions for existence of solutions wore derived in terms of the

solution to an associated set of algebraic equations. The main techniques involved a

theorem of Rabinowitz 14] and some asymptotic estimates on the solutions of (1.1). The

restriction B = 0 was necessary mainly in order to use Rabinowitz's result.

In this paper, we extend the results of [3) by removing the restriction B = 0. In

order to do this, we use completely different methods. (3] was based on an abstract

bifurcation analysis which, in turn, was based on degree theory; this paper gives a

complete analysis based entirely on a-priori estimates and the "shooting" method. In

Section 2, the asymptotic behaviour of solutions is analyzed for the regions lyl 4 Iti

and lyl > Its. it is shown that the asymptotic limits of the crossing points of y(t,C)

with y - i t can be explicitly computed. Section 3 is used to derive an associated

algebraic system, satisfied (in the limit) by the intersection of solutions with y - *t;

it also proves the existence of a unique solution to this algebraic system. In Section 4,

we return to the question: for given A and B, how many solutions are there to (1.1),

(1.2)? The answer is given implicitly in terms of the solutions of the algebraic system.

For most A, B and C sufficiently small the number of solutions to (1.1), (1.2) is

finite and can (with some work) be explicitly calculated. This number tends to w as

A + 1, B - 0, and C - 0. If A, B, the number of "crossings" j, and the behaviour

near t - -1 and t =0 is specified, the analysis of Section 4 yields existence and

.uniqueness" theorems -provided C is sufficiently small. The methods of analysis enables

one to get a complete picture of the variation in the solutions as A and B are changed.

Since -y(t.£) is a solution of (1.1) whenever y(t,C) is, we may restrict ourselves

to the case B < A. (For A - 3, y B A is the only solution.) The case B < A r. 0 is

relatively easy to handle, and will be discussed in an appendix. Thus, our main effort is

concerned with the case B < A, A > 0. Our major tools are those developed in Section 2,

using extensions of the asymptotic estimates of (3) and backwards shooting methods starting

at t - 0. (The backward integration is used for a technical reason: in this direction,

it can be proved that solutions continue to exist for all t.)
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2. Local Results

The first proposition is an algebraic result which will be useful in establishing

facts about (1.1). The constant t satisfies -1 < t (0.

Proposition 2.1: Let z(w) -w3 2 w. Then
3

i) z(w) is an increasing function of w for w > -t.

ii) if y > -t and c > 0, there is a unique solution w > -t to

Z(W) - z(y) + C.

Proof- i) *z(w) is a cubic with critical points at w - ift. The point w = -t > 0 is a

local minimum, so z~w) is increasing for w > t

ii) By i), y > -t >z(Y) > z(-t). Hence for c > 0, the horizontal line

z = z(y) + c is &Dove the local minimum, and so it intersects the graph of z(w) at a

unique value w > -t. (See Figure 2.1.)

z

I\ w

t-

Figure 2.1

The cubic z -- w- t w, t < 0. The horizontal line is z =z~y) - K, y3
and K given. The desired solution to z(w) - Z(y) - K is the

intersection of the horizontal line with the darker portion of the cubic,

W > t
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1

Let y(t,c) be a solution to (1.1).

The next two le.r'as describe the limiting forms of the trajectories when the initial

conditions are in regions I and II respectively. (See Figure 2.2.)

Y

t

Figure 2.2

The regions (I): y ) ItI, t < 0 and (II): IJY < Iti, t < 0. In

region I, solutions (integrated backward) have derivatives whose absolute

value decreases exponentially; in region II, the derivatives increase

at an exponential rate.

Lma 2.1. suppose that li y(tc) = y, with y, -t. Suppose also that

lim -y'(tE) = K > 0. Then

i) lim y(t,e) - a for -a < t < t, where a is the solution > -t to
0 1 -3 ( a3  2-y - a) = -K , (2.1)

and

ii) lim C Lnfy'(-aC)I = -a t + - 3 (2.2)
+ 3

Proof: We first show that y(t,e) tends to a limit for y < t < t, some y < t (See

Figure 2.3.) This follows from the direct integration of (1.1): We get:

Y,(t.£) - [exp(- f j (2 - s 2 )ds)]y'(t,£) • (2.3)
t

We claim that, for any 6 sufficiently small, lim y'(t - 6,c) - 0. For y > -t, let
£40
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0 < (y+ t. Then

f ty 2 s 2)ds > [ y 2 (_ 6)2]ds 6[ 2 (_t 6)2]

t-6 t-6

y

a

y

-a 
t

t

Figure 2.3

The limiting form of a trajectory with initial (t,y) in region I, and

lin - cy'(t,C) = K > 0.
C+a

0e

Thus ly'(t - 5,E)I < e [y'(t,E)[, so y'(t - 5,e) is exponentially small. Now suppose

y - t. We shall show that we can replace the initial conditions t, y by t , y(tc )

(i.e. a point on the same solution) with some tc + t as £ + 0 and lim y(t ) > y; the
5 0

previous argument will then hold. First, we may assume that t C < t, t' + t as £ + 0

such that y'(t C,) = -K/2C and Iy'I > K/25 for t (t ,t]. (If not, there is an

interval 1t - d,t] for which Iy'(t,C)I > K/2C; it is then clear that t,y(t) may be

chosen along the trajectory such that lim t t, lim y > y.) Next, we see from (2.3) that
L;'O L O

y,(c)/ycc(,) exp{- C s)d2C
t

Either y2 _ s2 is unbounded for t (te,Z) as c 0, in which case we are through (as

above), or else y2 _ s2 4 0(l). In the latter case, since

ft (y2  s2)ds c In2

tC
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I

we must have It' - ti ) O(F). Finally

C
t K

y(tc,c) - y(t,E) + f y'(t,c)dt > y(t,c) + - tC - ti

t

Hence, lim y(t C) > y.
£40

As long as y2 _ t2 > 0, Iy'(t) decreases (integrating backwards), so y(t,e)

remains small and y approaches a constant. Since this is true for any small 6, y must

approach a constant for y < t < t, some y. In order to see what that constant is, we

integrate (1.1) from t=r to t =t-. Then

e(y'(i - 6,e) y(;,C)] - y(s)(y2 
- s2)ds . (2.4)

t-6

The R.H.S. of (2.4) may be rewritten:

t 2 ft' sy(s,e)ds . (2.5)
3 J-6 t-6 t-6

By hypothesis, and by the previous calculation, the limit of the L.H.S. is K. The R.H.S.

approaches
3 - 3

+ 2(y - a] + 0(6) . (2.6)3

since (2.5) is valid for all 6 sufficiently small, we conclude that a must satisfy

(2.1). (Note that a is the solution to z(w) = z(y) + K, which exists by Proposition

2.1.) Furthermore, it is now clear that y may be taken to be -a.

ii) To establish (2.2), we again integrate (1.1) from t = t to t - -a; this time,

we first divide by y'. We get

t 2 2

C 1nly'(-a,c)I - c Inly'(t,C)l - f (2 - s
2
)ds s ( 2.7)

-a

Since y(tc) + a and 9 inly'(t,£)l 0, the limiting form of (2.7) is (2.2).
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Lema'ra 2.2. SupI-ore tL.t im y(t,E) = y, with lyl I tli. Suppose also tiat
C+0

lim - £ Lnjy'(t,cf) = L > 0. Then

£ 0i.) lim y(t,C) =y for -b < t ~ ,where b is the unique solutior > ly) of
£40

-2- + -2 3
3 -- yb - -L (2.8)

ii) at -b as e - 0 such that y(t ,c) = -t.

b3 -;3 b2
iii) r cy(t e C) 3 ( ) (2.9)

C40

Proof: i) Once again, we integrate (1.1) to get (2.3). Since, by hypothesis, y' (t,c) is

exponentially small, y' (t,e) is exponentially small for all t > -b, where b satisfies

y2 - s2)s - -L (2.10)

-b

(See Figure 2.4.) We can use (2.10) to solve for b: Equation (2.10), when integrated,

yields (2.8). Note that (2.8) may be written as

3 3

By the same arguments as in Proposition 2. 1, with y and -t interchanged, there is a

unique solution b to (2,11) for b > y.

ii) For any 6 ) 0 sufficiently small, (2.3) shows that y'(-b - 6,e) either grows

exponentially large in C, or else at , with -b - 6 ( t < -b, such that

y(t CC) - -te* (See Figure 2.3.) Since the exponential growth also implies the existence

of such a t , and since this is true for all 6 > 0, assertion ii) is proved.

iii) The growth of y implies that y' (t,e) must stop being exponentially small in

c, i.e. 3t > tC' with t C b as £ + 0, such that yS(j Ce) - -C. Note that,

since Y'Ctc) - 0 for t < t t t, lim y(t,£) y y for t t < t. To establish (2.9),
C £40

we now use equations (2.4) and (2.S), with t - 6 and t replaced by t and t

respectively.

-7-
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2.4a 2.4b

Fiaures 2.4a, 2.4b

The limiting form of trajectories with initial t, y in region II, and

limr - I ny' (t, = L > 0. Figure 2.4a is for y > 0; Figure 2.4b

is or y < 0.

The last lemta of this section describes the initial segment of the trajectory of

(1.1) if y(0,e) = B < 0.

Lemma 2.3. Supnose lim y(0,E) = B < 0, and lim - ey'(O,C) = K > 0. Then
C 0 C 0

i) lim y(t,E) = a for -lal < t < 0 , where a is the real solution to

1 (a 3 B) = K (2.12)
3

and

2 3ii) lima L n~y'(-IaIe)I - "- l 3  (2.13)

Proof: This lemma is essentially the same as Lemma 2.1, with t = 0. there is an added

difficulty that the trajectory may cross through the region Jyj < ItI, so y' may not

change in a monotone fashion. (See Figure 2.5.) Hence we cannot immediately use the

previous argument that y(t,C) approaches a limit for t near t - 0.

-8-



a 

-yy

2.5a 2.5b

Figures 2.5a, 2.5b

The limiting form of trajectories for initial condition y(O,C) f B < 0,

and iM - ey'(0,E) = K > 0. In Figure 2.5a, K is small enough that

lur y( ,E) < 0 for t near 0. If the limiting form is as in Figure 2.5b,

for C > 0 the trajectories pass through IJy < It).

Let a be defined as in (2.12), and let & > 0 be arbitrarily small. We first claim

that y(tc) cannot remain bounded away from y = a for -6 4 t ( 0 and all C, 6

sufficiently small. For, integrating (1.1) from t = 0 to t = tv (-6 ( t. < 0), we get

E[y'(t.,C) - y'(0,C)] - y'(s)(y 2 - s2)ds• (2.14)

By hypothesis, -lim y'(0,C) = K > 0. If y stays bounded away from a, the R.H.S. of
C+0

(2.14) will be strictly less than K + 0(6). Thus ly'(t.,e)I > K/e for some K > 0 and

6 sufficiently small. Since this is true of all t, such that -6 4 t* < 0, y changes

by O(I/C), and cannot stay bounded away from a for any finite value of t; this

contradicts the assumption that a is an upper bound for y.

Also, y cannot become strictly larger than a, i.e. bounded away from a from

above for any t < 0 with t sufficiently small. For, if y hits y = a, let t (c)a

be the value of t when y - a. Then from (2.12) and (2.14) we have that

-9-



I

lim EyI(t a,) - 0. For all t such that -lal < t < 0, ly'I decreases (as (1.1) is

integrated backwards), and, as in Lemma 2.1, y(t,E) approaches a as £ * 0.

ii) Same as the proof in Lemma 2.1. I
1

Corollary 2.1. Suppose lim - ey'(0,c) = K ) 0, and limr n lim y(6,c) - 0 or -. Then
C.O 6.0 6+0

y(t,c) exists for all t < 0. Furthermore, if the solution hits y = -t at t < 0, and

lim c In y'(t,c) * 0 at the crossing (if that crossing is horizontal) or

E+0
lira cyl(t,e) * 0 (if the crossing is vertical), then y(t,E) crosses y - -t an

£ 0
infinite number of times.

Proof: If B > 0, we apply Lemmas 2.1 and 2.2 alternately, starting with Lemma 2.1 (since

y > t = 0). These lemmas explicitly calculate the limiting values of the successive

crossing points. (If K 0 0, there may be only one crossing point, e.g. if

y'(O,£) = 0 Ye.) If B = 0, the hypothesis on lim 1 lim y( ,e) forces he behaviour
C O a 0

near t = 0 to be either horizontal or vertical; we can then apply Lemmas 2.1 and 2.2.

If B < 0, the above hypothesis again rules out solutions y(t,e) for which y = -t is

the limiting solution for -1 < t < 0. We can start with Lemma 2.3 and then apply Lemmas

2.2 and 2.1 alternately. The uniqueness of the point B(L) is clear from thse lemmas.

-10-



3. An Aluebraic Svtcm

We have seen that, in the limit as c + 0, almost all of the solutions to (1.1) are a

succession of horizontal and vertical segments; the length of each segment can be

explicitly computed given lin y(O,E) and lim £y'(O,c).
£40 £+0

We shall consider a system of algebraic equations which are satisfied in the limit by

the successive points ti at which y(t,C) crosses the line y = -t. Much of what is in

this section was already done in [3] under the condition that B = 0. Here we show that

those results still hold for B # 0. The first lemma and theorem apply to a solution

y(t,c) if lim y(tC) ) 0 for t. < 0.
C+0

Lemma 3.1. Let t i1(C) > ti(C) > t i1(C) be three successive points at which a solution

y(t,e) crosses y = -t. If ti 1 1, ti, ti+ 1, denote the limits of these points as

C 0, then

ti 3(ti1 + ti-iti+1 
+ t

1

Proof: There are two possible cases, as shown in Figures 3.1a, 3.1b. Each case can be

done by the methods of Section 2. For the case of 3.la, let 6 > 0 be any sufficiently

small number, and use (2.4) with t - 6 and t replaced by t. - 6 and t. + 6. Since1 1

y(t. + 6,C) * -t and y(t - 6,E) - -ti 1 , by using (2.5) and letting 6 - 0 we get

(3.1).

For the case of 3.1b, we use (2.7), with -a and t replaced by ti+ 1  and ti_ 1 .

By previous computations, the L.H.S. tends to zero as c + 0. Also, for ti+1  < t < ti_1 ,

y(tC) + t i. Evaluating the R.H.S. and setting it equal to zero, we again get (3.1).

We shall now prove an existence and uniqueness theorem for (3.1), regarded as a system

of equations for a set of points it 1. We shall denote by to and t. the right and
i

left endpoints of the set.

Theorem 3.1. There is a unique solution 0 ) to > t > -.. > t to (3.1) with

to C 0, t to given . (3.2)

-11-



y

y

Figure 3.1

Successive crossings of y = -t by limits of solutions to (1.1) as

C - 0.

Proof: Equation (3.1) gives rise to a mapping of finite sequences of numbers between t

and 0, namely: For any sequence T. t3 < T < 
< 
T top let

j J j-1
F 1 2 + T T + 2 11/2 (3.3)
i 3 i+1 i+1 i_1 i+1

for i = 1,2,...,j, and F0 = to, Fj = t . It is clear that any fixed point of this map

is a solution to (3.1) and (3.2). We shall show that (FYI has a unique fixed point.
1

2 2 2 2 2 2
Consider two such sequences = ( .} and a = (ci . Then

F (0) - F (T) = - ((a - Ti) + (ai - - T T-) + (a - - )i- (3.4)

for i = 1,...,j - . Let *i I a. - Tit Wi = ai + T i Also, write Wi" *i for

F i(a) + Fi(T) and Fi(a) - F i(T). Equation (3.4) may then be written as

i (. 2. i .( . 3 5
S 1 1 1 1

ii 3 i+1 + i_- i+1 + 3 i_1  2 i+1 i-1

i - 1,...,J - 1. Also, j 0, = 0.

The coefficients of (fi in (3.5) are not constant, but we will get bounds on them

which insure that (F i maps any two sequences closer to one another. We divide (3.5) by

Wi, and write the resulting system as

* - L# * (3.6)

Notice that the matrix L has non-zero entries only just above and just below the

-12-



diagonal. We first obtain a bound on these coefficients, and then show this implies the

desired result. Let ai  denote the entry in the i
t h row, (i + 1)t h  colwn; bi is in

the i t h 
row, (i - 1) t h  

column.

Lemma 3.2. lail + Ibil < 1.
11 1 1

Proof: a. = --- [W + 1 W I1; b i  - W + w1 W Both a. and b. are > 0.
1 3W i - 2 + 3Wi  + 2 -

An elementary calculation shows that

ai + bi = [W i+1 W 3i . (3.7)
2W. I

Now

1 (2 + - + 2

12 i+1 i-1 3 4 i+1 3 4 i+1 i-1 +
- - 4 )i+l

Hence

1 [ 2 + 2} > 1 2 2
3 1 i+ i-i i 1 4 i+1 i+1 i-i i-1

This may be rewritten as

IFi(T)I > 1 IT + T 1 (3.8)
1 2 ±4-1 i-i

Inequality (3.8),also applies to a, and hence

I > lw -1 + W I

It follows that the R.fl.S. of (3.7) is < 1. 1

We return to Theorem 3.1. L is a tri-diagonal matrix whose entries satisfy

lail + Jbi< 1. It follows [6] that if I X ) 1, then L - XI is nonsingular, so all

the eigenvalues of L are < 1 in absolute value. From this it can be shown that niF

has a unique fixed point. In fact, a direct iterative scheme is convergent to this unique

fixed point. I

We now deal with solutions which cross y = +t as well, i.e. when B < 0. We have

seen that there is a unique turning point O(C), and we shall be concerned now with

solutions for which B - lim B(E) < 0. Lemma 2.3 implies that for t < 0 sufficiently
c.0

near t - 0, lim y(t,C) - B.

Lem ma 3.3. Suppose lira y(t,s) - B < 0 for B < t < 0. Let t1 (C),...,t(C),... denote

the crossings of y(t,C) by y - -t, and t,t 2,... ,ti,... their limiting values. Then

-13-
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i) 2= (8
2 

- t t
2

) (3.9)
3 2 2

Furthermore, if B < 8, then

ii2 12 (3.10)
3 1

Proof: i) Use equation (2.4) with t - 6 and t replaced by t - 6 and t + 6, with

6 small. The argument of Lem.ma 2.1 then produces (3.9).

ii) Use equation (2.7), with -a and t replaced by tj and 0. The hypothesis

B < 8 implies that lim c £nIy'(0,C)I - 0, so the L.H.S. * 0. The R.H.S., set equal to

E+0
zero, yields (3.10).

The following is the analogue of Theorem 3.1. Its use will be different depending on

whether B < 8 or B = 8, with (3.10) holding if B < 8 and not, in general, otherwise.

(See Figure 3.2.)

t t t 2 t B=

'B

3.2a 3.2b

Figures 3.2a, 3.2b

Crossings of y = +t and y - -t by a limit of solutions if B < 0 and

2 2
< 0. For Figure 3.2a, 8 and t1 are related by 30 = t For

Figure 3.2b, t2 > 382.

-14-
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Theorem 3 .2. i) Let t be given. Then there is a unique solution

0 >B > t I > t2 > ... > t. to (3.1), i = 2,...,j = 1, and (3.9), (3.10).

ii) Let tj and B be given. Then there is a unique solution 0 > a > t, > ... t

to (3.1), i = 2,...,j - 1 and (3.9).

Proof: The proof is almost identical to that of Theorem 3.1, so we shall just indicate the

differences.

i) Let T denote a sequence 0 > TI > T2 > . > T., a a sequence

> > - . F(r), i ) 2 is as before, but

12 2 1/2
F1 3 =- [s -B 2  21

1
F0(t) = "
0 3 1

Oil Wi' *i W. are as before. Then (3.5) still holds for i > 2. For i = 0,1, we have

0 0 = . W1Q1 , 3.171
. 1 1 1 (3.12)

W1 1 = 3 (w2 -- W) 2 + T (WO - T W2 )00

To show that Jail + !bii < 1 for all i, it suffices to show this for i = 1 and

i - 0. For i = 0, b i = 0 and laiI W1/3W0  1/3 < 1. For i 1,

I (IT2! + 1021 - :61 - IyI)

IFI (r)I + IF (O)l1 1

As in the previous theorem, it can be shown that IFI(T)I > j it2 - 81 and similarly for

F (a), which implies that Jai1 + Jbi < 1.

ii) Let

, . -) 
2  - OT + ]2 1/2

Fi(T), i > 1 as before .

The relevant equations are (3.5), 1 > 2, (3.12). The proof that lalJ < I is done by

the usual methods. I

-15-



4.* Exis'tonrce an,!r.c of so] :t~aons

The solution to the boundary value problun (1.1), (1.2) is not unique, as shown by

examples in [11, [3]. However, as we shall see, any two solutions are qualitatively

different: they can be distinguished by the number of points at which the solutions cross

y - it, and the behavior of the solutions at the boundary.

From the estimates of Section 2, it follows that the behavior near each boundary is

characterized by lim £y'(t,c), where t = -1 or 0; if this limit is non-zero, the initial
C-0

segment of the solution at that boundary approaches a vertical line whose length goes to

zero with this limit. If lim y'(t,C) = 0, the initial segment is (in the limit) horizontal.
C40

We shall divide the analysis into four cases, depending on whether the behavior at

t - -1 and t = 0 is vertical or horizontal. In each case we ask the question: for

given A and B, how many solutions are there to (1.1), (1.2) in the limit as E - 0?

The answer is given implicitly in terms of the solutions to (3.1), but in a form such that

it could be explicitly ccmputed. The analysis provides a complete picture of how the

solutions change as A and B are varied, and also how the boundary value A changes

as B and y'(0,E) are varied.

We first discuss solutions which, in the limit as e * 0, have a vertical segment

(shock layer) at both t = -1 and t - 0. (See Figure 4.1.) We also assume that, if

B < 0, then 8 = 0. For each odd j we consider the solution to (3.1) with t0 - 0

and t - -1. (For this bundary behaviour, the number of strictly interior crossing

points must be odd.) Let A., I ) I be the open interval f-tiI -t ), where

j j2
denotes the ith point of the solution to (3.1) having j + 2 points t3 < ... < tj  = .j+1

(If the j is understood, we may sometimes suppress the superscript.) Similarly, let B3

be the open interval (-,-t ). By "strictly interior" points of intersection with

y - -t, we mean those t(e) for which -1 < lira tJ(C) < 0.
i C+O

Remark: For fixed E small, the actual number of interior points of intersection may be

greater than the limiting number of "strictly interior' such points. That is, we might

have t 0 (C) < 0, t 0 (c) * 0 as e - 0 or t +() > -I, lim t J+1 ) - -I. The above

method of counting was adopted because it eliminates the division into further special

-16-



cases tlhat would be ncudcd if those other points of crosnir,q were cuunted as well, and

simplifies the description of the collection of all solutions.

Theorem 4.1. i) There is a solution to (1.1), (1.2) having a boundary layer at each end,

j strictly interior points of intersection with y = -t and no strictly interior points

of intersection with y = t if A e Aj, Be B. and C is sufficiently small. Such a

solution is unique. Its limiting behavior as c * 0 is a step function: a series of

horizontal and vertical lines crossing y = -t at the points t?. A necessary condition1

for such a solution is A C ct 4 , B C c B, where "ck" denotes "closure of".3 3

y

- t3 t2 tI to

Fioure 4.1

A solution to (1.1) with boundary layers at both ends and three interior

turning points.

ii) The (A.} and (B.1 are nested intervals, i.e. A D A D A D

B ~ n.. 1 3 5B1 DB B5 D .-
1 3 5

iii) For each A * 1, (resp. B > 0), there are finitely many j for which A e A

(resp. B e Ba).

Proof: i) The necessity of the condition A e cl A B e cL B follows immediately from

the results of Sections 2 and 3. For, by Section 2, the limiting form of a solution is a

sequence of horizontal and vertical lines, and, by Section 3, the intersections of these

lines with y - -t are the points ti. The hypothesis A e cL Aj, B e ct B requires that A

and B lie on the :Iosure of the vertical segments at t - -1 and t = 0 respectively, for the

-17-
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limiting solution to (1.1) correzpcnding to the solution to (3.1) with t+1 = -1, t0 = 0;

if this hypothesis is not satisfied, the limiting solution cannot be the correct one.

To establish the existence and uniqueness of solutions, consider the solutions

y(t,c) to (1.1) satisfying

y(O,C) z B, y'(0,E) -K/C . (4.1)

By the estimates of Section 2, there is a unique K, 0 such that the solution with3

K - K. has the desired limiting value as C 4 0. (K. is chosen so that

lim y(tc) -t3  for t near 0; this uses B C 3 The rest of the limiting behavior
e.0
follows automatically from the results of Section 3.) We shall show that if A e Aj there

is a unique KA() such that KiE) + K. as c + 0, and the solution through3 3 3

y(0,E) - B with slope y'(0,e) = -K (s)/C satisfies y(-l,c) - A. (This "local"3

uniqueness suffices to insure uniqueness of solutions with boundary layers at both ends

and j - I intersections with y = -t, since, by Section 3, any such solution must have

the limiting behavior described in the theorem.)

Consider the solutions to (1.1), (4.1), with IK - K.i I , < arbitrarily small. The

next two lemmas are monotonicity results. The first one concerns the limiting values of

the solution, and could be phrased as a statement about equations (3.1). (See Lemma 4.2.)

Lemma 4.1. Let t (C,K) be the value of t where the solution y(t,c,K) to (1.1), (4.1)3

hits y = -t for the jth time. (By definition, lim t j+1(,K) -1.) Then for 3
+O1

sufficiently small,
dt
l (CIK) < 0 , (4.2)dKc,0

so lim t (eK) is a monotone decreasing function of K.
e+O

Proof: The monotonicity follows from the estimates in Section 2. For, using the cubic of

Proposition 2.1, it can be seen from Lemma 2.1 that increasing K or increasing B has

the effect of increasing -lim t (C,K) and -lim C Lnjy'(t ,c,K)I, in a transversal way:
6+0 C-00

d lim t (s,K) < 0; !Llim C Lny(t CK)I < 0
dK 0-1-



Similarly, from Lemma 2.2, increasing lim It I(,K) I, lim Ic Znly'(t ,C,K) II increases
1 0 c0

lim It 2(c,K)I and lim cly'(t ,,K)I. Continuing, alternating Lemmas 2.1 and 2.2, we
0 240

find that (4.2) holds. I

We now return to the proof of Theorem 4.1. Lemma 4.1 implies that for K < K. (resp.

K > K), t j+1(c,K) > t j+1(c,K.) (resp. t j+1(,K) < t j+(C,K.)) for all c sufficiently

small. Thus, for C, S small, y(-1,c,K) is arbitrarily close to the upper limit of A

for K < K. and the lower limit of A. for K > K. (see Figure 4.2). As we will see,

y(-1,E,K) is not monotone for IK - K.I < 6, any fixed 6, for all e sufficiently

small. However, we shall show that there is a smaller, C-dependent interval in K such

that y(-1,E,K) is a monotone function of K on this interval, and the image of this

interval tends to Ai as C + 0. Furthermore, as K passes the boundaries of this

interval, the size of the "vertical" segment at t = -1 tends to zero, so the limiting

behavior changes from vertical to horizontal. This suffices to prove the uniqueness of the

solution with boundary layers at both ends, and j (strictly) interior turning points.

- -i y

A

1.

B t
-l

Fi ure 4.2

The limiting form of nearby solutions to (1.1) with the same value of

3 and different values of y'(0,C) - -K/e, (j = 1). For K - Kj,

the limiting solution has a vertical segment at t - -1. For K < K.

(resp. K ) K ) the limiting solution has a horizontal segment near

the upper (resp. lower) endpoint of A .

-19-
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By Lemma 4.1, for each E sufficiently small, t +1(C,K) is a monotone function of

K near Kj, so 21 KjI () such that t j+(C,Kj (C)) = -1. By definition of t j+(CK),

y(tj+1 (,K),C,K) = -t +1(c,K) . (4.3)

Differentiating (4.3) with respect to Kj and evaluating at K = Kj1(c) , we get

ix (-1 CK )) = -[1 + y'(-1,C,Kl(C))]L d t l (C'K.l) ( (4.4)

Now y'(t +I.(C,K),C,K) is < 0 and O(1/C). Furthermore, by Lemma 4.1,

dt j+1(C,K)/dK < 0. Hence (a/aK)y(-1,C,K j(e)) < 0 and 0(1/c), and there is an

interval K. (C) < K < K. (E) such that (a/aK)y(-1,C,K) < 0.

It remains to be shown that the above interval may be chosen so that the image under

the map K * y(-1,e,K) tends to A. as E + 0, and that outside this interval, the limit

behavior near t = -1 is horizontal.

To see this, we note that the monotonicity persists as long as (;/aK)y(-1,C,K) < 0.

Also, the conditions y - y(t,E,K), (a/aK)y(t,C,K) = 0 define the envelope of the

trajectories v(t,Z,K) parameterized by K. Thus, monotonicity persists until a curve

y(t,C,K) touches the envelope at t = -1. From the variational equation of (1.1) around

y(t,E,K j), it can be seen that (3/aK)y(t,e,K)JK=Kji < 0 for It - II < O(/C). Since

the width of the boundary layer is 0(C), it follows that the curves y(t,E,K) for

nearby K intersect near the top and bottom of A for c small. (Geometrically, the

envelope of the limiting functions (as c 0) is a pair of curves through the "corners"

separating the horizontal and vertical segments. For C > 0, the envelope is a pair of

curves converging to the limiting pair.) Outside the interval K_ (C) < K < K+ (c), and

for JK - KJ I sufficiently small, the size of the "boundary layer jump"

lin lim Iy(-1,e,K()) - y(t,E,K(M))I is zero.

t+-1 C40
Having proven i), we now turn to the proof of ii). We first show that

B D B 2  ***. It suffices to prove that tJ 2 > ti.
J J+2 1 1

Lemma 4.2. Suppose tI < t" Let {ti } , Iti } be the solution to (3.1) with t0 - -1,

t- t or t1 , respectively. Then for each i, ti < ti"

-20-
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Proof: 2! K (rcsp. K) such that the solution to (1.1) satisfying y(O,E) 0,

y'(0,C) = -e/K (resp. -c/K) crosses y - -t, in the limit as C * 0, at t1  (resp.

if tI < t1, then K > K. We know from Lemma 4.1 that the successive crossing

points are, in the limit, monotone functions of K, and from Section 3 that these crossing

points approach solutions of (3.1). I

We now return to the proof of ii). It follows immediately that t + 2 > tj V.. For if
9+1+3 1 3+

not, we would have tj+1 > t+ 3
, for some j; but, by hypothesis, tj 1 -1 and tj+3 > -1.

j+1 31+1 j+1 j+1

A similar argument shows that A3 A3 +2 . That is, the point -1 and the next

3+1 j+1
nearest points t 1 or t. determine a solution to (3.1). As in Lemma 4.2,

j+l > j+3 ad j+l tj+3
t - aj+2 a t+2 < j+4 so A. D A j+2'

In order to prove iii), first consider B > 0. Since t3  is monotone in j, it
1

suffices to know that tj 0 as j + , since B will then eventually be outside 3.
13

for large enough j. This, in turn follows by considering solutions to (1.1) which, in the

limit as C + 0, crosses y = -t for the first time at ti. It is then clear that if

t; is bounded away from 0, we could not have the required tj+1 -1. (Indeed, we
j++1

would have tj+ 1 +

A similar argument holds for A # 1: i.e. t + j + -1, t j+1 so any A # I must
3j+ 2

eventually fall outside A. for sufficiently large J. I

Note that this argument does not rule out a countable number of "limiting solutions"

for A = 1, B < 0. However, the bound on E is necessary to insure the existence of a

real solution with j strictly interior crossings with y - -t may go to zero as j + -.

Next, we deal with solutions (other than the constant solutions) which, in the limit

as e + 0, have horizontal segments near both t - -1 and t - 0.

Theorem 4.2. Suppose B > 0. For each odd j > 3, consider the solution to (3.1) with

t. -A (if A < 1) or t, +1 =-A (if A> 1), and t 1  -B (if B> 0) or to
= -B

(if B = 0). (See Figures 4.3a and 4.3b.)

i) There is a unique solution to (1.1), (1.2) which approaches hori.zontal segments

at t - 0 and t - -1, and which has j strictly interior turning points if the

following is satisfied; if A < i, then tj+ 1 < -1; if A > 1, then -1 < t < 0. Also
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(t2)2 > 31
2
. A necezsary condition for such a solution is tj+1 < -1 if A < 1 and

2 2
(t ) 3B

y

y

)t >t
- t 3 t 2 tl t 3  -1 t 2  tI

4.3a 4.3b

Figures 4.3a, 4.3b

Solutions to (1.1) with j = 3 and "horizontal" segments near t -1

and t 0. Figure 4.3a shows A < 1; Figure 4.3b has A > 1.

ii) If for some j, (tj) < 3B2 , then (tj 2 ) < 3B2 . If A < I and t+1 >-,
j+2 j+1

then tj+2 > -1. If A 1 1 and tj i (-1,0), then t_+2f (-1,0).

j+1 3 j+2

iii) If A * I or B > 0, there are only finitely many solutions to (1.1), (1.2).

Proof: i) We first establish the necessity of the conditions in i). As in Theorem 4.1,

the conditions come from the requirement that the limiting solutions intersect y = -t

exactly at the (t9j. where {t3) is the solution to (3.1) with the boundary conditions
e l a

given in i).

2) 2The condition (t 2) 3B2  requires that there be no negative solution to the i = I

equation of (3.1) (with tI - -B, t2  given by the appropriate solution to (3.1)).

Equivalently, there is no 'next point" to the right of tI which is still < 0. (For the

limiting solution to (1.1), (1.2) must have -B as the first point of intersection with

y - -t if B > 0; for B - 0 the condition is vacuous.) Similarly, the condition on

tj+ (if A < 1) demands that t = -A be the last (limiting) point of intersection

before t - -I if A ) 1, the condition on tj requires that t - -A be the first

point of intersection for t C -1.
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We now go to the existence and uniqueness of the solutions. Using Lcmmas (2. 1) and

(2.2), we see that (t2)2 > 3B
2  

implies at L. 0 such that the solution to (1.1) with

-LI 44
y(O,C) = B, y'(0,C) = -e (4.4)

and L = L* has a limiting behavior whose first vertical strip is through t2 . (it

follows tnat the limiting behavior of this y(t,&,L) is a series of horizontal and3

vertical strips cutting y = -t through all the (ti).) We shall show that for each c

sufficicntly small, 2! ( (r) such that L(C) + L as c 4 0, and the solution through
I-L (E)/C 3

y(OC) = B, yI(O,' = -e satisfies y(-1,£) = A. As in Theorem 4.1, we need a

monotonicity result.

Lemma 4.3. Let t (E,L) be the value of t where the solution y(t,c,L) satisfying

(4.4) hits y = -t for the ith time. (By definition, lim t.(C,L.) - -A if A < 1, and
C*0 I j dt.

t j+I(C,L) = -A if A ) 1.) Then, for L near L. and i > 1, hi. -- (,L) < 0.
j C+0

Proof: As in Le-mma 4.2, we use Lemmas 2.1 and 2.2 alternately to see that increasing L

increases -ti  for each i > 1. I

We return to the proof of Theorem 4.2. Lemma 4.3 implies that for L < L (resp.

L > L.), ti (C,L) > ti(e,Lj) (resp. ti(E,L) < ti(C,Li)) for all c sufficiently small.

Also, by hypothesis, lim y(-1,C,L) - -lim t.(c,L) (resp. -lim t (C,L)) for A < I
C O E+0 C+O

(resp. A > 1). Hence, for fixed 6 small, and all c sufficiently small,

y(-1,C,L. - 6) < A < y(-1,C,L + 6) .

To finish i) it suffices to show that for IL - L.I 1 6, ay/3L > 0. This is somewhat

easier than the analogous proof for Theorem 4.1, since the monotonicity holds for

IL - L.I 4 6, where 6 may be chosen independently of C. (See Figure 4.4.) By3

definition of t.(£,L), we have

y(ti(c,L),EL) = -ti(CL)

Differentiating this with respect to L yields

dt.
a-(t (C.L),£,L) -[1 + y'(ti(C,L),C,L]
aL j -2- dL

-23-
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. ...... . . . .. . .. . . . . .. . . . . . . . . . . . o . . . . . . . .

ri

Figure 4.4

The limiting forms of solutions to (1.1) with the same B but different

y'(0,,L) = -Lie (nearby L).

By Lemma 4.2, dti/dL < 0. Also, for £, 6 sufficiently small, y'(ti(c,L),E,L) is

dti
exponentially small, so ,aL)y(t.(CL),,L) _ - < 0. Furthermore, as C - 0,

i dL
y(t.(C,L),E,L) + lim y(-1,C,L). Hence we may also conclude that (3/aL)y(-1,C,L) < 0.

0 . 2 2 2
ii) To show that (t 4 ) < 3B => (tx ) < 3B3 , it suffices to show that

2 2

It j+2I < It l. This follows from the arguments in the proof of Theorem 4.1, ii). The
2 2

assertion for A < I follows from the fact that the first point to the left of t. in the

solution to (3.1) with t. = -A, t1 = -9 becomes closer to tj as j increases.

Similarly, if A ; 1, the assertion claimed in ii) follows from the fact that the first

point to the right of tj+1  in the solution to (3.1) with tj+ I = -A, ti = -B is closer

to t,+, as j increases.

iii) This follows immediately from ii). I

The two combinations left to be done (for 3 > 0 or, if B < 0, 0 = 0) of horizontal

and vertical limiting behavior near t - 0, t - -1 are proved by the methods of the two

previous theorems. Hence, we shall merely state the results. Theorem 4.3 concerns

-24-
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solutions which, in the limit, are horizontal near t = 0 and vertical at t = -1.

Theorem 4.4 concerns the reverse corination.

Theorem 4.3. Suppose B ) 0. For each odd j ) 3, consider the solution {t?+ 1  to
i

(3.1) with tj+ I = -1, tI = -B. Let C.(B) be the interval (-t,,-tj+2).

i) There is a unique solution to (1.1), (1.2) having a boundary layer at t = -1, no

boundary layer at t = 0, and j strictly interior turning points, if A e C.(B) and

)2 >32.2 2.
(t) > 332. A necessary condition for such a solution is A C c£ CA(B), (t )2 ) 3B

ii) If A * 1 or B > 0, there are at most finitely many j for which there is

such a solution.

Theorem 4.4. Suppose B > 0 or, if B < 0, 8 = 0. For each odd j > 3, consider the

solution (tj} to (3.1) with tj = -A, to = 0. Let D.(A) be the interval
i ( , l

Then

i) There is a solution to (1.1), (1.2) with a boundary layer at t 0, no boundary

layer at t = -1 and j strictly interior crossings with y = -t if B • D.(A) and

tj+ I < -1 (for A < T) or -1 < t. < 0 (for A > 1). A necessary condition for such a

solution is B C cl D.(A), t j+i -1 (for A < 1) or -1 < t. < 0 for A > 1.

ii) If A * 1 or B > 0, there are at most finitely many j for which there is

such a solution. I

The techniques of Section 3 used in Theorems 4.3 and 4.4 work only for j ) 3. There

are solutions for j = 1, and these cases may be done by going back to the results of

Section 2 from which those of Section 3 were derived:

Prtposition 4.1. Suppose 0 4 B < _ Let L - B
2 
, and Yl(t,C) the solution to

V1 ~ 31

(1.1) with y1 (0,C) - B, Yl(O,C) = -I. Let CI(B) be the open, first vertical segment of

the limiting solutions of y(t,c) as £ + 0. (See Figure 4.5.) Then if A e CI()

there is a unique solution to (1.1), (1.2) with a boundary layer at t - -1, no boundary

layer at t = 0, and intersecting y - -t exactly once. Furthermore, if y(t,C) is this
-L(W/

solution, then y'(0,C) - -e , where L (C) + L as c *0. If B > - there is

no such solution. I

-25-
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C 
(B)

Figure 4.5

A limiting solution for the case j =1, Theorem 4.3.

Prooosition 4.2. Suppose A > LB < A. Then there is a unique solution to (1 .1) (1.2)

with a boundary layer at t - 0, no boundary layer at t = -1, having exactly one (resp.

no) strictly interior point of intersection with y = -t if A < I (resp. -A >1), and

no interior points of intersection with y - t. (see Figure 4.6.) Furthermore, if y(t,c)

is this solution, then y'(0) -K (c, where K (C) 4 K, (A 3 B 3 /3 If A < -

there is no such solution.

yv

1 B

Figure 4.6

A limiting solution for the case j -1, Theorem 4.4.
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The four previous theorums deal with solutions to (1.1) for which there are no

strictly interior crossing points with y = t, i.e. B > 0, or B < 0 and 6 = 0. We

now indicate how those theorems must be modified if B < 0 and 0 < 0. The next theorem

refers to solutions which, in the limit as C - 0, have a vertical segment at t - 0; the

final one deals with solutions that approach a horizontal line near t = 0.

Theorem 4.5. Suppose B < 0. Consider the solution {B,tJ} to (3.1), (3.9), (3.10)
i

with tJ+ I = -1 if the limiting behavior near t = -1 is vertical, or tj = -A (resp.

tj+ I = -A) if the limiting behavior near t = -1 is horizontal and A < I (resp.

A > 1). Let Aj be the interval (-t,,-t j+2 ) if the limiting solution is vertical

near t - -1. Let i. = (-",8). If the limiting solution is horizontal near t - 0, let3

D (A) (-,8). Then3

i) Theorems 4.1 1) and 4.4 i) continue to hold if Ail Bi and Dj(A) are replaced

by Ai, B. and D..(A), and the word "odd" changed to "even".

ii) A 2 DA 4 DA 6 ... 3 C B C 3

iii) For each A 0 1, there are finitely many j for which A e A . I

Theorem 4.6. Suppose B < 0. Consider the solution ($,t)} to (3.1), (3.9) with S - B

and t + or t, given as in Theorem 4.5. Let be as in Theorem 4.5. Then3

i) Theorems 4.2, 4.3 i) continue to hold if A. is replaced by A., t2) 2 > 3B
2

replaced by (t1 )
2 > 3B2, and "odd" is replaced by "even".

ii) As in Theorem 4.5.

iii) As in Theorem 4.5.

Remarks: I. For each of the four combinations of horizontal and vertical behavior near

the endpoints (6 cases for B < 0) there is a slight difference between necessary and

sufficient conditions; the necessary conditions involve certain closed intervals, while the

sufficient conditions hold on the interior of those intervals. The difference is due to

the fact that for each fixed E > 0, there is a region around certain values of A and

B for which the number of solutions is not necessarily the same as the number of limiting

solutions as c * 0; the size of each such region goes to 0 with C.
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To see why this is so, it is useful to consider (1.1) as an initial value problem,

with B - y(O,C) and y'(0,E) specified. As an example, we siidll consider B fixed,

B c Bi, B f E3  (i.e. B < - and close to L ), and increase ly'(0,C)l from 0.

For y' = 0, y(t,c) S B. Tf y'(0,c) - -e- L  , and L is now decreasea from -, there

- 2
is a last value of L (namely LI = 1/3 - B ) for which lUm y 2 B. For fixed c small,

E+0
y(-1,C,L) stays o(I) from y = B for L > L I As L passes L1 ' y(-1,C,L) moves

rapidly up. (By "rapid", we mean that a change of order 0(1) in y(-1,c,L) is produced

by a o(1) change in L.) This increase continues until y(-1,c,L) hits some point close

to the upper endpoint of CI(B), and y(-1,e,L) starts to decrease. Since the upper

limit is not exactly the boundary of C1 (B) for fixed c, the number of solutions to

(1.1), (1.2) for A very close to this boundary may be two more or less than the number

of limiting solutions.

After L passes L1  a decrease in L leads to a slow decrease in y(-1.cL). (By

"slow", we mean that a change of 0(1) in y(-1,E,L) is produced by an 0(1) chznge in

L.) (See Figu.re 4.7.) The decrease continues until _L reaches a value - 3 where the
-L 3/C

solution to (1.1) with y(0,E,L) = B, y'(0,C,L) = -e has a limiting behavior with a

vertical segment at t = -1 and three strictly interior turning points. It then undergoes

a rapid increase in y(-1,E,L) for L f L3 and, as before, stops at a value of y near

the upper endpoint of C3 (B). This alternation of rapid increases and slow declines in

y(-1,C,L) continues a finite number of times for L e [0,-]. (Indeed, for B close

enough to _ , the first rise near L - LI is the only such rise; the number of rises

can be computed by solving (3.1) with t = 0, ti = B, and finding the last j such

that t2j > -1.) The rapid rises correspond to bslutions which are approximately vertical

near t - -1: the slow declines correspond to solutions which are close to horizontal

near t - -1.
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Figures 4.7a, 4.7b

The limiting forms of solutions with y(O,a) - B, y'(0,E) - -e , with

varying L. The arrow indicates motion as L is decreased; the double

arrow indicates rapid. Figure 4.7a: L - L1 ; Figure 4.7b: L 3 < L < L

Thereafter, as ly'J increases, we consider y'(0,e) = -K/C. Increasing K (see

Figure 4.8a) at first increases y(-1,c,K) slowly (slow and rapid have the same meaning as

for y(-1,c,L)). The slow increase ends when y(-1,e,K) reaches a point near the upper

value of Al, at K " K ; for K near KI, there is then a rapid decrease in

y(-1.E,K), (see Figure 4.8b) which ends near the bottom of A. For larger K, the

value of y(-I,£,K) thereafter increases with K, and is unbounded. if B e A.,

B i AJ+ 2 for some j, there would be a finite sequence of slow increases and rapid

declines in y(-1.,,K) before the final monotone increase. Once again, near every value

of A for which (3/3K)y(-1,c,K) = 0, the asymptotic count of solutions to (1.1), (1.2)

way be off by two.

2. Consider (1.1). (1.2) now as a boundary value problem, with A and B as

variables. For example, suppose we fix B and E ) 0 with E << 1. As we vary A, the

number of solutions changes by two (either up or down) as certain critical values of A

are passed; these points correspond to changes in the sign of (3/3K)y(-1,c,K) or
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(3/,L)y(-I,E,L) and have been computed in the limit as c - 0. The disappearance (or

appearance) of two solutions is accomplished by a bifurcation: t;o solutions coalesce and

Ir
- , the left boundary layer of the solution which is asymptotically Z A (for
V3

-1 < t < 0) tends to zero in length, and the solution coalesces with another solution

which is asymptotically E _ (for -1 < t < 0). (See Figure 4.9.) For A < _ and c

small enough, neither of these solutions exists.

y

1//3 \1

B B

! t t

4.8a 4.8b

Figures 4.8a, 4.8b

The limiting forms of solutions with y(OC) B, y'(0,e) = -K/c, with

varying K. The arrows indicate motion of y(-1,c,K) as K increases.

Figure 4.8a: K < Kj; Figure 4.8b: K " K

3. The methods of this paper can also be used to get a complete analysis of solutions

for t ) 0.
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Figure 4.9

A pair of solutions to (1.1), (1.2) with B < I//j. As A crosses

1/I3 (in the limit as c * 0). the solutions coalesce and disappear.
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Appendix: The case B < A < 0.

Proposition A. Suppose B < A < 0. Then there is a unique solution to (1.1), (1.2). The

limiting behavior of the solution for -1 < t < 0 is as follows:

if B < - A, lir y(t,c)
V3 £40 V3

if B < A - - , lim y(t,E) = A

if - _ < B < A, lir y(t,e) = B

(See Figure A.1.)

y

>t

-1//3

I

Figure A.1

The limiting forms of solutions for the three different cases of

Proposition A.

Proof: It follows from the estimates of Section 2 that, in each case, the above constant

is the only possible limiting behavior. To show that there is a unique solution

corresponding to these boundary conditions, we may use the arguments of Theorem 4.1 and

Theorem 4.2. Alternatively, we may apply the maximum principle to the difference of

-32-
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two solutions. If YI' y. are solutions, then w = y- y2 satisfies

Lw" - (y21 - t)' - y(y 2 + y l1w = 0

w(-1) = w(0) = 0

Since [y'(Y 2 + Y2 )] ) 0 we see that

w-3O.
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