ELECTRICAL CHARACTERIZATION OF
COMPLEX MEMORIES
BYTE Wide Static RAMs

IBM Corporation

A.H. Taber
R.A. Meyers

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441
This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-80-407, Part 1 (of two) has been reviewed and is approved for publication.

APPROVED: Allen P. Converse
ALLEN P. CONVERSE
Project Engineer

APPROVED: David C. Luke
DAVID C. LUKE, Colonel, USAF
Chief, Reliability & Compatibility Division

FOR THE COMMANDER: John P. Huss
JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (RBRA), Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.
This report describes work performed from June 1979 to September 1980 on electrical characterization of 1KX8 and 2KX8 static RAMs. The objectives of the project were to find 1KX8 and 2KX8 devices that were both attractive to the user and deliverable by industry; electrically characterize these devices; and generate a draft 38510 specification for each using characterization data as a basis for establishing performance limits.
These goals were met and it was concluded that at least one company in the merchant semiconductor industry can produce 1KX8/2KX8 static RAMs that will operate over the temperature range of from -55°C case (instant on) to +125°C case (operating) with cycle times of 90/200 NS minimum, and power supply tolerances of ±10 percent.

One of the problems encountered in establishing future performance limits was the relative newness of high speed (less than 100NS) 1KX8 RAMs and the lack of any American 2KX8 static RAMs other than engineering prototypes. As a solution, performance limits for the existing parts were proposed, and limits for several faster speed grades predicted by scaling. Further work might include testing of the enhanced speed versions of the 1KX8 and 2KX8 to justify these proposed limits.
TABLE OF CONTENTS

1.0 INTRODUCTION .. 1
2.0 OBJECTIVES OF THE PROJECT. 1
3.0 CONCLUSIONS. .. 2
4.0 OPERATION OF THE 1KX8/2KX8 RAMS. 2
5.0 PROFILE OF THE 1KX8/2KX8 STATIC RAMS 7
6.0 CHARACTERIZATION 9
 6.1 Samples ... 9
 6.2 Temperature Fixturing 10
 6.3 Memory Test System 11
 6.4 Test Algorithms 11
 6.5 Test Loads .. 11
7.0 PRESENTATION AND EXPLANATION OF THE DATA 12
8.0 RECOMMENDATIONS FOR FURTHER INVESTIGATION. 13
APPENDIX I 1KX8 STATIC RAM 14
 \(t_{RC} \) (Random read cycle time) 15
 \(t_{WC} \) (Random write cycle time) 16
 \(t_{AA} \) (Address access time) 17
 \(t_{CEA} \) (Chip enable access time) 18
 \(t_{CEZ} \) (Chip enable data off time) 19
 \(t_{OEA} \) (Output enable access time) 23
 \(t_{OEZ} \) (Output enable data off time) 24

APPENDIX I (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{AZ}</td>
<td>Address data off time</td>
<td>28</td>
</tr>
<tr>
<td>t_{ASC}</td>
<td>Address setup time before CE</td>
<td>30</td>
</tr>
<tr>
<td>t_{AHC}</td>
<td>Address hold time after CE</td>
<td>31</td>
</tr>
<tr>
<td>t_{DSW}</td>
<td>Data to write setup time</td>
<td>32</td>
</tr>
<tr>
<td>t_{DHW}</td>
<td>Data hold time after write</td>
<td>33</td>
</tr>
<tr>
<td>t_{WD}</td>
<td>Write pulse duration</td>
<td>34</td>
</tr>
<tr>
<td>t_{WEZ}</td>
<td>Write enable data off time</td>
<td>35</td>
</tr>
<tr>
<td>t_{WPL}</td>
<td>Write pulse lead time</td>
<td>39</td>
</tr>
<tr>
<td>t_{AHW}</td>
<td>Address hold time after WE</td>
<td>40</td>
</tr>
<tr>
<td>t_{ASW}</td>
<td>Address setup time before WE</td>
<td>41</td>
</tr>
<tr>
<td>t_{CEW}</td>
<td>Chip enable to write setup time</td>
<td>42</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output high voltage</td>
<td>43</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output low voltage</td>
<td>44</td>
</tr>
<tr>
<td>I_{CC1}</td>
<td>Supply current from V_{CC}, read mode</td>
<td>45</td>
</tr>
<tr>
<td>I_{CC2}</td>
<td>Supply current from V_{CC}, write mode</td>
<td>46</td>
</tr>
<tr>
<td>I_{CC3}</td>
<td>Supply current from V_{CC}, standby mode</td>
<td>47</td>
</tr>
</tbody>
</table>

APPENDIX II 2KX8 STATIC RAM. 48

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{RC}</td>
<td>Random read cycle time</td>
<td>49</td>
</tr>
<tr>
<td>t_{WC}</td>
<td>Random write cycle time</td>
<td>50</td>
</tr>
<tr>
<td>t_{AA}</td>
<td>Address access time</td>
<td>51</td>
</tr>
<tr>
<td>t_{CEA}</td>
<td>Chip enable access time</td>
<td>52</td>
</tr>
<tr>
<td>t_{CEZ}</td>
<td>Chip enable data off time</td>
<td>53</td>
</tr>
<tr>
<td>t_{OEA}</td>
<td>Output enable access time</td>
<td>57</td>
</tr>
<tr>
<td>t_{OEZ}</td>
<td>Output enable data off time</td>
<td>58</td>
</tr>
<tr>
<td>t_{AZ}</td>
<td>Address data off time</td>
<td>62</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (continued)

APPENDIX II (continued)

- t_{ASC} (Address setup time before \overline{CE}) 64
- t_{AHC} (Address hold time after \overline{CE}) 65
- t_{DSW} (Data to write setup time) 66
- t_{DHW} (Data hold time after write) 67
- t_{WD} (Write pulse duration) 68
- t_{WEZ} (Write enable data off time) 69
- t_{WPL} (Write pulse lead time) 73
- t_{AHW} (Address hold time after \overline{WE}) 74
- t_{ASW} (Address setup time before \overline{WE}) 75
- t_{CEW} (Chip enable to write setup time) 76
- V_{OH} (Output high voltage) 77
- V_{OL} (Output low voltage) 78
- I_{CC1} (Supply current from V_{CC}, read mode) 79
- I_{CC2} (Supply current from V_{CC}, write mode) 80
- I_{CC3} (Supply current from V_{CC}, standby mode) 81

APPENDIX III 1KX8/2KX8 RAM, RECOMMENDED PARAMETER LIMITS 82

- 1KX8 RAM, DEVICE TYPE 01 83
- 1KX8 RAM, DEVICE TYPE 02 85
- 1KX8 RAM, DEVICE TYPE 03 86
- 2KX8 RAM, DEVICE TYPE 01 87
- 2KX8 RAM, DEVICE TYPE 02 89
- 2KX8 RAM, DEVICE TYPE 03 90
- 2KX8 RAM, DEVICE TYPE 04 91
- 2KX8 RAM, DEVICE TYPE 05 92
APPENDIX IV 1KX8/2KX8 RAM, TEST ALGORITHMS 93

Pattern 1. ... 94
Pattern 2. ... 95
Pattern 3. ... 96
Pattern 4. ... 96
Pattern 5. ... 97
EVALUATION

The objectives of this program were two fold: (1) to evaluate the performance of byte-wide static RAMs for use in military systems and (2) to evaluate a bit threshold measurement technique for Ultra-Violet Erasable PROMs (UV-EPROMs). Both of these objectives were met, and this report describes the techniques employed and presents some of the data generated in achieving the program results. Because of the diversity of the two tasks, the final report is divided into two parts: (I) "Byte-Wide Static RAMs" and (II) "Assessment of a Circuit Implementation to Measure EPROM Data Storage Margins".

Part I describes the evolution of MOS static RAMs with by-eight organizations. Specifically, 1Kx8 and 2Kx8 devices were evaluated to assess their performance in a military environment. Limits for performance were established for existing devices, and they were predicted for future devices. These limits were documented in Mil-M-38510 detail specifications (slash sheets) which resulted from the program.

Part II describes a threshold measurement technique for Ultra-Violet Erasable PROMs which was implemented in a vendor's 16K device. The technique was evaluated in terms of its potential usefulness as a system level verification test to determine projected data retention times.

The specifications which resulted from Part I will allow the procurement of reliable military grade products, and the preliminary work performed in Part II will allow the prediction of expected data retention times for UV-EPROMs. Both of these efforts have been performed in support of Mil-M-38510, "General Specification for Microcircuits", and they should enhance the reliability of military systems.

ALLEN P. CONVERSE
Project Engineer
1.0 INTRODUCTION

The work presented here is the static RAM portion of an RADC contract entitled "Electrical Characterization of Complex Memories."

The 8K byte-wide NMOS static RAM is a part which has been available for several years in a standard package and pinout. Until recently, however, the type of performance offered to the user has ranged from medium (~150NS) to slow speed (>250NS). Now, with a new scaled process, one domestic vendor has successfully produced high speed 8K RAMs and is evaluating 16K designs.

The inherently wide temperature performance of these NMOS static RAMs has made it possible for the government to be offered this same high speed performance advantage in many control store/main store applications. With this in mind, IBM Federal Systems Division (FSD) has performed electrical characterization on these 1KX8 and 2KX8 static RAMs. As a separate data item, drafts of the MIL-M-38510/XXX military specifications for 1KX8 and 2KX8 static RAMs were prepared and submitted to RADC as part of this project.

This final report is comprised of a large quantity of reduced data which justifies the limits set forth in the proposed draft specifications for the dash 01 8K and 16K devices. Limits for the faster dash numbers were scaled. It is hoped that it will serve as a comparison reference manual for future product designs and revisions.

2.0 OBJECTIVES OF THE PROJECT

The objectives of the project were as follows:

1. Characterize 1KX8 and 2KX8 static RAMs for the purpose of establishing draft specification limits.
2. Attempt to demonstrate that alternate devices made by different vendors are interchangeable on a pin and performance basis.

3. Generate draft 38510 slash sheet specifications and proper test procedures for the 1KX8 and 2KX8 static RAMs using characterization data as a basis for establishing performance limits.

3.0 CONCLUSIONS

All objectives of the project were met. It has been concluded that at least one company in the merchant semiconductor industry can produce 1KX8/2KX8 static RAMs that will operate over the temperature range of -55°C case (instant on) to +125°C case (operating) with cycle times of 90/200 NS minimum, and power supply tolerances of ±10 percent. The data presented in Appendices I (1KX8 RAM), and II (2KX8 RAM) are the basis for the conclusion. The recommended limits for all parameters for the 1KX8 and 2KX8 static RAMs are given in Appendix III (Recommended Parameter limits). It is felt that these recommended limits, with minor exceptions, will satisfy the majority of users and future suppliers as these devices become adopted throughout the industry.

With respect to "device interchangeability" it was found that, although several American and Japanese vendors are making functionally similar 1KX8 and 2KX8 RAMs, no other proposed American devices are fast enough to meet the recommended performance limits established for the subject RAMs at this time. In addition, it is felt by IBM that the 1KX8 will never become an industry standard. This is due to its late introduction with respect to the 2KX8, which is already being made in Japan.

4.0 OPERATION OF THE 1KX8/2KX8 RAMs

Due to the relatively short exposure of the Mostek RAMs in the industry so far, it may be appropriate here to discuss their operation.
Figure 1 shows the pinout of the 2KX8 RAM in a 24 pin DIP. The 1KX8 RAM pinout is identical to the 2KX8 except that pin 19 is a no-connect. Timing diagrams for read and write cycles are shown in figures 2 and 3. For the 1KX8/2KX8 RAMs, addressing 1 of 1,024/2,048 bytes requires handling a 10/11-bit address word. This is accomplished by supplying a 10/11-bit address field to the 10/11 address inputs (A_0 - A_9)/(A_0 - A_{10}).

The RAMs are in a read mode whenever the \(\overline{WE} \) (write enable) input is at a logic "1" (high) level. A transition on any of the address inputs will disable the 8 data output drivers after time \(t_{AZ} \) (address data off time). Valid data will then be available to the 8 data output drivers within time \(t_{AA} \) (address access time) after the last address input is stable, provided that the \(\overline{OE} \) (output enable) and \(\overline{CE} \) (chip enable) access times are satisfied. This is shown in read cycle 1, figure 2. If \(\overline{OE} \) or \(\overline{CE} \) access times are not met, data access will occur relative to the limiting parameter, \(t_{OEA} \) or \(t_{CEA} \) (output enable access time or chip enable access time), rather than the address. Output enable access is shown in read cycle 2, figure 2. Chip enable access is shown in read cycle 3, figure 2. The state of the 8 data I/O (input/output) signals is controlled by the \(\overline{CE} \) and \(\overline{OE} \) inputs. A logic "1" on \(\overline{CE} \) and/or \(\overline{OE} \) will cause the 8 data output drivers to go to a high impedance state after time \(t_{CEZ} \) or \(t_{OEZ} \) (chip enable data off time or output enable data off time).

The device is in the write mode whenever the \(\overline{WE} \) and \(\overline{CE} \) inputs are in the logic "0" (low) state. The write cycle can be initiated by the \(\overline{WE} \) pulse going low provided that \(\overline{CE} \) is also low. In this case the leading edge of the \(\overline{WE} \) pulse will latch the status of the address bus. A write cycle can also occur when \(\overline{WE} \) goes low before \(\overline{CE} \). In this second case, the leading edge of \(\overline{CE} \) will latch the address status. In either case, the latter occurring edge of \(\overline{WE} \) or \(\overline{CE} \) will determine the start of the write cycle. Therefore, address setup and hold times, and write pulse width are referenced to the latter occurring edge of \(\overline{CE} \) or \(\overline{WE} \). If the output bus has been enabled (\(\overline{CE} \) and \(\overline{OE} \) low) then the leading edge of \(\overline{WE} \) will cause the outputs
Figure 1 Terminal connections for 1KX8/2KX8 static RAM
READ CYCLE TIMING

1KX8/2KX8 STATIC RAM

Addresses

CE

OE

WE

DQ₀-DQ₇

VALID

VALID

VALID

V_{IL}

V_{IL}

V_{IL}

V_{IL}

V_{IL}

V_{IL}

V_{IL}

V_{IL}

V_{IH}

V_{IH}

V_{IH}

V_{IH}

V_{IH}

V_{IH}

V_{IH}

V_{IH}

V_{IH}

V_{OH}

V_{OL}

--- READ CYCLE 1 ---
--- READ CYCLE 2 ---
--- READ CYCLE 3 ---

FIGURE 2. Read cycle waveforms
FIGURE 3 Write cycle waveforms
to go to a high impedance after time t_{WEZ} (write enable data off time). For write to occur, data in must be valid for time t_{DSW} (data to write setup time) prior to the low to high transition of \overline{WE}. The data input signals must remain stable for time t_{DHW} (data hold time after write) after \overline{WE} goes high. The \overline{WE} control will disable the data out buffers during the write cycle. However, \overline{OE} should be used to disable the data out buffers to prevent bus contention between the input data and data that would be output upon completion of the write cycle.

5.0 PROFILE OF THE 1KX8/2KX8 STATIC RAMs

To give some perspective to the devices under investigation by this project, the following table illustrates some aspects of the process, design, performance, and packaging.

<table>
<thead>
<tr>
<th>MOSTEK 1KX8/2KX8 STATIC RAM PROFILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1KX8 RAM</td>
</tr>
<tr>
<td>Part No.</td>
</tr>
<tr>
<td>Die Size</td>
</tr>
<tr>
<td>Die Aspect Ratio</td>
</tr>
<tr>
<td>No. of Poly Levels</td>
</tr>
<tr>
<td>No. of Metal Levels</td>
</tr>
<tr>
<td>Cell Size</td>
</tr>
<tr>
<td>Typ. Access (t_{AA}/cycle (t_{RC})</td>
</tr>
<tr>
<td>Supply Voltage</td>
</tr>
<tr>
<td>Package</td>
</tr>
<tr>
<td>Cell load resistor</td>
</tr>
<tr>
<td>Gate Oxide Thickness</td>
</tr>
<tr>
<td>Channel Length</td>
</tr>
<tr>
<td>Junction Depth</td>
</tr>
</tbody>
</table>

The 4801A Rev J and 4802 Rev A RAMs are both descendents of Mostek's 4118 1KX8 RAM, which was first produced using Mostek's "Poly R" process several
years ago. When Mostek developed its "Scaled Poly 5" process, the 4118 was scaled down in size by about 30% and, with some design changes, became the 4801A. The Mostek 1KX8/2KX8 RAM cells use polysilicon load resistors to maintain data on their cross-coupled flip flop structure, as shown in figure 4. In order to improve the cell layout, power is supplied to each cell by one of the metal data lines rather than a V_{CC} rail. Both data lines are normally high, but during the short time that one of them may go low, the state of the cell is maintained due to the long time constant of the load resistors and the cell flip flop node capacitance. Spider networks, of 8 resistors each, supply power to groups of 4 cells in the array.

![Figure 4](image-url)

The RAMs contain circuitry to sense transitions on the address inputs. In the read mode a transition on any address will disable the output buffers and start a series of internal clocks that controls the operations required to retrieve data. When data access is complete, power consumption drops by about 15 percent. During the write mode, internal latches store the status of address at the latter occurring low going edge of \overline{WE} or \overline{CE}, making the RAMs safer to use. On the 4118 device, there is a latch function available on pin 19 that latches the status of address and \overline{CE} when brought low. This latch circuitry has been disabled on the 4118A, 4801A, and 4802. Instead, pin 19 is a no-connect on the 4118A and 4801A, and an address input on the 4802. The pinout of the 4801A and 4802 devices conforms to Jedeck standard JC-42-78-4A for 24 pin 1KX8 and 2KX8 static RAMs.
The next version of the 4802, the Rev C, will be somewhat different from the Rev A. The modifications to the Rev A will include the addition of metal V\textsubscript{CC} rails in the array and circuitry to perform a "Datasave" mode whereby data can be maintained in the array during loss of power to V\textsubscript{CC} by supplying 4 volts at about 100 microamps to the WE pin. The reason for the dedicated V\textsubscript{CC} rails in the array is to provide a means for maintaining data during the Datasave mode without keeping much of the support circuitry alive. The V\textsubscript{CC} rail modification involves a change in the metal layer but doesn't affect the size of the cell or array. The Rev C, like the Rev A, will still be intentionally slowed down to ease debug. This is done by the use of 2 tapped delay lines—one affecting the read cycle and one affecting the write cycle. The speed of the internal timing and the delay lines is affected in the same way by such factors as temperature and process variation, so it should be easy to adjust the delay lines for higher speed once the rest of the design has been optimized.

6.0 CHARACTERIZATION

6.1 SAMPLES

In order to arrive at a set of specification limits that was both attractive to users and deliverable by industry, it was necessary to choose samples that represented the latest available product during the course of the project. Figure 5 is a chart depicting the samples that were characterized.

The 1KX8 devices were of two date codes; 8015 and 8033. Both were Mostek's commercial revision J, although the earlier date code part had the latch feature on pin 19 that is not offered on the later devices. These parts represented some of the faster of Mostek's commercial production parts, whose speed distribution was centered around 90 NS at 70\degree C at that time.

The 2KX8 devices were of 3 date codes; 8022, 8031, and 8033. They represented some of the faster samples of Mostek's Rev A part, which was an engineering version of the 2KX8 that was intentionally slowed down to ease
debugging of its functionality and which did not contain some of the design improvements that Mostek plans to use on their production version. The Rev A part at that time had a speed distribution centered around 200 NS at 70°C.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DATE</th>
<th>CODE</th>
<th>QTY</th>
<th>SPEED</th>
<th>PART NO.</th>
<th>DATE</th>
<th>CODE</th>
<th>QTY</th>
<th>SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK4801P-70</td>
<td>8015</td>
<td>1</td>
<td>70NS</td>
<td>MK4802P</td>
<td>8022</td>
<td>2</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MK4801AP-70</td>
<td>8033</td>
<td>15</td>
<td>70NS</td>
<td>MK4802P-1</td>
<td>8033</td>
<td>4</td>
<td>120NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MK4802P-3</td>
<td>8031</td>
<td>16</td>
<td>200NS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Includes Latch Feature (Pin #19) - Not offered on production device
2 Commercial (0-70°C) Address Access Max Specification

8K/16K Samples Characterized

Figure 5

6.2 TEMPERATURE FIXTURING

The temperature forcing system used for the entire range of -55°C to 125°C was a Thermonics model T-2050 thermo gas system (liquid nitrogen).

Temperature measurements were made with a Digitec Thermocouple Thermometer (Model 590TC). A copper constantan thermocouple was held against the center of the underside of the device package while in the test socket by a small piece of foam rubber.

During characterization, temperature-controlled forced air was blown across the device package and the upper portion of the socket at 5 cuft/min. The thermocouple then read the average temperature of the underside of the package and the foam rubber holding it in place. Because of the immersion
of the socket in the airflow, it was assumed that there was a negligible temperature differential between the socket and package and that the thermocouple readings were a true indication of the case temperature.

6.3 MEMORY TEST SYSTEM

The memory test system used for all testing was a Fairchild/Xincom model 5582 with a model 7710 host computer. The Xincom 5582 provides a flexible timing system with cycle times down to 40 NS at 156 picosecond edge resolution while a programmable test pattern computer generates the complex algorithms needed for worst case data pattern evaluation. The 5582's X-Y address scrambling capability was used, along with vendor bit maps, for true topological addressing. For DC characterization, the 5582 contains a programmable DC parametric unit which has the ability to force and measure both voltage and current on any pin.

6.4 TEST ALGORITHMS

The test algorithms are given in Appendix V. Functional algorithms are test patterns which define the exact sequence of events used to verify proper operation of a random access memory. Each algorithm serves a specific purpose. All are commonly known patterns and should be quite simple for most test systems to implement. Because of the layout of the memory array, it is not possible to topologically descramble more than 2 of the 8 outputs at one time, so 4 passes with 4 sets of topo are necessary to completely check for pattern sensitivity.

6.5 TEST LOADS

All measurements, except pin leakage and standby supply current, were done with the 8 outputs loaded as in figure 6. The 30 picofarad capacitor provided some AC load for the access time measurements while still being
small enough to allow disable time measurements. The two resistors provided a reasonable load when measuring V_{OL} and V_{OH}, and also pulled the outputs quickly toward a midpoint value for the disable time measurements.

7.0 PRESENTATION AND EXPLANATION OF THE DATA

All electrical measurements were taken at $-55^\circ C$, $+25^\circ C$, and $+125^\circ C$ case temperature. After reduction, they were plotted to a smooth curve format so that parameter values could be lifted for other intermediate values.

The AC and DC data were plotted so that all information concerning each parameter is presented on a single page. The first plot at the top of the page shows the cumulative distribution of the sample group for that parameter. The second plot shows how the parameter varies with power supply voltage (V_{CC}), while the third plot illustrates how the parameter performs over the full temperature range.

There were 28 AC measurements taken over the range of 4.5 volts to 5.5 volts at all three temperatures. All parts were tested at 4.5 volts. Then, devices representing the slow, fast, and typical portions of the group's speed distribution were chosen to be tested at 4.75, 5.00, 5.25, and 5.50 volts. These numbered about one half of the total samples. The AC measurements consisted of read access and cycle times, write conditions
and cycle times, and output disable times. The disable times were measured as the time it took the output to change from a good high or a good low to a point that was closer to the high impedance state by 100 millivolts. Minimum disable times were measured to the first change in the outputs. Maximum disable times were measured to the last change in the outputs before reaching a quiet state.

The 5 DC measurements were performed at the same voltages as the AC measurements. Read and write mode supply currents from V_{CC} were measured at 180 NS cycle times only, but the currents at other frequencies can be estimated assuming that current increases linearly with frequency and using the standby mode current to represent zero frequency. V_{OL} and V_{OH} were measured using the card loads of figure 6, so the output current can be calculated using these resistor values. For a V_{OUT} of 2.4V, I_{OUT} is about -1mA and for 0.4V, it is about 4mA.

8.0 RECOMMENDATIONS FOR FURTHER INVESTIGATION

Further work with the 1KX8/2KX8 RAMs might include the following:

1. Evaluation of the enhanced speed versions of the 8K/16K to justify the dash 02-03 (8K) and dash 02-05 (16K) limits.

2. Investigation of the data retention modes that will be available on some of the 2KX8 RAMs. This mode could satisfy some short term non-volatile military applications via battery backup.

3. A study of the effects of alpha particles on 1KX8/2KX8 RAMs. Many RAM designs use high resistance poly loads in the array to reduce power consumption. This may increase their susceptibility to soft errors.

4. Testing of the 1KX8/2KX8 RAMs in high density packages such as flat packs or leadless carriers as these become available.
APPENDIX I

1Kx8 STATIC RAM
IKX8 STATIC RAM
RANDOM WRITE CYCLE TIME
twC

RANDOM WRITE CYCLE TIME
MEASUREMENTS OF THE 1KX8 RAM
WERE INCONCLUSIVE. THEREFORE,
NO DATA IS PRESENTED HERE
Vendor: Mostek

P/N: MK4801P-70, MK4801AP-70

REV: 2

Date Codes: 8015, 8033

#DEVICES: 16

I / K S S S T A T I C R A M

ADDRESS ACCESS TIME

LOAD: fig 9

ADDR PAT: REGAL

DATA PAT:

- **V_{IH}:** 3.0V
- **V_{IL}:** 0.0V

TIME IN MICRO-SECONDS

- **AVERAGE \(T_{\text{AA}} \)**

TIME (NS)

- **VERSUS \(V_{cc} \)**

TIME (NS)

- **VERSUS TEMPERATURE**

TEMPERATURE (CASE) IN °C
Vendor: Mostek

P/N: MK4801P-70, MK4801AP-70

Date Codes: 8015, 8033

#DEVICES: 16

VIL 3.0V

VIH 0.0V

MINIMUM CHIP ENABLE DATA OFF TIME LOAD: FIG. 6

MINIMUM CHIP ENABLE DATA OFF TIME LOAD: FIG. 6

FIG. 6

T_{CE20} MIN.

W.C. CUMULATIVE DISTRIBUTION (16 DEVICES)

VIL: 3.0V

VIH: 0.0V

TIME IN NANOSECONDS

Vcc IN VOLTS

VERSUS Vcc

TIME (NS)

VERSUS TEMPERATURE

TIME (NS)

TEMPERATURE (CASE) IN °C

19
Vendor: Mostek

1KX8 STATIC RAM

P/N: MK4801P-70, MK4801AP-70 MAXIMUM CHIP ENABLE DATA OFF TIME
 FOR A LOGIC 0

ADDR PAT: SEC. READ
MAXIMUM CHIP ENABLE DATA OFF TIME
DATA PAT: ALL ZEROS

DATE CODES: 8015, 8033

#DEVICES: 16

W.C. CUMULATIVE DISTRIBUTION (9 DEVICES)

TIME IN NANOSECONDS

AVERAGE TCEZO MAX.
VERSUS VCC

TIME (NS)

VCC IN VOLTS

VERSUS TEMPERATURE

TIME (NS)

TEMPERATURE (CASE) IN °C
Vendor: Mostek
P/N: MK4801P-70, MK4801AP-70
MINIMUM CHIP ENABLE DATA OFF TIME
BY AT/RE Date 10/80
LOAD: 50 ohms
ADDR. PAT: SEQ. READ
DATA PAT: ALL ONES

VOLTS

TIME (NS)

VERSUS TEMPERATURE

TIME (NS)

TEMPERATURE (CASE) IN °C

AVERAGE T_{CEZ1} MIN.
VERSUS V_{cc}

W.C. CUMULATIVE DISTRIBUTION (5 DEVICES)

DEVICES

DATE CODES: 8015, 8033

DEVICES:

100
90
80
70
60
50
40
30
20
10
0

5
10
15
20
25
30
35
40
45

5.00
5.25
5.50

4.50
4.75

V_{cc} IN VOLTS

V_{cc} IN VOLTS

5.50
4.75
4.50

-40
-60
0
+60
+40
+20
+10
0
-10
-20
-40
-60

-125°C
-65°C
-25°C
+25°C
+125°C

W.C.

AVG.
Vendor: Mostek
P/N: MK4801P-70, MK4801AP-70
MAXIM CHIP ENABLE DATA OFF TIME
FOR A LOGIC 1
LOAD: fig. 6
ADDR PAT: SEQ. READ
DATA PAT: ALL ONES
VIH 3.0V
VIL 0.0V

% DEVICES

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

TIME IN NANoseconds: 0 5 10 15 20 25 30 35 40 45

W.C. CUMULATIVE DISTRIBUTION (16 DEVICES)

% DEVICES

TIME IN NS:

4.50 4.75 5.00 5.25 5.50

Vcc IN VOLS:

AVERAGE TCEZI MAX.
VERSUS VCC

25 20 15 10 5 0

TIME (NS)

4.50 4.75 5.00 5.25 5.50

Vcc IN VOLS:

-60 -40 -20 0 +20 +40 +60 +80 +100 +120 +140

TEMPERATURE (CASE) IN °C

VERSUS TEMPERATURE

25 20 15 10 5

TIME (NS)

Vcc IN VOLS:
Vendor: Mostek

Texas Static RAM

P/N: M4801P-70, M4801AP-70 Output Enable Access Time

By AT/RM Date 10/80

LOAD: File 6
AUDOR PAT: SLDIAG

Date Codes: 8015, 8033

#DEVICES: 16

Cumulative Distribution (16 Devices)

Average T_{OE}

Versus V_{CC}

Time (NS)

5.00 5.25 5.50

4.75 4.50

V_{CC} in Volts

-60 -40 -20 0 +20 +40 +60 +80 +100 +120 +140

Temperature (Case) in °C

25 20 15 10

Time (NS)

V_{OE} = 4.50V

 Versus Temperature
IKX STATIC RAM

MINIMUM OUTPUT ENABLE DATA OFF TIME FOR A LOGIC 0

VDEO MIN.

WC, CUMULATIVE DISTRIBUTION (16 DEVICES)

% DEVICES

TIME IN NANOSECONDS

AVERAGE TDEO MIN.

VERSUS VCC

TIME (NS)

VCC IN VOLTS

VERSUS TEMPERATURE

TIME (NS)

TEMPERATURE (CASE) IN °C
Mostek

I

XK8

IA

AM By

RN/AT Date

10/80

P/N: XK4801-70, XK4801AP-70

MINIMUM OUTPUT ENABLE to DATA OFF TIME

FOR A LOGIC 1

IIKX2I MIN.

REV:

Date Codes: 8015, 8033

#DEVICES: 16

Vcc Cumulative Distribution (9 Devices)

%DEVICES

TIME IN NANOSEC.

AVERAGE TUE2 MIN.

VERSUS Vcc

Vcc in Volts

VERSUS TEMPERATURE

TIME (NS)

Vcc = 5.50v

TEMPERATURE (CASE) IN °C

AVG.
Vendor: Mostek
P/N: MK4801P-70, MK4801AP-70
MINIMUM ADDRESS DATA OFF TIME
FOR A LOGIC 0
T_{AZO} MIN.

W.C. CUMULATIVE DISTRIBUTION (9 DEVICES)

%DEVICES

TIME IN NANOSECONDS

AVERAGE T_{AZO} MIN.
VERSUS V_{cc}

V_{cc} IN VOLTS

VERSUS TEMPERATURE

TIME (NS)

TEMPERATURE (CASE) IN °C

28
IKX8 STATIC RAM

P/N: HK4801P-70, HK4801AP-70

MINIMUM ADDRESS DATA OFF TIME

FOR A LOGIC 1

LOAD: TIE

ADDR PAT: SEQ. READ

DATA PAT: ALL ONES

VCC 3.0V

VIL 0.0V

#DEVICES: 10

DATE CODES: 8015, 8013

REV: J

FOR A LOGIC 1 ADDR PAT: SEQ. READ

DATE CODES: 8015, 8013

#DEVICES: 10

T_MIN.

W.C. CUMULATIVE DISTRIBUTION (5 DEVICES)

TIME IN NANO SECONDS

DEVICES

100

90

80

70

60

50

40

30

20

10

0

5

10

15

20

25

30

35

40

45

TIME (NS)

VCC IN VOLTS

4.50

4.75

5.00

5.25

5.50

VSS = 0.30V

VCC = 5.0V

VIL = 0.0V

VCC = 5.50V

VERSUS VCC

VERSUS TEMPERATURE

TIME (NS)

-60

-40

-20

0

+20

+40

+60

+80

+100

+120

+140

TEMPERATURE (CASE) IN °C

29
VENIDOR: MOSTEK

DATA: 32K STATIC RAM

P/N: 544601P-70, 544601AP-70

REV: 1

Date Codes: 8015, 8031

#DEVICES: 10

PIN:
MK4801I,-70, MK4801A1-70

DATA PARTITION SETUP

LOAD: 8

DATA PAT: 6

DATA CODES:
80115

DATA PAT:

80

% DEVICES:

0

TIME IN NANOSECONDS

AVERAGE: 1.5NS

V:CC VERSUS TEMP.

V:CC 5V

CASH 45°C

75°C

C:0

TIME (NS)

VERSUS V:CC

TIME (NS)

VERSUS TEMPERATURE

TEMPERATURE (CASE) IN °C

32
Vendor: Mostek
P/N: MK4801P-70, MK4801AP-70
REV: 1
Date Codes: 8015, 8033
#DEVICES: 16

1KXK STATIC RAM

WRITE PULSE WIDTH

T_{WD}

DATE

REV:

TWD

DATE

REV:

1KXK STATIC RAM

WRITE PULSE WIDTH

T_{WD}

DATE

REV:

TWD

DATE

REV:

1KXK STATIC RAM

WRITE PULSE WIDTH

T_{WD}

DATE

REV:

TWD

DATE

REV:

1KXK STATIC RAM

WRITE PULSE WIDTH

T_{WD}

DATE

REV:

TWD

DATE

REV:

1KXK STATIC RAM

WRITE PULSE WIDTH

T_{WD}

DATE

REV:

TWD

DATE

REV:

1KXK STATIC RAM

WRITE PULSE WIDTH

T_{WD}

DATE

REV:

TWD

DATE

REV:

1KXK STATIC RAM

WRITE PULSE WIDTH

T_{WD}

DATE

REV:

TWD

DATE

REV:

1KXK STATIC RAM

WRITE PULSE WIDTH

T_{WD}

DATE

REV:

TWD

DATE

REV:

1KXK STATIC RAM

WRITE PULSE WIDTH

T_{WD}

DATE

REV:

TWD

DATE

REV:

1KXK STATIC RAM

WRITE PULSE WIDTH

T_{WD}

DATE

REV:

TWD

DATE

REV:

1KXK STATIC RAM

WRITE PULSE WIDTH

T_{WD}

DATE

REV:

TWD

DATE

REV:

1KXK STATIC RAM

WRITE PULSE WIDTH

T_{WD}

DATE

REV:

TWD

DATE

REV:

1KXK STATIC RAM

WRITE PULSE WIDTH

T_{WD}

DATE

REV:

TWD

DATE

REV:

1KXK STATIC RAM

WRITE PULSE WIDTH

T_{WD}

DATE

REV:

TWD

DATE

REV:

1KXK STATIC RAM

WRITE PULSE WIDTH

T_{WD}

DATE

REV:

TWD

DATE

REV:

1KXK STATIC RAM

WRITE PULSE WIDTH

T_{WD}

DATE

REV:

TWD

DATE

REV:
Vendor: Mostz2k
P/N: MK480IP-70, MK4801AP-70
WRITE ENABLE DATA
WRITE TIME
FOR A LOGIC 0
T_{WEZ0} \text{ MAX.}

Date Codes: 8015, 8033
#DEVICES: 16

%DEVICES

#DEVICES

TIME IN NANOSECONDS

%DEVICES

TIME (NS)

VCC IN VOLTS

VS 3.0V
VIL 0.0V

%DEVICES

TIME (NS)

VCC IN VOLTS

VIL 3.0V
VSS 0.0V

%DEVICES

TIME (NS)

TEMPERATURE (CASE) IN °C

VCC
AVCC

AVERAGE T_{WEZ0} MAX.
VERSUS VCC

AVERAGE T_{WEZ0} VS.
VERSUS VS

CUMULATIVE DISTRIBUTION (9 DEVICES)
Vendor: Mostek

P/N: MK4801P-70, MK4801AP-70

MINIMUM WRITE ENABLE DATA OFF TIME

LOAD:

ADDR PAT: SEQUENTIAL WRITE
DATA PAT: ALL ONES

VTHI 3.0V
VIL 0.0V

%DEVICES

TIME IN NANOSECONDS

AVERAGE TWE21 MIN.
VERSUS \(V_{cc} \)

\(V_{cc} \) IN VOLTS

VERSUS TEMPERATURE

TEMPERATURE (CASE) IN °C
Vendor: Mostek

P/N: MK4801P-70, MK4801AP-70

Maximum Write Enable Data Off Time for A Logic 1

By AT/AM Date 10/80

Load: fig. 6

Address Path: SEL READ

Data Path: All ones

VHIC 3.0V

VTH 3.0V

VIL 0.0V

Date Codes: 8015, 033

#Devices: 16

M.C. Cumulative Distribution (16 Devices)

% Devices

0 10 20 30 40 50 60 70 80 90 100

Time in Nanoseconds

Average T

VERSUS V

Vcc

Time (NS)

4.50 4.75 5.00 5.25 5.50

Vcc in Volts

VERSUS TEMPERATURE

Time (NS)

-60 -40 -20 0 20 40 60

Temperature (Case) in °C

N° AVG.
Vendor: Mostek
P/N: MK4801P-70, MK4801AP-70
Address Setup Time Before WE

Date Codes: 8013, 8033
#Devices: 16

Cumulative Distribution (16 Devices)

Time in Nanoseconds

Average tASW

Versus Vcc

Time (NS)

Vcc in Volts

4.50 4.75 5.00 5.25 5.50

Versus Temperature

Time (NS)

Temperature (Case) in °C

41
Ve2ndor: Mostek
P/N: MG5801P-70, MG4801AP-70
REV: J
Date Codes: 8015, 8033
#DEVICES: 16

[Graphs and charts related to chip enable time and cumulative distribution]

By AT/BN Date 10/80
LOAD: 4K
ADIR PAT: RCCAL
DATA PAT: VIRC 3.0V
VHC 2.0V
VIL 0.0V

[Graphs and charts related to time in nanoseconds, average T \(V_{CEW} \) versus \(V_{CC} \), and versus temperature]

42
Vendor: Mostek

P/N: MK4801P-70, MK4801AP-70

Rev: J

Date Codes: 8015, 8033

#Devices: 16

MK8 STATIC RAM

Output High Voltage

V_{OH}

W.C. CUMULATIVE DISTRIBUTION (16 DEVICES)

% Devices

Average V_{OH}

VERSUS V_{CC}

V_{OH} (Volts)

VERSUS TEMPERATURE

V_{OH} (Volts)

Temperature (Case) in °C

43
Vendor: Mostek
P/N: MK601AP-70, MK601AP-70
Rev: 1
Date Codes: 8015, 8033
*Devices: 16

IKX8 STATIC RAM

LOAD: NONE

SUPPLY CURRENT FROM V\textsubscript{CC}, READ MODE I\textsubscript{CC},

*DEVICES: 16

CUMULATIVE DISTRIBUTION

\begin{figure}
\centering
\includegraphics[width=\textwidth]{cumulative_distribution.png}
\caption{Cumulative Distribution of Device Currents}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{average_current.png}
\caption{Average Current Versus V\textsubscript{CC}}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{temperature_volt.png}
\caption{Temperature Versus Voltage}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{temperature_current.png}
\caption{Temperature Versus Current}
\end{figure}

DATA PAT: SEQ. READ
VH, VIL:

1.0V

0.9V
Vendor: Moseltek

P/N: MK4801P-70, MK4801AP-70

Supply current from Vcc, write mode

Load: None

Data pat:筹码

Vih 1.0v

Vil 0.5v

Date Codes: 8015, 8033

#DEVICES: 16

Cumulative distribution

%Devices vs. Icc (mA)

Average Icc vs. Vcc

Vcc (mA) vs. Vcc (V)

Vcc (mA) vs. Temperature

Vcc (V) vs. Temperature (Case) in °C

46
Vendor: Mostek
P/N: MR4801P-70, MR4801AP-70
REV: 2
Date Codes: 8013, 8033

1KX8 STATIC RAM

SUPPLY CURRENT FROM Vcc STANDBY MODELOAD:
- **Vcc:** 3.0V
- **VIL:** 0.0V
- **VIH:** 3.0V

#DEVICES:
- 16

CUMULATIVE DISTRIBUTION

AVG Icc (mA)

VERSUS Vcc

VERSUS TEMPERATURE

T (°C) AT JR

DATA PAT: NONE

ADUH PAT: NONE

DATE: 10/80

P/N: IWU4801P-70, IWU4801AP-70

SUPPLY CURRENT:
- 100%
- 80%
- 60%
- 40%
- 20%
- 10%

Icc (mA)

VERSUS TEMPERATURE

T (°C) AT JR

W.C.

AVG
APPENDIX II

2KX8 STATIC RAM
Vendor: Mostek
P/N: MG5802P/-1/-3
REV: A
Date Codes: 8022/33/31
#DEVICES: 22

2KX8 STATIC RAM
RANDOM READ CYCLE TIME

BY R.M. Date 10/80
LOAD: Rg, 5
ADDR PAT: REGAL
DATA PAT:
VH=3.0V
VIL = 0.0V

CUMULATIVE DISTRIBUTION

TIME IN NANoseconds

%DEVICES

20 devices
22 devices
55°C
-25°C
-35°C
T=+50°C

AVERAGE \(T_{RC} \)
VERSUS \(V_{CC} \)

TIME (NS)

4.50 4.75 5.00 5.25 5.50

VERSUS TEMPERATURE

TIME (NS)

−60 −40 −20 0 +20 +40 +60 +80 +100 +120 +140

TEMPERATURE (CASE) IN °C
CUMULATIVE DISTRIBUTION

TIME IN NANOSECONDS

AVERAGE \(T_{AA} \)

VERSUS \(V_{CC} \)

VERSUS TEMPERATURE

51
2KX8 STATIC RAM
MINIMUM CHIP, ENABLE DATA OFF
TIME FOR A LOGIC 1

DATE CODES: 8022/33/31

VENDOR: Nortek
P/N: "K4802P/1-3"
REV: A

TIME IN NANoseconds
AVERAGE TCEZB MIN.

% DEVICES

VCC CUMULATIVE DISTRIBUTION (19 DEVICES)

TIME (NS)

Vcc IN Volts

VERSUS VCC

TIME (NS)

VERSUS TEMPERATURE

TEMPERATURE (CASE) IN °C

53
Vendor: Mostek
P/N: V64802P-1/-1
REV: A
Date Codes: 8027/71741
#DEVICES: 72

J22X STATIC RAM
MINIMUM CHIP ENABLE TO DATA OFF
TIME FOR A LOGIC 1
TCEZ1 MIN.

(REDUCTION DISTRIBUTION IN PERCENT)

TIME IN NANoseconds
AVERAGE TCEZ1 MIN.

VERSUS VCC

TIME (NS)

Vcc IN VOLTS

VERSUS TEMPERATURE

TIME (NS)

TEMPERATURE (CASE) IN °C
2.18 STATIC RAM

MAXIMUM CHIP ENABLE DATA OFF
TIME FOR A LOGIC 0

TCE0 MAX

V.C. CUMULATIVE DISTRIBUTION (18 DEVICES)

P/N: NS44027F-1/-2
REV: 2
Date Codes: 80/78/77/76

#DEVICES: 22

TIME IN NANOSECONDS
AVERAGE TCE0 MAX.

VERSUS VCC

TIME (NS)

VERSUS TEMPERATURE

TIME (NS)

TEMPERATURE (CASE) IN °C

55
Vendor: Mostek
P/N: MK402/-1I-3
REV: A
Date Codes: 80J/9/31

#DEVICES: 22

TIME IN NANoseconds
AVERAGE T_CLE1 MAX.

VERSUS V_CC

VERSUS TEMPERATURE

TIMBERATURE (CASE) IN °C
Vendor: Mostek
P/N: VM4802P/-1/-3
REV: A
Date Codes: 8022/22/31
#DEVICES: 22

2K8 STATIC RAM
OUTPUT ENABLE ACCESS TIME
T_{OE,A}

Vcc IN VOLTS
4.50 4.75 5.00 5.25 5.50

VERSUS TEMPERATURE

TIME (NS)
10 20 30 40

Vcc 4.50

VERSUS VCC

TIME (NS)
10 20 30 40

-60 -40 -20 0 +20 +40 +60 +80 +100 +120 +140

TEMPERATURE (CASE) IN °C

57
Vendor: Mostek
P/N: MK4020P/-1/-3
REV_ A
Date Codes: 8027-3731
#DEVICES: 22

2Kx8 Static RAM

- Maximum Output Enable to Data Off Time for a Logic 0
- Timing (

Graphs:

- **Cumulative Distribution Chart:**
 - Time in Nanoseconds vs. % Devices
 - Average

- **Time to Zero Max:**
 - Versus V_{cc}
 - Time (ns) vs. V_{cc}

- **Versus Temperature:**
 - Time (ns) vs. Temperature (Case) in °C

Table:

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>#Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.50</td>
<td>22</td>
</tr>
<tr>
<td>4.75</td>
<td>22</td>
</tr>
<tr>
<td>5.00</td>
<td>22</td>
</tr>
<tr>
<td>5.25</td>
<td>22</td>
</tr>
<tr>
<td>5.50</td>
<td>22</td>
</tr>
</tbody>
</table>

Additional Information:

- P/N: MK4020P/-1/-3
- Vendor: Mostek
- Date Codes: 8027-3731
- #Devices: 22

Notes:

- By: RAVAT
- Date: 10/80
- Load: 6
- Address: 9
- Voltage: 7.0V
- Time: 23°C

60
Vendor: Mostek
P/N: MS88079/1-3
REV: A
Date Codes: 8022/33/31
#DEVICES: 22

2K8 STATIC RAM
MAXIMUM OUTPUT ENABLE TO DATA OFF
TIME FOR A LOGIC 1
TOE1 MAX

W.C. CUMULATIVE DISTRIBUTION (18 DEVICES)

TIME IN NANOSECONDS
AVERAGE TOE1 MAX.

VERSUS \(V_{CC} \)

TIME (NS)

VERSUS TEMPERATURE

TIME (NS)

VCC IN VOLTS 4.50 4.75 5.00 5.25 5.50

VIL 0.0V
VH 3.0V
VTH 3.0V

61
2KX STATIC RAM
MINIMUM ADDRESS DATA OFF TIME
FOR A LOGIC 0
TAZO MIN.
W.C. CUMULATIVE DISTRIBUTION (18 DEVICES)

% DEVICES

TIME IN NANoseconds
AVERAGE TAZO MIN.
VERSUS Vcc

TIME (NS)

Vcc IN VOLTS

VERSUS TEMPERATURE

TIME (NS)

TEMPERATURE (CASE) IN °C

62
Vendor: Mostek

2KX8 STATIC RAM

M/N: MK480211/-1/-3

REV: A

Date Codes: BU27/33/31

#DEVICES: 22

MINIMUM ADDRESS TO DATA-OFF TIME FOR A LOGIC 1

T_AZI MIN.

K.C. CUMULATIVE DISTRIBUTION (8 DEVICES)

%DEVICES:

<table>
<thead>
<tr>
<th>%</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
</tbody>
</table>

TIME IN NANOSECONDS

AVERAGE T_AZI MIN.

VERSUS V_CC

<table>
<thead>
<tr>
<th>V_CC (V)</th>
<th>4.50</th>
<th>4.75</th>
<th>5.00</th>
<th>5.25</th>
<th>5.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME (NS)</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>

VERSUS TEMPERATURE

<table>
<thead>
<tr>
<th>TEMPERATURE (CASE) IN °C</th>
<th>-60</th>
<th>-40</th>
<th>-20</th>
<th>0</th>
<th>+20</th>
<th>+40</th>
<th>+60</th>
<th>+80</th>
<th>+100</th>
<th>+120</th>
<th>+140</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME (NS)</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
</tr>
</tbody>
</table>

P/N: MK480211/-1/-3

MINIMU2M ADDRESS TO DATA-OFF TIME LOAD:

BY RM/AT Date 10/80

LOAD: Fig. 6

ADDR PAT: SEQ. READ

DATA PAT: ALL ONES

VIH: 3.0V

VIL: 0.0V

#DEVICES: 22

AZI MIN.

V_CC = 5.50V

T_CASE = 55°C

63
Vendor: Mostek

2KX8 STATIC RAM

ADDRESS SETUP TIME BEFORE CE

P/N: MK48DP/-1/-3

LOAD: Fig. 6

REV: A

Date Codes: 8622/3

#DEVICES: 25

TASC

CUMULATIVE DISTRIBUTION (8 DEVICES)

VCC

TIME IN NANOSECONDS

100
90
80
70
60
50
40
30
20
10
0

TIME (NS)

4.50
4.75
5.00
5.25
5.50

VCC IN VOLTS

VERSUS TEMPERATURE

TIME (NS)

-100
-80
-60
-40
-20
0
+20
+40
+60
+80
+100
+120
+140

TEMPERATURE (CASE) IN °C
2x28 STATIC RAM

ADDRESS HOLD TIME AFTER CE

VHHC

CUMULATIVE DISTRIBUTION (21 DEVICES)

% DEVICES

TIME IN NANOSECONDS

5 10 15 20 25 30 35 40 45

T AH C

VCC

0.5V

4.50V

AVERAGE TAH C

VERSUS VCC

TIME (NS)

5 10 15 20

4.50 4.75 5.00

5.25 5.50

VCC IN VOLTS

VERSUS TEMPERATURE

TIME (NS)

-60 -40 -20 0 +20 +40 +60 +80 +100 +120 +140

TEMPERATURE (CASE) IN °C

65
Vendor: Mostek

P/N: HK6802P/-1/-3

REV: A

Date Codes: 8022/33/31

DEVICES: 22

2KX8 STATIC RAM

DATA TO WRITE SETTLE TIME

LOAD: Ptg 6

ADDR PATH: REGAL

DATA PATH:

Vcc 3.0V

Vil .6V

Vih 5.0V

DATE CODES: 8022/33/31

IDEVICES: 22

TIME (NS)

TIME IN NANoseconds

CUMULATIVE DISTRIBUTION (2 DEVICES)

VCC

100

90

80

70

60

50

40

30

20

10

0

4.50 4.75 5.00 5.25 5.50

Vcc IN VOLTS

VERSUS Vcc

VERSUS TEMPERATURE

TIME (NS)

-60 -40 -20 0 20 40 60 80 100 120 140

TEMPERATURE (CASE) IN °C

66
Vendor: Mostek
P/N: MX4802V/-1/-3
REV: A
Date Codes: 8022/31/31

2KX8 STATIC RAM
DATA HOLD TIME AFTER WRITE

DEVICES: 22

TIME IN NANOSECONDS
AVERAGE T\(_{\text{DBW}}\)

V\(_{\text{CC}}\) IN VOLTS

VERSUS \(V_{\text{CC}}\)

VERSUS TEMPERATURE

TEMPERATURE (CASE) IN °C
Vendor: Mostek
P/N: MS4802P/-1/-3
REV: 1
Date Codes: 8022/33/31
#DEVICES: 22

2X8 STATIC RAM
MINIMUM WRITE ENABLE TO DATA OFF
TIME FOR A LOGIC 0
WEZO MIN.

VERSUS Vcc

VERSUS TEMPERATURE
Vendor: Nostek

P/N: N24802P-1/3

REV: A

Date Codes: 8022/33/31

#DEVICES: 22

AXIUS STATIC RAM

MINIMUM WRITE ENABLE TO DATA OFF
TIME FOR A LOGIC 1

$T_{WE21\min}$

VCC, CUMULATIVE DISTRIBUTION (8 DEVICES)

% DEVICES

TIME IN NANOSECONDS

AVERAGE $T_{WE21\min}$

VERSUS V_{cc}

TIME (NS)

V_{cc} IN VOLTS

VERSUS TEMPERATURE

TIME (NS)

TEMPERATURE (CASE) IN °C

70
2386 STATIC RAM

MAXIMUM WRITE ENABLE TO DATA OFF TIME FOR A LOGIC 0

TWEZ0 MAX.

V.C. CUMULATIVE DISTRIBUTION (IE DEVICES)

%DEVICES

100
90
80
70
60
50
40
30
20
10
0

TIME IN NANOSECONDS

AVERAGE TWEZ0 MAX.

VERSUS Vcc

TIME (NS)

4.50
4.75
5.00
5.25
5.50

Vcc IN VOLTS

VERSUS TEMPERATURE

TIME (NS)

-60
-40
-20
0
+20
+40
+60

TEMPERATURE (CASE) IN °C

71
Vendor: Mostek
P/N: 2KXS
REV: A
Date Codes: 8022/33/31
#DEVICES: 22

CUMULATIVE DISTRIBUTION (22 DEVICES)

- Time in nanoseconds range from 0 to 45 nanoseconds.
- % Devices range from 0% to 100%.

TIME IN VOLTS (Vcc)

- Voltage range from 4.50 to 5.50 volts.
- Time in nanoseconds range from 5 to 20 nanoseconds.

VERSUS TEMPERATURE

- Temperature range from -60°C to +140°C.
- Time in nanoseconds range from 5 to 20 nanoseconds.
Vendor: Mastek
P/N: MK2402P/-1/-3
REV: A
Date Codes: 0022/33/31
#DEVICES: 22

2KX8 STATIC RAM
CHIP ENABLE TO WRITE SETUP TIME

TCEW

VCC CUMULATIVE DISTRIBUTION (19 DEVICES)

TIME IN NANOSECONDS

AVERAGE TCEW
VERSUS Vcc

TIME (NS)

Vcc IN VOLTS

VERSUS TEMPERATURE

TIME (NS)

TEMPERATURE (CASE) IN °C

76
APPENDIX III

1KX8/2KX8 STATIC RAM

RECOMMENDED PARAMETER LIMITS
1KX8 RAM - Recommended parameter limits

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Device type</th>
<th>Limits</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output high voltage</td>
<td>V_{OH}</td>
<td>$I_{OH} = -1.0 \text{ mA}$, $V_{CC} = 4.5 \text{ V}$</td>
<td>All</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>Output low voltage</td>
<td>V_{OL}</td>
<td>$I_{OL} = 4.0 \text{ mA}$, $V_{CC} = 4.5 \text{ V}$</td>
<td>All</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Input leakage</td>
<td>$I_{I(L)(H)}$</td>
<td>$V_{IN} = 0 \text{ to } 5.5 \text{ V}$</td>
<td>All</td>
<td>-10</td>
<td>+10</td>
</tr>
<tr>
<td>Output leakage</td>
<td>$I_{O(L)(H)}$</td>
<td>Outputs deselected $V_{OUT} = 0.0 \text{ to } 5.5 \text{ V}$</td>
<td>All</td>
<td>-10</td>
<td>+10</td>
</tr>
<tr>
<td>Supply current from V_{CC}</td>
<td>I_{CC1}</td>
<td>addresses cycling $t_{RC} = \text{ min (read mode)}$</td>
<td>01</td>
<td>-</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>I_{CC2}</td>
<td>addresses cycling $t_{WC} = \text{ min (write mode)}$</td>
<td>01</td>
<td>-</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>I_{CC3}</td>
<td>address stable $WE = V_{IH}$, $OE = CE = V_{IH}$</td>
<td>01</td>
<td>-</td>
<td>110</td>
</tr>
<tr>
<td>Output short circuit current</td>
<td>I_{OS}</td>
<td>$V_{CC} = 5.5 \text{ V}$</td>
<td>All</td>
<td>-</td>
<td>160</td>
</tr>
<tr>
<td>Pin capacitance (all pins except DQ)</td>
<td>C_{t}</td>
<td>$V_{CC} = 5.0 \text{ V}$</td>
<td>All</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Pin capacitance (DQ pins)</td>
<td>C_{DQ}</td>
<td>$V_{CC} = 5.0 \text{ V}$</td>
<td>All</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

1/ Depends on cycle rate. Limits are for cycle rates listed in conditions column.

2/ Depends on output load. Limits are for one Schottky TTL and 30 pF.

3/ Limits for other device types to be determined.
1KX8 RAM - Recommended parameter limits (Continued)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Device type</th>
<th>Limits Min</th>
<th>Limits Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random read cycle time</td>
<td>t_{RC}</td>
<td>See fig. 6.7</td>
<td>01</td>
<td>90</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Random write cycle time</td>
<td>t_{WC}</td>
<td></td>
<td>01</td>
<td>90</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Address access time</td>
<td>t_{AA}</td>
<td>- 3/</td>
<td>01</td>
<td>-</td>
<td>90</td>
<td>NS</td>
</tr>
<tr>
<td>Chip enable access time</td>
<td>t_{CEA}</td>
<td>- 3/</td>
<td>01</td>
<td>-</td>
<td>- 45</td>
<td>NS</td>
</tr>
<tr>
<td>Chip enable data off time</td>
<td>t_{CEZ}</td>
<td>- 3/</td>
<td>01</td>
<td>5</td>
<td>30</td>
<td>NS</td>
</tr>
<tr>
<td>Output enable access time</td>
<td>t_{DEA}</td>
<td>- 3/</td>
<td>01</td>
<td>-</td>
<td>- 45</td>
<td>NS</td>
</tr>
<tr>
<td>Output enable data off time</td>
<td>t_{DEZ}</td>
<td>- 4/</td>
<td>01</td>
<td>5</td>
<td>30</td>
<td>NS</td>
</tr>
<tr>
<td>Address data off time</td>
<td>t_{AZ}</td>
<td>- 4/</td>
<td>01</td>
<td>5</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Address setup time before CE</td>
<td>t_{ASC}</td>
<td></td>
<td>01</td>
<td>0</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Address hold time after CE</td>
<td>t_{AS}</td>
<td></td>
<td>01</td>
<td>30</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Data to write setup time</td>
<td>t_{DSW}</td>
<td></td>
<td>01</td>
<td>5</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Data hold time after write</td>
<td>t_{DH}</td>
<td></td>
<td>01</td>
<td>10</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Write pulse duration</td>
<td>t_{WD}</td>
<td></td>
<td>01</td>
<td>40</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Write enable data off time</td>
<td>t_{WEZ}</td>
<td>- 3/</td>
<td>01</td>
<td>5</td>
<td>25</td>
<td>NS</td>
</tr>
<tr>
<td>Write pulse lead time</td>
<td>t_{NPL}</td>
<td></td>
<td>01</td>
<td>60</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Address hold time after WE</td>
<td>t_{AH}</td>
<td></td>
<td>01</td>
<td>30</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Address setup time before WE</td>
<td>t_{AS}</td>
<td></td>
<td>01</td>
<td>0</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Chip enable to write setup time</td>
<td>t_{CEW}</td>
<td></td>
<td>01</td>
<td>40</td>
<td>-</td>
<td>NS</td>
</tr>
</tbody>
</table>

3/ Load = One Schottky TTL + 30 pF or equivalent

4/ Disable times are measured from V_{OH} to $V_{OH} - 75$ mV, or from V_{OL} to $V_{OL} + 75$ mV
1KX8 RAM - Recommended parameter limits (Continued)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Device type</th>
<th>Limits</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random read cycle time</td>
<td>tRC</td>
<td>See fig. 6,7</td>
<td>O2</td>
<td>70</td>
<td>NS</td>
</tr>
<tr>
<td>Random write cycle time</td>
<td>twc</td>
<td></td>
<td>O2</td>
<td>70</td>
<td>NS</td>
</tr>
<tr>
<td>Address access time</td>
<td>tAA</td>
<td></td>
<td>O2</td>
<td>-</td>
<td>70 NS</td>
</tr>
<tr>
<td>Chip enable access time</td>
<td>tCEA</td>
<td></td>
<td>O2</td>
<td>-</td>
<td>35 NS</td>
</tr>
<tr>
<td>Chip enable data off time</td>
<td>tCEZ</td>
<td></td>
<td>O2</td>
<td>5</td>
<td>20 NS</td>
</tr>
<tr>
<td>Output enable access time</td>
<td>tDEA</td>
<td></td>
<td>O2</td>
<td>-</td>
<td>35 NS</td>
</tr>
<tr>
<td>Output enable data off time</td>
<td>tDEZ</td>
<td></td>
<td>O2</td>
<td>5</td>
<td>20 NS</td>
</tr>
<tr>
<td>Address data off time</td>
<td>tAZ</td>
<td></td>
<td>O2</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Address setup time before CE</td>
<td>tASC</td>
<td></td>
<td>O2</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Address hold time after CE</td>
<td>tAHC</td>
<td></td>
<td>O2</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Data to write setup time</td>
<td>tDSW</td>
<td></td>
<td>O2</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Data hold time after write</td>
<td>tDSW</td>
<td></td>
<td>O2</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Write pulse duration</td>
<td>tWD</td>
<td></td>
<td>O2</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>Write enable data off time</td>
<td>tIEZ</td>
<td></td>
<td>O2</td>
<td>5</td>
<td>15 NS</td>
</tr>
<tr>
<td>Write pulse lead time</td>
<td>tIPL</td>
<td></td>
<td>O2</td>
<td>45</td>
<td>-</td>
</tr>
<tr>
<td>Address hold time after WE</td>
<td>tAHN</td>
<td></td>
<td>O2</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Address setup time before WE</td>
<td>tASW</td>
<td></td>
<td>O2</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Chip enable to write setup time</td>
<td>tCEW</td>
<td></td>
<td>O2</td>
<td>25</td>
<td>-</td>
</tr>
</tbody>
</table>

3/ Load = One Schottky TTL + 30 pF or equivalent
4/ Disable times are measured from V_{OH} to $V_{OH} - 75$ mV, or from V_{OL} to $V_{OL} + 75$ mV
1KX8 RAM - Recommended parameter limits (Continued)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Device type</th>
<th>Limits</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random read cycle time t<sub>RC</sub></td>
<td></td>
<td>See fig. 6,7</td>
<td>03</td>
<td>55</td>
<td>NS</td>
</tr>
<tr>
<td>Random write cycle time t<sub>WC</sub></td>
<td></td>
<td></td>
<td>03</td>
<td>55</td>
<td>NS</td>
</tr>
<tr>
<td>Address access time t<sub>AA</sub> 3/</td>
<td></td>
<td></td>
<td>03</td>
<td>-</td>
<td>55 NS</td>
</tr>
<tr>
<td>Chip enable access time t<sub>CEA</sub>3/</td>
<td></td>
<td></td>
<td>03</td>
<td>-</td>
<td>25 NS</td>
</tr>
<tr>
<td>Chip enable data off time t<sub>CEZ</sub></td>
<td></td>
<td></td>
<td>03</td>
<td>5</td>
<td>15 NS</td>
</tr>
<tr>
<td>Output enable access time t<sub>DEA</sub>3/</td>
<td></td>
<td></td>
<td>03</td>
<td>-</td>
<td>25 NS</td>
</tr>
<tr>
<td>Output enable data off time t<sub>DEZ</sub>4/</td>
<td></td>
<td></td>
<td>03</td>
<td>5</td>
<td>15 NS</td>
</tr>
<tr>
<td>Address data off time t<sub>AZ</sub>4/</td>
<td></td>
<td></td>
<td>03</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Address setup time before CE t<sub>ASC</sub></td>
<td></td>
<td></td>
<td>03</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Address hold time after CE t<sub>AHC</sub></td>
<td></td>
<td></td>
<td>03</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>Data to write setup time t<sub>DSW</sub></td>
<td></td>
<td></td>
<td>03</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Data hold time after write t<sub>DHW</sub></td>
<td></td>
<td></td>
<td>03</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Write pulse duration t<sub>WD</sub></td>
<td></td>
<td></td>
<td>03</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Write enable data off time t<sub>WEZ</sub>3/</td>
<td></td>
<td></td>
<td>03</td>
<td>5</td>
<td>10 NS</td>
</tr>
<tr>
<td>Write pulse lead time t<sub>WPL</sub></td>
<td></td>
<td></td>
<td>03</td>
<td>35</td>
<td>-</td>
</tr>
<tr>
<td>Address hold time after WE t<sub>AHW</sub></td>
<td></td>
<td></td>
<td>03</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>Address setup time before WE t<sub>ASW</sub></td>
<td></td>
<td></td>
<td>03</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Chip enable to write setup time t<sub>CEN</sub></td>
<td></td>
<td></td>
<td>03</td>
<td>20</td>
<td>-</td>
</tr>
</tbody>
</table>

3/ Load = One Schottky TTL + 30 pF or equivalent

4/ Disable times are measured from V_{OH} to V_{OH}-75mV, or from V_{OL} to V_{OL}+75mV
2KX8 RAM - Recommended parameter limits

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Device type</th>
<th>Limits</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output high voltage</td>
<td>V_{OH}</td>
<td>$I_{OH} = -1.0 \ mA$ $V_{CC} = 4.5 \ V$</td>
<td>A11</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>Output low voltage</td>
<td>V_{OL}</td>
<td>$I_{OL} = 4.0 \ mA$ $V_{CC} = 4.5 \ V$</td>
<td>A11</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Input leakage All inputs</td>
<td>$I_{I(L)(H)}$</td>
<td>$V_{IN} = 0 \ to \ 7.0 \ V$</td>
<td>A11</td>
<td>-10</td>
<td>+10</td>
</tr>
<tr>
<td>Output leakage</td>
<td>$I_{O(L)(H)}$</td>
<td>Outputs deselected $V_{OUT} = 0.0 \ to \ 7.0 \ V$</td>
<td>A11</td>
<td>-10</td>
<td>+10</td>
</tr>
<tr>
<td>Supply current from V_{CC}</td>
<td>I_{CC}</td>
<td>addresses cycling $t_{RC} = \ min \ (read \ mode)$</td>
<td>01</td>
<td>-</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_{WC} = \ min \ (write \ mode)$</td>
<td>01</td>
<td>-</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>address stable $WE = V_{IH}$ $OE \ & \ CE$</td>
<td>01</td>
<td>-</td>
<td>110</td>
</tr>
<tr>
<td>Output short circuit current</td>
<td>I_{OS}</td>
<td>$V_{CC} = 5.5V$</td>
<td>A11</td>
<td>-</td>
<td>160</td>
</tr>
<tr>
<td>Pin capacitance (all pins except DQ)</td>
<td>C_{I}</td>
<td>$V_{CC} = 5.5V$</td>
<td>A11</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Pin capacitance (DQ pins)</td>
<td>C_{DQ}</td>
<td>$V_{CC} = 5.0V$ Outputs deselected</td>
<td>A11</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

1/ Depends on cycle rate. Limits are for cycle rates listed in conditions column.
2/ Depends on output load. Limits are for one Schottky TTL and 30 pf.
3/ Limits for other device types to be determined.
ELECTRICAL CHARACTERIZATION OF COMPLEX MEMORIES - BYTE WIDE STA-ETC(U)

JAN 81 H TABER, R A MOYERS

F30602-79-C-0162

UNCLASSIFIED

END DATE ANNOTED
4-81 OTIC
<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Device type</th>
<th>Limits</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random read cycle time</td>
<td>t_{RC}</td>
<td>See fig. 6,7</td>
<td>01</td>
<td>200</td>
<td>- NS</td>
</tr>
<tr>
<td>Random write cycle time</td>
<td>t_{WC}</td>
<td></td>
<td>01</td>
<td>200</td>
<td>- NS</td>
</tr>
<tr>
<td>Address access time</td>
<td>t_{AA}</td>
<td></td>
<td>01</td>
<td>-</td>
<td>200 NS</td>
</tr>
<tr>
<td>Chip enable access time</td>
<td>t_{CEA}</td>
<td></td>
<td>01</td>
<td>-</td>
<td>100 NS</td>
</tr>
<tr>
<td>Chip enable data off time</td>
<td>t_{CEZ}</td>
<td></td>
<td>01</td>
<td>5</td>
<td>35 NS</td>
</tr>
<tr>
<td>Output enable access time</td>
<td>t_{OEA}</td>
<td></td>
<td>01</td>
<td>-</td>
<td>100 NS</td>
</tr>
<tr>
<td>Output enable data off time</td>
<td>t_{OEZ}</td>
<td></td>
<td>01</td>
<td>5</td>
<td>35 NS</td>
</tr>
<tr>
<td>Address data off time</td>
<td>t_{A}</td>
<td></td>
<td>01</td>
<td>5</td>
<td>- NS</td>
</tr>
<tr>
<td>Address setup time before CE</td>
<td>t_{ASC}</td>
<td></td>
<td>01</td>
<td>0</td>
<td>- NS</td>
</tr>
<tr>
<td>Address hold time after CE</td>
<td>t_{AHC}</td>
<td></td>
<td>01</td>
<td>65</td>
<td>- NS</td>
</tr>
<tr>
<td>Data to write setup time</td>
<td>t_{DSW}</td>
<td></td>
<td>01</td>
<td>20</td>
<td>- NS</td>
</tr>
<tr>
<td>Data hold time after write</td>
<td>t_{DWM}</td>
<td></td>
<td>01</td>
<td>10</td>
<td>- NS</td>
</tr>
<tr>
<td>Write pulse duration</td>
<td>t_{WD}</td>
<td></td>
<td>01</td>
<td>60</td>
<td>- NS</td>
</tr>
<tr>
<td>Write enable data off time</td>
<td>t_{WEZ}</td>
<td></td>
<td>01</td>
<td>5</td>
<td>35 NS</td>
</tr>
<tr>
<td>Write pulse lead time</td>
<td>t_{WPL}</td>
<td></td>
<td>01</td>
<td>130</td>
<td>- NS</td>
</tr>
<tr>
<td>Address hold time after WE</td>
<td>t_{AHW}</td>
<td></td>
<td>01</td>
<td>65</td>
<td>- NS</td>
</tr>
<tr>
<td>Address setup time before WE</td>
<td>t_{ASW}</td>
<td></td>
<td>01</td>
<td>0</td>
<td>- NS</td>
</tr>
<tr>
<td>Chip enable to write setup time</td>
<td>t_{CEW}</td>
<td></td>
<td>01</td>
<td>60</td>
<td>- NS</td>
</tr>
</tbody>
</table>

3/ Load = One Schottky TTL + 30 pF or equivalent

4/ Disable times are measured from V_{OH} to $V_{OH}+75$mV, or from V_{OL} to $V_{OL}+75$mV
2KX8 RAM - Recommended parameter limits (Continued)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Device type</th>
<th>Limits</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random read cycle time</td>
<td>(t_{RC})</td>
<td>See fig. 6,7</td>
<td>02</td>
<td>120 -</td>
<td>NS</td>
</tr>
<tr>
<td>Random write cycle time</td>
<td>(t_{WC})</td>
<td></td>
<td>02</td>
<td>120 -</td>
<td>NS</td>
</tr>
<tr>
<td>Address access time</td>
<td>(t_{AA}^{3/})</td>
<td></td>
<td>02</td>
<td>- 120</td>
<td>NS</td>
</tr>
<tr>
<td>Chip enable access time</td>
<td>(t_{CEA}^{3/})</td>
<td></td>
<td>02</td>
<td>- 60</td>
<td>NS</td>
</tr>
<tr>
<td>Chip enable data off time</td>
<td>(t_{CEZ}^{4/})</td>
<td></td>
<td>02</td>
<td>5 30</td>
<td>NS</td>
</tr>
<tr>
<td>Output enable access time</td>
<td>(t_{OEA}^{3/})</td>
<td></td>
<td>02</td>
<td>- 60</td>
<td>NS</td>
</tr>
<tr>
<td>Output enable data off time</td>
<td>(t_{OEZ}^{5/})</td>
<td></td>
<td>02</td>
<td>5 30</td>
<td>NS</td>
</tr>
<tr>
<td>Address data off time</td>
<td>(t_{AZ}^{4/})</td>
<td></td>
<td>02</td>
<td>5 -</td>
<td>NS</td>
</tr>
<tr>
<td>Address setup time before CE</td>
<td>(t_{ASC})</td>
<td></td>
<td>02</td>
<td>0 -</td>
<td>NS</td>
</tr>
<tr>
<td>Address hold time after CE</td>
<td>(t_{AHC})</td>
<td></td>
<td>02</td>
<td>40 -</td>
<td>NS</td>
</tr>
<tr>
<td>Data to write setup time</td>
<td>(t_{DSW})</td>
<td></td>
<td>02</td>
<td>10 -</td>
<td>NS</td>
</tr>
<tr>
<td>Data hold time after write</td>
<td>(t_{DHIW})</td>
<td></td>
<td>02</td>
<td>10 -</td>
<td>NS</td>
</tr>
<tr>
<td>Write pulse duration</td>
<td>(t_{WD})</td>
<td></td>
<td>02</td>
<td>45 -</td>
<td>NS</td>
</tr>
<tr>
<td>Write enable data off time</td>
<td>(t_{WEZ}^{5/})</td>
<td></td>
<td>02</td>
<td>5 30</td>
<td>NS</td>
</tr>
<tr>
<td>Write pulse lead time</td>
<td>(t_{WPL})</td>
<td></td>
<td>02</td>
<td>65 -</td>
<td>NS</td>
</tr>
<tr>
<td>Address hold time after WE</td>
<td>(t_{AHW})</td>
<td></td>
<td>02</td>
<td>40 -</td>
<td>NS</td>
</tr>
<tr>
<td>Address setup time before WE</td>
<td>(t_{ASW})</td>
<td></td>
<td>02</td>
<td>0 -</td>
<td>NS</td>
</tr>
<tr>
<td>Chip enable to write setup time</td>
<td>(t_{CEW})</td>
<td></td>
<td>02</td>
<td>45 -</td>
<td>NS</td>
</tr>
</tbody>
</table>

3/ Load = One Schottky TTL + 30 pF or equivalent

4/ Disable times are measured from \(V_{OH} \) to \(V_{OH+75mV} \), or from \(V_{OL} \) to \(V_{OL+75mV} \)
Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Device type</th>
<th>Limits</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random read cycle time</td>
<td>t_{RC}</td>
<td>See fig. 6,7</td>
<td>03</td>
<td>90</td>
<td>NS</td>
</tr>
<tr>
<td>Random write cycle time</td>
<td>t_{WC}</td>
<td></td>
<td>03</td>
<td>90</td>
<td>NS</td>
</tr>
<tr>
<td>Address access time</td>
<td>t_{AA}</td>
<td></td>
<td>03</td>
<td>-</td>
<td>90</td>
</tr>
<tr>
<td>Chip enable access time</td>
<td>t_{CEA}</td>
<td></td>
<td>03</td>
<td>-</td>
<td>45</td>
</tr>
<tr>
<td>Chip enable data off time</td>
<td>t_{CEZ}</td>
<td></td>
<td>03</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Output enable access time</td>
<td>t_{DEA}</td>
<td></td>
<td>03</td>
<td>-</td>
<td>45</td>
</tr>
<tr>
<td>Output enable data off time</td>
<td>t_{DEZ}</td>
<td></td>
<td>03</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Address data off time</td>
<td>t_{AZ}</td>
<td></td>
<td>03</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Address setup time before CE</td>
<td>t_{ASC}</td>
<td></td>
<td>03</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Address hold time after CE</td>
<td>t_{AHC}</td>
<td></td>
<td>03</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Data to write setup time</td>
<td>t_{DSW}</td>
<td></td>
<td>03</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Data hold time after write</td>
<td>t_{DHW}</td>
<td></td>
<td>03</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Write pulse duration</td>
<td>t_{WD}</td>
<td></td>
<td>03</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Write enable data off time</td>
<td>t_{WEZ}</td>
<td></td>
<td>03</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Write pulse lead time</td>
<td>t_{WPL}</td>
<td></td>
<td>03</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>Address hold time after WE</td>
<td>t_{AHW}</td>
<td></td>
<td>03</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Address setup time before WE</td>
<td>t_{ASW}</td>
<td></td>
<td>03</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Chip enable to write setup time</td>
<td>t_{CEW}</td>
<td></td>
<td>03</td>
<td>30</td>
<td>-</td>
</tr>
</tbody>
</table>

3/ Load = One Schottky TTL + 30 pF or equivalent

4/ Disable times are measured from V_{OH} to $V_{OH}-75$mV, or from V_{OL} to $V_{OL}+75$mV
2Kx8 RAM - Recommended parameter limits (Continued)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Device type</th>
<th>Limits</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random read cycle time</td>
<td>t_{RC}</td>
<td>See fig. 6, 7</td>
<td>04</td>
<td>70</td>
<td>NS</td>
</tr>
<tr>
<td>Random write cycle time</td>
<td>t_{WC}</td>
<td>04</td>
<td>70</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Address access time</td>
<td>t_{AA}</td>
<td>04</td>
<td>-</td>
<td>70</td>
<td>NS</td>
</tr>
<tr>
<td>Chip enable access time</td>
<td>t_{CEA}</td>
<td>04</td>
<td>-</td>
<td>35</td>
<td>NS</td>
</tr>
<tr>
<td>Chip enable data off time</td>
<td>t_{CEZ}</td>
<td>04</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output enable access time</td>
<td>t_{DEA}</td>
<td>04</td>
<td>-</td>
<td>35</td>
<td>NS</td>
</tr>
<tr>
<td>Output enable data off time</td>
<td>t_{DEZ}</td>
<td>04</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address data off time</td>
<td>t_{AZ}</td>
<td>04</td>
<td>5</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Address setup time before CE</td>
<td>t_{ASC}</td>
<td>04</td>
<td>0</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Address hold time after CE</td>
<td>t_{AH}</td>
<td>04</td>
<td>25</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Data to write setup time</td>
<td>t_{DSW}</td>
<td>04</td>
<td>10</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Data hold time after write</td>
<td>t_{DH}</td>
<td>04</td>
<td>10</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Write pulse duration</td>
<td>t_{WD}</td>
<td>04</td>
<td>25</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Write enable data off time</td>
<td>t_{WE}</td>
<td>04</td>
<td>5</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Write pulse lead time</td>
<td>t_{WPL}</td>
<td>04</td>
<td>45</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Address hold time after WE</td>
<td>t_{AHW}</td>
<td>04</td>
<td>25</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Address setup time before WE</td>
<td>t_{ASW}</td>
<td>04</td>
<td>0</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Chip enable to write setup time</td>
<td>t_{CEW}</td>
<td>04</td>
<td>25</td>
<td></td>
<td>NS</td>
</tr>
</tbody>
</table>

3/ Load = One Schottky TTL + 30 pF or equivalent

4/ Disable times are measured from V_{OH} to $V_{OH}-75$ mV, or from V_{OL} to $V_{OL}+75$ mV
2KX8 RAM - Recommended parameter limits (Continued)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Device type</th>
<th>Limits</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random read cycle time</td>
<td>t_{RC}</td>
<td>See fig. 2,3</td>
<td>05</td>
<td>55</td>
<td>NS</td>
</tr>
<tr>
<td>Random write cycle time</td>
<td>t_{WC}</td>
<td>05</td>
<td>55</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Address access time</td>
<td>t_{AA}3/</td>
<td>05</td>
<td>-</td>
<td>55</td>
<td>NS</td>
</tr>
<tr>
<td>Chip enable access time</td>
<td>t_{CEA}3/</td>
<td>05</td>
<td>0</td>
<td>30</td>
<td>NS</td>
</tr>
<tr>
<td>Chip enable data off time</td>
<td>t_{CEZ}4/</td>
<td>05</td>
<td>5</td>
<td>15</td>
<td>NS</td>
</tr>
<tr>
<td>Output enable access time</td>
<td>t_{DEA}3/</td>
<td>05</td>
<td>0</td>
<td>30</td>
<td>NS</td>
</tr>
<tr>
<td>Output enable data off time</td>
<td>t_{DEZ}4/</td>
<td>05</td>
<td>0</td>
<td>15</td>
<td>NS</td>
</tr>
<tr>
<td>Address data off time</td>
<td>t_{AZ}4/</td>
<td>05</td>
<td>5</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Address setup time before CE</td>
<td>t_{ASC}</td>
<td>05</td>
<td>0</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Address hold time after CE</td>
<td>t_{AHC}</td>
<td>05</td>
<td>20</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Data to write setup time</td>
<td>t_{DSW}</td>
<td>05</td>
<td>5</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Data hold time after write</td>
<td>t_{DHW}</td>
<td>05</td>
<td>5</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Write pulse duration</td>
<td>t_{WD}</td>
<td>05</td>
<td>20</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Write enable data off time</td>
<td>t_{WEZ}4/</td>
<td>05</td>
<td>5</td>
<td>15</td>
<td>NS</td>
</tr>
<tr>
<td>Write pulse lead time</td>
<td>t_{WPL}</td>
<td>05</td>
<td>35</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Address hold time after WE</td>
<td>t_{AHW}</td>
<td>05</td>
<td>20</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Address setup time before WE</td>
<td>t_{ASW}</td>
<td>05</td>
<td>0</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Chip enable to write setup time</td>
<td>t_{CEW}</td>
<td>05</td>
<td>20</td>
<td>-</td>
<td>NS</td>
</tr>
</tbody>
</table>

3/ Load = One Schottky TTL + 30 pF or equivalent

4/ Disable times are measured from V_{OH} to V_{OH} - 75mV, or from V_{OL} to V_{OL} + 75mV
APPENDIX IV

1KX8/2KX8 STATIC RAM

TEST ALGORITHMS
RCGAL is an address pattern sensitivity test resembling the industry standard, GALPAT. Test time is shorter, though, because RCGAL only reads background bits in the same row and column as the test bit, rather than going through the entire array. RCGAL is performed in the following manner:

Step 1 - Write background data
Step 2 - Write complement data at location 0 (test bit)
Step 3 - Perform a series of reads, alternating between the test bit and each bit in the test bit row (X axis)
Step 4 - Perform a series of reads, alternating between the test bit and each bit in the test bit column (Y axis)
Step 5 - Restore the test bit and repeat with a new test bit until each bit in the array has been tested
Step 6 - Repeat steps 1 through 5 with complement data

Test time = \(2N(2R + 2C-1)\) cycles

Where:
- \(R\) = \# of rows
- \(C\) = \# of columns
- \(N\) = \# of bits (RC)
PATTERN 2

SLIDING DIAGONAL PATTERN (SLDIAG)

SLDIAG is a diagonal addressing pattern sensitivity test using a sequential reading scheme starting at address cell location zero. A test diagonal of complement data is first written into the array against background data and then diagonally read beginning after the test diagonal and wrapping around until the test diagonal is verified. The test diagonal is then restored and the next adjacent diagonal becomes the test diagonal. This procedure is repeated until all diagonals have been exercised as the test diagonal and again for complement data.

Step 1 - Write background data
Step 2 - Read background data
Step 3 - Write a test diagonal of complement data from address cell location XYMIN to XYMAX
Step 4 - Diagonally read the array from the test diagonal +1 looping around the array until the test diagonal has been verified
Step 5 - Restore the test diagonal to background data and write the next test diagonal beginning at address cell location +1.
Step 6 - Repeat steps 4 through 5 until all diagonals have been exercised as the test diagonal.
Step 7 - Repeat steps 1 through 6 with complement data

Test Time = 2NC + 8N + 2R cycles
PATTERN 3

ADDRESS COMPLEMENT (ADCOMP)

ADCOMP is used to test address decoders by reading an address location after writing the complement address location. ADCOMP produces maximum address line noise while testing decoder dynamic response time. The pattern is performed in the following manner:

Step 1 - Write background data
Step 2 - Read minimum address location for background data
Step 3 - Write minimum address location with background data
Step 4 - Read maximum address location for background data
Step 5 - Write maximum address location with background data
Step 6 - Continue steps 2 through 5 incrementing and decrementing from minimum and maximum locations until all locations have been read and written with background data
Step 7 - Repeat steps 2 through 6

Test time = 6N cycles

PATTERN 4

MARCHING PATTERN (MARCH 1)

March 1 is used to test for address uniqueness and multiple selection. March 1 first writes the array with background data, then reads address location zero for data and writes complement data at this same address location. The pattern then reads the previously written cell location for complement data, increments the address location and repeats this procedure until the maximum address location is reached. The entire test is then performed again using complement data as the background data. March 1 is performed in the following manner:
PATTERN 4 (CONT)

MARCHING PATTERN (MARCH 1)

Step 1 - Write background data
Step 2 - Read address location zero for data
Step 3 - Write address location zero with complement data
Step 4 - Read address location zero for complement data
Step 5 - Repeat steps 2 through 4 for each address location (sequentially)
Step 6 - Repeat steps 1 through 5 with complement background data

Test time = 14N cycles

PATTERN 5

DUAL WALKING COLUMNS (DUALWC)

DUALWC is used to test for multiple selection and address uniqueness. This pattern reads the array as two columns of complement data are walked through background data. DUALWC is performed in the following manner:

Step 1 - Write background data
Step 2 - Write complement data along the test columns Y_{min} and $1/2Y_{\text{max}}$
Step 3 - Sequentially read the array for valid data
Step 4 - Restore the test columns to background data
Step 5 - Continue steps 2 through 4, incrementing the test columns until all columns have been exercised as the test column.

Test time = $N(3 + \frac{C}{2})$ cycles
MISSION
of
Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence (C³I) activities. Technical and engineering support within areas of technical competence is provided to ESD Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.