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1.0 SUMMARY

During the past year, Tracor, under contract for the Office of
Naval Research (ONR), has been conducting optical measurements on fiber
optical materials. These measurements were performed with‘n the context of
the Fiber Optic Sensor System (FOSS) program, relating to the development
of the optical hydrophone and other optical sensors. The basic aim of the
optical measurements was to characterize the elasto-optic properties of
doped-silica glass samples as a function of dopant and dopant concentration.
The relevant elasto-optic constants were the rate of chﬁnge of the index of
refraction with respect to temperature and pressure, the coefficient of
thermal expansion, and the compressibility. The measurements were conducted
on doped-silica samples furnished to Tracor by Corning Glass Works. To
check the validity of the experimental results, two additional pure silica
samples were included in the investigation.

Laser interferometry was employed for the optical measurements.
For each glass sample, the experimental technique consisted of measuring
two separate fringe rates from two sets of Fizeau fringes as either the
temperature or the pressure on the sample was varied. The two sets of
Fizeau fringes resulted from two interferometer arrangements. Water was
used both as the thermal bath in the temperature measurements, and as the
compressive fluid in the pressure measurements.

Inconsistencies, present in the literature concerning the optical
parameters of water (the rate of change of the index of refraction with
respect to temperature and pressure), produced large errors in the experi-
mental results. These experimental errors were greatly reduced when the

dn d
r and E% of the glass samples were computed using independently measured

index of refraction, expansion coefficient, «, and compressibility, k, and
not using the optical parameters of water. Most of the remaining experi-

mental uncertainty in the values of g% and %% was traced to large inhomo-

geneities present in the doped-silica samples, while the results on the two
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pure silica samples fell within a few percent of the accepted literature
values. Thus, the presence of large inhomogeneities in the doped-silica
samples limit the usefulness of the experimental results,

Recommendations have been recently submitted through a Tracor
proposal to the Office of Naval Research (ONR) and to the Naval Research
Laboratory (NRL) for review and comments. In the proposal, it was
recommended that the optical measurements be conducted on better quality
glass samples, using experimental techniques that do not involve water.
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2.0 INTRODUCTION

At the Naval Research Laboratory (NRL) major efforts are underway
to develop the optical hydrophone and other optical sensors. These efforts
are being supported oy the Navy through the Fiber Optic Sensor System (FOSS)
prograa. Of prime importance to these optical sensor developments is the
characterization of the optical parameters in fiber optical materials. The
relevant optical parameters for the above materials are the rate of change
of index of refraction with respect to temperature and pressure, the elasto-
optic constants, and the Pockels coefficients.

During the past year, Tracor, under ONR Contract No. NOOO14-78-
C-0886, has been conducting optical measurements on doped-silica glass
samples. The objectives of the optical measurements were to determine for
each glass sample, the following quantities:

o The rate of change of the index of refractions with respect

. dn dn
to temperature and pressure: aT and "

e The coefficient of thermal expansion and compressibility:
a and k.

" The above quantities were measured on a group of 7 doped-silica
samples provided to Tracor by Corning Glass Works, Corning, New York. The
dopants were Geoz, 3203 and P205 with varying concentrations. Two addi-
tional fused-silica samples were included in the optical measurements to
check the validity of the experimental results and establish base-~line
values for the above quantities. The experimental technique used for the
optical measurements was laser interferometry. The technique will be
described in the next section of this report. Following the description of
the experimental technique, the results of the investigation will be pre-
sented and discussed. Finally, conclusions will be drawn and appropriate
recommendations will be made.

2=1
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3.0 FIZEAU INTERFEROMETRY

I

Two interferometer arrangements were employed to conduct the
optical measurements on the doped-silica glass samples., For each glass
sample, the interferometer arrangements allowed the deturmination of the
rate of change of the index of refraction with respect to temperature,

%%, and the coefficient of thermal expansion, o, for the temperature

measurements; and the rate of change of the index of refraction with respect

to pressure, %%, and the compressibility, k, for the pressure measurements.

The interferometer arrangements produced two sets of Fizeau fringes by the
interference of the beams reflected from the front and rear faces of the

glass sample. As the temperature or the pressure was changed, the Fizeau
r | fringes moved across the aperture as a result of the changing opticali path

length in the sample. From the measurement of two sets of fringe rates, %%

a, %% and k were determined. In Sections 3.1 and 3.2 the pertinent theory

concerning the interferometric technique and the corresponding experimental
apparatus will be discussed in detail.

3.1 Theory
Figure 3-1 is a schematic diagram of the experimental arrangement

g mmf Gy ey

T used to obtain the first set of Fizeau fringes. The order number of
- interference fringes, N1, produced by the interference of rays 1 and 2
P - when the monochromatic laser beam impinges ﬁpon the glass sample close to

b

! normal incident is given by:

G

R 2nt

, ~ N1 == (3=1)
- where n is the index of refraction of the sample, t is the thickness and A

is the laser wavelength. Equation (1) relates the difference in the optical

path length 2nt, between the reflected ray from the front surface and the
reflected ray from the rear surface of the glass sample. Differentiating

I
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BEq. (1) with respect to temperature, one gets the fringe rate for the first
set of Fizeau fringes:

el (B 8) 2 (0iE8): 2fer 8) oo

Equation (2) shows that the fringe rate with respect to temperature is due
to changes both in length and in the refractive index of the sample. Since
the changes in the index of refraction and in the length are coupled
together in BEq. (2), the second interferometer arrangement shown schemati-
cally in Fig. 3-2, allows the independent determination of a the glaass
sample. Referring to Fig. 3-2, the fringe order number, “2' for the
second set of Fizeau fringes close to normal incident is given by:

N, = 2e" (3-3)

2° A?

where ng is the index of refraction of the envirommental medium., The
environmental medium was water both as the thermal bath for the temperature
measurements, and as the compressive fluid for the pressure measurements.
Differentiating Bq. (3) with respect to temperature one obtains:

N dn
?Fr“x("ed'r"td'r) (3-8)

dn
where ET.; is the rate of change of the index of refraction of the water
with respect to temperature. The values of a and %‘ of the glass sample

are determined from the simultaneous solution Egs. (2) and (4) and from

the measurements of fringe rates in the two interferometer arrangements.
That is:

an_n & (d"1 n “2)
Feooa R \e aa (3-5)
and
dN dn
1dt 1 2 e
“=zﬁ=;.;'e(za-r--*w) (3-6)
dN an

Therefore, the fringe rates E'I'l and Tﬁ'z are determined experimentally from

the two interferometer arrangements; )\, n and t are known quantities, while

3-3
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FIG. 3-2, Interferometer Arrangement for Second Set of Fizeau Fringes.
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dn

Ny and ETE are avallable in the literature, Similarly, the value of

%% and k of the glass sample can be determined by measuring the fringe rates

with respect to pressure. That is,

dan _n P f'_“_1_n_d"_2.)a,,d (3-7)
dp " n_ dp 2t \dp ~n_dp
e e
‘- 3 sz N dne (3-8)
net 2 dp dp
dne
As in the temperature case, the value of 33_ for water should be easily

found in the literature.

3.2 Experiment

The experimental apparatus used to produce the first set of Fizeau
fringes both for the temperature and pressure measurements is presented in
Fig. 3-3. The light source was a Spectra Physics Model 164 argon la;er with
514,5 and 488 nm lines. A converging lens, whose focal point, was close to
the rear face, directed the laser beam to the glass sample. The Fizeau
fringe pattern was produced by the rear and front face reflections of the
sample. The fringe motion, due to either temperature and pressure changes,
was detected by a DC biased photo-darlington detector and graphically stored
with a strip chart recorder; Linear Instruments, Model 255,

Figure 3-4 shows the experimental setup used to obtain the second
set of Fizeau fringes. The interferometer arrangement is basically the same
as that shown in Fig. 3-3, except that the fringe pattern in this case was
produced by the interference of the beam reflected from the front face and
the beam reflected from a small mirror attached to the rear face of the
sample. Since the Fizeau fringes in this second arrangement were produced
by the interference of light rays that were external to the glass sample,
the fringe motion across the photo-detector as either the temperature or the
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FIG. 3~3. Schematic of Experimental Apparatus
for First Set of Fizeau Fringes.
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pressure was varied, resulted from changes in the thickness of the sample
and from changes in the index of refraction of water. Thus, the fringe
rates measured by the second interferometer arrangement allowed determina-
tion of dimensional changes in the glass sample provided that the rates of
change of the index of refraction of water with respect to temperature and
pressure were independently known. The dimensional changes and the changes
in the index of refraction of the sample were coupled in the first set of
Fizeau fringes.

The temperature bath used for the temperature neasureqenta is shown
in Fig. 3-5. The sample was suspended in the water by a metal boaitioning
device which isolated it from the bottom of the tank. An immersion heater
was used to raise the temperature of the bath, and when the bath temperature
had reached about 80°C, the heater was turned off and the water was
allowed to cool. The temperature of the bath was monitored with a mercury
thermometer that was calibrated to §°c. The temperature for each degree
change was recorded on the strip-chart by quickly blocking the reflected
beam. The blocking of the beam produced a mark on the strip chart that
enabled the recording of the the temperature and the fringe position at the
same time interval. A circulating fan was placed inside the thermal bath to
reduce the thermal gradients between the glass sample and the water bath and
to increase the cooling rate.

The pressure cell employed for the hydrostatic pressure measure-
ments 1s presented in Fig. 3-6. As previously stated, water was used as the
compressive fluid and the measurements were conducted at room temperature.
The water was transferred by the high pressure line to the pressure chamber.
The glass sample was mounted on a rotatable platform at about the middle of
the chamber. A 1=inch thick sapphire window provided access to the external
optics. A pressure gauge used to measure the pressure level, was coupled
into the pressure near the test chamber. Once optical alignment was
achieved, the pressure fittings were tightened and the hydrostatic pressure
was raised to about 15,000 psi. At this point a leak was introduced at the
pressure coupling causing a decompression in the chamber. AAs in the case of
the temperature measurements, the pressure and the fringe position as a
function of time were recorded by quickly blocking the reflected bean.

3-8
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1”"S:;F,Circulator Thermometer
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Immersion ;
Heater i

Laser

FIG. 3-5. Temperature Bath.
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FIG, 3-6. Hydrostatic Pressure Setup.
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3.3 Glass Samples

The glass samples were supplied to Tracor by Corning Glass Works,
Corning, New York. The compositions and corresponding front to rear face
dimensions are listed in Table 3-1. Two of the samples were fused silica;
one of the silica samples had a small amount of water. The doped-silica
samples were prepared using the OVPO (outside vapor phase oxidation)
process, In this process, a tube of fused silica is formed and the dopant
- is placed within the tube. The silica is then heated and collapsed around

. the dopant. This causes the dopant to vaporize and infuse itself throughout
- the silica matrix. The samples were cut from the dowel-shaped pieces and
. they were ground and polished into cubes with optically flat faces. However,

the infusion process produced striations in the glass samples. The stria-

: tions represent significant inhomogeneities present in the doped-silica
§ sample. These inhomogeneities are the main source of errors in the experi-
: mental results, which will be fully discussed in Section U4 of this report.




§
E
g

Table 3-1, List of Glass Samples and Corresponding

Dopants and Dopant Concentrations.

DOPANT LEVEL
GeO2 5.0%
GeO2 12.0%
Ge0> 20.0%
B203 7.0%
B203 10.0%
P205 3.0%
P20s5 7.0%

NONE - PURE SiO2 - BASELINE SAMPLE

NONE - Si0O2 + H20 - BASELINE SAMPLE
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4.0 EXPERIMENTAL RESULTS

From the strip chart recorder traces, the fringe rates with
aN, dﬂz du1 sz

respect to temperature (ET_ and ET-) and pressure (a;- and 35_) were computed
for all the glass samples listed in Table 3-1. In most cases, for each
interferometer arrangement, four separate determinations of fringe rates
were made on each sample, two separate measurements for each of the two
laser wavelengths. This was done to check the repeatability of the data and
reduce its experimental uncertainty. For each data set, the corresponding
fringe rate was computed according to the following procedure. From the
strip chart trace, the fringe order number, N1 or “2’ and the environ-
mental parameter, T or p, were both plotted versus time (t); the speed of
the chart recorder was used as the time-base. Figure 4.1 are typical plots
of fringe order number versus time and environmental parameter versus time.
From plots such as these, a third plot was obtained. In this second step,
time was eliminated as a variable and a plot of fringe order number versus
environmmental parameter was obtained. Figure 4.2 is a typical plot obtained
in the second step. The experimental points from the third plot were curved
fitted by the method of least squares using a North Star Horizon minicomputer
system. From the slope of the best fit, the fringe rate was obtained.

For all the glass samples, the values for the fringe rates with
respect to temperature and pressure are presented in Table 4-1. For each
fringe rate, the table gives both its average value and the corresponding
deviation. The deviation for each set of measurements has been taken to
represent the experimental uncertainty'in the fringe rates.
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4.1 Determination of —= a, and k of Glass Samples Using the

dn
d‘l" dp'
Optical Parameters of Water

From the fringe rates listed in Table U4-1, the values of

gg, g:, a and k for each glass sample can be determined using the relations

given in Eqs. 3-5, 3-6, 3-,7 and 3-8. However, inspection of these equations
reveals that the accuracy of the experimental results depends, to a large
extent, on the accurate values of the optical parameters of water. Specifi-
cally, the index of refraction of water, and its rate of change with resbeet
dne dne
e ' AT and — ) =——. Although the optical
parameters of water have in the past been studied by several investigators,
no universal agreement exists concerning their values. For example, Waxler

to temperature and pressure, i.e., n

=5 ,0 dne

/°c for T at room temperature and
at a wavelength of 5875A, while the table of values given in the AIP Hand-
book (2) yields a value of -16.2 x 10'5/°C at approximately the same
wavelength. Similar discrepancies exist in the literature concerning the

dne
value of as— for water.

et al. (1) give a value of -14.5 x 10

The experimental values of %%, g—g, a and k for the two fused silica

samples are given in Table 4-2. These values were determined from Egs. 3-5,
3-6, 3-7, and 3-8 and the corresponding fringe rates computed from the
experimental data; the index of refraction of fused silica was taken to be
1.458. This is the value measured by Schroeder (3). Table 4-2 shows that

dn dn
slightly different values for afg and a;% for water produce large differences
in the experimental results, large standard deviations, and even larger

dn dn

deviations from the accopted values of — dT ap

=—, a and k in the literature.
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In fact as it may be noted, although the maximum standard deviation in the
corresponding fringe rates was only 10%; the maximum standard deviation in
the experimental results with respect to the accepted values was more than
400%. The underlying reason for these large experimental errors in the

values of %%, g—:, a, and k, lies in the fact that their values are deter-
mined from differences in quantities that are very close to each other. For

. dn
example, % (Eq. 4-5) was determined by the difference between -:— ﬁ and
e

dll1 n sz

=18 8,
daT n, daT

2t

This is because the first term in the equation is negative, while the second
term is positive. This means that small experimental uncertainties in the

dn_ dn
values of Ny, Fe’ #, etc. can greatly magnify the experimental uncertainty

dn dn
dT’ dp

quently, the experimental error in the fringe rates and the uncertainty in
the rate of change in the index of refraction of water must be extremely
small, if the present int_erferometfic method were to have yielded meaningful
results., This appears to be impossible in view of the fact that significant
inconsistencies exist in the literature concerning the "accepted™ values of

in the experimental values of , @ and k for the glass sample. Conse-

dn dn
# and # for water. Although not reported for the sake of brevity, the

value of %, a, % and k of the doped-silica samples when computed from

Eqs. 3-5, 3-6, 3-7, and 3-8 had large experimental errors.

4,2 Determination of %% and gE of Glass Samples Without Using the
P
Optical Parameters of Water

dn dn
ar *™ o

only part of the experimental data, namely, the data associated with the

The values of for the glass samples may be computed using

Y
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dN dN
fringe rates ﬁl and ;p—l, resulting from optical path differences due to

changes, both in the index of refractions and in the dimensions of the glass

dn dn

samples. When this is done, aT and — dp may be determined through the follow-

ing expressions:

dN
%% = ‘z% 'd'l'_1 = Ra (4-1)
dn _ _ A o -} (8-2)
dp 2t dp 3
c:lne clme
As shown by the above two expressions, T and 35- of water do not enter into

the calculations. However, the values of the expansion coefficient, a, the
compressibility, k, and the index of refraction, n, of the glass samples

must be independently known in order to determine — d'l‘ and =—— dp Fortunately,

the values of a, k, and, n for the different dopants and dopant concentra-

tions present in the doped-silica samples have been measured by Dr. George

Scherer at Corning Laboratory (4). Table 4-3 is a summary of the values

provided by Scherer; the values of a and k for the fused-silica samples were

taken from the references given in the table. The compressibility values
dn

for the phosphate dopant were not available, Therefore, 33 for the phos-
phate-doped sample could not be computed. Tables U-l and 4-5 summarize the

experimental values of :; and g_n computed from Eqs. 4-1 and 4-2, and the

corresponding values of n, a«, and k given in Table 4-3. As it may be noted
from Tables i-4 and 4-5, the maximum standard deviation for the doped silica

samples was about 13% for %T and about 6% for :. The standard deviations,

in most cases, were based cn four separate experimental values of gi'. and %g—

dn dn

T and — Iy

for each glass sample. The values of == for the fused-silica samples

fell within 2-4% of the accepted literature values (5, 6, 7, 8).
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B Table 4-3. Values of Index of Refraction, n, Coefficient of
f 3 Thermal Expansion, «, and Compressibility, k, of Glass Samples
as Functions of Dopant and Dopant Concentration.

INDEX OF REFRACTION®  THERMAL EXPANSION®  COMPRESSIBILITY®
8

SAMPLE n (A= 5893A) COEFFICIENT x10'/°C k/3 x 10°/psi
1. S0, 1.458 5.5 6.28+0.10
2 2. S10,48,0 1.458 5.5 6.28.40.10
3. 81045560, 1.4599+2x10~" 7.1 6.0740.20
; 4, 510,+128Ge0, 1.4605¢2x10™" 12,641 6.2640.20
5. $10,+2056e0, 1.4750+2x10" 18.241 6.50+0.20
6. $10,4738,0, 1.456542x10"" 10,341 6.66+0.20
7. $10,4108B,0, 1.456152x10™" 12,341 6.91+0.20
o 8. S10,435P,0; 1.459542x10™" 6.9+1
o 9. S10,+78P,0; 1.4617s2x10™" 9.1

a) Index of refraction measured by Backeline technique

b)Coefficimt of thermal expansion measured with fused silica dilatometer

°)!oung's modulus measurements by an ultrasonic method

1-3‘- z (1-20)/B, E = Young's modulus, ¢ = Poisson's ratio

¢ = 0,2 for the doped glass samples
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B.2.1 Large Inhomogeneities in Doped-Silica Glasses Limit Accuracy of
Experimental Results. When the optical parameters of water were not used to

determine the values of g% and g%, most of the experimental errors have been

traced to the non-uniform distribution of the dopandants within the glass
samples. This is consistent with the fact that results on the pure silica
samples had smaller experimental errors than the doped-silica samples.
Thus, the non-uniform distribution of the dopants gave rise to large
inhomogeneities in the glass samples. These inhomogeneities, in turn, led

to large experimental deviations in the values of % and %. Since one of

the basic objectives of the optical measurements was to study the effect of
dopant and dopant concentration on the rate of change of the index of
refraction with reapect to temperture and pressure, the presence of large
inhomogeneities in the glass samples limited the accuracy of the results
and, conse'quently their usefulness. This fact together with the problems
encountered with optical parameters of water, suggest the need to conduct
the optical measurements on better quality glass samples, using experimental
techniques that do not involve water.
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5.0 . CONCLUSIONS AND RECOMMENDATIONS

R
Laser interferometry was employed to determine the rate of change
of the index of refraction with respect to temperature and pressure, the
expansion coefficient and the cr apressibility of doped-silica glass samples
for three types of dopants and different dopant concentration for a given
dopant. Two fused silica samples were also included in the optical measure-
ments to check the validity of the experimental method and to establish
baseline values for the quantities being measured. Water was used as
thermal bath for the temperature measurements and as the compressive fluid
for the pressure measurements. . The significant observations from the
present investigation are su-a%ed as follows:

(il.'le clne
(1) When the optical parameters of water, T and n,, were

used to determine the elasto-optic properties of the doped-
silica samples, the resulting éxperimental errors were quite
large. The large errors were partly due to significant
inconsistencies existing in the literature concerning the

dne dn e
value of T and T for water, and partly dus to the fact

that the experimental method computed the elasto-optic
properties from differences in quantities that were very
close to each other. These two factors greatly magnified
the experimental errors.

(2) A way was found to compute the elasto-optic quantities from
only part of the experimental data; the data that did not
involve the parameters of water. When this was done, the
maximm experimental deviation for the doped-silca samples

dn ' dn dn
was about 13% for aT and about 6% for ap’ the values of e

and %g- for the two pure silica samples were within few

percent of the literature values.




M.

I (3) When the water parameters did not enter in determination of

} :—g %%a most of the remaining experimental uncertainty

was traced to the large inhomogeneities present in the doped-
silica samples. These inhomogeneities greatly limited the
usefulness of the experimental results.

and

In view of the above conclusions, it is recommended that the opti-
cal measurements be carried out on better quality glass samples using
experimental techniques that do not involve water and where the specific
quantities to be measured are not computed from difference of quantities
that are too close to each other. The above recommendations have been
discussed in a proposal that Tracor presented to ONR (9). The proposal is
currently being reviewed by Dr. Pohanka at ONR and by Dr. Bucaro's group at
NRL.
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