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I. INTRODUCTION AND PRELIMINARIES

In this report we study the parabolic differential equation

D,u = a(x)D*u + b(x)D u + c(x)u (1.1)
t X X

{ and describe a general method for constructing asymptotic ex-
i pansions for its solutions, accurate for small times; both the
1 Cauchy problem and the first initial-boundary value problem
| ' will be considered. The approximation method which we intro-
duce will be referred to as the Diffusion Equation Solution
= Sequence or DESS method. It can be formulated whenever the
| coefficients a(x), b(x) and c¢(x) are sufficiently differentiable
‘ and the expansions can be explicitly determined when the initial
E ) and boundary data for the problem are expressed as the sum
L of smooth functions and jump functions (e.g., piecewise poly-
nomials).

_ In his doctoral dissertation the author' conducted a rigorous
s mathematical analysis of the DESS method and established
conditions for the wvalidity of the expansions which it generates.
The problem was formulated in this previous work in a somewhat
different but equivalent fashion in which time was not assumed
to be small but a small parameter, ¢ > o, multiplied the right
hand side of (1.1). The objective of the current report is to
’ make the DESS method more accessible on the practical level by
r presenting its mechanics in a straightforward manner, stating
: the principal results concerning its validity without proof and
avoiding the mathematical niceties as far as possible. Our b
approach will thus be a purely formal or "engineering" one in
which (1) the expansions are sought in a certain form, (2) a
, necessary system of equations is derived for the individual terms
] of the expansions, and (3) a method of constructing explicit solu-
tions for these equations is developed. It is the sequence of
functions which results from this process that will be referred
to as a DESS. In the present work we shall consider only the
Cauchy problem and an initial-boundary value problem with
Dirichelet (specified function  values) boundary conditions.
However, the method is more general and can also be used
for Neumann's (flux specified) and Robin's (convective heat
transfer) type of boundary data. The extension of steps (1)
and (2) to such problems is very straightforward while step
(3) would require more effort. In a forthcoming report we
shall apply this technique to the problem of heat transfer in
gun barrels.

[

Y J. F. Polk, "Asymptotie Expansions for the Solutions of Parabolic
Differential Equations with a Small Parameter", Ph.D. Dissertation,
Department of Mathematics, University of Delaware, Newark, DE, 1979.
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Let us now briefly outline the course which our investiga-
tion will follow. In Section Il we attempt to construct formal
asymptotic expansions for the solutions of (l.1) and obtain
a system of equations for the individual terms of these expan-
sions. Then in the next three sections we develop a number
of special functions for the purpose of solving these equations.
In Section 111 we recapitulate the functions H, and H} discussed

in earlier work and introduce the new functions H and
H"; n° Next in Section IV we define the functlong P and
Q Y’ which satisfy inhomogeneous forms of the diffusion equa-

tioAT' Then in Section V we formally def1ne a DESS apd construct
as parncular ?(amples the sequences b, {Ef al

{F, ,}and whose terms are actualTy linear combmatlons
of the funcnons In Section VI we resume the discussion
from Section 11 ami1 write the desired asymptotic expansions in
explicit form, Finally in Sections VII and VIII we put these
expansions to wuse in constructing approximate solutions for
the Cauchy and first initial-boundary value problem for equation
(1.1).

This concludes our introductory remarks. Before proceeding
to the main discussion we should first indicate some of the
notational conventions which will be used in the following. From
set theory Wwe have

R = all real numbers
R2 = two-dimensional space, coordinates x and t

(a,b) = x € R such that a<x<b

[a,b] = x e R such that a<x<b
H= R x(o, ») = upper half plane, t> o
Q = first quadrant in R? = (o, «) x (0, =)
Q* = second quadrant in R? =

(-eo ,0) x (O, °°)
The closure of a set in R or R? 1is indicated by an overbar,
e.g.
H = Rx [O,ﬂ)
Q = [0, Q) x [oy @)

A compact set S C R is a closed and bounded subset of R which,
for practical purposes, may be considered to have the form
[a,b] with a<b.

The derivatives of a function f(x) will be denoted by
f(f")(x) and the partial derivatives of a function f(x,t) of
two variables will be denoted




2
th. Dxf, Dxf

etc. A function f(x) will be said to be of class CN(I) if it
has N continuous derivatives in the open set 1. The concept
of H#lder continuity will be useful in stating some of the error
bounds on our approximations but will not be essential for
their derivation. A function f(x) is said to be HBlder continuous
(exponent a, o< a<l) in an open set [ if for each

subset S C I there exists a constant K such that

| , 1f(x) - £(y)| < Kix-yI®

for all x, y € S. This property is denotedml&y f e C* (1);
for nort—nrsegative integers N we write f ¢ C (I) to indicate
that f e ¢c*(1) for each n = 0,1,...,N. Readers not familiar

. with H¥lder continuity need only consider the condition
f ¢ CN+a (1) as an intermed'hiie property, stronger than
: f ¢ CN (I) but weaker than f e C (1.

In place of the wusual Gamma function we have found it
convenient to use the factorial notation

a! = T (a+l)
This is defined for a>-1 by
atl = J’: et 4t
and by the recursive formula
d . al < (a+1)!
(a+1)
for a<-1, provided a # -1, -2, -3,... The factorial function

becomes infinite for negative integers but its reciprocal is
well defined (in fact, entire) for all choices of a, and in

particular

5.%. -0 a=-1, =2, ... (1.2)

Finally, we wish to note two algebraic identities which
will be used in Section V:




XN

A proof of these identities is given in the introduction to refer-
encel and will not be included here. If interested, the reader
can also verify these by writing a few terms of the summands
in a geometric array and observing how the different sides
of the identities are obtained by summing the array elements
in different orders.

I1. FORMAL EXPANSION PROCEDURES
The parabolic differential equation
- - 2
D.u = Lu = a(x)D u + b(x)D u + c(x)u (2.1)

is of fundamental importance to transport processes. The un-
known function u(x,t) can be thought of as any transport quanti-
ty, such as temperature, species concentration, vorticity, etc.
and the terms on the right hand side of (2.1) correspond to
contributions to its rate of change due to diffusion, convection
(advection) and species production (or consumption) respectively.
In the present form the coefficients depend only on the spatial
coordinate x and thus equation (2.1) is linear although it
is frequently non-linear in actuality. Nevertheless this equation
is pertinent to non-linear problems for two reasons: (1) a
proper understanding of non-linear processes can only be achiev-
ed after a thorough rendering of the linear case, and (2) a
non-linear equation can be solved numerically by quasi-lineariza-
tion in which non-linear coefficients are expressed as functions
of the spatial variable only during a single time step. This
procedure is valid for sufficiently short time intervals and
can be performed repeatedly to advance the computation over
longer time spans. In computational fluid dynamics even simpler
versions of (2.1) are sometimes studied? to gain insight into
the nature of transport processes. In fact, it seems that the
majority of the working tools used in practice (stability criteria,
order of magnitude error estimates, etc.) have been rigorous-
ly justified only in the context of linear initial value problems.

In order to motivate more complicated expansion procedures
for obtaining approximate solutions of (2.1) let us first intro-
duce the simplest, most direct method. We suppose that initial
data has been specified in the form

u(x,0) = f(x) (2.2)
valid for x in a given interval 1 C R. The N-term Taylor

expansion for u in the time direction from the initial line is
then

T p. J. Roache, "Computational Fluid Dynamics", 2nd Edition, Hermosa

. Publishers, Albuquerque, NM, 1976.




N
2 Dik) u{x,0) tk/k!

k=0

But, by repeated formal substitution of (2.1) this can be written
as

N
7 LR ux,0 Kk
k=0
or
N
5 LR a0 e
k=0
where L(k) denotes the operator L applied k times. Because

of its special significance we shall refer to the last expression
as the N-term regular expansion for u and denote it by

N
TR LK) ) ke (2.3)
K0

This expansion is well defined if all of the terms L(k) f(x)
are meaningful; this holds when a, b, and ¢ have 2N -2 deriva-
tives and f has 2N derivatives at x. Using slightly stronger
assumptions than these, the regular expansion has been shown
to accurately approximate u and we shall state these results
formally in Sections VIl and VIII.

Assuming that a, b and c are suitably behaved, the regular
expansion breaks down in two not infrequent situations:

(1) The initial value function f(x) is not sufficiently smooth
and thus U is not even defined. Since f(x) is usually determin-
ed by physical measurement or inference, there is no guarantee
that it will have any particular "analytic" form. For example,
bringing both hot and cold objects suddenly together leads
to discontinuous initial values. On the other hand it can
be supposed that almost any physically reasonable f(x) is
at least piecewise smooth with jumps of various orders occuring
at discrete points. For this redson a particularly relevant
choice of initial values is the jump function

f(X) = hY (X—Xo) (2.4)
where

hy(z)

\
{27y (2.5)
0

N N
A\’

[ WY

o O

with v>0.




(2) a boundary condition can be imposed along a boundary
such as x=x, which is incompatible with the regular expansion
even when well-defined. In fact, the most that can be expected
in general is that the boundary condition is continuous with
the initial data at the corner point (xo,o). This would ensure
that only the lowest order, but no higher term of the regular

expansion agrees with the prescribed boundary data. Such
incompatibilities are evidenced by 'thermal boundary layers"
in short term heat conduction problems. The most fundamental

boundary condition is that in which the function values are
specified (Dirichelet condition) along a fixed boundary and,
among these, the most important are those which are homogeneous
or can be expressed as a power of t.

From these considerations we are led to formulate,
as '"canonical" problems, equation (2.1) together with the follow-
ing choices of initial/boundary data

(IVP)o u(x,o0) = h, (x—xo) x R
(BVP) u(x,0) = 0 X <X
o = o
u(xo,t) = hW2 (t) o<tgat
Where >0 and at>0. (The use of y/2 rather than y in (BVP)j
leads to more conveniently stated results.) The upper bound

on time 1is indicated by 4t to emphasize our interest in short
duraticn approximations. Let us also formulate the two converse
problems

(tve)# u(x,0) = h¥ (x-x,) xR

where h";(z) = hY (-z), and

(va)g u(Xyo) =0 XZXO
ulx ,t) = h, , (t) o<t<at

The expansions for these latter two problems can be obtained
from the preceding ones by a straightforward transformation
We shall state the parallel results for convenience without addi-
tional comment.

From the theory of parabolic differential equations® * 5 # is

3 A. Friedman, "Partial Differential Equations of Parabolic Type'l,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964.

* 0. A. Ladyzenskaja, V. A. Salomnikov, N. N. Ural'ceva, "Linear
and Quasilinear Equations of Parabolic Type", American Mathematical
Society Tranalations of Mathematical Monographs, Volume 23, 1968.

5 P. C. Rosenbloom, "Linear Partial Differential Equations", Surveys
in Applied Mathematics V, John Wiley and Sons, Inc., New York, 1958.
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well known that a solution u(x,t) exists for each of the prob-
lems just formulated; furthermore it will be unique if restricted
to the class of functions such that

ju(x,t) | < Kexp (k x?) (2.6)

for some constants K, k>0, uniformly for x,t in the domain of
interest. |

Let us now proceed with the formal development of asymptotic
expansions for u(x,t) basing our derivation on two considerations:
first our interest is primarily in the local region near x=x
(since the regular expansion suffices elsewhere) and second®
we are concerned only with the short time behavior. We shall
suppose that equation (2.1) has already been written in a form
such that u, x and t are non-dimensional with t restricted to
the interval o<t<at where at<<l.

To emphasize the local short term behavior of u let us intro-
duce the following '"stretched" variables

o = (x-xo)/e
(2.7)
1 = t/e?

where, for convenience, we henceforth let ¢ = /at.
In terms of these variabl‘evs we may re-express the solution u
as the transformed function @ defined by

u(o, 1) = u(xy+ €0, e?r) = ulx,t)

Similarly the coefficients a, b, and ¢ may be expressed as

alo) = alx_+ ¢o)
B(o) = b(x°+ co)
¢lo) = clx + €0

Substitution of these into (2.1) leads to the following equation

for u
DG = 3(o)D2u + ¢ B(o)D U +¢2 €(0)u (2.8)
T g g

‘In this form standard perturbation methods can be employed
to develop expansions for U in terms of the small parameter ,jT.
Let us suppose that u can be expanded in the form

a -~ ep[ﬁ + ¢ ﬁl+ ezfiz+ ‘e (2.9)
o

where p is not yet specified but depends on the particular choice
of boundary/initial data. If the coefficients a, b and ¢ are

11




sufficiently differentiable at x=x, then we can form their n-
term Taylor expansions. In terms of the stretched variable
o these are

. 0 k

alo) = k{O ak(e o) /k! + An
L Kk

B(o) = kZ=0 b (€ )" /k! + B

- n Kk

¢(o) = k{o ck(e o) /k! + Cn

where ays bk and Cx denote the Taylor coefficients

a = a(k)(xo)
(k)
bk = b (Xo) (2.10)
¢ = c(k)(xo)
and A and C, are remainder terms. 1If (2.9) - (2.10)

are sur{)stltuted into (2.8) and terms with similar powers of
e collected together then the following system of equations results

0=0

(=1

2
[D‘t - aODo]

t = gl

(4]

2
[DT aODOJ

lw)
i

. aoD;] u, = ’tlul + L, u,

and in general

no g
21 ~ -
(D, - aDZ] G = kz=1 Ly Oy (2.11)
for n=1, 2, ... where
N K k-1 5 k-2
L,u = a,2-D*u +b Du+c¢c u.
k Ky @ k=lgenyr © k=2 (k-2

(In this notation we are making use of (1.2) in the case k=1.).
The operator L, is clearly well defined whenever a, b, and
c have k, k-1 and k-2 derivatives at xg, respectively.

Next, by rewriting the boundary and initial data for (IVP)
and (BVP), in terms of the stretched variables we obtain

G(0,0) = EYhY(O) oeR
for problem (IVP)_ , and
ufo,0) = 0 0<0




e e e e ———

Aduaamtibadulen

/2 (1) o<t<1

for problem (BVP),.  From this it follows that

G(O, 't) = h

_ . vin problem (1VP)g,
P ={ 0in problem (BVP) (2.12)

and that the individual terms of the expansion for U must satisfy
the supplementary conditions

h (o) for k=0

, U lo,0) = {67 " for k=1, 2, (2.13)

for problem (IVP)o and
Gk(o,O) = 0 for k=0,1,2... (2.14)
8, (0, 1) = {hY/z“) for k=0 (2.15)

0 for k=1,2,...
with g, 1>0 for problem (BVP)O.

The forgoing systems of equations and initial/boundary
conditions for the terms u, have a unique solution among the
class of functions satisfyin& (2.6) which can be uniquely deter-
mined. To accomplish this we suspend our present discussion
for the moment and in the following three sections investigate
some relevant special functions. Readers not interested in the
details can continue in Section VI.

I11. THE FUNCTIONS HY AND HY n

The functions H, have been discussed in previous work!’ ®
For convenience we briefly recall their definitions and basic
properties. When y >-1 we define

Ho(x,0) = a2 f (s7/y1) exp (=(x-s)%/4t)ds (3.1)
0
for t>0; for y<-1 H, is defined recursively by
Hy(x,t) =D, HY+1(x,t) (3.2)
for t >0. (This also holds as an identity for y>-1.) Along

x=0 these functions are assigned the values
Hy(x,o) = hY(x) xeR (3.3)
where hy(x) 1is defined by (2.5); except at the origin x=t=0

with 756 this can be seen' to form a continuous extension of (3.1)
and (3.2). These functions satisfy the relationships

8 J. F. Polk, "Special Function Solutions of the Diffusion Equation",
ARBRL-TR-02182, US Army Ballistic Research Laboratory, 1979.
(AD #A075324)
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yHY(x,t) = x H (x,t) + 2t Hy (x,t) (3.4)

and ¥-1
Hx,t) = /a~TH (x /4, at) (3.5)
for any vy ¢eR and a>0. Particular examples of H, functions
are
Ho(x,t) = (1/2) erfc (-x/ /4t)
H_ (x,t) = (41)72 exp (-x /4t) (3.6)
H_z(x,t) = -(x/2t) H_, (x,t)
where 1/2

erfc(z) =(4/m) f;exp (-s?)ds
The reflected functions h"; and H;‘ are defined by
hy (z) = h (-2z) (3.7)
% = -
HY (x,t) HY (-x,t) (3.8)
All of the functions H, and H%¥ were seen to be infinitely differ-

entiable with respecI to x and t for t>0 and to satisfy the
formulas

Dx HY = Hv-l D, H\r = HY_2 (3.9)
- H* % %
Dy HY = -Hia Dy Hy = Hi 5 (3.9)*
Thus they are solutions of the heat or diffusion equation
2 =
[Dt - Dx] us=20 (3.10)
for t>0. Along x=0 they assume the values
H,0,t) = H% (o,t) = /T/2(v/2)! (3.11)
Let us now define
H (x,1) = X1 H_ (x,1) (3.12)
and y,n 0t =qr Hy bt 3
e on = B (o = S9N 4 Gon Gz
Yy o ’ vsN ' T Tl Y ’ *

where y eR and n is an integer. These can be regarded as
generalizations of the functions H, since setting n=0 yields

Hy,o(x't) = Hy(x,t) (3.13)

14




o b

H"Y"o(x,t) = H;(x,t) (3.13)*

Moreover, for negative integers n, these functions are seen to
vanish identically
H = H* =0 (3.14
Yo YN 3 )

n=-1,-2,-3, ... , in view of (1.2). Using (3.3) and (3.11)
we see that along t=0 and x=0 these functions take on the values

y+n
X
HY,n (AX,O) = hY(X) hn(X) ={ —Y-r—n—'- x>0 (3.15)
0 x<0
1 3 - -
B, (out) {A‘;h‘sv(t) if n=0 (3.16)
0 if otherwise

From differentiation formulae (3.9) and Leibnitz's rule for repeat-
ed differentiation of a product we obtain

Dx Hy,n = Hy,n-—l + H -1,n (3.17)

k k k

Dx Hy,n = ]Z=O (J) y=jsn-k+] (3.18)

Dt Hy,n = Hy-z,n (3.19)
and

2 -
[Dx - Dt] Hy,n = 2 HY—I,n-l + Hw’n_2 (3.20)

For any constant a>0 it then follows that H (x,at) satisfies

the following inhomogeneous form of the diffusion equation

[aDi—Dt] HY,n(x,at) = 2aH (x,at) + aH n_z(x,at) (3.21)

vy-1,n-1 Yy
for t>0. Also, for any a>0, we can obtain the following identity
from (3.5)

Hy 00 = a2 g (/5 a0 (3.22)

In Reference 1 these functions were studied in greater detail,
in particular, their asymptotic behavior for largeﬁxl was char-
acterized. In the present work we do not require this analysis
except to recall that

n(x,t) | < const. [h (x) + /1T M (3.23)

| H
Y Y+n

and thus HY n Clearly belongs to the class of functions satis-
fying (2.6)."’

15
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AND QY .n

1V. THE FUNCTIONS PY n

As the next step toward solving the equations derived in

Section 11 we consider the functions P n and QY n ° These
are defined for any yeR and any intege¥ 'n by ’
Q (x,t) = o (_1/2)n+2—k H (x,t) (4.1)
Y,n ’ - lz=1 y+n+2-k, k"’ *
and

PY’n(x,t) = QY,n (x,t) - y.n HY+n+2 (x,t) (4.2)
where

n+l Y+n+2
Cen= 3 (-1/2)"+2k () (4.3)
Y,n k&1

In the last expression we have used the binomial coefficient
notation

@ . 2 (a-1) (a-2) . . . (a-k+1)
k’ * k!

These functions are thus linear combinations of the H, | func-
tions. Their significance is indicated in the following 'two pro-
positions. Recall our notation Q and Q* for the first and second
quadrants in R?2,

. If y+n>-2 then (4.1) defines the unique function
which is continuous in %, uniformly bounded whenever t is
bounded, which satisfies the equation

2 —
in Q* and takes on the homogeneous boundary and initial values
QY,n (x,0) = 0 XEO (4.5)
Q'an (O,t) = 0 tzo (4-6)

The uniqueness of such functions is well known and
follows, for example, from the results of Widder! The continuity
of Qy,n for t>0 is established in Proposition (1.3.1) of Reference
1. (The restriction y+n>-2 is required here.) The homogeneous
initial and boundary values follow directly from substitution
of (3.15) and (3.16) into (4.1). The boundedness requirement

7 D. V. Widder, "The Heat Equation", p-139, Academic Press, New York,
1975.
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is directly verified by applying inequality (3.23) to the

individual terms of Q_ . Thus it only remains to show that
Q yon satisfies (4.4). F#om (3.20) we have
n+l

e i _1,n+2-k
[Dt Dx]Q y,n -kzl( 2') [2H7+n+1-—k,k—l + H\(+n+2—k. k—2]

i “{1  Linsl-k _“i‘l  Lyne2k
B 1 2 y+n+l-k, k-1 Ko Vi y +n+2-k, k-2

where the k=1 term in the second sum was omitted in view of
(3.14).  Shifting the index in this sum by setting j = k-1 we
have

n+l
2 N 1, n+l-k
[Dt - Dx]Q Y,n kzl (- '2) H-1+n+1~-k, k-1
n .
1 ,n+l-j
- jgl (=3 Hy+n+l—j, j~1
= Y’n

This completes the proof.

If vy+n > -2 then (4.2) defines the unique function
which is continuous for t>0, satisfies the equation
- D2 -
[Dt Dx] PY’n(x,t) = HY,n(x,t) (4.7)

in H, with initial values
P n(x,o) =0 xeR (4.8)

and which is bounded such that for any T>0 constants Kk,
K>0 exist for which

|P, n(x,t) | <K exp (kx?)
uniformly for o<t<T. "'

PROVE: Essentially the same as for Proposition (4.1) except
that (4.8) must be established for x>0. But the constant n
was chosen precisely so that this result holds, as may be’ seen
by substituting (3.15) into (4.2) with t=0.

.- If we denote by H, the family of all finite
linear combinations of functions Hy with y +n= X then clearly
P and Qy, , belong to Hy4p . Fhe importance of the above

Y,N

17




propositions is that for any v in Hx the solution to

[Dt_D;(]u= v

. with homogeneous initial/boundary data can be found in the class
{ H)\+2 . It is this behavior which enables us to obtain solutions
' for the equations of Section Il explicitly in terms of the

functions. In fact, for the canonical problems (IVP), and ( "/P)o,

the term u) of the asymptotic expansion (2.9) will be found
| in the class H ke
)
" FEMAFRK ‘ For any a>0 the foregoing results imply that
the functions P, (x,at) and Qy.n (x,at) solve the equation
: - 2 -
} \ [Dt an] ul(x,t) = aHY’n (x,at)
. in place of (4.4) and (4.7) and satisfy the same homogeneous
, initial/boundary data as before.
| REMARK The functions

p* yt) = P (-x,t)
and YN {x YN X
% = -
Qy,n (x,t) = .1 (-x,t)
satisfy the equations
- 2 % = *
[Dt Dx] Py,n = H v .0
in H, and
- 2 * = *
[Dt Dx] Qv,n N Hv.n

in Q, and take on the initial and boundary values

P*Y,n (X,O) = 0 XER
QY,n (x,0) = 0 x>0
Qy,n (o,t) = 0 t>0.

V. DIFFUSION EQUATION SOLUTION SEQUENCES:
THE FUNCTIONS E, . AND F_

We have now reached the point at which we can formally con-
struct solutions for the equations derived in Section II.

Let N>0 be an integer and let My be an (ordered) parameter
set given by

My = {ao,al, cee s AN bO'bl' eie bN-l’ Cor Cps oo CN-2} .

18
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These parameters may of course be considered as the Taylor
coefficients of a(x), b(x) and c(x) at x=x_ but their genesis
is unimportant here and the discussion may p?oceed independently
of subsequent applications.

For n=0,1, .., N we may define operators L, by
n n-1 n-2

_ X 2 X X
bpt = 2p 77 Dx%*Pny (om0t D™ en2 ooy v (5-1)
In particular
_— 2
Lou = aoDxu

- 2
Llu = alxDxu+boDxu.
A sequence of functions U = {u (x,t): n = 0,1,...., N}
defined in the closure of a domain D C H will be called a
Diffusion Equation Solution Sequence (DESS) in D with respect
to the parameter set my 1f the following equations are satisfied

0 if n=0
(D, - Llu_ - { (5.2)
Z Lk Ul if n=1,2, ..., N

If D is unbounded we also require that for any T>0 there exist
constants k, KiO such that

lu (x,t) | <K exp (k x?) (5.3)

Uniformly in O<t<T for each n = 0,1, ..., N. We shall use
the notation Ue D(D,my) or, more simply, UeDy to indicate that
a sequence U = {up: n = 0,1, ...,N} is of the type described.

1f U,VeDy and a,BeR then we may define the formal sum
sequence
W = al +8V

termwise by

wW_ = au Bv
n nt n

and, for 0 <k <N, we may define the '"shifted" sequence U(k)

termwise as the sequence whose n-th term is

RO 0 0<n< k-1
AL

Uk k< n<N.

(The superscript k here is not meant to imply differentiation.)

13
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It should be clear that these sequences are also of class D .
Moreover, let dy ¢R and UpeDy for k = 0,1, ...,N, with U =
{Uk n}’ and define the sequence of 'shifted" partial sums by

N
ve 1 au ®

or termwise by
n

(k)

v_ = d, u = E d, u

n kZO k k,n-k -0 k“k,n

Then the previous observation implies that VeDN .
From the existence and uniqueness properties of the diffusion

equation, Dtu = L u, we see that we may specify the individual
terms of a DESS’ by requiring that they also satisfy certain

boundary and initial data. The following sequences will be
of particular interest:
(1) E and E# defined in H and satisfying
Y'n Y,n

hY(x) ifn=20

E (x,0) = (5.4)
YD { 0 if n = 1,2,...,N.
h#*(x) if n =0
E# r‘(x,O) = { Y (5.4)#
Y’ 0 ifn=1,2,..., N,
(2 F and Ff n defined in §Q* and Q respectively
and satisfying’ ’
FY n(x,O) =0 for x<0, n = 0,1,...,N (5.5)
F# (x,0) = 0 for x>0, n = 0,1,...,N (5.5)#
i - A o
n =
G720 (5.6)

F_ _(0,t) = F# (O,t).-.-‘
Y,n Y,n 0 n = 1,2,..-,N

for t>0.

The following two propositions are rather technical but
establish that each of the terms of the foregoing DESS's
is expressible as a linear combination of functions H, [, and
H* with coefficients that can be explicitly determined from
recUrsion formulae. The boundedness condition (5.3) will then
be automatically satisfied due to the growth properties of such
functions [see (3.23)].
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Let 0<n <N, then

EY’n(x.t) =

where the coefficients a
recursive formulae:

Y,n,k

2n

Z ay,n.kHY+n—k, K (5.7)

(x,aot)

k=0

are determined by the following

for n = 0 GY,O,0=1
2n-1 _
- c . .
]z=0 Y"‘n“z"]vJaY'n!]
1 if k =0
fOI' n = 1,2'00-,N G‘Y’n,k = ‘a_ 2n—k+1 j - (5-8)
[o] "1 [» ] ‘+k_2
JZI (_2) Y,sN,J
if k = 1,2, ,2n
where, from (4.3)
j+1 (42
c o -1t +n
S SDERNURES T
and the & . are defined for j = 0,1,...,2n-1 by
! j
.G'.Y,n,j = 1221 al (l)u an—igj—i
I (5.9)
. j i
L @) *Piy G2dley,nmi,j-isn1

with the upper summation

K . . .
j j j
3 13(3) *Piq (2 o2 GZalo g e, e

limits being given by

j if 0c<jz<n

2n-j if n+l< j < 2n-1

j+l if 0 <j<n-l

(5.10)

2n-j-1  if n <j < 2n-1

j+2 if 0 <j <n=2

2n-j-2 if n-1 < j < 2n-1
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It should be understood that the sums appearing in (5.9)

e e e — ———

omitted when the lower summation limit exceeds the upper.

The proposition holds for n = 0 since we then have

Proceeding by induction we may assume that (5.7) is valid

# for n = 0,1,...,m-1 where 1 < n < N and show that is must
' also hold for n = m. For convenience in this proof we shall
write Hy n for Hy p(x,a t). The k-th term on the right hand
side of (5.2), when'u, = E and n = m is then
YyN
<K 2(m-k)
- 2
‘ LkEy,m—k = 3k kT j2=0 °y,m—k,ijHY+m-k—j,j
I k-1 2(m-k)
+ b s

k-1 TR=TIT j{o o mok, iPxMy +m-k-j, i

k-2 2(m-k)
+C X Z H .
k-2 k=2) T j 20 ay ’ m-k.] Y +m-k-] s )

where 1 < k < m. Using (3.17) and (3.18) yields

! 2(m-k)
L, E

Ermk = %k Lo vamoiMme2aeg,s

. . 4 H ..
+2Hy+m—1—k-;| j=1 Hy-!-m-k-J ' 3-2] .

xk—l 2(m-k)

| e DT j‘g‘-o o mk, it M yem-1-k-j, Ty +mok-j, i-1]
‘ =
k-2 2(m-k)
C X a H .
-2 Tk=2TT jzo yom-k,j y+m-k-j,j
. Using the identity
i
| m
X _ m+n
| = Hy,n(x,t) = () Hy,m+n(x’t)

[ which follows directly from definition (3.12) we then have

2(m-k) jok
L LKEy.m-k = ]Zo a‘k (k

) Gy, m-k, ij+m—2-j-k,j+k
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j+k-1 k-1
+ Z lzak (J+k ) +bk—1 (J+ ]a yom-K,j

) Hy+m-1-j—k,j+k—1

2(m-k) . .
j+k- +k-2 +k-2
+ jZ_-O [a, ( K % +by 4 (J ) ) o (Jk_2 )
[N} H s .
ysm=-K,j y+m-j-k,j+k-2
The right hand side of (5.2) when u E and n = m is

obtained by summing this expression with respec? tok = 1,2,...,m.

For m = 1 this reduces to

L1E\r,o = aIer--Z,l*LboHY 1,0

For m > 2 we may reexpress the summation with the help of
identity (1.4); thus

m

n
Z Ly mk = 21 _21 a; (3) %y, m-i,n-ify 4m-2-n,n
= n= 1=

2m-1 2mn

+

n .
n=m+l 1Z=]_ ai ( i) aY’m'isn-iH1+m—2—n,n

m n n-1
+ nz__]_ 121 [zai ( i ) i-1 (i-l hy,m-i,n—i

H\f+m—1—n,n-1

2m-1 2m-n n-1 _
*n;ml iz=1 L2a; (°7) by ) (?-{)I’Y,m-i,n—i

' Hw—m—l-n,n-l

" a n-2 n—2 n
- éllai(i) i) e ()

a . .H
Ysm-i,n-i y+m-n,n-2
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2am-1 2m-n
n-2

n- - n-2
+n=zm+1 iz=1 (G RN ) B Gl

'“Y,m-i,n-iHy+m—n,n-2' (5.11)
E Shifting 'indices and rearranging slightly we get
m m n n

' * L = . . .H
. kl=1 kEy,m-k nzl i'-zl ay (1]“y,m—1,n—1 y+m-2-n,n
2m-1 2n-n n (5.12)

+ a. ( ) a . .H
i Vi/y,m-i,n-i y+m-2-n,n

n=m+l i=1

4 m-1 n+l n 0
‘ ' n=0 iz=1 [Zai (1] +bi-—l (i-l)] %yym-i,n+l-i H~y+m-2-1’1,n
: 2m-2 2m-n-1 n N
* nz___m 1)::1 [ 2a1 ( 1) +bi—1 ('l.—l)]u Y,m-i, n+1_i HY+m—2-n ,n
m-2 n+2 n N .

* nz=0 lzl [ ai [1) +bi‘l (1-1) +Ci-2 (]'.-2)]0 Y,m—i’n+2_i HY +m-2-n,n
! 2m-3 2m-n-2 n 0 .
L ) (a4 ( i) +bi-1 (i-l)+ci-2 (i—Z)k Y.m—i.n+2—iHy+m—2-n,n

n=m-1 i=1

Collecting together the coefficients of similar terms we can
then write

2m-1

m
kz:l LkEY’m‘k ) nz=0 clYyl'“,ﬂHw(«f-m-Z—n,n (5.13)

! where the are given by (5.9) above for m > 1. In
‘ the case =1l YW flost of the terms are absent leaving only

|

°—y,1.0 = bo and a—y,l,l = aj.

Equation (5.2) applied to the m-th term of the DESS {E, .}
can thus be written as !

2m-1
2 =
[D, - a DIIE_ (x,t) = )

{x,a_t).
n=0 °

g Y,m,nHy +m-2-n,n

Recalling Proposition (4.2) and Remark (4.2) and using linear-
ity it immediately follows that for m = 1,2...

24
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1 -
E‘Ypm(x,t) = -é.: nz;o a Y’m,nPY'i'm-z—npn(x’aot)
1 2m-1 n+l _1n+2—k
= = = ,a .t
a_ r§=0 %y,m,n { Kol (_7) Hy+m—k,k(x a4 )

- Cy+m-2-n,nHy+m (x,a,t)]

By collectihg ccefficients with the help of (1.3) this can be
rewritten as

2m
EY.m(x’t) N kZO Q‘\r,m,kme-k.k(x'aot)
where a_ m Kk is given by (5.8) with n = m>1. This completes
the ptooty.
For n = 0,1,2 the ccefficients o ,n,k are listed explicitly
in the Appendix. For convenience let us alsc define
%k = 0 (5.14)
for k < 0 or k > 2n.
PRCPOSTTION (5.21; Let 0 < n < N. Then
2 2n
FY,n = — kz=0 By,n,kqu-n—k,k(x’aot) (5.15)
" %o
where the coefficients B, n.k are defined by the following
recursion formulae Yot
for n= 0 BY’0’0=1
0 if k =0 (5.16)
1 2nck+l 14 ]
for n = 1,2,...,N By,n,k = a 4 (—2) ey,n,j+k—2

if k - 1,2,...,2r

with FY n kbeing defined for k = 0,1,...,2n-1 by

_ I k
Byon,k ° izl a; () B, n-i,k-i
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1
1
J
(|
|
{
&
|
!

k
* Z [2a; () +bj; (4op)] B n-i,kel-i (5.17)

i21
(9 e k (X s
+ .121 i (7)) +biy (i-1) *ci2 (ico v, n-i, k+2-i

where the upper summation limits [, ] and K are given by
(5.10).

The proof is identical tc that of Proposition (5.1)
up to the point where in place of (£.13) we would cbtain

m 2 2m-1 3 H
kz=1 LeFymek © 7?:7 n2=0 y»M,n y+m-2-n,n
for m > 1 where the coefficients 8 are given by (5.17).
In particular for m = 1 Y,m,n
Ey,l,O = b,
—éy,l,l = aj.

Because of the different boundary and initial data in the present
case however we ncw use Proposition (4.1) instead of Proposition

(4.2) and obtain

2m-1 1

2
Fy,m(x’t) = ~ Y nEO By,m,na_o_'Qy\»m—Z-n,n(x’aot)
o
2m-1 n+l n+2-k
2 z 1 —1 (X.a t)
= 8 — ) ) Hyim-k,k o
a, n=0 V™" % ks (=
which can be rewritten as
2 2m
F_Y,n(x,t) = —a—-y kz=1 8 ‘Y,m,kHY+m‘k,k(x’aot)
"“o
where the g_, are given by (5.16) above for m = 1,2,...,N.
This completgsmtﬁ‘e proof.

For n = 0,1,2 the ccefficients 8 y.n,k are given exrlicitly
in the Appendix. Aswith the o i 'let use define for conven-
ience

B Yyn,k = o (SQIB)
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for k < 0 and k > 2n.

The follpwing lemra permits us to characterize the functions

> : c .
E# .k and F du‘ectly in terms of the functions E'y,k and FY Kk

LEMMA o] 1f {un: n = 0,1,...,N} ¢ DN(D,HN) and uﬁ is

defined by

uﬁ(x,t) = (-n" u;(x,t)

then {uﬁ: n=0,1,...,N} EDN( D*,'nN); here u;(x,t) = un(-x,t).

Let us transform (5.2) by x = -y and D = -D

Then we have
T & VN € L
K K T v~ Pk-1 =TT y
—?‘kL)’zTr Tup(-y,0)

y "

[Dt—aoD;]un(-y,t)

k-1
= y
=2, “la, il—r"; Pr-1 Ty P
k-2
2 T 1Un(-ys -
This implies that
: k
[Dt—Lo]u; = 2=1 (-1) Lku;“_k.

Multiplying across by (-1)™ we then obtain

P n
[Dt'Lo]un l n—k
which concludes the proof.

Clearly then we may set

# (L1 yDex

and Ev,n = (-1) Ey,n (5.19)
¥ _ n., _

th = (-1) Fy,n n = 0,1,...,N (5.20)

since these functions will satisfy the correct initial and

boundary conditions.
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listed
quickly become tedious to calculate as n

explicitly

symbol

The coefficients @ Y

manipulation programs,

n,k and B ;) have been
in Appendix B for n = 0,1,2 ' because they
increases. Perhaps

which have come into vogue,

would be quite useful in this regard.

‘ Although F
only in the quarter planes

and F# n Wwere originally defined
6 and Q* heir representations (5.15)

and (5.20) are defined throughout H. This permits these functions

to be analytically continued

(with respect to x) into all of

H in such a manner that (5. 2)# remains valid in the extended

domain H. Thus {F

REMALK

and (3.14) we have

E (O,t) =
Y
and then from (5.19)

#

n(o,t) =
By setting t = 0 in (5.15)
n
F n(x,O) = 2 Z
Ys /5:Yk=0

n

 (x,0) = 2D
vn Ja ¥ k=0
For any

and (5 15) a11y leads to

EY’k(x,t)

FY’k(x.t)

n} and {F

By setting x = 0

n} are of class Dy(H,1 ).
in (5.7) and using (3.16)
/— Y+N
] %o (5.21)
2%y,n,0 TGrm)7277 )
n Jat
(—l) a (o] (5 21)*
2 y,n,0 ({y+n)}/271 ‘

we have
ALY x Y+ >0 (5.22)
(k ) y,n,k h+n)' xZz *

2n (-x)Y*"

2 (Y+n) B'v,n,k m——, X_S 0 (5.22)*
a > 0, substituting (3.22) into (5.7)
the following identities
AR R L/ /E e (5.2
/AR B (x/ /a, t/a) (5.24)

v,k
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Vi. FORMAL EXPANSION PROCEDURES--CONTINUED

At the end of Section Il we obtained a system of_equations
and initial/boundary data for the individual terms u), in the
assumed form (2.9) of an asymptotic expansion for u(x,t).
Comparing equations (5.2) and (5.4) - (5.6) which defined
Eyk and Fy g in Section V with the equations (2.11) and
(2.13) - (2.1g) formulated for U, we immediately obtain the

solutions k
uk(o.r) = EY,k(c,t)
for problem (I‘v'P)o and
ﬁk(c, 1') = Fy'k(q,‘l)
for problem (BVP)_  where E and F, . are defined by (5.7)
and (5.15) respectively. ubstitution’ back into the formal

asymptotic expansion then yields

k

u(o, 1) ~ eYkéo € EY’k(c,r)

and
u( -[)“'e:Y E ek F {(o,1)
[ ] k_.:o 'Y,k ’ .

By re-expressing these expansions in terms of the original
variables x and t, related to ¢ and . by (2.7), and truncating
to N terms we obtain the following functions

N

N - Y+k
Vo 0= L TR ((xx ) /e, t/e?)
Yo Xy k=0 Y,k o
N
N - k
WY’XO(X,t)— l(z=0 € F‘Y,k((x—xo)/e, t/el)
Recalling identities (5.23), and (5.24) these can be written
more simply as
N N
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N
W, /BT Y ] F | (xexgt) (6.2)
X k=0 Y' o

o
or, in the more expanded form,
N 2k

. H .. {x-x_,a _t) 6.
o k{o 20 Cwked Tytkeju] (xxg02, (6.3)

N
VY,x (x,t)

N N X
W (x,t) = 2/aoAt LD D) (x-x,a_t) (6.4)

H
X, k=0 j=0 |3y.k Jj oy+k=j,]j

For k = 0,1,2 the coefficients ¢ . and B . are given
explicitly in the Appendix; more géllerally they cgn be deter-
mined using the recursion formulae of Propositions (5.1) and
(5.2). Consideration of the converse oproblems (1vP) #  and
(BVP) g lead to the analogous expansions ©

N
#N #
\' {x,t) = z E (x~-x_,t) (6.5)
X ko YK O
and
w'N (0 = AT rf F? | (x=x_,t) (6.6)
Y’xo k=0 Y,k o’ *

which can also be written, using (5.19) and (5.20), as

N 2k

#N k
. = - t .
VY:XO(X t) k)=:0 (-1) jZO . K, ]HY+k-J J(x X ra ) (6.7)

wiN ) - 2/a_at " 2 (-1)“%k
Yl k=0

a Ky Y+kJJ(xx°:at)(68)

The expansions VN, and V"’I;J will be referred to as
the N-term special expansions at x, with respect to the operator
L or, more briefly, the special expansions. The expansions

WN and W#N
AERN Y o X,
will be termed the N-term right and left hand boundary expan-
sions (respectively) at X with respect to the operator L.

The values taken on by the special expansions at X=Xo are of
special importance and can be obtained by substituting (3.16)
into (6.3) and (6.7) with x = x,. We have
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. N /a_t YK
Vv ,xo(XO’t) =3 kzzo ey, k,o m (6.9)
and Y‘*‘k
(x yt) = -2- Z (1) a y.K,0 ﬂ—mr (6.9)#

In the next two sections we shall develop uniformly accurate
approximations for the solution of the Cauchy problem and
the first initial-boundary value problem for equation (2.1)
using the expansions

N N #N

wo,owh Ly and wN
Y%, Y%, Y%,

Note that these functions are well defined whenever the Taylor
coefficients

a, k = 0,1,...,N
b, k = 0,1,...,N-1
Cx k =0,1,...,N=2
exist at x = xgo. In order to establish rigorous error bounds

for the approximations of the next two sections, however, it
will be necessary to make slightly stronger assumptions in
the form

a(x) ¢ CN+°(I)

@) b(x) ¢ V) (if N > 1)
c(x) e N2+ () (if N > 2)
where N > 0 is an integer, 0 < qa <1 and 1 is an interval
with xg € 1; if xo corresponds to a boundary of the solution

domain for (2.1) then x 4 is taken as an end point of I, other-
wise x , must be an interior point of 1.




VIl. THE CAUCHY PROBLEM

The Cauchy problem is formulated by equations (2.1) and
(2.2)

Dtu=Lu x e Ry t>0

u(x,0) = f(x) X ¢ R

If a, b and ¢ are bounded and Holder continuous and f is
continuous then this problem is known®to have a unique solution
in the class of functions satisfying (2.6). 1f, in addition,
a, b and c¢ are sufficiently differentiable then the expansions
developed in the previous sections can be used to approximate
u(x,t) with uniform accuracy. A rigorous analysis of this
problem was undertaken in Reference 1 and in this section we
wish to present the main results in a convenient, abbreviated
form without proofs.

If f(x) is sufficiently smooth then only the regular expansion
(2.3) is needed to approximate u(x,t), as we see in the following
two theorems. The first is a global result requiring stronger
hypotheses than the second which is a local result. In the
following we shall use the notation

N = [N/2] = greatest integer < N /2

AT B Leta, b, c < C"™(R) and fe CVZ R, 1f

L(N+1) £(x)

is bounded for all x € R then there exists a constantk > 0 and
a At > 0 such that -

Julx,t) - UN(x,t) | <K {1 (7.1)

uniformly in R x [o,At].
T See Theorem (2.2.1) of Reference 1.

Bl Let 1 C R be an open interval, let (A ) hold
in 1 with N > 2, o > 0 and let fe¢ CN+*(1). Then there exists
a At > 0 and for each compact set S C I there exists a constant

K > 0 such that
lutx,t) - WNex,t) | < k /NS (7.2)

uniformly in S x [o, at].

(EENE See Theorem (2.2.4) and Corollary (2.3.1) of Reference
1.
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In many practical problems the initial value function is
not smooth but can be accurately represented by a piecewise
smooth function, Within a bounded interval 1 this can then
be expressed as the sum of a smooth function and (left and
right hand) jump functions; that is

K
f(x) = T(x) + ] ah  (x-x ) (7.3)
k=l K Yp K

K .
-y ¥
2= a: hYl,,z (x xk)

where T(x) is smooth in I, x , x* ¢ 1 and a , o*# 0; if
no jumps occur then the summation terms are omitted.

Since our problem is linear and since the two previous
Theorems apply to f(x) then it only remains to treat the two
"canonical" cases

fix) = hy(x-xo)

and
f(x) = h*(x-x_)
Y [o]
We shall use the notation
u and u# x
vao Yo o

respectively to denote the solutions to the Cauchy problem with
these particular choices of initial data. The special expansions
(6.1) and (6.5) were constructed in the last four sections for
the express purpose of approximating these functions; the
following theorem indicates where and how well this is achieved.

) Let y >0, let 1 C R be an open interval with
Xg € 1 and let (A) hold in I with N > 2, a > 0. Then there
exist a constant K > 0 and a at > O such that

la,  (x,0) - v'j « (1) < K /TN (7.4)
’XO o

uniformly in (-e, xo] x [0, at] and

l? 0 - vf"x (x,t)| < K VTV (7.4)#
'To

Y'xo

uniformly in [xo,w] x [0, 4t].

See Theorem (2.3.1) of Reference 1.
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This result is not altogether satisfactory since it still

does not enable us to write an approximation for

u or #

Y’xo uY’xo
which is uniformly valid in regions such as S x [o0,at] where,
S is a compact set containing x, as an interior point. However,
in the case where y is a non-negative integer, say y = n
> 0, we can circumvent this limitation using the simple identity

n
(x_:o) = h_(x-x)) + (<D™ h¥(x-x) (7.5)

This, together with linearity and uniqueness for the Cauchy
problem, implies that

n
a . = un,xo + (-1) u#l’xo (7.6)

where 1 denotes the solution having the polynomial initial
values "o

Gn,xo(x'O) = (x-xo)n/n!

Thus, to construct an expansion for valid in the region
x > x_ we need only re-arrange (7.6) intd the form

Yn = an - (1P ufxx’
,XO ' Xy ' Xy

o

The first term on the right can be approximated using its N-
term regular expansion

N
IO B S A (SN 23D Y (7.7)
%5 k=0
with an error term of order ffN“' (Theorem (7.2)); the second
term can be approximated for x > x, using the N-n term special

expansion VﬁN—n with an error of order/f'*® (Theorem (7.3)).
"o

We are thus led to define the following N-th order uniform

expansion for u.

» X
—_0
Vﬁ-: (x,t) X<X 8)
N ' "o (7.
Y (x,t) = {
n,x ’ N n #N~n
o Un,xo(x't) - (-1) Vn'xo X>X
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Sirailarly we can define the N-th order uniform expansion for

Bn,x DY
D™ Yt - VT Gn) < xg
ANNCRINE ° ° (7.8)#
%o viNT D >
n,x Xs X =X

We can now state the following result

Let (A) hold with N > 2 in the open interval
1 TR and let x_e¢e 1. Then there exists a at > 0 and for
each compact subset S C 1 there exists a constant K > 0 such
that -

. (0 -yN (0] <K/ (7.9)
n,x n, x
(o] o
and
0 -v® o <k Ve (7.9)#
n,xo n.xo -

uniformly in S x [0, at].

Follows directly from the definition of the wuniform
expansions using Theorem (7.2) and (7.3). This theorem
corresponds to Theorem (2.4.1) of Reference 1.

Unfortunately we have not been able to construct an analogous
uniformly valid expansions for

u and u#

Y’xo Y’xo
in the cases where <y is not an integer. The best that can
be done is to note that the regions of validity (x < x5 and
X > xgo) for the special expansions can be enlarged slightly
to include the parabolically shaped domain (x-xo)? < 4 Pt,
0 gt < at where P > 0. This was included in the treatment
of the Cauchy problem in Reference 1.

Although the restriction to integer orders does reduce the
generality of our theory somewhat it is still sufficiently flexible

to treat most physically interesting cases. It does permit
the treatment of any initial value function expressed as a
plecewise polynomial, for instance. Furthermore, if we limit

our consideration to jumps of integer order then, in view of
identity (7.5), the general form (7.3) of initial value functions
can be rewritten using right (or left) hand jumps only. The
following theorem thus represents our most general result for
the Cauchy problem.

35

enniiby




e

Let 1 C R be an open interval and let (A)
hold in 1 with N > 2, o >0, Let u(x,t) denote the solution
of problem (2.1), (2.2), (2.6) and suppose that f(x) can be
written in the form

K

N
f(x) = Tx) + h, (x-x,)
k2=1 ].z=0 ki j k

where T(x) ¢ cN+o (1) and x, ¢ 1. Then there exists a at > 0
and for each compact set S (].‘ 1 there is a constant K > 0 such
that

= K N |

lue, ) - Moty = 1 1 o vV o]k M a0

k=1 j=0 R R

uniformly in $ x [o, 8t]; here Y. x is defined by (7.8) and
is the N-term regular expansion (2].'3)k for initial values f(x):

- N
UN(x,t) = ) L(k) T(x) tk/k!
k=0

with N = [N/2].

VIII. INITIAL-BOUNDARY VALUE PROBLEMS

Consider the following initial-boundary value problem in
the domain D = (x,, x.) x (o,at)

Dtu = Lu Xy < X < Xy 0 < tcpt
u(x,0) = f(x) X, £ X <%

(BVP)
u(x,,t) = g(t) o< t< at
ul{x,,t) = h(t) 0 <t< At

Using linearity this can be broken down as wusual into
component subproblems by treating each of the functions f(x),
g(t) and h(t) in turn, assuming the remaining two function
to vanish. We denote the problems specified in this manner
by (BVP) , (BVP)g and (BVP)y. The latter two problems
are nearly identical,” of course, and any statement concerning
one can be directly transformed into an analogous statement
concerning the other. In the following discussion we shall
first consider problems (BVP) and (BVP), and then turn to
problem (BVP)¢. g
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The most important particular forms of problems (BVP)
and (BVP) j, are those with the canonical boundary data g

g(t) = hy/z(‘) o<t <&t (8.1)
for problem (BVP)g and
h(t) = hW2 (t) o<t <&t (8.2)
for problem (BVP)h. The boundary expansions
#N N
W\“xl and WY'xz

were defined by (6.2) and (6.6) with precisely these problems in
mind and we have the following result.

Clib b N o Let vy, N, o > O, where N is an integer, and
let (A) hold with N + o« > 0 in an interval [x,, x, + d]
for some d > O, 1f ug denotes the solution of (BVP) such
that f(x) = h(t) = 0 and (871) holds then there exist aat > 0
and a constant K > 0 such that

lu_(x,t) = WIN (x| <k STV (8.3)
g lel

uniformly in D. Similarly if (A) holds with N +a> 0 in [x. -d,

x, ] for some d > O and if up denotes the solution of (BVP)

such that f(x) = 0, g(t) = 0 and (8.2) holds, then

lu (x,t) - WY )< Kk /TS (8.4)
Y’xz

uniformly in D.

See Theorem (3.3.1) of Reference 1.

The intuitive reasoning behind this result is, first, that
by their very construction the boundary expansions will
accurately approximate ug and up near the respective boundaries
x = x, and x = x:, and secondly, that these expansions, and
these derivatives, decay exponentially away from the (first
boundary and thereby effectively satisfy the homogeneous equa-
tion (2.1) and vanish at the opposite boundary. The theorem
is established by incorporating these ideas into a formal appli-
cation of the maximum principle for parabolic differential equa-
tions.

Theorem (8.1) can clearly be generalized to include functions
g(t) and h(t) which are finite linear combinations of functions
h y/2(t).  Furthermore, if g(t) (or h(t)) possesses a jump dis-
continuity in the form




T

0 0O<tc<t

[o}
g(t) = hy/z(t-to) =; v
/t—to /(y/2)! t >t

(o]

where 0 <t < At then “g can be approximated by the function

i 0 0<t < t
#N

‘ wY'x (x,t-t)) t, <t <oat

Thus, Theorem (8.1) can be directly extended to include any

piecewise continuous boundary values of the form

N $ ) (8.5)
or = a, h (t-t + e(t) .5
h(t) I k=1 X T2k |

where 0 < y < N and e(t) is an error term such that
le(t)] < K /B*°

for some constant K > 0. In this more general case however
the term on the right hand sides of (8.3) and (8.4) should
be replaced by

K /i N+a

since the lowest possible value of vy, y = 0, must be used.
We shall not formulate an additional theorem to express these
results since they are straightforward consequences of Theorem
(8.1). This concludes our treatment of problems (BVP)g and
(BVP) 1, and we turn now to problem (BVP)s.

The regular and special expansions which we applied to
the Cauchy problem in Section VII are still meaningful in the
context of problem (BVP) , provided f(x) and the coefficients
a, b and c¢ are sufficiently differentiable. In fact, for sufficient-
ly small times, these expansions will accurately approximate
the solution of (BVP) except in regions close to the boundaries
X = X,y Xje Theorems (7.2) and (7.3) of the last section
remain valid with only minor modifications and may be stated
as follows:

b Let T C (x,, x,) be {0, open interval, let
(A)hold in I with N +a > 1 and let fe C (I). If uf denotes
the solution of problem (BVP) when g(t) = h(t) = 0 and if

Y
Nt = 1 L g ke (8.6)
k=0




where N = [N/2] then there exists a at > 0 and for each compact
subset S C 1 there exists a constant K such that

lugtx,t) = WNx, 0| < k & N (8.7)
uniformly in S x [o,At].
See Theorem (3.2.4) of Reference 1.

Let 1 C (x:1, x,) be an open interval, let
(A) hold in 1 with N + o > 0 and let x, ¢ I. Let U denote
the solution of (BVP) such that g(t) = h(t) = 0 and suppose
that

f(x) = hy(x - xo)

for some v >0 and x: < x < x,. If ¥ + N + e > 1 then there
exist a constant K > 0 and a 4t > O such that

luge,t) - VY ot ] < Kk /T TS (8.8)
Y,Xo
uniformly in [x,, X,] x [o,at]. Similarly if

f(x) = h* (x-xo)
then #N Y Y+n+ o
lag(x,t) - VY L (ot <K /t (8.9)
%o
u%{ormly in [x4, x,] x [0,At]. Here the functions VN . and
v are defined by (6.1) and (6.5) Y%
* %o

See Theorem (3.2.5) and (3.3.3) of Reference I.

By combining Theorems (8.2) and (8.3) we can obtain a
result, for problem (BVP)g¢, almost identical to Theorem (7.5)
in which initial values of the form

K N
f(x) = T(x) + } ] o .h.(x-x.)
are treated, where T ¢ C Mta(1) with 1 C (x,, x,). The only
modification would be that the restrictions on N, a and y would
now be N, a, v > 0 with N + a>1. We omit a formal statement
of this Theorem. '

Our analysis is still not complete however since we have
little information about the behavior of U near the boundaries
X = X1, X2, even when the open interval in Theorem (8.2)
and (8.3) can be taken as 1 = (x,, x,). The dependence
of the constant K on the compact subset S C 1 is a critical
weakness since it means that no single constant K exists such
that inequalities (8.7) and (8.8) hold uniformly in all of D.
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Let us consider, therefore, how to improve our approximations
in the vicinity of x = x,.

Since the closest discontinuity in the initial values f(x)
(if any exists) occurs at some finite distance away from x
= x, then we may suppose that f(x) is smooth, say of class

C N+a in some neighborhood of x = x,. The regular expansion
(8.6) is thus well defined for x in this region but cannot
approximate uy accurately since along x = x, it assumes the
(in general) non-vanishing values
' N
UN(xz,t) = ] ALY f(x,) X /K1
k=0
In effect UN is approximating the solution of the wrong problem,
namely one for which
N
ho) = L g, (8.10)
k=0
along x = x, instead of h(t) = 0. To counteract this it would
seem natural to adjust U by subtracting away the solution

of problem (BVP), for which h(t) is given by (8.10). But
in this form h(t) is simply a finite power series in t so the
methods already developed for problem (BVP), apply and lead
us to define the following N-th order rigﬁt hand boundary
correction for problem (BVP)

(k) N-2k
N L f(x,) w2k,x2 (x,t) (8.11)

WN(th) =

11 ~1 22

k

Similarly, we define the N-th order left hand boundary correc-
tion for (BVP)f by

N

Wi 2 70 L g w2k oy (8.11) 4
k=0 M

We can now state the following theorem:

P c Let N, « > O with N + o« > 1, let (A) hold
in (x,, x,) and let a, b, ¢ be of class C N*+ain [x,, x, + d)and
(x, - d, x,]) for some d > 0. If f e CN+a ([x,, x,]) and
if ur denotes the solution of (BVP) when g(t) = h(t) = O then
there exist a At > 0 and a constant K > 0 such that

|(uf - Uﬁ + wN + w#N) (x,t)| <K /;N...a (8.12)
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uniformly in D = [xl,xz] x [0,At].
See Theorem (3.3.6) of Reference 1.

This essentially completes our discussion. Uniformly valid
approximations for ug when

flx) = h (x - x)

or Y o
f(x) = h* (x - x_)

Y (o]

in the cases where y = n, a non-negative integer, can be obtain-
ed by repeating the device of Section VII involving identity
(7.5) and applying Theorems (8.3} and (8.4).

Thus, to summarize this section, we can construct approxi-
mate solutions to problem (BVP) yhich, for sufficiently small
at > 0, are accurate to order at ' uniformly in D whenever
g(t) and h(t) have the general form (8.5) and

K N

flx) = F(x) + a, . h (x - x)
kZ,-l ]Z=o kiv k

where f ¢ C N+o ([x,, x,]). Each of the terms in these forms

can be treated separately because of the linearity of problem
(BVP) and the general result obtained by superposition.
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APPENDIX ~ THE COEFFICIENTS a

Y,n,k Y.n,k

The coefficients &y n k and By,n,k appearing in (5.7)
and (5.15) respectively can be obtained from formulae (5.8)
and (5.16) respectively. Since these become somewhat laborious
to compute explicitly as n increases we include here the results
for cases n = 0,1,2. For larger n it would seem advisable
to utilize a symbol manipulation program to double check the
results.

In the following formulae let

Ei = ai/a° i=20,1,2
Bi = bi/ao i = 0,1
¢, = ci/ao i=20
n=20
*y,0,0° 1
By, 0,0 =1
n=1
a -1 (v31)a3, + 1 (y+1)b
Y.I,O Z 1 -2 [o]
1 1
°1,1 =7 31 2%
1
1,2 = "3 9
8y,1,0=0
1. 1
BY,l)l - Z 51 -2. BO
1
BY’I’Z - —2 a.l
n =2

T12,0 T b (2@ -1Tyr 7 v (4208 + 3y(ve2)T,

+ 3-12 12 (72-4)3 f + %Y(Y-l)(y-ﬂ)ﬂlgo + -é Y(y+2)sz

GY,Z,I = = .852'.'2 Sl- 'zc°+ 3‘2 (2Y 4'1)31 - BY(Y-I)KIEO- '8(2Y+1$°
43
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f ‘i aYazsz
0792|3

*n2,4

| Bszso
é ® v2,1

8 ¥,2,2

8 Y.2.3

BY!294 -

For completeness

ay,n,k and B8

Y,n,k’

and (5.17) respectively:

1 1 1 2 2 1 - 1 ¢2
z 32— -2- Bl - '1-6 (ZY +1)81 - zyzlbo + 'z BO
1= .3 =% 3= 2 ‘
g Ayt 7 b, +g 8
3 =2
79
0
1 1 = 1 3 2 ) 1= 2
B +7b 73St A -7 8P *BY
1 1 3.2 1 == 1= 2
3838 - TN+
1 - 3 2 3
-3 8, +gf "+ 3B,
3 =2
yARS|
we also list the intermediate coefficients
n = 1,2, appearing in equations (5.9)
-&1,1,0 = bo
T, T
B..1,0= %
B, "3




A e e ———

- 1 14 2
: BY'2'0= aO[C°+ZEIB°"'zT‘o]
’ - 5 1= 2
RN TS UL A
_ 3.2 3
| 82,2 % 3 -3 -7 %]
! _ 3 2
‘ BY’2’3-ao[—-z !l]
i
|
|
|
f i
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