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SUMMARY

A frame indifferent tensor relation between stress,

stress-rate, strain-rate, and strain-acceleration is constructed

to describe the response of ice to maintained constant stress

and to maintained constant strain-rate in uni-axial stress.

It is shown that the two types of response reflect some common

properties of this viscoelastic fluid law, but that each type

contains further independent features, so that both are

necessary to determine the required response functions. The

shape of the tensor relation cannot be determined by uni-axial

response. A reduced model with response functions of single

argument is constructed, and correlated with an idealised

family of constant stress responses. The extent to which the

reduced model can reproduce the complete response is illustrated

for two different families. Next a viscoelastic solid law

relating stress, stress-rate, strain and strain-rate is shown

to be compatible with the same uni-axial responses, but

dependence on the reference configuration through strain allows

a description of initial or induced anisotropy. A small strain

approximation is constructed. However, this minimial form

involves three independent response functions for an initially

isotropic solid, and constant load and constant displacement

rate responses provide only two relations. A further restriction

must be imposed to complete the descrintion ut the simplification

to constant modulus at constant strain-rate is s wn to be

incompatible with expected response. We are now investigating

£ alternative simplifications. Note the contrast with the minimal

fluid model which is overdetermined by independent constant stress

and constant strain-rate responses.
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Viscoelastic Fluid Law For Ice

L. W. Morland and U. Spring

School of Mathematics and Physics
University of East Anglia, Norwich, (U.K.)

Abstract

A frame-indifferent differential operator law relating

stress, stress-rate, strain-rate, and strain-acceleration, is

constructed to describe the qualitative features of both constant

stress and constant strain-rate response in uni-axial stress

experiments. The structure of the tensor relation cannot be

determined by uni-axial data, and a variety of models reducing

to the required uni-axial form are presented. The differential

law allows exact description of a family of strain-rate curves

at different constant uni-axial stress, and some features of

the stress curves at different constant strain-rates, showing

that constant stress and constant strain-rate response reflect

some common material properties, but also reflect independent

properties. That is, both types of response are necessary to

define the material. A reduced model which adopts a restricted

form of dependence on stress and strain-rate invariants is also

analysed. Idealised families of constant-stress responses

are constructed arid various forms of limited matching to the

reduced model are presented to show the extent to which the

simplified law can describe the complete response.

.1
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Introduction

In ice engineering the mechanical response of ice under

maintained stress is required over times sufficient for creep

to strains of a few percent, or to rupture at appropriate

stress combinations. Thir covers the instantaneous elastic

strain, primary decelerating creep, secondary or approximately

steady creep, and some part of the accelerating tertiary

creep which on glaciological time scales is supposed to

approach steady creep. The Young's modulus and bulk modulus

of ice are of order 1010Nm- 2 (Sinha 1978, Mellor 1980), so

that a moderate uni-axial compressive stress of 10 6Nm-2

(10 bars) induces an elastic strain of only 10-4 compared

with creep strains of 10-2 common in application, and it

is convenient to neglect the elastic response and model only

the creep. The constitutive law may still be of "solid type",

depending on a reference configuration, which is essential

to model anisotropy. While both initial and induced anistropy

can be significant there has been no systematic investigation

(Mellor 1980), so a realistic constitutive model is not yet

feasible. Here we focus on a differential operator "fluid type"

model to describe observed viscoelastic creep, necessarily

isotropic in all configurations.

Constant uni-axial stress experiments to determine the

short time, small strain, creep have been reported by Sinha

(1978a, 1978b) and Gold and Sinha (1980). Total creep times

were typically of several minutes duration with maximum

strains of order 3 x 10-4 , but a wide range of constant

L EM. .........
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temperature, 228K to 263K, was covered. The results are

used to infer an empirical relation for the uni-axial strain

at time t in terms of the stress and time explicitly, which

incorporates instantaneous elastic response, recoverable creep,

and viscous flow. It is not shown how the relation can be

related to a three-dimensional tensor law (coordinate invariant)

necessary for combined stress loading, nor is it clear how

the response to a non-constant stress history is deduced since

there is no superposition principle for non-linear response.

We will now examine a frame indifferent tensor relation which

contains the minimum dependence on rates necessary to describe

the main qualitative features of uni-axial response. As

demonstrated in an earlier more limited treatment (Morland 1979),

uni-axial response cannot determine the shape of a tensor

relation, which would require tri-axial (three independent

principal stresses), or combined shear and axial stress, tests.

There are an infinity of tensor relations which reduce to the

same uni-axial response, so that construction of an explicit

tensor relation requires many more azsumptions about shape and

the arguments of response functions. The various restrictions

and possible alternatives are noted in our illustrative

construction.

Mellor (1980) has described qualitatively the uni-axial

response at constant temperature under constant compressive

stress and under constant compression strain-rate. He notes

that data from both tests must reflect the same material

properties, but points out that no common rheological model

simulates the observed responses in both tests. We now construct
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a differential operator viscoelastic fluid law which describes

the main features of the responses in both tests, showing

that neither the constant stress nor constant strain-rate

data can determine the law completely, so that these two forms

of response do indeed contain independent information and

neither reflects fully the mechanical properties. This contrasts

with the theory of linear viscoelasticity for which the

existence of a linear hereditary integral law (Gurtin and

Sternberg, 1962) implies that a unique description is determined

by the creep functions, namely response under constant stress.

Figure 1 shows the axial strain-rate r(t) for a

uni-axial compressive stress a applied at time t = 0 and

maintained constant. In the primary creep am, r decreases

from the initial strain-rate r (a) to the minimum strain-rate0

rm (a), both, in general, depending on the stress level a

and the turning point m corresponds to the inflexion point

(or secondary creep) on a strain-time curve. In the tertiary

creep me, r increases from rm(a), and we suppose an

equilibrium strain-rate re (a) is attained asymptotically,

corresponding to the commonly assumed steady creep appropriate

to many glaciology applications. In Fig. 1 we have shown

re (a) < r (0), and will present analysis for this case, but

a similar treatment can be given for the case re(a) > ro(a). k

The time to minimum strain-rate is t (a), which increasesm

significantly as a - 0 so that minimum strain-rate is not

attained in many low stress laboratory tests. A steady creep

law for glaciology applications should be the tertiary limit
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r e(), not the minimum strain-rate rm(G), but Mellor (1980)

suggests that the distinction diminishes as stress decreases

and may not be significant at deviatoric stresses below

iO5Nm- 2 (1 bar) typical of many glaciology situations.

Figure 2 shows the uni-axial compressive stress a(t)

when the axial strain-rate r is held constant. In the first

stage OM, a rises from zero to a maximum stress aM(r)

at time tM(r), then decreases in the stage ME, to an

asymptotic equilibrium limit a E(r) for consistency with

a tertiary creep limit re (a). Mellor (1980) also suggests

that aE - aM as strain-rate - 0. The assumption of a

steady (finite rate) creep re(a) as t - at constant

stress a implies a correspondence with the limit aE(r)

at constant strain-rate r given by

r[E(r) = r and aEre(a)] = a

or r- (r) = aE(r) and aE (a) = r (0)e EeE"

Mellor (1980) suggests that there are indications that the

maximum stress at a given constant strain-rate is the constant

stress required to produce that strain-rate as the minimum.

We will adopt this property, thus

rm M(r) _ = r and aM[rm(a)J = a
(2)

or rm(r) = aM(r) and a-1(a) = r (a)

Both inverse relations (1) and (2) are illustrated in Fig. 3.

Mellor further speculates that the strain £m(a) at the

minimum strain-rate in the constant stress test, and the strain

CM(r) at the maximum stress in the constant strain-rate test,



do not vary significantly with a and r respectively over

some range of a and r , and are approximately the same,

slightly less than 0-01.

While corresponding tensile tests are not practical

over a wide stress range it is expected that tensile response

will differ in magnitude, and be limited by tensile fracture.

In our simple illustrative model we restrict correlation

to the compression responses shown by Figs 1 and 2, but

indicate how distinct independent compression and tension

response (if known) will influence the construction.

A viscous fluid model prescribes a as a function of

r , or vice-versa, and implies constant r for constant a

and constant a for constant r , in contrast to the variation

with time shown in Figs 1 and 2. By allowing stress to

depend also on strain-acceleration, so that a is given asV

a function of r and r , the primary creep am in Fig. 1

of a constant stress test can be modelled, as demonstrated

by ?orland (1979) in the case when the minimum strain-rate is

an asymptotic limit; that is, accelerating tertiary creep

is absent. However, we will show that such a first order

differential relation for r in terms of a can describe

the full constant stress response of Fig. 1. In contrast,

the stress variation at constant strain-rate shown in Fig. 2

cannot be described by such a model which reduces simply to

a viscous fluid law, a a function of r , when r 0. By

analogy with the transient creep construction, it is necessary

to incorporate dependence also on stress-rate, so that when

r=0 the reduced form is a first order differential relation
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for a in terms of r . We will now construct a frame

indifferent tensor relation relating stress, stress-rate,

strain-rate, strain-acceleration which can model both families

of response curves, and which necessarily has the minimal

rate-dependence for this purpose. The complete constant stress

response can be matched, but completion of the model

requires some, but not all, of the constant strain-rate

response, or vice-versa. That is, constant stress and constant

strain-rate responses reflect some, but not all, of the material

properties. We also consider a simpler reduced form, and

demonstrate by illustrations the extent to which it reproduces

a set of idealised responses.

Differential operator law

The conventional incompressibility approximation is

made so that the Cauchy stress a is determined by the

deformation history only within an arbitrary additive isotropic

pressure p 1. That is, the constitutive law determines only

the deviatoric stress

S = a tra 1, tr S O. (3)

The general viscous fluid law can be written (Morland 1979)

l(I k)D + 2(Ik)[D2  2 1 (4)

or equivalently
2 2l1(jk)S +  2(jk)[ ' 1 (5)

where the strain rate tensor D is the symmetric part of the

spatial velocity gradient, and the non-trivial strain-rate

invariants Ik and deviatoric stress invariants Jk (k = 2,3)
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are
S1 trS 2

1 =-tr , I3 detD, J2 = 2 J3  det S. (6)22 2 -3

The forms (4), (5) are consistent with the requirements

= tr S , I1 = tr D EQ (incompressibility), and the

response coefficients i' 2 and I, 'P2 depend only on

two invariants 12,1 13 and J2' J3  respectively. Analytic

inversion of the general forms (4), (5) is not possible, but a

conventional glaciology flow law assumes #2 = 0, l = (J2) ,

which implies 2 O, l 0i(02) given implicitly by

#II2 [2 (2 £i (7)

Clearly, uni-axial response cannot determine two functions

010 2' or 1 ' 42' each depending on two arguments 12, 13,

or J2 ' J3 ' respectively,and furthermore, bi-axial tests

determine only the same combination (312) #1 + I2 2  on
3 h 3

13 = ±2(I12/3)Z , or (3J2 ) 41 + J on J ±2 (J 2 /3)7 , with

two independent principal stresses al , V 2 = '3 (Morland 1979).

This is a direct consequence of incompressibility tr D = 0 which

imposes one relation between the principal strain-rates,

d + 2d2 = 0 in bi-axial deformation, and correspondingly

8 + 2s2 = 0 from tr S = 0 , so that each principal component of

the law (4) or (5) is a multiple of the others. Thus, tri-axial

tests with three independent principal stress components 01' 02#

a3' or combined axial and shear stress tests (shear stress and

shear strain-rate do not enter tr S and tr D ), are required to

determine two functions of two arguments. This lack of determinancy
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of tensor relation shape by uni-axial data is compounded

when strain-acceleration and stress rates are incorporated

in the law.

A varying strain-rate r(t) under constant stress,

Fig. 1, can be modelled by including stress dependence on

the strain-acceleration of a material element, measured by

the second order Rivlin-Ericksen tensor

A (2 ) = 2D + 4 D2 + 2(D W - W D) , (8)

where the rotation rate W is the skew part of the spatial

velocity gradient

L = D + W. (9)

A (2 ) is a frame indifferent tensor. Note that

trA ( 2 ) = 4trD2 = 81 (10)
- - 2

since trD 0 0, tr(D W) = tr(W D), while second and third

invariants will depend on 12'1 3* All products of powers of

D with powers of A with coefficients depending on

(2)
invariants of D, A and such products, are frame indifferent,

so there is no simple compact frame indifferent expression.

Following Morland (1979), the dependence on strain-acceleration

will be limited to the first power A but here, the

coefficient is allowed to depend on 2 as well as on 121 131

J2 ' J3 ' to construct one model which describes both primary

and tertiary creep.

Similarly, a varying stress o(t) at constant strain-rate,

Fig. 2, can be modelled by including a frame indifferent deviatoric

-.
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stress rate

S + S(D + W) + (D - W) S, trS (I ) = 2tr(S D), (11

with coefficient a function of all invariants, but here limited

to 121 13' J2 ' J3 ' J2 ' Thus, an appropriate frame indifferent

relation between D, A ( 2 ) , S, S ( , is

0 + 3tr(S D)] =i + 2D 2  211 + + DW- WD] (12

where the D2 term of A (2) is incorporated in the term. Note
that A (2) = O = even for W = 0. In one model

0 A 5=O 'l 2'

*1 are functions of 12' 13' J2 ' J3 ' but *31' P3 depend also

on I2' J2, respectively. An alternative dependence on

strain-acceleration and stress-rate only through the rate invariants

2' aJ2' is obtained by setting 43 = ' 3 = 0 and allowing

*, to depend on the rate invariants. The mixed combinations

*3 = O, *3 # 0, and 3 = 0, 3 0 0 are also considered.

Again, uni-axial response cannot determine such a shape

distinction.

Uni-axial response

Now consider a uni-axial compressive stress - = a > 0,

other a. = 0, with corresponding strain-rate -DII = r > 0,1)

D22 D D33 = r , other Dij = 0, and zero rotation-rate W S 0.

Then

0 0 S() + 0 o r , (13)



-2r 0 04r 2  0 0

1 0 r2  O , 2D+ 4D2 1(14~O 0 r 0 0 rj (2)

30

J2 3 J30 27 2 312)2 J 2 o tr S (1) 2ro a (15

3

1 2 2 3 1 2 3 2r Tr,- 2 ( 2 ) , ir r~ 1  r (15
3 2732

12= = 4 - 2( ) I12 2

Each principal component of the law (12) gives

2 2 1 2
i1 + * 3 ( -ra0) =+)ir- ) +4)3  (17

where l' 02' 3 depend on r and r through (16), and *i, 43

depend on c, a, and r through (15).

For constant stress, a = 0, (17) reduces to

3+ 1r - 2 or2  + 2 2i , (18.

which is a first order differential equation for r(t) given the

constant a and an initial condition

r(O+) = r0 (a) . (19.

Similarly for constant strain-rate, r = 0, (17) reduces to

2 * 2 2 1 22 ; + 4slo - _ 3 ra = $ir - 42r (20)

which i a first order differential equation for o(t) given the

I
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constant r and an initial condition

o(0+) = 0. (21)

The non-linear differential equations (18) and (20) must have

unique positive solutions r(t), o(t) in t > 0, and for

each constant a and constant r respectively, describe qualit-

atively at least a class of response curves of the form shown in

Fig. 1 and a class of response curves of the form shown in Fig. 2.

While it was not anticipated that a first order differential law

would match a given family of constant stress responses exactly, we

find this can be achieved by appropriate choice of the coefficients

in (18). In addition, (20) can then ,ratch the family of primary

stress increases at constant strain-rates, but predicts the stress
relaxation..

symmetric response in tension requires a , a to change

sign with r, r, which is a restriction on the a,r dependence

of the response functions. Independent compression and tension

response will in general require dependence on both even and

odd invariant in the uni-axial r ductions (15), (16), where

J = +2(.J 2 ) and 13 = +2(. 12 ) for tension. *l' 2' 3

*1i j 3 determined as functionsof r, a by correlation with

compression data can, in principle, be expressed as functions of

12 or 13, or a combination, and J2 or J3 ' or a combination,

but different dependences on the invariants will predict different

tension responses. Hence, complete knowledge of both tension

and compression response provides a restriction on 12' 13 and

J21 J3 dependence. A simple example is the viscous law (4),

which becomes 2 a= Oir - 1 2 r 
2 , subject to symmetric tension-

compression response requiring a/r invariant. Then the
1.



combination - must be invariant as r changes sign,
1 ir 2

suggesting that i depends on 12 and I3 and 2 is an

odd power of 13 multiplied by a function of 12 and 12

This assumes smooth response as r -* ±0. We now focus on the

laws (18) and (20)for uni-axial compression, Y > 0, r > 0.

Constant stress response

An essential feature of the creep curve shown in Fig. 1

is the repeat of the strain-rate values in rm(O) < r < re(G)

during tertiary creep t > tm (a). If we considered re (a) > r (a),

then the duplicated values would be in the primary creep range

r (a) > r > rm (). Thus, the differential equation (18) must

describe a double-valued r for rm (a) < r < re (a), with

=r < 0 during the primary creep, t < tm (a), and

r r+ > 0 during the tertiary creep t > tm(O), and r(t m ) 0.

The necessary form compatible with (18) is

i2 + f(r,o)r = F(r,a), r(O) = r (a) > 0, (22)

which implies

2r =-f ± (f2 + 4F), = 2 (23)

The relation of f and F to the response coefficients is

deferred until the constant strain-rate eauation has also been

treated.

By (23) we see that for each a and each r that F > 0

is a necessary and sufficient condition for one root r< 0 and
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one root > 0; hence

F(r,a) > 0, rm(a) < r < r e(a) . (24)

For r- 0 and r+ 0 0 as r rm (a), it is necessary that

f[rm (a), a] = Frm(a),J = 0 , (25)

and r switches from r to r+ as t passes t M(a)

provided that

8r = [I + f(f2 + 4F)- ] 2 -(f2 + 4F)k + (f2 + 4F)

> 0 as t -t (a)- ; (26)

that is, if

Df/3r > 0, DF/Br > 0, at r = rm(a). (27)

Since f(r,a) and F(r,a) have no role in r < rm(a), it

is convenient to extend them continuously by

f(r,a) R F(r,a) - 0, r < rm(a). (28)

The asymptotic condition r - r (a) as t * requires
e

* as r re (a), which implies

F[re(a),al = 0, (29)

and since there is only primary response in r > re (a) we set

F(r,a) 0 , r ) re(a). (30)

e

By definition, the time to approach r e(a) in tertiary creep is
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unbounded$ that is

r 2dr'

tMl() + f (as r - re (a), (31)2ma f(r,)+ 4Fr,) - f(r',a)

while the time tm(a) to minimum strain-rate is bounded:

r o (a)

tM(a ) = 2 2dr' < Go (32)
[f 2 (r,a) + 4F(r',o)] + f(r',a)r (a)

Given that fire( = - r at r = re(a) is not zero and

f is analytic there, the unbounded integral (31) requires

F(r,a) ,< O(re - r) as r re (a), (33)

and the bounded integral (32) requires

f(r,) + Uf2 (r,a) + 4F(r,a)] > O(r - r ) as r * rm(a), (34)

together satisfied by

f - O(r - rm), F O(r - rm) as r r r(5rmm' ( 35 )

F = O(r -r) as r - re e

Note that condition (30) implies the reduction of the

differential equation (22) on r (a) > r > re (a) to

+ f(r,a)] = 0, r(O) r0 (),
r O, r=-,(36)=- -- 0, f--

+

which permits a solution r = r0 (a). The branch r - f(r,a),

with f > 0, determines the primary creep. At the branch switch
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tm(a), F =0, r+ = 0 =, but r > 0, and r+ becomes

positive.

For numerical correlation with an idealised family of

uni-axial response we consider a reduced model involving

functions of single argument, which could be expressed in terms

of invariants I2 J2 " Define

a1= r2 - r2(c)m ' = Ur2 - re()Jr (c) - r2] , (37)

and restrict r dependence by

f(r,a) q(a) f(11 ), f(41 ) =0 for C1 0,

(38)

F(r,o) = q() F (), F(Q2 ) 0 O for 2 0 ,0

which satisfy the requirements (25), (29), and subsidiary

conditions (28), (30), identically. The choice of arguments

alQ 02' is for direct expression in terms of The

conditions (35) become

F(02) Ol 2) as 02 0, f(a1) = O( 1 ) as a1  0. (39)

As r increases from rm to r* = [.Ir 2 + r 2)j a2  increases
from zero to 1(r 2 r2), then decreases to zero as r increases

from r* to re. Thus 12 (r) has duplicated values in

rm 4 r 4 re, which will restrict correlation over the full

primary-tertiary creep response. As r increases from rm to

ro, 0 is strictly increasing. With the forms (38),

I
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r (a)
1 f 2dr'

tm ~ cY (aC-qafm a 2(Qj) + 41F(a)] + Y(ai~'(0
r m (40)

12= 2 rm (r 2 - r2 ) (r
2 - r,2)

Constant strain-rate response

Analogous to the constant stress analysis, the necessary

form compatible with (20) to describe a(t) at constant r

shown in Fig. 2 is

2 - g(r,a)o = G(r,a), a(0) = 0 , (41)

which implies

2o = g - (g2 + 4G) 2( § -3 (42)

For > 0 and < 0 on the duplicated stress range we

require

G(r,a) > 0, aE (r) < a < aM(r) , (43)

while -+ 0 and 0 - 0 as a - aM(r) requires

g~r,aM(r)] = G[r,aM(r) ]  = o. (44)

switches from a+ to a_ as t passes through tM(r)

provided that a < 0 therej that is, if

ir > 0 > 0 at a = aM(r). (45)
r M
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The asymptotic condition a aE(r) as t requires

o-*0 as a aE(r), which implies

G[r,oE(r)] = 0 , (46)

and an infinite relaxation time requires, given

g[r,a E(r)] at a = a E(r) is not zero and g is

analytic there,

G(r,a) < O(a - aE) as a - aE(r). (47)

The time to maximum stress is
M(r)

t(r) f 7 2da' < (48)
0 [g 2 (ra') + 4G(ra')P + g(r,a')

provided that

g(r,u) + [g 2 (r,a) + 4G(r,a)J > O(aM - a) as a a ms(r). (49)

Conditions (47) and (49) are satisfied by

g = 0(a M - a), G = 0(aM - a) as a a 0 m #

(50)

G = O(o - aE) as - a E

We can set

g(r,o) G(r,a) 0, a . aM(r),

(51)

G(r,o) 0, a %< aE(r).

Now on 0 4 a a OE(r), (41) becomes

- g(r,v)j = 0, 0o) - 0, (2
(52)

+ -g, _ 0
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which allows a solution a 0. However, the primary response

is qiven by &+ = g(r,a), and at the branch switch tM(r)

where G = 0, 0 = , a becomes negative since a < 0.

Now we apply the inverse relations (1) and (2) which state

that the curves r = rm (a) and C = aM(r) in an (r,a) plane

are identical, and the curves r = r (a) and a = aE(r) are
eE

identical. Furthermore, r < rm (a), or (1 < 0, corresponds

to a > aM(r), and r > re(a), or a > 0 and a2 < 0,
corresponds to a < oE(r). Thus the conditions (51) become

g(r,a) E G(r,a) 0 , r < rm( ), (53)

G(r,a) =- 0, r >, r (a).

Conditions (28), (30), (53) are illustrated in Fig. 3.

Corresponding to the reduced model (36), (37) we define

g(r,a) = s(r)q(a)g(Vl ), g(11 ) - 0 for Qi 0,

G(r,a) = q2 (O)G(), G(a2) 0 0 for 12 O, (54)

G(Q2 ) 0 (a2) as 02  o, (01) = 0(0) as L2 0,

which satisfy the requirements (53) identically, and provided

that r;(a), a (r) it 0, satisfy condition (50). It is found

that the extra factor s(r), here, or as an f factor in (38),

is necessary for time scale control.

Response coefficients

We now construct four sets of response coefficients 11i 43'

*I' 02' *3 which reduce the constant stress and constant strain-rate

relations (18) and (20) to the required forms (22) and (41). The

first supposes that *3' P3 # 0 so that there is rate dependenceLli
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through both tensors A( 2 ) and S(1), and the second

assumes 43 =P3 = 0 so that rate dependence is through I2' j2

only. The other two are the combinations 1 3 = 01 03 r 0,

and 43 = O 3 0. With each set there is the implication

F(r,a) G(r,a), shown in Fig. 3, which represents the coupling

of constant stress and constant strain-rate responses in this

model, or the extent to which they hinge on a common material

property.

In the case 03 W 0, 3 & 0 we can take 41 = 1 without

loss of generality. Then, restricting rate dependence to the

new 0 3' i3 and comparing (18) and (22), shows that

3= + f(r,a), f(r,a) when r = 0, (55)

so 03 is a function of 12' 12' J2 ' 13' J3 in general.

Comparing (20) and (40) we find 3 is a function of

J21 2' J 2 ' 13' J3  given by

2 = - a + g(r,a) - r , g(r,a) - r a when 0 = ; (56)

this sign choice gives G = + F. Then (2), (41) are recovered

with

F(r,cy) = G(r,a) - 4ir + 4 2r - rag(r,a) + r a2 + a , (57)

so that ' 1 2 are functions of 12' J2 ' I3 J3 only. Again,

only a combination of i1 2 is given by F.

In the case 4)3 =3 = 0, restricting rate dependence to

*1, the above comparisons show that

2 = _2 f(r,a)r - a2 + g(r,a); + (r,a),
5*10 (58)

F(r,a) = G(r,a) = - Oir + 1 r2 + (r,a58
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where *1 depends on I2 J2 ' 121 J2 1 131 J3 ' and a combination

of I and 02 depends on 12' J2 ' 13' J3 " Normalising by

= 1 changes i but reproduces the tensor law (12)

with coefficients given by (58). The arbitrary a(r,a)

represents in (12) an S term with rate-independent coefficient,

with corresponding D, D2 terms. This generality is lost in

the first construction where rate-dependence is restricted to

$31 *3 after setting C = . Clearly, the uni-axial response

functions f, g, F cannot determine a(r,a) in this model.

Alternative models with 0i' 2 rate dependent can be constructed.

Similarly, again excluding rate-dependence from 0i' 2)

for 03 01 O 3 = O,

= r + f(r,c),

i a a + + b(r,o) , (59)= g (r,ac)i

F(r,a) = G(r,a) = - Oir + P$2r + b(r,a),

and for 03 = O, *3 0,
I 93 = - + g(r,a) - r a

2 -2

2 1a = - r -(r,a)r + c(r,c), (60)

F(r,a) = G(r,a) =-ir + 2 2r + r 2 - rag(r,a) + c(r,a)

where b(r,a), c(r,a) are arbitrary.

The variety of dependence of the response coefficients on

r and a eliminates simple dependence on integral powers of 12,

J2, but including 131 J3 allows rational functions of integral

powers. Dependence on tr(S D) = ra could also be incorporated.

Uni-axial response does not distinguish the various forms of

!9
iI
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dependence. Each of the four models described above will predict

different response in any non-uni-axial stress geometry, for

example, simple shear stress or simple shear motion, and different

dependence on invariants within each model similarly predicts

different response. Finally, following Morland (1979), a

tentative initial condition for the tensor law (12) when stress

is prescribed is
1_ 2 ro(a)

D(O) = h(J2 )S(O), h( 3 o_ (61)

Uni-axial response functions

It is evident that three functions f(r,a), g(r,a), F(r,a)

cannot exactly reproduce independent strain-rate curves r(t)

for each constant a and stress curves a(t) for each constant

r. A differential operator law including only strain-acceleration

and strain-rate evaluated at current time is a restricted history

dependence. We can incorporate the important properties rm(a),

re(a) through the Gi' % definitions (37), and the associated

properties aM(r), ar(a) through the inverse relations (1).

Because of the restriction F = G there are two functions f, F,

available to correlate with constant stress response, but then only

one function is available to correlate with constant strain-rate

response, or vice-versa. Thus one class of response is given

priority. We will develop the former case, but a similar

procedure applies to the latter.

For each constant a the given strain-rate response

determines r+(t) = R+(r,a) > 0 and r_(t) = R_(r,a) < 0. By

(23),

r r rro f (R + R), (f2 + 4F)k = R , (62)

[.
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with F E O and R+ E for re < r < ro . Recalling the

sufficient analytic requirement (35), we can write

f = (lf, F = ,2F, (63)

where f, F are non-zero at r = rm (a) and r = re (a), and

factor al from (R+ + R-) data near r = rm (a), and

Q2 from (R+ - R_) data near r = rm(a) and r = r e(a).
A -

f, f are given directly by (62)1 and then F, F by (62)2, and

solution over a maximum (r,a) domain allows complete reproduction

of constant stress response by the differential law.

In the reduced model (37), (38), the argument a2 of

at a given constant a is duplicated in the intervals

rm 4 r 4 r* and r* < r 4 re where

r*= [(r + r2)]" (64)

Thus the relation (62)2 can be used in only one of these intervals.

We apply (62) on the intervals rm < r 4 r*, re 4 r 4 ro, so

that F is fully determined, and (23)2 on r* .< r < re to

complete f. Hence primary creep is matched over the complete

range rm .< r r r0, but tertiary creep only over rm 4 r 4 r*,

so that the reduced model predicts tertiary creep over r* c r r*,

continuous with data at r* and re. The important primary-tertiary

transition is matched. This correlation has determined

f - q(Q)?( .1 ) and F q()( on o< a1  r2(o) - r2(a)

and 0 < C 2 < (a) - (a As the constant a is varied

there will be a common range of 41 and of t2 over which T

and F are already determined, and hence f and F within the
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factors q(a), q (a) respectively. But independent

response R+(r,a), R_(r,a) at a different a will require

f(r,o) satisfying (62) with r dependence in general not

compatible with the above functions. Thus the restricted r

dependence of (38) allows the detailed time response at one

constant a only to be described, but does incorporate the

properties rmr (a), re (a), and ro (a), for all a . We

suppose rm (a), re (a), r0 (a) all increase with a , and also

that r0 - rm and r* - rm increase so that the ranges of both

C11 and a2  increase as a increases. Hence we correlate

the time response for the maximum a, = Z say. Setting

q(Z) f , ?( C1 ) and F( a2) are now fully determined, and

the factor q(a) allows one more feature of the constant

a(<E) curves to be reproduced.

For illustrations we prescribe in turn tm (a), related

to q(a) by (40), and cm(a) = 0O01 where

t (a)

em =e 1 , -m(a) = j r(t)dt. (65)m Jo

By (23), (38) r =- q(a){?( .1 ) + E2 ( 0.1) + 4F( L2)J}, which

has a solution for each constant a of the form

r_(t) - O8q(a)t,c] where 0(0,c) = ro(a) and 0(t*,O) is

determined by f and F, independent of q(a). By (40),

tm (a) = q(a)tm(,) is determined by I, F , independent of

q(a), so changing variable in (65) to t* = q(o)t gives

S- ~ J eFt*,aldt* • (66)

Thus q(o) is determined by prescribing m(a), hence Z,
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since the integral is independent of q(W).

For each constant r the given stress response determines

+(t)= S+(r,a) ) 0 and a_(t) = S_(r, ) .< 0, and by (42)

0 a < aM: g= S + S_, (g2 + 4F) S = S_ , (67)
M + +

with F E 0 and S_ O for O0 < a < E (r > re). Both

relations (67) cannot be satisfied since F has been determined

by constant stress response. This is the extent to which

constant a and constant r response reflect a common

material property under this model. g can be calculated by either

(67)1 or (67)2, when the other fails in general, or, perhaps

better, the complete initial response OM (Fig. 2) can be

reproduced by matching a+ from (42):

g + (g2 + 4F)h = 2S+ . (68)

The time variation a(t) during relaxation ME (Fig. 2) is

then predicted, but t M(r), CE (r) match given data.

In the reduced model (54), G = F and q are already

known, leaving g(Cl) and s(r) free. Setting s = 1 at the

maximum strain-rate ro0(E) , g(Ctl ) can be calculated by (66)

to reproduce the initial response OM at r (Z). Then for

rm (E) < r < r (M), s(r) can be determined to match prescribed

times tM(r), for which (48) becomes

aM(r)

t(r) a 2da' + (69)
4 Jo q(a ){s 2 (r) 2 (a) + 4F(a )]4 + s(r)g(,P)}

59
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where

a -r
2  2 r(a.), C=[ 2  2 r(c7, )] [r2 (0' 2 70

or to match the strain at maximum stress cM(r) =c [oM(r) ] .

The integral is evaluated for a sequence of s(r), each r,

until tM(r) is attained. In our illustrations, since we

cannot construct constant strain-rate responses which correspond

to the idealised constant stress responses, we set = f

and consider both tM(r) = tmEJM(r)] and cM(r) = 001,

that is CM = Ln(1.01).

Numerical evaluation of the complete functions

f(r,a), g(r,o), F(r,0), by (62), (63) and (67) or (68) in

the dependence domain of the (r,a) plane, shown in Fig. 3,

is straightforward, but the large matrices of tabulated values

are worthwhile only when a full set of good constant stress and

strain-rate data is available.

Idealised response and model correlation

To demonstrate the construction of the simplified reduced

model (37), (38), (54), and the degree to which it describes

the complete constant stress response, we have treated two

different families of idealised curves of the shape shown in

Fig. 1. Each has the form

r = re (O) - Be- bt + Ce-ct (71)

where the stress dependent positive parameters B, b, C, c

are chosen to match given ro(O), rm(o), T = ti/t m where ti
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is the time to inflexion (r = 0) on the tertiary creep curve

me, and tm (a) or c M(). In each family the Colbeck and

Evans (1973) polynomial flow law near melting is adopted for

the minimum strain-rate:

rm = 021o + 014d + 0.05505 , (72)

where a is measured in bars (105Nm -2) and strain-rate in

years .

In family 1:
1

re W rm (l + o rm(l + 2 tm = t , = 1.8, (73)

where t is value of tm at a = 1 bar. To be specific we

adopt t1 = 15 hours, within the range indicated by Colbeck

and Evans (1973). Choosing the maximum stress E = 2 bars, with

q(E) - 1, the relations (62) determine f(Cl), ( 2), and

q(o) for a < E is determined by the tm relation (40). Two

constant strain-rate responses are modelled by setting

i ) T( and determining s(r) = sl(r) and

s(r) u s2 (r) in the g decomposition (54) from (69) with

tM(r) - tmjaM(r)] - tm[r-l(r)] by (2), and tM(r) = T[a.(r)]/r,

respectively. The functions Y( al}, F( a2). 1/q(a),

l/s1 (r), 1/s2 (r), are shown in Fig. 4. A selection of constant

stress responses r(t) at a - o, given by the idealised

functions (72), are shown by the solid lines in Fig. 5, and the

corresponding responses predicted by the differential operator

model (22) are shown by the dashed lines. By construction the

e.1
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a - I = 2 bars curves match identically expect on the final

stage r* < r < re of the tertiary creep, and ro, re, rm, tm

match for all a . The agreement between the reduced model

and the parent idealised response is excellent. Figure 6 shows

the corresponding strain responses c(t) calculated from

the given strain-rates and predicted strain-rates. Stress-strain

curves at constant strain-rates r = r (a.) are shown inmj

Fig. 7 for s = sI ( ) and s = 2 -------- ). Note that

a differential operator law which predicts primary creep at

constant stress with monotonic still allows a primary

stress-strain (time) response at constant r with an inflexion

point. The assumption g = f is of course artificial, and

matching with given constant strain-rate response may yield a

different picture.

In family 2:

r rm[l + o(a)1, rO  rm[l + ke(o)], tm tla T 1.5,

ro -m (74)

k= =11,r - r
e m

and Oa) is determined by setting cm = 0.01 in (65). Again

7 and F are determined by matching the a = E = 2 bars response

except for tertiary creep on r* < r < re . First we determine

q(o) - ql(a) by matching the prescribed tm(a) for a < E

through the relation (40), and find as expected that the

independent property cm(a) - c (a), calculated from the predicted

r(t), is not 0.01. The comparison of prescribed C-) and

predicted (--..) r(t) curves at selected stresses a a is
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shown in Fig. 8, and the comparison of strains e(t) determined
and

by the prescribedLpredicted strain-rates is shown in Fig. 9,

highlighting the differences in given cm and predicted

Cm = Cc " Next we determine q = q2 (0) for the predicted

strain c m(a) at minimum strain rate, given by (65), (66),

to be 0.01, and show the corresponding r(t) and c(t)

curves (....) in Figs 8 and 9. Now the predicted tm (a )

do not match the prescribed tm (a). The primary creep prediction

appears better for the choice q = q2, but the overall match

looks better with q = ql. Matching of the reduced model

prediction with the given response is clearly less satisfactory

for family 2 than family 1. Similar discrepancies have been

obtained with T = 1-6 and k = 5 in (74). A distinct

difference between the two families is that e = ch 0

as a -* 0 in family 1, while O(a) * 00 > 0 -as a * 0 in

family 2, and while the response functions 7, F, s are

similar for the two families, illustrated in Fig. 4, 1/q 0 0

as a - 0 in family 1, but not in family 2.

Constant strain-rate responses at r = rm (a) are

constructed by determining (i) s = sl(r) for

tM(r) - tm[rm1 (r)2, (ii) s : s2 (r) for tM(r) = ECaM(r)I/r,

(iii) s - s3 (r) for tM(r) = 0-01/r, all with q = ql(a).

These are illustrated by the stress-strain curves shown

( , (-.....-), (.....) respectively in Fig. 10. The significant

peaks as r decreases, that is, large OM/aE* arise because

r./r. * 1 as a * 0 in family 1, but approaches 11.45 in

family 2.
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Section 2. Viscoelastic solid laws of differential type

Introduction

The viscoelastic fluid law described in section 1 is

necessarily isotropic in all configurations, and to describe

anisotropy, whether in an initial reference configuration or

in a subsequent configuration reached by loading, a solid

law is required with explicit dependence on a reference

configuration. No simple non-linear viscoelastic solid

laws have been constructed or analysed in other fields of

rheology, so we adopt a heuristic construction by analogy

with the successful fluid law of differential type.

Eventually we hope to construct an integral operator law

which allows more general dependence on deformation history,

and which should be more satisfactory for numerical

computation. A preliminary examination of an inteqral law

linear in finite strain shows this cannot describe important

features of ice response, so a new approach must be investigated.

Mellor (1980) notes that the typical constant stress and

constant strain-rate responses shown in Figs 1 and 2 are often

constant load and constant displacement-rate responses,

at least for small strains achieved in laboratory tests.

This is an immediate reference to the initial configuration.

For uni-axial compressive stress a > 0 there is an axial

stretch A < 1 (contraction) and equal lateral stretches

A-% for incompressible material. The deformation gradient

and associated Cauchy-Green strain tensors are
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= 0 X-h O B C= 0 1 X j , (2.1)

with strain-invariants det B = 1 and

K1 = trB = X2 + 2A-1 , K2 = 1{(trB)
2 _ trB22 ) = 2A + A-2. (2.2)

The axial compressive (engineering) strain, contraction per

unit initial length, is

e=1-A, (2.3)

and the compressive strain-rate relative to the current

configuration is

r= A-I = (i - e)- . (2.4)

Thus constant displacement-rate, which implies constant X and

e, implies constant rA . In particular, an asymptotic

strain-rate re > 0 implies that X - O as .0, e-*1

as e 0 0. With small instantaneous elastic strain ee when|e

a load is applied and maintained, the typical monotonic e - t

curve is shown in Fig. 11, indicating a 1:1 relation so that the

engineering strain-rate ; may be expressed as a function of e

as shown in Fig. 12. The dashed sections indicate the assumed

finite strain response consistent with the above asymptotic

behaviour, but we are mainly concerned with a model which

describes the small strain response, before a maximum strain-rate

and subsequent strain-rate decrease are reached. Mellor suggests
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that em , corresponding to minimum strain-rate

m = ( - em)rm, is approximately OO1 over a wide range

of applied stress.

Force per unit initial (reference) area is measured by

the nominal stress U = F-a (det F 1 1), so that

constant load is equivalent to constant a . In uni-axial

compressive stress, with = - a

= , = + (2.5)

At constant displacement rate, constant e , the typical

stress-strain curve is shown in Fig. 13, with the dashed

section indicating response beyond small strain

observations in the laboratory. Stress increases to a

maximum aM at strain eM which is also expected to be

approximately 0-01 for a wide range of e , then relaxes,

but as compression increases there must be a minimum load

followed by unbounded increase.

The most simple stress dependence on a reference

configuration is through a frame indifferent tensor function

of deformation gradient F. Then in uni-axial stress, a

depends explicitly on e . In the fluid model response to

constant stress, (18) of section 1, it was necessary to

incorporate a strain-acceleration term r to exhibit the

time variation r(t) shown in Fig. 1. Here, however,

dependence on strain-rate D, and hence on e , is

sufficient, since an e, e relation allows the strain-rate

variation shown in Fig. 12. The 1:1 e - t relation shown
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in Fig. 11 replaces the time variable by strain, but the

differential fluid model has no explicit dependence on strain

and (18) gives constant r at constant a if the r term

is absent. Again we require a stress-rate term to exhibit

a time variation a(t), and hence a(e) variation

shown in Fig. 13 at constant displacement rate. By analogy

with (12) in section (1), an appropriate frame-indifferent

differential incompressible solid law is

S+ (1[ - 2tr(S D)l] =

[F f(C)FT - 1tr(C fl + li + -D 2 -I2 ' (2.6)

where f is an arbitrary symmetric tensor function of

symmetric tensor argument, and 3' Oi' 02 are functions

of any invariants. We have normalised with unit stress

deviator coefficient, and assumed linearity in the stress

tensor rate S .

If the solid is isotropic in the reference configuration

then

f(C)FT 1r( f) - t+(K 2 - 2 ~J(2.7)

where wl, w2 are functions of the invariants K1 , K2 , and

possibly of J2 ' J3, and the rate invariants. Explicit

dependence on e in uni-axial response can be retained by

including dependence of *3 # Ole 02 on K1 and K2 with
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l = 2 = 0 ; that is, with no dependence on the deformation

orientation. The resulting response will depend on the

amount of deformation from a reference configuration, but can

exhibit no anisotropy. We will adopt the isotropic form (2.7)

with (2.6) to show compatibility with uni-axial response, and

we plan to investigate a particular form to demonstrate

anisotropy in configurations reached by simple loading paths.

Initial anisotropy in the reference configuration arising

from the ice formation will require a different shape of tensor

function f(C).

Uni-axial response and small strain approximation

In uni-axial stress described by the expressions

(13) - (16) of section 1, and (2.1) - (2.5), each principal

component of (2.6), (2.7) gives

XG + +31 = - @lx2 X-_ - 2 L 4 .

- 5[1 - 4¢2( (2.8)

At constant load, a = constant, this is a first order

differential equation for X(t) subject to an initial condition

A(O) = 1 - ee (a). From Fig. 11 we see that X(t) is monotonic

with A a single-valued function of X This suggests we

-2consider a simplified form of (2.8) with A absent, by

setting

0 , (2.9)
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though (2.9) is not a necessary condition for one real root

on 0 < A < 1. At constant displacement rate, = constant,

we have a first order differential equation for 3(t) with

X = Xt and j(0) = 0. The necessary a term to exhibit

the time variation of Fig. 13 implies i 3 7 O, though

stress-rate dependence could instead be incorporated by

dependence of other coefficients on J2, 3, with 3 0.

Figure 14 shows the variation of a with e corresponding

to the response in Fig. 13.

A small strain approximation neglecting lei compared

to unity gives lead order expressions for uni-axial response

2 2
I - A e , -A = e = r, K1 - 3 = 3e , K2 - 3 = 3e2 , (2.10)

and *3, iwi,2 can be regarded as functions of a, e if

rate-dependence is restricted to the terms S and D.

The observed non-linear response at constant a implies

that the coefficients * 3 ,1 ,1w', 2 vary significantly with

small changes of e, so cannot be approximated by their

(constant) values at K1 = K2 = 3. To compare the magnitudes

of various terms in (2.8) it is helpful to introduce a

normalised strain and normalised time by

e=Ce, t=t/t (2.11)

where C is a maximum strain (.05 say) and

IFI, Id and Ide are order unity in magnitude at their
'dt' dti

maxima. We suppose the stress unit is one bar and consider

a range jjl < 10 bars. Now (2.8), (2.9) reduce to
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+ 3O + de(2i3 + c1 +6O, (2.12) |.
3 dE C-1(31 2+ t -0- + tod o dt

and immediately 6 C - a de/dEl << d /dt , but to retain

Lhe required dependence on S D, and B, it is necessary

to define order unity coefficients

3  - 30 3w1 + 6w 2
3  0 1 w , (2.13)

0

so that (2.12) becomes

d+ _ - O. dE (2.14)dt dt

Uni-axial response cannot distinguish the w,,w2  terms, so

we have three independent coefficients W(ae), Tl(,e'),

The differential relation (2.14) does not apply directly

to a stress jump A0 , but we can deduce the resulting strain

jump Ae if we assume that (2.14) applies in the limit of

a smooth rapid stress change from Fo to a 0+ Aa and also

that
e 0 + hCo , hCao) - 0 , (2.15)

for any positive A. , accompanied by a strain change e0

to eO + Ae where Ae = h(ao + A a"Let the change take place

in the time interval (to, to + 6t), integrate (2.14) over the

time interval, and let 6t * 0. Since is bounded we obtain

a +A 0 +Aa

i'3 D'; + h (a])d57 fj h I(a). 1[a, W + h (F)]do-, (2.16)
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for all Aa , and hence

+ h(U)]h'(j) - i 3 t ,eo + h (3)= 0, h( o) 0 0. (2.17)

Thus, given 4I, 3 ' (2.17) is a first order differential
1 3 for

equation with initial conditionL h(a), and the solution determines

Ae = h(Uo + A.) for all Aa . The strain jump depends on the

stress jump and the starting stress. In particular, if the

jump A is applied at time t =0 from zero stress and strain,

Ae is given by setting eo = CO = 0 in (2.17), and determines

the elastic strain ee (A) = C-Ae (A). However, the uni-axial

response for all A determines Ae (A) = h(A), and so in

principle determines a relation between i and *3 in the

strain range 0 = o- Cee not covered by the smooth response.

Constant load and constant displacement rate.

For constant a in t > 0, (2.14) becomes

-+ we - a = 0 . (2.18)id
Given a family of normalised curves corresponding to Fig. 12,

de = F(,e , (2.19)

di

then

U - we = 1 e > ee(U) (2.20)
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determines one relation between w and 01. For constant

displacement rate defined by di/dr = w, so e = wE , (2.14)

becomes

3 1 + w - = 0 (2.21)

dE

Given families of normalised curves corresponding to Figs 13 and

14,

a = g(w,e), - w G(w,e), e , 0 (2.22)
dtE

then

i3 [g(we),igG(w,e) = i1(g(wi), {-Fg(we)1e3 + W) (2.23)

determines in terms of *l Since F > o, w > o, and

G 0 O at e = eMlW), and assuming 1 has no zero, then

F~g{w,iM(W)1s eM(W)J = w . (2.24)

Now (2.20), (2.23) provide two relations for three

functions W3' i' I' all of which are required to describe the

responses in Figs 11 and 13 aid incorporate dependence on the

reference configuration through B. Clearly w E 0, a = OiF ,

solve (2.20), but induced anisotropy is no longer possible.

In this case, however, Tl and *3 are determined by F and

G, and, alternatively, complete responses F and G can in

principle be matched by suitable choice of j, and T3 When

0 0 there is additional flexibility.

t'.



39

While some values of g = o are repeated on the two

sides of e = eM(w), illustrated in Fig. 13, the arguments

(g,e) corresponding to the same g on a constant w curve

are distinct points of the (ae) domain. Further, assuming

that 3g/awl- > 0, the family of curves are non-intersecting,
e

so each constant w relation (2.23) between T3 and TI

refers to distinct sets of points (a,e). This situation

contrasts strongly with the minimal fluid model in section 1

which was not sufficiently general to match independent

constant stress and constant strain-rate data.

A restricted model i = i(e) ' W = w(e) satisfies

(2.20) provided that

F = f(e) + fo ( ), = 1/f' W =-T I fo /e ' (2.25)

which requires the strain-rate at fixed strain to change

linearly with the constant stress U . A tpositive fl(e)

would imply a linearly increasing strain-rate which we expect

to be qualitatively correct. With the restrictions (2.25),

(2.23) becomes

T3 (w,e),e;;IG(w,e)f 1 ( ) = w - f0 (e) - f1 (e)g(we), (2.26)

which requires that 3 depends on both a and e in general.

Writing *l = ET 3 ' (2.23) becomes

ag(we) -e(2.27)
3; w

which interprets E(U,e) as a Young's modulus in the limit

of inifinite strain-rate. A restriction E - constant implies
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a relation between the supposed independent functions

F(y,e), g(w,e); that is from (2.22), (2.27),

3,=-E f ". +* ia (2.28)
wW }I

If e = eI(a) corresponds to the second inflexion point in

Fig. 11, or local maximum e in Fig. 12, and i = e2 (w)

corresponds to the inflexion point in Fig. 13, or local minimum

a in Fig. 14, then

< 0 0 < e < e'm<0 0<e
n < 0 0 < e < e 2

(2.29)-- >O 2<e
em 1

<- >0 and<

Adopting the anticipated inequalities aF/- > 0 and

@2 > e m ,  then the inequalities (2.29) are certainly consistent

with (2.28) for em e ( min (ele 2), but no firm conclusion

can be drawn in the other ranges of e. Thus E = constant

may, or may not, be an acceptable model. Given independent

F,g, (2.27) determines E(U,"), and (2.20) relates W to

01 or 03

The next stage of our investigation must explore various

simplications to find T' TV W satisfying (2.20), (2.23),

for F,g,G compatible with expected qualitative response.

Once such a model is determined we wish to demonstrate the

anisotropy induced by simple loading histories.
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Figure Captions

1. Strain-rate r(t) at constant stress a

2. Stress a(t) at constant strain-rate r.

3. Dependence domains of response functions.

4. Functions ( l), F( a 2 ), I/q((T), l/sl(r), 1/s2 (r) for

family 1.

5. Strain-rates r(t) at constant a = a. = 2(-O°25)O*5 bars,

for family 1 ( ), predicted by reduced model (-

r decreases at fixed t as a. decreases.

6. Strains c(t) corresponding to strain-rates shown in

Fig. 5.

7. Stress-strain curves at constant r = rm(a.) predicted

by reduced model for family 1 with s = sl (- ) and

s -s 2  (. . .

8. Strain-rates r(t) at constant a = = 2(-0.25)0.75 bars,

for family 2 (-), predicted by reduced model with

q = q(----) and with q = q2

9. Strains c(t) corresponding to strain-rates shown in Fig. 8.

10. Stress-strain curves at constant r = rm (a) predicted by

reduced model for family 2 with q =q and s = sl(

s- s2 s----), s= s3( ......

11. Compressive strain response at constant load.

12. Strain-rate v. strain at constant load.

13. Stress-strain curve at constant displacement-rate.

14. Stress-rate v. strain at constant displacement-rate.
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