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MOLECULAR DYNAMICS AND SPECTRA. 1I. DIATOMIC
RAMAN

i

Peter H. Berens, Steven R. White and Kent R. Wilson

Department of Chemistry
University of California, San Diego
La Jolla, CA 92093

ABSTRACT
This paper and-Raper+ in this series (P. H. Berens and K..R. Wilson, J.
Chem. Phys., in press) indicalé that infrared and Raman rotational and funda-
mental vibrational-rotational sf)'eclra of dense systems (high pressure gases.
liquids and solids) are essentially classical, in that they can be computed and
understood from a basically classical mechanical viewpoint, with some caveats
for features in which anharmonicity is important, such as the detailed shape of
Q branches. It is demonstrated here, using the diatomic case as an example, ]
that ordinary, ie. nonresonant, Raman band contours can be computed from 1
classical mechanics plus simple quantum corrections. Classical versions of
molecular dynamics, linear response theory and ensemble averaging, followed
by straightforward quantum corrections, are used to compute the pure rota-
tional and fundamental vibrational-rotational Raman band contours of N, for
the gas phase and for solutions of N, in different densities of gas phase Ar and
in liquid Ar. The evolution is seen from multiple peaked line shapes charac-
teristic of frec rotation in the gas phase to single peaks characteristic of hin-
dered rotation in the liquid phase. Comparison is made with quantum and )
correspondence principle classical gas phase spectral calculations and with
experimental measurements for pure N, and N, in liquid Ar. Three advantages
are pointed out for a classical approach to infrared and Raman spectra. /First, a i
classical approach can be used to compute the spectra of complex moleeular
systems, for example of large molecules, clusters, liquids, solutions. and solids.
Second, this classical approach can be extended to compute the spectra of non-
equilibrium and time-dependent systems, for example infrared and Raman
spectra during the course of chemical reactions. Third, a classical viewpoint |
allows experimental infrared and Raman spectra to be understood and inter- 1
preted in terms of atomic motions with the considerable aid of classical models
and of our well-developed classical intuition.
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MOLECULAR DYNAMICS AND SPECTRA. 11. DIATOMIC
RAMAN

Peter H. Berens, Steven R. White and Kenr R. Wilson

Department of Chemistry
University of California, San Diego
La Jolla, CA 92093

I. INTRODUCTION

The properties of matter and the processes it undergoes are determined not just by its
average structure but also by its dynamics, its time evolution. Thus to understand these pro-
perties and processes we would like a window through which to observe atomic motions. As
Gordon has emphasized,! infrared and Raman spectra intimately reflect both intra- and inter-
molecular motions, and thus in principle can provide such a window. In practice, if we usc
quantum mechanics as our link between time evolution and spectra, we are limited to the
analysis of rather simple cases by computational complexity and by our inability to easily con-
ceptualize in a quantum framework. Semiclassical approaches can carry us further, but not as
yet far enough to handle more than simple systems. Thus a generalized classical approach
which could successfully link molecular dynamics and infrared and Raman spectra would be
very useful, for example in discovering the dynamics underlying liquid properties. or in follow-
ing chemical change in condensed phases.

In the first paper < of this series, which we will hencelorth call Paper I, we demonstrated
for a diatomic molecule that pure rotational and fundamental vibrational-rotational infrared
band contours can be computed from classical mechanics plus simple quantum corrections. In
this paper we apply the same classical approach of molecular dynamics. linear response, and
ensemble averaging, followed by simple quantum corrections, to compute diatomic pure rola-
tional and vibrational-rotational Raman spectra. While one could introduce aspects of quantum
mechanics directly into the dynamics, and thus adopt a semiclassical molecular dynamics
approach,!- 12 we illustrate that the spectra are so very nearly classical that a much simpler
approach is usually gquite adequate, one in which the introduction of quantum mechanics is
defayed until the end and then the final classical spectra are quantum corrected. We demon-
strate that this technigue, which we call a "Newtonian® approach to emphasize its basically clas-
sical nature, allows the computation of diatomic pure rotational and fundamental vibrational-
rotational Raman spectral band contours. In order that rigorous tests may be made versus
other theoretical approaches and experiment, we have chosen to treat a molecular system, N, in
the gas phase and its solution in Ar, which is quite simple. Nevertheless, one of the virtues of
the Newtonian approach to infrared and Raman spectra is the relative case with which it can be
extended to more complex systems, such as molecular clusters, large motecules, liquids, solu-
tions. and solids, as well as to non-equilibrium and time-dependent systems ' In order 1o
demonstrate this approach and to develop the necessary quantum correclions, we compare
theoretical spectra computed in three different ways: 1) gquantum mechanics without lincar
response theory, i) correspondence principle classical mechanmics without hinear response
theory, 1 the limit of quantum mechanics as Planck’s constant approaches zero, and w} ordi-
nary Newtonian classical mechanics with classical linear response theory and ensemble averag-
ing from classical statistical mechanics. In addition, we compare with several experimental
spectra for pure N» and for N, in Ar.




1I. THEORETICAL TECHNIQUES

We use the same basic Newtonian theoretical approach presented in Paper . First, classi-
cal mechanics is used to compute the time evolution, ie. the atomic trajectories, of the system
of interest from a set of initial atomic positions and velocities and a given potential surface.
Second, the time varying polarizability matrix for the entire system of molecules is calculated
from the atomic trajectories. Third, linear response theory, as applicd to Raman spectra by
Gordon,!- 1417 is used to calculate a "specific" Raman spectrum for cach molecular dynamics
run. Fourth, these "specific" spectra are averaged over an ensemble appropriate to the experi-
mental conditions of interest through the choice of different sets of initial positions and velogi-
ties for a series of molecular dynamics runs. Fifth, quantum corrections are applied where
necessary (o the purely classical spectrum to converge toward the real quantum spectrum.

In Paper 1 we showed that a similar set of five steps produce surprisingly accurate
infrared spectra. We show here that Raman spectra are also well reproduced in this way, using
as inputs only the potential energy ¥ (r) and the polarizability P(r) as functions of nuclear posi-
tions. Since the main aim of this paper is to show that relatively simple classical techniques and
quantum corrections can reproduce quan -2 reality for Raman spectra, we have relegated to a
series of appendices most of the complexity of the quantum treatment, which we need to derive
quantum corrections and to demonstrate by comparing classical and quantum spectra that a
simpler classical approach indeed works. These appenc.~es can be skipped by those readers
only interested in the classical results.

A. Molecular dynamics and classical trajectories

Given appropriate inter- and intra-molecular potentials to describe the interactions among
atoms, molecular dynamics can be used to calculate from a set of initial positions and velocities
the time evolution of the system of interest. Computation of the classical trajectories
r, (). ... .ry(r) for a system of N atoms involves numerically integrating the N coupled
differential equations given by Newton's Second Law

3 '/ ‘,zr! f
- ,2“" =F =m— . =1 ... N (1)
or, dr-
in which V"= }(r;,...,ry) is the potential energy of the atoms (or more accurately the
nuclei) at positions ry, . . .. r.. F,=F (r,....ry) is the force on the /th atom, and m, is its

mass. A modified Verlet integration algorithm is used.!8.19 For the case below of an N, solu-
tion in Ar, minimum image periodic boundary conditions with truncated octahedral boun-
daries?? and forces smoothly feathered to zero over the outer 0.01 nm of the radius of the
inscribed sphere (which, for the cases considered here, is always greater than 0.57 nm) are used
to reduce edge effects.

This type of calculation. while straightforward in concept. can be extremely demanding
arithmetically. We have built an “instrument for theory”, partially described elsewhere. ! which
consists of a generalized program package and a network of computers including an array pro-
cessor and a three dimensional display processor. This instrument allows us to compute spec-
tral and other properties of even rather large and complex molecular systems

B. Time history of the polarizability

Given the Cartesian tensor P(r;, . . . . ry) which describes the polanizability in space-fixed
coordinates of the system as a function ol atomic positions, we use the trajectories of the
atoms, {0, .. .. ry (1), calculated from molecular dynamics to compute P(7), the polarizabil-
ity tensor of the system as a function of time. Polarizability tensors in molecule or bond tixed
coordinate systems are transformed into space fixed coordinates by the use of direction
cosines 72

$x




C. Linear response and specific spectra

Gordon!-14.16 has shown that linear response theory (see Appendices A and B) can be
used to compute the Raman spectrum by relating the spectrum of fluctuations which the polari-
zability tensor P(r) naturally undergoes when the system is free of outside perturbation to the
spectrum of the Raman scattered light which P(s) produces when the system is driven by the
oscillating electric field of light.

From Appendices A and B, the appropriate linear response equations are

s do | _ 1T vt L eTe(B () B
[1\ v l 5 fm dr e~ L <Te[P,, (O P, (N]> (2)
d*a 1 T = =
1 ¥ = — ~twl!
lw, - ] 5 fw di e”'* <TrlP,,,, (0P, (1]> (3)

in which the left hand sides of Egs. (2) and (3) are the differential cross sections for scattering
into angular frequency range dw and solid angle range 42 for the isotropic and anisotropic
Raman spectra, respectively, weighted by x4 in which 27, is the wavelength of the scattered
radiation. The P, and P,,,, are the isotropic and anisotropic parts of the polarizability tensor
of the system, respectively, as defined in Eqs. (A2)-(A4) of Appendix A. Tr indicates the trace
and <> indicates an ensemble average.

As Parseval’s theorem?3 and the Wiener-Khintchine theorem!7-24.2% show, the Raman
cross sections given above as Fourier transforms of time correlation functions may also be com-
puted in the mathematically equivalent form of power spectra,

2 T
4 d o i . 1 e - )
—_— = — _— taat 1 P( (
[‘K‘ dwd () ] I | Jimos u;dl e A TP "
& 1 1 T
4 _ad'a - .1 et (D (12 ;
‘1‘ dwd () | 2 L |ima; lf,d" Pl (D1 (5)

allowing the use of fast Fourier techniques. Considerable care must be used to properly apply
spectral estimation theory. windowing and windowing corrections,2- 2326 in both the correlation
and power spectrum methods to avoid distorting the spectra as a result of the use of finite ime
histories. Particular care must be taken if band wings are to be correct or if small bands are to
be seen in the presence of large ones. We use a four term —74 db Blackman-Harris window,’t
which allows the correction to be applied as a simple frequency-space convolution of the
Fourier transform of the polarizability matrix element time histories with the Fourier transform
of the window function, in a parallel manner to that described in Paper I. The time correlation
functions can then be computed, it desired, from the Fourier inverses of Egs. (2) and (3). In
this way spectral estimation theory is correctly used, undesirable distortions in the correlation
functions from finite time histories are avoided, and the speed advantage of fast Fourier tech-
niques 15 retained. 4. 2°

The isotropic and anisotropic cross sections may be related to the usual experimental
parallel and perpendicular spectra by!6. 17,22

s d'o « d'o 2 4 d’
et I £ e B el L (o)
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D. Ensemble averaging

Since a specific spectrum is computed from 4 single molecular dynamics run representing
only a small portion of phase space, in order 10 compute a spectrum comparable to an experi-
mental spectrum taken, for example, at a particular temperature and pressure, it is necessary (o
average the specific spectra over an ensemble of runs with properly chosen different initial posi-
tions and velocities. To provide a sufficiently accurate ensemble average we must insure that
enough of phase space is sampled. Thus, to begin a spectral computation we choose reasonable
guesses for the initial positions r (0), . . . ,ry(0) and equilibrate the system to the temperature
of interest. We integrate forward in time, stopping at intervals to choose a new set of velocities
selected randomly from a Maxwell-Boltzmann distribution. After the system is sufficiently
equilibrated, we begin taking specific spectra. The final positions of the molecular dynamics
run for the previous specific spectrum are used as the initial positions for the next run. in an
attempt to sample more of configuration space by allowing slow rearrangements in configuration
space to accumulate. Because for weakly interacting systems such as dilute gases, constants of
the motion for individual molecules such as angular momentum are conserved over long
periods (nonergodicity), and thus even long molecular dynamics runs will sample only res-
tricted regions of phase space, it is necessary to introduce some stochastic element into the
deterministic molecular dynamics. Therefore, we randomly pick a new set of velocities from
the Maxwell-Boltzmann distribution at the beginning of each run. While this is necessary for
weakly interacting systems, it may contribute little to strongly interacting ones in which the
velocity autocorrelation function dies off quickly, and, by turning concerted motion through
configuration space into diffusive motion, it might even slow down the convergence to a proper
configuration space average if applied too frequently.!?

E. Potential and polarizability functions

The intramolecular potential function used for N, is a fourth order Taylor’s series expan-

sion about the equilibrium bond aistance?? of 0.109768 nm. The potential derivatives, 17, 1

and V" at the equilibrium bond distance, listed in Table I, are derived using Egs. (C21)-(C26)
from the ground state spectral constants listed by Huber and Herzberg 2"
TABLE . Potential tunction parameters for N,

12 V' |
{Jm _) _Um ) Um %
2.295x10° —~1.696x10' 9.980x 10

We have used as the polarizabilities for N, the values shown in Table I1. where. for a diatomic
in molecule fixed coordinates, P.. and P, =P, are the parallel and perpendicular components,
respectively, and o, and «,,., are the isotropic and anisotropic polanzability components,
respectively, given by Egs. (AY) and (A10) of Appendix A. The lincar expansion given by
Egs. (A29) and (A30) is used.

TABLE II._ Polarizabilitics for N, o

P.l." P:'\ ""\y“ {,F’I,III\” P, B Pl\‘ (r Nt (' LT
(1o m) (10 - m)

219 1512 1740 0558 [ 267 127 174 114

The values of P, Pr,. ). dnd m,,,,\,, are lhc cxpcrmunml valucs dd()plcd hy M()rnx(m and
Hay > ' The values of P’ . and ', are derived from the value for o, alter
Asawaroengchar e al* wmhmud with the value of the absolute differential Raman scattering
cross section for the fundamen.al vibrational-rotational Q branch of N, given by Schrotter and
Klackner'™ using Egs. (C16) and (C17)
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F. Quantum corrections

In order to discover what corrections are necessary to bring our classical calculations into
agreement with quantum reality, we compare in Appendix E two different ways of compulting
the Raman spectrum: /) quantum mechanics without linear response theory, and /i) correspon-
dence principle classical mechanics without linear response theory as given by the limit of quan-
tum mechanics as Planck’s constant approaches zero. Our Newtonian classical mechanics with
classical linear response theory and ensemble averaging from classical statistical mechamics
should agree with correspondence principle classical mechanics if both are carried out accu-
rately, and thus if we learn to properly quantum correct one we can also correct the other.

1. Pure rotational bands

The detailed balance correction 1o the pure rotational band is given in Eq. (ES) of
Appendix E as

4 dz(f
" dwd Q)

in which the superscript R indicates rotational and the subscripts Q and C indicate quantum and
classical, respectively. In Eq. (8), 8=(kzT) ' in which kj is Boltzmann's constant and 7T the
temperature. This correction can be understood by considering that in the correspondence prin-
ciple hmit as 7i—0 and as quantum mechanics converges toward classical mechanics, Raman
scattering at frequency w corresponds to infinitesimally small quanta of energy Tiw and produces
transitions between states infinitesimally close in energy, and thus classically of essentially the
same statistical probability. Quantum mechanically. lower and upper states are related in proba-
bility by the Boltzmann factor exp(8%w), and thus Stokes and Antistokes cross sections must
be related by this factor. The factor of one half arises from the 2w separating the Stokes and
the Antistokes angular frequencies. Thus we quantum correct a pure rotational band by multi-
plying it by exp(Bfiw/2).

d(r

dwd() = exp(Bfiw/2) (8)

2. Vibrational-rotational bands

In Appendix D we make the approximation of separating vibration from rotation, and
thus we compute the quantum corrections separately, even though in our classical molecular
dynamics we make no such separation. The quantum correction: for pure harmonic vibration. as
given in Eq. (E10) of Appendix E, is an inlensily correction

s _d'o / _ . Bliw 9) 1
' dwd () /(ud.() l-exp(—Bfiw)

This can be understood by consndermg that the intensity of Raman scattering is determined by
the square of the change in polarizability, which is proportional in the linear approximation
used here to the square in the change in bond distance, and thus 1o the vibrational encergy
Quantum mechanically the oscillator energy for fiw>> Ay T is ~Tlw/2 while classicaily it is
much lower. — kg 7T, and thus the quantum scattering is greater than the classical scattering
It ts also shown in Appendix E that a relatively small frequency shift is needed in order to ,
correct for anharmonicity in the vibrational potential because a classical oscillator samples the !
potential near the bottom of the well at ~ A, T where the anharmonicity is smaller than in the
region sampled by the zero point and higher quantum states. For the cases we treat here, the
anharmonic corrections, calculated as discussed in Appendix E. are —27.2cm ' at 83 K.
-27.0cm ' at 96 K, and =23.6 cm ' at 298 K. The cruder approximation —4mu,.x., using
spectral constants from Huber and Herzberg. 27 gives -28. 6 em ' In addition, if we assume

that vibration and rotation are approximately mechanically and thus statistically separable, then
the same detailed balance correction given by Eq. (8) needs to be applied within each vibra-
tional band. this time multiplving the band by explg?i(dw)/ 2], in which Aw is measured from
the rotationless band center.




Therefore the quantum correction of a fundamental vibrational-rotational band consists of
three steps. First, the anharmonic offset is computed by the method given in Appendix | and
the band is shifted to its quantum corrected position. Second, the band is harmonically
corrected by multiplying by the factor given in Eq. (9). Third, the vibrational-rotational band is
corrected for detailed balance by multiplication by expl87 (Aw)}/2], in which Aw is the angular
frequency displacement measured from the rotationless center of the band.

I11. SPECTRA

Fig. 1 shows the overall band contour of the N, dilute gas phase Raman spectrum which
we will now examine in more detail.

A. Gas phase rotational spectra

Fig. 2 shows the anisotropic pure rotational Raman spectrum for gas phase N,. The isotro-
pic rotational Raman spectrum is zero. Fig. 2 demonstrates that the Raman spectral band con-
tours as computed by /) gquantum mechanics, using Eq. (Cl14), ii) the quantum corrected
correspondence principle, tuking the classical #—0 limit of Eq. (C14), and /ir) the quantum
corrected Newtonian approach, as given by Egs. (3) and (5), all agree closely. The quantum
spectrum, suitably broadened. also agrees with the experimental results of De Santis ¢r. al*
The spectral constants for the quantum and correspondence principle calculations are from
Huber and Herzberg?” and the potential energy and polarizability are as described in Tables |
and II above. In this, and subsequent figures, the integration step size for the Newtonian
molecular dynamics calculations is 5x107'¢ s,

B. Gas phase vibrational-rotational spectra

Figs. 3 and 4 show the fundamental vibrational-rotational isotropic and anisotropic Raman
bands for gas phase N,. The quantum band contours are calculated from Egs. (C15)-(C26). the
correspondence principle band contours are from the classical limit of Egs. (C15)-(C26), and
the quantum corrected Newtonian band contours are from Egs. (4) and (5). The potential and
polarizability functions are as in the previous section. The finite time step used to obtain the
classical trajectories leads to a small offset in the Newtonian vibrational-rotational calculations
of +5.5 em' ! for which we correct before presenting the spectra. The O (A/==2) and S
(AJ=+2) branch contours are seen in Fg. 4 to agree well among the quantum. guantum
corrected correspondence principle classical, and gquantum corrected Newtonian approaches We
have not quantum corrected tor the effect of anharmonicity on the Q (A/=0) hne shapes and
thus while the Q branch arcas agree umong the three calculations, the line shape s broader in
the correspondence and Newtonian classical calculations than i the real quantum case, as 1s
discussed in Appendix . The computed quantum Q branch agrees with the experimental
measurements of Bendtsen.?’

C. From gas to liguid

Having demonstrated that the quantum corrected classical approach can provide essentially
correct spectral band contours for gas-phase rotational and vibrational-rotational transitions,
where we know accurately the potential energy and polarizability functions and where we can
compare 1o accurate quantum  calculations, we now turn to higher densities. where our
knowledge of the potential encrgy and polarizability functions is less certain, and our ability o
compute spectry by alternative means 1s less developed. We will treat solutions of N in pro-
gressively higher densities of Ar at 298 K. well above the critical temperature™ of 151 K. and
finally in ligquid Ar.

Work of others which relates to these solution studies includes that of Bratos and
Marechal?? and Bratos and Leicknam.* who treated Raman band shapes in solution from 4
correlation function viewpoint, including solvent effects in 4 stochastic approach  Levesgue.
Weis. and Oxtoby?! have treated the vibrational dephasing aspect 1in liquid Ny and Knauss® has
studied diatomics in solvent. Clarke. Miller, and Woodeock® ' have computed igud N
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F1GL 1L Isotropic and anisotropic Raman spectra for gas phase N> at 298 K., showing the quan-
tum band contours which we will examine in subsequent figures in more detail The rotational
fimes are broadened to 18 cn P full-width at half maximum Gaussians to allow the different
features 10 be seen on a simnlar scale. The isotropic spectrum shows no pure rotational scatter-
ing and only Q branch (XM/=0) vibrational-rotational scattering  The anisotropie spectrum
shows pure rotational scattering and O (A =-2). S (AS~+2) as well as Q branch vibrational-
7-7(!'\_'_7
dwd )’
units of m" s steradian ' shown on the vertical axis in this and subscquent figures is scaled ap-
propriately for the upper horizontal axis in units of frequency 10 s ' but not for the Tower
axis of wavenumbers in cm  nor for the units of angular frequency oo rad s ' used in the
theorctical discussion

rotational scattering.  The Raman wavelength weighted differential cross section, x 7 mn
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FI1G. 2. Rotational anisotropic Raman spectra for dilute gas phase pure N, at 298 K. In the
upper panel. the dashed fine shows the gas phase computed quantum rotational anisotropic
spectrum with the lines broadened so that they can be compared with the experimental spec-
trum. shown as solid circles. of De Santis, er. al. in 19 amagat (20 atra) N.. The experimenta)
spectrum is given in arbitrary cross section units and we have normalized it to the computed
spectrum. The solid line is the quantum band contour, calculated by further broadening the
lines of the computed spectrum until they merge. The intensity alternation in the lines 1s from
the statistical weights of the nuclear spin states. The lower pancel repeats the guantum spectrum
as a solid line and compares it with open circles showing the quantum corrected correspondence
limit classical band contour and open triangles showing the quantum corrected Newtonian (clas-
sical molecular dynamics, classical linear response. and classical cnsemble average) spectrum.
The Newtonian spectrum is averaged over 30000 single-molecule 24 6> 10 17 s time histories.
with 4 Sx 10 " s integration step, run 0 groups of 300 non-interacting molecultes. The isotro-
pic rotational Raman spectra are not shown as they are zero
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F1G. 3. Fundamental vibrational-rotational Raman spectra for dilute gas phase N, at 298 K
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molecular dynamics for rigid molecules and compared to Raman line shapes. Hanson and
McTague*4-4% and Frenkel and McTague® have computed molecular dynamics for N as a rigid
dumbbell and have used this approach to estimate dipole induced dipole effects.

The N, intramolecular potential and polarizability tensor arc as before. For the Ar-N,
intermolecular potential we use a sum of pairwise atom-atom potentials between the Ar and N
atoms, each of the form

F(R) = Aexpl-26(R—-R.)] — 2Bexpl-£(R-R.)} . (am

in which 4=5.793x107%? ), B=8.256x10"22J, £=1.51x10" m ', and R.=2.94x10 "' m. This
potential, which would be a Morse potential if 4=45, is due to Kistemaker and de Vries,*’ and
has been shown to give classical trajectory results?7- 8 in reasonable agreement with experimen-
tal rotational relaxation times*’ for N, in Ar. The Ar-Ar interatomic potential 1s the Morse-
spline-van der Waals (MSV) Il potential of Parson, Siska and Lee.4? For simplicity, we leave
out multi-body effects in both the polarizability function (for example distortion from sphericity
of the polarizability of the Argon atoms during collisions and distortion of the N, polarizability
tensor)46-50 and the potential function (for example the non-pairwise additive part of the poten-
tiah)>! which should be included in a more refined treatment. The Newtonian approach could
also be used to study these multi-body effects (often referred to as collision-induced) by includ-
ing them in the potential and polarizability functions and comparing the results with experi-
ment.

To facilitate comparison among the various dilute gas to dense liquid examples, we have
not made the appropriate local field correction which depends upon the refractive index.52.3% To
reduce edge effects in our dynamics, we use periodic boundary conditions, replicating a trun-
cated octahedron in a space-filling solid tessellation20 and smoothly reducing (feathering} our
forces to zero over the outer 0.01 nm of the radius of the inscribed sphere to avoid discontinui-
tics as atoms cross the boundaries. Twenty atoms of Ar are used in the unit cell. The
Newtonian vibrational-rotational spectra are again corrected for the small +5.1 cm! shift
caused by using a finite Sx 107 /* s time step in our trajectory integration.

As can be seen in Figs. 5 and 6, there is drastic change is spectral line shape as we
proceed from dilute gas phase to a density of 1000 amagats. (One amagat unit of density is the
actual concentration of the particular gas a1t 0 C and | atm pressure, which would be 2.687x 102
molecules m ' for an ideal gas.)* The spectral line shapes for rotation (if continued through
the origin to also show the Antistokes scattering) and vibration-rotation change from the mult-
ple peaks characteristic of gas phase free rotation to the single peaks characteristic of liquid
phase hindered rotation. The statistical noise caused by averaging over a smaller ensemble of
600 samples can be seen in Fig. 5. A comparison is made in Fig. 6 with the cxperimental O
and S branch band shapes measured by De Santis er. al.3¢ for pure N, at 276 amagats, and the
agreement is close, even though the solvent is N, instead of Ar, indicating that the line shape 1s
not particularly sensitive to the details of the solute-solvent intermolecular potential. Note the
blue shift that occurs at the 1000 amagat density, perhaps explainable by an effectively steeper
vibrational potential as the N, is crowded up against the repulsive walls of the solvent. The evo-
lution of these spectral band shapes with density can be compared with those computed for the
infrared case in Paper I, and with the example Raman band shapes computed stochastically by
Bratos and coworkers. 9. 40

D. Liquid phase
We compute Newtonian spectra for N, dissolved in liquid Ar and compare with the exper-
imental anisotropic spectra of Hanson and McTague.44-4°

In Fig. 7 we show the rotational spectra. The Newtonian calculations are made at the
experimential temperatures with the experimental densities for Ar (792 amagats at 83 K and 749
amagats at 96 K}, with N, counted as another Ar atom. To approximately match the experi-
mental mole fractions. one N, is run with 28 Ar atoms in the unit cell at 83 K and one N with
20 Ar atoms at 96 K, although no direct N,=N, interaction is included in the potential, as the
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forces are feathered to zero before the N, in the adjoining periodic cell would have been felt.

The agreement of quantum corrected Newtonian calculation and experiment is seen to be
quite close, but not exact. [t is not known how the blame for the remaining small discrepancy
should be apportioned among the i) inaccuracy of the potential and polarizability functions we
use, in particular our neglect of multi-body (so called collision-induced effects) 40- > ) imper-
fection in our Newtonian methodology, iif) statistical notse due to inadequate enscmble sam-
pling with only 200 runs, and /v) possible experimental inaccuracy.

FFor the vibrational-rotational fundamental band shown in Fig. 8, the agreement with the
anisotropic results of Hanson and McTague is excellent except near the very peaks of the
curves. This disagreement is possibly due to either inaccuracy in our theoretical approach or to
the difficulty which Hanson** cites in accurately removing the much stronger isotropic peak
which is shown in the upper panel. This experimental difficulty is compounded by the factor of
one tenth in Eq. (7), which makes the ratio of parallel to perpendicular experimental intensities
even greater than the ratio of isotropic to anisotropic intensities shown in Fig. §.

1V. CONCLUSION

We have demonstrated that an essentially classical mechanical approach can be used to
compute the Ramun spectra of dense systems, using as an illustration N> in compressed Ar
above the critical point (so that there is a continuous evolution from gas to liquid) and in lower
temperatuse liquid Ar. Using potential energy V{(r) and polarizability P(r) functions from the
literature, with no adjustment of their parameters, we have achieved close agreement with the
experimental spectral band contours from dilute gas to dense liquid. In addition, we find very
close agreement with the quantum spectral contours for the dilute gas case in which a quantum
soiution can be accurately computed. Since the band shapes are derived from molecular
dynamics, we can have confidence that the computed dynamics provide an accurate representa-
tion, within the limits of classical mechanics, of the actual molecular motions.

As with the molecular dynamics calculations of a number of other observables, such as
transport phenomena and chemical reactions, il we average over a sufficient number of quan-
tum states, for example in an equilibrium system at a sufficiently high temperature, so that
sharp resonances are not observed, then measurables are usually reasonably well reproduced by
classical mechanical calculations. We have illustrated two  related ways to average over the
resonances: first, lowering the resolution of observation to produce the band contour in the gas
phasc. and second, broadening the resonances by perturbing the stationary states at higher den-
sities i compressed or in condensed phases.

The results in this paper and particularly in Fig. 2 of Paper | indicate that vibrational-
rotational band shapes can be quite sensitive to the precise shupe. e.g. anharmonicity, of the
intramolecular potential, but that neither the rotational and vibrational-rotational band shapes
nor the corresponding molecular motions are particularly sensitive to the detailed shape of the
intermolecular potential for weakly bound solvent-solute systems.  Evidence for this is that the
band shapes are well reproduced by the rather crude potential forms we have used. and that the
results tor Ar versus N as a solvent do not appear to be drastically different, as shown in g
6.

These essentially classical calculations agree well with quantum reahty for translational and
rotational motions because enough states are accessible for the correspondence principle to
apply. In contrast, for N, vibration almost the whole populdtion at the temperatures considered
is in the ground state, and thus the correspondence principle argument is not vahd. However,
as discussed in Paper 1. molecular vibrations are ordinanly close enough to harmome that the
spectal parallels between classical and quantum harmonic oscilator behavior™® % do apply and
only an amplitude correction for quantum (here zero-point) versus classical thermal motion s
needed.  The anharmonicity of the ascillation does not enjoy such a privileged position, and we
must quantum correct our classical spectra for two anharmonic effects if we wish close agree-
ment with experimental reality birst, o small shift (the order of o percent) in vibrational ine
posiion is necessary  Sceond, since a classical anharmonmic oscillator vibrates i a trajecton
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which is no longer sinusoidal, its Fourier transform is broadened in frequency by the anhar-
monicity. In contrast, a quantum anharmonic oscillator, if it exhibits essentially only a single
1—0 transition, is shifted but not broadened. Thus, as we've seen. in the very narrow Q
branch where small broadenings are observable, an additional anharmonic correction would be
necessary to closely match the quantum width. Where anharmonicity becomes a dominant fuc-
tor, an improved approximation using a semiclassical approach! *-'2 may be needed

The advantages of a classical approach to Raman spectra are several: /) complex molecular
systems can be treated for which quantum spectral calculations are impractical. for example
very large molecules, clusters, liquids, solutions, and solids, without need to resort to normal
mode analysis, i/) the approach can be extended 1o treat time-dependent and non-equilibrium
systems, for example to compute the Raman spectra during the course of chemical reactions
even in solution, and /i) experimental spectra can be analyzed in terms of atomic motions with
the help of classical models and of our classical intuition. and thus understood and related to
molecular dynamics for more complex molecules and systems of molecules. In fact, the quan-
tum correction transformations can be inverted to strip away the quantum aspects from an
experimental spectrum, leaving behind a classical spectrum which is truly analyzable from a
classical view point, in order to deduce the intra- and inter-molecular motions involved In
chemical properties and processes. One further step toward a fully classical description is possi-
ble, as Miller!2 has shown, in that the radiation field itself can be treated not as a classical ficld.
as we have implicitly done, but rather as classical harmonic oscillators.

In conclusion, the greater difficulties in computing infrared and Raman spectra appear 1o
lic not on the side of nuclear motion, but rather on the electronic side of the Born-
Oppenheimer approximation, /i.e. in deriving as functions of nuclear positions sufficiently accu-
rutely the potential energy V(r). the dipole moment u(r), and the polarizability tensor P(r)
Given these functions, classical techniques of molecular dynamics, linear response and ensem-
ble averaging followed by simple quantum corrections seem capable of producing quite accurate
infrared and Raman spectra for dense gases, liquids and solids (and band contours for dilute
gases), although additional quantum corrections may well to be needed for features substan-
tally affected by vibrational anharmonicity such as overtone and combination bands and other
interactions among vibrational modes Y- Y
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APPENDIX A: LIGHT SCATTERING AND POLARIZABILITY TENSORS

The quantum mechanical expression for the wavelength weighted Raman differential
scattering cross section in terms of energy into an angular  frequency range do and a sohd
angle range  Q 1s given in the polarizabiity approximation byl !

)
1 (/‘(r )

G T X I HEPELZ T b, W) (A

i which 2% 1s the wavelength of the scattered radiation, p, s the probability that the system
15 10 the initial state 1. € and € are unit vectors in the directions of the electric vectors of the
inadent and scattered radiation, respectively, P s the space fixed Cartesian polanizability tensor
of the system of molecules, and @, = (F, - F£)/Ti where £, and I are the energtes of the final
and imtial states, respectively

The Cartesian polarizability tensor P can be represented as the 3x 3 matrix P where 1 and
7 are cach onc of the space fixed axes v, v, or - This tensor can be decomposed into i diago-
nal isotropic tensor and a traceless anmsotropic tepsor




P =Py, + Pouo (A2)
in which

P, = iTrP = a,l (Ad)
and

Py = P-P, = P—a,l, (A4)

I being the unit tensor and Tr indicating the trace. From these two tensors we may define 1wo
polarizability rotational invariants, «o,,, and a,,.., which measure the isotropy and anisotropy.
respectively, as

ITr(PoPL) = al, = a (AS)
and, for any symmetric polarizability tensor,

TePoyoPonno] = @lio = 17 (A6)
in which a and y are the more usual spectroscopic notation?? and

a,, = {(P,+ P, +P.) (A7)

Qo = SUPL=P) 4+ (P ~P.) + (P.~P )2+ 6(P2+P2+P)]. (A8)

For a diatomic molecule with polarizability expressed in molecule fixed coordinates with the -
axis along the internuclear axis, P,=P,, and all the off diagonal polarizability components are
zero. Thus, for a diatomic, Egs. (A7) and (A8) in molecule fixed coordinates simplify to

@ = §(P.+2P,) (A9)
u:;mm = %(I_):~ —_ ,-)“)2 . AIO)
We can write
3 d:(r = ) R
) < >V At~ (ATD
[T~ dwd(l "\“ (Z] fen ! ./lP/\n'l l wy, (-U)
d'o . X

4 AL, = P > 8 — . (Al2)

[x\ dwd () ]amw ; o '/'Pumw[’ ‘ ((U,, w)

the isotropic and anisotropic Raman wavelength weighted cross sections, respectively.

In order to avoid the awkward properties of the Cartesian tensor P under rotationasl
transformations, we introduce tensors that transform properly.® We construct a unitan
transformation.®! represented by the unitary 9x9 matrix U, the components of which are
shown in Table IiI.
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TABLE 1II. Components of the U matrix

., P. P, P P. P, P, P,
PO -5 -k 0 0 0 0 0 0
PV 0 0 0 -} Yo ; 0 0
Pt 0 0 0 0 0 0 U e
Pty 0 0 0 -4 $ + = 0 0
P i -3 0 0 0 0 0 3 ;
P2 0 0 60 -3 -1 -3 - 0 0
R I T S 0 0 0 0 0 0
pPy 0 0 0 3 e 0 0
P ;- 0 0 0 0 0 -4 -1

U transforms the Cartesian tensor P when written as the 9x1 vector
ﬁ = [F\.\ FH‘ [-J:: p\:‘ [_):\ Fl'_‘ P.'“ r)\b' P\\ ]l

into the spherical tensor P. T indicates the transpose. P can be resolved into three spherical

trreducible tensors

(A1})

P = PO 4+ p 4 pO (A14)
whose components P/ are for PO,

P{" = ~L(P,+P,+P.) . (A15)
for P!,

P} =3P ~P .+ (iP,—iP) (Al6)

Py = =GP, ,~iP,) . (A1)
and for P2,

Py =P, -P,+iP,+iP)) (A18)

PY =~(xtP.+ P, +iP.+iP,)) (A19)

() :':‘2’_’:.- -P.—-P,), (A20)

as can be verified by the relations

P=1CUP (A21)

P=U'P (A22)
in which

C!' = (h*, (A2})

the asterisk indicating the complex conjugate.

We can now see that the tensor P consists of

three irreducible tensorial sets, one of rank 0 with | component, one of rank 1 with 3 com-
ponents, and one of rank 2 with 5 components. If the polarizability tensor for the system is
symmetric (viz., P,=P,) it can be seen from Egs. (A16) and (A17) that all of the components
of P'V'_ the irreducible tensorial set of rank one, are zero.

We can now use Eq. (A22) to show that
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P, = U'P® = U '[P 00000000)"
= - P" 1 = {(P,+P,+P.)1 (A24)
in agreement with Eq. (A3) and
Poo = UVP?2 = UL[0000 P2 P2 PP P PIYT
=P-U'P" = P-P,, (A25)

in agreement with Eq. (A4). Using Egs. (A24) and (A25) with Egs. (All) and (A12). we
have

d’o

x4 dud ). =1 2/, p, | <f1P{" i>]? 8(w)—w) (A26)
x‘—‘iz"— =3y p 22‘_ [<AIP2i> |2 8w, ~w) (A27)
' d(z)dﬂ aniso N l m=—2 | " " ‘
These two equations can be represented by
4o . .
yJ—-| = <i|Pf>1)? - )
! ada| = m T mg,l iR/ > 1 8w, —w) (A28

where it is understood that j=0 corresponds to the isotropic case with n,=! and ;=2

corresponds to the anisotropic case with n,=1. It is this equation that will provide the starting
point for both the Newtonian and quantum solutions that follow.

In addition, it is often convenient to expand each polarizability component in a Taylor’s
series in g, a molecular coordinate. In the approximation of electrical linearity, we keep only
the first two terms, yielding

dp,
Pu = P:': + —aq_’ q
= [’I‘I’ + P”J q . (A29)

Simularly, this can be extended to the polarizability invariants
a, = a] + o, (A30)

where a, is a,,, for j=0 and a,,,, for j=2.

APPENDIX B: LINEAR RESPONSE THEORY

The linear response theory of Raman spectroscopy has been developed by Gordon ' !4 1t
whose approach we follow here and also discussed by others.!7-39.62.63 The first step is to con-
vert Eq. (A28) from the Schriédinger to the Heisenberg picture by introducing the Founer
transtorm of the Dirac delta function,

LT
lw) = 5;109 dr . (BI)
From Egs. (A28) and (Bl)
dia 1 T (£,—F)
4 - g, 2 1 —_—— (B
ii‘ -———(/wdﬂ], n,;/), m?l\<f|P,,, li>] I :[odl exp s w| it B2)
Because |/ > and |f> are eigenstates of the system, we have!. !’
don R df 1 n
e li>=¢ " li> (B3)

and
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</I el[.’/l/ﬂ - <,| eIH"I/n (B4)
in which H, is the Hamiltonian in the absence of the radiation. Therefore!'®
dlo 1 T - ) . ) -
-K4____ [ it < P(/) >< I(u 3)
l . dmdﬂl, 5 Ldle ",Zf,p, E,/ ilPYOM > < rIPY (D]i> (B
in which
P,,‘,”(’) - e'”n'm P,,(,‘”(O) (" Hn . (B6)
By closure,
T l><sl =1, (B7)
!
and therefore
d’o 1 7 - . )
4 —— s~ il < [)"/) P > .
T . 2m L aren, ;p’ t B @B 0 (B8)
Since the summation over p, is just an ensemble average we can write!®
4 d’a 1 T 1wl ) ()
| = 5= @ <P, (OP,(1)> 9)
X Ged| T 2 fm droem, ?‘, w0V En0) B

where the <> now indicates an ensemble average. Using Egs. (A5)-(A6) and (A24)-(A25),
Eq. (B9) can be transformed into Eqs. (2) and (3) of the text.

APPENDIX C: QUANTUM AND CORRESPONDENCE PRINCIPLE SPECTRA

Quantum mechanical expressions for the Raman cross section have been derived using
various methods.22.61.63-66 We will follow the irrecucible tensorial set®!.63.67 approach used by
Brodersen and coworkers®®-7¢ which is applicable to many molecular geometries, and we will
use a somewhat more general form than needed for our 'Y diatomic in an attempt to clarify the
extension to more complex molecvles. Rigid rotor harmonic oscillator transition probabilities
will be used, but energies (and thus frequencies and state probabilities) will include anhar-
monic, centrifugal and vibrational-rotational coupling terms.

We can express the sum of the tensorial operator matrix elements in Eq. (A28) in a form
which applies to either the isotropic (/=0) or anisotropic (j=2) cases as

G = X <Pyl («n

" - !
If we now assume that our initial and final states are scparable into vibrational and rigid sym-
metric top rotational states,
[i> = |[WJKM> = [v>|JKM > (C2)
<fl= <L KM = <v|<JK'M| )

in which the quantum numbers are v for the vibration. J for the total angular momentum, A
for the component along the top axis, and M for the component along the space-tixed = axis,
and primes indicate the final stale, then we can express G as

!

G = 3 1<VI<SKMIPY KM > |v> 12 . (C4)

m-

If the coordinate system is rotated through the Euler angles Y. x. ¥ to coincide with the
molecule-fixed coordinates, we have®?

G=S l<vicJKM t PO DU =W, —x =Y KM > 1v> |2 (Cs)
i L

o



214 -

in which D, are the components of the Wigner rotation matrix.’!- 72 The components of P,
are the same as those given by Egs. (A15)-(A20) except that x, 3. and z now refer to the
molecule-fixed coordinates. After the rotation, P’ is fixed along the axis of vibration and can
thus be extracted from the rotational matrix element®’

G=Y |3 <VIPIv><JKMIDG (=W, ~x, V) [JKM > (Co)
m= - h- -y
The absolute value squared of the rotational matrix element can be summed over M mand M
symmetrically using Wigner 3j symbols’?
T I<IK MDY IKM> 1 = (2J'+1)(2J+U[_/,'<. / ,{]
AL om A
= (/41D CUjJKAK)? (C7

C(J1),KAK) is the Clebsch-Gordan coefficient for the coupling of angular momentum and is
tabulated for the appropriate cases elsewhere.®® It vanishes unless the selection rulest®

K'—K = AK =& (C8)

=il 7 < J+ (C9)
and

J'—J even, if K=K'=0 (C10)

are fulfilled. Thus from Egs. (A28), (C1), (C6), and (C7),

[1‘4 /d-;“] =n, 3 p & I<VIPEIVE 1 QI+D CUJKAK)Y 8w, ~w) . (CI1D)
dw , ;

in which a degeneracy factor ¢ is introduced which depends on the symmetry of the molecule.
For our 'T homonuclear diatomic, ¢ is g, the nuciear spin statistical degeneracy. Since AA =0,
only Egs. (A15) for the isotropic and (A20) for the anisotropic scaltering contribute after the
polarizability operators have been rotated to internal coordinates. For a diatomuc, using kgs
(A9) and (A10) and that n, s ' for j=0and | for /=2 we can replace —\'—,P","’ with « ., and P!

with «r,..,. Eg. (Cl1) now becomes

[X.4 TIL;I(—J =3 poo <Vl v AN CUYRD Mo ~w) | (G
dwe ;

with the isotropic cross section being given by =0 and « =« , and the anisotropic by =2 and

o .=y

dpowd
If we use the linear expansion of «, given in Eg (A30), the vibrational matrnix element
for harmonic oscillator wavefunctions is given by 4

fitv+ )

- N.'l“ “’ [N

'

<Va'+a giv> =a b+ o, (C13)

Qwam,

in which w, is the angular frequency for the v+ 1= v transition and m, is the reduced mass

Using Egs. (C12) and (C13) and the Clebsch-Gordan cocfticient (/000 =1 along with
the values of the other Clebsch-Gordan coefheients given in Table 1V, we can now obtain
expressions for the the pure rotational and vibrational-rotational differenual cross sections. bor
a pure rotational cross section we have Av=0. The anisotropic rotational § (AJ=42) branch is
given by

N de (v.] " PRIV R RIWE D) I
, 23 ) gt SLENUED
‘1\ dwdQ ], \Z] ply , 30/

The isotropic pure rotational cross section for the § branch is zero.

Etv - Fivh
n

w| . (C14)
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TABLE IV. Pertinent squared Clebsch-Gordan coefficients ;

AJ C(J2J,00)?

3/J-1)
2Q/-DQJ+D

J(J+1)
Q/-DQJ+3)

3(UJ+1)(U+2)
20Q/+1)(2J+3)

-2

+2

For a fundamental vibrational-rotational transition we have Av=1. For the O (AJ=-2) i
branch, the isotropic cross section is zero and the anisolropic part is given by

s do _ o o|FEGD | 3G~ O
[” dwd L,,,.w 7—, P ) (@) 500 " 2005 l
< ol EGHLI=D-E(v)) _w], 1)
H
For the Q (AJ=0) branch we have: §
d*o . 7 (v+1) E(v+1,J)—E(v,J)
4 _“4 9 = Y EAAARTA > —
[Ts ded 0 ]’w Vz; p(v,J) (a's) Yoqm, (2J+1) 8 I w (Cle)
dlo , nv+D) | QI+DJU+]1)
s _do - 2 ‘
["’ dwdQ ] Z, pvI) @ana) 175 o QD) 21 3)
x o ECHLD=E(w) *wl 1)
And for the S (AJ=+2) branch
d’o , v+ | 3(J+1)(/+2)
4 _do - )2
(’*‘ dodQ l 2, pOvI) a1 2(27+3)
:
y 8IE(v+],.I+ﬁ2)—E(v.J) —..,] ci8)
with the isotropic cross section being zero. In Egs. (C14)-(C18)
2 e BEWND
pvJ) = —— (C19)
$ 5 g D) epros
V=) J=0
where the sums in Egs. (C14)-(C19) are over all the initial vibrational and rotational states. '

The final approximation is to use energy levels evaluated to second order in perturbation
theory, involving the third and fourth derivatives of the potential, giving’*

EWJ) = h[u,(v+~;) + BJUHD = pox, (vAD)? = a, (v I U+ — Dfﬂuﬂ)l] (C20)

in which
B. = Hﬁf (€21 ;
1. = mR} (C22) i




vi(Rr) 1"
v, = Qm)! ————] (C23)
m,
B2RA10B.R2 V(R
X, = e V(R (24
el = ny2 vl ‘
~2B2[2B.R}V"(R,) l e
@, = < +3 (C25)
Ve hy;
and
- 48}
D, = B;. (C26)
v

In the above, V'(R,), V"(R,) and V""(R,) are the second, third and fourth derivauves of the
internuclear potential at the bond length R, of the potential minimum.

All three of the above approximations (linearity of the polarizability. rigid rotor harmonic
oscillator evaluation of the transition matrix-elements, and energy level evaluation by second
order perturbation theory through third and fourth derivatives of the potential function) may be
extended to higher terms to give higher accuracy.65.76-78

Using these formulas, we can evaluate the quantum spectrum, and then obtain the band
contours by broadening the 8 functions, for example, into Gaussians

8w,~w) — (A/m)expl-Alw,—w)?] . (€27

letting A decrease until the individual rotational peaks merge.

By evaluating Egs. (C14)-(C26) at successively lower values of Planck’s constant, until
the resulting functions converge to a limit, we can compute the correspondence principle classi-
cal differential cross section. Our Newtonian calculations, with sufficient runs to form a reliable
ensemble sample, should converge to these correspondence principle results. Slight deviations
can result from the approximations in Egs. (C14)-(C26), but they should be negligible in the
present context.

APPENDIX D: SEPARATION OF VIBRATION AND ROTATION

We have already made the approximation of separability of vibrational and rotational
states as far as the transition matrix elements. If we make the further approximation of separa-
bility for the energy levels, we can write the Raman cross sections as convolutions of vibra-
tional and rotational cross sections. If we use Eq. (Cl1), and if we consider a vibrational-
rotational transition corresponding to a particular AK, we have

3 dz(T

0
Y Jwd( |, =n,‘;u, I <VIP{RIv>12 g, 2J41) CUNKAK) 8w, ~w) . (DD

in which the superscript Q indicates = quantum mechanical differential cross section and ;=0
indicates isotropic and j=2 anisotropic. Let

VIB(j) = |<VIP{iv>|? (D)

and

ROT(j) = n, g (2J+1) CUJ . KAK)? . (D3)
If we drop any coupling terms between vibration and rotation in the energy. we have
fiw, = EWJ.K)— E(v.JK)
= [EW)-FEW] + [EW K)~-EWK)] = Tiw , + Awpp (D4)

where w, , and w4 s are the angular frequency differences between the vibrational states v'
and v and the rotational states J'K" and JK respectively. Then we can separate the density of
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states into vibrational and rotational factors
p, = pWJK) = pv) plJK) (DS)
in which, for a system at equilibrium,
e—ﬁl:'(v)
pv) = W (D6)
and
e HEUK)
p(JK) = W . (D7)
JA

where B8=(kyT)"!, kg is Bolizmann’s constant, and T is the temperature. The angular fre-
quency may similarly be separated, giving

Slw,~w) = 8w, \Fwsp p—w) . (DY) |
Using Egs. (D2) and (D3), we may write Eq. (D1) as
)
2
s =40 (3 o) VIBO)] [T pUK) ROT()] 8l Hwyp m—w) . (D9)
dwd() ) " in

This can be expressed as’?
0

= [); p(V) VIB()) a(wv,\—w)] *[Z p(LK) ROT(j) 8lw, s j4—w)
’ v JK

= VO(j) * RY) (D10)

in which the wavelength weighted quantum differential cross section is seen to be a convolution
of the quantum vibrational cross section ¥9(;) and the quantum rotational cross section.
RY(j). Such separability approximations are common in correlation function analysis of
vibrational-rotational spectra 8" in which the transformation to the time domain can be made by
applying the frequency convolution theorem.2? (See Paper | for the analogous infrared case.)

APPENDIX E: QUANTUM CORRECTIONS TO CLASSICAL SPECTRA

Our original wavelength weighted cross section given in Eq. (A1), and our separated cross
sections V9(;) in Egs. (D2) and (D10) and RY(,) in Egs. (C7), (D3). and (D10) all have
the basic form

SUw) = 2 p, 1< 101> 2 8w, —w) (E1)
!
in which S% ) is the quantum spectrum at angular frequency w, i is the initial and / the final
state, p, is the probability of state i, O is the appropriate operator, and w,=(E,—E)/%. in
which E, is the final and E, the initial state energy. If we substitute —w for w, interchange the
subscripts i and fin Eq. (E1), and recognize that | < f]O}i>|’=|<i|O|f>|? and §(w)=8(-w).
we then find that

S%-w) = Y p, 1</10li>]? 8lw)~w) . (F2)
[N
For a system at equilibrium, p,=exp(8fiw,,)p,, and thus
Q
3‘%—((_%))- = exp(ffiw,) = exp(ffin) . (E3)

which is just an expression of detailed balance. Because of the &-functions in Egs. (E1) and
(E2), w can replace w,,. The correspondence principle classical limit of Eq. (E3) is
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S SV

S~w) 1= SY-w)
in which the superscript C indicates classical. Eqs. (E3) and (E4) can be understood as follows.
Angular frequency w connects states in a quantum system which are % apart and of appreci-
ably different Boltzmann probabilities in an equilibrium system, and thus $%w) and $9~w)
are related by the detailed balance factor exp(8#w). In the classical correspondence limit as
7i—0, the scattering connects states of only infinitesimally different energy #w and thus S (w)
and S¢(~w) become equal. Comparison of Egs. (E3) and (E4) suggest that one should con-
sider the quantum correction62.81.82

S%w)
S%w)
which symmetrically and simply fulfills the requirements of both equations. The factor w/2

inside the exponential in Eq. (ES5) arises because S -w) and $%w), which are related by
detailed balance, lie 2w apart in angular frequency.

Under the approximation of separation of vibration and rotation, as expressed in Eq.
(D10), we will quantum correct R9(j) and V9(j) separately, convoluting the results where
appropriate.

1. Rorational correction. From Eq. (ES) above, the rotational correction is just the detailed
balance factor, and

RY(j) = exp(Bhiw/2) RC(j). (E6)
Thus, for a pure rotational band, we simply multiply the classical rotational band by the factor
exp(Bfiw/2).

2. Vibrational correction. For the vibration of a harmonic oscillator of angular frequency
wy, we can evaluate the quantum vibrational cross section ¥9(;) in Eq. (D10) explicitly as8?

(E4)

= exp(ffiw/2) (ES)

= ~Bv+An
Vo) = 3 _SXRIAO AL, ﬁzf:f"” (P2 Bwi—w) (E7)
=0y expl—B(v+A) fw) o
v={)
L )2

T 2wm, [1—exp(—fhiw)]

V<(). the correspondence principle %—0 classical limit of Eq. (E8), is given by
Ve = m} Vo) = Qo’mB) ' (P! dlwy—w) (E9)

In the above equations, we have used the presence of the §-function to exchange « for w.
From the ratio of Egs. (E8) and (E9)

Ve(j) = Ve, (E10)

— Bhw
1—exp(~gfiw)
giving the harmonic oscillator quantum correction for vibration.

For a vibrational-rotational band, by Eq. (D10) we need to convolve the quantum correc-
tions given in Egs. (E6) and (E10). The result is that to quantum correct a classically calcu-
lated vibrational-rotational band we multiply it by

BliwexplBti(Aw)/2] (EI)
1—exp(—fhiw) ’
in which Aw is the displacement within the band from its rotationless center.

The effect of potential anharmonicity is essentially the same as presented in Paper 1. The
dominant effect is to cause a shift in the classically calculated band position to a lower quantum
frequency. A simple correction consists of evaluating the angular frequency for the rotationless
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(v,J) transition (v+1,0)—(v. ) first quantum mechanically as given by kg (C11) and then
classically by reducing Planck’s constant in Eq. (C11) until convergence 1s reached. The offset
between the classical and quantum rotationiess band centers can then be used to shift the entire
classical vibrational-rotational isotropic and anisotropic band contours into their quantum
corrected position. A rougher approximation. —4x e, (in angular frequency), as discussed in
Paper 1. can also be used.

The narrow Q branch presents a special problem if we wish to examine it under high reso-
lution, as there is an additional guantum fine shape correction for anharmonicity which only
becomes important for it. For a harmonic oscillator, the quantum and classical pure vibrational
spectra are the same. The pure vibrational lines of 4 guantum anharmonic oscillator are vari-
owsly shifted in frequency away from the single harmonic value by the anharmonicity. but not
individually broadened. In contrast, the spectrum of a classical oscillator 15 broadencd by
anharmonicity, since the classical oscillution is then not purely sinusoidal, and in addition oscil-
lators with different energics in a thermal ensemble have different frequency distributions I,
as in the case treated here, Tiw, tor the vibrator is high with respect to A4 7 so that only a single
1—0 quantum transition is observed, then the quantum pure vibrational spectrum will be a sin-
gle narrow line shifted in frequency by the anharmonicity, while the classical pure vibrational
spectrum will have a line shape considerably broadened by anharmonicity. The classical line will
be less shifted by the anharmonicity because the classical oscillator samples the potential ut
~hyiT. while the quantum oscillator samples the potential at the considerably higher encrgs
~Tiw, where the effect of anharmonicity is greater. The anharmonic effect on the width of the
classical and quantum pure vibrational spectra is ordinarily G.e. in O, P, RS branches)
overwhelmed by the much larger width produced by rotational broadening. For the Q branch,
the rotational broadening collapses to a narrow width, the anharmonic broadening of the classi-
cal vibrational line shape becomes apparent, and 4 quantum ling-narrowing correction for vibra-
tional line width must be made if the quantum Q branch hine shape, and not just arca, is to be
reproduced by a classical caleulation. This could perhaps be accomplished by deconvoluting the
vibrational width from the classical Q branch  The true quantum width of the 1--0 Q branch
can also be more closely approximated classically by the artifice of” computing the spectrum for
4 classical harmonic oscillator, in which the pure vibrational line width Ggnoring collisional and
radiation damping  cffects)  collapses to a d-function, and the remaining width is trom
rotational-vibrational coupling, and then shifting the fine in angular frequency by =47\ o
correct for the anharmonic shift.  The detailed rotational shape of the Q branch, however,
would not be correct, as the rotational-vibrational coupling, quantum mechanically the o in

Eq. (€C25), will be changed by omitting the anharmonicity  The sensitivity of the shape of

actual (as contrasted Lo theoretical rigid-rotor harmonic oscillator) Q branches to anharmonicity
through vibrational-rotational coupling hus often been suthiciently emphasized in attempis o
assign only a vibrational origin to isotropic line shapes. In conclusion, it may be asking too
much of classical mechanics to exactly reproduce the shape of a very narrow guantum hine ke
the Q branch in a4 system in which there are the twin obstacles to classical convergence of 1)
population in only a single vibrational guantum state and #) a maor role played by anharmoni-
ity Perhaps the introduction of aspects of quantum mechanics directly into the molecular
dynamics, in other words a semiclassical approach.!-¥ 17 is the better solution for this case. In
the correspondence principle and Newtonian classical spectra presented here we have not made
any anharmonicity quantum correction to the Q branch line shapes and thus, while the Q
branch arcas are essentially correct, the shapes of the correspondence principle and Newtonian
() branches are somewhat distorted from quantum reality, as can be seen in Fig. 4
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