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SUMMARY

The objective of this program is to conduct theoretical and experi-

mental research to determine the electromagnetic scattering from hete-

rogeneous dielectric bodies as individual bodies and as a cluster of

bodies. The discrepancies in the literature regarding the singularity

of the electric dyadic Green's functions were resolved and a unified

and consistent view is presented. Compact range scattering measurements

at I GHz were successfully performed to obtain measured data to validate

tile numerical analyses. Extensive computations were made for a variety

of dielectric scatterers, including a one-foot bird at I GHz. The

agreements between measurement and computation were good except for the

resonant sphere, for which the calculated resonant frequencies were

shifted by about 20 percent. Various numerical techniques were investigated

successfully for implementation in the volume methods to treat symmetrical

scatterers through use of symmetric matrices, tfi, use of handed matrices,

and virtual memory. A new local-file manipulation technique for handling

large matrices has been explored and found to be potentially useful.

'here has been very little research into the problem of scattering

by uielectric objects of complex permittivity. Future research in this

area should include the investigation of the surface integral equation

technique and the exact solution for the dielectric prolate spheroid.

,For
... 1"
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SEC'21ON 1

I NTRODUCT ION

During the past decade, there has been a rapidly rising interest in

electromagnetic problems involving dielectric objects. The interest in

this area arises from a multitude of military and civilian needs. Human

beings are increasingly more exposed to microwave radiation hazards on

aircraft, ships, military installations and even in their homes. The

knowledge of the electromagnetic scattering from birds, animals and

humans is essential in the analysis of detection, identification and

interference problems in radar systems. Biological and medical

applications, such as blood thawing, enzyme inactivation and

hyperthermia treatment of cancerous tissues, also demand accurate

knowledge of the electromagnetic fields in dielectric bodies. Thus,

electromagnetic scattering by dielectric bodies is a fundamental and

important problem, and solutions for these scatterers have wide

application.

: ince September 1978, Georgia Tech has been supported by the Deputy

for Electronic Technology (RADC/EEC), Air Force Systems Command, under

contract F19628-78-C-0223 to conduct a two-year research program in this

area. The emphasis is focused on analyses and measurements of the

scattering characteristics of heterogeneous dielectric objects as

individual bodies and as a cluster of bodies. Progress to date has

included the clarification of discrepancies in the literature on the

si.ng,,-aritv of the Green's function in the source region. and

measiremcnts and calculations of the scattering cross-section of

diel-ctric bodies of arbitrary shapes and complex dielectric constants.

in addition, various numerical techniques have been investigated and a

new local-file manipulation technique was explored and found to be

potentiailv ioeful.

Numerical techniques developed in the current research program are

cipabie of producing fairly accurate data for objects less than one

free-space wavelength long. There are models for which the present

technique is highly accurate, and there are geometries, such as the

spnerp. lor which the present technique is not quite satisfactory

probably due to the inherent deficiencies of the volume integral



The success of compact-range scattering measurements at a frequency

of 1 GHz represents an advance in the state-of-the-art of scattering

measurements using the compact range technique. This extension of the

compact range scattering measurements to lower frequencies demonstrates

the versatility and usefulness of the compact range as a general purpose

EM measurements facility.

---
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G~(r,r ') - and I V

wu re

[.n u source region ,;here r r' qucstions aris Lis L,,) tIc ()i

tL ELValid and, it Vaiid, hoW to -oiipuLu it sin-, ti, k w in

i 1.5 iii gneral not integrable 5 J. For thie stati1c case in wtiici k; ui.

Ltie rig orous treatment by Keiiugg, [3] i-s applicable. Lsing the -Iitthod

ALr tardlks putent-Lal , Van Bladel1 /41 Showed that

Er PV J (I' Iv, (1-,r') dV'----- (0)

"I'V''in Lquation (6) denotes "Principal Value" integration, which specifies

all inteigration carried out over the volume V-V ,where V is anl infinitesimal

spherical volume centered at r

With a rigorous classical procedure similar to Kellogg's treatment

of the static case, Fikioris 15 1 derived the following expression

1(mG =f1r) G(r,r? )dV' +j [J (r') J r

r ' '+ L-- 1+ ) k -



ai

where a is the radius of a finite spherical volume V D centered at r.

He also indicated that V does not have to be spherical but is not

permitted, in general, to be infinitesimal, If VD assumes other

geometries, the third term on the right side of Equation (7) will

have to be modified accordingly. Equation (6) also answered implicitly

the question as to how to evaluate the principal-value integration in

Equation (6). Thus, for a spherical principal volume of radius a and

a constant current J,

PV J(r) Ge (r,r') dV' j r) . (I + jka) (8)

As will be discussed later, Equations (6) and (8) form the basis on which

numerical analyses using free-space electric dyadic Green's function

were carried out [6-8].

Chen [9] showed that the infinitesimal principal volume V can assume

other geometries as long as the integrals over V and V-V are properly

handled. He also derived, as examples, expressions similar to Equation (6)

for principal volumes in the shapes of the cube and the circular cylinder.

For fields in the bounded regions, the electric dyadic Green's functions

for rectangular cavities and waveguides were discussed by various authors

[10-16j. Their expressions are in the form of eigenfunction expansions

plus a term containing the Dirac-delta function. Perhaps considering the

delta function to bc the only singular term, Yaghjian 117] explained the

difference in the delLa-function terms between lai, et ai. [lij and

Rahmat-Samii [121 as being due to their different choices of the principal

volume V and emphasized the need to include in G the shape ol the principal

volume involved. Johnson, et aL., [16] also pointed out the ambiguities in

the literature. Reccntiv, lee, et al. 11Sj -exinlined t: prol eow

Irom the viewpoint of the potential theory and obtained expressions for

the general problem. Most of their conclusions support existing results,



but quest tans- LOUCerninA Life useulness o1 an infinitesimal orincipal-

I uole V iic nuacricii analyse,- were raised.

i'ropur tiandling of Lhe electric field integral equation in the

-,ourcc reguJoii is essential when using it in numerical analyses involving

dieLeCtric scattLerers. The difficulty arises in the calculation of the

ifsell-cell' or seli-coupling matrix elements that must be generated when

using the mnethod of moments. For the free space [b,81 and half-space

[7], Equations (b) and (8), which are consistent withi Equation (7), were

emploved in the scattering analysis of arbitrarily-shaped dielectric

bodies. For the rectangular waveguide [19], the expressions of Iai- [10]

and Rahmait-Samii [121 were used. To the practicing engineer, it is

dosirable to remove al.) discrepancies and subtleties. In the following,

it is shown tnat uni armity, aind consistonc% in thisa subject c-an he reached

t'l, ha , md~u i t,2mAt tcal analyses and numlerical exper iments.

Dte:-~ no ar i glaritv associatd' wi ut;im eL leCLrIc dx'adic

ST3;mlcL airc comprca2fla: '%c i:1 tuLlAImatr

'K - 4r .. ri u baIv divided. Hiowevler, r~hucur~as

-!ic j J- s 2 :,lt



- t Lnzul ,r w i t' rli i "l G L ',1:,1 tht h aI .,,C

C loCt17:o1L n tie I ; t rat 111 1, L .ic i n t . I

is less si:>iiar than ' ri ract it i 1K ia ,iree--nac, tR, in rts ari

in bjuation (.9b) conver es j3, p. 4lb .j Bv ' u tI u1.:.' :-,t:i.:n,

into ruation ixa) and assum.Lnn that .J satisfies thO s,-calI ed Ni51--Lr

Condition", it was proved b; Kelloit i and Fikioris j5j for k = ( and

k * 0 respectively that V', • A exists for the tree-snace case. Tills

conclusion was later expanded to the bounded regions c, waveguides and

cavities by Yacihian Ilj and Lee, et al. 118]. it is interesting to nULL

that by assuming the first-order differentiabilitv of J, Van Bladel sIj

was able to establisn sinilar results by usin2 the relations betwe n surt 2'v



and volume integrals such as the divergence (Gauss) theorem. The HbIder

condition is stronger than continuity, but may be either weaker or stronger

than differentiability.

The potential approach is based on familiar and well-established

classical analytical techniques and there are no identifiable disputes

regarding it. If we choose the delta-function approach based on Equation

(3), we should treat it as a distribution. _ is no longer a classical

function, but is defined only when it is used in an integral [2,21]. Now, if

e is expressed in terms of functions that appear to be conventional, one

may be misled to regard Ge as being also conventional. For example, [22, p. 200]

in

2 e--jkR jkR
V4R (11)

the left side of the equation appears to be a classical function but

can only be defined as a distribution at R = 0. Note that the left side

of Equation (11) contains a R singular term and is closely related to the

singular behavior of the free-space electric dyadic Green's function.

listoricaLi , tiie tree-spacL 6' is closely associated with the

mun:od of potentiai and 6' for the bounded region is more closely

adSbJL atd with the method of distribution. 1hey are discussed

i- te liirrutn d1-tributiiu satisfies the so-colled H61der C(ondition,

he i .tin the tree-space can be cxpressed in terms of thle

eit.,tri._ -aidic ,reen' i.nctun Ii t fo. tolowinc, &er~ii form



E (r) J J(r') -Ge(rrl) dV'

+ {f rE ) GC (r,r') -J(r) G (r,r')j d%"

'V_

- J(r) 'R ds' (2

where C

Itr~ rt'. a .1 3: C aftO cx rsn z wu r L

-- , ion ': d, o a in.ea Dv a somewnat less r 4 coros u ,

On ',11U M.~tot JI POLent: a. uslng; relations !-,~u SL1 I n ~d v on

i ajt,2rajs c uct as tn o diverzence theoremr [- i 'ri

simitar to thaL of an hiadel t4] and the classical porio..0 LC, U1

!i131 and must rely on the existence 0£ the tirst dorivativc o1 triu currunt

.J at the sinezular point r =r' in practice, this sii~ht ai: :Lrun~e in

requirements tor .J is not considered to be significant.

If we let the maximum cord of V Vanish, the following expre~ssion

by Yaghiian [17j emerges from Equation (12)



:3-uo Iann

Lir a, K7) e d.

ri s ~t~e '
anJi tc ,)j

I (15)t



as well. It must also be pointed out that the evaluation of the integrali

over V-V and V for a finite V is by no means simple and is likely to

depend on the particular problem under consideration. Thus, the claim

that an infinitesimal principal volume V is not suitable for numerical
E

computation appears at best premature.

b. e in Regions Bounded by Conducting surfaces

A very important feature of Ge for the bounded region is that ex-

pressions in the literature have been derived from the Ohm-Rayleigh method

which expands the Dirac-delta function in terms of the eigenfunctions

of a homogeneous Helmholtz equation [2]. Consequently, Ge derived by

this method is based on the distribution theory and must be understood as

a distribution, or generalized function. Furthermore, being a distribution,

Gv does not necessarily need the special handling for its singularity

through the principal volume approach since the purpose of the distribution

expressions are tor the hangling or singular integrands. Both the

distribution approach and tre principal volume approach are discussed in

tiIU luiiowing.

ai;nj ia L ~ij anLe Luu. ut. di. 9, ut I L !' - SII&*w th!a t L 11'

sinm -. ir!t. daoc iatcd wLth t~tl. L delizrc C 7,: ,,r,. :' a unnC,-.n i:

bcindcei re:,i-n i a exactiv '.:bce !s2ci as tra:t ._,r :w re-s : .

IS cit <.' i , ivi'tf, cr c7 i : cr. :. w i ! ': ! :!'d r.::

!j t t t" V Ui'' : :I I, L:i Vd LIl " 't 12 'CT I- t : T ::i i ' . . l

C U IIVU IVIMI L : 11- I 1T 11 . rI L

• i . ' In.. : ar 1 :1]L- r,- .I' .r..'



110 clii te i ht, C

Since 6- r Lic bu undcci regions is often derivc fron-, thc.omRae

m.Lnod, and hence is- a lsui'tin Lt Aln I)(. ul.,d ciLhe in c.: nuitiOn

wiui Equat ion (12) or directly as a distribution. B,, either method, one

Lsiould oLbta in the same results fur the electric field.

c uTi r CFC~l computations i nvol vi ng G' in a hounded reg4ion %c.re .. i.

U> an_4[I in dueterciJn ing c .,,~ lield intensity in an arbitrariy'-shaiped

L-,2ltrlc oI aDljicial ,ii,J :-,side A rectancular wa.-eguide. Since C,

[) v~c v tc i-i, tir nc.'tfro 1 'Tqe-u a,, to -what ii s at

r noca I - t , :)r nci ")a 1

jt . ;I sr-s2 or

I r Vit Li 'j IS L, L '

Mi-o ns S t'Vte 0 1 ii 'I, ute! . i n t analvz~i.s ot the wv~il

prsce!in rut H Lence i£5 i, tsc i~t: l ie sinr uicar iLntegrand, whil

Wd5o t S ~ P, lul 1% Oescri. .a ni ill T p in Bitriud was suprsorted r

D,; jid _ -iIuLLI Lci c ,ieoF I ic Lnu prins ipai volume approachn. 1n the

lI Lt-el MeclIULJ, a Ipii, Dox . principat ILWas ctiosen but other geometries

COUIU De used as l.ong as tile! integrals were correctly handled.
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point r as shown in Figure 2. Based on the results of Yaghjian [17], we

have

f Q 0 if dV' limf +f dZf X f J -

VD Z1  Z+L X1  Y

J ZJzZj (18)

The integral over Z' in Equation (i8) can be integrated and is described

by I in Equations (19-20) of Reference 19. The integration over x and y

leads to double infinite series identical to those in Equations (16-18)

of Reference 19. The series did not appear to converge when it was first

computed numerically. It was found later that the rapidly oscillatory

part of this series can be summed up in a closed form and the numerical

value of the resulting expression converges satisfactorily [19].
c

We can also view GT as a distribution since it was derived from the

delta-function method based on Equation (3). Using the equality

b ,f E- gn(x+ t) dt f f n ( x + t) dt (19)

a

which holds for every convergent series of distribution [24, p. 47],

we can apply it successively for n and ii to obtain, for a constant J,

J -G dv--n P  f (x) g(y) h(z,z') dz'V D  m n -- Il

J Z
z

jwc (20)

where P is a vector determined by the polarization and amplitude of J.

Again, the integral over z' and f and gn can be summed up to produce
m

I i



zI

V I

YE

Z] T



:iu c)11vdr-'L'ncu co~ndition ruquircd i-n the appI,;oaLIw.' 'I . W

Aclt S..;LLo Sch K'1irtz 1p:.;,ns 1

L .- .1 .u . >1 C ~ b JVt1 L '! k Ci tit'

.71., .~...o Ac IS A nn. AL ~1- . I 1I l t 1. L ~ IOi. t o 9 idi.0

1I 11 MLUSL DU CoIMputed anld Jdded tL) rIL'itiYLc!,rai oii U JotIt t 1~ i t t

xI L I oijCOflt mort. evident :11 Uilu neXt sciOnl, GLi s singubar and the.

intec.ration over these added intinitesimal volumes does not vanish amc

will , in combinl'tion With the rest 01 thec terms, yield tihe cr,-ct-' va Lue

For J1 that is not or is not assumed to bei C0tiStli1it. iKquation Lo) Caln

itX: Ua-Cd inlcl I)ne t ion w ith Lqta t ion I .i) 1 Withl G Orep r AcdAU.0 ~St
i ir th I y )r inc.w pal., v c) L i me a 1)1)r oa chII Foi theLI d i st r ihii11t i 1ap vroaci i

i. UV o I 0 1,qudt ioll ( 1 11 dll iJSOi t'( h i.Li~ed itn lhqlac I99 2 ! .1, li IraL I7

i1.l; 11 L L trM COr 1os;1;In!d i g to I)ISo,.0:I-i.



!e

C. Various Forms of G for the Rectangular Cavities

As has been pointed out, Ge for the bounded region derived by the

Ohm-Raleigh method is a distribution and must be so treated. Yaghjian [17]

and to some extent Johnson, et al. [16] have overemphasized the delta

function term. In this section it will be shown that the expressions

of Tai and Rozenfeld [11] and Rahmat-Samii [12] are mathematically

identical and no discrepancy appears to exist. This finding was

previously outlined in a symposium paper [27] and the full derivation

follows.

The electric dyadic Green's function derived by Tai and Rozenfeld

11i] is of the following form:

= 1 Z Z 6(,r-r' I ) + C (, [ m'e +-- nn) f

KK m k P

.) _,) --"1 -o - -Z
' ' } z k- 3u (22)

whurs implicit and suppressed, and

2 2 - !
(23

C o

g g

Cask ( -z)Cosk z' )
g ftg

tCask (7-zCos' I K"CZ

.. ( Coskz Cosk (c-z'),g g



S= z (26)
-0 0

t e

n-- t 0 (2 )

0 Sink x Sink v (29)

= (osk x Cask v
e x y-

X ~-
K- ~- - A .-

z

g

1 if r 7 r, C
S o if Z. m, n # 0 3

The expression by Rahmat-Samii [12] had an error in sign resulting from a

misprint. After correction, his expression reads, in terms of the e j 't

convention chosen,

G - I 6(Kr-r'I)- 1 2.

2 n = - ' 2 F' T )2 (m -v]
abc L a b P

-- +( )C Cos Cos Sin Sin
a a b b

18



0!LfIc l 2: 1~ lLi0, 12 c 117-'N-1 .3 3d OL

Ad Lfl xji:hL- sa LLSmt us ,ion ut, Eqp i> i 3'

_IlLt E.quat ion ( 22) is identi W to Equation (30i a ccrl orc m, uiscitpdnCv

*~ts . Wc begin with Equat ion ;K a: ofa and l{ozcnlid 1 2 a .1 6lws:

2 m 1m' S ingk z Sin k z'
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2 2
k (k _ k2)

_ z 2 i' Cos k z Cos k z'k2  -0-0 z

k k 2
tr O Z z

k
z ~- (: n 'Cos k z Sin k z'

k0 2 --- zZ

+ n Z' Sin k z Cos k z')] , (35)
--o-oz z

where

K2 k 2 + k2 + k2

x y z (36)

Substitution ot Equations (23-32) into Equation (33) yields

00 00 00

22
k n= m=O =0 abc[k - K]

xx(k-- k-) Cosk x Cosk x' Sink v Sink v' ink z Sink zS x x -

+ yy(k- e:-) Sink x Sink::' CoK v Ccsk ,' in< Sink ,

+zz( - k ) Sink x Sink x o sir, v ' z ,

+ v, - K, k*, ) SiSnk'N (. x vsk c s Si z C,'S , z

+ V ~ S>i. S Cnk V z
4 V S I P ,"

*- x:,- V : ) , >i ' . S~ : S,>nk v ,:nk . ,: :

+ zy<- i ) ,',ink< X Cin x' Si:nk v oSik V' C,y 7 Sink
Sv- x v.,,



00 0

Sink zSink z'
z z

-0 0- ccrI - ~ y 4(2-6) k 2 + k2
2 2 =0abc 2 2k k n1O m=O ,.=O k

Cukx Cosk Sitiink v Sink y' Sink z Sink z' (36)

V

00 00 00

00-0 00,

\ ' \ iJk,~ Sink-x Sink x' Sink.,. Fi:-k

00 00 00 1 1Z

Sink .x Sink .x' ISinK-v Sink ,v' Gosk z Cosk z' (4U)
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Substitution of Equations (38-40) into Equation (37) yields an

expression of Ge identical to G eof Equation (33), with the understanding

that m and n are exchanged and that

4(2-5 ) = c o E (41)o on om of

if at least two of the three integers, m, n and Z, are nonzeros (when two

or more of them are zero, the series term is zero). We can also prove

directly that Equations (22) and (33) are identical either by substituting

only Equation (40) into Equation (37) or by using Equations (38), (39)

and the following relations

2---2 Sink z Sink z'

K -kZ

SSink (c-z)Sink z

g gSink (Sink z Sink (c-z')) (42)
g

Cosk z Cosk z'

2 z z
..0 -k

-c CokgczCs Vz z zI (43)

k Sink cg Cosk z Cosk (c-z')

k
Z - Sink z Cosk z'

.0 -k z z

_ -c I ->z (44
-CSin(c-z)Cosk ; Z i4I

Sink gc -Sink z Cosk (c-z')

and

k
z Cosk zSink z'

-Cs (c-z)Si(Z4k
2Sink c Cosk zSin(c-z')

22



which were originally employed by Tai and Rozenfeld and can be directly

derived from well known identities [20, p. 5811. This finding that the

expressions of Rahmat-Samii and Tai and Rozenfeld are identical, even

though they appear in different forms, has also been observed by Professor

Tai [21]. For a more detailed description of the proof, the reader is

referred to an earlier interim report [281.
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SECTION III
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part in 106 was maintained. The dual-channel phase and om.,plitude receiving

system is shown in Figure

The compict range used in this study consists of a 12-foot hilpb

1()-foot wide ref lector as shown in Figure 0-. The reflector was fed t),, a

24 in. x 32 I1/2 in. rectangular horn, shown in Figure 7located at a fcI

distance or about 12 feet. Both tnie reflector and horns are fabiricated '

standard methods with avorac e mechanical tolerances. Figure siitw a
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Figure 8. Styrofoam support for the scattering target used in the

compact range.
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At 1 GHz and lower, the multipath propagation, leakage and parasitic

excitation along the source, cable and the components and equipments can

cause severe difficulty. In fact, leakage from the source was initially

found to be only 30 dB below the illuminating field in the quiet zone.

These problems were overcome through careful shielding and the use of

microwave absorbers.

The field in the quiet zone was probed with a dipole, and amplitude

variations of less than +1 dB and phase variations less than +5 degrees

over an area of 5 ft. x 3 ft. were achieved. Since the horn used is an

ordinary rectangular horn, further improvement in the quiet zone illumi-

nation may be achievable by using low-side-lobe feeds such as ' corrugated

horn.

The ultimate criterion for the radar cross-section range using the

cancellation method is the stability and depth of the null achievable.

The deeper the null, the smaller echo return the system can detect. Also

a stable null insures accurate and consistent measurements. To achieve

stability and depth for the null, sufficiently high power and frequency

stability of the source are essential. The sensitivity of the receiver

is usually sufficient since the environmental noise in the range is

usually quite high. In the 1 GHz measurements, we were able to obtain

a null depth of -50 dBSM during the day and -60 dBSM in the night, which

could be maintained for an average duration of 1.5 to 2 minutes.

The sensitivity of the compact range is displayed by measurements

shown in Table I on small conducting spheres shown in Figure 9 whose

echo areas are accurately known. The close agreement shows that accurate

measurements can be made for small scatterers with low echo return. Figure

lOa and 10b show measurementson a circular cylinder 2.76 wavelengths long

for E and H plane aspect angles. Figure Ila and llb show the measured

data for flat conducting plates. Figures 12a and 12b show the measured

data for rectangular conducting boxes. All these measurements are in

good agreement with data in the literature, as can be seen in Figures 9

through 12. However, there is some confusion in the literature concerning the

polarization of the data which remains to be clarified.
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"JABLE I

CU'TPARISON BETWEEN CLU':AC' k2AGE ML. SURL' N
AND EXACT CALCULAIIONS FUR CO:DVJiG SI!:iKKS

CALIYFA.TED vITH THE 0.04a03; SPHYYE

Radius in RCS in dESM

Wavelengths

Theoretical Measured

.04403 -46.14 -46.1!

.05503 -40.41 -40 ..

.0605- -37.63 -37.6

.06604 -35.45 -35.5

.07154 -33.42 -33.4

.07705 -31.80 -3.S

. 10456 -25.44 -23.4

.11010 -2.82 -22.8
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a) Backscattering pattern as a function of elevation age

Figure I1. Comparisons of measured and calculated backscatterin.-
cross-section of a square plate.
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b) Backscattering cross-section as a funlction of

plate size.

Figure 11. Comparisons of imeasured and calculated backscatteringI
cross-section of a square plate.
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b) Backscatter as a function of length as viewed
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Figure 12 . Compact range scattering measurement uf conducting boxes.
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(a) Side view

(b) Front view

Fig;uri- L3. Side and front views of a sitting bird made of plaster
of paris.
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(a) Side view

(b) Front view

Figure Ai4. Side and front views of a flying bird made of plaster
of paris.
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The "Super-stuff" is a jelling agent manufactured by Oil Center Research

Corp. in Laffayette, Louisiana. The mixing process, which was improved

here by trial and error, is critical to the homogeneity of the simulated

tissue. Spectroscopic-grade salt is first added to deionized water in a

blending mixer in an oven. After reaching 200°F the solution is stirred

for about 2 minutes. Fine polyethylene powder is then slowly poured into

the solution which is now being stirred at high speed. After half of the

polyethelene powder is poured in, the rest of the powder is mixed with the

super-stuff and poured into the solution being stirred at high speed. The

temperature and stirring help to remove bubbles and attain homogeneity. The

temperature is then raised to 450'F for two minutes and the mixture is then

allowed to cool.

Although it is usually possible to make a simulation model to meet the

required dimensions, it is not easy to obtain the required complex dielectric

constant with high accuracy. In order to insure reasonable accuracy in the

model, the in-vivo probe measurement technique [35] was used to determine the

complex permittivity of the model. Ordinarilly there is about 5 percent

error in this dielectric constant measurement. In all the simulation models

measured, the disagreements between the anticipated and measured complex

permittivity were mostly within 5 percent of each other.
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An exa:t .tioin for Lijre,-dimesioual dic >jctric s-catterers in free

space exists only for the sphere. For scatterers u; arbitrary snapes,

numerical analyses employing the volume integral equation have been con-

ducted [6-7,36-38]. There are other numerical and approximate methods

which are devoted to the estimates of SAR (Specific Absorption Rate) [38],

which is the average power absorbed per unit weight of the biological body.

However, there appears to be little research in the analysis of the scat-

tering cross section of arbitrarily-shaped dielectric and biological bodies.

In this section we discuss the use of the volume integral equation to

compute the scattering cross section of three-dimensional arbitrarily-shaped

dielectric bodies including rectangular and I-shaped boxes, spheres, finite

circular cyLinders, and sinulated birds.

il1e bIsic volume integral equation has been discussed in detail in

jieferunicu t). ihe dielectric body can be replaced by an equivalent volume

Yurr2::t .1 .auc'i tooat

where is the anaiuiar fr equcocv. F is the electric field, co and c are

the complex peraittivity in free space and the dielectric body, respectively.

The volume intteral equation in terms of the unknown J is

G(r,r') J ') dv - 7 (r) = E (r), (41)

vh o

G (r.r) = -j .(I + 7. )ex (-jk'r-r'j)

k 4Ti r-r'

E (r) = incident electric field intensity,

Jv= Principal volume integral excluding the
singular point at ir-r'

I unit dyad

4 -4



The solution of Equation (47) can be carried out by the method of

moments. The dielectric body, generally heterogeneous, is divided into

rectangular box cells and the equivalent current is expanded into a series

of pulse functions, each of which is uniform in one cell and vanishes

outside the cell. The Dirac-delta function, defined at the center of

each volume cell, is used as the weighting function. By taking a scalar

product on both sides of equation (47) with a weighting function and inte-

grating over V, we generate a system of linear equations which is then

solved numerically on a computer. The scattering cross section is then

computed in terms of the equivalent current J by numerical integration.

Numerical computations have been conducted for dielectric and bio-

logical bodies of various shapes including cubes, cylinders, spheres,

rectangular and I-shaped boxes, and simulated birds. Good agreements have

been observed for the field distribution inside the dielectric body in

comparison with the data from Michigan State University [ 6,36,37]. For

scattering calculations, the only data available in the literature were

for spheres and finite circular cylinders. The present calculation showed

correctly the sharp resonance behavior of the back-scatter cross section

as a function of frequency. But the frequencies of resonance were about

20 percent lower than those based on the Mie series computation. This

discrepancy could be due to the reduced apparent size of the sphere in the

simulation using rectangular cells. Agreement with the finite cylinder is

good. These results are presented in detail as follows.

A. Scatterers of Simple Shapes

Figure 16 shows the calculated back-scatter cross section for a finite

dielectric cylinder in comparison with the data from Richmond [39). Figure 17

shows the geometry of a rectangular box of saline water and the way the

volume cells are divided and numbered. The calculated field distribution

is displayed in Tables 2a, 2b and 2c for the x-component, z-component and

total field of the electric field intensity. They are in good agreement

with Michigan State data [36]. Figure 18 shows the calculated back-scatter

cross section of this rectangular box of saline water in comparison with

the measured data obtained at the Georgia Tech compact range.
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FREQUENCY: 9.5 GHz
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Figure 16. Comparison between the calculated results and Richmond's data
for a dielectric cylinder.
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TABLE II

ELECTRIC FIELD DISTRIBUTION IN THE 36-CELL RECTANGULAR BLOCK

E.-DISTRIBUTION IN THE 36-CELL
RECTANGULAR BLOCK

CELL PRESENT MICHIGAN STATE

NO. CALCULATION CALCULATED MEASURED

1 .0510 .0518 .0518

2 .0600 .0573 .0523

3 .0952 .0976 .1632

4 .0816 .0862 .0862

5 .0883 .0827 .0832

( .1040 .1090 .2355

7 .0870 .0935 .0935

8 .1225 .1180 .1180

9 .1355 .1410 .2869

10 .0292 .0339 .0459

11 .1008 .1050 .0878

12 .1611 .1570 .2017

13 .0930 .1020 .1258

14 .1956 .2020 .2020

1- .2546 .2480 .1256

lb .1345 .1460 .1460

17 .2207 .2330 .2330

18 .3294 .3220 .5410

L .•



TABLE II (Continued)

Ez -DISTRIBUTION IN THE 36-CELL
RECTANGULAR BLCCK

CELL PRESENT MICHIGAN STATE

NO. CALCULATION CALCULATED MEASURED

1 .2127 .2140 .2167

2 .1719 .1710 .1647

3 .1326 .1310 ---

4 .0982 .0963 .0963

5 .0955 .0927 .0927

6 .0730 .0698 ---

7 .0930 .0991 .0925

8 .0723 .0783 .0820

9 .0325 .0364 ---

10 .2207 .2230 .2230

11 .1355 .1360 .1456

12 .0554 .0544 ---

13 .0666 .0626 .0626

14 .0330 .03'8 .0344

15 .0342 .0348 ---

16 .0964 .1010 .1010

17 .0932 .0963 .0963

18 .0543 .0563 ---
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TABLE II (Continued)

E -)ISTRIBUT.;G ' THE 5,-CELL
R E C TA U L R e K

-CELL PRESENT MICHIGAN STATE

NO. CALCULATION
CALCULATED MEASURED

i .218? 20 -

.1821 .1803

..1633 .1633

4. .1277 .1292

5 .1301 .124?

6 .1271 .1294

7 .1274 .1362 --

8 .1422 .1416

9 .1394 .1456

10 .2226 .2256

11 .1689 .1718

12 .1703 .1662

13 .1144 .1137

14 .1984 .2047

15 .2569 .2505

16 .1655 .1775 ---

17 .2451 .2521 ---

18 .3339 .3269
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r 19 show:: an I- d box of saline vster undc ,: wnve

F' .. 7

t!e"& !-, " :: To saln.1 ware:. The 6 emntL betr,'E: thcu present

caLuJaTiJnr and that at Michigan State University [36] are good. Figure

20 shows the comparison between the measured and calculated back-scatter

cross section data generated at Georgia Tech. The disagreement could be

partially due to the acrylic box as indicated in the figure. Good agree-

-:its with Michigan State data were observed also for three other cases,

i: a cube and two rectangular cylinders, which will not be pre-

o:.;,uitons were also made for the dielectric sphere. Ficure 21

•* t,,e c.,k-scatter cross section of a dielectric sphere with a re-

- , , \tivitv of 2.592. The results deteriorate as Ks becom

: -, : [ ,.Figures _' and 23 show the computed results for a diel _ctric

' n-a oC1plex dielectric constant of 29.43-jO.158 using l28-cell

respectivelv. The results are rather disappointing when

data gvnrat.- by burr and Lo [40], as showm in Figures i

,:'.u r- :eonancc frecuencies were shifted by 20 percent ond the

r ,,nane -cirs ar otf by 30 percent. This failure in predicting re-

s,:nance phenomena in a dielectric sphere by the volune integral equation

ap;roach is in contrast to the high accuracy achieved for the calculation

of conducting spheres by a surface integral equation approach [41,42].

The results for the sphere were presented in the 1980 IEEF AP-S

Symposium, Both Professors Chen and Nyquist of the Michigan State

University attended the meeting and commented that they had also

observed similar difficulties with the sphere. They have further

noticed that if the incident field exp(-jkr) is decomposed into a sine

and cosine terms, the solution corresponding to one term is well behaved

and that for the other is ill-behaved.
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Figure 19. An I-shaped box of saline water under plane wave excitation
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TABLE III

ELECTRIC FIELD DISTRIBUTION IN THE 128-CELL BLOCK

E X-DISTRIBUTION IN THE 128-CELL BLOCK

CELL PRESENT MICHIGAN STATE

NO. CALCULATION CALCULATED MEASURED

1 .0545 .0573--

2 .0342 .0353--

3 .0656 .0676--

4 .0279 .0294

5 .0906 .0879--

6 .0899 .0887--

7 .0787 .0807--

8 .0557 .0558

9.1028 .1071--

IC1) .0165 .0173--

11 .1103 .1057--

12 .1027 .1018--

13 .0775 .0760 .0-10

1,,.0'681 .0681 . 0681

16 .0393 .0386 .0518
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TABLE ill (Continued)

E y-DISTRIBUTION IN THE 128-CELL BLOCK

CELL PRESENT MICHIGAN STATE

NO. CALCULATION CALCULATED MEASURED

1 .0228 .0239 ---

2 .0482 .0501

3 .0467 .0424 ---

4 .0698 .0623 ---

5 .0743 .0681 ---

6 .0497 .0466 ---

7 .0309 .0303 ---

8 .0867 .0858 ---

9 .1254 .1256 ---

10 .1215 .1234

11 .0892 .0912 ---

12 .0490 .0500 ---

13 .0197 .0192 .0243

14 .0450 .0420 .0316

15 .0496 .0423 .0423

16 .0565 .0486 .0486



-

TABLE III(Continued)

E Y-DISTRIBUT!ON !N THE 128-CELL BLOCK

CELL PRESENT MICHIGAN STATE

NO. CALCULATION CALCULATED MEASURED

17 .0713 .0671 .0547

18 .0567 .0544

19 .0170 .0162

20 .0512 .0485 ---

21 .0957 .0937

22 .1370 .1382

23 .1482 .1506 ---

24 .1131 .1136

25 .0299 .0296 ---

26 .0658 .0641 ---

27 .0580 .0544 ---

28 .0304 .0262 ---

29 .0164 .0162 .0194

30 .0375 .0369 .0371

31 .0355 .0344 .0344

32 .0165 .0157 ---
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TABLE III(Continued)

t -Di3TRiF"1JUTW)N IN THE i28-CELL ~Ot

CELL PRESENT IMICHIGAN STATE

NO. CALCULATION CALCULATED MEASURED

1 .05906 .06208--

2 .05910 . 06123--

3 .0 ~.07979

4 u51 7 .06709

I .17 20 .11119--

6 .10280 .10019

7 .03449 8 62 7--

8 .10300 .10235

9 .16220 .16500--

11 .14180 .13961

12 .11380 .11342--

13 .019,1 .07926--

14 .08163 .08001--

15 .10870 .11015--

16 .06883 .06206--
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E t- DISTRIBUTION IN THE 128-CELL BLOCK

CELL PRESENT MICHIGAN STATE

NO. CALCULATION CALCULATED MEASURED

17 .11520 .10853--

18 .10980 .10869

19 .05870 .05897--

20 .07472 .07522--

21 .10760 .10702--

22 .16680 .16954--

23 .16210 .16252--

24 . 14080 .14030--

6 .0 90 62.

.07.'*33

1 67 10 7

.07 (Y, 4)

32.1841)) .16940
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Figure 20. Comparison between calculated and measured RCS of -shaped
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Figure21. Calculation of RCS of a sphere with a dielectric constant
of 2,592 as a function of radius a.
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B. Scattering Computation for 1-foot birds

The Green Wingtail, which is an important migrant bird, was selected

for extensive measurement and computation. This bird is typically 14.75

to 15.50 inches and weighs about a pound. At 1 GHz this bird is about 1

wavelength in length. Figures 13 and 14 show plaster-of-paris models for

a Green Wingtail in sitting and flight positions, respectively.

Four simulation models, SBl through SB4, were generated in this project.

For the first three models, a number of problems developed in the ex-

perimental work. The permittivity was too high or too low or not uniform.

These difficulties and the unsatisfactory data for the sphere directed

the computation toward a more conservative approach. It was then decided

that measurement for the bird should be started with a smaller bird exactly

as the numerical model made of a group of cubic volume cells. With this

principle in mind, SB4 was fabricated. Figure 24 shows the print-out of

the cell centers for the side, front and top views for SB4. Figure 26 shows

the geometry of the coordinate system and a plane wave incident in the x-z

plane, which is the plane of symmetry for the bird. Figures 27 and 28 show

fair agreement between the computed and measured results. lt is noticed

that the agreement is good as long as there is no sharp variation in the

pattern. This difficulty in predicting sharp field variation and resonance

phenomena may explain the use of specific absorption rate (SAR) in dealing

with dielectric scattering problems [381.
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SECTION V

IMPROVEMENTS OF COMPUTER ALGORITHM

A number of modifications have been made on the existing Georgia

Tech volume integral equation algorithm to make it more efficient for

the computation of dielectric scatterers. Major improvements included:

(1) the reduction of execution time and central memory requirement by

50% by using symmetrical matrices, and (2) the reduction of execution

time and central memory requirement by 75% for scattering problems with

one-plane symmetry and by 87.5% for scatterers with two-plane symmetry.

In addition, the banded matrix [43,44] and virtual memory [45] techniques

have been implemented successfully for small scatterers and a new local-

file manipulation technique has been explored.

A. Symmetrical Matrices

It can be shown that the matrix of the volume integral equation al-

gorithm is symmetrical if the following conditions are satisfied.

(1) the dielectric body is homogeneous and has a

constant permittivity

(2) the volume cells are equal in size

(3) the volume cells are identical in shape.

The third condition is not critical and can often be ignored. To prove

this, one can examine the following matrix elements in the algorith.

k -jk( Ir -r'
;np I +u _ e o k ) dr'
pkn 2 3 u, 4Ir -r'J k - d-

k n K
0

E (r ) + 2

- - _ _ _ _
3 j [j ( r '- o k ' p ( 4 ,S )

and

f 0
Zn f- j-u[: +-.-- - -r Bn(r ' ) dr'in u. iu 4 i  -- --k k n --

0
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where k,n =1,2,3 or x,y,z

i,p =12.....L; the index number of volume cell,

k =the Kronecker delta function,

k
B, a pulse function being unity in the kth volume

cell associated with k (which designates x,y or
z and is merely a dummy index number oi no
consequence to the integration).

n
Sirze the pulse function B prestricts the domiiain of integration to the

uni% volum-ne, cell " in Equation (43) and ec1 p in Equatlo n 09),

r -r' arc r r arc etial.- Thtis a nd Z, are ecun 1l under the three

F-r a. sv-cotrica-I --crx rere arc- standird sub rout:. ires to handle its

o-'e - -- .. -'ution. h iro rovcd Gccrei--n Teci, -s co o: River. an

1 'a i' -"r,,r' t''T wit -. c

m r 2 001 r W I tiPj

oar.: e - 'i'' ~~~~~7- -''' oneaOt'-Ln -- "3Wt

Zen a n.Tu co-iputer tiuiit and r~aro'

i* Ine , art ciiscusso-(, seParatelv as jji ows

nes~rrinprotclems witn one-plank- svnmmetry (u

.'. L nt2U urf--,: L T. 01 Oturpagaition )t an incident Vpane wave

I ;iu svflmetr%- o1 a conducting scatter or, it is re-
LjIL sme ymne~rcbehavior must exist in the- induce,;

t, oi toeL surtace oL) the scatterer. h ; thout loss ut generalitv,

* i cou rd inates can be se t up so t hat th.2 pl ane o01 symmetrN

t:, the XZ p i ane as shown in Fi gure lii. D~ olarization
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of the incident wave is assumed to be either parallel or

perpendicular to the XZ plane. Arbitrary polarization can

be decomposed into two components, one parallel and the other

perpendicular to the XZ plane. The overall scattering problem

can then be treated by superposing the fields due to these two

component incident fields.

At two symmetrical points £ and k + L/2 in Figure 28, the

components of the induced currents exhibit the following relation-

ships

X xk =kJ + L/2'

Jy =-Jy
Z Z+L/2

z z
£ k + L/2 , r0)

when the incident E is parallel to the z-axis. In Equation (50),

J, denotes, for example, the x component of the induced current in

the kth cell.

When the incident Ei is parallel to the y-axis, the induced

current on the scatterer has the following property

x _x
JX = -JJk= + L/2

jY = jY
ZJ + L/2

z z
£ =-J + L/2 (51)

The matrix equation to be solved is

/ j



1 3 k Zn nV .)- i Z~ =v'k (52)

9=l k=I ~ p

n=1 ,2,3

p=1 .

Since the excitation is symmetrical, we have

vn =vn
Z' Z +L/2 (53)

Substitution of Equations (50) and (53) into Equation (52)

yielIds

V V k ;/fl+ (L/2+ 1)f k+11  V11
k-- I(L pk ~pk (I

fl= k= I~

n= I 2 . L/

Lor L z

Substitution of Equation (51) and (53) into Equation (52)

yields

L/ ZR + z (L/2+Z)n k n
4k (-1 k =k V (55)

9=1 k-=1

n=1,2 ,3

p=1,2 ... L/2

for E =y

7'+



; at L.tns (5) -"ad (, how that the nu:,1r -.f' ,v, . s

Figure 29 shows a scattering problem sy;-daettic._- W-;it!,

respvct to the x-z and y-z planes. The directive of propagaLion

of a plane wave is assumed to be parallel to the z-axis. 'Ien

.iI.

., h r ,, iave

I ..

13 3
In addition, the excitatioo at cells 1,2,3 and 4 is identical.

The number of Equations in Equation (54) can therefore be reduced

to one-quarter of its original size as follows



/i1 I A

Figure 29. A scattering problem with two-plane symmetry.
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L/4 £ + lk+1 (L/4+Z)m (L/2+Z)n1

R pk +Zpk + zPk +
2=1 k=l

+(z3/4 L+Z)n Vn(8

n = 1,2,3

p = 1,2 ......... L/4

when E = z .

Substitution of Equations (57) into Equation (52) yields

L/4 3 k I,,, k(l-6 1k) (L/4+Z)n k( (L/2+Z)n
+ (-I) + (-I) zk) pk

k=l k=l

k(i-6 (3/4 L+)n =V n  (59)+ (-l)k -3k) Zpk Vp(5

n = 1,2,3

p = 1,2 . . . ..., L/4

when E y. In Equations (59) 6 is the Kronecker delta.
- yju

C. Banded Matrix Techniques

The banded matrix technique has been previously employed by Ferguson,

et al. [43] and Balestri, et al. [44] in the scattering and radiation of

thin-wire structures. These authors have demonstrated that the banded

matrix technique can reduce the computer execution time in the computation

of thin-wire scattering and radiation involving small matrices. They also

demonstrated that wire-grid problems involving more wire segments than can

be managed in the computer central memory can be solved by the banded matrix

technique after proper numbering of wire segments. The segments are
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numbered such that the difference between segment numbers for all

neighboring segment pairs is small as compared with the total number

of segments. In this case the large matrix elements are kept close

to the principal diagonal of the matrix.

The basic banded matrix technique has been applied to the Volume

Integral Equation algorithm. However, there are three unknowns in the

nth cell in the Volume Integral Equation approach, while there is only

one unknown in the nth segment in the wire algorithm. Fortunately the

matrix generated in the Volume Integral Equation algorithm has a tendency

to be banded. Figure 31 shows the matrix for the case of a simple cylinder

formed with a linear array of volume cells. It can be seen that a diagonal

band extended to one third of the columns and the rows must be included in

order to include all the nonzero elements. It is also noted that outside

this band all the matrix elements are zero. This phenomenon is due to the

lack of coupling between orthogonal components of the electromagnetic

source and field. For an object of more complex geometry, such as a sphere,

elements throughout the entire matrix can be nonzero except for those re-

lated to the coupling between orthogonal components in the self cell.

Figure 32 shows the matrix for the case of a prolate spheroid of 12 cells,

which is weakly banded with some nonzero elements away from the diagonal

band.

We now define the normalized width of the diagonal band as

Normalized Width of diagonal band = [(number of rows in band)

+ (number of columns in band)] [(total number of rows) x 2] (b0)

Numerical tests have been conducted to explore the convergence of the

solutions as a function of the normalized width of the diagonal band.

Figure 33 shows that the error in the solution is reduced as the width of

the diagonal band is increased. The error falls to near zero when the

normalized width of the diagonal band is only 0.6. Note that for a general

matrix the error reaches zero when the normalized width of the diagonal

band approaches unity. It is also noteworthy that the error is only 5%

when the normalized width of the diagonal is 0.15 or larger. Thus, a
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D. Virtual MemorJ e chnriu

The virtual memory is a software technique, in contrast to the

extended-memory hardware capability, to store data in a digital computer
for rapid and efficient access in computer-aided numerical analyses to

overcome the limitations imposed by the size of the computer central

memory. The basic algorithm had been developed by Carbrev [45] for real-

valued data, and was employed in the present research to expand the

capability of the Volume Integral Equation algorithm to handle large

dielectric scatterers. When using exclusively the computer central

memory to handle the matrix in the computation, the CDC CYBER-74 computer

at Georgia Tech can only deal with matrices of about 38,300 complex

elements, or about 65 volume cells. The use of the virtual memory tech-

nique can potentially make it possible to handle a matrix with 4 x 106

complex elements, or 660 volume cells, which is about ten times the size

of those limited by the computer central memory. A serious disadvantage

of the virtual memory technique is its extremely large execution time,

often ten times more than methods using central core memory alone.

The tasks involved in implementing the virtual memory technique in

the Volume Integral Equation algorithm are twofold; the Carbrey algorithm

must be extended to handle complex data and be integrated into the process

of the moment method solution. Both of these difficulties have been overcome

and successfully tested for small and medium scatterers. For large

scatterers considerably exceeding the central memory, the computational

efficiency is low and needs to be improved.

There are two steps involved in the numerical solution of a system

of linear equations. First the matrix elements involved must be computed

and stored for easy access. Secondly, the matrix equation must be solved

by a certain process using either the central memory alone or the virtual

memory, which uses both the central memory and disk memory. Both steps

need large computer execution time and the key issue is to reduce the

computer time to a level acceptable for practical computations.
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All tile matrix elements are stored in the present program in four

local files, eiachi of which is allocated a certain disc space. The matrix

elements are first divided into, say. three portions as shown in Fig'ure 34.

Elements In each of thle Correspond ing rows of the three partitions are computed

and stored in snail arravs in thle core memory. As soon as the three rows

have been [ul!- generated, these three rows are transferred from core
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PARTITION I
1th ROW F,,XX................X

PARTITION 2
(I+N)th ROW X X ................... X X

PARTITION 3

(I + 2N) t...O.................... X X

I - I - - I I I

TAP I I TAP 12 TAE1

LOCAL FILES

t h
Figure 34. The local-file simultaneous storage process for the I

(I + N)th and (I + 2N)t11 rows in a large 3N x 3N matrix.
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memory to local files in binary form with a "WRITE" statement. The

process is repeated for N times until the complete matrix has been

generated and stored in the three local files. This storage process

is highly efficient in comparison with the conventional virtual memory

technique because matrix elements of entire rows are read simultaneously

into local files.

The solution of the matrix or the system of linear equations in the

present local-file manipulation technique uses the lower-upper decomposition

method described in Appendix II. There are two important features in

this technique; the restorage of the matrix elements based on their

frequencies of impending usage and the solution of the matrix by the

lower-upper decomposition method.

In the restorage of the matrix elements a priority table is generated

and stored in core memory to assign the "priority" level for each. Three

priority levels, high, last and low, are assigned to the rows. The "high"

priority is assigned to the row for which immediate and frequent access

is needed. The local-file manipulation algorithm has been tested on the

Georgia Tech CDC Cyber 74 computer with good results for small and medium

sized matrices. Figure 35 shows a comparison for the time required for the

generation and storage of the matrix elements between the virtual memory

algorithm of Carbrey and the present local-file manipulation algorithm.

This greatly improved efficiency in the storage process is probably due

to the row storage method discussed previously. The matrix solution

time required in the local-file manipulation technique is also much less

time consuming than the Carbrey algorithm as shown in Figure 36. These

comparisons are made only for small matrices and it remains to be seen

whether similar comparisons hold for very large matrices. Unfortunately

further study for the case of large matrices cannot be conducted within

the time and resources of the present research program. It appears, how-

ever, that the local-file manipulation technique will prove to be con-

sidurably superior to the Carbrey virtual memory technique when applied

to large matrices. A major advantage of the lower-upper decomposition

process is that one does not have to repeat the matrix element generation
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need to store both the upper and lower matrices ILI and [U]. lio'i',_,er,

this disadvantage is not of significant consequence when it is used in

the local-file manipulation method. Since the matrices are stored in the

virtually unlinited disc space, the efficiency of storage and access to

the matrices are more important than the size of the storage space

required. In addition, the enlarged stora6 requirement in this method

can be reduced by the band-storage-mode technique 146].

90I



SECTION VI

METHODOLOG'Y FOR TiE MOI)ELING OF THE SC,\TTERING
ALUCk l-*" FLYihi cL'.,DS

In radar applications, the elecLromagnetic scattering from a flock

of flying birds interferes with the detection and identification of

objects, but it can also be used to track bird migratory patterns [47,48].

Radar return from birds is often observed as a large dot angel, which

occurs at all microwave frequencies on virtually every type of radar. One

of tihe most outstanding features of the scattering from a flock of birds,

and hence the radar angel, is its irregularity; with variations of as

much as thiree orders of magnitude 149]. This irregularity is due to that

ot the individual oird [33] and the density and formation of the flock.

AiLttIouWh the lack of repeatability and regularity in the scattering

meuasurements for birds appears to fit a statistical model, several aspects

ot te problem are highly deterministic. fhe formation of a specific

Ilocih is quite orderly and therefore will probably be more accurately

modeled deterministically. fie individual birds can be better modeled

statistically because ot the variations in size, shape, and movements

Let .('Ja) be a random variable which represents the back-scatter

cross-section trom a specific tpie of bird as shown in Figure 37, the

total radar cross-section . ,) can be approximated by

2r2 - 2 -2]kor r(I
n= I ) e -n

where r is a unit vector parallel to the line of sight betwecn the radar

and a reference bird in the flock, r is the distance from the reference bird
-I

to a bird designated as number n, N is the total number of birds in the

flock. Let the superscript denote "average", we have the expected total

RiI o L tlL I lock as
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where it is assumed that the formation of the flock. is deterministic,

at least for the time interval under consideration.

The time variation of the radar return from a flock of flying birds

is primarily due to the wing flapping and the flight path movement. The

effect of this variation appears as radar scintillation and Doppler

frequency shifts. Modeling of these phenomena can be based on the

statistical charactristics of the random variable ( , ) pertainin to a

sinAle bird.

Deuendinlg on the available data on the single bird, there are several

was to i7odul the scattering characteristics of a flock of birds by using

'ijuarions (0i) and (62). Lquation bi) can be used to generate a Monte-

Carlo simulation with th.e statistical parameters of the single bird. If

it is dusirud to include tiLe e r ect of the array formation, r can also

ie considered as a random variable and De included in the model. If we

arte only intere2Sted in the time average scattering cross-section, Equation

(02) is convenient to use as long as the average scattering cross-section

ol a single bird is known. The single bird data can be obtained bv

computation and measurement techniques discussed in this report. The

tecnniques ot modeling a flock of birds from scattering data of a single

bird is similar in many ways to that of chaff cloud scattering Froblem,

which has been recently investigated at Georgia Tech [50-521. No numerical

modeling was carried out in the research program because of the lack of

quality data which can be used to compare with the model.
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SECTION VII

CONCLUSIONS AND RECOMMENDATIONS

Research has been conducted in the analysis and measurements of

three-dimensional arbitrarily-shaped heterogeneous dielectric and

biological bodies. The discrepancies in the literature regarding the

singularity of the electric dyadic Green's functions were resolved.

The discrepancies were centered at the singularity of the rectangular

cavity. It was shown in this report that the apparent discrepancies do

not exist and a unified and consistent view was presented.

Compact range scattering measurements were successfully conducted

at I GHz. Techniques in fabricating simulation models using the "Super-

stuff" were investigated and several 1-foot birds were made. Extensive

numerical analysis was carried out for dielectric scatterers of various

shapes including cylinders, rectangular blocks, I-shaped blocks, spheres,

and a 1-foot bird. The accuracy of these computations was good except for

the resonant sphere, for which the resonance frequencies were shifted by

about 20 percent.

Various numerical techniques have been investigated. Computer central

memory requirements and execution time were reduced by 50 percent with the

symmetrical matrix technique and by 75 percent for scatterers of one-plane

symmetry. Banded matrix and virtual memory techniques have been implemented

in tie Volume Integral Equation algorithm and tested successfully for small

scatterers. A new local-file manipulation technique for handling matrices

larger than core capacity was explored and the results for small matrices

showed that it is potentially much more efficient than the virtual memory

algorithm developed by Carbrey.

It is recommended that the computational techniques developed in this

research program be extended to the analysis of larger lossy dielectric

hodies. In addition, the Surface Integral Equation approach should be

explored to see whether its numerical convergence is more rapid than the

Volume Integral Equation approach. The derivation of an exact solution

- v . . . ./ (



for the dielectric prolate spheroid appears to be a feasible research

subject which should lead to accurate and useful data for dielectric

scattering problems.
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APPENDIX I

SUBROUTINES USED IN LOCAL-FILE MANIPULATION ALGORITHM

Sixteen of the subroutines are written in FORTRAN V and eleven of

them are in the COMPASS machine language.

A. Subroutines Written in FORTRAN V

1) MMCDCOM - Decomposes a complex matrix to lower and upper

submatrices.

2) MMCFBS - Solves the decomposed matrix using forward and

backward substitution.

3) MMCRNRM - Normalizes a row in a matrix by dividing each

(except the first) element of the row by its first element.
The first element of the new row is then replaced by its
reciprocal.

4) MMCRSUB - Performs complex row-subtraction and the pivoting

operation in the lower-upper decomposition method.

5) MMINIT - Pre-sets matrix storage allocation among several

local-files, allocates local-file addresses and allocates
buffers for the first few rows. This is an initialization
of parameters, which may be altered during the execution

of the program.

6) MSTAT - Provides statistical information regarding the status
and the efficiency of the core and buffer storage allocation

as well as other program execution characteristics.

7) MMGBUF - Searches for and provides a free buffer upon request.

8) MMINBND - Assigns the priority 'or a row based on whether

it is of current interest or not.

9) MMFSET - Sets up a file-environment table for an I/O operation
and starts the I/0 operation.

10) MMLOCK - Assigns buffers and insures that the buffer is available
for usage.

11) MMGTRA - Gets the disc address of a matrix-row from the address

tables such as the row map, buffer maps, FET, etc.

12) MMSINBD - Sets a map of in-bound/out-of-bound rows for later

use by MMINBND.

13) MMGRDW - Gets a matrix row from disc andstores it into the core
through the buffer.

10!.



14) MMSROW - Gets a matrix-row from the core and stores it
into the disc through the buffer. This is the reverse
process of MMGROW.

15) MMSLIM - Determines and updates the priority table which
assigns the matrix rows to be stored into the core memory.

16) MMBAHED - Gets matrix rows to be used soon from the disc
and stores them into tile buffer. This is a portion of

MMGROW and is not needed for MMSROW.

B. Subroutines Written in COMPASS

1) MMALLOC - Allocates central memory space for the buffers
to be used; Sets up parameters such as tile number of local-
files to hold the generated matrix, the number of rows per
super-row, and the number of simultaneous I/0 requests that
are allowed.

2) MMLINK - Links subroutines which allocate buffers, set file
environment tables, row-maps, buffer-maps, and subroutines
indirectly calling other subroutines.

3) M SUPRT - Contains a collection of subroutines to direct
the computer to perform several simultaneous operations to
take advantage of the overlapping mode of execution of the
( vlber-74.

4) PNCIO - Invokes "CIO" to process FET (file environment table).
FFT is a tile-table containing information such as tile address
of tile randomly-accessed records of a particular file. "CO"
stands [or cont) ned i/O operations and is used to perform the
I/O ope rat ion in COMNPASS. In FORTRAN, COBOL and other high
lkWvc_ ( a_ cls the I/O is performed automaticaliy.

)) ,IlMS(; - Displays messages on tile computer-operator console
,aus o,0pt ,n l, I I i ,splay , essa;es in LIIu day IiI .

0o) (oM - ,dverts inary dislav to decimal disPiay.

U) -:T1,:C1 :i: t i the I') proctis to itasurk tha tlc i,,0

I) M 1'i - ,Pies cLILa I ran onc array to ,!he other.

HI i 5Y- ihie.,ks I an I , L tor a particular super-row is

J ) 'is PI.I>1 - Skts thLe l't 1imIiLa. A poripheral processor unit
kPPL) is a smal I pro,:essor whici provides coTimunication paths
htLWeelil the central processor and tile individual peripheral devices
sich :oi thu di:-c uinit. I Lhis subroutine tile user ,an lilnit
or expand tile nunber of SimuJtaneousi v executed I/O requests
dUpendinto, on tule computer's load, time of day, etc.

i l) MMUI'ALK - Unpacks the row-map and buffer-map. Keeps track
on a table of lile-numbers corresponding to row, super rows,
and iul ters. Checks ii a uiller cannot be released for a

p; r i,:ll~ I Yt' P
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APPENDIX 1I

MATRIX SOLUTION BY THE LOWER-UPPER DECOMPOSITION METHOD

The lower-upper decomposition method for the solution of a matrix

equation is based on the following theorem .

Theorem. Let [A] denote a NxN square matrix whose elements are denoted

by a.., where i and j refer to the row and column of the element. Let

[Xk] denote a kxk square matrix which is a left-upper submatrix of [A]

defined as

[Ak] = [a.j]; i,j = 1, ...k. (AI-1)

if all the submatrices [Ak], k=l .... N, are nonsingular, then fA] can be

decomposed uniquely into the following form

[A] = [L] [U] (AII-2)

where all the three matrices are all of dimensions NxN, aud [L] and

[U] are referred to as the lower and upper triangular matrices of the

following form

1  0 0 ............ 0

21 1 0 ............ 0

L= (All-B)

£nl £n2*' ** * *'

°112 ''° ... ** U. In

L U............. U 2n (AII-4)

S........... nn



-nsfcrr in.; A -A L 'roduct to ;uch mtr-ca;, n K~fl

v. .e matrix equ Atio-i !),. Frward nnd backward

Full L 1 2  U1 1
[A]= U 2 1u1  2 +u 22 21iu3l+u2 3 ...........

31U 11 31u2+Y32 u22 31U 13 +32 u23 +u33..

[AII-5]

a1 a12 a 13..................

21 a22 a 2. .. . . . . . . . '
a, a,

-1 23. ................. nn

By equating the individual elements in the equation above, we
obta in:

a) For the first row of U

u lj =alj j=1,2 ......... N

b) For the first column of L

I i=ail/Uil i=1,2 ......... N

c) For the second row of U

u2j=a 2j-1 Ul j ]2,3 ......... N

d) For the second column of L

1 ) = (a. I1 u 1,]4 (ia il 12) 22

i=2,3 ........ , '

11)b



,J I tlic- matrix element-s .. fOucan then bL obtained in

cquencc according to the set of Lquat ions (AUl-6b) .Note that the

SIol procoss of determininml toe unknownl and u. involves cl

st g'itior-narci substitLutica o1 the ~W a o rvosL

001 ~ ~ J-l U:at I ad foLwinlg the order spucifi od in L(;uatiul1 .Lic

N,:t'L, !..htit !.aaIiL ion (A A-6) Can ho( Odfl0t-'a in ~-ifiI

iq~i N

La - 1 (I (I II -2

ustii, now use this lower-upper decomposition method to SOlvC tile

*Wl .'wiu mtri C eqIuct ion 1

[A] [X] =[hi (AII-8)

Apipivi n! -Lqliation (A 1-2) to (Al-8) * we have



We have

[L] [y] =[b] (All-i1.)

Equation (All-li), which can be written explicitly as follows

Sl2yl + 1 2 2y2  b 2

'nl 'l + I19 y,) +...+linyn = b nAT-2

can be solved by the trivial forward substitution method, which mierely

solves the set of equations (AII-12) sequentially by direct substitution

of the previously calculated yjiS.

Next we write LqUation (All-lu) expLicitLy as

O IJX +0 u X + . . . .+11Il X V!

O .~ ....... V =

L is now otavious that. tku un~znown x. 's :an he so Ived s'ii

i aoc- rorwo rd subs ti Lotion nettiod start in I cor tooc I as t ( (i 61 c

5~~~ ~~ )yif it'~C 1 qjuaLiun~ 1.A L-i-)
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