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1.0 MANAGEMENT OVERVIEW

( 1.1 Background

Inexpensive hardware, expensive software, large complex systems, and a
multitude of other influences have converged very recently to cause some
fairiy large upheavals in the area of developing systems. In fact, events
are happening so quickly that it is difficult for management to know where,
how and what to respond to. There is, however, evidence of some common-
ality in the reactions that are taking place and noticeable trends appear
to be developing. A sufficient number of large complex systems have been
developed or have been attempted to be developed, in which significant
problems have arisen to arouse concern.

One very significant reaction to this phenomena is that of DoD who,
in turn, reacted with various directives. These directives have had 1
major influence throughout the industry, both in the government and commer-
cial environments. As a result, RFP requirements, contractor requirements,

amount and types of customer visibility, contractor qualifications, systems
development models, final system products, and methods of producing systems
are experiencing major changes.

Many people involved in large systems are beginning to talk to each other,
} realizing that their problems are not only not unique, but perhaps

they can learn from each other in attempting to address the more serijous
) issues that have come to the forefront. For example, software often
does rct satisfy the original specifications. The basic reason for this
is t~e inadequate techniques that are used for specification--in many cases
it would be impossible to develop a correct program from original specifica-
9 tions, for to do so would be like deriving a consistent model from an
inconsistent theory.

Our experience has indicated that interface problems (i.e., data and
) tiring conflicts) within a system, between systems, and between various

stages of system development account for the majority of the problems involved

in the construction of large systems [4]. These interface problems




either took place when attempting communication or rescurce allocation
(a process of preparing for communication).

As a result, the very basis of the methodology of Higher Order Software
(HOS), based on our analysis of problems relating to the development
of large systems, e.g., Apolio, Shuttle, etc. concerns itself with the

definitions of systems s0 as to ¢liminate data and timing conflicts.

Not only did we find that interface problems contributed towards making
software systems unreliable, but they also increased the frequency of cost
overruns and missed deadlines, for such conditions usually resulted when
integration of individually completed modules was attempted. No matter
how "structured" and correct an individual module may be, unless the
system structure is consistent and complete, a project will undoubtably
have errors.

Managers are beginning to realize that they, themselves, are in a very
enviable position to do something about helping to advance the technology
of developing systems, since they, and only they, are the ones who have been
forced to lead the way. Upon observing themselves and others, they have
come to realize that certain basic concepts such as understanding

a problem before solving it are of major importance. Towards this aim
managers are recogn{zing the importance of communication and are now
concerning themselves with finding various methods to better define
specifications as well as to expedite their definitions and their im-
plementations. As a result, there is now a proliferation of "methodologies"
whicnh brings back memories of the proliferation of higher-order languages

in the sixties. Within this environment, certain philosophies are be-
ginning to be more commonly accepted. These include the importance of
hierarchical decomposition, emphasis on front-end system design, inte-
gration of "modules"” within a development phase and throughout a develop-
ment process, and the emphasis on finding or developing an effective
reguirements or specification language.
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Tnere are some concerns, however, in attempting to improve current

methods of developing systems. We include here a set of typica® questions

which reflect these concerns, and answers based upon our own experience.

In later sections of this report, we will attempt to address these issues

within the context of the PLRS project.

Question: How can we tell if a methodology will work than n 0
methodology at all?

Answer: Compare the properties of the methodology with those used in
an existing development with respect to a well defined set of

fequirements for consistency and completeness.

Question: How do we choose between one methodology and another methodology?

Answer: Compare the properties of the two methodologies with respect
to a well defined set of requirements for consistency and com-
pleteness.

Question: What is the difference between using a methodology and using
"smart" people?

Answer: ﬁhe smartest nerson, by definition, would apply an
effective me* ludology. An effective methodology would
far exceed the advantages of a smart person applying his
techniques in an ad hoc manner, since all the intricacies
of a complex system are by its nature beyond the grasp of
one human being. The designs of all smart people must
be integrated.

Question: How do we use a methodology without impacting deliverables
of an on-going project?

Answer: Choose those aspects of the methodology which find errors
or which expedite the design and implementation process.

Question: How do we convince management, designers, and users to
use different approaches?

Answer: A different methodology should be demonstrated within the
environment of the people who will use it.

Nuestion: What creativity is left for the engineers if a methodology
has constraints?

Answe £n effective methodology should support creative designers
and not constrain them from producing better designs but
rather constrain them from producing errors.
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1.2 Existing Methodologies

Although the recently founded philosophical goals of various systems
managers are important ones, there exists a proliferation of problems

in the attempt to reach these goals, both in developing a rew methodo1ogy
aor in cheosing an existing methodology. There are, of course, many
methodologies whose intent is to solve various aspects of the problem

of developing systems. The developers of these methodologies are all pro-
ponents of reliable systems with efficient methods for developing these
systems. And, most methodologies advocate many philosophies that are similar.
For example, it is a commonly accepted idea that it is beneficial to produce
a hierarchical breakdown of a given design in order to provide more
manageable pieces to work with. And, there are variations between method-
ologies. Some emphasize a concentration on data flow as opposed to
functional flow [10],[11,[31 [12; others emphasize documentation
standards {9 ] [15]; othersemphasize graphical notaticns [131; and

still others emphasize semantic representation [17].

There are certainly positive aspects in many of these methodologies and,

in particular, in what they are trying to obtain. To be effective,

however, a methodology should have techniques and rules for the purpose of
defining systems which are consistent and complete. But these techniques and
rules are useful only if they are within themselves consistent and complete,
both with respect to each other and to the systems to which they are

being applied.

cc . 7i1en the same problems exist in the development of methodologies

as =xist in the problems the methodologjes are intended to address.

That is, there are often inconsistencies within a methodology. In addition,
improvements to a methodology are often ad hoc and modifications to a
methodology to fix or enhance that methodology are made to already

existing modifications.

Likewise, in the attempt to select an existing methodology, there is always
2 risk of comparing (1) techniques addressing very different probliems,

(2) techniques intending to address a problem, but not effectively ad-
dressing it at all, (3) techniques with respect to non-existant or il1-

4
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defined requirements, (4) the "syntax" of methodologies instead of the
“semantics” of methodologies, (5) techniques, based on unfamiliar para-
digms with preconceived notions, (6) technigues addressing the wrong
problems or those which are "in the .noise,” and (7) techniques with re-
spect to completion or amount of use rather than with respect to the
problems they are solving.

1.3 Reguirements for an Effective Methodology

Most importantly, the time has come when one is forced by large systems

to look closely at properties of systems. They are more basic than one
cares to admit. If this fact is ignored, there is a risk of responding to
only symptoms and investing a great deal of effort based on preconceived
notions and misquided misconceptions.

In choosing requirements for a methodology, issues such as how people think,
learn, communicate, and resource allocate need to be addressed. These
issues are not unlike those of "older," more established fields, like
philosophy or mathematics, and more recently, linguistics. But when
working with large systems, there is the advantage of more visibility into
some basic issues than was ever provided before. What is suggested is not
only a whole new set of paradigms for developing systems, but more importantly,
a whole new attitude on accepting that fact. It is within the framework

of such a set of paradigms that proper research requirements for method-
ologies, including methods for specifying specification techniques before
specifying systems, can be determined.

The first step, then, is to define more explicitly what it is that
needs to be solved and then to define more explicitly how to respond
to this need. To be effective, a methodology should have the mechanisms

to consistently and completely:

Define an object and its relationships formally. That is, every
system in the environment of an object system ipe@ple, hardware,
tools, software) understand a definition of an object and its
relationships the same way.




Provide for modularity. That is, any change should be able to be
made locally (with respect to levels and layers of development [5]),
and if a change is made, the result of that change should be able

to be traced throughout both the system within which that

change resides and throughout other systems within that system's
environment.

Provide a set of primitive standard mechanisms which are used
both for defining and verifying a system in the form of a hier-
archy.

Provide for an evolving set of more powerful (with respect to
simplicity and abstraction) mechanisms based on the standard
set of primitive mechanisms.

Allow system engineers to communicate in a language (with common
semantic primitives and a dialect of their choice) which is ex-
tensible, flexible, and familiar and which serves as a "library"
of common data and structure mechanisms.

Provide for a development model which includes a set of defini-

tions, tools, and techniques which support a given system develop-
ment process.

1.4 How HOS Responds to the Requirements for an Effective Methodology

We will discuss HOS in terms of the requirements we have set forth for
methodologies in general, before discussing the application of HOS within
the environment of the PLRS project.

FORMAL

HOS systems* are formal in that the relationships of all objects are ex-

plicitly defined in terms of completeness of control. That is, all HOS

systems always have the same properties with respect to control of interfaces

as a result of standard and well understood ways of defining interfaces.

Thus, everyone defining a module, using HOS, must follow the same rules as

everyone else in constructing the structure of that module. The control of

every object in a system is determined by adherence to six axioms [c.f. Appendix I].

*by a system we mean an assemblage of objects united by some form of
reqular interaction or interdependence, where an cbject is an existence
of something.




These axioms are, in essence, a consistent set of rules that determine a
means for defining systems that are consistent, complete and not redundant.
These rules determine a means for defining invocation of functions, input,
output, input access rights, output access rights, error detection and
recovery, and ordering of functions. When these rules are applied, there
is no room for ambiguity with respect to control. That is, everything must
be controlled and every object has a unique controller. All objects in an
HOS system can be described in terms of control structures, derived from
the six axioms, that relate members of algebraicially defined data types

or functionally defined data whose components are algebraically defined.

MODULAR

Systems defined in HOS satisfy the requirements we have set forth for
modularity. Control, or the chain of command, can be traced directly on
an HOS control map. Function flow (including both input and output)

can be traced directly on an HOS control map. In addition, the nature of
HOS systems is such that the mechanisms of defining systems as well as

the systems themselves, behave as if they are "instructions," e.qg.,

a given control structure has no knowledge about a higher-level control
strucutre. With these properties, changes can be traced directly and
changes can be made locally. Systems defined in HOS display certain other
distinctive properties. For example, HOS systems have been shown to be
secure systems ‘[2 ] and the single reference, single assignment properties
of HOS systems provide an interesting set of resource allocation

alternatives.

PRII'ITIVE STANDARL MECHANISMS

Three primitive contrel structures, derived from the axioms [4] pro-
vide rules for the definition of dependent functions (e.g., sequential
processing), independent functions (e.g., parallel processing), and
selez~ion of functions (e.g., reconfiguration). From a combination of

priritives, more abstract control structures can be found (e.g., recursive
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functions). A complete design is one which has been hierarchically
decomposed until all terminal nodes of a control structure represent
primitive operations on data types.

Thus AXES, the specification language based on HOS, is able to have a
common set of specification primitives (i.e., a common specification
"machine"). As a result it is possible to have common tools, such as an

analyzer to check for correct interfaces (i.e., completeness, consistency, ..

and elimination of redundancy) and a resource allocation tool to prepare
a specification for a particular machine environment (c.f. Appendix II).

EVOLVING MECHANISMS

Although a system can be defined directly with AXES, a more powerful use:
of AXES can be made by defining systems which are themseives mechanisms for
defining systems. Thus, we can define a set of specification "macros"
which collectively could form a "language" (or management standards)

for defining a particular system or family of systems. Each new system
user is able to use a subset of already defined statements in an AXES-
based library or add new statements since the AXES language system is
extensible both with respect to structure and data definitions.

FAMILIAR DIALECTS

AXES provides a user with the capability of defining any syntax desired for
a control structure or data type. Thus, for example, a communications
project is able to have its own set of specification statements to use

as a means of standardizing and an avionics project is able to have its

own set of statements. But, both are able to communicate in common at

the level of the primitive specification machine to which these statements
can be reduced to their primitive form.




DEVELOPMENT MODEL

AXES provides the mechanisms to define a development model as a system and
to define the management of a system development model, which uses that
development model, as a system. Within the context of a complete
development provess, HOS provides a means to define management standards,
definitions, milestones, disciplines, phases, and tools and techniques

and the relationships between all the various cemnonents within a develop-
ment process.

1.5 Previous Experiences with the Application of HOS

Once the foundations of HOS were formulated, it was then necessary to apply
the methodology to some actual applications in order to demonstrate its
effectiveness.

Initially, we chose the Apollo Guidance Computer (AGC) operating system,
an application familiar to us[8 1. ~Unfortunately, we had a great deal of
difficulty reconstructing the pieces. This was due mostly to the fact
that the AGC operating system was poorly documented. Our only solution
for completely understanding the system (which included our own design
and our own coding) was to go back and pour over the original code,

which was very c]evér and difficult to understand. When we began this
effort, we thought there was little in the AGC operating system we could
improve upon.. This attitude was partly as a result of the fact that

no errors were found for several years within the operating system (0S)
itself. However, when we attempted to specify the operating system with
HOS, we discovered that many df the development errors which occurred in
the application programs, using the 0S, would not have occurred if the
AGC 0S had certain other inherent properties. For, although the AGC 0S
had properties of hidden data, it did not have properties of hidden timing.
From this effort, we therefore determined that HOS was very helpful

in cemonstrating more reliable design goals with respect to interfaces
bezwcen application programs and the systems software which executes
thesz programs.




We then selected an application to demonstrate another aspect of our
techniques. Here we extracted a problem definition from an existing
description of a typical orbit/altitude spacecraft problem to demonstrate
the abliity of our technique as a gquide to design and verirication [6].
Although this problem was fe]atively small, we were able to use HOS in
determining what questions to ask in understanding the problem. In
addition, we provided alternative designs at the Tevel of the user inter-
face, so that the human user functions were less error prone. Many

of the interfaces existed only in the minds (as is characteristic of

most projects today) of a small collection of experts who had been involved
in the original project. Our emphasis was to integrate and fill in,

where necessary, interfaces that were missing in the specification document.

We have just completed the definition of a multilanguage structured
flowcharter in AXES which we are implementing in PASCAL [7 ]. The
programmers who are implementing the flowcharter are determining the design
of the code by using the control maps as a guide to design. From the
control maps, the programmers are able to directly determine the

“whats" with respect to implementation and the alternatives with respect

to the "hows" of implementation.

The above three tasks contributed in the determination of the effective-
ness of HOS with respect to real worlid applications. We had not, however,
attempted to apply HOS to an ongoing project, or to a project whose
application was quite unfamiliar to us. Such an opportunity was provided to
us by PLRS.

1.6 An Overview of the PLRS Project

Qur charter, with respect to PLRS, was to select the most complex module,
specify that module in terms of HOS, and demonstrate the advantages of
applying an effective methodology (in particular, HOS). We did just that.
But, there were several additional interesting results and observations
that resulted from this effort. A detailed description of this effort

is contained in the remaining sections of this report. The following

10
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summarizes the PLRS effort and the key results of this effort.

) The most complex module of the network manager has been specified
with an HOS control map.

® Identification of commonality between modules was shown.

. A description is provided to show how we defined the network manager

control map.

) Differences between the control map and the information provided
in the PPS have been determined.

[ ) Advantages of control map technigues with respect to management,
design, implementation, verification, and documentation have been
determined for PLRS.

° Sixteen categories of questionable areas such as unanswered
questions, inconsistencies, incompleteness, and redundancies
have been determined.

® Some suggested methods of specifying the control map with
AXES statemants are shown. A comnarison of the PPS with an al-
ternative method using AXES is provided.

° Specific recommendations with respect to the network manager
have been determined.

(] Standards (common structures and data types) have been defined
for the network manager with AXES. These standards
can be used not only for other PLRS modules but for a family of
communication systems as well.

° A section of the PPS was rewritten to incorporate HOS techniques
in order that a comparison could be made on a one-for-one basis
between the existing PPS and a PPS using AXES, the specification
language of HOS.

s General recommendations with respect to the PLRS project have been
determined.

] General recommendations with respect to further efforts have been
determined.

N
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1.7 PLRS: Lessons Learned

PLRS is the first effort in which we attempted to use HOS onan on-

going project. Mot only was our aim to demonstrate the effectiveness

of HNS, but also to perform this task without impacting schedules or de-
liverables of the PLRS project. In this process, however, we determined
that the use of an effective methodology can not only benefit a new pro-
Jject, but it can also benefit an ongoing project which already employs a
different methodology. Such benefits, some of which are déscribed below,
fall info two main categories: those which make the system more reliable
and those which help to accelerate the development process.

Acceleration of the Learning Process
The people who performed the HOS/PLRS task were unfamilijar with the PLRS
project. This has its advantages and its disadvantages. The disadvantages

may appear obvious, for it is always helpful to understand as much as
possible about an application before working on it.

But, because we were unfamiliar with the PLRS effort, we were able to take
advantage of such a fact in order to test HOS as a learning technique.

Our method of understanding the network manager was to first attempt to
construct a control map and by doing se, we were able to determine existing
functions and their relationships. This process not only provided us with an
accelerated means of asking the questions that should be asked to construct
the definition of the network manager, but it also became clear that this
was a technique for prompting questions that otherwise may never have been
asked. For, during this process, we found that there were areas in the PLRS
documentation which were not clear enough, missing, inconsistent, redundant,
or not integrated with other areas.

The fact that we were able to use the HOS control map technique as an

accelerated learning process for ourselves suggested to us that this
same technique could be used as a learning tool, for example, for those

12




new people coming aboard a project, a manager learning about the work

of the people in his project, designers learning about each others modules in
the same project, implementers learning the specification they are imple-
menting, and users, such as maintenance people, learning the system they

are using or changing.

Acceleration c¢f the Specification Process

Although the specification of the network manager (the particular PLRS
module chosen for demonstration) was, for all practical purposes, thought
to be complete, it was necessary for us to design more explicitly function
definitions, including data definitions, as weil as the integration of
these functions. In the process of constructing the various components of
the network manager, the HOS control map technique was quite effective in
expediting design processes. By using the control map technique we were
able to determine:

e Types of design tradeoffs

® Correctness of design decisions with respect to consistency,
completeness, and lack of redundancy (i.e., verification before
the fact).

Common use of specification modules (data types and structures)
More powerful and simpler ways of conveying specifications

When each spetification module is completed

How to safely integrate all the modules in the system

Common rules (or management standards) of communication between

‘modules in the system

o Methods of defining the system so that changes could be made
safely and the effects of those changes traceable within the
design and during the design process.

It was clear in the PLRS effort that the HOS methodology not only

supported a designer in providing designs more quickly, but it also helped
to pcint out things he might have forgotton about completely.

13




Verification and Validation Aid

In the process of analyzing the network manager and redefining its most
complex modules with HOS, we were able to show the effectiveness of HOS
as a verification and validation aid. Several errors were discovered
by the two step process of (1) formally défining the data types that
were used and (2) formally defiﬁinq the structure (or organization) of
the network manager. These errors were found by checking existing spec-
ifications from the standpoint of interface reliability usina control
structure and data type mechanisms. All in all, sixteen categories of
questionable areas were found. 1If problematic areas are detected early
a6 illustrated by the application of the control technigue to PLRS,
later development phases can benefit, since problesrs are not only able
to be detected earlier or prevented before the fact, but these problems
will not surface later or propagate into worse problems.

Establishment of Design Goals

In the process of understanding the network manager, it would have been
helpful if the PPS had concerned itself more with the definition of how
the specified functions related to each other (particularly at the top °

level). The control map technique forced us to consider integration of
the functions of the network manager from the very beginning. Such a
design philosophy, if applied, not only fids in understanding a design
but eliminates integration problems that would subsequently show up in
later development stages, such as the PDS. Thus if the PPS was inte-
grated the PDS could be an evolving document in stead of a "redo" of a
more detailed PPS.

Enhancement of Existing Techniques

We were able to indicate certain problem areas or demonstrate ways of
making certain improvements to the PPS without impacting schedules or
milestones. Advantages can be taken of our findings such as I1/0 com-

patability and understandina the data involved, within the environment
of previously existing techniques other than our own.




Management Visibility

During this project, we were able to determine a "feel" for the state or
health of the specifications of PLRS, in general, by viewing a section of
PLRS. That is, we were able to get a better idea of the types of interface
problems that needed to be resolved before the specification could be
successfully implemented. %e were also able to determine what steps

would be necessary before the specification could be called a complete
specification. And we were able to determine certain recommendations

which we thought would be quite helpful in providing a more reliable

specification more efficiently in the future.

1.8 Recommendations for PLRS and Future Efforts

Put simply, the most urgent need on any large system development process
is that of standardization. Ultimately, aside from being effective,
standards should be consistent with each other, not redundant, and com-
plete.

Some standardization, if it is effective, is certainly better than none

at all. But, if a project is already in development, it is not usually
possible to apply an ideal and complete set of standards. But it is
possible to incrementally begin to use those standards which would enhance
the development process either by finding errors or by accelerating remain-
ing phases of development. We did this on Apolio. For example, we dis-
covered that many interface errors took place in the implementation phase
when programmers would use instructions 1ike "GOTO +3." Errors would creep
in when someone would come along, often the same programmer, and inad-
vertantly insert a card between the GOTO instruction and the location it
should have gone to. O{nce we discovered the amount of errors which resulted
from this use of our language, we enforced by standardization the use of
instuctions such as "GOTO A" rather than "GOTO +3." As a result, errors
which fit into the above category never happened again. This type of
incremental enhancement to our own methods was very effective on an ongoing
project. The same sort of introduction of standards could take place on
PLRS 2nd other projects, for PLRS is not unique in requiring certain en-
hancements. 1If anything, the PLRS documentation is quite representative of
docu-entation we have reviewed from several projects; for we all suffer
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from the syndrome of hurrying to get the design process done because of
deliverables which appear impossible to meet, especially if we pause to come
up with standards. But hindsight and recent experiences of our own and
others have demonstrated that in the end it pays to organize first and
build Tater, particularly when we are involved in the development of large
and complex systems.

There are several standards that we recommend be used in the PLRS or a
PLRS-1ike environment:

e Definition of design goals - e.g., definition of interfaces
should be made in the PPS phase, i.e., integrate from the beginning.

e Rules for design and verification - specifications should be
defined hierarchically and rules (e.g., those that accompany the control
map) should be followed with respect to how one level in a heirarchy
relates to the function directly above it. These rules should include
ways of defining the invocation of a set of functions, input and output
flow, input access rights, output access rights, error detection and re-
covery, and ordering.

e Interface Specification Document - for every system a
standard dictionary (or library) should exist which provides common
meanings, ways of saying things, ways of doing things, mechanisms for
defining a system, system modules, and support tools and techniques.
For PLRS, we would have found it extremely useful, and believe the PLRS
people could benefit even more, if an evolving dictionary were introduced
which included a set of

- definitions of terms

- formally defined data types
--formally defined control structures
- system functions

e User Manual - a user manual should be provided which contains
checklists and explains (1) how users interpret the standards in the inter-
face cpecification document, (2) how designers design modules to add to
the “iibrary"” of the interface specification document; and (3) how managers
define new standards for system development which in turn can be converted
to modules, by the designers, to incorporate into the interface specifi-. . .
cation document.

o User Guide to Implementation - If specifications contain
certain consistent properties, one can take advantage of these properties
by understanding their consequences with respect to implementation. Given,
that there are standards for specifying, it would expedite the implemen-
tation process if standards were defined to go from a specification to an
implementation. The user guide should include standards for (1) going




from the specification (e.g., a control map) to a computer allocation; (2)
reallocationg functions to a computer, and (3) providing for reconfigur-
ation of functions in real time.

¢ Definition of Development Model - the definition of a de-
velopment model is most helpful to the manager who is responsible for inte-
grating all the phases of development. In addition to the above recommen-
dations, the development model should define phases of development and how
to integrate them, disciplines (such as management, design, verification,
implementation, and documentation; and an integrated application of tools
and techniques that are to be used, how they are used and when they are
to be used throughout the development process.

1.9 Implications and Payoffs for the Future

In order to change to new techniques, there is always the initial
investment that is necessary for defining and developing a model (or
subsets thereof) for systems in general. We believe that a great deal
of work necessary for this step has already been accomplished within
our own methodology.

A next step is to define a set of additional structures and data types
that are necessary for defining a particular family of systems (e.g.,
PLRS is a member of a particular family of communications systems).

Once the initial investment has been made to establish, what in essence,
is a way of organizing the development of a system with standards and
mechanisms to accomplish that organization, the payoffs should be quite
apparent. Design time during the requirements/specifications phase should
be no greater ‘and, in fact, we suspect much less than with current tech-
niques. Implementation designs should take considerably less time than
with current practices since it is possible to perform such a process on
an almost one-for-one basis. We suspect that the largest savings will be
realized within the verification processes since most of the recommended
techniques provide standards which should eliminate errors before the
fact and it is just these very types of errors that we spend so much time

looking for today.




2.0 THE PLRS PROSLEM

The Real Time PLRS system [11] [14 is a combined communications and ranging
(position location reporting) system, in which many radio User Units (UUs)
are deployed in a field of operations, carried by hand, or mounted in
planes, helicopters, tanks, etc. The User Units communicate with one
another and with a stationary Master Unit (MU). Transmissions are re-
layed to and from the Master Unit along a series of communications Tinks
called PORT Links (Figure 2-1). The User Units passively receive trans-
mission from certain other User Units for the purposes of determining
Tocation, and the Master Unit computes the position of each User Unit
from these measurements and displays it to the human operator. Such
passive links are called CROSS Links. The network, consisting of these
PORT Links (forming PORT Paths to the Master Unit) and Cross Links, is
continually being reconfigured as User Units enter the network or drop
out, as certain links become unreliable, as geographical configurations
of units change, etc. As one part of the Real Time PLRS system, there is
a module called the Network Manager (NM) whose function is to supervise
the continual reconfiguration of this communications network. This re-
port discusses some aspects of the specification of this module as an
illustrative example of Higher Order Software (HOS) methodology.

2.1 The Need for Formal Specificatijons

In the sections that follow, we attempt to give a specification using

HOS for part of the Network Manager module of the Real Time PLRS system,
consisting of control maps, algebraic data-type specifications, and sample
AXES language statements. We would 1ike the designer to communicate his
design in a precise, uniform way, as well as make changes without having
committed either hardware or even detailed software; for the user to re-
view and verify the specification in detail and propose revisions; for
the programmer to receive his instructions in an unambiguous way, so that
time is not wasted in trying to resolve conflicts in the specification;
and for the manager to allow the flexibility of reusing the same specifi-
caticn in different situations which may require different hardware com-
mitisents or where different implementation systems may be available.
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THE UU- CoMMUNITY AS A NETWORK

User Units

-4=-= Master Unit

Figure 2-1

20




This exercise, then, is to take a section of an actual system, the Hughes
Real Time PLRS, and, using information gained from some of Hughes specifi-
cations as well as discussing the problems with people at Hughes and Ft.
Monmouth, plus making some hypothetical assumptions, to demonstrate how
HOS would specify the system, by specifying a small part of it.

A way to demonstrate what is missing from, for example, the Program
Performance Specifications (PPS) [T], is by presenting a trivial example
in the same style. We might try to specify a hypothetical module, the
HOUSEKEEPER, which describes some of the functions of a person living in
a house (Fig. 2.1-1). This is presented in the style of the PPS, which
also accompanies the verbal descriptions by diagrams like those in Fig-
ure 2.1-2. If we were to take this analogy seriously (for example, as a
class exercise in flowcharting for a beginning computer programming
class), we already note some glaring inconsistencies. That is, there are

(1) i11-defined functions and/or operations,

(2) syntactic ambiguities,

(3) unspecified assumptions,

(4) Tack of hierarchical structure (how it fits together),

(5) inconsistencies, especially in I/0 interfaces,
(6) areas where control could be lost by the software operator,
(7) redundancies.

Although we may assume some of I/0 interface inconsistencies are typo-
graphical errors, these problems are basically problems with this style

of exposition, which may reflect possible problems in the software it
represents . In Figure 2.1-1, there are examples of (1)-(7) as follows:

(1) Sect. 3.4.2.1.2.2. MAKING SUBFUNCTION. '"Making" dinner and
"making" beds are not only not the same operation, but have
nothing to do with one another.

'2) Sect. 3.4.2.1.2. STRUCTUZZ QF THE HOUSEKEEPER. Washes what?
Dishes? Floors? Furniture? Dries dishes? UDries furniture?!!

: ;
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A WHImMSTCAL ANALOGY

3.4,2,1., HousekeePER FuNcTION: THE FUNCTION OF THE HOUSEKEEPER
IS TO KEEP THE HOUSE. -

3.4.2.1.1. Inputs 10 THE HouUSEKEEPER FUNCTION: THE INPUTS TO THE
HousekeePER FUNCTION ARE THOSE LISTED IN APPENDIX J. [WE TURN TO
APPENDIX J AND FIND LISTED “BRILLO PADS, MOP, DISHCLOTH, LAUNDRY
SOAP, AJAX, NATER, DUSTMOP, DISH SOAP,...” IN THAT ORDER.]

3.4.2.1.2. STPUCTURE OF THE HOUSEKEEPER: THE HOUSEKEEPER WASHES,
DRIES, DUSTS, SHOPS, AND CLEANS DISHES, FLOORS, AND FURNITURE AND
MAKES BEDS AND MEALS.

3.4,2,1.2,1., CLeANING SUBFUNCTION: THE HOUSEKEEPER CLEANS SEVERAL
OBJECTS AND ROOMS,

3.4,2,1,2.1.1. WasHinc DisHES: THE HOUSEKEEPER USES DISH SOAP AND
WATER TO WASH DISHES.

3.4,2,1.2.1.2. DrYING DisHES: THE HOUSEKEEPER USES A DISHTOWEL TO
DRY THE DISHES. [NOTE DISHTOWEL NOT LISTED IN APPENDIX J!]

3.4,2.1.2.1.3. ScruB BATHTUB: HOUSEKEEPER USES AJAX AND TOILET
BRUSH (?!) TO SCRUB BATHTUB,

Etc.

3.4,2,1,.2.2. MAKING SUBFUNCTION: THE MAKING SUBFUNCTION MAKES
DINNER WHICH IS OUTPUT TO FAMILY, AS WELL AS MAKING BEDS WHICH ARE
LOCATED IN SEVERAL ROOMS. THE MAKING SUBFUNCTION DEPENDS ON THE
SHOPPING !MODULE.

L I I ] ETCI
3.4,2,1,2.8: SHoppPING SUBFUNCTION: THE HOUSEKEEPER BUYS VARIOUS-

SUPPILIES TO MAINTAIN INVENTORIES AT A SAFE LEVEL (A SYSTEM PARANETLH,.

NO MORE MONEY IS SPENT THAN BUDGET (A SYSTEM PARAMETER).

Erc. ...

Figure 2.1-1
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Functions of HOUSEKEEPER
GROCERY | Laundry_soap WASH-CLOTHES clean clothes CLOSET
STORE | Dish soap
DRUG ]
ish- ) .
STORE Dish-cloth D?ggES Clean dishes CLOSET
FAMILY | Dirty dishes *
7
There are, in addition, operation tables:
GATHER WASH DRY STORE
Wash-dishes X X
wash-clothes ¢ X X X X
T i -
Figure 2.1-2

23




ety

(3)

(4)

Sect. 3.4.2.1.2.1. CLEANING SUBFUNCTION. Which objects?
Which rooms?

What is the relation, timing and otherwise, between kitchen
(cooking) functions, cleaning functions, etc.? For example,
washing and drying dishes presumably follows, not preceeds,

_making dinner.

(5)

(6)

(7)

Similarly,

(1)

(2)

Sect. 3.4.2.1.2.1.1. No dishcloth is listed in Figure 2.1-1
as input to WASHING DISHES, but is listed in Figure 2.1-2 as
input. E

Suppose the housekeeper goes out shopping to obtain food (i.e.,
"inputs")and meets a friend instead, goes to movies, etc.
and doesn't come back to make dinner.

Sect. 3.4.2.1.2.1. CLEANING SUBFUNCTION is not only not a
unitary function, but adds no information not already con-
tained elsewhere.

we find examples of problems (1)-(7) in the PPS:

What is PORT Link Assignment? Since this is the central
concept in the Network Manager, it seems odd that it does not
appear in the PPS glossary. The closest thing is ASSIGNED

PORT LINK: "a communication 1ink defined by a set of active
frames specified by a PORT Link Assignment," which is cir-
cular. Also, as will be discussed later in this report, the
PORT Link Assignment function itself is ill-defined, in that it
is two-valued, without specifying which of the two PORT Link
Assignments is being referred to at any given point. (This

is discussed in Section 3.4.)

The draft PPS contained the sentence shown in Figure 2.1-3a,
which we interpreted as containing the two underlined noun
phrases, and spent a good deal of our time in trying to deter-
mine what a "processing 1ink" was. The correct interpretation
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of the sentence is shown in Figure 2.1-3b. This is an un-
. avoidable property of natural language, which is eliminated
by using formal, mathematical specifications.

3.4.2.2 Network Management Processing: The Network Management
automatically determines and maintains PORT and Cross Link Assign-
ments for each UU as well as processing link and state change
requests...

(a)

3.4.2.2 Network Management Processing: The Network Management
automatically determines and maintains PORT and Cross Link Assign-
ments for each UU as well as processing link and state change
requests...

(b)
Figure 2.1-3

(3) The section from PPS shown in Figure 2.1-4 contains a sur-
prising bit of information, which we were unable to locate
elsewhere. Evidently, for each User Unit, the number of other
User Units which have tried to gain entry to the system through
that User Unit and failed is a parameter being stored and con-
tinually updated. -

3.4.2.2.1.5 Monitor Entry Requests: A UU that has been a two-
way communicant with more than the unsatisfied entry count (sys-
tem parameters) entry requests of UUs, for which a PLA was not
found, shall be designated for PORT Link state change.

Figure 2.1-4

(4) In Figure 2.1-5, we see two different accounts of where ZERO
ALERTS are generated. In the I/0 diagrams, it is being gene-
rated by PORT Link Assignment Control (PPS, p. 3-35/6), but
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_ in the text, it is described as generated by Network Control
: (PPS,_E, 3-38).

v
- -

' ‘3.4£g:2.] Netﬁork Control... .

e a '
3.472.2.1.1 WU Entry Requests... When a PLA is not found for
an entering UU, a zero alert shall be generated for that UU.

- BUT
—— ] PLA Control Zero Alert 1/0 i
| ' i
- Netwviork
—
-1 Manager &

l Y | Tl

——| CLA Control

(5) In the PPS diagram 3.3.5-1 (p. 3-13/14), ALERTS is an input
to the Network Manager; Figure 3.4.2-1 indicates it to be an
output. The former indicates no output from the Network
Manager to the POSITION Tracking Module; the latter indicates
"Unlocate track is output by the Network Manager to Position
Tracking." There are many discrepencies, discussed at greater
length in Section 5.
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(6) The example cited in Figure 2.1-6 is similar to the "House-
keeper" shopping example: suppose a HANDOVER-IN SUCCESSFUL
notice, for whatever reason, never arrives? What about error
recovery here?

3.4.2.2.1.1.3 HANDOVER-IN UUs. Handover-in UUs shall be
initially designated as being in the zero rate PL state and
shall be processed by PLA control. Network control shall
generate a tree allocation command containing the MU tree
allocation to all handover-in UUs. Upon acknowledgement of
this command, network control shall generate a handover-in
successful notice.

Figure 2.1-6 :

(7) As we will see later in the discussion of control maps, state-
ments such as "Each PLA shall be supported by only one UU"
are either meaningless, false, or redundant. See Section
of this report for a complete discussion of this issue.

How are such problems discovered by attempting to do an HOS specification,
and how does an HOS specification eliminate them? This report tries to
illustrate this by way of example. Part of the detection of these problems
was done in the early stages of attempting the specification, by drawing

a preliminary control map along the lines of the Hughes PPS. This was
discussed in [16], which is excerpted in Section 2.2 below. Other pro-
blems were subsequently detected in trying to formulate the data types

and their behavior; some of this was also discussed in [16] . A com-
plete discussion appears in Section 2.2 below. In Section 3

we will discuss a control map for one subsection of the Network Manager.

2.2 Preliminary Control Map

Having reviewed the STD [14] and the final draft of the PPS [11], we began
to cefine a control map. At this stage, rather than doing a control map .-
"from scratch," since the algorithms in many cases were
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preliminary control map was done directly from the specification in the PPS,
without regard as to whether it followed HOS axioms. This gave the struc-
ture of the Network Manager as it is presented in the documentation. By
then trying (1) to correct the structure of the control map and (2)

make it cohsiStent with the various descriptions of the Network Manager

at various levels of‘réﬁresentation, we could identify potential problem
areas, even though the control map was, at this stage *content free."

That is,.%ybroutines were simply treated as lettered subfunctions. and

the partit{dhs given in the text accepfed without regard as to what the
subroutines (subfunctions) actually did. This was done later. Even at

this stage, however, some problems are identified. For example, the -
PPS’ ‘contains three different levels of representation of the input/

output structure (see Figure 2.2-1 for exact labeling}.

Level @+ y = fy(x)

Level 8 ~ y, = f (xl) ¥, = fo(x,).

= f (x )

AN A

Level v +

Figure 2.2-1

If we take fO to be the Network Manager function, the Figure 3.3.5-1 1]
on pages 3-13/14 corresponds roughly to Level a; Figure 3.4.2-1 on page
3-35/56 17 corresponds to Level B; and the verbal descriptions of the sub-
functions on the pages following page 3-37 [1T] correspond roughly to Level y.
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The first thing we notice is that, strictly speaking, this control map
should be a Class Partition. That is, if x;= (ao,al,az,...ak), then

Xy = (ak+1,ak+2),...an), etc. as we go to deeper levels of representation.
This is not the case in the Hughes PPS, however.

Sometimes the differences are"trivial" in that the same name is not used
for the same data item at all levels. However, while this may seem
trivial (1ike a "typographical error") at first glance, if the documenta-
tion is to be relied on, it is at best confusing for manual verification,
and it is death for machine verification.

For example, in Figure 3.3.5-1 [17], the 1/0 inputs UU {User Unit) COMTROL

to the NM (letwork Manager); in Figure 3.4.2-1 [11, it inputs UU MODE CONTROL.
At the lowest level, that of the verbal description, the UU Mode Control
Processing subfunction accepts as inputs PASSIVE MODE REQUEST, REENTER

UU REQUEST, RESTART UU REQUEST, CLEAR UU REQUEST, REINITIALIZE POSITION

TRACK REQUEST. It is not clear which of these are part of the data item

"UY MODE CONTROL" from the I/0 and which are not. While these are
discrepancies in the documentation (which would hopefully be more pre-

cisely specified enroute to coding), the HOS control map allows one to
see immediately which inputs at different levels of specification must
be identical. Thus, one can prevent inconsistencies before they happen.

Thus we see two kinds of problems right away. As we go from, for example,

Level; to Leve1i+1, either we must have the same set of input variables
(Figure 2.2-2) ‘

Level, (y],yz) = f(xo,.”,xn)
Le'-"EIH,] .Y] = g(xo,---oxk) .yz = h(xkﬂ""’xn)
Figure 2.2-2
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or, if one_wiShed to abbreviate for compactness of presentation, one would
have to be very careful to specify which input variables at Leve]i+1 were
represented by which variable at Leve]i (Figure 2.2-3): ’

(«.Y] syZ)“:" %(Z] ’22.)

e

yf‘= §(x0,...,xk) ¥y = ?ka+1f"°’xn)

et

Figure 2.2-3

!hggg Zy = Xgoeo oYy ggg_yK+1,...xn. This may seem unnecessary for such

a simple partition as the one above, or even a small part of the WM,
espekia]]y at the top levels (0,1,2, etc.). However, in the more detailed
specifications (Tower levels of the control map tree), the chances for
error'mulfip]y rapidly without keeping this in mind. The control

map and axioms force one to be consistent from top to bottom. This is
even more apparent if one thinks of a PLRS Master Unit as being Leve]o,
and the NM as being one section of a lower level.

Another avea in which the control map can be helpful is in identifying
where the same data items (or subparts of the same data items) are being
input to two different modules. For example, in the accompanying pre-
liminary control map done from the PPS (see Figure 2.2-4), x'14 = x'21 =
COMMUNICANTS, x‘9 = x'15 = x'22 = x’24 = COMMAND-ACKNOWLEDGE. This is
partly simply a matter of clarity and perspicuity. However, one then wants
to ask whether they are to be treated as unitary items, or whether they
are being input to several functions implies a partition, as in the Class
Partition exemplified above. In terms of the control map, for example,
the input from the Master Traffic Control (MTC) at level a, X3 = COMMAND
RELIABILITY (from Q1] Figure 3.3.5-1) is presumably partitioned into
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into XI16’ x'20’ and x'23, which are PLA (PORT Link Assignment) COMMAND
RELIABILITY, CLA (CROSS Link Assignment) COMMAND RELIABILITY, and SECONDARY
MU (Master Unit) COMMAND RELIABILITY at Level B.

Another question one wants to ask, based on the control map, is what func-
tional relationship the module (subfunction) Adjacent MU Communications

Assignment bears to the rest of the Network Manager, i.e., the Network
Control subfunction, CLA Control, and PLA Control. Other than the

common input/output COMMAND ACKNOWLEDGE and COMMAND REQUESTS, (which we
take to be general terms, not, in fact, referring to the same data items),

there seems to be no connection. In terms of HOS primitives, it is
neither a Set Partition, a Class Partition, and certainly, not a Composi-
tion. Nor does it seem to be an abstract Control Structure derived from
these primitives. Thus, one might question the validity of having it

as part of the Network Manager function.

A more important probiem is that the control map shows that in some cases
the functions are not cleanly divided, i.e., that there is a lack of
modularity. In plain language, there is confusion about which subfunction
does what. For example if we look at Level B (the one which represents PPS
Figure 3.4.2-1) on the control map, we see that the PLA Control generates
the output Yg = ZERO LINK ALERT (and similarly for other ALERTS). But

if we look at Level y which represents the verbal subdivision later in the
Hughes document, we find ZERO LINK ALERT being generated by the UU Entry
Request subfunction (this corresponds to the statement in PPS on page 3-38
under the description of the Network Control subfunction, "3.4.2.2.1.1

YU Entry requests....When a PLA is not found for an entering UU, a zero
alert shall be generated for that Uu"). The representation as a control
map makes it immediately transparent that one of the descriptions must

be incorrect, since two subfunctions in two distinct parts of the control
map cannot generate the same identical data item.

While this may seem obvious on an intuitive level (i.e., that two distinct
subfunctions cannot output the same item--it is either output by one or

by the other), it is important to point out that (1) the control map,
because it has several levels in the same representation, makes it easy

to chack for such inconsistencies, and (2) on a theoretical level, we
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note that it violates one of the formal HOS axioms for the construction
of contro]_mgps and AXES specifications, namely

AXIOM 1: A given madule controls the invocation of the set of
B functions on its immediate, and only its immediate
~ lower Tlevel. ;

By extension, there is no way the PLA Control could invoke the UU Entry
Request subfunction, since UU Entry Request is the immediate lower level
of Network Control, not PLA Control.

Again, it should be pointed out that although in this simple case it seems
obvious that the verba]wdescription is in error, rather than the flow dia-
gram, the control map provides a way for catching this immediately and

a forma]iresolution_fog‘more complicated cases.

A further problem whﬁch is uncovered by the control map is that as one
descends into more detailed levels of representation, inputs (or outputs)
are introduced that didn't appear at all in the higher levels of repre-
sentation. This is different from unclarity (vagueness or discrepancies)
in representing a particular input item or items at different levels.

For example, some variables which appear at Level y (1ike x"8 = REENTER
UU REQUEST) also appear at Level 8 (in this case as x'12 -- in a proper
control map both should be designated by the same variable). However,
seemingly analogous variables at Level vy, such as x"9 = RESTART UU
REQUEST, do not appear at Level B at all. This corresponds, again to

the Hughes PPS Section 3.4.3.3.1.2.3 on pages 3-38, where we find "Upon
receipt of a restart UU request..." analogously to Section 3.4.2.2.1.2.2,
"Upon receipt of a reenter UU request..." However, in Figure 3.4.2.1
(the B Level), there is only the REENTER UU REQUEST being input from

the MTC. Similarly, the HANDOVER-IN REQUEST appears on the y Level

and the B Level, but the CLEAR UNIT REQUEST only appears on the y Level.

It should be pointed out that this sort of discrepancy, while, of course,
violating HOS Axioms, is particularly unfortunate from the point of view
of the Hughes PPS. Since it is in the g Level representation (Figure

3.4.2-1) that we are shown which moduies external to the NM input various
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data to subfunctions of the NM, if a new data input appears at the lower
Yy Level (the more detailed verbal descriptions in Section 3.4.2.2 ff),
then we have no way of telling where (i.e., which subfunction) the data
item comes from. In fact, for all one knows, the inputs could be output
coming from either external or internal modules, since this is simply
not stated, and one has to either guess as to the source of the data

or search elsewhere in the documentation.

The advantages of a control map in this respect are that input variables
of a subfunction which are external (i.e., come from a source outside
the subfunction) MUST be carried through at all levels, so that in the
complete control map, one can always trace the source. For example, if
a is an input to the Network Control subfunction of the Network Manager,
and that input comes from the MTC module, then in the complete PLRS
control map one could trace the input as shown (Figure 2.2-5):

(g -¥p) = PLRS(x...x)

eel) (...a...) = MTC(...)
NC(.o...) (cooaeen) fp =
(coa..) (co2e.) = Fplioo)

Fiqure 2.2-5
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.

Finally, since input and output varibles must be carried through the
control map as shown above, the preliminary Network Manager control map
uncovers aﬁqtﬁér prob1ematic'aspect of the Network Manager, as described
in the PPS, namely calls to subroutines outside the module in question.
These show'yp as the foi]owing structure (Figure 2.2-6):

.

(o) = WM(...) ) =)

C e

PrE

(...) = NC(...)
w=f.(2)

(y) = f.(x)

If we take w ( = x"4) = TREE ALLOCATION COMMAND, and z ( = y"z) = COMMAND
ACKNOWLEDGEMENT, then according to Section 3.4.2.2.1.1.3 "Handover-in UUs"
on page 3-38, which is a subfunction of Network Control: "...Network
Control shall generate a tree allocatjon command containing the MU tree
allocation to all handover-in UUs. Upon acknowledgement of this command,
Network Control shall generate a handover-in successful notice." That is,




some subfunction, fk’ of the Network Control function computes (generates)
y = HANDOVER-IN SUCCESSFUL NOTICE. However, we notice that part of

fk, namely the subfunction f2 computes a value z, which is the input to
an entirely different module (e.g., MTC), which in turn generates a value,
W, which is the input to another subfunction, fl’ of the function fr-

Not only do "hidden" calls to external functions destroy modularity, but

in this case, there is no provision for error recovery should an acknowledge-
ment fail to be generated. This is clearly shown by the preliminary

control map, i.e., this would be invalid in a proper control map, since

a function can control the access rights only to the inputs and outputs

of its immediately dominated subfunctions, and here we have some function
external to the Network Manager accessing an internal output of a sub-
function of the Network Manager and vice versa.

2.3 Understanding Data Properties

Once a preliminary survey of the system was made from the available
documnents, one of our first tasks was to identify the important data
types. This turned out to be a particularly difficult task in this
system, since there are many parameters (usually integers) used by the
Network Manager which have only peripheral importance. What turned
out to be the central and crucial data types for the Network Manager
operation were quite complex and idiosyncratic objects. Most of our
time was therefore spent on understanding the properties of these data
types before we could specify operations employing them. Why this was

so is-discussed in detail in the next section.




3.0 THE PLRS DATA TYPES

3.1 The Network Manager

Turning now to our specification of the Network Manager (NM), what do we
need to know in order to do the specification? Already at this first
stage, the control map format provides a guideline as to the appropriate
questions to ask first. We know that the top level of the control map
will have the format:

y = f(x)

TN r

That is, we must immediately begin thinking of the problem in terms of

mathematical functions (mappings) acting on some input(s) to produce
some output(s): f performs some action or computation on x to produce
y. What are the x,y, and f of the Network Manager? A not unreasonable
first assmption is that y = f(x) takes the form

NetworkNEw = MANAGE(NetworkoLD) (1)
That is, the Network ﬁanager (NM) takes as input some state of the Network ;
(NetworkOLD) and performs some operations on it (the function MANAGE) to
produce a new, reconfigured state of the network (NetworkNEw). As it
turns out, there are other inputs to the Network Manager other than

just the current state of the Network: the NM must also know (1) the
History of the network (e.g., the Unsatisfied Entry Count, which is a
record for each User Unit (UU), of the number of other units which have
tried to gain entry to the system through that UU and failed); and

(2) Requests, for example, a request from the human Operator to force

a particular assignment. There will, of course, also be certain second-
ary outputs regarding the state of the network and the result of the ac-
tions, such as ERROR messages, REQUESTS for more information to be sent
to the Message Traffic Control (MTC), and the tike. Thus the top-level
function should really be something Tike:

(NetworkNEw, Mességes) = MANAGE(NetworkOLD , History, Request;) (2)
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These secondary inputs and outputs indicated in Equation (2) should not
distract us from remembering that the basic function of the NM is to
reconfigure the network, as indicated in Equation (1). Now in order to
begin to describe this basic function, we have to set our priorities.

Do we want to begin by looking at the actions (the function MANAGE) or
on the object acted upon (the Network)? By casting the problem in this
format, the HOS control map has already forced us to make a decision

of this sort by highlighting the issue involved. In the case of PLRS,
the answer is fairly straightforward: a preliminary survey of the pro-
blem indicated that the structure of the network was so extraordinarily
complex, that we really needed to understand it thoroughly first, before
we could expect to talk about the MANAGE function in any reasonable way.

3.2 Why Data Types?

What does it mean to understand the structure of the Network? We know,

or course, that we will have to have some intuitive understanding of

the Network as a working hypothesis. But can we at some point say that

we have understood the Network and are ready tomove on to the next step?
Here again, the HOS methodology provides an answer: we can begin describing
the operations when we have identified the data types and have specified
their behavior by a set of primitive operations and axioms. This defines
the behavior of the data types so that we can go ahead with the control

map (and specify other operations on those data types), because we know
from the axioms what is permissible and what is not.

What 1.<2s the PLRS network so particularly complicated? (Why are its
data types so difficult to specify?) There are several reasons:

1. The PLRS data types are unique to the PLRS system. In other
systems, we may be working with such data types as files, vectors, scalars,

lists, rational numbers, about which (a) people already have an intuitive
understanding, and (b) there already exists a reference literature, both
mathematical and computational, describing their properties. The objects
which form the basis of the PLRS Network User Units {UUs) and Logical

Times (LTs) are idiosyncratic objects, some of whose properties are de-
termined by the particular implementation suggested in the Hughes documents.
In a completely general specification, this might not be true.
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2. The PLRS system is duplexed. This means that the mapping
which relates UUs and LTs will not be a simple one-to-one correspondence.

3. The organization of Logical Time is itself complex. Because

groups of time slots are interleaved with one another (even before
scrambling), Logical Time is not a simple cyclic domain, but rather

has a complex internal structure, which we must abstract away from in
order to state what the simple operations relevant to the Network Manager
are. (More on this below.)

One might want to ask (particularly in view of the complexity of the data-
type specifications for PLRS), why should one care? Isn't there some
easier way to specify the system?

In this case, the data-type specifications are particularly important

for the reason given in Item (1) above: the data-types are unique to the
system. We already know what to expect from vectors or rational numbers
(for example, that one cannot divide by zero); about these idiosyncratic
data types we have no idea what to expect in either of two cases:

(1) What operations are possible (e.g., have we overlooked a
possible operation which would allow the program to run more
efficiently);

(2) What operations are invalid (e.g., they yield no output-or an
incorrect output, causing a system error).

Tryirg to define the data types carefully in advance can help, for ex-
amria. the prograrmer who subsequently uses them to know what can and

canrot be cone.
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3.3 PORT Link Assignment

The basic concept of the Network is PORT Link Assignment, which is defined
as follows: On the one hand there are User Units (radio-communication
units), and on the other hand there are, for each User Unit, a set of

time intervals in which that User Unit is allowed to operate. The mapping
which assigns UUs to the set of time intervals in which they are to operate
(transmit) is called PORT LINK ASSIGNMENT. The Hughes documents tend to

be ambiguous in this respect, using the term "Port Link Assignment" (PLA)
to mean both the process of mapping UUs onto time intervals, as well as

the set of time intervals a UU is mapped onto. Hence, we find such

apparently anomalous phrases as "unassigned PORT Link Assignment," which
actually means a set of time intervals which has not yet been assigned

to a UU by the PORT Link Assignment function™. In order to avoid con-
fusion, in this report PORT Link Assignment will be used to refer only

to the mapping, or assignment process, and the term Logical Time (LT)

to represent the set of time intervals which is assigned to a particular UU.

Thus, it would seem our basic data types would be User Units and Logical
Times, since the BASIC activity of the Network Manager is to assign

a UU to one or more LT's: PORT Link Assignment. Of course, the Network
Manager has other functions as well: the secondary assignments, known

as CROSS LINK ASSIGNMENTS (for listening rather than transmitting) plus
certain "housekeeping” or "clean-up" functions, which are needed to readjust
the Network when a UU is reassigned. But we must not let this obscure

the basic assignment function.

Now 7 :urns out that the UUs are related to one another in certain ways,
and the LTs are also related to each other in certain complex ways.

A way of thinking about this which has proved helpful in defining the
data types is to imagine a space, or universe, of UUs and another space,
or universe, consisting of Logical Time intervals; PORT Link Assignment
maps element in one space onto elements in the other {Figure 3.3-1).
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3.4 User Units

Let us first consider the User Units. Before we can state a formal algebraic
definition of the data types User Units and Logical Time, we need to have some
intuitive understanding of how they function, how they are related, and

what operations on them are basic. In the case of the UUs, we know that

each data UU represents an actual radio-communication device in the field.
Messages from the Master Unit (MU) may be transmitted to some UUs directly,
to others by being relayed along a chain of UUs. Similarly, inbound mes-
sages from some UUs are transmitted to the MU directly, others relayed

via a chain of links between other UUs. These are the PORT Links, and
together they form a PORT Path between a UU and and the MU. We can

visualize this as a tree-like structure with the MU at the bottom, trans-
mitting up the links to the UUs as shown in Figure 2-1. (Return messages
are relayed back along the same paths.) If two User Units, Ui and Uj,

are connected by a relay link, as shown in Figure 2-1, we will say that

that Ui U-supports Uj’ meaning that Ui transmits to Uj outbound from the

MU, and receives from Uj inbound toward the MU. The notjon of U-SUPPORT,
then, will be the basic relation that UUs have with each other.

We notice that in this system (as described in the Hughes documents),
U-SUPPORT as a relation between UUs has several praperties, which are
reflected in the axioms for data-type UU (Figure 3.4-1). First, we

would 1ike to say that U-support is transitive along the branches of a
tree: if U; U-supports U2, and U2 U-supports U3, then U1 also U-supports
(indirec+ly) U3. This is stated in Axiom 2. Also, we would 1ike to say
that < cannot occur:

’
\ / PORT Path 1

/ \ PORT Path 2

———

Figure 3.4-2
Forbidden Configuration
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DATA TYPE: UU; /*User-unit*/;
PRIMITIVE OPERATIONS:
boolean = Usupp? (uu1, uuz);
tuple(of logical time) = PLA(uu);

UU = ALP (logical time);

AXI10MS:
WHERE u,u,, U, ARE UU's;
WHERE M IS A CONSTANT UU;

WHERE t ARE LOGICAL TIMES;

1%
WHERE n 1S A NATURAL;

(1) (Usupp?(u‘,uz)ZDNot (Usupp?(uz,ul))) = True;

(2) ((Usupp?(ul,uz) 3 Usupp?(uz,u3)):DUsupp?(u],UB)) = True;

n

(3) (Not(Eq(u,M))DUsupp?(M,u)) = True;

(4) Not (Usupp?(u,u)) = True;

]u OTHERWISE K_ . (2
Reject

n

(5) ALP(Examine_ltem(PLA(u),n)) u);

PARTITION OF (u,n) IS
Tu,m) (1 <n<2eufM)(l <n<6s uM),

2(u,n)ln=0!(n > 26 uM)!(n > 6 & u=M);

%a)(TumM(H,%)DUpr(MPh1LAW(%)” = True;

Fiqure 3.4-1
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(6b)

END UU:

N.B. OR = n - place Logical Or i

(Usupp?(u‘,uz) = (OR(Tsupp?(lof(pLA(&‘)),|Df(PLA(32))),

(Tsupp?(lD?(PLA(L')),|D§(PLA(L2))),

(Tsupp?(lDi(PLA(L])),|D?(PLA(62))),

(Tsupp? (10 (PLA(u))) , 103 (PLA(L,))) ,)

OTHERWISE (OR(Tsupp?(lD?(PLA(Zu])),ID?(PLA(ZuZ))),
(Tsupp? (105 (pLa (%)), 107 (LA (Bu,))),
(rsupp? (105 (LA (%)), 162 (pLa (Ru ),
(Tsupp? (10, (PLA (%u))) , 102 (LA (P ))),
(Tsupp? (15 (PLA(%u,)), 10 (PLA (R ),
(Tsupp? (105 (PLA(%u ), 102 (PLARu ),
(Tsupp? (107 (PLa(?u))), 102 (pLa(u ),
(Tsupp? (105 (PLA(u ), 10 (PLA Ru ),
(Tsupp? (105 (PLa(u))), 102 (PLA(Ru ),
(Tsupp?(lng(PLA(zu])),|D§(PLA(2u2))),
(Tsupp? (103 (PLA(%u,)) 102 (PLARu)))

(Tsupp?(IDg(PLA(Zu])),ng(PLA(Zuz))),

OTHERWISE KReject(3U],3u2);
PARTITION OF (u],uz) 1S

1
(U]’UZ) u]#M&u2¥M,

Z(UI’UZ) u‘=M8u2#M,

3(u],uz) u, =Méu,=M;

Figure 3.4-1 (con't)
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That is, if U1 1 It should be
noted that this property is not guaranteed a priori, but rather must be

U-supports UZ’ then U2 cannot U-support U

ensured by the way the search algorithm for finding PORT Link Assignments

is constructed. We will therefore see, when we examine the control map,
that this corresponds to one of the test modules in the program. We also
note, and this is important, that although the Master Unit is clearly
different in many respects from the User Units, it does behave like them
in that it particupates in the U-SUPPORT relationship. Specifically,

it U-supports all the UUs in one of its tree-like networks (Axiom 3).
This is important for consistency in applying tests to pairs of UUs:

if we ask (in Figure 2-1), "Does unit Ui support unit Uj?"’ we want the
answer to be yes (TRUE); similarly, if we ask does the Master Unit M
support unit Ui’ we also want the answer to be yes. Thus the Master

Unit behaves very much like zero among the natural numbers: zero is

a number, the operation of addition and subtraction can validly be per-
formed with it, and it can be the valid result of an operation; but it is
also different, e.g., one cannot divide by zero.

In particular, it turns out, due to the way the PLRS system is structured,
that one iMaster Unit can U-support several tree-like networks (at dif-
ferent times, or at different frequencies, of course), up to six; a UU

can U-support units in no more than two trees (Figure 3.4-3).

v | Z) & Some MU

Tree 1 Tree 7
\\/ \/
=d
Tree 12 Tree 25

Figure 3.4-3
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This is reflected in the way PORT Link Assignments (PLAs) are made: notice
that UUs are assigned two Logical Times by the operation PLA, except for
the MU, which is assigned six (e.g., PLA(ui) = (LT1 » LT, )). But to see

i i
why this is related to U-SUPPORT, we need first to consider the other
data type, Logical Time.

3.5 Logical Time

In the PLRS system, time is cyclic; transmissions are scheduled to occur
over particular links at regular intervals, the rate depending on such
things as the kind of unit involved; airborne units transmitting more
frequently than manpack units, for example. Recall the tree-like net-
work consisting of UUs, a MU, and the 1inks between them (Figure 2-1).
Now,each one of the Tinks between two UUs is a radio-communication link,
and thus occurs during some time interval. (For the sake of this example,
we consider only outbound transmissions.)

Imagine these time intervals superimposed upon the 1ink tree network as
shown in Figure 3.5-1, where each color indicates the set of time inter-
vals of one PORT path. Now Logical Time is organized into EPOCHS (64
seconds long) which are subdivided into 256 FRAMES, each of which con-
sists of 128 smaller time intervals (Figure 3.5-2a). An appropriate
image of what happens is to imagine the time intervals in Figure 3.5-1
as colored neon lights, and there is a flash up and back one of these
PORT paths in each of the 256 frames of an epoch. (learly, many of them
will flash more than once and at regular intervals. Since there are,
howevzr, 128 time intervals in each frame, and (as we shall see later)
since PORT paths are limited to no more than four levels, the Logical
Time intervals corresponding to PORT Paths in several different trees
(networks) could flash during one Frame.

Now imagine a string tied to the bottom on each of the sets of time
intervals corresponding to one of the PORT paths in the tree-network

of Ficure 3.5-1, and both ends pulled apart so that all of the columns
of time intervals stood up vertically from a base (as in Figure 3.5-3).
We could then also, as it were, tip all of the columns of time intervals
over on their sides so they would lie end-to end--this would then give
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REPRESENTATIVE TIME SLOTS FOR THE NETWORK IN FIGURE

|
1 Time intervals of PORT Path V: UZZZ7]
' Time intervals of PORT Path 2: [ 1 |
Time intervals of PORT Path 3: [XXXXX ]
Time intervals of PORT Path 4: [ERETEE

Figure 3.5-1
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HUGHES-FULLERTON
Hughes Aircraft Company
Fullerton, California

EACH
EPOCH IS
DIVIDED INTO
256 INDIVIDUAL
FRAMES

cycuic
\ EPOCH

EACH FRAME
DIVIDED INTO
128 T#ME
SL.OTS

BURST
TRANSMISSION

GUARD i
PERIOD

I

Figure A. The Cyclic Timing Structure of a PLRS Network is Divided into Epochs, Frames, and
Time Slots. Only one community member at a time can transmit a burst during any given time
slot. Most actions that a User Unit can be programmed to do are repeated each epoch.

| EPOCH = 256 FRAMES _]
¥ > 64 SECONDS n |
o} 1 2 3 5 6 7 8 9’ [ [ [ 255
—— Al — —

FRAME = 128 TIME SLOTS
=1/4 SECOND OR 75 msec

/ [T

r
(%]

3 S € 7 § o] & o 127

T:ME SLOT
= 2msec

TLoEsTY

T L. 50SS10N

Figure B. The Time Divisions of the PLRS EDM. The capacity of the PLRS network is based on
128 time slots within cach of 256 frames (total of 32.768 time slots per epoch).

Figure 3.5-2
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us a linear sequence of time intervals (Figure 3.5-4, upper left-hand
corner) which is necessary, because time is, in fact, linear.

There are two additional factors which complicate this rather straight-
forward interpretation of logical time (as represented in Figures 3.5-1,
3.5-2, 3.5-3). Both can be ignored, for all practical purposes, by the
Network Manager but need to be mentioned briefly, so as to avoid con-
fusion later. Each of the columns in Figure 3.5-3 represent only outbound
transmissions. Since, in reality, transmissions are both inbound and
outbound, there must be more than four time intervals involved. In fact,
there are 16, structured as shown in Figure 3.5-5. While there is only
one outbound transmission by each UU along a PORT Path, there are several
inbound transmissions, and in addition, one time interval (the fifth)

is reserved for special purposes, such as requesting entry into the network.

One set of 16 time intervals structured in this way is called a TRANS-
ACTION GROUP, and the time intervals in one TRANSACTION GROUP are referred
to as TIME SLOT INDICES, e.g., (Figure 3.5-5), the MU transmits in Time
Slot Index (TSI) #0, the first inbound transmission is in TSI #6, etc.
Since no Unit is allowed to be more than four links (levels) away from

the MU in order to specify where in a TRANSACTION GROUP a Unit operates,
we need to specify only the level of the Unit's associated time intervals.

Since all transaction groups have the same pattern of transmissions,

given the level, we know exactly which time intervals within a transaction
group a unit uses for transmitting and which for receiving. Hence the
Network tanager can ignore the internal structure of the transaction
groups :=nd need only know the (1) the level of the time intervals to

which a unit is assigned, and (2) which transaction group they are in.

How is the latter specified? This involves the second aspect of the
organization of time which the Network Manager can ignore, because al-
though complex, it is fixed. Logical Time is mapped into real-world
time in a complex way. If we take all the time intervals in a frame
(128) and arrange them in a rectangle (or a box, if we have operations
at different frequencies) so that the transaction groups are vertical
columns (Figure 3.5-5), then we can unwind, or scramble, these Logical
Time intervals into real time in some random way for security purposes.
This latter scrambling can be ignored entirely by the Network Manager.
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In the representation of a Frame as a box or rectangle, however, the trans-
action groups are the columns, and as such can be assigned numbers. MNow
we will make it a requirement (as does Hughes) of our system that in each
of the 256 frame "boxes," or "rectangles," that a column with the same
number represents a transaction group (PORT Path) from the same tree
(network). If we now imagine the 256 Frame boxes all lined up linearly
in an epoch, and consider, say, column #35 in each box, a neon fiash

in that column will correspond to a neon flash up and down some (dif-
ferent) PORT Path in the same tree (network). So now if we know the
level and tree number (i.e., which column number within a frame/box),

all that remains to specify when a UU operates is to say which frames

it operates in. But since the transmissions along the PORT Paths are
cyclic (e.g., every 4 frames), all we need to specify is the Period

(Per) and the Start Frame (SF).

Thus these four numbers completely and exhaustively specify which Logical
Time intervals a UU operates in: Period and Start Frame are sufficient
to tell which frames a unit's transaction group (PORT Path) is assigned
to operate in, the Tree Number (TN) tells which column of time intervals
(Transaction Group) in each frame, and Level (Lev), as explained above,

determines which time intervals (TSI's) within a column of time intervals

(Transaction Group).

Hence we can think of a UU's PORT Link Assignments as assignments to oper-
ate at a particular Logical Time, specified by these four integers (c.f., |
Figure 3.5-6):

t = (Exp., Lev, TN, SF) (3)

Since the data format in the documentation [14] only allows 3 bits to
specify period, it must be the exponent (i.e., 28XP - Per), not the period
itself (Figure 3.5-7) that is used to specify a Logical Time. This fact
is reflected in the specification of cur data-type Logical Time, as
indica<ed in Figure 3.5-82. We can then define Per(t) as a non-primitive

operation.
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OPERATION p = Per(t)

definition as
a control map

p=2 K = Exp(t)

OPERATION: p = Per(t);

WHERE p,t ARE NATURALS;

p =25 JOIN K = Exp(t)

END Per;

Figure 3.5-7
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DATA TYPE: Logical time (of M);

A&
4
i

PRIMITIVE OPERATIONS:

integer = Exp(t);

integer = Lev(t);

integer = TN(t);

integer = SF(t);

boolean = Teq?(t],tz);
AX10MS:

WHERE TM 1S A CONSTANT SET OF Logical times;

WHERE ty IS A TM;

WHERE t,t1,t2 ARE Logical times AND ARE NOT Tys

(1] 0 < Exp(t) < 7;
[2] -1 < Lev(t) < 3;
(3] 0 < TN(t) < 63;
[4] 0 < sF(t) < 255;
| (57 (Exp(t,)+1 = Exp(t,)) = (SF(t,) - SF(t,) = 2EBxp(ty)-1,
P (6] Exp(ty) = 0;
' [7] 0 <TN(t,) < 64;
i (8] Lev(tM) = -1;
[9] sF(t,) = o;
[10] Teq?(t],tz) = AND(Exp(tI) = Exp(tz),

Lev(tl) = Lev(tz),

TN(t]) TN(tZ),

SF(t1) SF(tZ) mod Per(t1)):

END Logical time;

; Figure 3.5-8
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More importantly, now, we need ask, what properties do Logical Times have
which will be useful to us in specifying the system? We remember that
there was a rough intuitive notion of one UU supporting another UU, which
we tried to formalize (by axiomatizing). When one UU supports another
along a PORT Path, however, the time slots which correspond to the links
also stand in a particular relation to one another, namely they follow one
another successively in a transaction group of Logical Time intervals.
But this is a strictly numerical relationship, and easy to check auto-
matically; this, this should be our basic relationship, and support be-
tween UUs dependent upon whether their assigned time slots are adjacent.
To make this clear, we have sepazrated the two meanings of "SUPPORT":
U-suppor® (between UUs) and T-support (between Logical Times).

This distinction is extrzmely irmportant, because the two behave quite
differently. The Logical Time intervals always "exist" and stand in the
same relation to one another recardless of whether or not some UU 1is
designated to operate in them. Thus if t1 and t2 stand in the relationship
such that t1 T-supports tZ’ we will say Tsupp?(tl,tz) = TRUE regardless

of whether or not they have UUs assigned to them by the PORT Link Assign-
ment function (PLA). This can be determined solely from the primitive
operations on t's, such as Exp(t), etc., as shown in the definition of the
operation Tsupp? in the data-type specification (Figure 3.5-9).

3.6 U-support vs T-suopart

We are now in a position to say explicitly how to answer the question,
"does U: U-support UZ?“ computazionally. Usupp?(ul,uz) = TRUE, if and
oniy “7 one of the t's zssigned by PLA to Uq happens to T-support one
of the t's assigned tc F_A to uy- That is, suppose for a moment that
Uy and uy nave only orz 7CRT Lirk Assignment each instead of two:

t, = PLA(ul) and t, = FLA(uZ). Then if Tsupp?(ta,tb) = TRUE, we know
that Usupp?(ul,uz) = 75U% as well. Since Tsupp? is defined by computable
functic-s, we would krce exactly how we can answer the question Usupp?

in ou- - -=23ram shoulc i: arise.

Unfor:_nately, because ¢¥ the reguired duplexing, things are not this
sirple. For many gocod cceratioral reasons3, it is necessary for each
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OPERATION: boolean = Tsupp? ( t t, )
WHERE t], ty ARE Logical Times;
Tsupp? (t,, t, ) = (Exp(ty) > Exp(t,) ) &
( Lev(t]) < Lev(tz) ) & i
(TN(t1) = TN(tz) ) &
( sF(t;) = SF(t)) mod Per(t;) ) ;

END Tsupp? ; ]

Figure 3.5-9
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UU to have not one, but two PORT Link Assignments; that is, PLA(u) =
(ta,tb), a duple. (Leaving aside the behavior of the MU, which we con-
sider later.) So while the inverse of the PLA mapping (ALP) is single
valued (ALP(t) = u; there is only one UU assigned to a Logical Time),
PLA itself is two-valued, and the question "what is the PLA of Ui?"

is meaningless, since there are two, and we must at all times know which
one we are referring to. (We will see later how this causes problems
when we look at some of the proposed tests in the search algorithm in i
the Control Map.)

This affects our calculation of Usupp? If PLA(ui) equals (ta,tb) and
PLA(uZ) equals (tc,td), then Usupp?(ul,uz) is true, if either Tsupp? 1
(ta,tc) gﬁ_Tsupp?(ta,td) or Tsupp?(tb,tc) or Tsupp?(tb,td) are true!

In other words, if we want to ask, as part of some test in the Network
Manager module, if one UU supports another, we may have to try all four
possibilities (Figure 3.4-1, Axiom 6b). Note the difference in com-
plexity between Axiom 6b, which is stated in terms of PLA, and Axiom 6a, 3
which 1s stated in terms of the inverse function, ALP4. Because of this

we will always want to try to state our algorithms, if possible, in terms
of the Logical Time relations, rather than UU relations, since UU relations
will have to be translated back into Logical Time relations to be cal-
culated anyway, and the translation is anything but straightforward.

We will examine this more carefully when discussing the Control Map
for tl2 PLA Control submodule.

3.7 Logical Time Axiom #5

Returning briefly to the specification for the data type Logical Time,
there are two points which deserve further comment. First is the rather
strange and complex looking Axiom 5 (Figure 3.5-8). What this says is
that there is no optionality in dividing up unassiyned (available) Logical
Times, but rather that they are structured according to a particular
pattern. For example, suppose in Figure 3.7-15 that all the time inter-
vals marked by 1ittle circles were available for assignment(i.e., not ?
assicred to a UU: ALP(t) = REJECT). Then there is no a priori logical
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reason why we could not divide them up as follows: as two possible
Logical Times available for PORT Link Assignments:

Per Lev TN SF

tl: (2 X Y 0) (1evel and tree given
. as x and y since they
t2' (2 X 4 1) are not relevant to this

discussion)

Alternatively, another logically possible division would be to have
four possible logical times with periods of 4:

t): (4 X y 0)
ty: (4 x y 1)
t3: (4 X y 2)
ty: (¢ X y 3)

Or three logical times for passible PORT Link Assignments with different
periods:

'tlz (2 x y 0)
t,: (4 x y 1)
3 (4 x y 3)

Trhere are, of course, many, many more possibilities, even for this 16-
frame epoch, and enormously more for a real 256-frame epoch. However,

as far as we can determine (c.f. [14] pp. 3.5-18/19), the actual PLRS
program divides them up by a standard algorithm: begin with the logical
time having the lowest possible start frame and lowest possible period,
call it t.; take the next lowest start frame and next lowest possible
pericd amSng the remaining available logical times (Lev and TN being

held ccnszant), and call that tz; from the remaining logical times choose
the nert jowest start frame and next lowest period for t3, and so on.
Thus from the unassigned Togical times, we always get the same "mix"

of cossible PORT Link Assignments, as represented by the tl,tz,t3,t4

actually shown in Figure 3.7-1.
67
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It should be remarked, incidentally, that we wondered whether this

could possibly have been left as a user option: to vary the mix of logical
times (possible PORT Link Assignments) at different rates (periods),
depending on the mix (ratio) of airborne, manpack, and other units in

a division. Obviously if one had all fast rate (low period) logical

times available, one would have less totai possible PORT Link Assignments,
or if one had the other extreme, all slow rate (high period) logical

times there would be many more possible PORT Link Assignments. One would
not use either extreme, just as one does not turn the shower on all

the way hot or all the way cold, it is helpful to be able to adjust the
temperature.

3.8 O0Other Operations on Logical Times

Having our basic specifications of the data types UU and Logical Time

in hand, it is then simple to define additional operations on those

data types as we need them for the program. For example, consider some
additional operations on Logical Time. The operation Tsupp? (Figure
3.5-9) tells us if, for any two Logical Times, one supports the other.

We may want to know if one directly supports the other--e.g., in Figure
3.8-1, t1 supports t3, but it does not directly support t3. The time
interval t2, on the other hand, does directly support t3. It is a simple
matter to write an operation which tests this, as shown in the definition
of DTsupp? in Figure 3.8-2.

Similarly, we find in doing the control map that we want to ask, for a
particular Logical Time, which Logical Time it is supported by. This
can also be defined from previous operations, as shown in Figure 3.8-3,
Derived Operation DTsupp. Note the difference in these two operations:
the first asks, given two times, does one support the other; the other
calculates which time supports the one already given:

boolean = DTsupp?(tl,tz) (5)
t; = DTsupp(t,) (6)

We will see, when we start writing the specification for a section
0% the MNetwork Manager that we actually do need both different operations.
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REPRESENTATIVE TIME SLOTS FOR THE NETWORK

Figure 3.8-1
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OPERAT|ON: boolean = DTsupp?(t],tz);

WHERE t,t ARE Logical times;

2

DTsupp?(t],t = Tsupp?(t],tz) AND (Lev(t1)+1 = Lev(tz));

2)

END DTsupp?

Figure 3.8-2
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DERIVED OPERATIOR: t, = DTsuPP(tz);

» ] -
WHERE t,,t, ARE t's;

? = = M
DTsupp? (ty,t,) = (t, DTsupp(t,));

END DTsupps

Figure 3.8-3
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There are several other operations defined with the data-type specifica-
tions (Figure 3.8-4). Some of these are referred to as needed in dis- %
cussing the control map for FIND-PLA (Section 4).

3.9 Other Data Structures in the Network Manager

It should be noted that in addition to the data types Logical Time and
User Unit'that were specified for use in the following control map, there
will need to be other data types and structures specified as more modules
of the Network Manager are completed. For example, in order to specify
the assignment and clean-up modules of PLA Control as well as the various
modules making up the preliminary part of PLA Control, we would need the
] data structure for PORT Link Assignment itself. Intuitively, this could
consist of a tree-like structure, as in Figure 3.9-1:

/Ui\
1
f] CR1 f2 CR2
Figure 3.9-1

where u, is some User Unit, t] and t2 are the Logical Times such that
(t1,t2) = PLA(ui) and f, CR, ... are various parameters associated with
the particular PORT Link Assignment (ui,uj), such as whether or not it
is FORCED, it's COMMAND RELIABILITfi etc. Such a data structure would
have primitive operations, such as:

SAMPLE PRIMITIVE OPERATIONS FOR PLA: :

port-link-assignment = Assign(user-unit, logical-time, integer)
port-1ink-assignment] = Deassign(port-]ink—assignmentz,integer)
user-unit = UU{port-link-assignment)

logical-time = LT(port-link-assignment, integer)




Definition of ACTIVE IN SAME FRAME:

OPERATION:

WHERE t

= ‘gF =
ASIF(t],tZ) OR‘S.(t1) = SF(tz) mod Per(t1),

END ASIF;

Alternative

Soolean

1

= AlSF(t],t

2);

yt, ARE Logical times;

2

:th1) = Sr(tz) mod Per(tz));

formulation:

ArSF(t,,tZ)_= (SF(t]) = SF(tZ) mod MlN(Per(t]),Per(tz)))

Figure 3.8-4




and axioms such as:

SAME AXIOMS FOR PLA:
WHERE u IS A User Unit,
(t],tz) ARE Logical Times,
k IS A Naturatl,
pla IS A PORT Link Assignment;

(1) t = LT(Assign(u,t,k)),k);

(2) u = UU(Assign(u,t,k));

(3) PLA(u) = (LT(Assign(u,t],O),O, LT(Assign(u,tz,l)l));
(4) ALP(t) = UU(Assign(u,t,k));

(5) REJECT = LT(Deassign(pla,k),k);

(6) u = UU(Deassign(pla,k),k);

n

Clearly, additional axioms would be needed, depending upon design con-
siderations. For example, if we wanted the assignment module, which
follows the FIND-PLA module, to simply replace a Logical Time in a PORT
Link Assignment, then we might leave the assignment axioms as they are,
since Axiom (1) already does this; if we were to insist {for whatever
reasons) the desassignment was required before reassigning a new Logical
Time, the we might add Axioms (7) and (8):

(7) pla = Assign(u,tl,k);
(8) REJECT = Assign(u,tz,k);

In any case, it would be to this data structure that we could then add
additional operations and accompanying axioms to deal with such parameters
as COMMAND RELIABILITY and FORCED-PLA. For example, suppose we wanted

to indicate whether or not a PLA was forced. We could then add the primi-
tive operations:

SAMPLE PRIMITIVE OPERATIONS FOR FORCED-PLA

Rforce(port-link-assignment, integer) = port-link assignment;
Rforced?(port-link-assignment, integer) = boolean
Unforce(port-link-assignment, integer) = port-link-assignment;

and accompany them with axioms, such as:
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SAMPLE AXIOMS FOR PRIMITIVE OPERTIONS FORCED-PLA

Rforced?(Rforce(pla,k),k) = True;
Rforced?(Unforce(pla,k),k) = False;

Note that we need each time we refer to a unit's PORT Link Assignment
structure, we need to include the integer which indicates whether it is
the first or second assignment (pairing of the u and some t) that is being
referred to. This issue is also discussed in Section 4.2.3.3 in this re-
port. e could get around this by defining our data type Logical Time
differently; that is, adding the concept of assignment of parameters
directly to the data type Logical Time:

SAMPLE ADDED PRIMITIVE OPERATIONS FOR DATA TYPE LOGICAL TIME:

logical-time = Assign(user-unit, logical-time);

Deassign{logical-time);

Togical-time

logical-time = Rforce(logical-time);

Unforce(logical-time);

logical-time
boolean = Rforced?(logical-time);

with the corresponding axioms:

SAMPLE ADDED AXIOMS FOR ABOVE PRIMTIIVE OPERATIONS:

WHERE u IS A User Unit,

t IS A Logical Time;
= ALP(Assign{u,t));
SECECT = ALP(Deassign(t});
rforced?{Rforce(t)) = True;

-
-

Aforced?(Unforce(t)) = False;

Lo N =4

lnile this is clearly rmore elegant mathematica11y7 than the separate

data structure for PORT Link Assignment, it leaves us with the problem,
discusszd elsewhere in this report (Section 3.6) of not being abie

to refzrence, or address, a particular PORT Link Assignment of a UU,
ciner than to give the specification of the Logical Time involved. That
js, as we shall see in Section &, the FIND-PLA control map, tests are
conzinuzlly being pronosed which refer to UUs, and there is no way (given
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this latter specification for Logical Time) to refer to a UU's PORT Link
Assignment, since we still have PLA(u) = (t1't2) and so there are two.
The former solution, to have a separate data structure for PORT-Link-
Assignment, including a reference integer, is considerably more clumsy.
In view of the necessity for duplexing, this is a problem which deserves
more study.

Those operations would then in turn be used to specify the FORCE-PLA
module. Similarly, other modules such as Suggest PLA and Check Command
Reliability, could be specified, adding operations and axioms 1in this

fashion.
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4.0 THE FIND-PLA MODULE

4.1 Identification of Submodules

Let us now turn to the control map of the Network Manager. Although

we made a rough preliminary control map (foT]owing the Hughes docu-
mentation) in the preliminary stages of our investigation, this only
covered in a general way the {irst three or so levels of detail (com-
pare Figure 2.2-4 and Figure 4.1-1). In order to show clearly how a
fully worked-out HOS specification including control map and accom-
panying AXES statements would 1ook, we decided to restrict our attention
for the purposes of this example to the most complex and interesting
submodule, PLA Control. PLA Control module is not really decomposed

in the Hughes PPS in great detail with respect to its submodules, but
there are descriptions of some of its main functions. We can safely
assume that there are at least three major submodules: (1) the one
which designatés a particular PORT Link Assignment for replacement;

(2) the search alcorithm itself, which finds a new Logical Time for
possible PORT Link Assignment to a given UU; and (3) a housekeeping,

or clean-up, module which takes care of rearranging the rest of the net-
work once the new PORT Link Assignment has been made (e.g., changing

the assignments of UUs supported by the UU whose PLA was changed, sending
the change to the CLA-Control module so that CROSS Link Assignments

can also be corrected, and so on).

Under the suggested Hughes module PLA Control, we further restricted

our attentinn to cne submodule, so as to demonstrate what a completed
spacification would look like. (A module is corpletely specified when
2ail of the functions nave been related by control structures and defined
down to the point of primitive operations on defined data types. Of
course non-primitive operations and control structures may be used, if
they have been specitied separately.) The module chosen was the search
algorithm in submodule (2), FIND-PLA. It is related roughly, as shown in
the nvnothetical control map (Figure 4.1-1). Tha dotted lires indicate our
bect nvoothesis as to how the system would relate these various modules.
Sirce the operator system is discussed only sketchily in the PPS, there
wzs not really encugh information to make more than an educated guess

LEST AVAILABLE COPY
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at this. To specify this completely would require more extensive dis-
cussion with the designers at Hughes. Hence we have shown in this part
of the control map only some main submodules without'fha?tating inputs
or outputs (also partially because of the difficulty in determining
these from the information available, as discussed in Section 2).

In view of the complexity of the specification for the FIND-PLA mdoule
and the similarity of the AXES statements accompanying the control map

to coding in various higher-order languages, it should be reiterated

here and emphasized that this is, of course, NOT code, but specification;
it is implementation independent, even to the point of not specifying
exactly HOW the sets of Logical Time are to be stored or referenced
(e.g., lists, arrays, etc.) but rather as any kind of ordered set, leav-
ing it up to the prcgrammer to decide how the searches might be most
efficiently conducted; this specification simply states which tests

have tn he rondis ot
It should also be remarked that, as a pilot project and kind of peda-
Togical example of HOS specification techniques, this particular ver-
sion of the control map for FIND-PLA is not to be construed

in any way as final or "the last word," but rather as a tool for making
the assumptions about the program specification very explicit so that
they can more easily be examined and revised.

4.2 FIND-PLA Control Map

4.2.1 The Top Level of FIND-FLA

The sectien of the PPS which roughly corresponds to the FIND-PLA module
is in Section 3.4.2.2.2.3 on tage 3-34, "PORT link assignment selection”
{17 (Figure 4.2.1-1). Much of the information needed to complete

the specification of this submodule, of course, is not found in this
secticn, but is either elsewhere in the PPS, in the STD, implicit in
some of the discussion, or even absenf entirely. In the latter case,

we have tried to make reasonatle hypotheses about what the system would
do in order to complete the specificetion. Also there is a fair amount
of redundant or unnecessary information in Section 3.4.2.2.3 [11] which
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3.4.2.2.2.3 PORT link assignment selection. PORT link assignment selection i
shall, unless requested otherwise, determine the best match between UU desired PL i
states and available PLAs. Available PORT link assignments shall be determined
from the unassigned PLAs directly supported by active UUs. When no PLA is available
for assignment to a UU designated for PL state change, that UU shall be requested
to demand entry. The PLA selection criterion and PLA restrictions are defined in
the following subparagraphs.

3.4.2.2.2.3.1 PLA selection criterion. The best match between the desired PL
state and the available PLAs shall be selected using the following order:

a. PLA with an exact match between the desired and available rate
b. PLA where the desired rate is lower than the available rate
¢. PLA where the available rate is lower than the desired rate
For otherwise identical PLAs, selection shall be made in the following preference
order:
d. PLA with lower levels
PLA with a closer rate match to the desired rate
PLA with earlier start frames.
3.4.2.2.2.3.2 PORT link restrictions. Available PLAs shall not be considered
for assignment if the PLA either is supported by a UU that already cooperates in a
PLA with the specified UU, or is active in frames that coincide with the specified

UU's other assigned PLA. Whenever the MU is the supporting unit of an available
PLA, all unassigned A-level PLAs shall be considered.

Each PLA shall be supported by only one UU. No two UUs shall have the same
PLA. A PLA previously assigned to a UU shall not be available for reassignment until
its deassignment or replacement has been explicitly acknowledged by:

a. A PLA command acknowledge
b. 2 node command acknowledge

c. UJ time out.

The A-level PLAs shall be assigned to different trees until all allocated trees have
been used at least once.

Figure 4.2.1-1 3-43




does not pertain to the search algorithm. A1l of this will be discussed
after a walk through the control map for FIND-PLA with commentary on its
various sections.

Note again Figure 4.1-1, which shows roughly, without indicating inputs
and outputs, how FIND-PLA is related to some of the other Network Manager
functions. Various functions such as UU rate, Suggest PLA, or Monitor

can request a new Logical Time for PORT Link Assignment by outputting
To]d to FIND-PLA; FIND-PLA then outputs a new Logical Time, tnew to the
PORT Link Assignment module and clean-up module, which changes the PLAs

of the UUs supported by u; via to]d'

Let us focus our attention on the top level of FIND-PLA, shown in Figure
4.2.1-2. The inputs to FIND-PLA are:

p (the recommended Period (i.e., 1/cycle rate) (c.f. Footnote
No. 2.

to]d (the Logical Time of the PLA designated for reptacement)
T (the set of possible Logical Times)

Ci (the set of communicants of the Ui which is assigned to told)
The top level consists of just the main SEARCH submodule and the ERROR
RECOVERY, which simply says to output a new Logical Time, t|NEN’ if one

is found, and output the old one, tOLD’ if SEARCH does not find a new
Logical Time for PORT Link Assignment, i.e., if thEw = REJECT. In 8
each case, provision is made for an appropriate I/0 message to be output .
Sote}that the FIND-PLA module does not make PORT Link Assignments! What
it does is to find a Logical Time which is appropriate for assignment to

a given UU, which would either replace an old assignment, or in case of
tOLD = REJECT (i.e., the UU has no PLAs), could be an initial assignment.
In other words, this module simply determines that a particular Logical
Tire meets certain specified requirements and is therefore appropriate

to -2 used for a new PORT Link Assignment. The actual assignment would
be cone by the CLEAN-UP or housekeeping module of PLA-Control; the new
Lezinal Time, tHEH’ and the given UU, Uss would be inputs to the CLEAN-UP
~22ul2, which would not only replace tOLD by tNEH , but also replace the
Lozical Times of the PLAs of any other UUs supported by uy-
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Now the search algorithm itself is shown in Figure 4.2.1-3. Before
going through the various stages in detail, it would help to have an

intuitive understanding of how it is done, as well as some comments
about assumptions we have made. First of all, the way we assume the
search is conducted is illustrated in Figure 4.2.1-4. The basic idea

is to start out with a (perhaps large) set of Logical Times which could ‘
be possible candidates for PORT Link Assignment to the UU, uss by means ' i
of the various tests and requirements imposed by Section 3.4.2.2.3 of the ;
PPS and elsewhere in the Hughes documentation to whittle down the set ;
of possible candidates, throwing out the ones which are illegal for one i
reason or another until there remains a set containing only one unassigned %
Logical Time, t'NEW’ which will be the best match possible. That is, ]
in terms of Figure 4.2.1-4, one starts out with a large number of candi- ;
date Logical Times for PORT Link Assignment, the set T, and after various ;
tests and eliminations (the double arrows), one ends up with a single é
NEw: |
It turns out that there is one "hitch" in this otherwise very straight- %3
forward process. For each particular UU, Uss we only allow those Logical '3
Times which are T-supported by Logical Times which happen to be PORT-
Link-Assigned to other communicants of uj (Figure 4.2.1-5). Note that
the result of the new PORT Link Assignment is to have u; U-supported

by a different UU than the one which U-supports it currently. Thus,
although the bulk of our tests on possible Logical Times are stated

in terms of conditions on Logical Times, we have to refer, at least
initially, to the UU's which are communicants of U (i.e., those which
us has heard from at some time, indicating they are within radio range).
This is shown schematically in Figure 4.2.1-5. Suppose all the boxes ]
) represent unassigned Logical Times (which :
1.). We N
can only choose the ones which are T-supported by Logical Times which are
PORT-Link-Assigned to one or another of ui's various communicants (UU's in

- hinp = A
in the top row (TUnass1gned

are therefore possible candidates for PORT Link Assignment to u

the set Ci)' But this is not a case of simple matching up, since each
comm.ii;icant UU in C. has two PLA's because of duplexing. Therefore,
ore nas two alternatives:
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(1) to find all the Logical Times associated with the UU's in
Ci, find which further set of Logical Times these Logical Times T-support,
then find which of those are unassigned, i.e., available for assignment.

(2) to find the unassigned Logical Times, see which Logical Times
T-support them, then eliminate all those which are not PORT-Link-Assign-
ments of the ui's communicants, Ci'

Either way is round-about, but the second seems to involve less computa-
tion, so we have opted for (2). Thus, in Figure 4.2.1-5, we first find
TUnassigned’ Supporting (all the
boxes in the bottom row, which represent the Logical Times that support
TUnassigned' We then eliminate all the Logical Times not assigned to
some communicant of u,, (the dotted boxes) being left with the boxes
labeled tc or tM' (We also need to treat possible A-level assignments

the top row of boxes; then we find 7

differently than other levels. This has been shown by separating the
T into those which are assigned to the Master Unit and those which are
assigned to other user units; we wait until later in f4 to actually

separate out the T's which have Lev(t) = 0).

We then need to find the set of Logical Times which are both unassigned,

and supported by the TC . This gives us the Logical Times indicated
i
by the shaded boxes in the top row. We can now perform all the tests

and matching required to choose one which will be the tNEW‘

4.2.2 The Operations SET-FUNCTION and SET-TEST

Before discussing the exact statement of the functions in the control

map fcr FihD-PLA, we need two additional tools, which HOS supplies us
with. In large systems (programs) there are, of course, functions which
are repeated over and over, and we may wish to simply define them in one
place (especially if the definition is complex) to be invoked whenever
neecad. Similarly, HOS control maps and accompanying AXES statements

can be used (aswe have seen in the section on data types) at the specifi-
cation layer to define operations which can be referenced whenever needed.




In addition, just as there may be repeated functions, there may also be
certain control structures which are used over and over again, but with t
different functions. AXES also gives us the capability to define these
as needed and create a syntax so they can be invoked, employing the

function needed for a particular case, in various places in the system.
Examples of such structures are cojoin and Coinclude, which are already K
HOS library structures (c.f. Appendix II).

For this PLRS module, we have defined two structures which will see use i
repeatedly. (They are, incidentally, used in other PLRS modules, and

of wide general application. Because of their general applicability,

they will be added to our library of AXES structures.) The first is

called SET-FUNCTION, and is defined in Figure 4.2.2-1. What it does

is to take as input any set-like data type (lists, arrays, files, etc.)

and apply some operation which is individually valid on the members

of the input set, to produce an output set of the same dimensions as the

e A

input set, but whose members are of whatever data type ¥s normally out-
put by the operation chosen. For example, suppose we take the operation

y = sin(x), which takes as its input an angle and outputs the sine of that
angle. But suppose that our input data will consist of 100 angles, stored
in a 10x10 array. Then we simply write Y = sin[X] with square brackets
and capital letters. If X is the 10x10 array, then SET-FUNCTION is in-
voked, which applies sin(x) to each angle, X5,5 in the array X, pro-
ducing a 10x10 array, Y, each of whose members, Y i is the sine of the

corresponding X; Since we are continually working with large num-

j.
bers of Logical Times, presumably sorted in some kind of ordered set !
(1ist, array, etc.), this will clearly be a useful control structure f

£sr the FIND-PLA module.

The other necessary control structure is SET-TEST, defimed in Fig. 4.2.2-2.
Tais is different from SET-FUNCTION, which really transforms one set into
another, in that the output is always a subset of the input. What it does
is to take some set of objects, and throw out all those which don't meet
scme test or criterion. For example, if we had a large set of Logical
Times, we might want to consider only those whose Period was, say, less
than 2. Now the syntax for SET-TEST is: “T2 is formed from Tlforall
¢’z.'", where T1 is the set we start out with, and T2 is the set we have

e~ eliminating all the t's in T, for which the boolean function

- £
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g(p,t) = FALSE. So for our example, we could say, where T2 and T1 are

some kind of set of Logical Times, "T, is formed fromT1 forall Per(t) < 8."
This says that the times, t, which are in T2, are those which were in

Tl’ and whose period was less than 8. In the figures in this report, we some-
times replace the words "is formed by" by the symbol "c" for brevity.

Notice that the statement "Per(t) < 8" corresponds to "g(p,t)" in the
general syntax for SET-TEST. The operation g is really any (n+l) place
boolean operation (i.e., whose value is either TRUE or FALSE) and whose
first n places are fixed-parameters or constants, and whose (n+1)th

place is the variable being tested. That is, g(p,t) is just the state-

ment of some possible property of t, Where p is a list of some constant
parameters which may be necessary to state the property, e.g., "8" in

the above example.

To reiterate, in the statement "Per(t) < 8," the constant 8 corresponds
to the p in "g(p,t)," and the compounded operation "Per{ } < " cor-
responds to the "g{_, )". This is perhaps easier to see in prefix-notation

than in infix-notation: "< (Per(t),8)."10

At any rate, it is clear that if we are to begin with a set (perhaps large)
of logical times which are possible candidates for PORT Link Assignment

and find a single "best" candidate by throwing out all those which don't
meet certain criteria, then this SET-TEST structure will be the basis

for this module. Once we have defined these two structures for working
with sets, then it is simply a matter of trying to state the tests and
criteria to be used correctly, and in the correct order.

4.2.3 The Search Algorithm

Now that we have these two structures which can be invoked at will to
either perform an operation on a set or to perform a test on a set, let

us look again at the search algorithm (Fig. 4.2.1-3). The function names
fo -fs and fa - f& ;
full specifications written out in Figure 4.2.3-1.

are used to save space and are abbreviations for the

The first function, fO’ takes the set of all possible Logical Times
as input and yields the ones which are unassigned as output. It simply
applies the function ALP (the inverse of PLA, PORT Link Assignment)
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< A IR gt -

Tunassigned c T forall Reject = ALP(t)

~

= DTsupp [T

supporting unassigned]

A

c. & Tsupporting forall Element?(APL(t),Ci)

OR (DTsupp?([;c ],t))
i

—f
n

Tunassigned

(T,,T ) = f, (T ) SEE BELOW FOR DETAILS
€j-A ey

T', = f,(T,) SEE Figure 4.2.3.2-1b

T' = f,(T_ ) SEE Figure 4.2.3.3-1
ci-n B Cia

Operation: Tz Q,T] forall NOT(AISF(Otmr(l"i’told)’t))
where T2,T‘ are sets of logical times; u, s a uu; told’ t
are logical times:

Operation: CHOOSE(p,T) SEE Figure 4.2.3.4-1

(TA’TCE_A) = fl*(Tci)

COINCLUDE

fe: T, T forall Lev(t) =0

f6: Tc. c Tc. forall Lev(t) > 0

Figure 4.2.3-1
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to each t in T, and if it is not assigned, i.e., if ALP(t) # y, for some
u, then ALP(t) = REJECT. Thus, all this function has to do is find the
t's such that ALP(t) = REJECT.

4.2.3.1 Finding Eligible Logical Times

Remember that this is the s

........... he specification layer, not the implementation
layer; fo does not necessarily say how, exactly, PORT Link Assignments

are to be stored or referenced, or even that T must be cal-

Unassigned
culated by going through the list of all logical times on each pass.

At the implementation layer, for example, T might be stored

Unassigned
in some temporary memory and simply updated on each pass. We might
even want to revise the specification and make fo part of the CLEAN-UP

module, i.e., input T to FIND-PLA directly.

Unassigned
Note how straightforward such a change would be. We can see, in the control
map, exactly which input variables would have to be changed, and we would
get a new output variable, TUnassigned from CLEAN-UP. This illustrates

two points: (1) a property of HOS specifications: that changes in the
specification are relatively easy to make prior to implementatior because
of the modularity of the control map format; and (2) a property of the

PLRS system: it is cyclic, rather than strictly linear; i.e., the output
of a function "late" in the cycle may produce an output which serves as

one of theinputs on the next cycle. For example, an ordering of functions
like "fO, fl’ f2, f3
f3, f." since the output of fO will still serve as the input to fl on the

0
next cyciic pass through the system. This is a matter deserving more

" might have the same effect as the order “fl, f2,

attention than we have space for here, but since ordering is treated only
implicitly in the PPS and STD, we simply note it as an issue to be re-
solved.

The next function, fy: %supporting = DTsupp [TUnassigned]
(c.f. Fig. 4.2.1-5) from the unassigned logical times, the set of logical
times which support them (bottom row of time~slot boxes in Fig. 4.2.1-5.
We then ask, via fz, which of those logical times are PORT-Link-Assigned
to UU's which are commuricants of the u, whose tOLD we are trying to

simply gives us




e et e LN

change. That is, if t, is a Logical Time in the bottom row (TSupporting)’
is there a ug, = ALP(tS), such that ug is also a member of the set of

. ” . . )
communicants, Ci' That is what f2 states: Tcils formed from TSupporting
forall E]ement?(ALP(t),Ci). Note tnat the condition on formation of the

new subset is a compound function; this could have been written out in
full AXES format as follows:

Operation: b = g(Ci,t);

where b is a Boolean,
C’i is a Set (of Uus),

t is a Logical Time,

u is a UU;
b = E1ement?(u,Ci) Cojoin u = ALP(t);
END §;

The format “E]ement?(ALP(t),Ci) is simply an abbreviation for an AXES
defined operation.

The function f3 then asks of the Logical Times in the top row (TUnassigned)
are they T-supported by a Logical Time which is assigned to one of ui's
communicant's? (c.f. Figure 4.2.1-5). That is, it eliminates from
TUnassigned all the Logical Times not supported by a Logical Time which is
PORT Link Assigned to some communicant UU (unshaded boxes).

4.2.3.2 The A-Level Logical Times

The function f4 simply separates these Logical Times in T. (which are

¢,

candidates for PORT Link Assignment) into the A-level ones (TA) and all
the rest (TC -A)’ since the A-level candidates will be treated differently
i

(fa) and considered first (f8) for PORT Link Assignment.

This cen2ration of A-level logical times corresponds to the PPS statement:
"Whenavay the MU is the supporting unit of an available PLA, all unassigned
A-level PLAs shall be considered." This statement is a bit problematical,
for i< the "MU is the supporting unit of an available PLA," then the
implicetion is that the MU is one of ui's communicants. Hence it follows

95




logically from the search algorithm as stated for the general case that
any unassigned A-level Logical Time will be automatically among those
considered for assignment. Thus, as worded in the PPS, the requirement
is unnecessary; it could be taken to mean, "...all unassigned A-level
PLAs shall be considered first.” This seems like a not unreasonable
requirement, since the A-level Logical Times are also singled out for

a special test, and from the STD, the philo

sgphy seems to be that one
tries to fill in A-level “"branches" in the trees first.

nn
Vpiygy 9v

Our search algorithm itself, f7, is arranged to take this into account,
by first Tooking at the A-level logical Times separately in f8' Then if
a t"new is found among the A-level Logical Times, it is made the new

PLA, t'new’ by fg. If no t"new is found among the A-level Logical Times,

fq directs f,, to look among all the others (TC.-A) for a possible PLA.
i

The second way in which A-level Logical Times are treated differently
is in being subjected to the test in fa, which corresponds to the

PPS statement, "The A-level PLAs shall be assigned to different trees
until all allocated trees have been used at least once." That is,

UUs shall be assigned to Logical Times with different tree numbers,
until thereis at least one PLA for every tree. (Incidently, note

again that the sentence, as worded, is meaningless: 1if PLA is intended
to mean "Logical Time," it is false, because Logical Times have a fixed
tree number and cannot be "assigned" to a tree--they are already by
definition in a tree. If PLA really does mean PORT Link Assignment,
then a PORT Link Assignment can't be assigned; only UUs can be assigned
to Logical Times and vice versa. Hence, it should read, "The A-level
UUs shall be assigned..." or even more accurately, "If there are any
trees all of whose Logical Times are unassigned, UUs should be assigned
to A-Tevel Logical Times in these trees first."

In Tess formal terms, in the initial stages of building the network,

one wants to fill all the trees as quickly as possible, so that there are
no "empty" trees, i.e., ones whose logical times are assigned to no UUs
at all. Thus, if there are any "empty" trees still in the network, we
must try to assign our UUi to one of them first (and since they are
"empty", it, of course, has to be an A-level assignment).
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This is illustrated in Figure 4.2.3.2-1. The cross-hatched boxes represent
Logical Times assigned to the MUwhich potentially T-support Logical Times
at the A-level. In the picture, two of these (the black ones) have been
assigned to liUs, one in Tree 1 and the other in Tree 5. Trees 12 and 17
have no UUs assigned to their Logical Time slots. Thus, if we have a UU
requesting entry, we would want to assign it to, say, Tree 12.

This is what fa does. Since it is essentially an existence test ("Do
any empty trees exist?"), like all existence tests, it is somewhat cum-
bersome. Tinitia] is the set of available Logical Times which happen to
belong to empty trees. If there are any, function 9; sets T‘A = Tinitia];
otherwise, T'A = the original TA that we started with, and the computation
continues in a normal fashion.

4.2.3.3 Restrictions on PLAs

Functions fS and fY are requirements imposed upon the choice of Logical
Times before we even begin the search. Function fB insures that there
are no loops--that the network of UUs and Logical Times is really tree-
Tike." It is assumed that it is desirable not to have either "real"
loops (in the same tree; see Fig.4.2.3.3-1a) or "virtual" loops (the
two UUs active in different trees, Fig.4.2.3.3-1b). While this seems
desirable from a practical point of view (we want a maximally spread-
out netowrk, so that if one UU is knocked out of action, it will create
a minimal disturbance of communication links), it does impose a

severe restriction on the number of Logical Times available for PORT
Lir< 2s3ignment to a given UU. Also (like function fa)’ it is rather
compizax cormputationally, as can be seen from the control map in Figure
+.2.2.3-1. While the Logical Times that don't meet the condition "not
...supported by a UU that already cooperates in a PLA wi ~ the specified
uu" [ ], this condition is quite complex computationally, as we can see
by its control map (Fig. 4.2.3.3-1a, fB)' (Again an existence condition!--
"Does z UU exist such that one of its assigned Logical Times support the
prozc:z=d Logical Time being considered for assignment to uj and whose
otz zssigned Logical Time is either T-supported by or T-supports the

otrar _ngical Time of ui?")
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Definition of COOPERATE:

OPERATION: boolean = Ucoop?(u],uz);
WHERE Upsuy ARE UUs;
Ucoop?(u1,u2) = 0R(Usupp?(u1,u2), Usupp?(uz,u]));

END Ucoop?;

Figure 4.2.3.3-1

(con't) ]




Function fY does not seem as complex only because we have already defined
AISF (Active-in-Same-Frame) as an operation in the section on data types.
Furthermore, the requirement, as stated in the PPS, is that the Logical
Time not be considered if it "is active in frames that coincide with the
specified UU's other PLA" (emphasis added). Unfortunately, specifying
other is not so easy as it might seem at first glance. because of the
duplexing. To illustrate, consider an early problem that we ran into

in understanding the PPS: Figure 4.2.3.3-2 (PPS Figure 3.4.2-2), we
were surprised to find that although the PORT-Link supporting UUg (going
through UUd) is the second PLA for UUd (c.f. row d2 in the chart, where
the rate is entered in column APL2, not column ALP1), and yet the rate
for UU. was entered in column APL1, indicating that this Logical Time

was the first PLA for unit UU . That is, there is no fixed concept of
"other," i.e., of first or second PLA, as we have noted in the data-

type specifications, if we say UU] supports UU2 and PLA(ui) = ta’tb’
PLA(uZ) = tc’td' We have no way of knowing in advance of actually check-
ing all the possibilities whether ta T-supports tc, g£4if>ta T-supports
tc, or if tb T-supports tc, or if T-supports td! --four possibilities!

Hence, the address of the "other" PLA for some given UU is not a constant
(1ike "FIRST" or "SECOND"), but must be referenced either by including

the other PLA {(e.g., the other Logical Time, tother
search algorithm, or by calculating it when we need it (Figure 4.2.3.3-3).

) as an input to the

4.2.3.4 The Search Itself

Finally, we come to the search algorithm itself, which is fairly straight-
forward, compared to the other tests and conditions. This is done in
Function fé. After seeing all the above complexity, it should be noted
here, that when a simple condition is imposed (instead of the very complex
conditions suggested by the PPS for the previous tests), the AXES struc-
ture SET-TEST allows a very simple and clear statement of the requirements
(Figure 4.2.3.4-1). On the right-hand side of the Cojoin, we simply take
the set we began with (T]) and throw out all the Logical Times whose
periods are not equal to the required period. If there are none left,

T, = REJECT, and the FAILURE structure (an AXES library structure of Ap-
pendix Il) allows us to try a different function, in this case looking for
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the Logical Times with periods less than the required period. If there are
none, FAILURE again lets us try a third possibility--greater-than the
required period. (Note that less and greater have been reversed because

we are checking period, rather than cycle rate, c.f. comment in Footnote
#2). We do not need a third FAILURE since the top level of Tie-Break
will pass on a REJECT if there are no possible assignments.

The Tie-Break operation (Figure 4.2.3.4-21s also fairly self-explanatory,
except that, as given in the PPS, it does not break all possible ties.

To see why this is so, remember that Logical Times are exhaustively de-
fined by PERIOD, LEVEL, TREE-NUMBER, and START-FRAME. While given a
particular start-frame, level, and tree-number, there can be only one
period (because of Axiom 5 of data-type Logical Time), it is perfectly
possible for there to be two Logical Times with the same period, level,
and start-frame but different tree numbers. (The reader can demonstrate
this by working through the Logical Times ta - t€ in Figure 4.2.3.4-3.
There is no way to choose between ta and tY') We have suggested an arbi-
trary fourth test based on tree-number as part of the Tie-Break opera-
tion.

4.3 Conclusion

In summary, an exact specification of this module (FIND-PLA) in HOS terms
would consist of the control map accompanying AXES statements (with per-
haps a minimal explanatory commentary) and the data-type specifications,
which would cover all the modules. This is what a rewrite of the PPS
would consist of in HOS terms. A sample explanatory commentary for such
a rewrite is given in Figure 4.3-1. It is interesting to compare this
with the original PPS page 3-43 that we started out with. In order to
turn this into a detailed and explicit specification (e.g., one that
could te coded from in some relatively straightforward way), there were
many problems to be resolved and hidden implications to be discovered.
For example, Figure 4.3-2 shows some of the words used in a technical
sense, just in this one section of the PPS (Sect. 3.4.2.2.3) along with
some problems (discussed earlier) regarding their meaning. Similarly,
Figure <.3-3 highlights some of the functional problems: (1) there

is no order among the operations and tests suggested (functions are marked
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Tnew ~ BREAK (p’TO)

"ET1'11) Replace Tol

Coeither

T =(T) T =f(P,T)
new 1 -72=Reject new 1 0 |T2#Reject
Cojoin
Tre' = fz(p,T') T' is formed from T0 forall fmin\ev(t)
//////////’///EZQ::;;;\\\\\<tgjf:j; Replace T']
T =T T ., = fa(p,T")
new 1 new 3 ' .
Ty=Reject ]T2¥ReJect
Cojoin
—_ - ] ) H 1
Tnew = =4(T' ) T'' is formed from T' forall fclose (o,t)
match
~at 11 Lt (38 ]
Cceither ‘_{T1 ,T2 Replace T
- =T T = f (T) .
new 1 }T2=Reject new 5 ‘TZ # Reject
' Cojoin
T'''" js formed from T'' forall f . (t)
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tie by Level 66'
Levek--
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new ™ !Tz"'#Reject

Fiqure 4.2.3.4-2
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= (Lev(t) = Min(Lev[To]))

minlev
folose = (Abs(p-Per(t))) = Min(Abs(p-Per[T']))) 1
match |
min = (SF(t) = Min(SF[T''])
SF

A possible fTN = (TN(t) = Min(TN[T''])

Why it doesn't break tie:

Suppose want per = 8, and

per Lev TN SF
t = , 1 , 2, 2
a
tpo = & o, 1, 7, 3
t = 4 . 1 , 13, 2
t, = 16 . i , 21 , 7
t. = b, 2 , 7 , 5

= 2 , 2 ) ’

' 3 3

Figure 4.2.3.4-3
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WOADS NEEDING DEFINITION:

PL: (PORT Link Assignment):
can —ean either (1) the assignment process
e.g., "assignment of a PORT 1link" STD p. 3.3-12) !

i (2) the thing assigned

' e.g., "assigned PLA" (PPS 3.4.2.2.2.3.2)
"unassigned PLA"

Not aven defined in glossary to PPS (Appendix B)

UU (User tnit)

need to be of same data type
¥y (Master Unit)

Level - the MU also has a level

Suoport - Used to mean:
U-supp? (ul,uz)
T-supp? (t1’t2)
T-suop? (ALP(ul),tZ) "PLA is supported by a UU..."

Cooperate - not defined in glossary

Tree - doesn’t mean links and nodes
rezns sets of time slots

Trzme - giossary definition doesn't mention it
is ccmposed of time slots

272 - tksy ~ean period

Z.°7 _iww - ghould be PLA or "t"

ct-:r - nzeds to be an operation

.- state - simply means high or low period

Figure 4.3-1 19
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TECHNICAL TERMS NEEDED FOR THIS SECTION

3.4.2.2.2.3 PORT link assignment selection. PORT link assignment selection
shall, unless requested otherwise, determine the best match between UU desired PL

states and available PLAs. Available PORT link assignments shall be determined

from the unassigned PLAs directly supported by active UUs. When no PLA is available
for assignment to a UU designated for PL state change, that UU shall be requested

to demand entry. The PLA selection criterion and PLA restrictions are defined in
the following subparagraphs.

3.4.2.2.2.3.1 PLA selection criterion. The best match between the desired PL
state and the available PLAs shall be selected using the following order:

a. PLA with an exact match between the desired and available rate (period)
b. PLA where the desired rate is lower than the available rate
c. PLA where the available rate is lower than the desired rate
For otherwise identical PLAs, selection shall be made in the following preference
order:
d. PLA with lower levels

PLA with a closer rate match to the desired rate

H ®

. PLA with earlier start frames.

3.4.2.2.2.3.2 PORT link restrictions. Available PLAs shall not be considered
for assignment if the PLA either is supported by a UU that already cooperates in a
PLA with the specified UU, or is active in frames that coincide with the specified
UU's other assigned PLA. Whenever the MU is the supporting unit of an available
PLA, all unassigned A-level PLAs shall be considered.

Each PLA shall be supported by only one UU. No two UUs shall have the same
PLA. A PLA previously assigned to a UU shall not be available for reassignment until
its ceassignment or replacement has been explicitly acknowledg:d by:

a. A PLA command acknowledge

o. A node command acknowledge

z. UU time out.

The A-level PLAs shall be assigned to different trees until all allocated trees have
ceen used at least once.

Figure 4.3-2




OPERATIONS AND FUNCTIONS IN THIS SECTION

compare desined period
with period of told’

3.4.2.2.2.3 TORT link assignment selection. TORT link assignment selection
shall, unless requested otherwise, determine the best match between UU desired PL
states and available PLAs. Available PORT link assignments shall be determined
from the unassigned PLAs directly supported by active UlUs. When no PLA is available
for assignment to a UU designated tor PL state change, that UU shall be requested
to demand entry. The PLA selection criterion and PLA restrictions are defined in

the tfollowing subparagraphs. shoutd be in diffenent section?

3.4.2.2.2.3.1 PLA selection criterion. The best match between the desired FL
state and the available PLAs shall be selected using the following order:

a. PLA witn an exact match between the desired and available rate (period)
h. PLA where the desired rate is lower than the available rate

c. PLA where the available rate is lower than the desired rate

f For otherwise identical FLAsS, selection shall be made in the following preference
order:

o

PLA with lower levels

8¢
—)’

e. PLA with a closer rate match to the desired rate

f. PLA with earlier start frames. 8

g. missding! :B éY

3.4.2.2.2.3.2 PORT link restrictionsp Avajlable PLAs shall not be considered

for assignment if the PLA either[is supported byfa UU that already cooperates in a

PLA with the specified UU,Jor[is active in frames that coincide with the specified

UU's other assigned PLA.] Whenever the MU is the supporting unit of an available

PLA, all unassigned A-levél PLAs shall be considered. § + -

meaningless ox false wy 4 g0t necersarny; 4y,

LEach PLA shall be supported by only one UU.] No two UUs shall have the same

PLA. 1 APLA previously assigned to a UU shall not be available for reassignment unti:

its deassignment or replacement has been explicitly acknowledged by:

A, A PLA command acknowledge

b. A sode comnand azrnewledge: ) deesn't belong 4in this section

e A-loveil PLAs shall be assioned to different trees until all allocated trees have

heen usced a2t least once.

rioure 4.3-3
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where their verbal descriptions appear in the PPS test; compare to the
control map). (2) Some statements are ejther meaningless or false, e.g.,
"Each PLA shall be supported by only one UU." First of all, UUs U-support
other UUs and Logical Times T-support other Logical Times, so a UU can't
support a Logical Time (and certainly not a "PLA"). We then might ask

if it means “a Logical Time has only one UU assigned to it" (in which

case it is trivally true, by definition), or if it means "a Logical

Time is T-supported by onlyone other UU's Logical Time,” in which case

it is false, since any Logical Time is supported by several other Logical
Times and we must assume they mean directly T-supported. But this is
inherent in the way Logical Times are defined (in the data-type defini-
tions). So it is not clear this has anything to do with the search al-
gorithm. (3) Some statements are unnecessary. The statement “"No two UUs
shall have the same PLA" is redundant, since one can only make PORT Link
Assignments from unassigned Logical Times in the first place. (4) Some
statements properly belong in other sections, e.g., the statement which be-
gins "A PLA previously assigned..." and which includes the three cate-
gories (a-c) has nothing to do with PLA selection, but, as we can see

from the control map, tells which Logical Times are going to be in
TUnassigned" But this is determined by the result of applying the opera-
tion ALP(t) and the result will depend on which PLAs are currently in
force. But if the CLEAN-UP function does actual assignment, then the
timing of when we deassign PLAs properly belongs in that module, not

as part of the search algorithm. Similarly, the statement "When no PLA

is available for assignment to a UU... that UU shall be requested to de-
mand entry" is properly the response, or recovery from REJECT in FIND-PLA,
and aithough it could conceivably be generated by the top level of FIND-PLA
(i.e., generate a DEMAND-ENTRY-REQUEST), again this seems properly the

function of a module outside FIND-PLA, as noted in Footnote #4.

To reiterate, this sample specification for Section 3.4.2.2.2.3 (i,
Figure 4.3-4, has, of course, not solved all of the problems, some of
which require more system-wide solutions. But it has pointed out and
suggested possible resolutions, which might be taken into consideration
as the specification of the PLRS Network Manager continues.
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SAMPLE RE-WRITE OF PPS SECTION 3.4.2.2.2.3

3.5.2.2.2.3 PORT LINK ASSIGNMENT SELECTION

This module attempts to find a logical time whose period is as close as

possible to the period cenerated by the PORT Link State Transition Processing

module, and passes this new logical time to the PORT Link Assignment and

Correction rodule,

VARIABLE DATA-TYPE MEANING
INPUTS: P integer Recommended period
u; User Unit The UU being considered
for reassignment
t logical time The LT of the PLA being
old .
considered for change
T tuple {of logical The possible logical times#*
time)
QUTPUTS: toew logical time The new LT found

0l message

MTC messace data-type to be specified

“This could be list, file, array, depending upon implementation layer
considerations.

The module first conducts a Search for a new logical time, then detects, if

necessary, a failure to find one, and responds with error message.

tﬁe function fc (Figures %.2.1-3 and 4.2.3-1) computes (or calls from
ALP(t) = REJECT. This func-

re

Firs
wemory) the logical times which are unassigned:

tion cutputs the set (list, array, etc.) Ty 0 g

The next function, fl’ finds which are the logical times that T _support the

(¢, = 7 = DTsupp|T )

logical tiras in 1 'supporting Unassigned])

TUnassi;ned'

(The »r-zzss in functions f, - f, is illustrated schematically in Figure 4.2.1-5.

< l] ‘I,‘

Figure L.3-4
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We then find which of these logical times are PORT Link assigned to the

. . . .
user unit u, communicants. (fz. Tci IS FORMED FROM TSupporting FORALL

Element? (ALP(t) ’Ci))

We then find which logical times the communicants' logical times support

(f3) and divide them into A-level and non-A-level logical times (fh)'

We can now conduct the search for the best match, after first eliminating the

logical times which fail to meet certain requirements.

For the A-level ones, TA’ we attempt to have at least one assignment for
every tree as soon as possible in the beginning stages of building the
network; therefore we apply fa’ which checks to see if there are any 'empty"
trees, and if so, picks a logical time from one of them if possible

(Figure 4.2.3.2-1).

The rest of the tests, fB- fA’ are run first on the A-level logical times,
and if no candidate for PORT Link Assignment is found, the same tests, f -

are run on the rest of the logical times, Tc A
;A

Function fY checks the logical times to make sure the PORT paths formed by
such an assignment will be district; i.e., not cross or form loops, either

real (in the same tree) or virtual (in different trees) (Figure 4.2.3-1).

Function fl+ eliminates from consideration those logical times which are active
in the same frames as the User Unit ui's other assigned logical time (Figure 4.2.3-1).

The final operation, f,, then attempts to find a logical time whose period

A,
matches most closely the given period (Figure 4.2.3.4-1), and if more than
one is found, breaks the tie using the criteria indicated in the operation

(Tie Break, Figure 4.2.3.4-2 and Figure 4.2.3.4-3).

If at any point the set of logical times being considered becomes empty, a

REJECT is generated and passed along the top levels of the various functions and

is output as the value of t' . Uf e = REJECT, then t is set equal to
new new new

and appropriate meassages to the 1/0 and MTC are generated (Fig. 4.2.1-2).

told’

Figure 4.3-4 (con't)
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5.0 REVIEW OF SUBSTANTIVE PROBLEMS IN REAL TIME PLRS DESIGN

In the beginning of the PLRS project, we reviewed the preliminary Pro-
gram Performance Specification [ ]. It has been the case that many of
the errors we detected in this primary document have been cleared up

in the final PPS. In addition, many of the things which we found missing,
ambiguous, or wrong in the PPS have been straightened out in the STD

and through discussion with members of the PLRS project. It seems as

it the closer the system gets to implementation, the better the system

is specified. (An example of this is provided by the PORT Link Assign-
rent Cormand in the STD, which specifies the necessary data for a PLA
petter than the entire discussion in the PPS.) While the trend toward
petter design as the system moves closer to implementation is encouraging,
it is not the best way to develop systems according to HOS principles.
And, despite the improvement, some substantial errors remain. This sec-
tion will describe how these problems and errors are detected. A re-
oresentative list of them will be described in some detail. Finally,

we will summarize them by category and discuss how the consistent appli-
cation of HQS principles can be used to avoid them.

5.1 Examples of Problem Categories

5.1.1 Confusion between the Network of Units and the Network of Logical
“ires

This confusion is displayed in several ambiguities. For example, the term
ree is used both in the conventional graph sense {as a hierarchical

set of units) and in a special sense of a set of timeslots. We will
describe three probliems arising out of this confusion.

PLA Confusion
inroughout the PPS, there is confusion regarding PORT Link Assignments

‘i.e., a2 set of transaction groups - 16 timeslots - during which another

set o7 _Js are communicating) and PLAs, which are often used in the sense

of -.::3izle or potential transaction groups. This confusion is reflected,

f2r exampie, in the concept of "unassigned PLAs" (see PPS, Sect. 3.4.2.2.2.3).

T-z fict that PORT Link Assignment is not a glossary entry is not helpful.




F ) X —
PR T - v - o < . o

v

The implication of this confusion is that the procedures for finding
available transaction groups to be used as a PLA cannot be clearly
specified.

This problem was identified by trying to determine formal data types
to be used in the control map. (See discussion in Section 3.6 and 3.7.)

Confusion between Units and Logical Times

Clearly, information regarding both units (e.g., communicants) and Logical
Times (e.g., which contain cycle rates) must be considered in managing
the network. However, these two concepts must not be confused. For
example, when (in PPS Sect. 3.4.2.2.2.3.2) it is said, “Each PLA shall

be supported by one only UU", the concepts are mixed. Elsewhere

(PPS Sect. 3.4.2.2.2.1.3) PLA's support other PLAs and units support
units.

This problem was discovered while formulating the data types.

Primitive Operations

In the PPS (especially Section 3.4.2.2.2.3.2), the confusion between
1inks and units leads to a corresponding confusion between the primitive
operations which might be performed on each. In the statement, "Each

PLA shall be supported by one one UU", the implication is that UUs sup-
port PORT Link Assignments (rather than UUs supporting UUs). As stated
the sentence suggests that “find the unique UU supporting this PLA"

would be a legitimate operation. In actuality, the appropriate operation
1s: "find a UU among the set of communicants whose PLA may support
another PLA."

Implications of the confusion between primitive operations is that the
software developers cannot be certain of quite what qualities are sig-

nificant, hence they cannot be sure of how to implement the constraints.

This cornfusion was discovered during the preparation of the operations
for use in the control map.
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5.1.2 Potential Sources of Loss-of-Control

As the system is described in the PPS, there is not strict continuity

in the flow of control in the Network Manager's operations. For example
(PPS 3.4.2.2.1.1.3), Handover-in UU processing is described in terms of
what will have happened after the process is completed. Working from
the available description, we can assume that MTC informs NM that a UU
is to be handed-over. (Network Control marks this UU as “zero rate"

and issues a tree allocation command.) MTC passes this command onto

the UU. Then the PPS says, "Upon acknowledgement of this command, net-
work control shall generate a handover-in successful notice." As written,
this description does not include the possibility that the UU fails to
respond. If this were to happen, it is not clear where the control
stopped. Is the next function to be performed in network control, in
message traffic control, in both, or in neither?

The serious implications of this sort of ambiguity are obvious! And it
may arise, in basically the same form, for a wide variety of commands

which expect a response from the UU community.

These problems were discovered by trying. to build the control map of the

network manager.

5.1.3 Inconsistent I/0 Interfaces

In the original PPS, this sort of problem was very prevalent. The re-
vised PPS has cleared up some of these problems, but most remain.

nz—2 Changes

Several data elements have different names and different membership

at different levels of documentation detail. For example, in Figure
3.3.5-1 [11], the OI inputs UU CONTROL to the NM; in Figure 3.4.2-1

C117, i« inputs UU MODE CONTROL; in Section 3.4.2.1.2.4 [11], “the new

Wt f_-z-ion shall accept inputs from the O function consisting of:...

1. 2lear, 2. Passive, 3., Reenter, 4. Restart". While this may seem like
a tr..i:1 problem, it rmust be resolved before the system can be expected
t~ czzrate.  Why not avoid the problem by a disciplined consistency

fro- the very beginning?
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Other examples of this kind of problem include missing UU OCCUPANCY,
LU STATE, CURRENT CLA, CURRENT PLA, FORCE PLA ALERT, ZERO ALERT (or
ZERO LINK ALERT), etc., in Figure 3.3.5-1 [11]; unique NETWORK VALUE,
and others.

These inconsistencies were discovered while formulating the preliminary
control map.

Tdentitv of Data Items
This problem involves the completeness and the consistency of the PPS

as a document from which to develop software. Therefore, it should be
self-contained. But it is not clear within the PPS what UU MODE (for
example} signifies. Similarly, the meaning of R and S-type PORT Link
rates is unclear. The fact that the identity of data items seems to
change according to documentation level was discussed above.

The implications of all these inconsistencies and ambiguities is that
unnecessary confusion is created in the minds of the software developers;
this confusion increases the likelihood of coding error.

These problems were discovered by trying to formally specify the necessary
data types for the HOS control map, in which specificity and consistency
are required.

5.1.4 Functions Not Well Defined

In seve~2] places in the PPS, various functions are invoked (or opera-
tions i~olied) which are not consistent with prior definition of data
items or other functions. In the software development process currently
being usad for the PLRS project, these problems do not arise until the
implerentation stage. But in the software engineering process implied
by the ~2S methodology, they are encountered early, and, therefore,

can b2 resolved before extreme committment of time and money are made.
Further-cre, with precise preliminary specifications, some problems

do not eérise at all.
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PLA Two-Valued on Unit
This is simply the problem that each unit has two PLAs. In the implied
search procedures to discover which PLA allows a UU to receive commands

from the MJ, two outputs are gossible. Everywhere in the PPS, whenever
a call for a PLA associated with a given unit is initiated, it is assumed
that one is found. Nowhere in the PPS is it suggested which one.

Tre implications of this ill1-cafined function (any function with two
possible outputs for a given input is necessarily ill-defined) are that
the choice will be made and it properly is a choice to be made by an
integrative systems designer with ample perspective on its effects; not
one to be made by a staff procrammer for possibly idiosyncratic reasons.

This implied two-valued function was discovered when we tried to make the
control functional.

Cooperate I11-Defined

The critical concept of "cooperate" is used in three different senses.
In PPS 3.4.2.2.2.3.2, the phrzse, "the PLA either is supported by a UU
that already cooperates in a PLA with the specified UU," implies that
the cooperating UU is on the same PORT Path (and at a lower level) than
the specified UU. Elsewhere (in the case of CLAs), cooperating UUs

are those who "listen" for a specified UU. But in the glossary, a
cooperating unit is defined as "A PLRS net member whose transmissions
are received by another unit." This definition makes all communicants

ccoperating units"!

Trz fmp]ication 07 using one term to signify many concepts is that dif-
“zrant peoole might make con{iicting judgements about its meaning.

IT the resulting implementaticn emdloyed a test called COOPERATE(UUi,UUj),
iz would bs expected to yield diTferent values in different modules.

Ber -7 = ===, hence /ero rate = Fariod » «

-2 rate has an intuitively = zusible meaning--namely the UU never

[+4]

L22oetically relays or liste~s for transmissions. However, a problem
ar‘ces in the representation ¢© zero rate UUs, because the parallel
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concept‘of period is also often used to characterize them. Clearly,
Period=g%§ for all rates allowed between 1 and 256. But when the opera-
tions implied by the PPS are attempted on zero rate UUs, period is trans-
formed to "infinity." This problem can be handied at the implementation
stage by a minor check for divide-by-zero or the provision of some
special code for "infinity," but it is one more thing that could go wrong

if not noticed and treated.
The imp]iéation of this minor problem is the possibility that the implied
arithmetic might actually be attempted. Presumably, this would result

in a f]oating-point check and system halt.

This problem was detected when we tried to specify data types for cycle
rate and period.

5.1.5 Incomplete or Wrong Algorithms

Althoughthe PPS is not consistently at the level of detail of operational
algorithms in those cases where the criteria for some system action is im-
portant (e.g. chose a potential PLA, declare a link unreliable and a candidate
for replacement, etc.), the PPS should specify either all the criteria
(complete the algorithm) or state that the algorithm is incomplete.

There are several cases in which the PPS seems to specify how a system
decision is to be made, but omits crucial detail.

Tie-Breaking Not Complete

Section 3.4.2.2.2.3.1 specifies several criteria for the selection of a
PLA to 2 unit when one of its two desired PLAs is missing. But the
criteria as stated are not sufficient to determina a unique PLA. That
is, after applying all the constraints, several possible PLAs would
often remain. How is the PLA Control function to select from these
candidates?

The effect of this oversight is to postpone the decision to implementa-
tion time. Eventually, the choice must be made. It ought to be made

explicitly and on a rational basis and not left to programmer whim.

This omission was discovered when the function, "Find PLA," was specified

in control map terms.
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Inflexibility of PLA Rate Mix

In Sections 3.4.2.2.2.3.1 and .2, the PPS specifies the PLA selection
criteria. Because reliability is a PLRS system goal, one restriction
on the two PLAs that serve a given UU is that they are relayed through
no common UUs. This is stated as: A PLA shall not be considered if

it "is active in frames that coincide with the specified UUs other
assigned PLA." The selection criteria of Section 3.4.2.2.2.3.1 are not

sufficient to ensure this.

The implication of this is that the module which performs the "FIND-PLA"
function will not have all the information it needs, unless this problem
is cleared up in implementation.

This deficienty was discovered while formulating the "FIND-PLA" func-
tion in the control map. See discussion in Section 3.4.3. .

Can't Find What Transaction Groups Are Available with Respect to Time
Again, in the FIND-PLA function, it s necessary to determine which
transaction group ("unassigned PLA's" in PPS terms) are candidates for
forming a PORT Path to a given UU. One criterion is based on UU data,
namely the set of communicants. The other criteria include those in
Sections 3.4.2.2.2.3.1-2 [11]. But nowhere in the PPS is it specified
how the available transaction groups can be discovered. We have solved
this problem by using the control map and primitive operations on the
HOS data types, but feel that the PPS should have made it explicit that
this a]gorithm was incomplete.

The implications are that there are several alternative ways to go about
this necessary function. Without noting that the choice of method is
being left to a Tater stage, a poor alternative may be implemented without
opportunity for review.

This cmission was discovered by developinz explicit procedures for "FIND-
PLA" in the control map. See Sectiond.2.3.4 fora more detailed explanation.
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What is "PORT Link Time Assignment"?
In the Tree Allocation Command, provision is made for two 3-bit fields

which are called PORT Link Time Assignments. We found it useful to refer
to the actual commands because they are so much more explicit (in most
cases) than the discussion in the PPS. We cannot find a specification of
this data element anywhere, however.

The implication of this omission is simply to leave uncertainty in the
specification of quite what this command is meant to do.

This omission was discovered by inspection of the STD in the process
of formatting data types.

Error Detection and Recovery

Many places in the PPS, an operation is initiated which may or may not
be successful (produce the desired effect). The most typical case is
the generation of a command to a UU to take a Logical Time assignment
or to change mode. The UU may or may not respond. Usually, the speci-
fied action is to generate a "zero alert." This in itself is not suf-
ficient recovery procedure. Because the action to be taken subsequent
to the generation of the alert is unspecified, there is no guarantee
that the system will ever get back on track.

Error detection and recovery is sufficiently important that it ought

to be explicitly incorporated early in the program development process.
A single missing recovery procedure could have disasterous consequences
in the field.

These considerations are an explicit part of the HOS philosophy and follow
directly from the principles regarding completeness of control.

5.1.6 OQverall System Considerations

This section discusses some topics which we feel are important considera-
tions in the Network Manager function and (probably) for the system as

a whole. They are not problems in the sense of the above, but perhaps
they should have been treated in the PPS.
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Reg.rcant Operations

1t seems as if some of the functions and operations necessary to imple-
rent*he Network Manager specification can be used unchanged in several
places. For example, specification for PLA is identical to CLA. Botn
are assignments of Logical Times to UUs, but the algorithms for finding

them rmay be different. Also, zero alerts are generated in several places.

Tha cpportunity to exploit identical code for redundant operations can be
seized only if it is rzcognized early. In the formulation specified

in our control map, Tor example, PLAs and CLAs have exactly the same
resrssentation (although they are different data structures because

thzy nave different meanings). Similarly, some of the operations on

them are identical in form. The control map building exercise is an
excellent way of discovering such operations.

Tha Coerator and the Users as rPart of the System

The FPS fails to consider the MU operator and the community users as
zert of the system. This is an inadequacy because many of the control
Jocps in the Network Manager (and other portions of the PLRS) are closed
only through the operator or through the community. That is, the soft-
ware will generate a condition (an operator message or a command to a
UUQ and issue it. The next time control- passes back to the software,

it is Decause the operator or a user has take some action. At a minimum,
the range of operator-actions should be related back to the software
func:tions which (in some sense) initiated them.

Trezting the PLRS as a closed system when it actually is open to both
ke cperator and the users invites loss-of-control problems.

‘: zituaticn becarz svident when we formulated the control map and

Tourg that rzny of ine Setwork Manazger's control loops were closed
cni. through the operator. '

123

I O — J

PP SO SV T N




5.2 Statistical Summary of Problems

CATEGORIES OF PROBLEMS FQUND

CONFUSTION BETWEEN LOGICAL TIMES AND UNITS

PLA Confusion
Units/Logical Times Confusion
Primitive Operations

POTENTIAL SOURCES FOR LOSS OF CONTROL

Command/Acknowledge

INCONSISTENT I/0 INTERFACES

Name Changes (Mode Control)
f Identity of Data Items

FUNCTIONS NOT WELL DEFINED

i PLA Two-Valued
Cooperate I11-Defined

Period=gg§, hence Zero rate » o«

INCOMPLETE OR WRONG ALGORITHMS

Tie-Breaking not Complete
Inflexibility of PLA Rate Mix

Can't find what transaction groups
available with respect to time

What is "PORT Link Time Assignment
in Tree Allocation Command?

Error Detection and Recovery
(various)

OVERALL SYSTEM CONSIDERATIONS

Redundant Operations (e.g., PLA+CLA)
Operator as Part of System

Imp]ication] Frequeng_y2 Discovery3
Serious Often Formal Data Type.
Serious Often Control Map
Serious Often Control Map
Crucial Often Control Map
Minor Often Control Man
Minor Sometimes Data Types
Crucial Once Control Map
Serious Once Control Map
Minor Sometimes - Data Types
Crucial Once Control Map
Serious Once Control Map
Serious Once Control Map
Serious Once Data Types
Crucial O0ften Control Map
Serious Often Control Map
Serious Sometimes Control Map

]Imalication means expected magnitude of consequences.
probability that the problem would go undetected times the performance sacrifice

if it occurred.

It is composed of the

2Freguency means that it can occur from 2-10 times--often 11-50 instances.

f 3Qj§coverxrrefers to the exercise that was being worked on when the problem

was recognized.
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5.3 Considerations for Software Verification

We are given a hint only of the procedures that Hughes employs to ensure
that the software will work as designed. The major weakness of these
procedures (sketched in the Hughes Design Plan), from the perspective of
HOS techniques, is that they are informal. That is, they depend on the
subjective judgement of the software creators as to possible failure
modes .

Now, this practice often may be adequate in the sense that the designer
may usually have a good appreciation of the environmental circumstances
which will impact his code. But, occasionally, something totally un-
expected might happen. As a purely speculative example, consider a
spurious acknowledgement. Depending on the details of implementation
(within the constraints of the PPS), a spurious acknowledgement could
hang up the software--searching for the (never-issued) command that it
thought was being acknowledged!

One result of this approach which may prove troublesome is the dependence
of the designers of the Online Simulation Program on the designers of the
Real Time PLRS. Because the simulation program is intended to demonstrate
the MU's operational ability to meet specified requirements, it is im-
portant that it exercise all possible conditions. From the available
documentation, it seems like one of the functions of the Real Time PLRS
module designers is to suggest modes in which their modules ought to

be exercised. Because the conditions they anticipate will be the ones
they. design for, the power of the simulation to detect error is reduced.

There is a better way to ensure software validity! Because a control
mar constructed along the forral axioms of HOS must incorporate all
possible cases {values, inputs, etc.), it can be used to generate an
exhaustive set of test conditions for each functional module. Invalid
data cannot hang the program--in tne worst case, they can only propagate
REJZZTZ to the highest level, exactly the desired outcome.

Software engineering directed by formal rules is far more secure than
that which depends merely on multiple levels of review.
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FOOTNOTES

Footnote 1

An object or name can be assigned or unassigned, but an assignment can
hardly be assigned or unassigned. Here it is time intervals which are
either assigned to UUs or not assigned to UUs, and the match of a parti-
cular UU, i.e., u; with a particular set of time intervals in which it is

active, i.e., tj’ is what constitutes the PORT Link Assignment: (ui’tj)"
not the tj alone.

Footnote 2

It should be noted that there seems to be an inconsistency here in the
PPS text. Although the PORT Link Assignment command format indicates
that the Logical Times assigned to UUs are being specified using the ex-
ponent on the Period, throughout the statement of various algorithms

in the text this is referred to as Cycle Rate, rather than period. We
understand Cycle Rate to be equal to 256/Period, so that it would be a
simple matter in various modules to convert from one to the other, ex-
cept for the fact that Cycle Rate is often set to zero as a means of
indicating a necessary change in PLA (c.f. PPS Section 3.4.2.2.1.1.2,

p. 3-33, "Reentry UUs shall be designated as being in a zero rate PORT
link stazte and shall be process by PLA control."), and since P = 256/CR,
if CR = 0, P = =,not one of the periods allowed for. There will have

to be some sort of ad hoc patch; we simply note the inconsistency here.

Footnote 3

Given, for example, in the STD, Section 3.5.5, p. 3.5-10/12, "Advantages
of Network Redundancy."

Footnote 4

Note Axiom 6b is further complicated by taking into account the Master Unit,
wnich .2 must do for consistency, since the MU does support the other UUs.
Fer erample, 1f we ask what unit directly supports some unit, the answer

1i¥ it is A-level) may be the MU. Furthermore, may we not take the al-
terrative of using Axiom X , Usupp?(m,u) = True, if there are multiple

s, &iso if we consider new entry UUs, which may be communicants without
being supported? This requires further study, beyond the scope of this
report. The final formulation of the axioms would presumably make a

choice bztween Axiom X and Axiom 6b.

Footr--z 5

We ni-=ure a 16-frame epoch rather than a real 256-frame epoch for sim-
plici-..
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Footnote 6

CROSS Link Assignments are omitted from this discussion, although they
would be handled in an analogous manner. In addition, for the sake of
simplicity, the behavior (specification) of the Master Unit is omitted
from the following discussion.

Footnote 7

Additional operations and axioms for data type Logical Time suggested
by Stephen Kenton.

Footnote 8

Including the error recovery as part of FIND-PLA was done primarily for
pedagogical purposes: to show how an error message might be incorporated
into the specification. In a complete specification for the PLA Control
submodule, however, the error detection and recovery would be done at a
higher level. That is FIND-PLA would consist basically of what is called
SEARCH in Figure 4.2.1-3a. This might generate a REJECT as the value of
t'new vhich would be passed up to the operator system.

Footnote 9
That is, if (tOLD’ta) = PLA(ui), where t, is ui's other assigned Logical
Time, cor stated inversely, if u; = ALP(tOLD), then the duple (ui’tOLD)

must be stored in memory somewhere; this would be replaced by the duple
(ui’tNEN)‘ That is, the CLEAN-UP function would do the actual changing

of PORT Link Assignments; PLA] - PLA2 or rather (ui,t]) -+ (“i’t2>'

Footnote 10

It may be instructive to the reader to work through the recursion in SET-
TEST. If so, note that the final REJECT obtained is not an error; it
simply marks the end of the ordered set (list, etc.). For example, if
we are zz:7ining the items in the list T0 = (7,3,8,2) and only 3 and 2

hepper <o meet the required criterion being tested, then the following
action cccurs:

T- IS FORMED FROM To FOPALL t < 55

NRUT: T] = {(7,3,8,2)
SEPLACE

'7,3,8,2) = 7 and (3,8,2); 7 is eliminated.
{3,8,2) =3 and (8,2); 3 is saved.
(2,2) = 8 and (2); 8 is eliminated.
(2] = 2 and REJECT; 2 is saved.

2 and REJECT = (2)

3and (2) = (3,2)

QUTPUT: T, = (3,2)
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Thus as one can see, the REJECT is simply an end-marker, much like the
element NIL in the LISP language.

Fcotnote 1}

The operation Element?(x,S) is used here in the general sense. The AXES
specification language has the operation defined so far only for the case
in which S is a set; however, it is clear this could be extended to the

' cases where S is of some other set-like data type (e.g., lists, arrays,
files, tuples, etc.).
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APPENDIX |*
Preliminaries of HOS

In HOS. the decomposition process fora systemresulis ina tree
structure. At tac start ol the decomposition process, the entire
system is represented by the root of the tree which. hopefully,
represents the requirements for the system. This defimition,
however, has many implicit (hidden) rejuirements. In order to
arrive explicitlv at the complete definition of the system. the root is
decomposed by replacing it with a node! family (a particular
parent node and all of its offspringl. which represents the
decomposition of the root. This decomposition process, that of
replacing a function by 1ts nodal family. can be continued until the
entire svstem has heen specified. The resulting tree represents the
compizete svsierm specification. where the leaves represent primi-
tive operations on the data types represented by the variables at
those leaves It may turn out that dining the decomposition
process a requ:rementis shown to be erronecous or missing. In such
a case, an steration of the syvstem description is required.

The parent node of the nodal famiiv controls its offspring.
When referring to thiscontrol relationsh:n. the parent node will be
called a module. and its offspring will be called functions] The
ofispring oi the nodal family are the functions required 1o perform
e medule’s corresponding funcrion (MCF) (i.e.. the function
that the nodal tamily replaces).

In the sections that follow. the vanab!s tha! represents the
domua.n elements of a function is referred to as the input variable,
and the var:abie that represents the range eiements of a function s
referred 10 as the wurput variable. Individual domain and range
elements may be called inputs and outputs. respectively,

A moduit.1n pertorming its corresponding function{ Figure Al-
1), 1s responsibie for determining if the inputs received are in the
intended domair uf the MCF. If an input 1s not in the intended
domain of the MCF. it is in the uniniended domain of the MCF
and maps to a <pecial value which is a vaiue of every data type. the
value Reject.

In a sense. the improper input element is not in the domain of
the module’s corresponding intended function (MIF}. butisin the
domain of the MCF. i.e.. the module’s corresponding unintended
function (MUF).

Properties of the Primitive Control Structures
While a function can be decomposed in manv ways. the HOS

Figure Al-1. Illustration of a Function from X into Y

A
—
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*Exgerpiet

axioms {2 } provide rules for the construction of nodal tamil.es
(1.e., the decomposstion of a function). From these axioms. three

primitive control stru lu;‘cs. which are used for functional decom-
position, are derived [ 11

These control structures are: composinion, set partinon, and
class parttion.

\ (AW
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Figure AI-2.
An Example of Composition

Figure AJ-3.
An Exampie of Set Partition

Composition is lustrated in Figure Al-2. In order to perform
fi(x). the function {; must first be applied 10 x which results in
output z. z then becomes an input to f: which produces the desired
range element of the overall function.

It 1s important to observe the following charactenistics of
composttion (characteristics are explained with respect to the
example in Figure Al-2):

(1) One and only one offspring (specifically {: in this exampie)
receives access rights to the input data, X, from module f .

(2) One and only one offspring (specifically {1 in this example!
has access rights to defiver the output data. v. for module {

(3) All otherinput and output dasa that will be produced by ofi-
spring controlled by [ will v +dein focal variables (specifi-
cally “z" in this example). *.ocal variable. “z™, provides
communication between the offspring f: and f,.

(4) Every offepring 1s specified to be invoked once and onl
once in each process of performing its parent’s MCF.
(5) Every local variable must exist both as an input variable for

for onc and oniv one function and as an output variable for
one and only one different function on the same level.

Set partition, which involves partitioning of the domain, is
illustrated in Figure AJ-3. In the example, the set which comprises
the domain is partinened**® into two subsets. For set partition.
only one of the offspring will be invoked for cach performance of
the MCF at {, (the determination being based on the value of “x~
received) and that offspring will produce the required range
element for its parent module when it is performing.

The following characteristics with respect to set pantition should
be abscrved:

(1) Every offspring of the module at f, is granted permission to

produce dutput values of "v™.

(2) All offspring of the module at {. :re granted permission to
receive input values from the vanabie “x™.

**Parntioning implies the subdimision of the onginal set into nor-
averlapping (e mutadlly exclusnve subsety)




(3) Only one offspring is specified to be invoked per input value
received for each process of performing its parent's MCF.

(4) The values represented by the input variables of an off-
spring’s function comprise 2 proper subset of the domain of
the function of the parent module.

(5) There is no communication between offspring.

Class partition is illustrated in Figure Al-4. While set partition
involves partition of the domain into subsets, class partition
involves partition of the domain variables into classes and the
partition of the range vanables into classes. In the example, it is
assumed that the domain variable has an associated data structure
comprised of two parts,“x," and “x:". Likewise, the range variable
has an associated data structure with the same number of classes as
the domain’s data structure.

)1=Nlil ¥ = ptag
Figure AI-{. An Example of Class Partition

The following characteristics with respect to class partition
should be observed:

(1) All offspring of the module at fare granted permission to re-
ceive input values taken from a partitioned variable in the
set of the parent MCF domain variables. such thai each off-
spring’s set of input vanables is non-overlapping and all
the offspring’s input variables collectively represent only
its parent’s MCF input variables. -
All offspring of the module at f are granted permission to
produce output values for a partitioned variable in the set
of the parent MCF range variables. such that each off-
spring’s set of output variables is non-overlapping and all
the offspring’s set of output variables collectively repre-
sent the parent MCF variables.
(3) Each offspring is specified to be invoked per input value re-
ceived for each process of performing its parent's MCF.
(4) There is no communication between offspring.
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APPENDIX 1]*
Preliminaries of AXES
I. Axes Syntax Description

AXES is a formal notation for writing definitions of systems.
These systems include svstems which are mechanisms for defining
other systems. Thaes tu: example, we could define a set of
specification “macros” which collectively could form a language
for defining a system or {amily of systems. Since each language
statement would be a celinition “macro™ based on an integrated
Higher Order Softwarz { HOS) control hierarchy [2 . the resource
allocation to a particular machine could then be addressed
independzntly from the definition of the system. Although it is not
a programmirg language. AXES is a complete and well-defined
language capable of being analyzed by a computer. AXES is
intended to provide commonality between systems. Although
users wiil have fexibility to choose different building blocks. these
building blocks. when “compiled.” will bring users to a common
meeting ground with ail other users of AXES.

AXES systems can be hierarchically decomposed into complete
system specifications with the use of abstract control structures
that relate members of algebraicallv defined data types. Three
primitive control siructures have been derived from six axioms
that define completeness of control [ 1 | These primitive control
structures provide ruies for the defimbion of communication,

*Excerpted from | €1

parallel processing, and selection of functions. From a combina-
tion of primitives, we can form more abstract control structures
(e.g., recursive functions).

The syntax of AXES [ 4] provides the mechanisms to specify
control structures and data types. The purpose of AXES is to
express a system specification which is equivalent to that same
specification expressed graphically as a crinrol map. Control
structures can be described in AXES as structures, operations, and
functions. Whereas a srructure is a relation on a set of mappings,
i.e., a set of tuples whose members are sets of ordered pairs, an
operation is a set of mappings which stand in a particular relation.
An operation results, mathematically, from taking particular
mappings as the arguments (nodes) of a structure. By a funcrion,
we mean a set of mappings which stand in a particular relation for
which particular variables have been chosen to represent their
inputs and outputs. Whereas structures and operations can be
described as purely mathemaucal constructs, a function is a
hybrid, consisting of a mathemaiical construct and a linguistic
construct, i.e., an assignment of particular names of inputs and
outputs. Note that our use of "fuaction” s slightly different from
what is meant by “function” in mathematics. For the latter notion,
we use the term “mapping” thromghout this paper.

In AXES, a new data type can be defined simply in terms of the
operations that are to be performed on the data [4]. That is. a
data type is defined algebraically rather than operationally by
making true statements (or axioms) about the equality of two
control structures in which all themodes are operations. Each such
control structure is defined in terms of primitive operations of the
data type of interest or of previously characterized primitive
operations of another type (previously characterized primitive
operations include universal primitive operations that have been
defined, each of which is associated with any member of any data
type).

The axioms associated with thedefinition of a data type are only
those we need to characterize the data type. There are, of course,
other operations that we find useful for other purposes. We are
free to define any operation we want on an already-defined type as
long as the operation definition is consistent with the axioms of the
type. A new operation can be characterized either as an OPERA-
TION or as a DERIVED OPERATION.

In AXES. we specify the behavior of an operation without
specifying its decomposition by writing it as a derived operation,
i.e., by means of true statements that describe the behavior of the
operation with respect to other aireadv-defined operations. Either
kind of operation could be written as a control map, if desired.
They differ in how they are specified, not in what they are. What
distinguishes both of these kinds of operations from primitive
operations on their data tyvpe is that their existence is provable
mathematically from the existence of the primitive operations and
the axtoms of the tvpe. In fact, if an OPERA TION (which defines
a function) and a DERIVED (PPERATION (which defines the
behavior) are both used to define the same function, the behav-
ioral properties can be checked against the refinement properties
to prove the correctness of a definition.

In describing AXES we will use variables and constants
themselves to make statements about the values they name, and we
will use the names of variables ~nd constants to make statemnents
about the variables and coustants themselves.

To differentiate an object from its name, we introduced the
“use-mention distinction™ {71 in AXES. That is. we can talk
about an object only by using a name of the object. (To talk about
a man, for example. we have 1o use a sentence that contains the
man’s name, not the man himself.) The notation conventionally
used for this is enclosure withan quotation marks. To form the
name of a given name (or written symbol of any kind), we include
that name (or symbal) in guotation marks. (Successiv = embedding
of quotation marks can be used if we want to talk absut names,
names of names, and names of names of names.)

In AXFS, a constans symbol is the name of a particular value
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2n.d corresponds 1o a proper noun iixe “John” A varighle is the
name of more than onz possible valze and corrssponds to a
ommon roun ihe “a man.”

Figure All-1. An Erample of Abstract-Control-Structure
Definition Lavers with Respect 10 AXES

Forexample. in Figurz All-1, the top-most box is a dsscription
of rant of AXES itself. The top-most box describes the AXES
ob scis required todefinea STRUCTUREin AXNES. Thesentence

“STRUCTURE™ y=="S ~("x7)~
mzxcs a statement aboui values by using the vanasle =y, "s™. and
“x~ ard abcut constant svmbols by usinz the g uatation-marked
symbols such as “'STRICTURE ™, and =*="".

The middle box encicses an AXES object uself: that 1s. the
mi3die box encioses the cefinition of z language siatemert derived
frc m the definition of a= AXES mo:zule. Tae Cempos:mion (Cn)
STRUCTURE. defined :a Figure All-1. is one oi the th: ¢ HOS
primitive control structures. Each p.A...x'n. control siructure has
besn defined as a STRLUCTURE witz AXES [ 437

The middle box encloses an instance of :he layer that the
togpmost box represents. H we could describe all of the siructures
that could possibly exist. then the complete set of structures would
be the layer that the top-most box describes.

When a STRUCTURE in AXES is defined. the designer
supplies the syntax (or description) so that a user of that structure
can dsscribe particular mappings that siand in the relation. For
example, the bottom-most box in Figure All-1 enciosesan AXES
obiect that is an instance of the Cr structure Cescribed in the
middle box of Figure Ail-1: that is. the bottem-most 2ox is the
deSnition of a system derived from 172 Zefinition of a .anguage
statement. derived from tae definitics of 2n ANES module. Inthe
bottom-most box, “b = Relate(d)™ descrines a particular function
tha: ™. = Cr (g)” represenis nthe m .2dlz pox, Linewise, "d =Su-
pemvis - ofaL T orepresen: iz o g = Coane”l In the

ne nblecis : =37 reprosent

el av
JnonT statemelt

Miiere X8 gre f some 1705

Th.s statement means thzt x, v, and
are of ar unspecified czia i pe.
WHERE staternent is used to specily
the operaticn. Contact. s a pam....,z ~x._ n
O:mer contra! structures ¢an be demved f om a

iready defined
control structures and operaiions that operatz ony ariab.’:s ofany

o Op:ra:.uns hat ope7ale on variabies of any type are called
universal cresai ny Pnimineunivensal o;era.xo'*<a:cc:: ned as

*The svntavt e Farsition i
v = :' o Cheraise iy = [0,
Forni o (R3S ars Pariinn,
Hese the e s, wriptind.cziesa memrola memder ol a rartition
of =x~.
The sartax [or «.uss partit IR s

vo=fixy tncdudey: = {0

x = Clone,; (x) )
(x.x) = Clone: (x) (2)
con = Kon(X) 3)
X1 = idi(xix:) 4)

= idi(X1.X:2) (5)
(x1.Xx2) = Si(x) (6)

= T(x1.X2) (7

(1) and (2) are used to specify more than one variable with the same
value. (3) is used to choose a constant symbol. (4} and (5) are used
to select the value of one of a set of variables. (6) and (7) are related
by T(St(x)) = x. These are used to create a value of a data structure
from a value of a data type (i.¢c., St) or to create a value of a data
type from a value of data structure (i.c.. T).

Universal operations have, as their bottom nodes, universal
primitive operations. Universal operations are defined as
STRUCTURE in AXES because they operate on values which are
variables.

We can now define a structure whose syntax can be used to
definc more than onc system having access to the same value.
Here, we use the universal operation

v = idi(x)
which is used to select particular variables out of a set of variables
as well as the universal primitive operation

(x.x) = Clonex(x)
to determine the meaning of the relationship among the unspeci-
fied functions that appear as bottom nodes of the structure
definition.

STRUCTURE: y = J(x),

Where y.g.w.h are of some 1yvpe:
Hhere b is a NATURAL:

Where a is a SET (of NATURALS):

v = Ji(g.w) Join (g.w) = J:(x),

(g.w) = J.;(x,.:}) Join (x.x) = Clonex(x);

g = Ji:(x) Include w  idi(x),

g = Ju:(h) Join h = id2(xx
SYNTAN: v = J(g.w) Coroin g = Jyy,, (hk
END J;

In using the syntax of a structure. an instance of the layer of the
structure definition can be obtained. In the Cojoinstructure, there
are actually four unspecified mappings besides the top node: Jx‘
Jin: .idl.id:. Butin the use of the Cojoin, the value of “w™ and “x"
uniquely determines the particular id, function. L:kemsc the
value of “h™ and *x" umquely determines the particular id!. Thus,
only J;. J,,,. need appear in the syntax of the Cojoin definition.
The collective set of values that replaces the variables described in
the syntax can be traced to each node of the structure definition.
For example. f

{a.b) = F(r.1,5)
is defined as

(a.b) = A(p.q.r) Cojoin (p.q) = B(r,t)
The first and second statement collectively form aninstance of the
Cojoin structure.

In this example,

“x" has the value “(r.t.5)”
“J” has the value “A"

v" has the value “(a,b)”
»g" has the value “(p.q)”




“w" has the value “1~
“Jiy; ” has the value “B™

and, since theinput to F hasthree components, “b™ in the structure
definition has the value 3™, since “w™ has the value *r™, which has
one component, “a” in the structure definition has the value *I",
and so on. The structure syntax names the objects necessary so
that an instance of the structure definition is obtained. Any
instance of a structure must itself be an HOS system.

In the Cojoin structure, systems that communicate with each
other can access the same value. Likewise, we define other
structures; one so that independent subfunctions can access the
same value (the Coinclude), and one so that subfunctions whose
invocation depends on the value of the controller’s input set need
not access the entire set of variables of the input set (the Coeither)

(5]

If the controller’s function is y = F(x) and y = (yi.y:)

g = id Jx)
h = ide(x);
then
SYNTAX: vy, = A(g) Coinclude v: = B(h);
SYNTAX: y = A(g) Coeither y = B(h);

Structures, in addition to the primitive control structures, e.g.,
Cojoin; can be used to define other structures. For example, the
Whereby, defined with the Cojoin. gives us the facility to use
constant symbols as operands of a function.

SYNTAX: Whereby vy = W(h.CON):
The Whereby is used as in
y=Ex+1

Here, the constant symbol 1™ defines the particular Ko
operation that makes the instance of the Whereby structure a
function. Note also that the operator “+" (an instance of W)is used
as an infix operator. In AXES we are free to use either prefix or
infix notation, as desired.

We can visualize the instance of a structure as being either
written down on a piece of paper by a human being, orto a register
by a software or hardware process. To check an instance in an
HOS system. the use of a STRUCTURE is compared with the
STRUCTURE definition itself by an analyzer. All instances of a
structure can be viewed as being supplied to the structure
dvremically. Trhe STRUCTURE for an asynchronous system,
such as an operating \ stem or the Higher Order Machine (HOM)

[33]. 1s a recur-r. e 1. .ztion relating each state of a machine o a
previous siaie of tne sas

~¢ machine within an instance of a machine
system. To check the instances of an asynchronous machine in a
real-time environment. an analyzer is used to check not only the
use of the STRUCTURE with the STRUCTURE definition,
itself, also to check 1o see that all the users of that STRUCTURE
are consistent.

We indicate the potential happening of each machine instance
by specifying a user system to be “On™ the machine system, e.g.,
the syntax Where A on HOM specifies the initial nodal family of
system A to be used by the first machine instance and the nodal
family for each next recursive instance of the HOM function K4 to
be determired by the ordering relationships of the nodal families
within system A. A nodal family is a 3-tuple whose members are
functions which stand in a particular relation (c.f. Appendix I). By
indicating oniy *HOM" in the syntax of this structure, rather than,
for example “s = HOM(x).™ the state of the HOM remains hidden
from the user.

Il. Levels and Layers in AXES

In AXES we emphasize in our notation the separation of the
layers within one system or between systems. The layer relation-

ships are defined with the Where statement in AXES.

In particular, we distinguish between in instance of a layer
(representing one performance pass of a system)® and a laver
(representing all performance passes of a system). We distinguish
between communication within one layer, which always repre-
sents the same instance. and commumcation between lavers,
which takes place when an instance of one layer communicates
with an instance of another layer (e.g.. real-time asynchronous
processes). We distinguish between (1) the system and the
definition of that system, (2) the system and the description of that
system, (3) the system and the implementation of that system. and
(4) the system and the execution of that system.

A machine is a system which executes another system. There are
dedicated machines, asynchronous machines, and asynchronous
machines. A dedicated machine always performs the same func-
tion. Thus the “mapping™ of an AXES FUNCTION could be
viewed as a dedicated machine. A synchronous machine must only
execute one system to completion before another system uses that
machine. An AXES OPERATION could be viewed as a synchro-
nous machine. An asynchronous machine may execute instances
of more than one system before cither system reaches execution
completion. Thus, an AXES STRUCTURE can be viewed as an
asynchronous machine.

The environment of a machine must be secure in that (1) a user
should not have to be concerned with any of the details that have
to do with its execution, and (2) a user should not be allowed to
have visibility into anoiher user's environment.

In an asynchronous machine there are several types of data, al}
of which must be maintained as secure data throughout all
instances of the machine. These types of data include (1)
temporary values which exist for one or more users, (2) values
from another machine with respect to the machine itself as a user.
(3) values with respect to the variables of the machine itself, (4)
values which are functionally related to a previous instanceof the
machine system, (5) values which are functionally related to a
previous instance of the machine for a given instance of a user,
and (6) values which are functionally related to a previous in-
stance of the machine for a given instance of another machine.

The definition (dynamic state) of a system is equivalent to the
formal semantics of a system. The description (static state) of a
system is equivalent to the syntax of a system. The implementa-
tion (static state which includes a systemn, a2 machine to run that
system, and the mechanisms necéssary to relate that system to
the machine) of a system is equivalent to that same system ready
to be exercised. The execution (dvnamic state which includes a
system, a machine running that system, and mechanisms which
relate that system to the machine) of a system is that system being
exercised by a machine,

Not only must we be aware of the types of system layers. but
we also must be aware of how many different definitions, des-
criptions, implementations. and executions are possible or po-
tentially possible for one system. Most important, we must deter-
mine those states which are necessary and those which are not
only unnecessary but which are causing serious difficulties in the
development of a system. Towards this end it is necessary to have
available a means for determining both the tvpes and the nawure
and number of states within each type [5 ).

Sometimes the need for the definition of the layers of a system
depends on how the system is to be developed and executed. On
one project the users might wish to compile source code before a
target system is ready to be executed. On another project users
might wish to interpret the code in real time. Thus, not only must
the layers of a system be determined. but also it must be deter-
mined when, how, and where transformations from one layer to
another layer take place.

*as opposed to a level which is a step of relinement (or more explicit
definition) within s given instance of a laver.




In the resource allocation process. a name is assigned to a value
or a value 10 a name. Resource allocation also includes the ability
to replace a name by an eguivalent name or a value by an
equivalent valus. Sometimes one laver is produced from another
layer by a third laver. Sometimes the description of a layer, as

. opposed to the laver itself. becomes the object of communication.
Sometimes the same laver is resource allocated as a function 1o one
laver and as data to another laver.

The general concepts of laver commaunication can be related to
familiar exampies. When two asynchronous processes arc in the

b execution mode. a value from a given process is assigned to a name
(or variable) associated with another process. Conversely. that
other process assigns a value to the name associated with the first
process. When an integer is impiemented, a specific representation

(or value) for a specific machine is assigned to the name

} representing the i1nisger. When a compiler compiles an HOL
program. it assigns names (or registers) to values in order to
transiate from one description to another. It also fulfills an
implementation function in that operations and data are replaced
w:th specitic machine-dependent values. A compiler, in order to
operate on an HOL program. must be able 1o read the description
layer of the program as input for the translation process. In
addition. it requires further input of its own in order to provide the
implementation layer of the program. Ar OS system has a more
complex job in that it is usually required 10 communicate with
b both the description of 2 system and the system itself. When a
function is refined to a lower level of more detailed functions. the
control integrity of the valuzs and names from the parent layer
must be mainwined at the layer of the offspring.

Ideaily. we want to be abie to define a svsiem, as abstractly as
possibie; describe trat sy stem in a syntax we canaall relate to; venfy
that description: impiement thas system for 2 machine that will
:alk directly to that system: and collect the machine mechanisms,
and only those mechanisms. tnat are necessary Lo execute a given
svstemn. In such a way we can eliminate dependencies on a
particular primitive machinz until the very end of a development
process. For when we go from one definition toanothes; from one
description to another, from one implementation to another. or
from oné execution to another, we are really resource allocating to
- another machine level. Thus, there should be no need to resource

allocate for more than one given layer at a time.
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