
HIGHER ORDER SOFTWARE, INC, (-
0843 Massachusetts Avenue

0Cambridge, MA 02139

LEVE&
TECHNICAL REPORT #12

THE APPLICATION OF (
HOS TO PLRS

November 1977

>

/ tpp, o" Pu,,_e2 ;

Prepared for

U.S. Army Electronics Command
Ft. Monmouth, New Jersey81 3 04 047-----------

Unclassified ,

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENTS CATALOG NUMBER

FnFinal Reprt. fw'Pei4ed

(The Application of HdS to PLRS, 27nay Otf77.
" 27 May-31 Octzml 77-

6. PERFORMING ORG. REPORT NUMBER

Technical Report #12
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(si

Higher Order Software, Inc. DAAB07- 77-C-3349,,.

9. PERFORMING ORGANIZATION NAME AND ADDO ESS 10. PROGRAM ELEMENT. PROJECT. TASK

Higher Order Software, Inc /(as of 12/9/77, AREA&WORKUNITNUMBERS
843 Massachusetts Avenue 806 Massachusetts Ave PLRS
Cambridge, MA 02139 Cambridge, MA 02139 -

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Electronics Systems Procurement Branch ov 77
Procurement and Production Directorate 11Z-.MIBER OF PAGES

U.S. Army Electronics Command, Ft. Monmouth, NJ 142
14. MONITORIbLG.. GENCY NAMS-&AODRESS rirfdiffereni from-Controllngffice) 15. SECURITY CLASS. (of this reort)

... ' ,' i' , I Unclassified

15a DECLASSIFICATION/DOWNGRADING
/ SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

DTSTRIBUTIO iof,,ok O T.I A

Approvedl for piublic rr--s'z e;

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report] ~i

Approved for public release; distribution un imited. -"

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Contnue on reerse side if neceOry and identify by biocA number)

Position Location Reporting System (PLRS), communications, methodology,
specification, design, verification, axiomatic.

20. ABSTRACT (Continue on rerVrse side if necessary and identify by block numbetrl

-The purpose of the PLRS project was to demonstrate the advantages of applying

an effective methodology to a large system development process. A portion of

the most complex module (the Network Manager) of the PLRS system was selected

and that module was specified in terms of Higher Order Software (HOS), using

the specification language, AXES, with graphical representation in terms of

control maps. This module includes data type and control structure definitions,
1 hich w.ere specifically defined to be used in common with the PLRS system

environment. We discuss, here, how such a technique was able to (1) accelerate

D ' 1473 EDITION OF 1 NOV 65 IS OBSOLETE
JN7 Unclassified

SECURITY CLASSIFICATION OF THIS PAGE Il"hen Dots Enterd)

--- ------------

- - - - - -- - -- -

Unclassified
SECUHITY CLASSIFICATION OF THIS PAGE 01V.w, I).:-.,

.the learning process of PLRS; (2) accelerate the specification process in the
redefinition of a PLRS module; (3) serve as a verification and validation aid
for the specification of PLRS; (4) aid in establishing overall design
goals; (5) potentially enhance existing techniques of an ongoing development;

and (6) provide management visibility with respect to the overall PLRS system.
As a result of our finding on this effort, we discuss recoumendations and their
implications both for PLRS and future efforts.

Unr 1 i fi Pd
SCIRITY CLa.SSIFIC.TION OF TH:S PA , -

I
ACKNOWLEDGEMENTS

This report was prepared under Contract No. DAAB07-77-C-3049 by the U.S.

Army Electronics Command, Ft. Monmouth, New Jersey.

With respect to the staff of Higher Order Software, Inc., we would like

to thank, in particular, Craig Thiersch for major technical contributions

to this effort, which include Sections 2,3, and 4 of this report. In

addition, we would like to thank Charles Musselman for Section 5, Steve

Kenton for work performed on this project, and Steven Cushing for help-

ful consultations.

We would also like to express appreciation to Andrea Davis for technical

editing, Gail Lopes for the preparation of the figures and diagrams, and

Mary Yontz for help in the preparation of this report.

M. Hamilton and S. Zeldin

Tr
-

~J.n% i-"'-yjjtij 7 -....

Di~t'i~t " :,/ Cr

TABLE OF CONTENTS

Page

1.0 MANAGEMENT OVERVIEW 1

1.1 Background 2
1.2 Fxisting Methodologies 4
1.3 Requirements for an Effective Methodology 5
1.4 How HOS Responds to the Requirements for an

Effective Methodology 6
1.5 Previous Experiences with the Application of HOS 7
1.6 An Overview of the PLRS Project 10
1.7 PLRS: Lessons Learned 12
1.8 Recommendations for PLRS and Future Efforts 15
1.9 Implications and Payoffs for the Future 17

2.0 THE PLRS PROBLEM 19

2.1 The Need for Formal Specifications 19
2.2 Preliminary Control Map 27
2.3 Understanding Data Properties 41

3.0 THE PLRS DATA TYPES 43

3.1 The Network Manager 43
3.2 Why Data Types? 44
3.3 PORT Link Assignment 46
3.4 User Units 48
3.5 Logical Time 52
3.6 U-support vs T-support 63
3.7 Logical Time Axiom #5 65
3.8 Other Operations on Logical Time 68
3.9 Other Data Structures in the Network Manager 72

4.0 THE FIND-PLA MODULE 77

Identification of Submodules 77
. FIND-PLA Control Map 79

4.2.1 The Top-Level of FIND-PLA 79
4.2.2 The Operations SET-FUNCTION and SET-TEST 88
4.2.3 The Search Algorithm 92

4.2.3.1 Finding Eligible Logical Times 94
4.2.3.2 The A-Level Logical Times 95
4.2.3.3 Restrictions on PLAs 97
4.2.3.4 The Search Itself 102

4.3 Conclusion 106

iv'

5.0 REVIEW OF SUBSTANTIVE PROBLEMS IN REAL TIME PLRS 115

5.1 Examples of Problem Categories 115
5.1.1 Confusion Between the Network of Units

and the Network of Logical Times 115
5.1.2 Potential Sources of Loss-of-Control 117
5.1.3 Inconsistent I/0 Interfaces 117
5.1.4 Functions not Well Defined 118
5.1.5 Incomplete of Wrong Algorithms

5.1.6 Error Detection and Recovery 122
5.2 Statistical Summary of Problems 124
5.3 Considerations for Software Verification 125

FOOTNOTES 127

REFERENCES 131

APPENDIX I AND II 133
References for Appendices 141

V

1.0 MANAGEMENT OVERVIEW

1.1 Background

Inexpensive hardware, expensive software, large complex systems, and a

multitude of other influences have converged very recently to cause some

fairly large upheavals in the area of deve -loping systems. In fact, events

are happening so quickly that it is difficult for management to know where,

how and what to respond to. There is, however, evidence of some common-

ality in the reactions that are taking place and noticeable trends appear

to be developing. A sufficient number of large complex systems have been

developed or have been attempted to be developed, in which significant

problems have arisen to arouse concern.

One very significant reaction to this phenomena is that of DoD who,

in turn, reacted with various directives. These directives have had

major influence throughout the industry, both in the government and commer-

cial environments. As a result, RFP requirements, contractor requirements,

amount and types of customer visibility, contractor qualifications, systems

development models, final system products, and methods of producing systems

I are experiencing major changes.

Many people involved in large systems are beginning to talk to each other,

realizing that their problems are not only not unique, but PerhapsI
they can learn from each other in attempting to address the more serious

p issues that have come to the forefront. For example, software often

does r~t satisfy the original specifications. The basic reason for this

is t -e inadequate techniques that are used for specification--in many cases

it vo-,d be impossible to develop a correct program from original specifica-

tions, for to do so would be like deriving a consistent model from an

inconsistent theory.

Our exp' erience has indicated that interface problems (i.e., data and

tiring conflicts) within a system, between systems, and between various

stage s of system development account for the majority of the problems involved

in the construction of large systems [4]. These interface problems

either took place when attempting communication or resource allocation

(a process of preparing for co-muhication).

As a result, the very basis of the methodology of Higher Order Software

(HOS), based on our analysis of problems relating to the development

of large systems, e.g., Apollo, Shuttle, etc. concerns itself with the

definitions of systems so as to Climinate data and timing conflicts.

Not only did we find that interface problems contributed towards making

software systems unreliable, but they also increased the frequency of cost

overruns and missed deadlines, for such conditions usually resulted when

integration of individually completed modules was attempted. No matter

how "structured" and correct an individual module may be, unless the

system structure is consistent and complete, a project will undoubtably

have errors.

Managers are beginning to realize that they, themselves, are in a very

enviable position to do something about helping to advance the technology

of developing systems, since they, and only they, are the ones who have been

forced to lead the way. Upon observing themselves and others, they have

come to realize that certain basic concepts such as understanding

a problem before solving it are of major importance. Towards this aim

managers are recognizing the importance of communication and are now

concerning themselves with finding various methods to better define

specifications as well as to expedite their definitions and their im-

plementations. As a result, there is now a proliferation of "methodologies"

which brings back memories of the proliferation of higher-order languages

in the sixties. Within this environment, certain philosophies are be-

ginning to be more commonly accepted. These include the importance of

hierarchical decomposition, emphasis on front-end systEmn design, inte-

gration of "modules" within a development phase and throughout a develop-

ment process, and the emphasis on finding or developing an effective

requirements or specification language.

2

There are some concerns, however, in attempting to improve current

methods of developing systems. We include here a set of typical questions
which reflect these concerns, and answers based upon our own experience.

In later sections of this report, we will attempt to address these issues

within the context of the PLRS project.

Quesion: How can we tell if a; methodology wull work better than no
methodology at all?

Answer: Compare the properties of the methodology with those used in
an existing development with respect to a well defined set of

t 1equirements'for consistency and completeness.

Question: How do we choose between one methodology and another methodology?

Answer: Compare the properties of the two methodologies with respect
to a well defined set of requirements for consistency and com-
pleteness.

Question: What is the difference between using a methodology and usingsmart' people?

Answer: The smartest nerson, by definition, would apply an
effective me1' idology. An effective methodology would
far exceed the advantages of a smart person applying his
techniques in an ad hoc manner, since all the intricacies
of a complex system are by its nature beyond the grasp of
one human being. The designs of all smart people must
be integrated.

Question: How do we use a methodology without impacting deliverables
of an on-going project?

Answer: Choose those aspects of the methodology which find errors
or which ex~5edite the design and implementation process.

Question: How do wp convince management, designers, and users to
use different approaches?

Answer: A different methodology should be demoristrated within the
environment of the people who will use it.

Question: What creativity is left for the engineers if a methodology
has constraints?

Answt.-: An effective mnethodology should support creative designers
and not constrain them from producing better designs but

* rather constrain them from producing errors.

3

1.2 Existing Methodologies

Although the recently founded philosophical goals of various systems

managers are important ones, there exists a proliferation of problems

in the attempt to reach these goals, both in developing a new methodology

nr in chcosing an existing methodology. There are, of course, many

methodologies whose intent is to solve various aspects of the problem

of developing systems. The developers of these methodologies are all pro-

ponents of reliable systems with efficient methods for developing these

systems. And, most methodologies advocate many philosophies that are similar.

For example, it is a commonly accepted idea that it is beneficial to produce

a hierarchical breakdown of a given design in order to provide more

manageable pieces to work with. And, there are variations between method-

ologies. Some emphasize a concentration on data flow as opposed to

functional flow [l],(l],[3 1 [12]- others emphasize documentation

standards [9 1 [151; others emphasize graphical notations [131; and

still others emphasize semantic representation [17].

There are certainly positive aspects in many of these methodologies and,

in particular, in what they are trying to obtain. To be effective,

however, a methodology should have techniques and rules for the purpose of

defining systems which are consistent and complete. But these techniques and

rules are useful only if they are within themselves consistent and complete,

both with respect to each other and to the systems to which they are

being applied.

:o -:en the same problems exist in the development of methodologies

as exist in the problems the methodologies are intended to address.

That is, there are often inconsistencies within a methodology. In addition,

improvements to a methodology are often ad hoc and modifications to a

mrehodology to fix or enhance that methodology are made to already

existing modifications.

Likewise, in the attempt to select an existing methodology, there is always

a risk of comparing (1) techniques addressing very different problems,

(2) techniques intending to address a problem, but not effectively ad-

dressing it at all, (3) techniques with respect to non-existant or ill-

4

defined requirements, (4) the "syntax" of methodologies instead of the

"semantics" of methodologies, (5) techniques, based on unfamiliar para-

digms with preconceived notions, (6) techniques addressing the wrong

problems or those which are "in the noise," and (7) techniques with re-

spect to completion or amount of use rather than with respect to the

problems they are solving.

1.3 Requirements for an Effective Methodology

Most importantly, the time has come when one is forced by large systems

to look closely at properties of systems. They are more basic than one

cares to admit. If this fact is ignored, there is a risk of responding to

only symptoms and investing a great deal of effort based on preconceived

notions and misquided misconceptions.

In choosing requirements for a methodology, issues such as how people think,

learn, communicate, and resource allocate need to be addressed. These

issues are not unlike those of "older," more established fields, like

philosophy or mathematics, and more recently, linguistics. But when

working with large systems, there is the advantage of more visibility into

some basic issues than was ever provided before. What is suggested is not

only a whole new set of paradigms for developing systems, but more importantly,

a whole new attitude on accepting that fact. It is within the framework

of such a set of paradigms that proper research requirements for method-

ologies , including methods for specifying specification techniques before

specifying systems, can be determined.

The first step, then, is to define more explicitly what it is that

needs to be solved and then to define more explicitly how to respond

to this need. To be effective, a methodology should have the mechanisms

to consistently and completely:

Define an object and its relationships formally. That is, every
system in the environment of an object systeo (pe6ple, hardware,
tools, software) understand a definition of an o5ject and its
relationships the same way.

5

Provide for modularity. That is, any change should be able to be
made locally with respect to levels and layers of development [5]),
and if a change is made, the result of that change should be able
to be traced throughout both the system within which that
change resides and throughout other systems within that system's
environment.

Provide a set of primitive standard mechanisms which are used
both for defining and verifying a system in the form of a hier-
archly.

Provide for an evolving set of more powerful (with respect to
simplicity and abstraction) mechanisms based on the standard
set of primitive mechanisms.

Allow system engineers to communicaLe in a language (with common
semantic primitives and a dialect of their choice) which is ex-
tensible, flexible, and familiar and which serves as a "library"
of common data and structure mechanisms.

Provide for a development model which includes a set of defini-
tions, tools, and techniques which support a given system develop-
ment process.

1.4 How HOS Responds to the Requirements for an Effective Methodology

We will discuss HOS in terms of the requirements we have set forth for

methodologies in general, before discussing the application of HOS within

the environment of the PLRS project.

FORMAL

HOS systems are formal in that the relationships of all objects are ex-

plicitly defined in terms of completeness of control. That is, all HOS

system's always have the same properties with respect to control of interfaces

as a result of standard and well understood ways of defining interfaces.

Thus, everyone defining a module, using HOS, must follow the same rules as

everyone else in constructing the structure of that module. The control of

every object in a system is determined by adherence to six axioms [c.f. Appendix I].

by a system we mean an assemblage of objects united by some form of
regular interaction or interdependence, where an object is an existence
of something.

6

These axioms are, in essence, a consistent set of rules that determine a

means for defining systems that are consistent, complete and not redundant.

These rules determine a means for defining invocation of functions, input,

output, input access rights, output access rights, error detection and

recovery, and ordering of functions. When these rules are applied, there

is no room for ambiguity with respect to control. That is, everything must

be controlled and every object has a unique controller. All objects in an

HOS system can be described in terms of control structures, derived from

the six axioms, that relate members of algebraicially defined data types

or functionally defined data whose components are algebraically defined.

MODULAR

Systems defined in HOS satisfy the requirements we have set forth for

modularity. Control, or the chain of command, can be traced directly on

an HOS control map. Function flow (including both input and output)

can be traced directly on an HOS control map. In addition, the nature of

HOS systems is such that the mechanisms of defining systems as well as

the systems themselves, behave as if they are "instructions," e.g.,

a given control structure has no knowledge about a higher-level control

strucutre. With these properties, changes can be traced directly and

changes can be made locally. Systems defined in HOS display certain other

distinctive properties. For example, HOS systems have been shown to be

secure systems [2 J and the single reference, single assignment properties

of HOS systems provide an interesting set of resource allocation

alternatives.

PRII'TTIVE STANDARU MECHANISMS

Three pri7hitive control structures, derived from the axioms [4 1 pro-

vide rules for the definition of dependent functions (e.g., sequential

processing), independent functions (e.g., parallel processing), and

seleczihn of functions (e.g., reconfiguration). From a combination of

priri:ives, more abstract control structures can be found (e.g., recursive

7

functions). A complete design is one which has been hierarchically

decomposed until all terminal nodes of a control structure represent

primitive operations on data types.

Thus AXES, the specification language based on HOS, is able to have a

commion set of specification primitives (i.e., a common specification
"machine"). As a result it is possible to have common tools, such as an

analyzer to check for correct interfaces (i.e., completeness, consistency,

and elimination of redundancy) and a resource allocation tool to prepare

a specification for a particular machine envtironment (c.f. Appendix HII.

EVOLVING MECHANISMS

Although a system can be defined directly with AXES, a more powerful use.

of AXES can be made by defining systems which are themselves mechanisms for

defining systems. Thus, we can define a set of specification "macros"

which collectively could form a "language" (or management standards)

for defining a particular system or family of systems. Each new system

user is able to use a subset of already defined statements in an AXES-

based library or add new statements since the AXES language system is

extensible both with respect to structure and data definitions.

FAMILIAR DIALECTS

AXES provides a user with the capability of defining any syntax desired for

a control structure or data type. Thus, for example, a communications

projeo t is able to have its own set of specification statements to use

as a m~eans of standardizing and an avionics project is able to have its

own sez of statements. But, both are able to communicate in common at

the level of the primitive spccification machine to which these statements

can be reduced to their primitive form.

DEVELOPMENT MODEL

AXES provides the mechanisms to define a development model as a system and

to define the management of a system development model, which uses that

development model, as a system. Within the context of a complete

development provess, HOS provides a means to define management standards,

definitions, milestones, disciplines, phases, and tools and techniques

and the relationships between all te various cenonents within a develop-

ment process.

i.5 Previous Experiences with the Application of HOS

Once the foundations of HOS were formulated, it was then necessary to apply

the methodology to some actual applications in order to demonstrate its

effectiveness.

Initially, we chose the Apollo Guidance Computer (AGC) operating system,

an application familiar to us [1. - Unfortunately, we had a great deal of

difficulty reconstructing the pieces. This was due mostly to the fact

that the AGC operating system was poorly documented. Our only solution

for completely understanding the system (which included our own design

and our own coding) was to go back and pour over the original code,

which was very clever and difficult to understand. When we began this

effort, we thought there was little in the AGC operating system we could

improve upon.. This attitude was partly as a result of the fact that

no errors were found for several years within the operating system (OS)

itself. However, when we attempted to specify the operating system with

HOS, we discovered that many of the development errors which occurred in

the application programs, usinq the OS, would not have occurred if the

AGC OS had certain other inherent properties. For, although the AGC OS

had properties of hidden data, it did not have properties of hidden timing.

From this effort, we therefore determined that HOS was very helpful

in cemonstrating more reliable design goals with respect to interfaces

beteen application programs and the systems software which executes

these programs.

9'

We then selected an application to demonstrate another aspect of our

techniques. Here we extracted a problem definition from an existing

description of a typical orbit/altitude spacecraft problem to demonstrate

the abliity of our technique as a guide to design and verification (6].

Although this problem was relatively small, we were able to use HOS in

determining what questions to ask in understanding the problem. In

addition, we provided alternative designs at the level of the user inter-

face, so that the human user functions were less error prone. Many

of the interfaces existed only in the minds (as is characteristic of

most projects today) of a small collection of experts who had been involved

in the original project. Our emphasis was to integrate and fill in,

where necessary, interfaces that were missing in the specification document.

We have just completed the definition of a multilanguage structured

flowcharter in AXES which we are implementing in PASCAL [7]. The

programmers who are implementing the flowcharter are determining the design

of the code by using the control maps as a guide to design. From the

control maps, the programmers are able to directly determine the
"whats" with respect to implementation and the alternatives with respect

to the "hows" of implementation.

The above three tasks contributed in the determination of the effective-

ness of HOS with respect to real world applications. We had not, however,

attempted to apply HOS to an ongoing project, or to a project whose

application was quite unfamiliar to us. Such an opportunity was provided to

us by PLRS.

1.6 An Overview of the PLRS Project

Our charter, with respect to PLRS, was to select the most complex module,

specify that module in terms of HOS, and demonstrate the advantages of

applying an effective methodology (in particular, HOS). We did just that.

But, there were several additional interesting results and observations

that resulted from this effort. A detailed description of this effort

is contained in the remaining sections of this report. The following

10

summarizes the PLRS effort and the key results of this effort.

4 The most complex module of the network manager has been specified
with an HOS control map.

0 Identification of commonality between modules was shown.

6 A description is provided to show how we defined the network manager
control map.

* Differences between the control map and the information provided
in the PPS have been determined.

0 Advantages of control map techniques with respect to management,
design, implementation, verification, and documentation have been
determined for PLRS.

* Sixteen categories of questionable areas such as unanswpred
questions, inconsistencies, incompleteness, and redundancies
have been determined.

Some suggested methods of specifyinq the control map with
AXES statements'are shown. A comparison of the PPS with an al-
ternative method using AXES is provided.

* Specific recommendations with respect to the network manager
have been determined.

0 Standards (common structures and data types) have been defined
for the network manager with AXES. These standards
can be used not only for other PLRS modules but for a family of
communication systems as well.

* A section of the PPS was rewritten to incorporate HOS techniques
in order that a comparison could be made on a one-for-one basis
between the existing PPS and a PPS using AXES, the specification
language of HOS.

0 General recommendations with respect to the PLRS project have been
determined.

* General recommendations with respect to further efforts have been
determined.

11

1.7 PLRS: Lessons Learned

PLRS is the first effort in which we attempted to use HOS on an on--

going project. Not only was our aim to demonstrate the effectiveness
of HOS, but also to perform this task without impacting schedules or de-

liverables of the PLRS project. In this process, however, we determined

that the use of an effective methodology can not only benefit a new pro-

ject, but it can also benefit an ongoing project which already employs a

different methodology. Such benefits, some of which are described below,

fall into two main categories: those which make the system more reliable

and those which help to accelerate the development process.

Acceleration of the Learning Process

The people who performed the HOS/PLRS task were unfamiliar with the PLRS

project. This has its advantages and its disadvantages. The disadvantages

may appear obvious, for it is always helpful to understand as much as

possible about an application before working on it.

But, because we were unfamiliar with the PLRS effort, we were able to take

advantage of such a fact in order to test HOS as a learning technique.

Our method of understanding the network manager was to first attempt to

construct a control map and by doing so, we were able to determine existing

functions and their relationships. This process not only provided us with an

accelerated means of askinq the questions that should be asked to construct

the def4,ition of the network manager, but it also became clear that this

was a technique for prompting questions that otherwise may never have been

asked. For, during this process, we found that there were areas in the PLRS

documentation which were not clear enough, missing, inconsistent, redundanit,

or not integrated with other areas.

The fact that we were able to use the HOS control map technique as an

accelerated learning process for ourselves suggested to us that this

same technique could be used as a learning tool *for example, for those

12

new people coming aboard a project, a manager learning about the work

of the people in his project, designers learning about each others modules in

the same project, implementers learning the specification they are imple-

menting, and users, such as maintenance people, learning the system they

are using or changing.

Acceleration of the Specification Process

Although the specification of the network manager (the particular PLRS

module chosen for demonstration) was, for all practical purposes, thought

to be complete, it was necessary for us to design more explicitly function

definitions, including data definitions, as well as the integration of

these functions. In the process of constructing the various components of

the network manager, the HOS control map technique was quite effective in

expediting design processes. By using the control map technique we were

able to determine:

s Types of design tradeoffs

* Correctness of design decisions with respect to consistency,

completeness, and lack of redundancy (i.e., verification before

the fact).

* Common use of specification modules (data types and structures)

* More powerful and simpler ways of conveying specifications

* When each specification module is completed

* How to safely integrate all the modules in the system

* Common rules (or management standards) of communication between

modules in the system

o Mlethods of defining the system so that changes could be made

safely and the effects of those changes traceable within the

design and during the design process.

It was clear in the PLRS effort that the HOS methodology not only

supported a designer in providing designs more quickly, but it also helped

to point out things he might have forgotton about completely.

13

Verification and Validation Aid

In the process of analyzing the network manager and redefining its most

complex modules with HOS, we were able to show the effectiveness of HOS

as a verification and validation aid. Several errors were discovered

by the two step process of (1) formally defining the data types that

were used and (2) formally defining the structure (or organization) of

the network manager. These errors were found by checking existing spec-

ifications from the standpoint of interface reliability using control

structure and data type mechanisms. All in all, sixteen categories of

questionable areas were found. If problematic areas are detected early

as illustrated by the application of the control technique to PLRS,

later development phases can benefit, since problem are not only able

to be detected earlier or prevented before the fact, but these problems

will not surface later or propagate into worse problems.

Establishment of Design Goals

In the process of understanding the network manager, it would have been

belpful if the PPS had concerned itself more with the definition of how

the specified functions related to each other (particularly at the top

level). The control map technique forced us to consider integration of

the functions of the network manager from the very beginning. Such a

design philosophy, if applied, not only aids in understanding a design

but eliminates integration problems that would subsequently show up in

later development stages, such as the PDS. Thus if the PPS was inte-

grated the PDS could be an evolving document in stead of a "redo" of a

more detailed PPS.

Enhancement of Existing Techniques

We were able to indicate certain problem areas or demonstrate ways of

making certain improvements to the PPS without impacting schedules or

milestones. Advantages can be taken of our findings such as I/O com-

patability and understandino the data involved, within the environment
of previously existing techniques other than our own.

14

Manaaement Visibility

During this project, we were able to determine a "feel" for the state or

health of the specifications of PLRS, in general, by viewing a section of

PLRS. That is, we were able to get a better idea of the types of interface

problems that needed to be resolved before the specification could be

successfully implemented. We were also able to determine what steps

would be necessary before the specification could be called a complete

specification. And we were able to determine certain recommendations

which we thought would be quite helpful in providing a more reliable

specification more efficiently in the future.

1.8 Recommendations for PLRS and Future Efforts

Put simply, the most urgent need on any large system development process

is that of standardization. Ultimately, aside from being effective,

standards should be consistent with each other, not redundant, and com-

plete.

Some standardization, if it is effective, is certainly better than none

at all. But, if a project is already in development, it is not usually

possible to apply an ideal and complete set of standards. But it is

possible to incrementally begin to use those standards which would enhance

the development process either by finding errors or by accelerating remain-

ing phases of development. We did this on Apollo. For example, we dis-

covered that many interface errors took place in the implementation phase

when programmers would use instructions like "GOTO +3." Errors -would creep

in when someone would come along, often the same programmer, and inad-

vertantly insert a card between the GOTO instruction and the location it

should have gone to. Once we discovered the amount of errors which resulted

from this use of our language, we enforced by standardization the use of

instuctions such as "GOTO A" rather than "GOTO +3." As a result, errors

which fit into the above category never happened again. This type of

incremental enhancement to our own methods was very effective on an ongoing

project. The same sort of introduction of standards could take place on

PLRS and other projects, for PLRS is not unique in requiring certain en-

hance'ients. If anything, the PLRS documentation is quite representative of

doz-ientation we have reviewed from several projects; for we all suffer

15

from the syndrome of hurrying to get the design process done because of

deliverables which appear impossible to meet, especially if we pause to come

up with standards. But hindsight and recent experiences of our own and

others have demonstrated that in the end it pays to organize first and

build later, particularly when we are involved in the development of large

and complex systems.

There are several standards that we recommend be used in the PLRS or a

PLRS-like environment:

*e Definition of design goals - e.g.,. definition of interfaces
should be made in the PPS phase, i.e., integrate from the beginning.

0 Rules for design and verification - specifications should be
defined hierarchically and rules (e.g., those that accompany the control
map) should be followed with respect to how one level in a heirarchy
relates to the function directly above it. These rules should include
ways of defining the invocation of a set of functions, input and output
flow, input access rights, output access rights, error detection and re-
covery, and ordering.

0 Interface Specification Document - for every system a
standard dictionary (or library) should exist which provides common
meanings, ways of saying things, ways of doing things, mechanisms for
defining a system, system modules, and support tools and techniques.
For PLRS, we would have found it extremely useful, and believe the PLRS
people could benefit even more, if an evolving dictionary were introduced
which included a set of

- definitions of terms
- formally defined data types
--formally defined control structures
- system functions

0 User Manual - a user manual should be provided which contains
checklists and explains (1) how users interpret the standards in the inter-
face specification document, (2) how designers design modules to add to
the "library" of the interface specification document; and (3) how managers
define new standards for system development which in turn can be converted
to modules, by the designers, to incorporate into the interface specifi! -.

cation document.

* User Guide to Implementation - If specifications contain
certain consistent properties, one can take advantage of these properties
by understanding their consequences with respect to implementation. Given,
that there are standards for specifying, it would expedite the implemen-
tation process if standards were defined to go from a specification to an
implementation. The user guide should include standards for (1) going

16

from the specification (e.g. , a control map) to a computer allocation; (2)
reallocationg functions to a computer, and (3) providing for reconfigur-
ation of functions in real time.

6 Definition of Development Model - the definition of a de-
velopment model is most helpful to the manager who is responsible for inte-
grating all the pbases of development. In addition to the above recomnmen-
dations, the development model should define phases of development and how
to integrate them, disciplines (such as management, design, verification,
implementation, and documentation' and an integrated application of tools
and techniques that are to be used, how they are used and when they are
to be used throughout the development process.

1.9 Implications and Payoffs for the Future

In order to change to new techniques, there is always the initial

investment that is necessary for defining and developing a model (or

subsets thereof) for systems in general. We believe that a great deal

of work necessary for this step has already been accomplished within

our own methodology.

A next step is to define a set of additional structures and data types

that are necessary for defining a particular family of systems (e.g.,

PLRS is a member of a particular family of communications systems).

Once the initial investmient has been made to establish, what in essence,
is a way of organizing the development of a system with standards and

mechanisms to accomplish that organization, the payoffs should be quite

apparent. Design time during the requirements/specifications phase should

be no greater *and, in fact, we suspect much less than with current tech-

niques. Implementation designs should take considerably less time than

with current practices since it is possible to perform such a process on

an almost one-for-one basis. We suspect that the largest savings will be

realized within the verification processes since most of the recommended

techniques provide standards which should eliminate errors before the

fact and it is just these very types of errors that we spend so much time

lookinq for today.

17

2.0 THE PLRS PROBLEM

The Real Time PLRS system [11] [14 is a combined communications and ranging

(position location reporting) system, in which many radio User Units (UUs)

are deployed in a field of operations, carried by hand, or mounted in

planes, helicopters, tanks, etc. The User Units communicate with one

another and with a stationary Master Unit (MU). Transmissions are re-

layed to and from the Master Unit along a series of communications links

called PORT Links (Figure 2-1). The User Units passively receive trans-

mission from certain other User Units for the purposes of determining

location, and the Master Unit computes the position of each User Unit

from these measurements and displays it to the human operator. Such

passive links are called CROSS Links. The network, consisting of these

PORT Links (forming PORT Paths to the Master Unit) and Cross Links, is

continually being reconfigured as User Units enter the network or drop

out, as certain links become unreliable, as geographical configurations

of units change, etc. As one part of the Real Time PLRS system, there is

a module called the Network Manager (NM) whose function is to supervise

the continual reconfiguration of this communications network. This re-

port discusses some aspects of the specification of this module as an

illustrative example of Higher Order Software (HOS) methodology.

2.1 The Need for Formal Specifications

In the sections that follow, we attempt to give a specification using

HOS for part of the Network Manager module of the Real Time PLRS system,

consisting of control maps, algebraic data-type specifications, and sample

AXES language statements. We would like the designer to communicate his

design in a precise, uniform way, as well as make changes without having

comnmitted either hardware or even detailed software; for the user to re-

view and verify the specification in detail and propose revisions; for

the programmer to receive his instructions in an unambiguous way, so that

time is not wasted in trying to resolve conflicts in the specification;

and for the manager to allow the flexibility of reusing the same specifi-

caticq in different situations which may require different hardware com-

mitr ents or where different implementation systems may be available.

19

THE UIJCOMMUNITY AS A NETWORK

User Units
e

-U...

mu - Master Unit

Figure 2-1

20

This exercise, then, is to take a section of an actual system, the Hughes

Real Time PLRS, and, using information gained from some of Hughes specifi-

cations as well as discussing the problems with people at Hughes and Ft.

Monmouth, plus making some hypothetical assumptions, to demonstrate how

HOS would specify the systemn, by specifying a small part of it.

A way to demonstrate what is missing from, for example, the Program

Performance Specifications (PPS) [11], is by presenting a trivial example
in the same style. We might try to specify a hypothetical module, the

HOUSEKEEPER, which describes some of the functions of a person living in

a house (Fig. 2.1-1). This is presented in t-he style of the PPS, which

also accompanies the verbal descriptions by diagrams like those in Fig-

ure 2.1-2. If we were to take this analogy seriously (for example, as a
class exercise in flowcharting for a beginning computer programming

class), we already note some glaring inconsistencies. That is, there are

(1) ill-defined functions and/or operations,

(2) syntactic ambiguities,

(3) unspecified assumptions,

(4) lack of hierarchical structure (how it fits together),

(5) inconsistencies, especially in I/O interfaces, -f

(6) areas where control could be lost by the software operator,

(7) redundancies.

Although we may assume some of 1/O interface inconsistencies are typo-

graphical errors, these problems are basically problems with this style

of exposition, which may reflect possible problems in the software it
represents. In Figure 2.1-1, there are examples of (l)-(7) as follows:

(1) Sect. 3.4.2.1.2.2. MAKING SUBFUNCTLON. "Making" dinner and
"making" beds are not only not the same operation, but have

nothing to do with one another.

:2) Sect. 3.4.2.1.2. STRUCTUR E OF THE HOUSEKEEPER. Washes what?

Dishes? Floors? Furniture? Dries dishes? Dries furniture?'

21J

A WHIMSICAL ANALOGY

3.4.2.1. HOUSEKEEPER FUNCTION: THE FUNCTION OF THE HOUSEKEEPER

IS TO KEEP THE HOUSE.

3.4.2.1.1. INPUTS TO THE HOUSEKEEPER FUNCTION: THE INPUTS TO THE

HOUSEKEEPERFUNCTION ARE THOSE LISTED IN APPENDIX J. [WE TURN TO

APPENDIX J AND FIND LISTED "BRILLO PADS, MOP, DISHCLOTH, LAUNDRY

SOAP, AJAX, WATER, DUSTMOP, DISH SOAP,..." IN THAT ORDER.]

3.4.2.1.2. STRUCTURE OF THE HOUSEKEEPER: THE HOUSEKEEPER WASHES,

DRIES, DUSTS, SHOPS, AND CLEANS DISHES, FLOORS, AND FURNITURE AND

MAKES BEDS AND MEALS.

3.4.2.1.2.1. CLEANING SUBFUNCTION: THE HOUSEKEEPER CLEANS SEVERAL

OBJECTS AND ROOMS.

3.4.2.1.2.1.1. WASHING DISHES: THE HOUSEKEEPER USES DISH SOAP AND

WATER TO WASH DISHES.

3.4,2.1.2.1.2. DRYING DISHES: THE HOUSEKEEPER USES A DISHTOWEL TO

DRY THE DISHES. [NOTE DISHTOWEL NOT LISTED IN APPENDIX J!]

3.4.2.1.2.1.3. SCRUB BATHTUB: HOUSEKEEPER USES AJAX AND TOILET

BRUSH ?!) TO SCRUB BATHTUB.

all ETC.

3,4,2,1.2.2. MAKING SUBFUNCTION: THE MAKING SUBFUNCTION MAKES

DINNER WHICH IS OUTPUT TO FAMILY, AS WELL AS MAKING BEDS WHICH ARE

LOCATED IN SEVERAL ROOMS. THE MAKING SUBFUNCTION DEPENDS ON THE

SHOPPING "1ODULE.

all ETC.

3.4.2.1.2,8: SHOPPING SUBFUNCTION: THE HOUSEKEEPER BUYS VARIOUS-

SUPPL-IES TO MAINTAIN INVENTORIES AT A SAFE LEVEL (A SYSTEM PARAmETE-).

No MORE MONEY IS SPENT THAN BUDGET (A SYSTEM PARAMETER).

oil ETC . .

Figure 2.1-1

22

Functions of HOUSEKEEPER

GROCERY] Laundry soap %ASH-CLOTHES clean clothes.] CLOSET

STORE Dish soap

DRUG 1ihcohWS
STORE Dish-cloth WASH Clean dishes CLOSETt dishes DISHES

F I Dirty dishes

There are, in addition, operation tables:

GATHER WASH DRY STORE

Wash-dishes X { X

Wash-clothes , X X X X

Figure 2.1-2

23

(3) Sect. 3.4.2.1.2.1. CLEANING SUBFUNCTION. Which objects?

Which rooms?

(4) What is the relation, timing and otherwise, between kitchen

(cooking) functions, cleaning functions, etc.? For example,

washing-and drying dishes presumably follows, not preceeds,

making dinner.

(5) Sect. 3.4.2.1.2.1.1. No dishcloth is listed in Figure 2.1-1

as input to WASHING DISHES, but is listed in Figure 2.1-2 as

input.

(6) Suppose the housekeeper goes out shopping to obtain food (i.e.,

"inputs")and meets a friend instead, goes to movies, etc.

and doesn't come back to make dinner.

(7) Sect. 3.4.2.1.2.1. CLEANING SUBFUNCTION is not only not a

unitary function, but adds no information not already con-

tain~ed elsewhere.

Similarly, we find examples of problems (l)-(7) in the PPS:

(1) What is PORT Link Assignment? Since this is the central

concept in the Network Manager, it seems odd that it does not

appear in the PPS glossary. The closest thing is ASSIGNED

PORT LINK: "a communication link defined by a set of active

frames specified by a PORT Link Assignment," which is cir-

cular. Also, as will be discussed later in this report, the

PORT Link Assignment function itself is ill-defined, in that it

is two-valued, without specifying which of the two PORT Link

Assignments is being referred to at any given point. (This

is discussed in Section 3.4.)

(2) The draft PPS contained the sentence shown in Figure 2.1-3a,

which we interpreted as containing the two underlined noun

phrases, and spent a good deal of our time in trying to deter-

mine what a "processing link" was. The correct interpretation

24

of the sentence is shown in Figure 2.l-3b. This is an un-

avoidable property of natural language, which is eliminated

by using formal, mathematical specifications.

3.4.2.2 Network Management Processing: The Network Management
automatically determines and maintains PORT and Cross Link Assign-
ments for each UU as well as processing link and state change
requests ...

(a)

3.4.2.2 Network Management Processing: The Network Management
automatically determines and maintains PORT and Cross Link Assign-
ments for each UU as well as processing link and state change
requests ...

(b)

Figure 2.1-3

(3) The section from PPS shown in Figure 2.1-4 contains a sur-

prising bit of information, which we were unable to locate

elsewhere. Evidently, for each User Unit, the number of other

User Units which have tried to gain entry to the system through

that User Unit and failed is a parameter being stored *and con-

tinually updated.

3.4.2.2.1.5 Monitor Entry Requests: A UU that has been a two-
way cormunicant with more than the unsatisfied entry count (Sys-
tem parameters) entry requests of UUs, for which a PLA was not
found, shall be designated for PORT Link state change.

Figure 2.1-4

(4) In Figure 2.1-5, we see two different accounts of where ZERO

ALERTS are generated. In the 1/O diagrams, it is being gene-

rated by POR~T Link Assignment Control (PPS, p. 3-35/6), but

25

in the text, it is described as generated by Network Control

(PPS, p. 3-38).

3.4 2.2.1 Network Control.....

3.422.2.1.1 UU Entry Requests... When a PLA is not found for

an entering UU, a zero alert shall be generated for that UU.

BUT

- PLA Control Zero Alert I/O

*
____ Network

Manager

- CLA Control

Figure 2.1-5

(5) In the PPS diagram 3.3.5-1 (p. 3-13/14), ALERTS is an input

to the Network Manager; Figure 3.4.2-1 indicates it to be an

output. The former indicates no output from the Network

Manager to the POSITION Tracking Module; the latter indicates

"Unlocate track is output by the Network Manager to Position

Tracking." There are many discrepencies, discussed at greater

length in Section 5.

26

(6) The example cited in Figure 2.1-6 is similar to the "House-

keeper" shopping example: suppose a HANDOVER-IN SUCCESSFUL

notice, for whatever reason, never arrives? What about error

recovery here?

3.4.2.2.1.1.3 HANDOVER-IN UUs. Handover-in UUs shall be
initially designated as being in the zero rate PL state and
shall be processed by PLA control. Network control shall
generate a tree allocation command containing the MU tree
allocation to all handover-in UUs. Upon acknowledgement of
this command, network control shall generate a handover-in
successful notice.

Figure 2.1-6

(7) As we will see later in the discussion of control maps, state-

ments such as "Each PLA shall be supported by only one UU"

are either meaningless, false, or redundant. See Section

of this report for a complete discussion of this issue.

How are such problems discovered by attempting to do an HOS specification,

and how does an HOS specification eliminate them? This report tries to

illustrate this by way of example. Part of the detection of these problems

was done in the early stages of attempting the specification, by drawing

a preliminary control map along the lines of the Hughes PPS. This was

discussed in [16], which is excerpted in Section 2.2 below. Other pro-

blems were subsequently detected in trying to formulate the data types
and their behavior; some of this was also discussed in [16] . A com-

plete discussion appears in Section 2.2 below. In Section 3

we will discuss a control map for one subsection of the Network Manager.

2.2 Preliminary Control Map

Havinc reviewed the STD [14] and the final draft of the PPS [11], we began

to define a control map. At this stage, rather than doing a control map
"from scratch," since the algorithms in many cases were

27

preliminary control map was done directly from the specification in the PPS,

without regard as to whether it followed HOS axioms. This gave the struc-

ture of the Network Manager as it is presented in the documentation. By

then trying (1) to correct the structure of the control map and (2)

make it consistent with the various descriptions of the Network Manager

at various levels of representation, we could identify potential problem

areas, even though the control map was, at this stage "content free."

That is, subroutines were simply treated as lettered subfunctions. and

the partitions given in the text accepted without regard as to what the

subroutines (subfunctions) actually did. This was done later. Even at

this stage, however, some problems are identified. For example, the

PPS contains three different levels of representation of the input/

output structure (see Figure 2.2-1 for exact labeling)-

Level a + y = fo(x)

Level a Y f 1(X1) Y2 f 2 (x2) ,

Lee f -3 f(x 3) y f 4(x

Figure 2.2-1

If we take f0 to be the Network Manager function, the Figure 3.3.5-1 Dl]

on pages 3-13/14 corresponds roughly to Level a; Figure 3.4.2-1 on page

3-35/56 [1] corresponds to Level 8; and the verbal descriptions of the sub-

functions on the pages following page 3-37 [11] correspond roughly to Level y.

28

The first thing we notice is that, strictly speaking, this control map

should be a Class Partition. That is, if x1= (ao,al,a 2,.. .ak), then

x2 = (ak+l ,ak+2),.. .an), etc. as we go to deeper levels of representation.

This is not the case in the Hughes PPS, however.

Sometimes the differences are"trivial" in that the same name is not used

for the same data item at all levels. However, while this may seem

trivial (like a "typographical error") at first glance, if the documenta-

tion is to be relied on, it is at best confusing for manual verification,

and it is death for machine verification.

For example, in Figure 3.3.5-1 [11], the I/O inputs UU (User Unit) CONTROL

to the NM (Nletwork Manager); in Figure 3.4.2-1 [11], it inputs UU MODE CONTROL.

At the lowest level, that of the verbal description, the UU Mode Control

Processing subfunction accepts as inputs PASSIVE MODE REQUEST, REENTER

UU REQUEST, RESTART UU REQUEST, CLEAR UU REQUEST, REINITIALIZE POSITION

TRACK REQUEST. It is not clear which of these are part of the data item

"UU IDE CONTROL" from the I/O and which are not. While these are

discrepancies in the documentation (which would hopefully be more pre-

cisely specified enroute to coding), the HOS control map allows one to

see immediately which inputs at different levels of specification must

be identical. Thus, one can prevent inconsistencies before they happen.

Thus we see two kinds of problems right away. As we go from, for example,

Leveli to Level i+1, either we must have the same set of input variables
(Figure 2.2-2)

Level i (yly 2) = f(Xo,... xn)

Le.el +l Y g(XO..... xk) Y2 h(xk+l n)

Figure 2.2-2

29

or, if one wished to abbreviate for compactness of presentation, one would

have to be very careful to specify which input variables at Level i+1 were

represented by which variable at Level i (Figure 2.2-3):

(yly 2) = f(zlz 2)

SYl =g(xo,'"',Xk) Y2 = h(X k+l""' Xn)

Figure 2.2-3

where z= X0 ,...yk and YK+1,'.xn. This may seem unnecessary for such

a simple partition as the one above, or even a small part of the NM,

especially at the top levels (0,1,2, etc.). However, in the more detailed

specifications (lower levels of the control map tree), the chances for

error multiply rapidly without keeping this in mind. The control

map and axioms force one to be consistent from top to bottom. This is

even more apparent if one thinks of a PLRS Master Unit as being Level0 ,

and the NM as being one section of a lower level.

Another area in which the control map can be helpful is in identifying

where the same data items (or subparts of the same data items) are being

input to two different modules. For example, in the accompanying pre-

liminary control map done from the PPS (see Figure 2.2-4), x 14 = x' 21 -

COMMUNICANTS, x'9 = x 15 = X 22 = x'24 = COMMAND-ACKNOWLEDGE. This is

partly simply a matter of clarity and perspicuity. However, one then wants

to ask whether they are to be treated as unitary items, or whether they

are being input to several functions implies a partition, as in the Class

Partition exemplified above. In terms of the control map, for example,

the input from the Master Traffic Control (MTC) at level a, x13 = COMMAND

RELIABILITY (from 0l Figure 3.3.5-1) is presumably partitioned into

30

c -

0-i

CL

0
-

C, -1

C-

-. x

r.. uj I

-~ u C

cc

x
beK
cc Z-

C- K

0L0 5r

<

ccN
NX

N04

'31

roa) 4U

0 4- Cfl

fa-4 .Q 4-' 1

0 0.4. m 0m

> M 01* >

$4 W
.~ to- U)

-4-) 0 $4~ P. *-11
Si (a C'4 u.

0. 04J X Q)

40 C -~
U) 0 - - 11

U) U to U

a) >9 HX -

4 x E) -4) 4.'

C) H0
w- a) (1) 13 -r

V 0- C * '- .

9: En % a)
Cl) U) 17 -, E0.)S

Ea' (a 0 04 C > C
4- a.' -a) 3:a

U) 43 11r l

S.- Q3) C - Ox
o :j 0 w

0) c-a) r-4 Q)-4 U.

0(3 -r4 0 4 a4 -HJ
vi 0 En a) 4 41 4J 14
go C) ~ a a) a r

-= E a r 24.' 0 >i W
4-) -14 $-40 4i-) 0 H -q L 4 C

c 0 0 4 p JS-i-4 4-)
S.- :34-4 4-Oa ~ -4 44.
o U) 04 0 a) r.

4- -4 r4 4 0 P- (9) Q a--4
0W 0 U) r-4 0 0-~.- ro

CLL)- 4a) 0 4 X -14-4 w-- -4
- 4.) 5 4-4)0-o.

0' . ~ ' ' '4-) M ~ Z UJ) W4-1 0 Q)
0) CE-4)4 W 1) U 0) 0) r. (C -

-4 E > u000 0 0 0 E 4.) U
C) a 41) w~ S-i W- - 0-H V C U) C

c f 4.) 4.J >9 -4 H -r- -H -1

a W- 04-J Lj 0 0 4-'
C..) -- 0-r, 4 u r 0 (1)

u) 3: 0 w ~E 0

cr = z z a4u

z K~- I P-4 i wI II p

-LJ

w c

32

r-4

-4

ca2

4-)

41 4.) 4

02) 00 L

4.J

0J1
to 0

0 0 4-11' u
'-44 > . 1

.0 0 4, U' -) 0 4 -. 4 U-

-44 0) 0- 0) C:
0r0 , 0 0a E'4

0 *-0 C :

li IT n 0 o 0 - -A Ii -q1-

=d,) ~ r 0 0 0 tl

ri.IH 0~.. N,
mI

0L

i33

10 - -inC3r

-n u

00
4J4

co-- (.140 c

> I C3

0--

C) 0

C) -N

C) 4-it4l

-4 E-4 .0 :

C r- 0-11(
-- E E r

4-) 0L 0 0

(c -2 u - -

0*- 0

L-) 4-j

S.-x x x .

0>>

CL. 0) 4-

i) C) C

LC . C CAI
-. C.- 73 r, ,

x x X)-S- A. X, >1 > X X Y

U) C.

~~C) - ~ 4 --- -

U0

a-)

C30 0 u

4JO 0

'44-

C-
0

411

cr tn ud +

C) -1
r_ <- 0~ <

r_ -- 14) 4J as

as Q~ (D I v0 4
1. ;. S.

0 v o

L.) u0 - I-

S-

04-

CL 2:

-) 0)
4- it-

22m.
C-5

-r $4 a- 0

m) 0 0
00 W 4)

u 0 E

C)~ -.4 o 'U m.nz

CnU r- 4 9 0'-I,-EU

04 E1 4 5~i 0 4) u

E-44 CO 13 II H I
=) u- ---

U4 v D II -N if N ~
0) S. --

.4-)

.0 4) 4 4.-4Ci4 V a) .4-
M. 4. (1) -4

> 4)) 0 4 sI~ .

L)Ct)Z- 4' 0U'"4
4)w 41 a' 'A 0

04 >U 4) 5~4k = 4J 0

5-4 H -4 - r4L

X X X~C XX /) s-

E-1 E-4 C

X. Ul II I

- ~ 0>1

$4 ~ '

r- 0- 4' a)

(D (- 1 to4 rdi
M >'-0 4-) 4-

go E-4 ' 'to0) 0 0 4
r. -) Q)- E) 1,4

rdq Cl M t

0.. a-- -, - -

u 0~
40 -1

- c1 > c

N4 $4 a) -n mr
a o o 2 -,i > -(

C: r-4 (IH Uu Q) '

Ad >4 r C -4 4J w

L M0 0 (a 0 0X' 0 E

E4Z M- <N

H N m -W tn ko

36

into x'16 ' x' 20 and x' 23 which are PLA (PORT Link Assignment) COMMAND

RELIABILITY, CLA (CROSS Link Assignment) COMMAND RELIABILITY, and SECONDARY

MU (Master Unit) COMMAND RELIABILITY at Level B.

Another question one wants to ask, based on the control map, is what func-

tional relationship the module (subfunction) Adjacent MU Communications

Assignment bears to the rest of the Network Manager, i.e., the Network

Control subfunction, CLA Control, and PLA Control. Other than the

common input/output COMMAND ACKNOWLEDGE and COMMAND REQUESTS, (which we

take to be general terms, not, in fact, referring to the same data items),

there seems to be no connection. In terms of HOS primitives, it is

neither a Set Partition, a Class Partition, and certainly, not a Composi-

tion. Nor does it seem to be an abstract Control Structure derived from

these primitives. Thus, one might question the validity of having it

as part of the Network Manager function.

A more important problem is that the control map shows that in some cases

the functions are not cleanly divided, i.e., that there is a lack of

modularity. In plain language, there is confusion about which subfunction

does what. For example if we look at Level B (the one which represents PPS

Figure 3.4.2-1) on the control map, we see that the PLA Control generates

the output y8 = ZERO LINK ALERT (and similarly for other ALERTS). But

if we look at Level y which represents the verbal subdivision later in the

Hughes document, we find ZERO LINK ALERT being generated by the UU Entry

Request subfunction (this corresponds to the statement in PPS on page 3-38

under the description of the Network Control subfunction, "3.4.2.2.1.1

UU Entry requests When a PLA is not found for an entering UU, a zero

alert shall be generated for that UU"). The representation as a control

map makes it immediately transparent that one of the descriptions must

be incorrect, since two subfunctions in two distinct parts of the control

map cannot generate the same identical data item.

While this may seem obvious on an intuitive level (i.e., that two distinct

subfunctions cannot output the same item--it is either output by one or

by the other), it is important to point out that (1) the control map,

because it has several levels in the same representation, makes it easy

to check for such inconsistencies, and (2) on a theoretical level, we

37

note that it violates one of the formal HOS axioms for the construction

of control maps and AXES specifications, namely

AXIOM 1: A given module controls the invocation of the set of
functions on its immediate, and only its immediate
lower level.

By extension, there is no way the PLA Control. could invoke the UU Entry

Request subfunction, since UU Entry Request is the immediate lower level

of Network Control, not PLA Control.

Again, it should be pointed out that although in this simple case it seems

obvious that the verbal description is in error, rather than the flow dia-

gram, the control map provides a way for catching this immuediately and

a formal resolution for more complicated cases.

A further problem wh ich is uncovered by the control map is that as one

descends into more detailed levels of representation, inputs (or outputs)

are introduced that didn't appear at all in the higher levels of repre-

sentation. This is different from unclarity (vagueness or discrepancies)

in representing a particular input item or items at different levels.

For example, some variables which appear at Level y (like x" 8 = REENTER

UU REQUEST) also appear at Level (in this case as x' 12 --in a proper

control map both should be designated by the same variable). However,

seemingly analogous variables at Level y, such as x"g9 = RESTART UU

REQUEST, do not appear at Level a at all. This corresponds, again to

the Hughes PPS Section 3.4.3.3.1.2.3 on pages 3-38, where we find "Upon

receipt of a restart UU request..." analogously to Section 3.4.2.2.1.2.2,

"Upon receipt of a reenter UU request..." However, in Figure 3.4.2.1

(the a Level), there is only the REENTER UU REQUEST being input from

the MTC. Similarly, the HANDOVER-IN REQUEST appears on the y Level

and the a Level, but the CLEAR UNIT REQUEST only appears on the y Level.

It should be pointed out that this sort of discrepancy, while, of course,

violating HOS Axioms, is particularly unfortunate from the point of view

of the Hughes PPS. Since it is in the 8 Level representation (Figure

3.4.2-1) that we are shown which modules external to the NM input various

38

data to subfunctions of the NM, if a new ddta input appears at the lower

y Level (the more detailed verbal descriptions in Section 3.4.2.2 ff),

then we have no way of telling where (i.e., which subfunction) the data

item comes from. In fact, for all one knows, the inputs could be output

coming from either external or internal modules, since this is simply

not stated, and one has to either guess as to the source of the data

or search elsewhere in the documentation.

The advantages of a control map in this respect are that input variables

of a subfunction which are external (i.e., come from a source outside

the subfunction) MUST be carried through at all levels, so that in the

complete control map, one can always trace the source. For example, if

a is an input to the Network Control subfunction of the Network Manager,

and that input comes from the MTC module, then in the complete PLRS

control map one could trace the input as shown (Figure 2.2-5):

(yo...ym) = PLRS(Xo... Xn)

(...)=NM(....) M c (. . .

= NC(...i.. a ..).a...) f, =

= UMCP(....a...) (...a...) f

Figure 2.2-5

39

Finally, since input and output varibles must be carried through the

control map as shown above, the preliminary Network Manager control map

uncovers another problematic aspect of the Network Manager, as described

in the PPS, namely calls to subroutines outside the module in question.

These show up as the following structure (Figure 2.2-6):

NM(...))=MTC(...)

(.) =NC(...)/

w f.(z)

=1

(y) :fk(x)

y : fl(w) z = f2 (x)

Figure 2.2-6

If we take w (: x"4) = TREE ALLOCATION COMMAND, and z (: y"2) : COMMAND

ACKNOWLEDGEMENT, then according to Section 3.4.2.2.1.1.3 "Handover-in UUs"

on page 3-38, which is a subfunction of Network Control: "...Network

Control shall generate a tree allocation command containing the MU tree

allocation to all handover-in UUs. Upon acknowledgement of this command,

Network Control shall generate a handover-in successful notice." That is,

40

some subfunction, fk' of the Network Control function computes (generates)

y = HANDOVER-IN SUCCESSFUL NOTICE. However, we notice that part of

fk' namely the subfunction f2 computes a value z, which is the input to

an entirely different module (e.g., MTC), which in turn generates a value,

w, which is the input to another subfunction, fl, of the function fk"

Not only do "hidden" calls to external functions destroy modularity, but

in this case, there is no provision for error recovery should an acknowledge-

ment fail to be generated. This is clearly shown by the preliminary

control map, i.e., this would be invalid in a proper control map, since

a function can control the access rights only to the inputs and outputs

of its immediately dominated subfunctions, and here we have some function

external to the Network Manager accessing an internal output of a sub-

function of the Network Manager and vice versa.

2.3 Understanding Data Properties

Once a preliminary survey of the system was made from the available

documents, one of our first tasks was to identify the important data

types. This turned out to be a particularly difficult task in this

system, since there are many parameters (usually integers) used by the

Network Manager which have only peripheral importance. What turned

out to be the central and crucial data types for the Network Manager

operation were quite complex and idiosyncratic objects. Most of our

time was therefore spent on understanding the properties of these data

types before we could specify operations employing them. Why this was

so is discussed in detail in the next section.

41

3.0 THE PLRS DATA TYPES

3.1 The Network Manager

Turning now to our specification of the Network Manager (NM), what do we

need to know in order to do the specification? Already at this first

stage, the control map format provides a guideline as to the appropriate

questions to ask first. We know that the top level of the control map

will have the format:

y = f(x)

That is, we must immediately begin thinking of the problem in terms of

mathematical functions (mappings) acting on some input(s) to produce

some output(s): f performs some action or computation on x to produce

y. What are the x,y, and f of the Network Manager? A not unreasonable

first assmption is that y = f(x) takes the form

NetworkNEW = MANAGE(NetworkOLD) (1)

That is, the Network Manager (NM) takes as input some state of the Network

(NetworkOLD) and performs some operations on it (the function MANAGE) to

produce a new, reconfigured state of the network (NetworkNEW). As it

turns out, there are other inputs to the Network Manager other than

just the current state of the Network: the NM must also know (1) the

History of the network (e.g., the Unsatisfied Entry Count, which is a

record for each User Unit (UU), of the number of other units which have

tried to gain entry to the system through that UU and failed); and

(2) Requests, for example, a request from the human Operator to force

a particular assignment. There will, of course, also be certain second-

ary outputs regarding the state of the network and the result of the ac-

tions, such as ERROR messages, REQUESTS for more information to be sent

to the Message Traffic Control (MTC),and the like. Thus the top-level

function should really be something like:

(NetworkNEW, Messages) = MANAGE(NetworkOLD, History, Requests) (2)

43
ppj4NGk pAaE BLAWl-NOT na-as

These secondary inputs and outputs indicated in Equation (2) should not

distract us from remembering that the basic function of the NM is to

reconfigure the network, as indicated in Equation (1). Now in order to

begin to describe this basic function, we have to set our priorities.

Do we want to begin by looking at the actions (the function MANAGE) or

on the object acted upon (the Network)? By casting the problem in this

format, the HOS control map has already forced us to make a decision

of this sort by highlighting the issue involved. In the case of PLRS,

the answer is fairly straightforward: a preliminary survey of the pro-

blem indicated that the structure of the network was so extraordinarily

complex, that we really needed to understand it thoroughly first, before

we could expect to talk about the MANAGE function in any reasonable way.

3.2 Why Data Types?

What does it mean to understand the structure of the Network? We know,

of course, that we will have to have some intuitive understanding of

the Network as a working hypothesis. But can we at some point say that

we have understood the Network and are ready tomove on to the next step?

Here again, the HOS methodology provides an answer: we can begin describing

the operations when we have identified the data types and have specified

their behavior by a set of primitive operations and axioms. This defines

the behavior of the data types so that we can go ahead with the control

map (and specify other operations on those data types), because we know

from the axioms what is permissible and what is not.

What r.)'es the PLRS network so particularly complicated? (Why are its

data types so difficult to specify?) There are several reasons:

1. The PLRS data types are unique to the PLRS system. In other

systems, we may be working with such data types as files, vectors, scalars,

lists, rational numbers, about which (a) people already have an intuitive

understanding, and (b) there already exists a reference literature, both

mathematical and computational, describing their properties. The objects

which form the basis of the PLRS Network User Units (UUs) and Logical

Times (LTs) are idiosyncratic objects, some of whose properties are de-

termined by the particular implementation suggested in the Hughes documents.

In a completely general specification, this might not be true.

44

2. The PLRS system is duplexed. This means that the mapping

which relates UUs and LTs will not be a simple one-to-one correspondence.

3. The organization of Logical Time is itself complex. Because

groups of time slots are interleaved with one another (even before

scrambling), Logical Time is not a simple cyclic domain, but rather

has a complex internal structure, which we must abstract away from in

order to state what the simple operations relevant to the Network Manager

are. (More on this below.)

One might want to ask (particularly in view of the complexity of the data-

type specifications for PLRS), why should one care? Isn't there some

easier way to specify the system?

In this case, the data-type specifications are particularly important

for the reason given in Item (1) above: the data-types are unique to the

system. We already know what to expect from vectors or rational numbers

(for example, that one cannot divide by zero); about these idiosyncratic

data types we have no idea what to expect in either of two cases:

(1) What operations are possible (e.g., have we overlooked a

possible operation which would allow the program to run more

efficiently);

(2) What operations are invalid (e.g., they yield no output-or an

incorrect output, causing a system error).

Try~ig to define the data types. carefully in advance can help, for ex-

am-ia. the prograr-er who subsequently uses them to know what can and

can: D. be done.

45

3.3 PORT Link Assignment

The basic concept of the Network is PORT Link Assignment, which is defined
as follows: On the one hand there are User Units (radio-commiunication
units), and on the other hand there are, for each User Unit, a set of
time intervals in which that User Unit is allowed to operate. The mapping
which assigns UUs to the set of time intervals in which they are to operate
(transmit).is called PORT LINK ASSIGNMENT. The Hughes documents tend to
be ambiguous in this respect, using the term "Port Link Assignment" (PLA)
to mean both the process of mapping UUs onto time intervals, as well as
the set of time intervals a UU is mapped onto. Hence, we find such
apparently anomalous phrases as "'unassigned PORT Link Assignment,' which
actually means a set of time intervals which has not yet been assigned

to a UU by the PORT Link Assignment function .In order to avoid con-
fusion, in this report PORT Link Assignment will be used to refer only
to the mapping, or assignment process, and the term Logical Time (LT)
to represent the set of time intervals which is assigned to a particular UU.

Thus, it would seem our basic data types would be User Units and L~ogical
Times, since the BASIC activity of the Network Manager is to assign
a UU to one or more LT's: PORT Link Assignment. Of course, the Network
Manager has other functions as well: the secondary assignments, known
as CROSS LINK ASSIGNMENTS (for listening rather than transmitting) plus
certain "housekeeping" or "clean-up" functions, which are needed to readjust
the Network when a UU is reassigned. But we must not let this obscure
the basic assignment function.

Now ;7-.;rns out that the UUs are related to one another in certain ways,
and the LTs are also related to each other in certain complex ways.

A way of thinking about this which has proved helpful in defining the

data types is to imagine a space, or universe, of UUs and another space,
or universe, consisting of Logical Time intervals; PORT Link Assignment

maps element in one space onto elements in the other (Figure 3.3-1).

46

LJ
u

C/)
I-

0

z So

LUJ

LUI

CL

47

3.4 User Units

Let us first consider the User Units. Before we can state a formal algebraic

definition of the data types User Units and Logical Time, we need to have some

intuitive understanding of how they function, how they are related, and

what operations on them are basic. In the case of the UUs, we know that

each data UU represents an actual radio-communication device in the field.

Messages from the Master Unit (MU) may be transmitted to some UUs directly,

to others by being relayed along a chain of UUs. Similarly, inbound mes-

sages from some UUs are transmitted to the MU directly, others relayed

via a chain of links between other UUs. These are the PORT Links, and

together they form a PORT Path between a UU and and the MU. We can

visualize this as a tree-like structure with the MU at the bottom, trans-

mitting up the links to the UUs as shown in Figure 2-1. (Return messages

are relayed back along the same paths.) If two User Units, Ui and Uj,

are connected by a relay link, as shown in Figure 2-1, we will say that

that Ui U-supports Uj, meaning that Ui transmits to U. outbound from the

MU, and receives from U inbound toward the MU. The notion of U-SUPPORT,

then, will be the basic relation that UUs have with each other.

We notice that in this system (as described in the Hughes documents),

U-SUPPORT as a relation between UUs has several properties, which are

reflected in the axioms for data-type UU (Figure 3.4-]). First, we

would like to say that U-support is transitive along the branches of a

tree: if U1 U-supports U2, and U2 U-supports U3, then U1 also U-supports

(indirectly) U3. This is stated in Axiom 2. Also, we would like to say

that cannot occur:

. . PORT Path 1

PORT Path 2

Figure 3.4-2

Forbidden Configuration

48

DATA TYPE: UU; /*Liser-unit*/;

PRIMITIVE OPERATIONS:

boolean = Usupp? (uu1, uu2'

tuple(of logical time) = PLA(uu);

UU = ALP (logical time);

AXIOMS:

WHERE u,u1,u 2 ARE UU's;

WHERE M IS A CONSTANT UU;

WHERE t 1' t ARE LOGICAL TIMES;

WHERE n IS A NATURAL;

(1) (Usupp?(u 1 u):Not (Usupp?(u 2, u I True;

(2) ((Usupp?(ui,u 2) & Usupp?(u 29,u3))D Usupp?(u1,u 3) = True;

(3) (Not(Eq(u,M))D Usupp?(M,u)) True;

(4) Not(Usupp?(u,u)) = True;,

G)ALP(Examine_ item(PLA(u),n)) u OTHERWISE K Reec u)

PARTITION OF (u,n) IS

(u,n)j(< n < 2 & uM 1< n < 6 & uM

2(u,n)1n=O!(n > 2 & u#M)!(n > 6 & u=M);

(6a) (Tsupp?(t 1 ,t2 D Usupp?(ALP(t 1),ALP(t 2) True;

Fi~ure 3.4-1

49

2' 2

(Tsupp?(1D I(PLANu I)) ,1D2 (PLA(u 2))),

2 1 2
(Tsupp?(1D2 (PLANu1)) ,1D1 (PLA(u 2)),

6 2 2 2

OTHERWISE (OR(Tsupp?(ID 6(PLA(2u)),ID 2 (PLA(2u Mf,
I1 1 2

(T~upID6 (2 u))ID2 (PLA(2))M)
(Tup?1 2(PA 1 1 U2

(Tsupp(6 (PLA(2u)),I D2(PLA(2 u M
pp 3 1 1 1

(Ts upp ? (ID 6 (P LA((2 u)), ID 2(PLA(2 u2 M,

(Tsupp?(ID 6(PLA(2u)), ID 2 PLA(2 u9M,

1 2 2

6 2 2
(Tsupp?(1D6 (PLA(2u)),ID 2(PLA(2u2)),

6 2 D2 PL 2

(Tsupp?(ID 6(PLA(2u)),I 2 (L 2))M,

6 2)D(P(2))
(Tsupp?(ID 6(PLA(2U),ID 2 2 M

6 2 2 2
(Tsupp?(I 6 (PLA(2u)) ,ID 2(PLA(2u M4 1 2 2

OTHERWISE K Reject(3u1,,3u2)

1' 2

I(u, pu2) u I 0&u 2 9m

1'l9t 2 u 1 M&u 2 M,

3(u1,u u2 u=M 2M

END UU:

N.B. OR =n - place Logical Or

Figure 3.4-1 (con't)

50

That is, if U1 U-supports U2, then U2 cannot U-support U1. It should be

noted that this property is not guaranteed a priori, but rather must be

ensured by the way the search algorithm for finding PORT Link Assignments

is constructed. We will therefore see, when we examine the control map,

that this corresponds to one of the test modules in the program. We also

note, and this is important, that although the Master Unit is clearly

different in many respects from the User Units, it does behave like them

in that it particupates in the U-SUPPORT relationship. Specifically,

it U-supports all the UUs in one of its tree-like networks (Axiom 3).

This is important for consistency in applying tests to pairs of UUs:

if we ask (in Figure 2-1), "Does unit Ui support unit U.?", we want the

answer to be yes (TRUE); similarly, if we ask does the Master Unit M

support unit Ui , we also want the answer to be yes. Thus the Master

Unit behaves very much like zero among the natural numbers: zero is

a number, the operation of addition and subtraction can validly be per-

formed with it, and it can be the valid result of an operation; but it is

also different, e.g., one cannot divide by zero.

In particular, it turns out, due to the way the PLRS system is structured,

that one M.faster Unit can U-support several tree-like networks (at dif-

ferent times, or at different frequencies, of course), up to six; a UU

can U-support units in no more than two trees (Figure 3.4-3).

TreSome MU

Tree 1 Tree 7

Tree 12 Tree 25

Fiaure 3.4-3
51

This is reflected in the way PORT Link Assignments (PLAs) are made: notice

that UUs are assigned two Logical Times by the operation PLA, except for

the MU, which is assigned six (e.g., PLA(ui) = (LTl, LT2)). But to see

why this is related to U-SUrPORT, we need first to consider the other

data type, Logical Time.

3.5 Logical Time

In the PLRS system, time is cyclic; transmissions are scheduled to occur

over particular links at regular intervals, the rate depending on such

things as the kind of unit involved; airborne units transmitting more

frequently than manpack units, for example. Recall the tree-like net-

work consisting of UUs, a MU, and the links between them (Figure 2-1).

Now,each one of the links between two UUs is a radio-communication link,

and thus occurs during some time interval. (For the sake of this example,

we consider only outbound transmissions.)

Imagine these time intervals superimposed upon the link tree network as

shown in Figure 3.5-1, where each color indicates the set of time inter-

vals of one PORT path. Now Logical Time is organized into EPOCHS (64

seconds long) which are subdivided into 256 FRAMES, each of which con-

sists of 128 smaller time intervals (Figure 3.5-2a). An appropriate

image of what happens is to imagine the time intervals in Figure 3.5-1

as colored neon lights, and there is a flash up and back one of these

PORT paths in each of the 256 frames of an epoch. Clearly, many of them

will flash more than once and at regular intervals. Since there are,

hovwev-i-. 128 time intervals in each frame, and (as we shall see later)

since PORT paths are limited to no more than four levels, the Logical

Time intervals corresponding to PORT Paths in several different trees

(networks) could flash during one Frame.

Now imagine a string tied to the bottom on each of the sets of time

intervals corresponding to one of the PORT paths in the tree-network

of Figure 3.5-1, and both ends pulled apart so that all of the columns

of time intervals stood up vertically from a base (as in Figure 3.5-3).

We could then also, as it were, tip all of the columns of time intervals

over on their sides so they would lie end-to end--this would then give

52

....

REPRESENTATIVE TIME SLOTS FOR THE NETWORK IN FIGURE

Tire intervals of PORT Path 1: /

Time intervals of PORT Path 2: I

Time intervals of PORT Path 3:

Time intervals of PORT Path 4:

Figure 3.5-1

53

HUGHES-FULLERTON
Hughes Aircraft Company

Fullerton, California

CYCLIC EOCHi

EOH26FRAMES

IEC F4 SEOD

II~~~DVIE INTOI I I IIi

Figure~~~~~~~~~~~~~~~~~2 T. TeimlivsusofteLRED.Tecaiy tE PR ewr sbsdo
128 imcAot wihineachof 56 rams (otalof 2.78 tmc LOTrepc)

FigureG3.5-
54S P RO

Ul)w

z
o -

us a linear sequence of time intervals (Figure 3.5-4, upper left-hand

corner) which is necessary, because time is, in fact, linear.

There are two additional factors which complicate this rather straight-

forward interpretation of logical time (as represented in Figures 3.5-1,

3.5-2, 3.5r3). Both can be ignored, for all practical purposes, by the

Network Manager but need to be mentioned briefly, so as to avoid con-

fusion later. Each of the columns in Figure 3.5-3 represent only outbound

transmissions. Since, in reality, transmissions are both inbound and

outbound, there must be more than four time intervals involved. In fact,

there are 16, structured as shown in Figure 3.5-5. While there is only

one outbound transmission by each UU along a PORT Path, there are several

inbound transmissions, and in addition, one time interval (the fifth)

is reserved for special purposes, such as requesting entry into the network.

One set of 16 time intervals structured in this way is called a TRANS-

ACTION GROUP, and the time intervals in one TRANSACTION GROUP are referred

to as TIME SLOT INDICES, e.g., (Figure 3.5-5), the MU transmits in Time

Slot Index (TSI) #0, the first inbound transmission is in TSI #6, etc.

Since no Unit is allowed to be more than four links (levels) away from

the MU in order to specify where in a TRANSACTION GROUP a Unit operates,

we need to specify only the level of the Unit's associated time intervals.

Since all transaction groups have the same pattern of transmissions,

given the level, we know exactly which time intervals within a transaction

group a unit uses for transmitting and which for receiving. Hence the

Network Manager can ignore the internal structure of the transaction

groups and need only know the (1) the level of the time intervals to

which a unit is assigned, and (2) which transaction group they are in.

How is the latter specified? This involves the second aspect of the

organization of time which the Network Manager can ignore, because al-

though complex, it is fixed. Logical Time is mapped into real-world

time in a complex way. If we take all the time intervals in a frame

(128) and arrange them in a rectangle (or a box, if we have operations

at different frequencies) so that the transaction groups are vertical

columns (Figure 3.5-5), then we can unwind, or scramble, these Logical

Time intervals into real time in some random way for security purposes.

This latter scrambling can be ignored entirely by the Network Manager.

56

-AJ

Lka

LUL

<- Lla

LiLLJ

Z - = L9
U) - *'< LL~

1/w r4 CDJ

LIn
-j

- I

La I

LU.J

I--

57

- U) -

a-

- - 0

LLJ

< 0 U_
F-

a-

00

LLL3

Ix
V, 0

58

In the representation of a Frame as a box or rectangle, however, the trans-

action groups are the columns, and as such can be assigned numbers. Now

we will make it a requirement (as does Hughes) of our system that in each

of the 256 frame "boxes," or "rectangles," that a column with the same

number represents a transaction group (PORT Path) from the same tree

(network). If we now imagine the 256 Frame boxes all lined up linearly

in an epoch, and consider, say, column #35 in each box, a neon flash

in that column will correspond to a neon flash up and down some (dif-

ferent) PORT Path in the same tree (network). So now if we know the

level and tree number (i.e., which column number within a frame/box),

all that remains to specify when a UU operates is to say which frames

it operates in. But since the transmissions along the PORT Paths are

cyclic (e.g., every 4 frames), all we need to specify is the Period

(Per) and the Start Frame (SF).

Thus these four numbers completely and exhaustively specify which Logical

Time intervals a UU operates in: Period and Start Frame are sufficient

to tell which frames a unit's transaction group (PORT Path) is assigned

to operate in, the Tree Number (TN) tells which column of time intervals

(Transaction Group) in each frame, and Level (Lev), as explained above,

determines which time intervals (TSI's) within a column of time intervals

(Transaction Group).

Hence we can think of a UU's PORT Link Assignments as assignments to oper-

ate at a particular Logical Time, specified by these four integers (c.f.,

Figure 3.5-6):

t = (Exp., Lev, TN, SF) (3)

Since the data format in the documentation [14) only allows 3 bits to

specify period, it must be the exponent (i.e., 2exp Per), not the period

itself (Figure 3.5-7) that is used to specify a Logical Time. This fact

is reflected in the specification of our data-type Logical Time, as

indicated in Figure 3.5-82. We can then define Per(t) as a non-primitive

ope r-zion.

59

cr--

LL.
C,1-- 00

LU

CL =D
I-

I-I

LJLf)

LU C

Cl

Ln

60

OPERATION p= Per(t)

deji;Ltcon a,6
a cont~ot map

p = 2 K = Exp(t)

OPERATION: p =Per(t);

WHERE p,t ARE NATURALS;

p= 2 KJOIN K =Exp(t)

END Per;

Figure 3.5-7

61

DATA TYPE: Logical time (of M);

PRIMITIVE OPERATIONS:

integer = Exp(t);

integer = Lev(t);

integer = TN(t);

integer = SF(t);

boolean = Teq?(t1,t 2);

AXIOMS:

WHERE T MIS A CONSTANT SET OF Logical times;

WHERE t M IS A T M;

WHERE t, tl ARE Logical times AND ARE NOT T M;

[0 0< Exp (t) 7;
[2) -1 < Lev(t)-! 13;
[3) 0 < TN (t) K63;

[4] 0 < SF(t) 255;

[51 (Exp(t 1)+l Exp(t 2) = (SF(t 2) SF(t 1 2 2Exp(t 1)1

[6] Exp(t M) = 0;

[7] 0 < TN(t M) < 64;

[8) Lev(t M)

[9] SF(t M) =0;

[10,7 Teq? (t1,pt 2) AND(Exp(t 1) = Exp(t 2),

Lev(t 1) = Lev(t 2),

TN(t 1) = TN(t 2)

SF(t I) = SF(t 2) mod Per(t 1)):

END Logical time;

Figure 3.5-8

62

More importantly, now, we need ask, what properties do Logical Times have

which %..ill be useful to us in specifying the system? We remember that

there was a rough intuitive notion of one UU supporting another UU, which

we tried to formalize (by axiomatizing). When one UU supports another

along a PORT Path, however, the time slots which correspond to the links

also stand in a particular relation to one another, namely they follow one

another successively in a transaction group of Logical Time intervals.

But this is a strictly numerical relationship, and easy to check auto-

matically; this, this should be our basic relationship, and support be-

tween UUs dependent upon whether their assigned time slots are adjacent.

To make this clear, we have separated the two meanings of "SUPPORT":

U-suoport (between UUs) and T-suoport (between Logical Times).

This distinction is extremely important, because the two behave quite

differently. The Logical Time intervals always "exist" and stand in the

same relation to one another regardless of whether or not some UU is

designated to operate in them. Thus if t1 and t2 stand in the relationship

such that tI T-supports t2, we will say Tsupp?(tl,t 2) = TRUE regardless

of whether or not they have UUs assigned to them by the PORT Link Assign-

ment function (PLA). This can be determined solely from the primitive

operations on t's, such as Exp(t), etc., as shown in the definition of the

operation Tsupp? in the data-type specification (Figure 3.5-9).

3.6 U-support vs T-su~port

We are now in a position to say explicitly how to answer the question,

"does J. U-support U,?" zomputazionally. Usupp?(ul,u 2) = TRUE, if and

only 7, One of the t's assigned by PLA to u1 happens to T-support one

of tie t's assioned to -_A to u2. That is, suppose for a moment that

u1 anZ .. have only orn ;CRT Lirk Assignment each instead of two:
ta = PLA(Ul) and tb A(u2). Then if Tsupp?(tatb) TRUE, we know

that Usupp?(ul,u 2) : as well. Since Tsupp? is defined by computable

functi:-, we would krce; exactly how we can answer the question Usupp?

in ou - --:gram should i- arise.

Unfor.-:.ately, because cf the reouired duplexing, things are not this

simple. For many good cperaticnal reasons3, it is necessary for each

63

OPERATION: boolean = Tsupp? (tip t 2)

WHERE ti, t 2 ARE Logical Times;

Tsupp? (tip t 2)= (Exp(t 1) > Exp(t 2) &

(Lev(t 1) < Lev(t 2))&

CTN(t)= TNt2) &

(SF(t) SF'(t 2) mod Per(t 1));

END Tsupp?

Figure 3.5-9

64

UU to have not one, but two PORT Link Assignments; that is, PLA(u) =

(ta ,tb), a duple. (Leaving aside the behavior of the MU, which we con-

sider later.) So while the inverse of the PLA mapping (ALP) is single

valued (ALP(t) = u; there is only one UU assigned to a Logical Time),

PLA itself is two-valued, and the question "what is the PLA of Ui?"

is meaningless, since there are two, and we must at all times know which

one we are referring to. (We will see later how this causes problems

when we look at some of the proposed tests in the search algorithm in

the Control Map.)

This affects our calculation of Usupp? If PLA(ui) equals (ta tb) and

PLA(u2) equals (tc td), then Usupp?(u1 ,u2) is true, if either Tsupp?

(taItc) or Tsupp?(ta,td) or Tsupp?(tb,tc) or Tsupp?(tbtd) are true!

In other words, if we want to ask, as part of some test in the Network

Manager module, if one UU supports another, we may have to try all four

possibilities (Figure 3.4-1, Axiom 6b). Note the difference in com-

plexity between Axiom 6b, which is stated in terms of PLA, and Axiom 6a,

which is stated in terms of the inverse function, ALP 4 . Because of this

we will always want to try to state our algorithms, if possible, in terms

of the Logical Time relations, rather than UU relations, since UU relations

will have to be translated back into Logical Time relations to be cal-

culated anyway, and the translation is anything but straightforward.

We will examine this more carefully when discussing the Control Map

for tf - PLA Control submodule.

3.7 Logical Time Axiom #5

Returning briefly to the specification for the data type Logical Time,

there are two points which deserve further comment. First is the rather

strange and complex looking Axiom 5 (Figure 3.5-8). What this says is

that there is no optionality in dividing up unassiyned (available) Logical

Times, but rather that they are structured according to a particular

patter. For example, suppose in Figure 3.7-1 5 that all the time inter-

vals ;7iarked by little circles were available for assignment(i.e., not

assi4Crd to a UU: ALP(t) = REJECT). Then there is no a priori logical

65

-W 4-1 4-

xL L. L

0--

-0 - fn 0 c

0 - x.

4-i 4- 4-1

xN

4-1

-0 - G L

CN
4.2

N' N4 N1 Li.
0,- ,.- -

Lii 4))4

o a.

0 -

0 N O A.S

0.0
U.,

o. x

U-U

*L 0-

ILA * 0

E0*) L- (V
0 0 0. m

V)

66

reason why we could not divide them up as follows: as two possible

Logical Times available for PORT Link Assignments:

Per Lev TN SF

t1: (2 x y 0) (level and tree given

t (2 x y 1) as x and y since they
are not relevant to this
discussion)

Alternatively, another logically possible division would be to have

four possible logical times with periods of 4:

tl: (4 x y 0)

t2: (4 x y 1)

t3 (4 x y 2)

t (4 x y 3)

Or three logical times for possible PORT Link Assignments with different

periods:

tl: (2 x y 0)

t2 : (4 x y 1)

t3 : (4 x y 3)

There are, of course, many, many more possibilities, even for this 16-

frame epoch, and enormously more for a real 256-frame epoch. However,

as far as we can determine (c.f. [141 pp. 3.5-18/19), the actual PLRS

program divides them up by a standard algorithm: begin with the logical

time having the lowest possible start frame and lowest possible period,

call it t,; take the next lowest start frame and next lowest possible

period arong the remaining available logical times (Lev and TN being

held ccns:ant), and call that t2 ; from the remaining logical times choose

the lext iowest start frame and next lowest period for t3, and so on.

Thus from the unassigned logical times, we always get the same "mix"

of possible PORT Link Assignments, as represented by the tl,t 2,t3,t4

actually shown in Figure 3.7-1.

67

It should be remarked, incidentally, that we wondered whether this

could possibly have been left as a user option: to vary the mix of logical

times (possible PORT Link Assignments) at different rates (periods),

depending on the mix (ratio) of airborne, manpack, and other units in

a division. Obviously if one had all fast rate (low period) logical

times available, one would have less totai possible PORT Link Assignments,

or if one had the other extreme, all slow rate (high period) logical

times there would be many more possible PORT Link Assignments. One would

not use either extreme, just as one does not turn the shower on all

the way hot or all the way cold, it is helpful to be able to adjust the

temperature.

3.8 Other Operations on Logical Times

Having our basic specifications of the data types UU and Logical Time

in hand, it is then simple to define additional operations on those

data types as we need them for the program. For example, consider some

additional operations on Logical Time. The operation Tsupp? (Figure

3.5-9) tells us if, for any two Logical Times, one supports the other.

We may want to know if one directly supports the other--e.g., in Figure

3.8-1, t1 supports t3, but it does not directly support t3. The time

interval t2, on the other hand, does directly support t3. It is a simple

matter to write an operation which tests this, as shown in the definition

of DTsupp? in Figure 3.8-2.

Similarly, we find in doing the control map that we want to ask, for a

particular Logical Time, which Logical Time it is supported by. This

can also be defined from previous operations, as shown in Figure 3.8-3,

Derived Operation DTsupp. Note the difference in these two operations:

the first asks, given two times, does one support the other; the other

calculates which time supports the one already given:

boolean = DTsupp?(tl,t2) (5)

t = DTsupp(t2) (6)

W.e will see, when we start writing the specification for a section

o the Network Manager that we actually do need both different operations.

68

REPRESENTATIVE TIME SLOTS FOR THE NETWORK

t3

t2

t3

Iti

Figure 3.8-1

69

- - - -- -- -

OPERATION; boolean =DTsupp?(t 1 ,t 2)

WHERE t1,t 2 ARE Logical times;

DTsupp?(t1 ,t 2) Tsupp?(t1 ,t 2) AND (Lev(t 1)+1 Lev(t 2));

END DTsupp?

Figure 3.8-2

70

DERIVED OPERATION: t, DTs upp(t 2)

WHERE t 1' 2 ARE t's;

DTsuop?(t1,t) (t~ DTsupp(t 2)

END DTsupp;

Figure 3.8-3

71

There are several other operations defined with the data-type specifica-

tions (Figure 3.8-4). Some of these are referred to as needed in dis-

cussing the control map for FIND-PLA (Section 4).

3.9 Other Data Structures in the Network Manager

It should be noted that in addition to the data types Logical Time and

User Unit that were specified for use in the following control map, there

will need to be other data types and structures specified as more modules

of the Network Manager are completed. For example, in order to specify

the assignment and clean-up modules of PLA Control as well as the various

modules making up the preliminary part of PLA Control, we would need the

data structure for PORT Link Assignment itself. Intuitively, this could

consist of a tree-like structure, as in Figure 3.9-1:

U.

tI t

f1 CR1 "'" f2 CR2

Figure 3.9-1

where ui is some User Unit, tI and t2 are the Logical Times such that

(tlt 2) = PLA(u) and f, CR, ... are various parameters associated with

the particular PORT Link Assignment (ui,uj), such as whether or not it

is FORCED, it's COMMAND RELIABILIT4, etc. Such a data structure would

have primitive operations, such as:

SAMPLE PRIMITIVE OPERATIONS FOR PLA:

port-link-assignment = Assign(user-unit, logical-time, integer)

port-link-assignment = Deassign(port-link-assignment 2,integer)

user-unit = UU(port-link-assignment)

logical-time LT(port-link-assignment, integer)

72

Def in it ion of ACT I.E I N SAME FRAME:

OPERATION: boolean =AISF(t 1,t 2)

WHERE tt2AE Logical times;

ASIF(tt)2 OR' SF(t 1 SF(t 2 mod Per(t 1)

S;Fkt =SF(t) mod Per(t);

END ASIF;

Altern-ative f"ormulation:

AISF(tit 2) (SF(t) I SF(t 2) mod M114(Per(t I),Per(t 2)))

Figure 3.8-4

73

and axioms such as:

SAME AXIOMS FOR PLA:

WHERE u IS A User Unit,
(tlt 2) ARE Logical Times,

k IS A Natural,

pla IS A PORT Link Assignment;

(1) t = LT(Assign(u,t,k)),k);

(2) u = UU(Assign(u,t,k));

(3) PLA(u) = (LT(Assign(u,tlO),O, LT(Assign(u,t 2,l)l));

(4) ALP(t) = UU(Assign(u,t,k));

(5) REJECT = LT(Deassign(pla,k),k);

(6) u = UU(Deassign(pla,k),k);

Clearly, additional axioms would be needed, depending upon design con-

siderations. For example, if we wanted the assignment module, which

follows the FIND-PLA module, to simply replace a Logical Time in a PORT

Link Assignment, then we might leave the assignment axioms as they are,

since Axiom (1) already does this; if we were to insist (for whatever

reasons) the desassignment was required before reassigning a new Logical

Time, the we might add Axioms (7) and (8):

(7) pla = Assign(u,tl,k);

(8) REJECT = Assign(u,t2,k);

In any case, it would be to this data structure that we could then add

additional operations and accompanying axioms to deal with such parameters

as COMMAND RELIABILITY and FORCED-PLA. For example, suppose we wanted

to indicate whether or not a PLA was forced. We could then add the primi-

tive operations:

SAMPLE PRIMITIVE OPERATIONS FOR FORCED-PLA

Rforce(port-link-assignment, integer) = port-link assignment;

Rforced?(port-link-assignment, integer) = boolean

Unforce(port-link-assignment, integer) = port-link-assignment;

and accompany them with axioms, such as:

74

SA*IPLE AXIOMS FOR PRIMITIVE OPERTIONS FORCED-PLA

Rforced?(Rforce(pla,k),k) True;

Rforced?(Unforce(pla,k),k) = False;

Note that we need each time we refer to a unit's PORT Link Assignment

structure, we need to include the integer which indicates whether it is

the first or second assignment (pairing of the u and some t) that is being

referred to. This issue is also discussed in Section 4.2.3.3 in this re-

port. %.e could get around this by defining our data type Logical Time

differently; that is, adding the concept of assignment of parameters

directly to the data type Logical Time:

SA!,iPLE ADDED PRIMITIVE OPERATIONS FOR DATA TYPE LOGICAL TIME:

logical-time = Assign(user-unit, logical-time);

logical-time = Deassign(logical-time);

logical-time = Rforce(logical-time);

logical-time = Unforce(logical-time);

boolean = Rforced?(logical-time);

with the corresponding axioms:

SAM-PLE ADDED AXIOMS FOR ABOVE PRIMTIIVE OPERATIONS:

WHERE u IS A User Unit,

t IS A Logical Time;

u = ALP(Assign(u,t));

E2ECT = ALP(Deassign(t));

Rforced?(Rforce(t)) = True;

2Rforced?(Unforce(t)) = False;

'.:hile this is clearly more elegant mathematically than the separate

data structure for PORT Link Assignment, it leaves us with the problem,

discussed elsewhere in this report (Section 3.6) of not being able

to reference, or address, a particular PORT Link Assignment of a UU,

otner mhan to give the specification of the Logical Time involved. That

is, as we shall see in Section A, the FIND-PLA control map, tests are

ccrn:inally being proposed which refer to UUs, and there is no way (given

75

this latter specification for Logical Time) to refer to a UU's PORT Link

Assignment, since we still have PLA(u) = (tl,t 2) and so there are two.

The former solution, to have a separate data structure for PORT-Link-

Assignment, including a reference integer, is considerably more clumsy.

In view of the necessity for duplexing, this is a problem which deserves

more study.

Those operations would then in turn be used to specify the FORCE-PLA

module. Similarly, other modules such as Suggest PLA and Check Command

Reliability, could be specified, adding operations and axioms in this

fashion.

76

4.0 THE FIND-PLA MODULE

4.1 Identification of Subr:10dules

Let us now turn to the control map of the Network Manager. Although

\'le made a rough preliminary control map (following the Hughes docu­
mentation) in the preliminary stages of our investigation, this only
covered in a general way the first three or so levels of detail (com­
pare Figure 2.2-4 and Figure 4.1-1). In order to show clearly how a
fully worked-out HOS specification including control map and accom­
panying AXES statements would look, we decided to restrict our attention
for the purposes of this example to the most co~plex and interesting
submodule, PLA Control. PLA Control module is not really decomposed
in the Hughes PPS in great detail with respect to its submodules, but
there are descriptions of some of its main functions.
assume that there are at least three major submodules:

,

We can safely
(1) the one

which designates a particular PORT Link Assignment for replacement;
(2) the search algorithm itself, which finds a new Logical Time for
possible PORT Link Assignment to a given UU; and (3) a housekeeping,
or clean-up, module which takes care of rearranging the rest of the net­
work once the new PORT Link Assignment has been made (e.g., changing

the assignments of UUs supported by the UU whose PLA was changed, sending
the change to the CLA-Control module so that CROSS Link-Assignments
can also be corrected, and so on).

Under the suggested Hughes module PLA Control, we further restricted
our attenti~n to cne submodule, so as to demonstrate what a completed
specification would look like. (A module is co~~letely specified when
ail of the functions have been related by control structures and defined
d01·m to the point of primitive operations on defined data types. Of
course non-primitive operations and control ·structures may be used, i "f_

they have been specified separately.) The module chosen was the search

algorj~h:n in subr.;odule (2), FnlD-PLA .. It is related roughly, as sho\'m in
thP. '"·'r:'C".:hetical co~-rtrol map (Figure 4.1-1). The dotted lir,es indicate our
best ~ypothesis as to how the system would relate these various modules.
Si~ce ~he operator system is discussed only sketchily in the PPS, there
w~s ~~t really enough information to make more than an educated guess

LEST AVAILABLE COPY

77

NETWORK ?IANACER

Adijacent .J MU

Assig,-*nt Ass i ynnent

Neb.rk - -- - CLA
Control Control Control

Forc - -- - - - A'Is ics~~n Clean Up

Suggest Monitor Co-uand UU Rate PORT Link
PLA Entry Reliability Chanoe State Transi-

Requests tion Processing

Other possible submodules
under PLA Control

Error Response Search

OK FAIL f f f f f f

Value Message value Message f f COMM4 -SUPP AVAIL

f 10

Reject?
1

(C.A)(A

f f f Bfo

/ NCHOOSE NOT C SPREAD
f, f f AISF CO

- Y C CO
CHOOSE NOT COOP

AISF C

Breaktie g Fai lure. I
£Failure. f-tsp

C lev f K Rjc

~C SF

A. Each C stands for a Set-Test Structure;

Each IJstands for a Set-Function Structure

16 LEVEZ 61THOUT1 ANY SET-TEST

OR SET-FUiCTION RECURSIONS
Ficure 4.1-1

at this. To specify this completely would require more extensive dis­
cussion with the designers at Hughes. Hence we have shown in this part
of the control map only some main submodules without i-ndicating inputs
or outputs (also partially because of the difficulty in determining
these from the infonnation available, as discussed in Section 2).

In view of the complexity of the specification for the FIND-PLA mdoule
and the similarity of the AXES statements accompanying the control map
to coding in various higher-order languages, it should be reiterated

here and emphasized that this is, of course, NOT code, but specification;
it is implementation independent, even to the point of not specifying
exactly HOW the sets of Logical Time are to be stored or referenced
(e.g., lists, arrays, etc.) but rather as any kind of ordered set, leav­
ing it up to the prcgrarrrner to decide how the searches might be most
efficiently cond~cted; this specification simply states which tests

It should also be remarked that, as a pilot project and kind of peda­
logical example of HOS specification techniques, this particular ver­
sion of the control map for FIND-PLA is not to be construed
in any way as final or "the last word," but rather as a tool for making
the assumptions about the program specification very explicit so that
they cun more easily" be examined and revised.

4.2 FIND-PLA Control Map

4.2.1 The Top Level of FIND-PLA

The secticn of the PPS which roughly corresponds to the FIND-PLA mo~ule
is in Section 3.4.2.2.2.3 on ~age 3-34, +1PORT link assignment selection"
[11] (Figure 4.2.1-1). t·iuch of the information needed to complete
the specification of this s~b.7.odule, of course, is not found in this
section. but is either elsewh~re in the PPS, in the STD, implicit in
some of the discussion, or even absent entirely. In the latter case,

v1e :·:~'·:e tried to make reasonable hypotheses about whc.t the system would
do in order to complete the specific~tion. Also there is a fair amount
of redundant or ~nnecessary information in Section 3.4.2.2.3 Dl] which

BEST AVAILABLE COPY
79

3.4.2.2.2.3 PORT link assignment selection. PORT link assignment selection
shall, unless requested otherwise, determine the best match between UU desired PL
states and available PLAs. Available PORT link assignments shall be determined
from the unassigned PLAs directly supported by active UUs. When no PLA is available
for assignment to a UU designated for PL state change, that UU shall be requested
to demand entry. The PLA selection criterion and PLA restrictions are defined in
the following subparagraphs.

3.4.2.2.2.3.1 PLA selection criterion. The best match between the desired PL

state and the available PLAs shall be selected using the following order:

a. PLA with an exact match between the desired and available rate

b. PLA where the desired rate is lower than the available rate

c. PLA where the available rate is lower than the desired rate

ror otherwise identical PLAs, selection shall be made in the following preference

order:

d. PLA with lower levels

e. PTA with a closer rate match to the desired rate

f. PLA with earlier start frames.

3.4.2.2.2.3.2 PORT link restrictions. Available PLAs shall not be considered
for assignment if the PLA either is supported by a UU that already cooperates in a
PL with the specified UU, or is active in frames that coincide with the specified
UU's other assigned PLA. Whenever the MU is the supporting unit of an available
PL, all unassigned A-level PLAs shall be considered.

Each PTA shall be supported by only one UU. No two UUs shall have the same
PtA. A PTA previously assigned to a UU shall not be available for reassignment until
its deassignment or replacement has been explicitly acknowledged by:

a. A PLA command acknowledge

b. .! mode command acknowledge

z. 5"J time out.

The A-level PLAs shall be assigned to different trees until all allocated trees have
been used at least once.

Figure 4.2.1-1 3-43

80

does not pertain to the search algorithm. All of this will be discussed

after a walk through the control map for FIND-PLA with commentary on its

various sections.

Uote again Figure 4.1-1, which shows roughly, without indicating inputs

and outputs, how FIND-PLA is related to some of the other Network Manager

functions. Various functions such as UU rate, Suggest PLA, or Monitor

can request a new Logical Time for PORT Link Assignment by outputting

Told to FIND-PLA; FIND-PLA then outputs a new Logical Time, tne w to the

PORT Link Assignment module and clean-up module, which changes the PLAs

of the UUs supported by ui via told'

Let us focus our attention on the top level of FIND-PLA, shown in Figure

4.2.1-2. The inputs to FIND-PLA are:

p (the recommended Period (i.e., 1/cycle rate) (c.f. Footnote

No. 2.

told (the Logical Time of the PLA designated for replacement)

T (the set of possible Logical Times)

C. (the set of communicants of the U. which is assigned to told)

The top level consists of just the main SEARCH submodule and the ERROR

RECOVERY, which simply says to output a new Logical Time, t'NEW' if one

is found, and output the old one, tOLD' if SEARCH does not find a new

Logical Time for PORT Link Assignment, i.e., if t'NE W = REJECT. In 8

each case, provision is made for an appropriate I/O message to be output

Note that the FIND-PLA module does not make PORT Link Assignments: What

it does is to find a Logical Time which is appropriate for assignment to

a given UU, which would either replace an old assignment, or in case of

tOL D = REJECT (i.e., the UU has no PLAs), could be an initial assignment.

In other words, this module simply determines that a particular Logical

T4,e meets certain specified requirements and is therefore appropriate

to te used for a new PORT Link Assignment. The actual assignment would

be :,ne by the CLEAN-UP or housekeeping module of PLA-Control; the new

Lo c:4al Time, t.E4, and the given UU, ui , would bp inputs to the CLEAN-UP
9

7: uli, which would not only replace tOLD by tNE W , but also replace the

Lo:ical Times of the PLAs of any other UUs supported by ui.

81

0

C..

-a

0

A C

~ / - *0

C. Ci C-. 1.. U
- ~ cJ 0

- ~ 4-U -
U.

0C) 3 C
to Ci

* I C

o 3 C..

3 C -~
- C)
o

- 0)
~C =

4-
0

0

C~

C) ~
so U.)

C)

E -

3 0 -'

3
C)

-- - 0
0)

C, .- C

5.- ~5
U)

C..
0

C)

3
to C) C)
C) - C

- 'C

- 0)
3 =C)
C 0

o

II Li
2

3
to C)

C -

C

3 30) 0)
C r

82

Now the search algorithm itself is shown in Figure 4.2.1-3. Before

going through the various stages in detail, it would help to have an

intuitive understanding of how it is done, as well as some comments

about assumptions we have made. First of all, the way we assume the

search is conducted is illustrated in Figure 4.2.1-4. The basic idea

is to start out with a (perhaps large) set of Logical Times which could

be possible candidates for PORT Link Assignment to the UU, ui; by means

of the various tests and requirements imposed by Section 3.4.2.2.3 of the

PPS and elsewhere in the Hughes documentation to whittle down the set

of possible candidates, throwing out the ones which are illegal for one

reason or another until there remains a set containing only one unassigned

Logical Time, t'NE W' which will be the best match possible. That is,

in terms of Figure 4.2.1-4, one starts out with a large number of candi-

date Logical Times for PORT Link Assignment, the set T, and after various

tests and eliminations (the double arrows), one ends up with a single

tNEW'

It turns out that there is one "hitch" in this otherwise very straight-

forward process. For each particular UU, ui, we only allow those Logical

Times which are T-supported by Logical Times which happen to be PORT-

Link-Assigned to other communicants of ui (Figure 4.2.1-5). Note that

the result of the new PORT Link Assignment is to have ui U-supported
by a different UU than the one which U-supports it currently. Thus,

although the bulk of our tests on possible Logical Times are stated

in terms of conditions on Logical Times, we have to refer, at least

initially, to the UU's which are communicants of ui (i.e., those which

ui has heard from at some time, indicating they are within radio range).

This is shown schematically in Figure 4.2.1-5. Suppose all the boxes

in the top row (Tn) represent unassigned Logical Times (which
are hereore Unassigned

are therefore possible candidates for PORT Link Assignment to ui). We
can only choose the ones which are T-supported by Logical Times which are

PORT-Link-Assigned to one or another of ui s various cornmunicants (UU's in

the set C). But this is not a case of simple matching up, since each

commrrnJ:icant UU in Ci has two PLA's because of duplexing. Therefore,

one ias two alternatives:

83

C

C

a
C

~~1
a

I-

C

A I-

C

9- A.-

-v I
C

As-

a C..A

IA vi
* C I-

0'

a. La.

9-

-9

U,

9-

'C

~ A~A
A 2

I-

I-

-V

C

U
9-

C. I.
Vvi

a
3 IA
Ii
C

____ 84

./°

/

//

i /
I-.

/

-

e,

3\

\ -C

2
°

•

C

o
-

!0

CC

T
f 0 f

1 unassigned ----------> T supporting

3 A

Tci< -- - - - - - - - - -Tc

TA

f

OL
T IA T"c.A

ft A f

tnteIt 'ne) new

Figure 4.2.1-4

86

4-41

In LIn
4.4 0) t*

C -~ O~0

Ln 4.

-) 0

Lnn

-~ C

o 'n

,,, 0.; -- 0

a))
0-0 -

Em-~~'(

0 0-

0n 4-1

(0~ 0..

0) 00-
Inn

C..)87

(1) to find all the Logical Times associated with the UU's in

Ci, find which further set of Logical Times these Logical Times T-support,

then find which of those are unassigned, i.e., available for assignment.

(2) to find the unassigned Logical Times, see which Logical Times

T-support them, then eliminate all those which are not PORT-Link-Assign-

ments of the ui 's communicants, Ci.

Either way is round-about, but the second seems to involve less computa-

tion, so we have opted for (2). Thus, in Figure 4.2.1-5, we first find

TUnassigned' the top row of boxes; then we find Tsupporting (all the

boxes in the bottom row, which represent the Logical Times that support

TUnassigned* We then eliminate all the Logical Times not assigned to

some communicant of ui, (the dotted boxes) being left with the boxes

labeled tc or tM. (We also need to treat possible A-level assignments

differently than other levels. This has been shown by separating the

T into those which are assigned to the Master Unit and those which are

assigned to other user units; we wait until later in f4 to actually

separate out the T's which have Lev(t) = 0).

We then need to find the set of Logical Times which are both unassigned,

and supported by the T Ci This gives us the Logical Times indicated

by the shaded boxes in the top row. We can now perform all the tests

and matching required to choose one which will be the tNEW.

4.2.2 The Operations SET-FUNCTION and SET-TEST

Before discussing the exact statement of the functions in the control

map for FIND-PLA, we need two additional tools, which HOS supplies us

with. In large systems (programs) there are, of course, functions which

are repeated over and over, and we may wish to simply define them in one

place (especially if the definition is complex) to be invoked whenever

needed. Similarly, HOS control maps and accompanying AXES statements

can be used (aswe have seen in the section on data types) at the specifi-

cation layer to define operations which can be referenced whenever needed.

88

In addition, just as there may be repeated functions, there may also be

certain control structures which are used over and over again, but with

different functions. AXES also gives us the capability to define these

as needed and create a syntax so they can be invoked, employing the

function needed for a particular case, in various places in the system.

Examples of such structures are Cojoin and Coinclude, which are already

HOS library structures (c.f. Appendix II).

For this PLRS module, we have defined two structures which will see use

repeatedly. (They are, incidentally, used in other PLRS modules, and

of wide general application. Because of their general applicability,

they will be added to our library of AXES structures.) The first is

called SET-FUNCTION, and is defined in Figure 4.2.2-1. What it does

is to take as input any set-like data type (lists, arrays, files, etc.)

and apply some operation which is individually valid on the members

of the input set, to produce an output set of the same dimensions as the

input set, but whose members are of whatever data type is normally out-

put by the operation chosen. For example, suppose we take the operation

y = sin(x), which takes as its input an angle and outputs the sine of that

angle. But suppose that our input data will consist of 100 angles, stored

in a lOxlO array. Then we simply write Y = sin[X] with square brackets

and capital letters. If X is the lOxlO array, then SET-FUNCTION is in-

voked, which applies sin(x) to each angle, x i,j , in the array X, pro-

ducing a lOxlO array, Y, each of whose members, Yi,j' is the sine of the

corresponding xi j . Since we are continually working with large num-

bers of Logical Times, presumably sorted in some kind of ordered set

(list, array, etc.), this will clearly be a useful control structure

fzr the FIND-PLA module.

The other, necessary control structure is SET-TEST, defined in Fig. 4.2.2-2.

This is different from SET-FUNCTION, which really transforms one set into

another, in that the output is always a subset of the input. What it does

is to take some set of objects, and throw out all those which don't meet

scme test or criterion. For example, if we had a large set of Logical

Times, .e might want to consider only those whose Period was, say, less

than (. Now the syntax for SET-TEST is: "T2 is formed from T1 forall

c"p.:'', where TI is the set we start out with, and T2 is the set we have

aft~ e -elminating all the t's in TI for which the boolean function

I9

k

4- C- t

4) a) W
cz136

-~0 4-E

-~O C3U~ .

..- 0).- U
4-i '- 4-2-0

4- Gi Cr

>0r 4-

4-- r-C >,

C)
4- I 4-' o Q

4- E E4

(0) to

Q: .C C (a 0 (

4-) V)

4J -o -) E

>< S (0 Co

4-) 4- - E-

uC
0<

4S- Li
00 0 4 1

) 0)

o: 4-' x~>
4- 4-) 1 I

Cu r_ >< >

04-
L) tA 4- 4-

0 4-0
0 > U -'1 41

41 (V Cu (

=D Il 0 - -

90

4-)

C.))

CL k4 0.44-

o a 4--

C. a). 4-) -

M ct: - u

0 0 -

0) 0 41 a

co V. 4- U
4fl Ln 1 u C

o tj C) 11 a),.. 4-

'4- -. 4

04 t 4-)k. CL)C

0) 0)

0)-

-0-

4-)

0.. S-.

4- -a

4-- U4)

ij 00

C'4-)

CLO

0~4 034-

4- -q

4- 0.4-

4-' '4-

I- 4-) .4-) -

o 4-

LnL

Li 4-)

C.).

913

g(p,t) = FALSE. So for our example, we could say, where T2 and TI are

some kind of set of Logical Times, "T2 is formed from TI forall Per(t) < 8."

This says that the times, t, which are in T2, are those which were in

T1, and whose period was less than 3. In the figures in this report, we some-

times replace the words "is formed by" by the symbol "c" for brevity.

Notice that the statement "Per(t) < 8" corresponds to "g(p,t)" in the

general syntax for SET-TEST. The operation q is really any (n+1) place

boolean operation (i.e., whose value is either TRUE or FALSE) and whose

first n places are fixed-parameters or constants, and whose (n+1)th

place is the variable being tested. That is, g(p,t) is just the state-

ment of some possible property of t, where p is a list of some constant

parameters which may be necessary to state the property, e.g., "8" in

the above example.

To reiterate, in the statement "Per(t) < 8," the constant 8 corresponds

to the p in "g(p,t)," and the compounded operation "Per(_) < _" cor-

responds to the "g(_,)". This is perhaps easier to see in prefix-notation

than in infix-notation: "< (Per(t),8).
1 0

At any rate, it is clear that if we are to begin with a set (perhaps large)

of logical times which are possible candidates for PORT Link Assignment

and find a single "best" candidate by throwing out all those which don't

meet certain criteria, then this SET-TEST structure will be the basis

for this module. Once we have defined these two structures for working

with sets, then it is simply a matter of trying to state the tests and

criteria to be used correctly, and in the correct order.

4.2.3 The Search Algorithm

Now that we have these two structures which can be invoked at will to

either perform an operation on a set or to perform a test on a set, let

us look again at the search algorithm (Fig. 4.2.1-3). The function names

-ff and f - f are used to save space and are abbreviations for the

full specifications written out in Figure 4.2.3-1.

The first function, fo' takes the set of all possible Logical Times

as input and yields the ones which are unassigned as output. It simply

applies the function ALP (the inverse of PLA, PORT Link Assignment)

92

f0 T unsind T forall Reject ALP(t)

f1 supporting DTsupp[Tunassigned]

f2 Tc CT supporting forall Element?(APL(t),C)

f3 Tc Tunassigned OR (DTsupp?([T C. t))

f4: (T AIT) - f 4 (T i) SEE BELOW FOR DETAILS

f T1A f Ct T A SEE Figure 4.2.3.2-lb

f :T1 = - f a(T ciA) SEE Figure 4.2.3.3-1

f y pertio: T2 g T, forall NOT(AISF(Other(u, 'tol)t))
where T VT Iare sets of logical times; u.i is a uu; tol't

are logi'cal times:

f :Operation: CHOOSE(p,T) SEE Figure 4.2.3.4-1

f 4 (T A9T = - f4 (T)

COINC LUDE

A 5- c. ci

f 5 T Ac T cforall Lev(t) =0o

f6: Tc i cT ciforall Lev(t) > 0

Figure 4.2.3-1

93

to each t in T, and if it is not assigned, i.e., if ALP(t) f y, for some
u, then ALP(t) = REJECT. Thus, all this function has to do is find the

t's such that ALP(t) = REJECT.

4.2.3.1 Finding Eligible Logical Times

DRmember that this is the Snefira1 n layer not the impmpntation

layer; fo does not necessarily say how, exactly, PORT Link Assignments

are to be stored or referenced, or even that T must be cal-
Unassigned

culated by going through the list of all logical times on each pass.

At the implementation layer, for example, Tunassigned might be stored

in some temporary memory and simply updated on each pass. We might

even want to revise the specification and make fo part of the CLEAN-UP

module, i.e., input Tunassigned to FIND-PLA directly.

Note how straightforward such a change would be. We can see, in the control

map, exactly which input variables would have to be changed, and we would

get a new output variable, TUnassigned from CLEAN-UP. This illustrates

two points: (1) a property of HOS specifications: that changes in the

specification are relatively easy to make prior to implementation because

of the modularity of the control map format; and (2) a property of the

PLRS system: it is cyclic, rather than strictly linear; i.e., the output

of a function "late" in the cycle may produce an output which serves as

one of theinputs on the next cycle. For example, an ordering of functions

like "fo' fil f2 ' f3" might have the same effect as the order "f1' f2'

f35 fo since the output of f0 will still serve as the input to f1 on the

next cyclic pass through the system. This is a matter deserving more

attention than we have space for here, but since ordering is treated only

implicitly in the PPS and STD, we simply note it as an issue to be re-

solved.

The next function, f1: Tsupporting DTsupp [TUnassigned] simply gives us

(c.f. Fig. 4.2.1-5) from the unassigned logical times, the set of logical

times which support them (bottom row of time-slot boxes in Fi9 . 4.2.1-5.

We then ask, via f2, which of those logical times are PORT-Link-Assigned

to UU's which are connuricants of the ui whose tOLD we are trying to

94

change. That is, if ts is a Logical Time in the bottom row (Tsupporting),

is there a u = ALP(t), such that us is also a member of the set of

communicants, Ci? That is what f2 states: Tc i s formed from Tsupporting

11 1
rorall Element?(ALP(t),Ci). Note that the condition on formation of the

new subset is a compound function; this could have been written out in

full AXES format as follows:

Operation: b = g(Cit);

Wheze b is a 3oolean,

C i is a Set(of UUs),

t is a Logical Time,

u is a UU;

b = Element?(u,Ci) Cojoin u = ALP(t);

END g;

The format "Element?(ALP(t),C i) is simply an abbreviation for an AXES

defined operation.

The function f3 then asks of the Logical Times in the top row (T Unassigned)

are they T-supported by a Logical Time which is assigned to one of ui s
communicant's? (c.f. Figure 4.2.1-5). That is, it eliminates from

TUnassigned all the Logical Times not supported by a Logical Time which is

PORT Link Assigned to some communicant UU (unshaded boxes).

4.2.3.2 The A-Level Logical Times

The function f4 simply separates these Logical Times in TC (which are

i

candidates for PORT Link Assignment) into the A-level ones (TA) and all

the rest (Tc i-A) since the A-level candidates will be treated differently

(f) and considered first (f8) for PORT Link Assignment.

This seacration of A-level logical times corresponds to the PPS statement:

eh, the MU is the supporting unit of an available PLA, all unassigned

A-level PLAs shall be considered." This statement is a bit problematical,

for -' the "MU is the supporting unit of an available PLA," then the

implication is that the MU is one of ui's communicants. Hence it follows

95

logically from the search algorithm as stated for the general case that

any unassigned A-level Logical Time will be automatically among those

considered for assignment. Thus, as worded in the PPS, the requirement

is unnecessary; it could be taken to mean, "...all unassigned A-level

PLAs shall be considered first." This seems like a not unreasonable

requirement, since the A-level Logical Times are also singled out for

a special test, and from the ST, the piloophy seems to be that one

tries to fill in A-level "branches" in the trees first.

Our search algorithm itself, f7, is arranged to take this into account,

by first looking at the A-level Logical Times separately in f8 ' Then if

a t" new is found among the A-level Logical Times, it is made the new

PLA, t' new' by f9* If no t"new is found among the A-level Logical Times,

f9 directs fl0 to look among all the others (TCiA) for a possible PLA.

The second way in which A-level Logical Times are treated differently

is in being subjected to the test in f , which corresponds to the

PPS statement, "The A-level PLAs shall be assigned to different trees

until all allocated trees have been used at least once." That is,

UUs shall be assigned to Logical Times with different tree numbers,

until there is at least one PLA for every tree. (Incidently, note

again that the sentence, as worded, is meaningless: if PLA is intended

to mean "Logical Time," it is false, because Logical Times have a fixed

tree number and cannot be "assigned" to a tree--they are already by

definition in a tree. If PLA really does mean PORT Link Assignment,

then a PORT Link Assignment can't be assigned; only UUs can be assigned

to Logical Times and vice versa. Hence, it should read, "The A-level

UUs shall be assigned..." or even more accurately, "If there are any

trees all of whose Logical Times are unassigned, UUs should be assigned

to A-level Logical Times in these trees first."

In less formal terms, in the initial stages of building the network,

one wants to fill all the trees as quickly as possible, so that there are

no "empty" trees, i.e., ones whose logical times are assigned to no UUs

at all. Thus, if there are any "empty" trees still in the network, we

must try to assign our UUi to one of them first (and since they are
"empty", it, of course, has to be an A-level assignment).

95

This is illustrated in Figure 4.2.3.2-1. The cross-hatched boxes represent

Logical Times assigned to the MUwhich potentially T-support Logical Times

at the A-level. In the picture, two of these (the black ones) have been

assigned to UUs, one in Tree 1 and the other in Tree 5. Trees 12 and 17

have no UUs assigned to their Logical Time slots. Thus, if we have a UU

requesting entry, we would want to assign it to, say, Tree 12.

This is what f does. Since it is essentially an existence test ("Do

any empty trees exist?"), like all existence tests, it is somewhat cum-

bersome. T initia is the set of available Logical Times which happen to

belong to empty trees. If there are any, function gi sets T' A = Tinitial;

otherwise, T'A = the original TA that we started with, and the computation

continues in a normal fashion.

4.2.3.3 Restrictions on PLAs

Functions f. and f are requirements imposed upon the choice of Logical

Times before we even begin the search. Function f insures that there

are no loops--that the network of UUs and Logical Times is really tree-

like." It is assumed that it is desirable not to have either "real"

loops (in the same tree; see Fig.4.2.3.3-la) or "virtual" loops (the

two UUs active in different trees, Fig.4.2.3.3-1b). While this seems

desirable from a practical point of view (we want a maximally spread-

out netowrk, so that if one UU is knocked out of action, it will create

a minimal disturbance of communication links), it does impose a

severe restriction on the number of Logical Times available for PORT

Lir'.: Assignment to a given UU. Also (like function f), it is rather
co.plex corputationally, as can be seen from the control map in Figure

"..3-1. ..hile the Logical Times that don't meet the condition "not

...supported by a UU that already cooperates in a PLA wi ' the specified

UU" [], this condition is quite complex computationally, as we can see

by its control map (Fig. 4.2.3.3-la, f). (Again an existence condition!--

"Does a 'JU exist such that one of its assigned Logical Times support the

prco::s Logical Time being considered for assignment to ui and whose

o_~___ .ssigned Logical Time is either T-supported by or T-supports the

otres ogical Time of u.?")

97

v II

cd}

uj

LU

CD\

Lu

°4-,

C=,

-o

.98

IV-

* /u

,!2C

99

L;

4.4,

I-C

0 LU
444 CLLLzc

4-J4-

4-4-1

Bm

00

:&n- ui owcl

4-' 4-

u I

o. -j _-.

4-'4.

o '4- ~4-

04. Q) 4-'

Co .0-

CiL) Q- W L

- 0- L

C4-)

ccc

0

00
Uc

CC)

4.4 00

Definition of COOPERATE:

OPERATION: boolean = Ucoop?(u1,u 2);

WHERE u1,u2 ARE UUs;

Ucoop?(u lu2) =OR(Usupp?(u1,u 2), Usupp?(u 2,u 0);

END Ucoop?;

(con't)

101

Function f does not seem as complex only because we have already defined

Y
AISF (Active-in-Same-Frame) as an operation in the section on data types.

Furthermore, the requirement, as stated in the PPS, is that the Logical

Time not be considered if it "is active in frames that coincide with the

specified UU's other PLA" (emphasis added). Unfortunately, specifying

other is not so easy as it might seem at first glance. because of the

duplexing. To illustrate, consider an early problem that we ran into

in understanding the PPS: Figure 4.2.3.3-2 (PPS Figure 3.4.2-2), we

were surprised to find that although the PORT-Link supporting UU (going

through UUd) is the second PLA for UUd (c.f. row d2 in the chart, where

the rate is entered in column APL2, not column ALPI), and yet the rate

for UU c was entered in column APL1, indicating that this Logical Time

was the first PLA for unit UUc . That is, there is no fixed concept of
"other," i.e., of first or second PLA, as we have noted in the data-

type specifications, if we say UUI supports UU2 and PLA(u.) = ta,t b ,

PLA(u 2) = tcltd . We have no way of knowing in advance of actually check-

ing all the possibilities whether ta T-supports tc, or if ta T-supports

tc, or if tb T-supports tc, or if T-supports td! --four possibilities.

Hence, the address of the "other" PLA for some given UU is not a constant

(like "FIRST" or "SECOND"), but must be referenced either by including

the other PLA (e.g., the other Logical Time, t other) as an input to the

search algorithm, or by calculating it when we need it (Figure 4.2.3.3-3).

4.2.3.4 The Search Itself

Finally, we come to the search algorithm itself, which is fairly straight-

forward, compared to the other tests and conditions. This is done in

Function f . After seeing all the above complexity, it should be noted

here, that when a simple condition is imposed (instead of the very complex

conditions suggested by the PPS for the previous tests), the AXES struc-

ture SET-TEST allows a very simple and clear statement of the requirements

(Figure 4.2.3.4-1). On the right-hand side of the Cojoin, we simply take

the set we began with (T) and throw out all the Logical Times whose

periods are not equal to the required period. If there are none left,

T2 = REJECT, and the FAILURE structure (an AXES library structure of Ap-

pendix II) allows us to try a different function, in this case looking for

102

SM-A-911361

LUw

c 0'

LUU

UU

N

C C -

0 0. 0

0 o U

Nc 0

9L N)

to 0
N<

40000N0 0 0 W D ~ 10

C31H L UU N

Li.

ASIW±~ddrlS I -

Ai133HO 'o n . ux

IS-13A31 '11 IV) .
oSj.o0ins Cc ~

J f

3-4

si~0dd~103

-o

4-,

0.

0-.

CNN
-. 0

MU

It

104 14

-J-

L --

C-.

Ln S-

0 0

c lq

L. L.

-0-

105~

the Logical Times with periods less than the required period. If there are

none, FAILURE again lets us try a third possibility--greater-than the

required period. (Note that less and greater have been reversed because

we are checking period, rather than cycle rate, c.f. commient in Footnote

42). We do not need a third FAILURE since the top level of Tie-Break

will pass on a REJECT if there are no possible assignments.

The Tie-Break operation (Figure 4:.2.3.4-2)is also fairly self-explanatory,
except that, as given in the PPS, it does not break all possible ties.

To see why this is so, remember that Logical Times are exhaustively de-
fined by PERIOD, LEVEL, TREE-NUMBER, and START-FRAME. While given a

particular start-frame, level, and tree-number, there can be only one

period (because of Axiom 5 of data-type Logical Time), it is perfectly

possible for there to be two Logical Times with the same period, level,

and start-frame but different tree numbers. (The reader can demonstrate

this by working through the Logical Times t t- t in Figure 4.2.3.4-3.

There is no way to choose between t a and t Y) We have suggested an arbi-

trary fourth test based on tree-number as part of the Tie-Break opera-

tion.

4.3 Conclusion

In summary, an exact specification of this module (FIND-PLA) in HOS terms
would consist of the control map accompanying AXES statements (with per-

haps a minimal explanatory cormmentary) and the data-type specifications,

which w.-ould cover all the modules. This is what a rewrite of the PPS

would consist of in HOS terms. A sample explanatory commnentary for such

a rewrite is given in Figure 4.3-1. It is interesting to compare this

with the original PPS page 3-43 that we started out with. In order to

turn this into a detailed and explicit specification (e.g., one that

could be coded from in some relatively straightforward way), there were
many problems to be resolved and hidden implications to be discovered.

For exariple, Figure 4.3-2 shows some of the words used in a technical

sense, just in this one section of the PPS (Sect. 3.4.2.2.3.) along with

some problems (discussed earlier) regarding their meaning. Similarly,

Figure 1.3-3 highlights some of the functional problems: (1) there

is no order among the operations and tests suggested (functions are marked

106

=TIETnew BREAK (p,T 0

Coe i the r 4 Re acT

Tnei (T . =)j c T ne (pTO0) IT 2 Reject

T f f 2 (PT') T' is formed from T 0 forall f min iev(t)

7 =T- T nw= f (p,T')
.)W ;T Rej ect 3 IT~q#Reiect

Cojol n

Tew=ST' T'' is formed from T' forall fcos (D t)

match i

Cceither T;, epaeT'

new !T' T eetnew f 5(TIT 2 0 Reject

Cojoin

T =e. ff(T''1) T ... is formed from T'' forafl f mi (t)

SF

:, o&' Ze b y Z ev f-66
* :c~kc" eve.C--

-'i ther

T'''=Rejeiew- ftTI)T 1I1#Reject

Figure 4.2.3.4-2

107

f mi nlev = (Lev(t) =Min(Lev[Tol))

f lose = (Abs(p-Per(t))) = Min(Abs(p-Per[T'])))

match

f mi (SF(t) = Min(SF[T''])

SF

A possible f TN = (TN(t) = Min(TN[T'']

Why it doesn't break tie:

Suppose want per = 8, and

per Lev TN SF

t = 4 , 1 ,2,2

= 4 , 1 ,7, 3

- 4 , 1 ,13, 2

= 16 , 1 , 21 , 7

t 4 , 2 7 5

t 32 , 2 , 2 , 3

Figure 4.2.3.4-3

108

WORDS NEEDIiG DEFINITION:

PLA (PORT Link Assignment):

can -ean either (1) the assignment process

e.g., "assignment of a PORT link" TD p. 3.3-12)

(2) the thing assigned

e.g., "assigned PLA" (PPS 3.4.2.2.2.3.2)

"unassigned PLA"

Not even defined in glossary to PPS (Appendix B)

UU (User Unit)
need to be of same data type

MU (,aster Unit)J

Level - the MU also has a level

Suo ort - Used to mean:

U-supp? (ul,u 2)
T-supp? (tl,t2)

T-suDp? (ALP(u.1),t2) "PLA is supported by a UU..."

COODerate - not defined in glossary /

,re - doesn't mean links and nodes

_-ea.s sets of time slots
"0 /

Ta:Te - g3ossary definition doesn't mention it

is composed of time slots

- th- -ean period

.... _i__ _ - should be PLA or "t"

c--,-- rne-s to be an operation

PL' state - simply means high or low period

Figure 4.3-1 109

TECHNICAL TERMS NEEDED FOR THIS SECTION

3.4.2.2.2.3 PORT link assignment selection. PORT link assignment selection
shall, unless requested otherwise, determine the best match between UU desired PL
states and available PLAs. Available PORT link assignments shall be determined'

from the unassigned PLAs directly supported by active UUs. When no PLA is available
for assignment to a UU designated for PL state change, that UU shall be requested
to demand entry. The PLA selection criterion and PLA restrictions are defined in
the following subparagraphs.

3.4.2.2.2.3.1 PLA selection criterion. The best match between the desired PL
state and the available PLAs shall be selected using the following order:

a. PLA with an exact match between the desired and available rate (period)

b. PLA where the desired rate is lower than the available rate

c. PLA where the available rate is lower than the desired rate

For otherwise identical PLAs, selection shall be made in the following preference

order:

d. PLA with lower levels

e. PLA with a closer rate match to the desired rate

f. PLA with earlier start frames.

3.4.2.2.2.3.2 PORT link restrictions. Available PLAs shall not be considered
for assignment if the PLA either is supported by a UU that already cooperates in a
PLA with the specified UU, or is active in frames that coincide with the specified
UU's other assigned PLA. Whenever the MU is the supporting unit of an available
PL, all unassigned A-level PLAs shall be considered.

Each PLA shall be supported by only one UU. No two UUs rhall have the same
P L. A PLA previously assigned to a UU shall not be available for reassignment until
its deassignment or replacement has been explicitly acknowledged by:

a. A PLA command acknowledge

b. A :-ode comimand acknowledge

c. UJ time out.

The A-level ?LAs shall be assigned to different trees until all allocated trees have

been used at least once.

3-43

Figure 4.3-2

110

OPERATIONS AND FUNCTIONS IN THIS SECTION

comparLe desited period
with period of tod .

3.4.2.2.2.3 PORT link assignment selection. PORT link assignment selection
shall, unless requested otherwise, determine the best match between UU desired PL
states and available PLAs. Available PORT link assignments shall be determined
from the unassigned PLAs directly supported by active IlUs. Mien no PLA is available
for assignment to a UU designated for PL state change, that UU shall be requested
to demand entry. The PLA selection criterion and PLA restrictions are defined in
the following subparagraphs. should be in dif6eAent section?

3.4.2.2.2.3.1 PLA selection criterion. The best match between the desired PL
state ani the available PLAs shall he selected using the following order:

a. PLA with an exact match between the desired and available rate (period)

h. PLA where the desired rate is lower than the available rate

c. PLA where the available rate is lower than the desired rate

For otherwise identical PLAs, selection shall be made in the following preference
orer:

d. PLA with lower levels

e. PLA with a closer rate match to the desired rate

f. PLA with earlier start frames. 6
g. mi's'sng! Y
3.4.2.2.2.3.2 PORT link restrictions? Avafiable PLAs shall not be considered

for assiynment if the PLA either[is supported .byfa UU thdt already cooperates in a
PLA with the specified UU,]or[is active in frames that coincide with the specified
UU's other assigned PLA.] Whenever the MU is the supporting unit of an available
PLA, all unassigned A-level PLAs shall be considered. f

meaningless or 6alzeaA 64 ,enot necessoAy; t,,
[Each PLA shall be supported by only one UU.] [INo two UUs shall have the same

PLA] A PL\ previously assigned to a UU shall not be available for reassignment until
;ts deassignment or repla.ement has been explicitly acknowledged by:

i" PL om-,and ackn,,wledge

b. -; ;o~ie co..and :ac .ledge, doenn't belong in this section

t "Me cat.

,:;e *\-e! . L.As shall be as.cd to different trees until all allocated trees have
'een ust.-e at leat once.

Fioure 4.3-3

11l

where their verbal descriptions appear in the PPS test; compare to the

control map). (2) Some statements are either meaningless or false, e.g.,

"Each PLA shall be supported by only one UU." First of all, UUs U-support

other UUs and Logical Times T-support other Logical Times, so a UU can't

support a Logical Time (and certainly not a "PLA"). We then might ask

if it means "a Logical Time has only one UU assigned to it" (in which

case it is trivally true, by definition), or if it means "a Logical

Time is T-supported by only one other UU's Logical Time," in which case

it is false, since any Logical Time is supported by several other Logical

Times and we must assume they mean directly T-supported. But this is

inherent in the way Logical Times are defined (in the data-type defini-

tions). So it is not clear this has anything to do with the search al-

gorithm. (3) Some statements are unnecessary. The statement "No two UUs

shall have the same PLA" is redundant, since one can only make PORT Link

Assignments from unassigned Logical Times in the first place. (4) Some

statements properly belong in other sections, e.g., the statement which be-

gins "A PLA previously assigned..." and which includes the three cate-

gories (a-c) has nothing to do with PLA selection, but, as we can see

from the control map, tells which Logical Times are going to be in

Tunassigned. But this is determined by the result of applying the opera-

tion ALP(t) and the result will depend on which PLAs are currently in

force. But if the CLEAN-UP function does actual assignment, then the

timing of when we deassign PLAs properly belongs in that module, not

as part of the search algorithm. Similarly, the statement "When no PLA

is available for assignment to a UU... that UU shall be requested to de-

mand entry" is properly the response, or recovery from REJECT in FIND-PLA,

and although it could conceivably be generated by the top level of FIND-PLA

(i.e., generate a DEMAND-ENTRY-REQUEST), again this seems properly the

function of a module outside FIND-PLA, as noted in Footnote #4.

To reiterate, this sample specification for Section 3.4.2.2.2.3 fll],

Figure 4.3-4, has, of course, not solved all of the problems, some of

which require more system-wide solutions. But it has pointed out and

suggested possible resolutions, which might be taken into consideration

as the specification of the PLRS Network Manager continues.

112

SAMPLE RE-WRITE OF PPS SECTION 3.4.2.2.2.3

3.4.2.2.2.3 PORT LINK ASSIGNMENT SELECTION

This module attempts to find a logical time whose period is as close as

possible to the period cenerated by the PORT Link State Transition Processing

module, and passes this new logical time to the PORT Link Assignment and

Correction -odule.

VARIABLE DATA-TYPE MEANING

INPUTS: P integer Recommended period

u. User Unit The UU being considered

for reassignment

told logical time The LT of the PLA being
considered for change

T tuple (of logical The possible logical times*
t i me)

OUTPUTS: tne w logical time The new LT found

01 message j
MTC message data-type to be specified

This could be list, file, array, depending upon implementation layer
considerations.

The module first conducts a Search for a new logical time, then detects, if

necessary, a failure to find one, and responds with error message.

First th e Function fo kF~ures 4.2.1-3 and 4.2.3-1) computes (or calls from

merory) the logical tir-,s which are unassigned: ALP(t) = REJECT. This func-

tion cutputs the set (list, array, etc.) Tunassigned.

The next function, fl' finds w.'hich are the logical times that Tsupport the

loaical tires in TUnassied. (f1 = Tsupporting = DTsuDP[TUnassigned]))

(The nr:tass in functions fl - f4 is illustrated schematically in Figure 4.2.1-5.

Figure 4.3-4

113

We then find which of these logical times are PORT Link assigned to the

user unit u i' communicants. (f2: TC. IS FORMED FROM Tsupporting FORALL

Element?(ALP(t),Cid))

We then find which logical times the communicants' logical times support

(f3) and divide them into A-level and non-A-level logical times (f4).

We can now conduct the search for the best match, after first eliminating the

logical times which fail to meet certain requirements.

For the A-level ones, T we attempt to have at least one assignment for

every tree as soon as possible in the beginning stages of building the

network; therefore we apply f a, which checks to see if there are any "empty"

trees, and if so, picks a logical time from one of them if possible

(Figure 4.2.3.2-1).

The rest of the tests, f - f., are run first on the A-level logical times,

and if no candidate for PORT Link Assignment is found, the same tests, f -

are run on the rest of the logical times, T-A.
I

Function f checks the logical times to make sure the PORT paths formed byY
such an assignment will be district; i.e., not cross or form loops, either

real (in the same tree) or virtual (in different trees) (Figure 4.2.3.-I).

Function f4 eliminates from consideration those logical times which are active

in the same frames as the User Unit u.'s other assigned logical time (Figure 4.2.3-1).

The final operation, f., then attempts to find a logical time whose period

matches rost closely the given period (Figure 4.2.3.4-1), and if more than

one is found, breaks the tie using the criteria indicated in the operation

(Tie Break, Figure 4.2.3.4-2 and Figure 4.2.3.4-3).

If at any point the set of logical times being considered becomes empty, a

REJECT is generated and passed along the top levels of the various functions and

is output as the value of t' new If t' new = REJECT, then tnew is set equal to

t old and appropriate meassages to the 1/O and MTC are generated (Fig. 4.2.1-2).

Figure 4.3-4 (con't)

114

5.0 REVIEW OF SUBSTANTIVE PROBLEMS IN REAL TIME PLRS DESIGN

In the beginning of the PLRS project, we reviewed the preliminary Pro-

gram Performance Specification []. It has been the case that many of

the errors we detected in this primary document have been cleared up

in the final PPS. In addition, many of the things which we found missing,

ambiguous, or wrong in the PPS have been straightened out in the STD

and through discussion with members of the PLRS project. It seems as

if the closer the system gets to implementation, the better the system

is specified. (An example of this is provided by the PORT Link Assign-

r:ent Cur;iiand in the STD, which specifies the necessary data for a PLA

better than the entire discussion in the PPS.) While the trend toward

better design as the system moves closer to implementation is encouraging,

it is not the best way to develop systems according to HOS principles.

And, despite the improvement, some substantial errors remain. This sec-

tion will describe how these problems and errors are detected. A re-

presentative list of them will be described in some detail. Finally,

we will sumrnarize them by category and discuss how the consistent appli-

cation of HOS principles can be used to avoid them.

5.1 Examples of Problem Categories

5.1.1 Confusion between the Network of Units and the Network of Logical
imes

This confusion is displayed in several ambiguities. For example, the term

tre is used both in the conventional graph sense (as a hierarchical

sez of units) and in a special sense of a set of timeslots. We will

describe three problems arising out of this confusion.

PLA Confusion

Tnroughout the PPS, there is confusion regarding PORT Link Assignments

'i.e., a set of transaction groups - 16 timeslots - during which another

set is are communicating) and PLAs, which are often used in the sense

of :7-iz:le or potential transaction groups. This confusion is reflected,

f-r exa:m.pie, in the concept of "unassigned PLAs" (see PPS, Sect. 3.4.2.2.2.3).

=ct that PORT Link Assignment is not a glossary entry is not helpful.

115

The implication of this confusion is that the procedures for finding

available transaction groups to be used as a PLA cannot be clearly

specified.

This problem was identified by trying to determine formal data types

to be used in the control map. (See discussion in Section 3.6 and 3.7.)

Confusion between Units and Logical Times

Clearly, information regarding both units (e.g., communicants) and Logical

Times (e.g., which contain cycle rates) must be considered in managing

the new ork. However, these two concepts Musot be c ,o.- ..A . F,-

example, when (in PPS Sect. 3.4.2.2.2.3.2) it is said, "Each PLA shall

be supported by one only UU", the concepts are mixed. Elsewhere

(PPS Sect. 3.4.2.2.2.1.3) PLA's support other PLAs and units support

units.

This problem was discovered while formulating the data types.

Primitive Operations

In the PPS (especially Section 3.4.2.2.2.3.2), the confusion between

links and units leads to a corresponding confusion between the primitive

operations which might be performed on each. In the statement, "Each

PLA shall be supported by one one UU", the implication is that UUs sup-

port PORT Link Assignments (rather than UUs supporting UUs). As stated

the sentence suggests that "find the unique UU supporting this PLA"

would be a legitimate operation. In actuality, the appropriate operation

is: "find a UU among the set of communicants whose PLA may support

another PLA."

Implications of the confusion between primitive operations is that the

software developers cannot be certain of quite what qualities are sig-

nificant, hence they cannot be sure of how to implement the constraints.

This confusion was discovered during the preparation of the operations

for use in the control map.

116

5.1.2 Potential Sources of Loss-of-Control

As the system is described in the PPS, there is not strict continuity

in the flow of control in the Network Manager's operations. For example

(PPS 3.4.2.2.1.1.3), Handover-in UU processing is described in terms of

what will have happened after the process is completed. Working from

the available description, we can assume that MTC informs NM that a UU

is to be handed-over. (Network Control marks this UU as "zero rate"

and issues a tree allocation command.) MTC passes this command onto

the UU. Then the PPS says, "Upon acknowledgement of this command, net-

work control shall generate a handover-in successful notice." As written,

this description does not include the possibility that the UU fails to

respond. If this were to happen, it is not clear where the control

stopped. Is the next function to be performed in network control, in

message traffic control, in both, or in neither?

The serious implications of this sort of ambiguity are obvious! And it

rav arise, in basically the same form, for a wide variety of commands

which expect a response from the UU community.

These problems were discovered by trying-to build the control map of the

network manager.

5.1.3 Inconsistent I/0 Interfaces

.n the original PPS, this sort of problem was very prevalent. The re-

*iser PPS has cleared up some of these problems, but most remain.

,:..e Changes

Several data elements have different names and different membership

at different levels of documentation detail. For example, in Figure

3.3.S-1 [11], the 01 inputs UU CONTROL to the NM; in Figure 3.4.2-1

ill], i inputs UU NODE CONTROL; in Section 3.4.2.1.2.4 Dl], "the new

.-tion shall accept inputs from the 01 function consisting of:...

C. '.ta-, 2. Passive, 3., Reenter, 4. Restart". While this may seem like

a tr . .l problem, it must be resolved before the system can be expected

t- ::-rate. Why not avoid the problem by a disciplined consistency

fro the very beginning?

117

Other examples of this kind of problem include missing UU OCCUPANCY,

UU STATE, CURRENT CLA, CURRENT PLA, FORCE PLA ALERT, ZERO ALERT (or

ZERO LINK ALERT), etc., in Figure 3.3.5-1 [11]; unique NETWORK VALUE,

and others.

These inconsistencies were discovered while formulating the preliminary

control map.

Tdentitv of Data Items

This problem involves the completeness and the consistency of the PPS

as a document from which to develop software. Therefore, it should be

self-contained. But it is not clear within the PPS what UU MODE (for

example) signifies. Similarly, the meaning of R and S-type PORT Link

rates is unclear. The fact that the identity of data items seems to

change according to documentation level was discussed above.

The implications of all these inconsistencies and ambiguities is that

unnecessary confusion is created in the minds of the software developers;

this confusion increases the likelihood of coding error.

These problems were discovered by trying to formally specify the necessary

data types for the HOS control map, in which specificity and consistency

are required.

5.1.4 Functions Not Well Defined

In several places in the PPS, various functions are invoked (or opera-

tions i-Dlied) which are not consistent with prior definition of data

items cr other functions. In the software development process currently

being .zed for the PLRS project, these problems do not arise until the

implemenrtation stage. But in the software enCineering process implied

by the -DS methodology, they are encountered early, and, therefore,

can be resolved before extreme committment of time and money are made.

Further-.re, with precise preliminary specifications, some problems

do not arise at all.

118

PLA Two-Valued on Unit

This is simply the problem that each unit has two PLAs. In the implied

search procedures to discover which PLA allows a UU to receive commands

from the MJ, two outputs are possible. Everywhere in the PPS, whenever

a call for a PLA associated with a given unit is initiated, it is assumed

that one is found. Nowhere in the PPS is it suggested which one.

Te implications of this ill-defined function (any function with two

possible outputs for a given input is necessarily ill-defined) are that

the choice will be made and it properly is a choice to be made by an

integrative systems designer with ample perspective on its effects; not

one to be made by a staff programmr.er for possibly idiosyncratic reasons.

This implied two-valued function was discovered when we tried to make the

control functional.

Cooperate ll-Defined

The critical concept of "cooperate" is used in three different senses.

In PPS 3.4.2.2.2.3.2, the phrase, "the PLA either is supported by a UU

that already cooperates in a PLA with the specified UU," implies that

the cooperating UU is on the same PORT Path (and at a lower level) than

the specified UU. Elsewhere (in the case of CLAs), cooperating UUs

are those who "listen" for a specified UU. But in the glossary, a

cooperating unit is defined as "A PLRS net member whose transmissions

are received by another unit." This definition makes all communicants

ccoperating units"

rimplication of using one :ern to signify many concepts is that dif-
ferent oee~le mniht make conflicting judgements about its meaning.

if ze resulting iPplemenatici erpDloyed a test called COOPERATE(UUiUU),

it-would be expected to yield different values in different modules.

Droblem was discovered when the above test was considered for the

e5 ,hence Zero Rate = Period -

.-ate has an intuitively :.ausible meaning--namely the UU never

a.....aically relays or liste-s f:r transmissions. However, a problem

arsies in the representation c- zero rate UUs, because the parallel

119

concept of period is also often used to characterize them. Clearly,

Period-256 for all rates allowed between 1 and 256. But when the opera-
R

tions implied by the PPS are attempted on zero rate UUs, period is trans-

formed to "infinity." This problem can be handled at the implementation

stage by a minor check for divide-by-zero or the provision of some

special code for "infinity," but it is one more thing that could go wrong

if not noticed and treated.

The implication of this minor problem is the possibility that the implied

arithmetic might actually be attempted. Presumably, this would result

in a floating-point check and system halt.

This problem was detected when we tried to specify data types for cycle

rate and period.

5.1.5 Incomplete or Wrong Algorithms

Althoughthe PPS is not consistently at the level of detail of operational

algorithms in those cases where the criteria for some system action is im-

portant (e.g. chose a potential PLA, declare a link unreliable and a candidate

for replacement, etc.), the PPS should specify either all the criteria

(complete the algorithm) or state that the algorithm is incomplete.

There are several cases in which the PPS seems to specify how a system

decision is to be made, but omits crucial detail.

Tie-Breaking Not Complete

Section 3.4.2.2.2.3.1 specifies several criteria for the selection of a

PLA zo a unit when one of its two desired PLAs is missing. But the

criteria as stated are not sufficient to determina a unique PLA. That

is, after applying all the constraints, several possible PLAs would

often remain. How is the PLA Control function to select from these

candidates?

The effect of this oversight is to postpone the decision to implementa-

tion tire. Eventually, the choice must be made. It ought to be made

explicitly and on a rational basis and not left to programmer whim.

This omission was discovered when the function, "Find PLA," was specified

in control map terms.

120

Inflexibility of PLA Rate Mix

In Sections 3.4.2.2.2.3.1 and .2, the PPS specifies the PLA selection

criteria. Because reliability is a PLRS system goal, one restriction

on the two PLAs that serve a given UU is that they are relayed through

no common UUs. This is stated as: A PLA shall not be considered if

it "is active in frames that coincide with the specified UUs other

assigned PLA." The selection criteria of Section 3.4.2.2.2.3.1 are not

sufficient to ensure this.

The implication of this is that the module which performs the "FIND-PLA"

function will not have all the information it needs, unless this problem

is cleared up in implementation.

This deficienty was discovered while formulating the "FIND-PLA" func-

tion in the control map. See discussion in Section 3.4.3.

Can't Find What Transaction Groups Are Available with Respect to Time

Again, in the FIND-PLA function, it -s necessary to determine which

transaction group ("unassigned PLA's" in PPS terms) are candidates for

forming a PORT Path to a given UU. One criterion is based on UU data,

namely the set of communicants. The other criteria include those in

Sections 3.4.2.2.2.3.1-2 [11]. But nowhere in the PPS is it specified

how the available transaction groups can be discovered. We have solved

this problem by using the control map and primitive operations on the

HOS data types, but feel that the PPS should have made it explicit that

this algorithm was incomplete.

The implications are that there are several alternative ways to go about

this necessary function. Without noting that the choice of method is

being left to a later stage, a poor alternative may be implemented without

opportunity for review.

This Cvission was discovered by developing explicit procedures for "FIND-

PLA" ;n the control map. See Section 4.2.3.4 fora more detailed explanation.

121

What is "PORT Link Time Assignment"?

In the Tree Allocation Command, provision is made for two 3-bit fields

which are called PORT Link Time Assignments. We found it useful to refer

to the actual commands because they are so much more explicit (in most

cases) than the discussion in the PPS. We cannot find a specification of

this data element anywhere, however.

The implication of this omission is simply to leave uncertainty in the

specification of quite what this command is meant to do.

This omission was discovered by inspection of the STD in the process

of formatting data types.

Error Detection and Recovery

Many places in the PPS, an operation is initiated which may or may not

be successful (produce the desired effect). The most typical case is

the generation of a command to a UU to take a Logical Time assignment

or to change mode. The UU may or may not respond. Usually, the speci-

fied action is to generate a "zero alert." This in itself is not suf-

ficient recovery procedure. Because the action to be taken subsequent

to the generation of the alert is unspecified, there is no guarantee

that the system will ever get back on track.

Error detection and recovery is sufficiently important that it ought

to be explicitly incorporated early in the program development process.

A single missing recovery procedure could have disasterous consequences

in the field.

These considerations are an explicit part of the HOS philosophy and follow

directly from the principles regarding completeness of control.

5.1.6 Overall System Considerations

This section discusses some topics which we feel are important considera-

tions in the Network Manager function and (probably) for the system as

a whole. They are not problems in the sense of the above, but perhaps

they should have been treated in the PPS.

122

Re'td'ant Operations

It seems as if some of the functions and operations necessary to imple-

rentthe Network Manager specification can be used unchanged in several

places. For example, specification for PLA is identical to CLA. Both

are assignments of Logical Times to UUs, but the algorithms for finding

them may be different. Also, zero alerts are generated in several places.

The opportunity to exploit identical code for redundant operations can be

seized only if it is recognized early. In the formulation specified

in ojr control map, for example, PLAs and CLAs have exactly the same

representation (although they are different data structures because

they nave different meanings). Similarly, some of the operations on

Them are identical in form. The control map building exercise is an

excellent way of discovering such operations.

The CDerator and the Users as Part of the System

The PPS fails to consider the '.!U operator and the community users as

part of the system. This is an inadequacy because many of the control

loops in the Network Manager (and other portions of the PLRS) are closed

only through the operator or through the community. That is, the soft-

ware will generate a condition (an operator message or a command to a

UUO and issue it. The next time control-passes back to the software,

it is because the operator or a user has take some action. At a minimum,

the range of operator actions should be related back to the software

func:ions which (in some sense) initiated them.

Treating the PLRS as a closed system when it actually is open to both

the :perator and the users invites loss-of-control problems.

T si:uaioq beca-e evident e;hen we formulated the control map and

f that rany of the Net.;ork Manager's control loops were closed

cn, through the operator.

123

5.2 Statistical Summary of Problems

CATEGORIES OF PROBLEMS FOUND Implica t io n1 frequency2 Discovery3

CONFUSION BETWEEN LOGICAL TIMES AND UNITS

PLA Confusion Serious Often Formal Data Type.
Units/Logical Times Confusion Serious Often Control Map
Primitive Operations Serious Often Control Map

POTENTIAL SOURCES FOR LOSS OF CONTROL

Couand/Acknowledge Crucial Often Control Map

INCONSISTENT I/0 INTERFACES

Name Changes (Mode Control) Minor Often Control MaD
Identity of Data Items Minor Sometimes Data Types

FUNCTIONS NOT WELL DEFINED

PLA Two-Valued Crucial Once Control Map
Cooperate Ill-Defined Serious Once Control Map

Period-25 6 , hence Zero rate Minor Sometimes Data Types

INCOMPLETE OR WRONG ALGORITHMS

Tie-Breaking not Complete Crucial Once Control Map
Inflexibility of PLA Rate Mix Serious Once Control Map
Can't find what transaction groups
available with respect to time Serious Once Control Map

What is "PORT Link Time Assignment
in Tree Allocation Command? Serious Once Data Types
Error Detection and Recovery
(various) Crucial Often Control Map

OVERALL SYSTEM CONSIDERATIONS

Redundant Operations (e.g., PLA+CLA) Serious Often Control Map
Operator as Part of System Serious Sometimes Control Map

Imolication means expected magnitude of consequences. It is composed of the
probability that the problem would go undetected times the performance sacrifice
if it occurred.

2Frequency means that it can occur from 2-10 times--often 11-50 instances.
3Discovery refers to the exercise that was being worked on when the problem
was recognized.

124

5.3 Considerations for Software Verification

We are given a hint only of the procedures that Hughes employs to ensure

that the software will work as designed. The major weakness of these

procedures (sketched in the Hughes Design Plan), from the perspective of

HOS techniques, is that they are informal. That is, they depend on the

subjective judgement of the software creators as to possible failure

modes.

Now, this practice often may be adequate in the sense that the designer

may usually have a good appreciation of the environmental circumstances

which will impact his code. But, occasionally, something totally un-

expected might happen. As a pirely speculative example, consider a

spurious acknowledgement. Depending on the details of implementation

(within the constraints of the PPS), a spurious acknowledgement could

hang up the software--searching for the (never-issued) command that it

thought was being acknowledged!

One result of this approach which may prove troublesome is the dependence

of the designers of the Online Simulation Program on the designers of the

Real Time PLRS. Because the simulation program is intended to demonstrate

the MU's operational ability to meet specified requirements, it is im-

portant that it exercise all possible conditions. From the available

documentation, it seems like one of the functions of the Real Time PLRS

module designers is to suggest modes in which their modules ought to

be exercised. Because the conditions they anticipate will be the ones

they.design for, the power of the simulation to detect error is reduced.

There is a better way to ensure software validity! Because a control

map constructed along the forral axioms of HOS must incorporate all

possible cases (values, inputs, etc.), it can be used to generate an

exhaustive set of test conditions for each functional module. Invalid

data cannot hang the program--in tne worst case, they can only propagate

REJETS to the highest level, exaczly the desired outcome.

Soft,.are engineering directed by formal rules is far more secure than

that which depends merely on multiple levels of review.

125

FOOTNOTES

Footnote 1

An object or name can be assigned or unassigned, but an assignment can
hardly be assigned or unassigned. Here it is time intervals which are
either assigned to UUs or not assigned to UUs, and the match of a parti-
cular UU, i.e., ui with a particular set of time intervals in which it is

active, i.e., t.', is what constitutes the PORT Link Assignment: (ui,t.)--

not the t. alone.

Footnote 2

It should be noted that there seems to be an inconsistency here in the
PPS text. Although the PORT Link Assignment command format indicates
that the Logical Times assigned to UUs are being specified using the ex-
ponent on the Period, throughout the statement of various algorithms
in the text this is referred to as Cycle Rate, rather than period. We
understand Cycle Rate to be equal to 256/Period, so that it would be a
simple matter in various modules to convert from one to the other, ex-
cept for the fact that Cycle Rate is often set to zero as a means of
indicating a necessary change in PLA (c.f. PPS Section 3.4.2.2.1.1.2,
p. 3-33, "Reentry UUs shall be designated as being in a zero rate PORT
link state and shall be process by PLA control."), and since P = 256/CR,
if CR = 0, P = -,not one of the periods allowed for. There will have
to be some sort of ad hoc patch; we simply note the inconsistency here.

Footnote 3

Given, for example, in the STD, Section 3.5.5, p. 3.5-10/12, "Advantages
of Network Redundancy."

Footnote 4

Note Axiom 6b is further complicated by taking into account the Master Unit,
i . must do for consistency, since the MU does support the other UUs.

a7! e;. Dle, if we ask what unit directly supports some unit, the answer
. i s A-level) may be the ?.J. Furthermore, may we not take the al-

:err.tive of using Axiom X , Usupp?(m,u) = True, if there are multiple
,.js, also if we consider new entry UUs, which may be communicants without
being supported? This requires further study, beyond the scope of this
report. The final formulation of the axioms would presumably make a
choice between Axiom X and Axiom 6b.

Footrn7e 5

We 7:::-e a 16-frame epoch rather than a real 256-frame epoch for sim-
plic1

127

Footnote 6

CROSS Link Assignments are omitted from this discussion, although they
would be handled in an analogous manner. In addition, for the sake of
simplicity, the behavior (specification) of the Master Unit is omitted
from the following discussion.

Footnote 7

Additional operations and axioms for data type Logical Time suggested
by Stephen Kenton.

Footnote 8

Including the error recovery as part of FIND-PLA was done primarily for
pedagogical purposes: to show how an error message might be incorporated
into the specification. In a complete specification for the PLA Control
submodule, however, the error detection and recovery would be done at a
higher level. That is FIND-PLA would consist basically of what is called
SEARCH in Figure 4.2.1-3a. This might generate a REJECT as the value of
t' which would be passed up to the operator system.new

Footnote 9

That is, if (tOLD't) = PLA(ui), where t is ui's other assigned Logical

Time, or stated inversely, if ui = ALP(tOLD), then the duple (utOLD)

must be stored in memory somewhere; this would be replaced by the duple
(ui ,tNEW). That is, the CLEAN-UP function would do the actual changing

of PORT Link Assignments; PLA1 - PLA2 or rather (ui,t) - (ui,t 2).

Footnote 10

It may be instructive to the reader to work through the recursion in SET-
TEST. If so, note that the final REJECT obtained is not an error; it
simply :arks the end of the ordered set (list, etc.). For example, if
we are e,:!7ining the items in the list T0 = (7,3,8,2) and only 3 and 2

happe-- : eet the required criterion being tested, then the following
action czzurs:

-, S FORMED FROM T0 FOPALL t < 5;

:*UT,: T, = (7,3,8,2)

REPLACE

'7,3,8,2) = 7 and (3,8,2); 7 is eliminated.
(3,8,2) = 3 and (8,2); 3 is saved.
'k,2) = 8 and (2); 8 is eliminated.
(2) = 2 and REJECT; 2 is saved.

2 and REJECT = (2)
3 and (2) = (3,2)

OUTPUT: T1 = (3,2)

128

Thus as one can see, the REJECT is simply an end-marker, much like the
element NIL in the LISP language.

t
Footnote 11

The operation Element?(xS)is used here in the general sense. The AXES
specification language has the operation defined so far only for the case
in which S is a set; however, it is clear this could be extended to the

cases where S is of some other set-like data type (e.g., lists, arrays,
files, tuples, etc.).

129

REFERENCES

[1] Bridge, R.F. and Thompson, E.W. "A Module Interface Specification
Larcuage", Information Systems Research Laboratory, University of
Texas at Austin, Technical Report 163, Dec. 1974.

[2] Cushing, S. "The Software Security Problem and How to Solve It",
TR-5, Revision 1, Higher Order Software, Inc. (hereafter cited as
HCS, Inc.), Cambridge, MA, July 1977.

[3] Gu.:ag, J., et al. "The Design of Data Structure Specifications",
Proceedings of 2nd International Conference on Software Engineering,
Oct 1976.

r4] -Hamilton, M. and Zeldin, S. "Hicher Order Software--A Methodology

for Defining Software", IEEE Transactions on Software Engineering,
'vrol. SE-2, No. 1, March 1976.

75] Hamilton, M. and Zeldin, S. "The Manager as an Abstract Systems
Engineer", Digest of Papers, Fall COMPCON 77 (Washington, D.C.),
I EE Computer Society, Cat. No. 77CH1258-3C, Sept. 6-9, 1977.

L6 J Hamilton, M. and Zeldin, S. "Verification of an Axiomatic Require-
rent.s Specification", A Collection of Technical Papers, AIAA'/NASA/
__E,',, Computers in Aerospace Conference (Los Angeles, CA), Oct.

31-X'ov. 2, 1977.

[7] Harel, D. and Pankiewicz, R. "A Universal Flowcharter," TR-1l.
HOS, Inc., Cambridge, MA, Nov. 1977.

[8] Heath, W. "Some Specifications for the Operating System of the Apollo
Guidance Computer .(AGC)" in "Techniques for Operating System Machines",
TR-7, HOS, Inc., Cambridge, MA, July 1977.

[9] IBM. "HIPO: Design Aid and Demonstration Tool", IBM, SRZO-94i3-O,

1973.

F10] :kakson, M.A. Princigles of Procram Design. Academic Press, NY, 1975.

,7" :--ra .-Performance Specification for Real Time PLRS Program--Vol. I",
Re,i-ion Original kFinal), 7-uches Aircraft Co., Ground Systems Group,

.7er-on, CA, July 29, 1977.

L12] ::-ison, L. and Holt, R.C. "For-al Specifications for Solutions to
Svnz-rcnization Prcblems", Compu-er Science Group, Stanford Research
insi tute, 1975.

E13] R.:". . Structured Analysis (S): A Language for Communicating Ideas",
Transactions on Software Ergineering, Vol. SE-3, No. 1, Jan. 1977.

[la] I z:em Technical Descripti:n", FR 77-14-90, Hughes Aircraft Company,
Systems Group, Fuller-on, CA, 9 February 1977.

131 ? A BLANK-NOT 72LA

ILi

(151 Teichroew 0. and Jershey, E.A. III. "PSL/PSA: A Computer-Aided Tech-
nique for Structured Documentation and Analysis of Information Pro-
cessing Systems", IEEE Transactions on Software Engineering, Vol. SE-3,
No. 1, Jan. 1977.

[16] Thiersch, C. "Observations of the Network Manager with the Use of
Control Maps", PLRS Memo #9, HOS, Inc., Cambridge, MA, Sept. 2, 1977.

132

Appendix I

Preliminaries of HOS

Appendix II

Preliminaries of AXES

133

APPENDIX J~axioms 12 1 proside rules for the construction of nodal tamilecs
Preliminaries of HOS (i.e., the decomposition of a function). From these axioms. thr;:c

In HOS. the decompnosition process forassstem results ina tree prmt~ coto stutt~.wihaeue orfnt
,tructure. At tone niart of the decomposition process. thL entire position. are derived andJ5 stern is represented by the root of the tree which. hopefully. These control structures arc: tornposition. set partitio~n.ad
represents the requirements for the s~stem. This definition, class partition.
how eser. has many implicit (hidden) requirements. In order to
arrisec explicitlv at the complete definition of the system, the root is -I

decomposed b% replacing it witth a nojc fianailr (a particular
parent node and all of its offspringi. wshich represents the
decomposition of !he root. This decomposition process. that of
renlacine 3 f inctirin h% it, not'al famnil, can be continued until the
entire system has Keen specified. The resulting tree represents the
compete system s..ee:tication. where the leaves represent primi- Figure AI-2. Figure AI1-3.
tise operations on, the data t~pes represented b,, the variables at AnFmleo o osin AnEapeoStPrito
those leaves It may turn out that dl-ring the decomposition
process a recu.-:mcnt is show4n to be erroneous or missine. In such Coinpositio is illustrated in Figure AI-2. In order to perform
a case, an iteration of the system description is required. frn. f(x). the function fi must first be applied to x sshich results in

The parent node of the nodal famiN% controls its offspring.he eomsa iptt f hchpoucste eieWher. referr-n to thiscontrol relationship, the parent node '4ill be rutput e.lemten bfteoera inutiton. hc rdce h ee
called a nmodie. and its offspring will be calledfu[wions] The It is important to observe the follossing characteristics of

ofsrtn oftheneialfmilarehefnctonsreqire toperorm composition (characteristics are explained wsith respect to the
the nr-dule~s izrretpondinz function IMCF) (i.e.. the function example in Figure AI-21:

the odallarnl% rplacs).(1) One and only one offspring (specifically f in this example,In :!-e sections that follows. the %ariab!.- that represents the receives access rights to the input data. x, from module V.
dom.±.r. elements of a function is referred to as the input variable,
and the %ar~abie that represents the range elements ofa function is 121 One and only one offspring (spectficallr fi in this examplei
-- fc, red to as -.he '.urnut variable. Indisidual domain and range has access right% to deliver the output data. r.for modulef
clementts mnay be, called inputs and outputi re~p.'ctisefv. (31 All other inputand output daahat will be produc-ed '-

Amodu:%.. i performing its corresponding function (Figure Al- Spring controlled by f, will ri, -de in loc-al variables tspecifi-
I ,is responsiole for determining if the inputs recei% ed are in the calk, *'z- in thisexml) .c vrae.-",poi,

intended domain. of the MCF. If an input is not in the intended communication bemseen the offspring f:- and f;
domain of the NMCF. it is in the unintended domain of the MCF (41 Every offcprine is specified to be invoked once and onlk
and maps to a 'necial salue wshich is a %aueofecrv data type. the once in each process of performing its parent's MCF.
value ReJect. (5) Every local variable must exist both as an input variable for

In a sense, the improper input element is not in the domain of for one and only' one function and as an output variable for
the module's corresponding intended function(NIF). but is in the one and only one different function on the same level.
domain of the MCF. i.e.. the module's corresponding unintended
function (MUFi. Set partition, which involves partitioning of the domain. is
Properties of the Primitive Control Structures illustrated in Figure AI-3. In the example, the set which comprises

Whil a uncioncan e dcomose inmatt was. he OS he domain is partitioned" into two subsets. For set partition.
Whil a uncton an e deompsed n mny ays.theHOS only one of the offspring will be inv'oked for each performa nce of

the NICF at f, (the determination being based on the value of-x-
received) and that offspring wsill produce the required range

~'~'5 ,. vjelement for its parent module wshen it is performing.
The following characteristics %k ith respect it, set panfitior. should

- . '\be ob~crsed:

.~ K (II Escr\ offspring of the module at fj IS granted permission to,
produce output v-alues of "

-- ~~- ~(2) All offspring of the module at f: .-re granted permission ito
-. 7 y_' receive input -salues from the %ariable".c "

*'Pariioninig implies the suhdisisori of the original %et into nor.-
I t'srr .1ppii 1 1 ii> rinuiI,.ll CsClU'.% is 'h'ct'l

Fieure Al-I. ltriation of a Function from X into N

r ' 135

(3) Only one offspring is specified to be invoked per input value parallel processing, and selection of functions. From a combina-
received for each process of performing its parent's MCF. tion of primitives, we can form more abstract control structures

(4) The values represented by the input variables of an off- (e.g., recursive functions).
spring's function comprise a proper subset of the domain of The syntax of AXES [4] provides the mechanisms to specify
the function of the parent module, control structures and data types. The purpose of AXES is to

(5) There is no communication between offspring, express a system specification which is equivalent to that same
Class partition is illustrated in Figure A-4. While set partition specification expressed graphically as a cr',irol map. ControlCnvolves pariion is illtredoin Fiuet, lease partition structures can be described in AXES as structures, operations, and

involves partition of the domain into subsets, class partition functions. Whereas a structure is a relation on a set of mappings,
involves partition of the domain variables into classes and the

partition of the range variables into classes. In the example, it is i.e., a set of tuples whose members are sets of ordered pairs, an
assumed that the domain variable has an associated data structure operation is a set of mappings which stand in a particular relation.
comprised oftwoparts.-x,"and"x:-. Likewise,therangevariable An operation results, mathematically, from taking particular
has an associated data structure with the same number of classes as mappings as the arguments (nodes) of a structure. Byafunction,
the domain's data structure. we mean a set of mappings which stand in a particular relation forwhich particular variables have been chosen to represent their

inputs and outputs. Whereas structures and operations can be
, ,described as purely mathematical constructs, a function is a

hybrid, consisting of a mathematical construct and a linguistic
/ construct, i.e., an assignment of particular names of inputs and

outputs. Note that our use of "function" is slightly different from
tih . '

= what is meant by "function" in mathematics. For the latter notion,
Figure Af-S. An Example of Class Partition we use the term "mapping" throughout this paper.

In AXES, a new data type can be defined simply in terms of the
The following characteristics with respect to class partition operations that are to be performed on the data [4]. That is. a

should be observed: data type is defined algebraically rather than operationally by.
(1) Alloffspringofthemoduleat fare granted permission to re- making true statements (or axioms) about the equality of two

ceive input values taken from a partitioned variable in the control structures in which all thenodes are operations. Each such
set of the parent MCF domain variables, such that each off- control structure is defined in terms of primitive operations of the
spring's set of input variables is non-overlapping and all data type of interest or of previously characterized primitive
the offspring's input variables collectively represent only operations of another type (previously characterized primitive
its parent's MCF input variables. operations include universal primitive operations that have been

(2) All offspring of the module at f are granted permission to defined, each of which is associated with any member of any data
produce output values for a partitioned variable in the set type).
of the parent MCF range variables, such that each off- The axioms associated with the definition ofadata type are only
spring's set of output variables is non-overlapping and all those we need to characterize the data type. There are, of course,
the offspring's set of output variables collectively repre- other operations that we find useful for other purposes. We are
sent the parent MCF variables, free to define any operation we want on an already-defined type as

(3) Each offspring is specified to be invoked per input value re- long as the operation definition is consistent with the axioms of the
ceised for each process of performing its parent's MCF. type. A new operation can be characterized either as an OPERA-

TION or as a DERIVED OPERA TION.(4) Thee is no communication between offspring. In AXES, we specify the behavior of an operation without
specifying its decomposition by writing it as a derived operation.

APPENDIX UI* i.e., by means of true statements ihat describe the behavior of the
Preliminaries of AXES operation with respect to other already-defined operations. Either

1. Axes Ssnttx Description kind of operation could be ssritten as a control map, if desired.
They differ in how they are speciiied, not in what they ale. What

AXES is a formal ni)ation for writing definitions of systems. distinguishes both of these kinds of operations from primitive
These systems include s.% s:tms - hich are mechanisms for defining operations on their data type is that their existence is provable
other systems. Th,.. iu: example. %e could define a set of mathematically from the existene of the primitive operationsand
specification -macros- v, ich collecctiely could form a language the axioms of the type. In fact, if an OPERA TIOA (which defines
for defining a system o :amilv of systems. Since each language a function) and a DERII-ED OPERA TIO.V (which defines the
statement would be a definition "macro" based on an integrated behavior) are both used to define the same function, the behav-
Higher Order Software HOS) control hierarchy [2 . the resource ioral properties can be checked against the refinement properties
allocation to a pari,:ular machine could then be addressed to prove the correctness of a definition.
independently from the definition of the system. Although it is not In describing AXES we will use variables and constants
a programmirg language. AXES is a complete and well-defined themselves to makestatcments about the values they name, and %e
language capable of being analyzed by a computer. AXES is will use the names of variables -nd constants to make statements
intended to proside commonality betucen systems. Although about the variables and constants themselves.
users %iil haxe lEesibiIt. to choosedifferent building blocks, these To differentiate an object from its name, we introduced the
building b!ncks. %%hen -compiled." will bring users to a common "'use-mention distinction" 17 1 in AXES. That is. we can talk
meeting ground uih a;1 other users of AXES. about an object onl% by usinga name of the object. (Totalkabout

AXES s.ssems can be hierarchically decomposed intocomplete a man, for example. we have to use a sentence that contains the
system specifications with the use of abstract control structures man's name. not the man himself.) The notation conventionally
that relate members of algebraically defined data types. Three used for this is ench .sure within quotation marks. To form the
primitive control structures have been derised from six axioms name of a given name (or written symbol of any kind), we include
that define completeness of control [1 These primitive control thait namc(or svmhol)in qlotation mark.(Successi%-embedding
structures provide ri;e's for the definition of communication. of quotation marks can be used if we %,ant to talk ab %ut names,

names of names, and names of names of names.)
iExcerp,.:d from r 6r In A xFS. a ron.tanr sYmbol is the name of a particular value

136

........ . .~~~~ - --- -- -- -- "-'' -... IIAliI_

and corresponds to a p-cper nouin I.kc -John.- A variable is the
narr.e of more than on:. posible 'seani corresponds to a x =Clone, (x) (I)
common noun iie -a rn. (x.x) = Clone- (x) (2)

____________________con = K,-3 (x) (3)
S /x = idl'(xi.x:) (4)

~:- -x., = id.,(x,.xz) (5)
t___________ (xl.x2) =SO~) (6)

x = T(xi~xx,) (7)

e. -; .- (1) and (2) are used to specify more than one variable with the same
_______________________value. (3) is used to choose a constant symbol. (4) and (5) are used

:rto select the value of one of aset of variables. (6) and (7) are related
by T(St(x)) =x. These are used to create a value of a data structure

-. from a value of a data type (i.e., St) or to create a value of a data
_____________________ tpe roma alue of data structure (i.e.. T).

Universal operations have, as their bottom nodes, universal
Fligure All-I. An EAmptt of Abstract-Control-Structure primitive operations. Universal operations are defined as

Definition Laven s.ith Respect to AXES STRUCTLREin AXES because they operate on values .%hichare
box sadecripion variables.

Forexaple i FiurelJ-. netp-ons We can now define a structure whose syntax can be used to
of ra-t of AXES itself. The top-mosit Sox describes the AXES
obj eczs required to definea STRUCTL REin AXES. The sentence define more than one system having access to the same value.

Here, we use the universal operation
STRLCTLRE:~~ == *) id.(x)

m.nekes a. tatcmcnt about values by usni the %aria)1e-%.'s-. and which is used to select particular variables out of a set of variables
_x and abc-ut constant symnbols by -sizg :t ;uitafioin-marked as well as the universal primitive operation
s.bols such as .STRI CTLRE . and (x.x) =Clone.-x)

T.-. middle bux enc.:ics an AXES obj- ect itself: that is. the to determine the meaning of the relationship among the unspeci-
mi :die box encioses tric ceftinition ofa language stazent derised fled functions that appear as bottom nodes of the structure
frcrn the definition of an AXES rcule. The Ccrnpos ::ion (Cn) definition.
STRUCTURE. defined mn Fisure All-I1. is one of the th: __ HOS
prnmit;; control structu.-es. Each prnitie control structure has STRUCTURE. y = x)
been defined as a STRL CTCRE %ith AXES [41. Where y,,g~w.h are of some tpe:

The middle box encloses an instance of :hi layer that the If 'here b is a NATURAL:
topmost box represents. If we could describe a',l of the s-ructures aisaST(fAUR S)
that could possibly exist, then the complete set of s'.ructures wouldWhraisaST(fN URL)

be -he Laser -hat the sop-most box describes. Y =JI(g.w) Join (g~w) = 3)
WJ.hen a STRUCTURE in AXES is defined. the designer (g.%%) = J l (x.x) Join (x.x) = Clone:.(x);

sue'Dlies the syntax (or description) so that a user cf that structure
can describe particular mappings that stand in she relation. For ~ i()Icuew i~)
example. the bottom-most box in Figure AIM- encioses an AXESg=J (hJonh=iX)
obect that is an instanee of' the &n stnucurie describe.d in the £ J 1 .h onh i~x
rn~ddle box of Figure All-). that is. b c-ms ox is the SYTX v = J.gw Cowin g J ,.= '
de!'.nution ot a stsem dented from :.-e ein.-:;on o1 a a3nguage
sta.:errnn..derited from tze definitionr c' an~ ANESniodule. inthe EVE) J;
hot-.om-most box. -b = Fela-midr -,r a o;ar-::cIa-function

th * -. -. C. represen . the m.zdde 6 i Lievise. -d =5u-
pr-j a. rc-preser*A a: ,,~ c~ =Ct* In th~e In using the syntax ofa structure. an instance of the lacrof the

. ..~ - ~ c~t structure definlition can be obtained. In the Cuja'in structure, there
swrneztare actually four unspecified mappings besides the top node: Ji.
satemiczIJill: .id'. id7. But in the use of the Cojoin. the value of "w- and "x**

IS'V Xy;;, 'sme niul determines the particular id: function. Likeuise. the

Th.s stateent means tnZ: x'. %. andI z Asrbe h-sz sak-es value of "h"and -x- uniquely determines the particular id.. Thus,
are of an u~specffied data .%pe. in. : cnom-mos- Ox Ine only Ji1. J! ;.. need appear in the syntax of he Cojoin definition.
WHERE stas:-Ment is used to spec;ts a rarticula; data t,%pe. and rhe cletve set of values that replaces the variables described in
the o~prauonr. Contact. is a p7artCL.r.=pp-& the syntax can be traced to each node of the structure definition.

(-:'- 'er cor.!r,! structue-i can be der~td fro.'m a:cad% deitfinre-d For example. if
co.otrol structures and operatuons tha*t o-erait on %ariabe.s of an% ab Frts
.N: t Operations that operate on N ar tes of ar. 'type are ca:!ed is defined as

ur,; era~c-i ,Prn;-% eumvr~a:o-,eraion ar dcine as(a,b) = A(p~q.r) Cojoin (p.q) = B(r~t)

The first and second statement collectively form an instance of the
Coinr structure.

lhe 4~:tbo~ ~*In this example.

:SI.,i Or;i xC::.." has the value "(r.t~s) 4
Hcre. ~ ~ ~ ~ ~ ~ ~ 2 1-, n:. 10.: -r'iCcts ebroa Ct) t~J" has the value "A"

of -X. _"htevau.(~)
The s.rtax :,;r _4~ s% rarty Ls" hs h aue"ab

% s f, 1%. 1:=fj. "g- has the value "(p.q)"

137

_w" has the value 'r- ships are defined with the Where statement in AXES.
s tIn particular, we distinguish between in instance of a layer

(representing one performance pass of a system)* and a layer
(representing all performance passes of a system). We distinguish

and. since the input to F has three components. 'b in the structure between 'ommunication within one layer which always repre-
definition has the value 3-, since "w- has the value 'r'. u hich has sents the same instance, and communication between lavers.
one component, -a" in the structure definition has the value '-, which takes place when an instance of one layer communicates
and so on. The structure syntax names the objects necessary so with an instance of another layer (e.g.. real-time asynchronous
that an instance of the structure definition is obtained. Any processes). We distinguish between (I) the system and the
instance of a structure must itself be an HOS system. definition of that system, (2) the system and the description of that

In the Cojoin structure, systems that communicate with each system. (3) the system and the implementation of that system, and
other can access the same value. Likewise, we define other (4) the system and the execution of that system.
structures; one so that independent subfuntions can access the A machiine is a system which executes another system. There are
same value (the Coinclude), and one so that subfunctions whose dedicated machines, asynchronous machines, and asynchronous
invocation depends on the value of the controller's input set need machines. A dedicated machine always performs the same func-
not access the entire set of variables of the input set (the Coeither) tion. Thus the -mapping- of an AXES FUA'CTION could be
[51. viewed as a dedicated machine. A synchronous machine must only

If the controller's function is y = F(x) and y = (yi,y:)* execute one system to completion before another system uses that
g =id ,(x); machine. An AXES OPERA TION could be viewed as a synchro-

nous machine. An asynchronous machine may execute instances
h = id(x); of more than one system before either system reaches execution

then completion. Thus, an AXES STRUCTURE can be viewed as an

SYN'TAX: y, = A(g) Coinclude v, = B(h); asynchronous machine.
The environment of a machine must be secure in that (I) a user

S Y.VTA X: y = A(g) Coeither y = B(h); should not have to be concerned with any of the details that have
to do with its execut.on. and (2) a user should not be allowed to

Structures, in addition to the primitive control structures. e.g. have visibility into another user's environment.
Cojoin; can be used to define other structures. For example, the
Whereb. defined with the Cojoin. gives us the facility to use of which must be maintained as secure data throughout all

constant symbols as operands of a function. instances of the machine. These types of data include (I)

SYNTAX: 1'hereby y = W(h.CON): temporary values which exist for one or more users, (2) values
from another machine with respect to the machine itself as a user.The l'hereb+ is used as in (3) values with respect to the variables of the machine itself. (4)

y = x + I values which are functionally related to a previous instanceof the

Here, the constant symbol -I- defines the particular K_ machine system. (5) values which are functionally related to a
operation that makes the instance of the Whereby structure a previous instance of the machine for a given instance of a user.
function. Notealsothattheoperator-+-(aninstanceofW)isused and (6) values which are functionally related to a previous in-
as an infix operator. In AXES we are free to use either prefix or stance of the machine for a given instance of another machine.
infix notation, as desired. The definition (dynauic state) of a system is equivalent to the

We can visualize the instance of a structure as being either formal semantics of a system. The description (static state) of a
written down on a piece of paper by a human being, or to a register system is equivalent to the syntax of a system. The implementa-
by a software or hardware process. To check an instance in an tion (static state which includes a system, a machine to run that
HOS system, the use of a STRUCTURE is compared with the system, and the mechanisms necessary to relate that system to
STRUCTURE definition itself by an analyzer. All instances of a the machine) of a system is equivalent to that same system ready
structure can be %iewed as being supplied to the structure to be exercised. The execution (dynamic state which includes a

dvnamically. r, STRUCTURE for an asynchronous system, system, a machine running that system, and mechanisms which
such as an operating stem or the Higher Order Machine (HOM) relate that system to the machine) of a system is that system being

[33-]. is a recu, t , .t:on relating each state of a machine to a exercised by a machine.
pre% ious state o' inc same machine within an instance of a machine Not only must we be aware of the types of system layers, but
system. To check the instances of an asynchronous machine in a we also must be aware of how many different definitions, des-

real-time environment, an analyzer is used to check not only the criptions, implementations. and executions are possible or po-
use of the STRL'('SU'RE with the STRLCTURE definition, tentially possible for one system. Most important, we must deter-
itself, also to check to see that all the users of that STRUCT(RE mine those states which are necessary and those which are not

are cons;stent, only unnecessary but which are causing serious difficulties in the
We indicate the potential happening of each machine instance development of a system. Towards this end it is necessary to have

b% specif a m to be "On" the machine system. e available a means for determining both the types and the naturelysecfing a user system C. be"O"temciesseeg..

the syntax l'J.ere A or, HOM specifies the initial nodal family of and number of states within each type 15 1.
system A to be used by the first machine instance and the nodal Sometimes the need for the definition of the layers ofa system

family for each next recursise instance of the HOM function K " to depends on how the system is to be developed and executed. On

be determined by the ordering relationships of the nodal families one project the users might wish to compile source code before a

wi:hin system A. A nodal family is a 3-tuple whose members are target system is ready to be executed. On another project users

functions w4hich stand in a particular relation (c.f. Appendix I). B. might wish to interpret the code in real time. Thus, not only must

indicating only-HOMI.inthesyntaxofthisstructure. rather than. the layers of a system be determined, but also it must be deter-

for example "% = HOM(x)." the state of the HOM remains hidden mined when. how. and where transformations from one layer to

from the user. another layer take place.

If. Levels and Lasers in AXES
In AXES we emphasi7e in our notation the separation of the "aq opposed to a h.vcl which is a step of refinement (or more explicit

lasers within one system or between systems. l he layer relation- definition) % ithsn a given instance of a layer.

1 38

In the resource a!'.ocatjon process. a name is assigned to a value
or 3 value to a name. Resource allocation also includes the ability
to replace a name by an equivalent name or a value by an
equivalent val-e. Sometimes one layer is produced from another
la.er by a third la.-er. Sometimes the description of a layer. as
opposed to the laser itself. becomes the object of communication.
Sometimes the same la.er is resource allocated as a function to one
layer and as data to another laver.

The general concepts of layer communication can be related to

familiar exampies. When two asynchronous processes are in the
execution mode. a value from a given process is assigned to a name
(or variahle) associated with another process. Conversely, that
other process assigns a value to the name associated with the first
process. When an in'eger is implemented, a specific representation
(or %alue) for a s-ec-fic machine is assigned to the name
representing the is:eger. When a compiler compiles an HOL
program. it assigns names (or registers) to values in order to
translate from one description to another. It also fulfills an
implementation fuc-tion in that operations and data are replaced
wath specific machine-dependent values. A compiler, in order to
operate on an HOL program, must be able to read the description
layer of the program as input for the translation process. In
addition. it requires further input of its own in order to provide the
implementation layer of the program. An OS system has a more
complex job in that it is usually required to communicate with
bo:h the description of a system and the system itself. When a
function is refined to a lower level of more detailed functions, the
control integritv of the values and names from the parent layer
must be maintained at the layer of the offspring.

Ideally, we want to be able to define a system, as abstractly as
-o~sibie; describe tnat s'stem in a syntax we can all relate to; verify
that description implement that system for a machine that will
talk directly to that s.stem: and collect the machine mechanisms.
and only those mechanisms, that are necessar' to execute a given
system. In such a Aay we can eliminate dependencies on a
particular primitive r.achine until the sery end of a development
process. For when we go from one definition toanothei; from one
description to another, from one implementation to another, or
from one execution to another, %e are really resource allocating to
another machine level. Thus. there should be no need to resource
allocate for more than one given layer at a time.

139

Appendix I and Appendix II References

[ll Hamilton, M. and Zeldin, S. "The Foundations for AXES: A Specification
Language Based on Completeness of Control," R-964. The Charles Stark
Draper Laboratory, Inc., Cambridge, MA, March 1976.

[2] Hamilton, M. and Zeldin, S. "Higher Order Software--A Methodology
for Defining Software." IEEE Transactions on Software Engineering,
Vol. SE-2, No. 1, March 1976.

[3] Hamilton, M. and Zeldin, S. "Integrated Software Development System/
Higher Order Software Conceptual Description," TR-3, Higher Order
Software, Inc., (hereafter cited as HOS, Inc.), Cambridge, MA,
Nov. 1976.

[4] Hamilton, M. and Zeldin, S. "AXES Syntax Description," TR-4, HOS, Inc.,
Cambridge, MA, Dec. 1976.

[5] Hamilton, M. and Zeldin, S. "Operating System Machine with Respect to
Resource Allocation" in "Techniques for Operating System Machines,"
TR-7, HOS, Inc., Cambridge, MA, July 1977.

[6] Hamilton, M. and Zeldin, S. "The Manager as an Abstract Systems Engineer,"
Digest of PaDers, Fall COMPCON 77 (Washington, D.C.), IEEE Computer
Society, Cat. No. 77CG1258-3C, Sept. 6-9, 1977.

[7] Searle, J.R. "Review of J.M. Sadock, Toward a Linguistic Theory of
Speech Acts," Language 52, 1976.

141

