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1.0 INTRODUCTION

The Specification Language, AXES, is a formal notation for writ-
ing functional definitions of systems.  Although it is not a pro-
gramming language, AXES is a complete and well-defined language

] capable of being analyzed by a computer.

Higher Order Software (HOS) (HAM76b) is a formal system theory
that forms the foundations of the Specification Language, AXES.
HOS is a unified systems-engineering methodology that encompasses
all phases and all disciplines of computer-based systems develop-
ment. With the methodology of HOS, we apply the same axioms
(Appendix I) and therefore the same decompésition techniques
throughout an integrated system development (HAM76c). AXES is
the tool for defining and describing functions and interfaces of
a system throughout all phases of & system development.

The purpose of AXES is to be able to express a specification in

a form which is eguivalent to an HOS control map {(HAM76a). Thus,
systems described in AXES are based on the use of three primi-
tive control structures, which were derived from the HOS axioms
(Appendix II). With the syntax of AXES, we are able to describe
a system using the primitive control structures, intrinsic dr.ta
types and universal primitive operations of AXES, or we have the
option of defining new data types or new control structures which
can also be used to describe a svsten.

A computer-based AXES analyzer can be developed in order to check
the consistency and completeness of functions described within
AXES statements.
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2.0 SEMANTIC PRELIMINARIES AND A NOTATIONAL CONVENTION

Throughout our description of AXES, we will be using a notation

that is conventional in semantics, but that may not be familiar

to most readers. One of the most fundamental insights of seman-
tics is the fact that we can talk about an object only by using

a name of the object. To talk about the man in Figure 2.1, for

example, we have to use a sentence that contains the man's name,
not the man himself.

=

_
L

Figure 2.1

The sentence
(1) John is standing beside the house

is a true description of the situation nictured in Figure 2.1,
but the purported sentence

(2) ;g is standing beside the house

is not a sentence at all, because the manr himself appears in it,
rather than his name. How we say things about objects is always
one step removed from the objects themselves.

2 <o
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This fact is so basic a part of how we communicate informatiom
that we generally remain entirely unaware of it, taking it entire-
ly for granted like a pulse or heartbeat. When it is brought

tc one's attention, it may even seem trival or unimportant.
Serious problems can arise, however, when we begin talking about
a language, such as AXES, rather than simply using a language

tc +alk about objects. Since how we say something must of ne- |
cessity be one step removed, linguistically, from what we are

saying about it, great care must be taken to distinguish the

names in the language we are talking about from the names in the i
language we are using.

When we are talking about a language, we are treating the names
of that language as objects. We can only talk about those ob-
jects (names), as with any ~“jects, by using names of them. It
follows that we need a nota..or for names of names, if we intemd
to talk consistently about names. The notation conventicnally
used for this in ssmantics is enclosure within quotation marks.
To form the name of a given name (or written symbol of any kind)
we include that name (or symbol) in quotation marks.

We czn clacify this notation somewhat by examining a few examples.
Consider the man in Figure 2.2 and the four purported sentences
in (3) and (4):

Jimmy's
Peanuts

nainnaciinn

10¢ each

Figure 2.2
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(3) (a) Jimmy sells peanuts
(b) * Jimmy is bisyllabic

(4) (a) * "Jimmy" sells peanuts
(b) “Jimmy" is bisyllabic

In both pairs of purported sentences (?) and (4), those which
are prefixed with asterisks (*) are not really sentences at all,
but meaningless strings of words, while those without asterisks
are normal meaningful sentences which also happen to be true. l
Sentence (3a) uses the man's name to talk about the man, saying l
that the man sells peanuts. Purported sentence (4a), in contrast,
is not using a name of the man, but a name of tlL. man's name, l
since the name it uses as its subject is the man's name in quotes.
Since (4a) uses the name of a name, it is talking abhout a name, ‘
saying that that name sells peanuts, an obvious absurdity.
Sentence (4b), however, is all right, because, while also talking
about a name, what it says about that name makes sense. Namas
cannot sell peanuts, but they can be bisyliabic. Purported sen-
tence (3b), conversely, is an absurdity, like (4a). By using
: the name of a man it talks about the man himself. saying that
he is bisyllabic, which makes no sense.

Successive embedding ol quotation marks can be used if we want
to talk about names, names of names, names of names of names,
etc., ag illustrated in Figure 2.3.

fn"““""!f.,,_r 1'"/“' 9
T "'Jmhn” <= “John" -}I\I: R /K
Nt e

Figure 2.3

4
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If we begin at the right and move leftward, we first have our
object, the man, and we then get his name. To talk about the
man, we must use his name. We are then free to view that name
as an object and we get its name by moving one more step to the
left. To talk about the name we must use its name (i.e., the
“thing in quotation marks). If necessary we can themn treat that
name ags an object and talk about it using its name, obtained by
moving still one more step to the left. What we olxtain then is
the name of the name of the name of the man, which we use to
talk about the name of the name of the man. The process can be
continued indefinitely, in principle, but it is unlikely that we
would ever have to go beyond the steps shown in the diagram, in
actual practice. '

The main point to be kept in mind is the need to diwsstinguish
carefully between an object anu its name and to make sure that
we use the name, not the object itself, to talk abomt the object.
In (3) and (4) we saw how confusing the object with its name can
turn a seemingly normal sentence into an absur”i‘ty. Sometimes,
however, it can produce a perfectly meaningful sentsnce whose
actual wmeaning differs from what it was intended to mean. Each
of the sentences

(5) Jimmy sounds funny
(6) “Jimmy" sounds funay

is a. perfectly meaningful sentence, but their meanimgs are very
different. Sentence (5) makes sense if completed wiith

(7) in contrast with Northerner.s

but ssntence (6) must be completed with scmething like
(8) beczuse it's really just a nick-name

to make sense.

S
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If we add (7) to (6) or (8) to (5), we get meaningless nonsense
like (3b) and (4a).

The reasor. this principle is important for us, of course, is that
we are describing a language, AXES, and we must be careful that
what we say about that language makes sense, ' We will be talkimg
about the names and other symbols of AXES, i.e., we will be treat-
ing them as ocbhjects, sc we must be careful to use thair names

in doing so. The gquota:tion-mark convention enables us to form

the names of the AXES names and thus to talk about the AXES names
thearselves in a consistent way.

In AXES what corresponds to names are variables and constant sym-
bo.s. A constant symbol is the name of a particular value and
corresponds to a p:r'oper name like "John." A variable is the name
of more than one possible value and corresponds to a common noun
like "a man." Figure 2.4a exhibits a number of constant symbols
and Figure 2.4b exhibits some variables.

p Y ; -
2 e w
& o ¢S (3 L2
w2 LA 3?—&% e 4 B
~lo ¢ i N \at
2p 8.627 it Y.
‘P9 897 o L
.6 Y n 3 L ¥
(a) (b) {
Figure 2.4 i
}

Mote that the quotation mark convention applies as much to common
nouns as to proper names. so the sentences

A man has two arms
“A man® contains two words i

make sense, while the purpcrted sentences

6
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"A man" has two arms
A man contains two words

do not.

In describing AXES we will use variables and constants themselves
to make statements about the values they name, and we will use
the names (guoted forme; of variables and constants to make state-
ments about the variables and constants themselves. The sen-
tences.

X = y+z
w =3

x is an integer
y and z are of the same type,

i e s e ok e
R R iRt

for example, make statements about values by using the variables
and constant symbols that name those values. Sentences like

"X* represents the same value as "y+z"

"w" represents a value of type integer

“y" and "z" represent values of the same type
“q" is a variable and "3" is a constant symbol,

in contrast, make statements about variables and constant symbols
by using the quotation-marked symbols thut name them. In de-
scribing AXES we will try to adhere scrupulously to this conven-
tion, so that it will always he clear whether we are talking
about the objects (values, functions, mappings; structures, etc.)
that AXES talks aboui or whether we are talking about the vari-
ables and other symbols that make up AXES iteelf. (Appendix VI)

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 . (€17) 661-8900
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3.0 OBJECTS OF SPECIFICATION

An AXES system is a control hierarchy. The structuxre of any
hierarchy is determined by the objects that belong €0 the hier-
archy and the relationship that exists between the objects of

the hierarchy. For AXES systems, the objects are variables, values,
functiong, and irees; the relationship is contrel.

An AXES system can be graphically represented as a tree in which
each node identifies a member of a given control hierarchy.

An AXES tree structure, called a control map, is a relation on

a set of mappings, i.e, a set of tuples whose members are sets
of ordered pairs. An invocation tree, illustrated in Figure 3.1,
exhibits the names of the sets of ordered pairs (i.e., thappings)
which complete the functional specification for System A. When
our intent is to understand or describe the relatiom on the set
of mappings, the corresponding function of System A is described
as a decomposition of A into levels. The most immediate lower
level of A is a realization of A and only A. Functions Al and
A, are on the first lower level of A, and functions Bl and B2
are on the second lower level of A with respect to Ay

2 controls the use of Ay and Ay A, controls the use of Bl and
32. The properties of control are determined by the axioms of
HOS. When we refer toc A controlling A, and A,, A is referred
to as a controller or as a module. When we refex to Ay with

respect to A, Al is referred to as a function.

/A\
By /‘“z\
\ B) B,

Figure 3.1: System A Invocation Tree

8

b——l_&aumw¢m « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900 ]
e r— TR e




A control map includes a description of each node in terms of

the input/ocutput representation of each function as well as the
name associated with each node of the hierarchy. A control map

is constructed using abstract control structures (see Section 8.0).
A control map of System A is shown in Figure 3.2.

y = A(x)
y = Al(g) g Az(x)

9y = Byx) 93 = By(xy)

Figure 3.2: A Control Map of System A

A representation of the input value or output value of a func-
tion is called an input or output variable, respectively. 1In
(3-1), "x" is an input variable of A; "y" is an output variable
of A. '

y = A(x) ' (3-1)

Suppose "x" represents any one of the integers 5, 8, or 2. We
refer to these integers as values of "x". Likewise, if “y" re-
presents any one of the integers 6, 10, or 2, we refer to these
integers as values of "y".

In an AXES system, a function refers to the relationship (i.e.,
a mapping) between the input values and the output values where
these values are represented by particular variables (c.f. FUNC-
TION definition Section 8.0). This relationship is restricted
in AXES so that any input value corresponds to one and only one
output value.

A data type is 2 set of values characterized by a set of primi-
tive operations. When a variable is of a data type, that vari-
able represents a value of that data type. A variable of a data

9
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type may be replaced by a set of variables whose values collec-
tively represent the same value as the variables of the data type.
This collective set of variables is the data structure of the
variable of the data type.

Suppose "y" in (1) is replaced by "yl" and "yz", and "x" by “xl“
and "xz", The data structure of x is (xl,xz), and the data
structure of y is (yl,yz). The data structures of x and y could
be used by a function, such as B, to accomplish the same mapping
as System A.

(yy,¥y) = Blx,x,) (3-2)

If x is of data type 2-tuple integer, then (1,10) is a value
of "x*. If y is of data type 2-tuple integer, then (1,10) is 1
also a value of "y." "x" and "y" represent the same set of -
values, i.e., "x" and "y" are variables that represent values
of the same data type. A and B are equivalent functions.

it i

When our intent is to use a system as the input variable or out-
put variable of another system, A is of data type system and

the names of the functions on the first immediate lower level

of A (i.e., Ay and A,) describe the data structure of System A. :
Similarly, B1 and B2 are the data structure of Az. When "A"“ 1
is considered an input or output variable of another system, “aA"

i i Vi e 2 R

represents a layer. ?

There are many tradeoffs that must be considered in developing
the layers of a system. These involve not only how many layers, 3
but whether or not these layers are created statically (develop- 1
ment layers) or dynamically {(execution layers).

1f, for example, a translator f{such as a compiler) converted one
description of a specification of A to another description of a
gspecification of A, System A would exist as at least two develop-
ment layers. If, however, a real-time translator (such as an

10
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_both as a function and as a layer. The syntax of AXES provides

HIGHER ORDER SOFTWARE, INC, - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900 -

operating system) converted & System A layer to an executable
mode in real time, we would call that new layer of A an execu-
tion layer.

In defining a system it may be necessary to describe the syste:.
the means to differentiate between these two concepts.

The intent of an AXES specification is to describe the functional,
data, and performance aspects of a system independently of a &
particular resource allocation (i.e., implementation). The
functional description provides the specification of the decom-
pqsition of a system; the data description provides the specifi-
cation for the data types and structures to be used in the func-
tional specification; the performance description asserts the
limitations or constraints associated with the use of functional
or data descriptions. With AXES we are able to define systems
in which resource allocation requirements (e.g., time and memory)

can be specified, thus allowing for resource allocaticn alterna-
tives., Each of these aspects of a system can be documented in
a standard way with AXES.

11




4.0 SPECIFICATION VS. IMPLEMENTATION LANGUAGE

Using AXES, a system designer describes a system as a set of
functions and data that look very much like the procedures and
data of a programming language. However, the functions and data
of AXES differ in furdamental ways from the procedures and data
of programming languages.

In programming languages, a variable "x" is a name that desig-
nates a unit of storage where values may be placed.  That is a
statement of the form "x = y+z" means, "add the current values

of 'y' and 'z' and store the result in 'x'". 1In AXES, the same
statement means "'x' represents the same value as is represented
by 'y+2'". 1In AXES, a variable is the name of a particular un-
specified value. A constant symbol, such as "2", for example,
is, in contrast, the name of a particular specified value, The
pt meaning of "x=y+2z;" in AXES differs from its meaning in programm-
ing languages also as a result of a difference in meaning of "=",

S apR s a e

In a programming language, "=" is a directional symbol meaning

"is to be replaced with." The statement "x+y=z" means, in effect,
"replace whatever value is stored in 'x' with the result of adding
whatever value is stored in 'y' to whatever value is stored in
'2'.,* In AXES, however, "=* is a non-directional symbol meaning
"is the same as." The statement "x=y+2" means "the value of 'x°
is the same as the sum of the value of 'y' and the value of 'z',"

or equivalently, "'x' represents the same value as 'y+z' repre-
sents." The interpretation of "=" in AXES is thus identical to
the interpretation of "=" in mathematics. AXES statements are
statements of fact; they are not commands to be performed.

Programming languages make use of the notion of an order of evalu-
ation or a flow of execution. There is no such notion in AXES.

In AXES we use variables to specify equality relationships among
values. AXES serves to define the variables that represent
values in terms of other defined variables that represent values.
In AXES, the following statements simply define the variables

"x", "w", and "z" by using them in statements of equality.

12
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x = a+b; ' (4-1) :
w=5; (4-2) 33
z = £(k); (4-3) i

Each of these variables represent one of a set of values. 1If

_statements (4-1),(4-2),(4-3) were part of an AXES system speci-
fication, (4-1) could appear after (4-3) or (4-2), because AXES
statements can appear in any order.

In AXES, the following statement defines the variable "x" by
using the constant symbol "True",

X = AND(True,True) ' {4=4)

In AYES, the following statement defines a relationship among
systems.

Sum(Prod(x,y),x) = Opp(x,Diff(x,y) (4~5)

In this statemené, “x" always represents the same value, and
“y" always repreéents the same value.

In AXES, a variable is specified to be referenced only once fox
a given change of state at a given level of a control hierarchy.
(This is called single reference.) A variable is specified to
be assigned only once for a given change of state at a given
level of a control hierarchy. {This is called single assign-
ment). Thus, the concept of sharing locations, is not assumed;
yet, this concept may still be introduced into an implementation
model. '

Functions are defined in such a way that the ordering between
functions in a given system can be determined. The procedures
in an implementation model can thus exist within an unlimited
multiprocessor system, a multiprogramming system or a sequential
programming system.

13
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Each function is explicitly shown as unique in AXES. Yet, the
coruvept of sharing instructions may still be introduced into an
implementation model. '

b B e Tl il PR

Each AXES function is specified to be initiated upon receipt of
its first input value. An AXES function is ready for complete
execution upon receipt of all of its input values and is completed
upon receipt of all its output values. In an AXES system, the
specification of a value is synonomous with the specification of
an event. Thus, intefrupts or searches for events are not assured:
yet, they may still be introduced into an implementation model.
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5.0 NOMENCLATURE

In the description of AXES the following nomenclature will be

used.

":=" means "is".

P

»{ 1» means choose one of the rows contained within,

P

e

" ]* means the enclosed is optional.

"..." means repeat with different values as oftsn as
necessary. :

i T e e S B

In the syntax of AXES, the following nomenclature will be used.

Upper case names will designate lexical items of BXES (key-
words) .

"set of variables" means a list of variables possiibly en-
closed ir parentheses.

T P

Constants and abstract control structure names begin with
an upper case character followed by zero or more Jlower case

characters.

e it

Lt sl

A variable is indicated by all lower case charachers.

3

A valve of a particular data type can be indicatsrd by the
" name of the data type in lower case characters, possibly
subscripted.

el b

15
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6.0 COMMENTS

Comments can be inserted between statements. A comment is'dew
limited at the start by the character pair /*, and at the end by
the character pair */. Any character may appear in the comment
(except for * followed by /).

7.0 MULTI-LINE FORMAT

A variable in AXES can be a subscripted symbol, a superscripted
symbol, or an unsubscripted or unsuperscripted symbol.

AXES allows a multi-line format (LIC74) (LAN52) corresponding:
to natural mathematical notation. For example, the following
statements are acceptable in AXES.

Yy = F(xk )
t2 tl

1

Subscripts

The subscripting of a variable in AXES always signifies a map-—
ping between the value of the subscript variable and the value

of the variable that is subscripted. Thus “Ai' shows a relation-
chip between i and A. If that relationship is function F, such
that

A, = F{i)

"i" could represent an index for memory slot 'Ai“.

16
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if “xt" relates x and t by function G, i.e.,
X, = G(t)

"t" could represent an index for time slot "xt“. The subscript
mechanism is helpful in functionally rszpresenting the specifi-
cations of resource allocation of storage and time with respect

to a particular system.

L ELA] PRE . F
0

B

8

Superscripts

A variablec with a left superscript represents a member of a
menber of a partition of & set of values. For example, if x
is an integer, the members of the sets that make up a parti-
tion of the set of which x is a2 member might be represented by

"lx" and 'zx“ where wl

2

X" represents valuves greater than 10,

and "“x" represents values less than or equal to 10.

A variable with a right superscript is an alternate notation
associated with particular operations on intrinsic data types
of AXES (for example, "xz" means "multiply the value of ‘'x'

by the value of 'x'"). 1In other words, right superscripts rep~
resent mathematical exponents.

£ )
t
3
f_ .
3

L HE
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8.0 ABSTRACT CONTROL STRUCTURES

An abstract control structure (ACS) is a control hﬁierarchy;
An ACS can be generalized to be used in many particular systems,
or it can be "tailored" to the needs of a specific application.

An ACS can define one or more of its variables or mappings re-
cursively. In such circumstances, the recursive imvocation of
the mapping defines a new instance of variables associated with
the ACS.

Abstract control structures have three forms in ACSk: structures,
operations, and functions. . —— e

A structure is a relation on the set of mappings, i..e., a
set of tuples whose members are sets of ordered paimrs., We
specify a structure by

"STRUCTURE:" y "=" S "(" x ");"
declaration...
definition...
"SYNTAX:" user defined syntax";"
"END" § ";"

user defined syntax: = connector, y, "=t B, "Xy ") T

| . ] LS ] 1]
connector 'y, "=" 5 (*x")

where x, y are variables or sets of variables whose ‘values are
in the same types as the members of the ordered paixrs that make
up the mappings in the tuples of Si

and £ is a structure name;

and cennectory is a user-defined name, possibly emptty:;

and y; = Si(xi) is an unspecified mapping (see Sectiion 10.0 for

use of uviser-defined syntax).

The unspecified mapping names, used in definition sttatements within

a structure, are nested subscripted names with respeact to the root
module name. For example,
18
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STRUCTURE: y = F(x);
Y= Fl(g) ANC g = Fz(x);
y=F, (h) ANDh = F, (9);
1 2

A structure is an ACS in which the root module's corresponding
function is not specified and in which at least two other members
of the same control hierarchy exist as unspecified functions.

The STRUCTURE definitions for the three primitive control struc-
tures are defined in Section 12.0. The user-defined syntax can
be used in the construction of new structures, operations, or
functions.

By an operation, we mean & set of mappings which stand in a
particular relation. An operation results, mathematically, from
taking particular mappings as the arguments (nodes) of a struc-

ture. In AXES, we define a particular operation by means of the
following syntax:

"OPERATION:" y "=" L "(" x ");"
declaration...
definition...

"END" L ";"

where x, v are variables or sets of variahles whose values are

in the same types as the members of the ordered pairs which are
the mappings,
and L is an operation name.

An operation is an ACS in which the root module has a corres-
ponding mapping and in which all the members of the same control
hierarchy exist as at least a mapping and at most a function,but

not all are functions.

19
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A universal primitive operation is an operation whose arguments
can be values of any variable or set of variables. 1In AXES,
universal primitive operations are used with ACS definitione

to construct new ACS definitions. The universal primitive opera-
tions in AXES are:

The set of CLONE operations

L (X, e00x) = CLONEi(x)
1 i

here, "x" has the value of "x"; "x" has the value of "x"...
1l 2

*x" has the value of "x"
i

The set of JDENTIFY operations

(xp seeed = IDENTIFYS  (Xy,...X )
i where Dysees is a list of integer values in the range 1l to

m and n; ¥ nj;

here, 'xl‘ has the value of “xlf,...
1

T“ has the value of xn

For example,

(g,h,i} = Inznrzryg'd's (a,b,c,d,e

means "g® has the value of "b"
“h" has the value of "4*

*i* has the value of "e"

The set of X operations

y = Kconstant(x)

which maps any value of variable ™ “nto a constant value.

20 o |
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For example,

y = K {(x)

True
means "y" has tiie value True for any value of variable "x".

AXES introduces a special value of any variable, REJECT. The
cpexation

¥.= Kppgper (X)

is used, for example, to construct ACSs for error detection and
recovery mechanisms.

By a function we mean a set of mappings which stand in a par-
ticular relation for which particular variables have Leen chosen

g to represent their inputs and outputs. Whereas structures and
g operations can be described as purely mathematical constructs, 1
g‘ a function is a hybrid, concisting of a mathematical construct,
; i.e., an operation and a linguistic construct, i.e., an assign-

ment of particular names to inputs. and outputs. In AXES, we
define a particular function by means of the following syntax:

g s T L it et L

"FUNCTION:" y "=" P "(" x ");" ]
declaration... f
definition...

IENDH F I:I

where x, y are particular variatbles or particular sets of vari-
ables whose values are in the same types as the members of %he
ordered pairs which are the mappings,

and F is a function name.

A function is an ACS in which the root mocdule has a correspond-
ing mapping and particular varlables and in which all nodes with-
in the module's control hierarchy exist as mappings with particu-
lar variables. !ote that our use of "function®™ is slightly

21
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different from what is meant by "function" in mathematics. For
the latter notion we ure the term "mapping" throughout this re-
port.
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9.0 DECLARATIONS

AXES has very simple name rules. If a name is declared outside
of any function, operation or structure definition, it is the
name of an operation, function, or constant.

A declaration statement has two forms in AXES. A WHERE state—

ment is used to specify a variable as the name of a value of a
data type. A PARTITION statement is used to specify nonover-
lapping (i.e., mutually exclusive) exhaustive subsets of a set

of values.
WHERE

The names used within an ACS are either declared within an ACS
definition by a WHERE statement, or are the names used for fumc-
tions, operations, and types.

In declarationl, X is a variable, Yyeooo is a set of variables,
T is a constant or variable data type name, and "S" concatenated
with T denotes a plural type name.

declaration,: = "WHERE"| x "7S" ['A'

wanv| ['CONSTANTY T

rA“ ] Tt-oo
“M“ T}"OR"...Tr

"OF SOME TYPE"

Yyre+-  "ARE" {"coNSTANT"] T"S" nyw
TlncoT“S“
Tl S OR oocrnns
4 "OF ‘SCME TYPES"™
"OF THE SAME TYPE"

x "Is" 1“(“3'1“'“"'“)“!
T
]
"\"SO.‘{B TYPE"

23
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In the example
WHERE x IS A RATIONAL:;
WHERE y IS AN INTEGER;
X £ RATIONAL.
Y € INTEGER.

In the example

WHEﬁE Zero IS A CONSTANT NATURAL:
"Zero" represents a particular valae of data type NATURAL. 3
Which particular value it represents is determined by the axioms

G G lan

or assertions the example statement might occur with (see Section
15.0).

B

In the example

WHERE x IS AN ARRAY INTEGER:
X is an integer member of an ARRAY member.

It is sometimes useful to specify an operator that is capable
3 of operating on data of more than one type. For example, an

operation that sums several input arguments could accept both
INTEGER and RATIONAL arguments. Jt is even possible to write

operations that will accept arguments of any type. For example,
an operation that compared two input arguments for eguality could
accept arguments of any type. For example,

WHERE X IS A NATURAL OR RATIONAL;

declares "x" to be a variable capable of being defined to have
either NATURAL values or RATIONAL values.

il an e R, e R e e

In the example,

WHERE x IS OF SOME TYPE;

*x* is declared to be a variable whose values are of an unspecified

data type.

24
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In the example
WHERE X, Yy ARE INTEGERS:;

x € INTEGER, y ¢ INTEGER, i.e., both "x" and "y" :represent in-
gers.

" In the'example,
WHERE x, y ARE SAME TYPE;

“x" and "y" are declared to be variables capable ®f being defined
to have values of the same type, where the type is unspecified.

In the example,

WHERE x IS (xl,xz):
WHERE vy IS A RATIONAL;

x = (xl,xz}, i.e., "(xl,xz)" is the data structure: of "x".

Y = RATIONAL, i.e., "y" is a variable whose value .is the set of
RATIONAL values.
PARTITION

In declarationz,.x is a variable or a set of variaibles enclosed
in parentheses, Jy‘is variable or set of variabless whose values
are members of the members of a partition of the st of values
of the variables that x represents.

declarationz: = "PARTITION OF" x "IS" ?NY PARTITION X
y nlu tvl n’n...& u{lln tvi "o
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and

‘F ||("exp1||)f| l
true val exp: F "("exp...')"
‘exp F exp
—— true val exp ]
- "("true val exp, ","...true val exp,")",

truc val eXpy evaluates to tne boolean value True, and exp is
in terms of x and values of x.

The example

PARTITION OF a IS 1ala > 10,
2ala < 10,
3a|a = 10;

o= b

declares the set 1a,za,Sa to be a partition of the set of which
a 1s a member.

The example

PARTITION OF (a,b) IS l(a,b)|a>b,
2(a,b)laib:

declares the set l(a,b), 2(a,b) to be a partition of the set of
which (a,b} is a member.

T R A

In the use of a member of a partition, the left superscript can
be distributed to each member of a set of variables, e.g., 'l(a,b)“

can be written "la", “1b".
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10.0 DEFINITIONS

A definition statement defines a particular control level by
means of a mapping reference, a primitive definition statement,
a user—-defined definition statement, or a mapping assertion
statement.

In a definition, y,x are variables or sets of variables, and
F is a structure, operation, or function.

y f.n F Il(ll x II)I
primitive definition

definition;: = , o mn
user-defined definition
mapping assertion
ind + 3 " "
Primitive definition: = qIEflnltlon1 AND =ik

definitionn”;“
An example of a primitive definition for the function y = f(h) is
y = A(b) AND b = C(d) AND @ = E(h);

user-defined definition: = connectorl deflnltionl...

connectorn definitionn

where a set of connectors is defined in a particular structure
definition (see Section 8.0).

e il o SN A =

An example of a user~defined definition is

JOIN y = fl(g)

WITH g = fz(a,b) AND {a,b) = f3(x):
Section 13 provides more examples of the use of user-defined
definitions. Examples of connector definitions are shown in

Section 12.0.
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mapping assertion: = "WHEREBY" y "=" exp";"

A mapping assertion defines a mapping in terms of operations
that have been previously characterized and in terms of bound
variables.

If a mapping assertion is used as a definition, the corresponding
function has the set of variables referenced in the mapping as-
sertion as input variables. For example,

y = F]_{a,b) might correspond to Fl(a,b) = aZ + a/b + 1.
In this case, we can write

WHEREBY y = a2 + a/b + 1

i | e i T e Y

to define the mapping Fl.

Examples of mapping assertions are:

o e

WHEREBY z = g2 + 1;
WHEREBY (c,d) = (3,4);
WHEREBY z = Sum({Prod{a,b),a);

WHEREBY e = g{k(c)};

20 3
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11.0 EXPRESSIONS

Expressions in AXES are similar to expressions of most program-
ming languages.

value

x

F (exp)
exp: = exp F exp

(exp)

eXPros o

where F is an operation or a function name and
X is a variable.

The following is a valid expression:

Lo o B

-a, + b/{c + £({x)) + 4

e il e

When operations are used with prefix notation, operator hierarchy
and order of evaluation are inherently determined.

For convenience, AXES permits a number of the primitive or auxili-
ary operations defined on intrinsic data types (c.f. Appendix IV)
to be written in terms of the customary prefix or infix symbols.
The correspondences between thesc operations and symbols is given

F in the following table:
Operation Symbols
Cr, pPer !
And, Fand &
Not, Pnot, Iopp, Ropp prefix -

Same, Ident, Equal, ?Equal?,
?Iequal?, ?Requal?

?>?, ?I>?, ?R>?

>
Sum, Isum, Rsum +
Idiff, RAiff -
Prod, Iprod, Rprod *

29

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900




Operation {(con't) Symbels (con't)

Rdiv /
conc 1

Given these symbolizations, ">", "<", and "<" can also be intro-
duced in the usual way as abbreviations for combinations of these
symbols.” The symbol "+" can also be used as a prefix to indicate
the identity mapping, and the symbol “**" can be used to indicate
exponents. All symbols in this table are infix symbols, except
for the one prefix symbol indicated.

Operator Precedence

The meaning of expressions that contain multiple operators is
determined by the relative priority or precedence of the opera-
Eﬁ tors and by a property of operators called associativity.

. 2
B The expression

a+bt*c
for example, means
a+(b*c)
because "*" has higher precedence than "+". In general, operators

of higher precedence take priority over operators of lower pre-
cedence. The precedence of AXES operators is as follows:

Highest
** prefix + -
* /
+ -
2 € > = >=
&

Lowest [

30

HIGHER ORDER SOFTWARE, INC. » 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . {617) 661-8500
i e — — - S




Operator associativity

If an expression contains multiple operators of egqual precedence,
the meaning of the expression is determined by the associativity
of the operators. All prefix operators and the "**" infix operator

are right-associative, and all other nperators are left-associa-

tive.
Left-associative operators give priority to other operators of
equal precedence to their left, while right-associative operators
give priority to operators of equal precedence to their right.
For exﬁmple,

a+b+c-d
means

((a+b) +2) -d
while

akkhko
means

ar*{b**c)
As in most programming languages, parentheses can be used to

clarify the meaning of expressions and to overrule the precedence
and associativity of operators.
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12.0 PRIMITIVE ABSTRACT CONTROL STRUCTURES AS STRUCTURES

The primitive abstract control structures of HOS can be defined
as structures. The structure primitive composition, for example,

is the relation that holds among three mappings Cn, Cnl, an
if pomain(Cn) = Domain(an), Range(Cn) = Range(Cnl), and Do-
main(Cnl) = Range(an), and if, for all x, y such that y = Cn(x),
there is a g ¢ Domain(Cnl) such that y = Cnl(g) and g = Cn, (x) .
In AXES, we define the particular primitive composition struc-

ture by means of the following syntax.

STRUCTURE: y = Cn(x);

ﬁHERE X, Y, 9 ARE OF SOME TYPES;

y = Cnl(g) AND g = an(x):

SYNTAX: JOIN y = Cn,{g) WITH g = Cn,(x);

END Cn;

The structure class partition is the relation that holds between
three mappings, Cp, Cpy szif bomain{Cp) = Domain(Cpl) X Do=-
main(sz), Rarge(Cp) = Range(Cpl) X Range(cpz), and, if for all

X, y such that y = Cp{x), there is‘a(yl.yz) = y and a (xl,xz) = X
such that Y, = Cpl(xl) and Yo = sz(xz).

In AXES, we define the particular class partition structure
by means of the following syntax:

STRUCTURE: (yl.yz) = Cp(xl.xz):

E WHERE %), X5, ¥, Y, ARE OF SOME TYPES;
Y, = Cpl(xl) AND Y, = sz(xz):
Y . = (* = .
SYNTAX: INCLUDE Y; = Cpy(x;) ALSO Yy = Cp,ix,);
END Cp;
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The struct‘;ure set partition is the relation that hclds betweem
three mappings, Sp, Spl, Sp2 if Domain(Sp) = Domain(Spl) v
Domain(sz) and Domain(Spl) N Domain(sz) = g, and Range(Sp) =
Range(Spl) U Range(sz) and if, ior all x, vy suc}21 that y =
Sp(x), there is either a y = Sp("™x) or a y = Sp("x).

-
-

T VUL g o o e P

3 In AXES we define the particular set partition structure by means
_ of the following syntax:

i STRUCTURE: y = Sp(x);
WHERE X, y ARE OF SCME TYPES;
ly = Spl(lx) AND zy = Sp2(2x):

PARTITION OF (x,y) I5 ANY PARTITION;

SYNTAX: EITHER 1y = Spl(IX) OTHERWISE 2y = sz(ZX)F
¥ END Sp:
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13.0 THE USE OF STRUCTURES, OPERATIONS AND FUNCTIONS

In the following examples, the data types referenced are
intrinsic data types of AXES (Appendix IV) unless otherwise
indicated.

An example of an operation using the Cn structure is:

OPERATION: y = Transform (a,b)
WHERE a,b ARE RATIONALS;
WHERE y,g ARE INTEGERS;

-

3 JOIN y = A(g) WITH g = B(a,b);

% END Transform;

I
In this example, the structure input variable has been replaced
by a list of variables.
A function can include the use of structures and operations.
For example, function G uses the Cn structure and the Trans-

; form operation.

FUNCTION: c¢ = G(4);
# WHERE h IS A RATIONAL;
WHERE cl'CZ'hl'hZ'd ARE INTEGERS;

i . q

ﬁ WHERE ¢ (cl.cz).

E WEERE h = (hlfhz);

4 JOIN ¢ = R{(h) WITH h = Transform(d);
INCLUDE cl = T(hl) ALSO c2 = W(hz);

END G;
An exarple of a function using the Sp structure is:

¢ FUNCTION: y = Decide (x);
WHERE x,y ARE INTEGERS;
EITHER y = A(lx) OTHERWISE y = B(%x);
PARTITION OF x is ‘x|x<10,2x|x>10;
END Decide;
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In function S, function Calculate begins at time b and
completes at time a. Here the execution time span cof
Calculate is defined by function Clock. We assume here,
an extrinsic data type, Timeslot, where x and y are: Time-

slots whose values are integers and ar extrinsic datta type,
TIME.

FUNCTION: (a.ya) = S(b.xb):
E WHERE y.,x ARE TIMESLOT INTEGERS:
WHERE a,b are TIMES;

INCLUDE a = Clock({b) ALSO Y™ Calculate(xb):
END S;

A complete system specification is defined as a struicture of
functions whose lowest level functions are primitiven
operations on the data types represented by the varzeahles
of those lowest level functions. An example of a ccamplete
system definition is system F. The lowest level fummtions
of system F, (i.e., Fl and Fz) are described in termus of
primitive operations on RATIONALS. The intent of swsstem F
is to perform two independent func_tions.

FUNCTION: (yl.yz) = F(xl.xz):

WHERE Y),¥,,X,,%, ARE RATIONALS;

2
INCLUDE y, = Fl(xl) ALSO y, = Fz(xz):

END F;

FUNCTION: y, = F,(x,);

WHERE Y1¢%1+9 ARE RATIONALS:

2

JOIN WHEREBY y, ~ g+l WITH WHERE3Y g = x)

+3Y1:.'

END Fl-'
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FUNCTION: y, = Fz(xz):

WHERE YorX, ARE RATIONALS;

EITHER WHEREBY Y, = az, OTEERWISE WHEREBY y2 = b3

-~

PARTITION OF x, is a|x,<10, b|x,>10;

END F2?

The control map for System F is shown in Figure 13.1.

K

=

b B Fizs
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14.0 FUNCTION FAILURE

Failure of a function means that none of its outputs are
defined.

If a function fails, the failure could propagate back up to
the function that referenced it, etc., all the way back to
the top of the system, causing the system to fail.

To permit orderly recovery from errors, AXES provides a
structure in which provision for failure can bu expmessed.

STRUCTURE: w = FAIL(x,y);
WHERE x,y,w ARE OF SOME TYPES;
JOIN w = Fail, (w,'y) WITH (w,y) Fail, (x,y)

1 1 11
EITHER (lw,ly) = Faill(l(x,y)) OTHERWISE
1 1 ~ 2
v 2 2 2
WHEREBY “w = REJECT, ‘y = “y;
1 1
1
PARTITION OF - {x,y,w,y) IS
i i
l(x,y,w,y)Kx NQT= REJEC1, w NOT= REJECT),
N 1
2(x,y,w,y)Hx=REJECT,w=REJECT);
ila sl 1
Jomn (tw,ly) = Fail, Xx,ty,ty) wrTH
11 1 208
Ly,1y) = cLove, (ty) anp Ix = cLonE, (*x):
2 1
2 3 il
INCLUDE lw = Fail (1x.1y) ALSO ly = CLONE (ly);
1 1
1 1 1 2 1 3
l')
INCLUDE ‘w = Fail, (‘w,ly) aLso 2w = IDENTIFY?¢2,2y);
1 1
1 1 1 1 I
PARTITION OF (W,y,w) IS
11
l(w,y,w)lw = REJECT,
G| 1

2 (w,y,w) |w NOT= REJECT;
kil
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Jo1n lw = Fail (ly) WITH ly = IDENTIFthlw,ly):-
L ﬂ 2
l1 2 2 1 1
SYNTaX: w = Fail, (x,y) FAILURE w = Fail1 (y):
1 1
1, 1

END Fail;

Using the Fail structure, a function definition statement such
as

Z = F(x,y,a) FAILURE z = G(y,a):;

implies if F(x,y,a) fails, G(y,a) will be used to define the
value for z. If G(y,a) might fail, we can write:

z = F(x,y,a) FAILURE z = G(y,a) FAILURE z = H(a);

If H(a) might fail, the failure propagates back to the controller
é function which either uses a Fail structure of its own or
b further propagates the error back up the system.
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15.0 DATA TYPES

Abstract Types

The meaning of a type of value is determined by the set of opera-
tions that can be performed on the values of that type. For ex-
ample, what it means to be an integer is determined by the set
of 0perations.that can be performed on integers.

Most programming languages define a limited set of data types
and a set of operations on those data types. More advanced lan-
guages allow the programmer to define new data types in terms

of existing or previously defined data types. Because these de-
finitions define the new data types in terms of base types, how-
ever, the newly defined types usually exhibit the properties of
their base types. For example, if the type department_numbers
is defined in terms of the type INTEGER, department numbers are
likely to be permitted as operands of arithmetic operators.

In AXES, new data types can be defined simply in terms of the
operations that are to be performed on the data (GUT75) (Appen-
dixes IIIand IV). To specify a data type in AXES, we use the
following syntax: .

“DATA TYPE:" name ";"
"PRIMITIVE OPERATIONS;"
primitive operations...
"AXIOMS;"
declaration...

t assertion (about a type)...
' “END" name":"

| - where
(1) name is the abstract data type name.

(2} the primitive operations are not defined in terms of other

operations, but in terms of each other. As with all operations,
the name cof each primitive operation is known throughout the
40
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system specification, and each primitive operation can be refer-
enced from within any ACS and from within other data type defini-
tions.

primitive operation:= typename M=n Py n (" typenamej,...");”

where typename, is a data type name in lower-case characters
and k is an integer, possibly empty, and P; is a primitive

operation name.

(3) An assertion (about 2 type) in AXES is a true statement about
the equality of two ACSs in which all the nodes are operations.
Each ACS is defined in terms of primitive operations of the data
type of interest or of previously characterized primitive opera-
tions on another data type. The arguments of a mapping can be

values of a type as an alternate notation for the K opera-

CONSTANT
tion {(Section 8.0) or bound variables. The set of assertions
(about a type) completely characterize the type of interest (Ap-

pendix III).

. definition1 ‘ Idefinition2
assertion (about a type): = Vi -

lFﬂ“expl")“ exp., e
where exp; is an exp in terms of previcusly characterized or
primitive operations, variahles that represent values of pre-
viously characterized data types or the type of interest, and
values of previously characterized data types or the type of
interest; F is an operation name; definitioni is in terms of the
same objects as exp, i and either F or at least one of the opera-
tions of exp, are primitive.
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An example of a data type specification is data type STACK.

DATA TYPE: STACK:
PRIMITIVE OPERATIONS:

]

stackl Push(stackz,integer
stack1 = Pop(stackz):

integerl = Top(stack,);

1):

AXIOMS:

WHERE Newstack IS A CONSTANT STACK:
WHERE s IS A STACK:;

WHERE i IS AN INTEGER:

Top (Newstack) = REJECT;
Top(Push(s,i)) = i;
Pop(Newstack) = REJECT:;
Pop(Push(s,i)) = s;

END STACK;

£
|3
[

The entire set of statements constitutes the definition of the

type STACK. The first line and last line give the name of the

abstract type, the lines between "DATA TYPE" and "AXIOMS" are

the complete set of primitive operations that receive or define
i values of the type STACK.

The names STACK and INTEGER that appear within the primitive

. operations are the names of types (INTEGER is a previously de-

\ fined type; STACK is the type we are defining). Only type names and
1 primitive-operation names appear within the primitive-operation
list. The lines following the word AXIOMS are axioms, or asser-

{ tions, about the behavior of the primitive operations. Any actual
implementation of the primitive operations must satisfy these
axioms. If it does not, the implementation is invalid and does
not meet the specification. Note that this method of specifying
a STACK does not bias the final implementation toward the use

of any particular mechanism such as linked list, array, etc.

T

42
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‘The names "i" and "s3" that appear within the axibms represent any
value of any variable of the required type. Because "i" is de~
clared to be an INTEGER variable, it represents values of INTEGER

variables. Similarly,"s"represents values for variables of type

STACK. On the other hand, "Newstack" represents a particular
“value that "s" can represent.

Within a set of axioms, a variable of a given data type can be
used only in contexts that require that same data type.

Each axiom must be true for all possible values of the variables
described. For example, the second axiom means that for any
STACK s, and any INTEGER i, the resulting values of the nested
operations Top(Push(Stack,i)) must be equal to the value i.
(Pushing i onto s and then taking the top item off of the STACK

produced by the Push, must yield value i.)

Intrinsic Types

Because certain data types are common to a wide range of system
specifications, they are predefined by AXES. This means that
the system designer does not have to define these types. For

AXES, Appendices IV and V contain the intrinsic data type defini-
tions.

boolean boolean value
natural natural value
integer integer value
intrinsic types: = rational value: = rational value
property (of T) , property {of T)value
set (of T) set (of T) value
line

line value
extrinzic value
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boolean value: > True
False

1

natural value:

[*- TS - T T T B R - R - 1
-
-
.

integer value: {t} natural

integerl.
rational value: = ["E" integer)
integerl.integer2

L aEl et i i s il Lol b et b et T e
N e o

property {(of T)

-

3 value: : = "PROPERTY OF" t "IN" T"["true
E val exp,
k
{valuel,...} l
set (of T) value: =

"SET OF" t "IN" T "|" true vai exp ,

N\

‘any finite string of symbols

line value: possibly empty'’

Extrinsic data type values are defined as "'CONSTANT' T" using

b a declarationl statement (Section 9.0).

ot

R N Y

Loz Jh
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16.0 DERIVED OPERATIONS l

In AXES, we specify the bshavior of an operation without speci-
fying its decomposition by writing it as a derived operation.

The meaning of a derived operation can be determined in terms
of previously characterized operations (i.e., derived from
primitive operations of a type).

In AXES, we specify a derived operation implicitly by means

of assertions (about an operation) that describes the behavior .
of the operation with respect to other already-defined operations. f{?
The existence of a derived operation of some types mast be prov- | 3
able mathematically from the existence of the primitiwe opera-
tions and the axioms of those types. To specify a derived opera-
tion in AXES, we use the following syntax.

e T PO, T SO

"DERIVED OPERATION:" vy "=" D "{(" x ");"

declaration...
assertion({about D)...

TIEND" D ” ; ”

where x,y are variables or sets of variables ard D is a
derived operation name.

[definition,

L 2
assertion{about D): = ifi"("explﬂ“l r=n

Fzﬂ ( ﬂe% L] )ll

definition l

where F, is D or an operation of the types D is deriwed from;

exp, is an exp in terms of the derived operation, D, ©r opera-
{ tions of the types D is derived from and values of tke types D
is derived from; definitioni is in terms of the deriwed operation
D or operations of the types D is derived from and values of the
type D is derived from. For exanple, a derived operation taken
from Appendix IV ;;

45
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DERIVED OPERATION: integer3=IGCD (integerl ; integerz) ;
WHERE .'l.l,i2 ARE INTEGERS;

Abs(IGCD(il,iz)) = GCD(Abs(iz,iz)):

Sign(IGCD(il,iz)) = True;

END IGCD;
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17.0 RECURSION VS. ITERATION

Because AXES does not permit multiple definitions of a given
variable, the common control statements of programming languages
have no meaning in AXES. For example, a statement of the form

WHILE a<b DO ... END;

has no meaning in AXES because a<b always has the same value.
(The values of a and b cannot change.)

Traditional control statements, such as WHILE, are normally
used to express functions as iterative algorithms. In AXES,
these iterative algorithms must either be expressed using

control structure defini*ions or written as recursive func-
tions.

; The following text shows a simple iterative algorithm written
in PL/1:

DO WHILE(i,n);
E a(i) = F(b{i));
i=g(i);

END;

In AXES, the same problem is expressed using functions without
giving more than one definition of any variable.

This PL/1 formulation cannot be tested for interface correctness.
For example. we do not know if a(i) is defined more than once,

or if a(i) is ever defined. This uncertainty could have serious
consequences on system implementation; but we can avoid the

47
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problem altogether in AXES by formulating the function differ-
ently. Suppose we wished to estaklish the values that "a"
represents wherea = (al, .. .ai)-

FUNCTION; a = H(b);

WHERE a = (al,az): WHERE b = (bl,bz);

INCLUDE a.l = Fl (bl) ALSO a2 = G(bz);
. 1l
EITHER a2 RREJECT( b2) OTHERWISE
2
a, = H( b2)

PARTITION OF b, IS 1b2|b2 = REJECT,

2
‘b2|b2 NOT = REJECT;

END H;

The control map for function H is

a = H(b)
{ala = (a,,a,)} {b|b = (b,,b,))

N

a, = Fltbll a, = G[bzl
1 ' 2
a, = K("b,) a, = H("b }
2 2 {b2|b2c¢} 2 2{b |b¢¢}

. 272
3
: In the AXES formulation, any size data structure is inherent
E in the specification, however, a and b possess the same

{ structure. If "a" and "b" are defined as variables and H is &
primitive operation on data type array, then the above speci-
fication can be expressed simply as "a = H(b)".

48
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18.0 CONCLUDING REMARKS

In this report we have been careful to differentiate between the
name of a object and the object, itself.

. In AXES, a name (variable) always represents no more than one

object. The objects are members of a hierarchy whose relation-
ship is that of control. AXES syntax, AXES abstract control
structurczs, AXES abstract data types, and AXES systems are all
based on the methodology of HOS. 1In this version of AXES, we
have concentrated on a syntax which will provide a basis for a
system to be explicitly defined in such a way or to be automati-
cally analyzed for interface correctness.

In the future we hope to provide more building blocks (i.e. user-
defined abstract control structures and abstract data types) in
order to facilitate further the communication between users in
the process of specifying particular systems and systems in gen-

eral.
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APPENDIX 1
PRELIMINARIES OF HOS

. *
Trees and Functions

Using the HOS appreoach, software systems can be developed with
the aid of simple mathematical concepts and a set of software
engineering axioms. 1In this Appendix, the required mathematical

concepts are described.

The two mathematical concepts required in order to describe HOS
are the tree and the function. The tree is a structure comprised
of a finite number of nodes which are connected by branches as

shown in Figure AI-1l.

Figure AI-1l
An Example of a Tree Structure

A branch may be interpreted as entering a node (from above the
node) or leaving a node {(from below). The unique node at the
top of the tree that has no branches entering it is called the
root of the tree. A node that has no branches leaving it is
called a leaf of the tree. It should be noted that all nodes
other than the root have exactly one entering branch.

A root is considered to be at level 0 of the tree (see Figure
AT-2). As One starts at the root and traverses a path to a leaf,

*

Excerpted from Hamilton, M. and Zeldin, S, "Integrated Software
Development System/Higher Order Software Conceptual Description®,
Version 1, Higher Order Software, Inc., Cambridge, MA, Nov. 1976.
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each successive node defines the next level of the tree.

root
crf#fff + level 0
leaf « level ]
+ level 2
leaf leaf leaf
+ level 3
leaf leaf

Figure AI-2 '
Tree Levels

If a branch leaves node A (Figure AI-3) and enters node B,

then node A is the parent of node B, and node B is an offspring
nf node A. (In Figure AI-3 node C is also an offspring of node

A.)

Figure AI-3
Parent-Offspring Relationship

A nodal family is a particular parent node and all of its off-

spring (see Figure AI-4).

If there exists a sequence of nodes Ny rDgreee oDy such that for
every i, n, , is an offspring of niy then each ni, is a des~-
cendant of n, - A particular parent node of the tree together
with all of its descendants and connecting branches is the sub-

tree defined by the given parent.

AI-2

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

=

" ————




PARENT NODE

A NODAL

FAMILY A
3 A SUBTREE
OFFSPRING /

NODES

Figure AI-~-4
Tree Substructures

If a and B are set elements (from either the same or different
sets), then "(a,B)" denotes the ordered pair consisting of o and

B in that order. (Thus, the ordered pair («,B) is not the same
as (B,oc) except for the case where a and B are the same elements.)

If two sets, X and ¥, are given, and "x" and "y" rep: 'sent arbitrary

elements of X and Y, respectively (i.e., "x" and "y" are variables),
. then any set of ordered pairs of the form (x,y) is a relation

' between X and Y. For example, if X = {1,2,3,4,5,6} and ¥ = {m,
s,e,w}, then one possible relation between X and y is R = {{(4,m),
(3,8), (4,w)}.

The set of left elements of the relation is called the domain,
and the set of right elements, the range. 1In the above example,
the domain is {3,4}, and the range is {m,s,w}.

A relation is a fuaction when each element of the domain has only
one corresponding range element. 1If f is a relation between X

and ¥, and £ is also a function, then we say that "f is a function
from X into Y" (usually written y = f(x)). An example cf a func-

tion is
£f = {(1,n, (2,s), (4,m), (6,e) )

as illustrated in Figure AI-5.

AI-3
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DOMAIN OF

p / INTENDED F

RANGE OF F DOMAIN OF F

Figure AI-5
Illustration of a Function from X into Y

In the sections that follow, the variable that represents the
domain elements is referred to as the input variable, and the

variable that represents the range elements is referred to as

the output variable. Individual domain and range elements may
be called inputs and outputs, respectively. '

Modules and Nodal Families

In HOS, the decomposition process for a system results in a tree

structure. At the start of the decomposition process, the en-
tire system is represented by the root of the tree which, hope-
fully, represents the requirements for the system. This descrip-
tion, however, has many implicit (hidden) requirements. In order
_ to explicitly arrive at the complete description of the require-

5 ments of the system, the root is decomposed by replacing it by

a nodal family, which represents the decomposition of the root.
This decomposition process, that of replacing a function by its
nodal family, can be continued until the entire system has been
explicitly specified to whatever detail is required or desired.

W o=

AI-4
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It may turn out that during the decomposition process, a require-
ment is shown to be erroneous or missing. In such a case, an
iteration of the system description is required.

The parent node of the nodal family controls its offspring.

When referring to this control relationship, the parent node will
be called a module, and its offspring will be called functions.
The offspring of the nodal family are the functions required to
perform the module's corresponding funct. .« (MCF) (i.e., the
function that the nodal family replaces.

The resulting tree represents the system where the leaves rep-
resent, in an abstract machine sense, the machine "irstructions"
that are to be actually performed; the intermediate nodes rep-
resent control with respect to the performance of these leaves.
It can be shown that the HOS axioms provide rules for the way
that a nodal family can be constructed (HAM76}.

ik e o -
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AXIOMS OF HOS

DEFINITION: Invocation provides for the ability to perform a function.

AXIOM 1: A given module controls the invocation of the set
of functions on its immediate, and only its immediate,
lower level.

DEFINITION: Responsibility'provides for the ability of a module to
produce correct output values.

AXIOM 2: A given module controls the responsibility for
elements of only its own output space.

DEFINITION: An output access right provides for the ability to locate a
variable, and once located, the ability to place a value In the

located variable.

AXIOM 3: A given module controls the output access rights to
each set of variables whose values define the
elements of the output space for each immediate
and only each immediate, lower level function.

R R i R a2 i ke il

DEFINITION: An input access right provides for the ability to locate J

R T

a variable, and once located, the ability to reference the

value of that variable.

AXIOM 4: A given module controls the input access rights to each
. set of variables whose values define the elements of the
input space for each immediate, and only each immediate,
lower level function.

DEFINITION: Rejection provides for the ability to recognize the
improper input element in that if a given input element is not
? acceptable, null output is produced.

AXIOM S: A given module controls the rejection of invalid
elements of its own, and only its own, input set.

! DEFINITION: Ordering provides for the ability to establish a relation

in a set of functions so that any two function elements are comparable
in that one of said elements precedes the other said element.

AXIOM 6: A given module controls the ordering of each Y

tree for the immediate, and only the immediate,
lower level.

L hr e ot g
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PROPERTIES OF THE PRIMITIVE CONTROL STRUCTURES*

FUNCTIONAL DECOMPOSITION

While a function can be decomposed in many ways, the HOS axioms
provide rules for the construction of nodal families (i.e., the
decomposition of a function). From the axioms, three primitive
control structures are derived which are used for functional de-
composition (HAM76b). These control structures are composition,

set partition, and class partition.

Composition is illustrated in Figure AII-1. 1In order to perform

fl(x), the function f2 must first be applied to x which results
in output z. 2z then becomes an input to f3 which produces the

T ——

desired range element of the overall function fl.

y = fltx)

y = f4(2) z = f,(x)
Figure AII-1l: An Example of Composition

It is important to observe the following characteristics of com-
position (characteristics are explained with respect to the ex-

e b et e

ample in Figure AII-1):

(1} One and only one offspring (specifically f, in this ex-
ample} receives access rights to the input data, x, from

module fl.

(2) One and only one offspring (specifically f3 in this ex-
; ample) has access rights to deliver the output data, vy,
[ for module fl'

* Excerpted from Hamilton, M. and Zeldin, S., “"Integrated Software
Development System/Higher Order Software Conceptual Description”,
Version 1, Higher Order Software, Inc., Cambridge, MA, Nov. 1976.
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(3) All other input and output data that will be produced by
offspring controlled by f1 will reside in local variables.
(specifically "z" in this example). Local variable, "z",
provides communication between the offspring, f2 and f3.

(4) Every offspring is specified to be invoked once and only

~once in each process of performing the parent modules cor-
responding function. (MCF).

(5) Every local variable must exist both as an input vari-
able for one and only one function and as an output vari-
able for one and only one different function on the
same level.

Additional examples of composition are given in Figure AII-2 and
Figure AII-3.

y = fo(X)
| y = f3(h) h = fz{g] g fll.'::}
4 Figure AII-2: Composition with Three

Functions on One Level

y = £,(x)
y = £,(h) = £,(q)

Figure AII-3: Multilevel Composition

AII-2
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Set partition, which involves partitioning of the domain, is

illustrated in Figure AII-4. 1In this example, the set which com-
prises the domain is partitioned* into two subsets. For set
partition, only one of the offspring will be invoked for each

per formance of the MCF at f1 (ghe determination being based on

the value of "x" received} and that offspring will produce the re-
quired range element for its parent module when it is performing.

y = fl(x)

e

y = f,(x ) y = £,{x )
3 x]x > 0} 2 x|x < 0}

Figure AII-4: An Example of Set Partition

The following characteristics with respect to set partition should
be observed:

{1} Each offspring of the module at f] is granted permis-
I sion to produce output values of "Y"-

l {2) All offspring of the module at fl are granted permis-
sion to receive input values from the variable "X".

(3} 0n1§ one offspring is specified to be invoked per input
value received for each process of performing its MCF,
i.e., only one offspring has a state change for a given
state change of the parent module.

(4) The values represented by the input variables of an off-
spring's function comprise a proper subset of the domain

of the function of the parent module.

(5) There is no communication between offspring.

*
Partitioning implies the subdivision of the original set into
non-overlapping (i.e., mutually exclusive) rubsets.

AII-3
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T

Alternative approaches to the set partition illustrated in Fig-
ure AII-4 are presented in Figures AII-5 and AII-6.

y = £,(x)

y = £ (x ) y = £,(x ) y = £, (x
4 {x|x > 0} 3 {x|x = 0} : {x|x < 0)

Figure AII-5: Set Partition with Three
Functions on One Level

y = f(x)
?‘ftx :l Ynftx }
P xlx > 0) 23 )x < 0)
y = fg(x y = £, (x )
> {x|x > 0] ' {x|x = 0}

Figure AII-6: Multilevel Set Partition

Class partition is illustrated in Figure AII-7. While set parti-
tion involves partition of the domain into subsets, class parti-
tion involves partition of the domain variables into classes and

the partition of the range variables into classes. In the ex-
ample, it is assuied that the domain variable has an associated
data structure comprised of two parts, 'xl' and 'xz‘. Likewise,
the range variable has an associated data structure with the same
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number of classes as the domain's data structure. (As an example
of such a structure, consider the domain to be the complex numbers;
the range to be polar coordinates. Then, for a given value of the

domain variable (i.e., a given complex number), Xy would repxesent ﬁ

its real part and "x2 its imaginary part. Consequently, the -wvari- ’f

able is partitioned into two separate classes, “xl" and ”xz”, such
that elements associated with "xl" are the input elements that one

offspring can access and the elements associated with "x2 are the
input elements that the other offspring can access. The range

structure is partitioned in a similar manner.

(v +¥,) = £0xq, %,)

y; = hix,) Yy = g(x,)

i Figure AII-7: An Example of Class Partition

F The following characteristics with respect to class partition
should be cbserved.

(1) All offspring of the module at f are granted permissiomn
to receive input values taken from a partitioned vari-
able in the set of the parent MCF domain variables, swch
that each offspring's set of input variables are non-
overlapping and all the offspring input variables col-
lectively represent only its parent's MCF input vari-

ables.

{2) All offspring of the module .at f are granted permission
to produce output values for a partitioned variable im
the set of the parent MCF range variables, such that
each offspring's set of output variables are non-over-—
] lapping and all the offspring’'s output variables col-
lectively represent the parent MCF output variables.

AII-5
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(3) Each offspring is specified to be invoked such that for
each change in state of its parent, all offspring under-
go a state change.

(4) There is no communication between offspring.

e
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APPENDIX III
ALGEBRAIC SPECIFICATION OF ABSTRACT DATA TYPES

An algebra is an ordered pair [I,w] , where I is a non-empty class
of non-empty sets, and w is a non-empty class of operations on
the grandmembers (i.e., members of members) of I. The members
of I are called categoriesl of the algebra, and the members of
w are called the primitive operaticns of the algebra. A parti-

cular algebra can be specified by giving a category specifica-

. . 2 13 . - C e .
tion, an operational™ specification, and an axiom specification.

A category specification lists or defines the members of I. An
operational specification gives the domains and ranges of the
members of w as Cartesian products of the members of I. An
axiom specification is a non-empty set of formal statements that

characterize the interactive behavior of the members of w and
the grandmembers of L. BAlgebras can be classified according :
to the constraints that we choose to put on one or more of their %
category, operational, or axiom specifications. j

An algebra E,uﬂis said to be homogeneous, if I contains exactly %
one non-empty member., The most familiar kind of homogeneous

algebra is probably the group. A non-empty set G is said to be

a group with respect to a binary operation Mult, called the group
multiplication, defined on G, if (1) G is closed under Mult™,

{2) Mult is associative, (3) there is an element in G that is

neutral with respect to Mult, and (4) every element of G has an

inverse. which produces the neutral element under Mult (c.f.
(FUN74)). We can specify a group G formally as a homogeneous

algebra as follows:

lpirkhoff (BIR70) and Guttag (GUT75) call these phyla. The cate-
gories or phyla of a type algebra, which we will consider later,
we will call types.

: 2Guttag (GUT75) calls this the syntactic specification, but this
term is somewhat misleading.

]

“The uniqueness of the image under Mult is also required, but this
is guaranteed by specifying Mult as a mathematical function, i.e.,
mapping, as in (1,2),
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(I) Group 6 =[I,u} :

(1) Z: G, Neut ¢ G
(2) w: Mult: G x G+ G
Inv: G+ G
(3) Axioms: 1. Mult(gl,Mult(gz,g3)) = MultG(-Mult(gl,gz),g3)
Mult (Neut,g) =g
3. Mult(g,Neut) =g
Mult(g,Inv(g))

Neut

In this example, (l) is the category specificatiem of the group
6., (2) is its operational specification, and (3) iz its axiom

specification.

The category specification (1) says that the algelbra 6 contains
exactly one set G and that there is an element Nemt in G. The
operational specification (2) says that the algebma 6 contains :
two primitive operat;ons. The first of these (Mult) produces a i

A

member of G from an ordered pair of members of G, and the second é
(Inv) produces a member of G from a member of G. 1
The axiom specification (3) specifies the ihteradtive behavior é

of the members of the set specified in (1} and the primitive op- .
erations specified in (2). Every axiom should be Iinterpreted 4

as being universally quantified over each of its free variables.
Axiom 1 says that Mult is an associative operatiom. Axioms 2 ;
and 3 taken together say that Mult has no effect, :if Neut is one
of its arguments. These axioms are often combine€l as a single

axiom of the form: j

{4) Mult (Neut,g) = Mult (g,Neut) = g,

but we have given them as separate axioms to ensur'e that every

axiom uniformly contains exactly one equality symkbol. Axiom 4
says that Mult maps every member of G and its inve:rse onto the
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neutral element. Together Axioms 1-4 provide the primitive
operations in w with the properties required to make the set in
Z a group.

Other familiar examples of homogeneous algebras are the modules,

=i

rings, and fields. A group is said to be a module,4 also called

T

S

an Abelian group, with respect to its group operation, if that

operation is commutatives. A ring is a non-empty set on which

ik

two operations, Sum and Mult, are defined such that it .is a module

AW,

with respect to Sum, and Mult is associative and distributive in
both directions over Sum. A field is a ring in which Mult is

- i

commutative and every element other than the neutral element with
respect to Sum has an inverse with respect to Mult.

We can formalize these notions very easily in terms of the
framework being developed here. To get a module we simply add

the axiom:

To get a ring, we first replace "Mult" throughout (I) and Axiom S
with "Sum”, "Neut" with "Zero", and "Inv" with "Opp", meaning

opposite. These names are changed simply to bring them more in 4
line with our intuitive interpretation of Sum as a kind of ad- 1

3
dition. We alsc replace "¢" with "R", "G" with "R", and "g" E
with "r". Then we put "Mult" back into (2), we put Axiom 1 back %
into (3}, and we add the two axioms ]
3

Mult (rl,Sum(rz,rB)) Sum ’Mult(rl,rz), Mult (rl,ra))

Mult (Sum(rl,rz),ra) = Sum (dult(rl,rB), Mult (rz,r3)).

et o i i)

4It should be emphasized that this mathematical use of the term

3 "module” is entirely unrelated to what is meant by the term
"module” in systems analysis, particularly in HOS. We use it here
only as an example and will not use it outside of this Appendix.

Modules are customarily writter with additive operations, like
Sum, but, strictly speaking, any Abelian group is a module, since
the name of any particular operation is arbitrary. See Note 4.

P S——

5
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This gives us the following specification for a ring:

Ring R =[I,u]
L: R, 2Z2ero e R
w: Sum: R X R+ R
Opp: R + R
Mult: R X R+ R

Axioms: 1. Sum(rl,Sum(rz,r3n = Sum(Sum(rl,rz),r3)

[
H

2. Sum(Zero,r)

3. Sum(r,Zero)

]
H

4. Sum(r, Opp(r)) = Zero
Se Sum(rl,rz) = Sum(rz,rl)

6. Mult(rl,Mult(rz,r3)) = Mult(Mult(rl,rz),r3)

7. MUIt(rl'Sm(r21r3))

add the constant value Unit to R, add the axioms:
9. Mult(rl,rz) = Mult(rz,rl)
16. Mult{r,Unit) = r

11. Inv(Zero) = REJECT

2

12. Mult(r,Inv(r)) = (lr) AND K (“r)

Konit REJECT

PARTITION OF r IS
1 2 1. =
rlr ¥ Zero and “rlr = zZero
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‘Sum(Mult(rl,rz), Hult(rl,r3))

8. Mult(Sum(rl,rz),rB) = Sum(Mult(rl,r3), Mult(rz,rB))

If we put Inv: R + R back into our operational specification,
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to our axiom specification, and remove Axiom 8, because Axiom 9
makes it superfluous, we get a formal specification of the fields b
as homogeneous algebras.

The REJECT6 value in Axiom 11 is an object that we assume to be A
an "invisible" member of every category. Any function that con-
f tains REJECT as an argument automatically has REJECT as its value,
' no matter how deeply embedded the REJECT argument may be. In
Axiom 12 we also have the universal primitive operation KREJECT' 3
defined on every type T, that produces the output REJECT for any ﬂ

input and the universal primitive operation K that produces

Unit as output for any input (c.f. M. Hamiltognéid S. Zeldin, |
"AXES Syntax Description", Higher Order Software, Inc., Canbridge,
MA, Dec. 1976, Section 8.0}. The REJECT value is useful because
it enables us to avoid complicating the operational specifications
of particular algebras and the definition of algebra itself.
Without the REJECT value, we would have to specify the operation ;
Inv as:

Inv: R - {Zero}l + R,

4 viclating our prescription that the domains and ranges in the
operational specifications of the members of w are always Car-
tesian products of the members of L. We could keep this pre-
scription without the REJECT value only by allowing members of ]
w to be mathematical partial functions (operations), significantly ]
complicating our notion of algebra.

An algebra which is not homogeneous is said to be heterogeneous.

An algebra [f,uw, is heterogeneous if [ contains more than one mem-
ber. The most familiar heterogeneous algebras are the vector
spaces. A non-empty set V is said to be a vector space over a

non-empty set S, if (1) V is a commutative group with respect j
to an addition operation VSum defined on it, (2) S is a field :
-3 with respect to addition (Sum) and multiplication {(Mult) opera-
tions defined on it, (3) there is an operation SMult, meaning

overly restrictive connotations. "“REJECT" conrotes only tne
fact that a "normal" output is not produced, not that a genuine

$
T
3
i d
6Guttag (GUT75) calls this the "error" value, but "error" has %f
i
error has occurred. :
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scalar multiplication, defined on both V and S which is associa-
tive and distributive over both VSum and Sum, and which has the
unit element of Mult as its own unit element. §

Formally, we get the following specification of the vector spaces
as heterogeneous algebras: :

Vector Space v = [I,u)
t: V, Viero ¢ V
'S, S #V, Zero ¢ S, Unit ¢ §

w: VSum : IVxV-*V

Vopp : V v

Sum : § x §-+ 8

Opp : 8§ =+ 8§

Mult : § xS =+ §

Inv : § + §

SMult: S x V>V

Axioms: 1. VSum (vl, VSum(vz,v3)) = VSum (VSum(vl,vz),v3)

2. Vsum (VZero,v) = v
3. VvSum (v,VZero) = v
4. vVSum (v,vOpp(v}!) = VZero

5. VSum (vl,vz) = VSum (vz,vl)
6. Sum (sl,Sum(sz,s3)) = Su@ (Sum(sl,sz),s3)

7. Sum (Zero,s)

]
/4]

8. sum (s,Zero)

n
2]

9, Sum (s,0pp(s)) = Zero
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10. Sum (sl,sz) = Sum (52'51)

11. Mult(s),Sum(s,,8;)) = Sum(Mult(s),sp), Mult(s),Sy))
12. Mult(sl,sz) = Mult(sz,sl)

}3. Mult(sl,Mult(sz,s3)) = Mult(Mult(sl,sz),s3)

14. Mult(Unit,s) = s

15. Inv{Zero) = REJECT

2

16. Mult(s,Inv(s)) (ls) anp x (’s)

= KUnit
PARTITION OF s IS

REJECT

1s[s # Zero

2sls = Zero
17. SMult(Unit,v) = v
18. SMult(s,VSum(vl,vz)) = VSum(SMult(s,vl), SMult(s,vz))
19. SMult(Sum(sl,sz),v) = VSum(SMult(sl,v), SMult(sz,v))
20. SMult(Mult(sl,sz),v) = SMult(sl, SMult(sz,v))

Axioms 1-5 say that V and its operations comprisé ar. additive
Abelian group7. Axioms 6-10 say that S, Sum, Zero, and Opp also
constitute an additive Abelian group. These axioms plus Axioms
11-14 say that S and its operations comprise a commutative ring
and, together with Axioms 15 and 16, that they comprise a field.
Axions 17-20 characterize the operation that relates S and V

and, together with tle immediately preceding axiomatizations of

S and VvV, say that S,v, and all of the primitive operations speci-
fied in the operational specification comprise a vector space.

7Or module, but see Note 4.
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As specified, the algebra v = E,uﬂis a heterogeneous algebra,
because I contains two distinct categories. If we remove the :
stipulation that S # V, then V can be a vector space over itself |
and the possibility that v could be homogeneous is opened up.

One variety of algebra that has proven to be particularly useful

e i,

et

the type algebras of Guttag (GUT75). If we examine closely the
algebras we have seen so far, we realize that what they actually
provide are schemata for structured sets. The symbols "G", "R",
"y", and "S8" in the algebras ¢, R, and v are set variables, not
names of specific sets. Any set can be substituted for these
variables, provided that there are operations definable on that

set that satisfy the operational and axiomatic specifications.

It follows that what these algebras define are mathematical
structures, imposable on a large class of otherwise different sets.

il

In the case of a type algebra we shift our perspective and view
the algebra as characterizing a particular set. One of the cate-
gories in I is singled out as the type-of-interest and the speci-
fication of the algebra is interpreted as an implicit definition
of the kind of object that makes up the members of the type-of-
interest. The categories other than the type-of-interest are
also referred to as types in a type algebra. 3

Guttag (GUT75), for example, gives an algekraic specification of

the type WNatural Number that can be formulated in our framework
as follows:

Type Natural Number = E,uﬂ
£: Natural Number, Zero € Natural Number
Boolean, True ¢ Boolean, False £ Boolean

w: Sucec: Natural Number -+ Natural Number
?Zero?: Natural Number -+ Boolean
?rqual?: Natural Number Natural Number + Boolean
?>?: Natural Number x Natural Number -+ Boolean

ES

AIII-3




Axioms: 1. 7?Zero? (Zero) = True

ﬂ* 2. ?Zero? (Succ{n)) = False

3. ?Equal? (Zero, Zero) = True
4. ?Equal? (Succ(n),Zero) = False

5. ?Equal? (Zero, Succ(n)) = False

s 6. ?Equal? (Succ(n)), Succ(nl)) = ?Equal? (n,nl)

7. ?>? (Zero,Zero) = False

8. ?>

-

(Succ(n),Zero) = True
9. ?>? (Zero, Succ(n)) = False

10. ?>? (Succ(n), Succ(nl)) = ?2>? (n,nll

Guttag introduces Zero as an operation that maps the empty set
onto Natural Nurmber, Zero: # -+ Natural Number, saying that the
emptiness of # guarantees that a unique constant twwalue results.

Actually, however, since a mapping is mathematically a set of

ordered pairs the first element of each member of which is a mem-
ber of the domain, it follows that having an empty domain guaran-

tees that there is no first element of any orderesd pair and thus
no ordered pairs. The mapping, viewed as a set of ordered pairs,
turns out to be the empty se4 and thus not really a mapping at
all. If there is no input, there can be no outputt, unique, con-

] stant, or otherwise. Guttag's device is really unnecessary, in
any event, because all we have to do is to state ‘in our specifi-
cation of I that Zero is in Natural Number. Witk AXES, this is
done by means of a WHERE statement, as we will sere in Appendix IV.
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The intent of the operations in this specification should be
clear from their names, but their formal meaning is provided
entirely by their operational and axiomatic specifications.
Guttag's specification of the tvpe Natural Number is, in reality,
inadequate, because it omits the crucial axiom of induction; it
still serves our purpose, however, as an example. We will see
in Appendix IV how the inadequacy of his formulation can be

remedied.

T ——— -

In this example, we see that a type algebra can be viewed as

defining what it means to be a member of the set with the same 2.
name. The algebra Natural Number defines the set of natural i
numbers. An object is a natural number if it belongs to the

f set characterized by the respective algebra. The primitive op-

2 erations in such an algebra are taken as being defined collec-

T Y teaaisi 1o

tively in terms of their interactive behavior. The function

Succ, meaning successor, for example, has meaning only with re-
spect to the specification of Natural Number as a whole. The
specification defines all of its primitive operations at the
same time, each in terms of the others, and, through them it
defines its type-of-interest. What makes Natoral Number a type
aléebra, in contrast to the general algebras we saw earlier, is
that the type-of-interest is taken to be a specific set of a
; particular kind of object that already exists in the world (ox
in our minds) and which we are trying to make intelligible.
The general algebras we saw earlier define mathematical struc-—-
tures on arbitrary sets, as we have seen. Guttag (GUT75) char-
acterizes the type algebra as a restricted form of the general
heterogeneous algebra and implies that the type Boolean must be
presupposed. Qur explicit specification in Appendix IV of Bnolean

bt s

as a homogeneous type algebra, howevér, shows that both claims

ol T b

are incorrect.

The usefulness of type algebras for system specification lies in
the need to maximize the degree of abstraction in the specifi-
catior. of data types. The customary operational means of speci-
fying abstract data types requires us to imbue our data types
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with more implementational meaning than is often desirable. 1If
we have to include elements of implementation in specifying an
abstract data type, then we may unwittingly rule out more effi-
cient implementations of that data type that are inconsistent
with those elements. With HOS, however, we are able to divorce
specification entirely from implementation and, with respect to
abstract data types, we manage to do this by specifying those
types algebraically, rather than operationally. Appendix IV

contains a list of algebraic specifications of abstract data
types that are included in AXES as intrinsic types.

:i,'
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APPENDIX IV
TELE INTRINSIC TYPES OF AXES

Although AXES provides the means for algebraically specifying
any desired abstract data type, there are a few types that are

of sufficiently general usefulness in a wide variety of systems
that we include them in AXES as intrinsic types. These types
must also be specified algebraically, of course, and we do so,
once and for all, in this Appendix. In all we provide six in-
trinsic data types in AXES: Booleans, properties, sets, natural
numbers, integers, and rational numbers. The Boolean data type

automatically solves the "boot-strap" problem for abstract data
types, because it can be characterized as a homogeneous algebra,

it ot

i.e., entirely in terms of itself. All our other intrinsic types
presuppose the prior characterization of type Boolean and so must

L

be characterized as heterogeneous algebras. Type Property pre-
suppcses only type Boolean, while type Set and type Natural all

siab e RS

presu.pose type Property. Type Integer Presupposes type Natural,
and tyre Rational presupposes type Integer. Our reasons for not
providing the real numbers as an intrinsic data type will be dis-

cussed in connection with our algebraic specification of the E
rationals. All our intrinsic types will be specified in AXES ;
syntax, rather than i~ the strictly mathematical‘format used in 3
Appendix III. 1In this Appendix, AXES statements are cften num- f

bered for purposes of discussion (these numbers are not intended
to be included as part of the AXES syntax). 1

Tvpe Boolean 1is particularly easy to characterize, because it
contains only two values, true and false (truth and falsity).
Since [ contains only one set and that set is finite, we could
icentify that set explicitly by simplv listing its members.
This frees us from the need to characterize the equality rela-
tion on type Boolean, which we could not do without a prior
characterization of type Properry. Since there are only two
distinct Booleans, which we explicitly list in the Category
specification, we can always tell which one we are dealing with
simply by looking at it: )
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DATA TYPE: BOOLEAN;
PRIMITIVE OPERATIONS:

{‘ boolean3 = And(booleanl,booleanz); 1.
boolean2 = Not(booleanl); 2.
AXIOMS:

WHERE True IS A CONSTANT BOOLEAN;
WHERE False IS A CONSTANT BOOLEAN:;

And (True,True) = True; 1.
And (True,False) = False; 2.
And(False,True) = False; 3.
And (False,False) = False; 4,
Not (True) = False; 5.
Not (False) = True; 6.

END BOOLEAN;

TR G R e R I s S

In this algebra we specify that I's single member «ontains exactly
two elements, true and false, and that w containss exactly two

Ll

primitive operations, And and Not. And is charac%srized as be-

having exactly like the conjunction operator of prropositional
logic and Not is characterized as behaving like th®m negation

operator. These two elements and these two operaiions, as axio-
matized, are all we need to characterize the type Boolean as
4 an abstract data type.

" Once we have characterized an abstract data type itn terms of its

E categories and its primitive operations, defined cmwllectively

and implicitly through its axioms, we will often £fiind it useful
to define other operations on that type. Note thait the categories
of the type algebra Boolean other than Boolean itsself were not
listed explicitly in the AXES specificaticn above, but only im-
plicitly through their appearance in the PRIMITIVE: OPERATION
spe-ification.

Pedun
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We are free to define any operation we want on an already-defined
type as long as the operation definition is consistent with the
axioms of the type. New operations can be characterized either

as operations (c.f. HAM76, Section 8) or as derived operations
(c.f. HAM76, Section 16). An operation is specified in AXES ex-
plicitly in a form that is directly translatable to a control

map. A derived operation is specified implicitly by means of
assertions that describe the behavior of the operation with re-
spect to other already-defined operations. Either kind of opera-
tion could be written as a control map, if desired. They differ
in how they are specified, not in what they are. What distinguishes
both of these kinds of operations from primitive operations on
their data type is that their existence is provable mathematically
from the existence of the primitive operations and the axioms

of the type. If an operztion'’s existence is not so provable,

then adding it to the type produces a new type, of which the new
operation is a primitive.

In the case of type Boolean, for example, we will often find it
useful, as in logic, to have available the notions of disjunction,
entailment, and sameness of truth-value. We can introduce these
notions as operations on type Boolean by means of the following
definitions:

OPERATION: b3 = Or(bl,b2)3

WHERE bl'b2'b3 ARE BOOLEANS;

WHEREBY b3 = NOt(And(Not(bl) ,Not(bz) ));
END Or;

OPERATION: b3 = Entails(bl,bz);
WHERE bl'bZ'b3 ARE BOOLEANS;
WHEREBY b3 = or(Not(bl).bz):
END Entails;

OPERATION: by = Same(b,,b,)

WHERE b,,b,,b; ARE BOOLEANS:

WHEREBY b, = Or (And (b, ,b;) ,And(Not(b,) +Not(b,)));
END Same;
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The first definition defines Or in terms of And and Not in a
way that is familiar from propositional logic. We could have
introduced it as a primitive operation by including the axioms:

or (True,True) = True:

Or (True,False) = True;
Or (False,True) = True;
Or (False,False) = False;

in our axiomatic specification of type Boolean, but this would
have complicated our algebra unnecessarily. We simply do not
need Or to characterize the Booleans as a data type. Simil .ily,
we could have included Entails and Same as primitive operations,
but there was no point in doing so as long as we can define them
as operations. The point is that And and Not are all we need to

characterize the Booleans, even though there are other operations
that we find useful, and that we therefore introduce for other

purposes.

It should be noted that Same is an equivalence relation on type
Boolean. This relation coincides with egquality, because we al-
ready know when two Booleans are the same or distinct, as a
result, as noted above, of the finiteness of the single set in

L. If this were not the case, in fact, that is, if equality were
not automatically given to us, then it would be impossible to
write axioms for type Boolean, because the "=" sign would be
meaningless. For convenience and clarity, we will sometimes

use "=", and a few other symbols like "<", in the conventional
way, rather than in strictly functional notation, once we have
already defined them functionally. For example, it may be sim-
pler to write "il<i2" in an axiom for type Rational, rather than
"I<(i,,i,)." This is permissable, because we will already have
characterized I< (i.e., "integer-less than") in our specification
of type Integer (c.f. HAM76 (Section 11)). -
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The second intrinsic data type that AXES provides is that of pro-
perties. We will need propertigs in characterizing the sets as

a data type. Properties are basically things that map other things
onto truth-values, i.e., Booleans. The property "prime", for
example, maps the integer 2 onto true, 3 onto true, and 4 onto
false, because 2 is prime and 3 is prime, but 4 is not prime.

In characterizing properties algebraically, we will have to state
what kinds of things the properties are properties of. We can

do this by including a type parameter "T" in our category speci-
fication and treating our algebraic specification as a function

of . It follows that our algebra for type Property is5 really

an algebra schema depending of the type parameter T and that there

is, therefore, a distinct type Property (of T) for every type T.

We can express the fact that properties map other things {i.e.,

t's) onto Booleans by introducing a function that maps proper-
ties and t's onto Booleans. If we call this function "Has", so

v

that "Has(P,t)" is true, when t has the property P, then we must

T

specify that Has maps properties and t's onto Booleans in a way

that preserves conjunctions and negatiors. This can he stated
very simply in terms of axioms. To define equality or identity

of properties, we will also have to introduce two quantifier
operations Forall and Exists (CUS7é6a). Pr0pertiés can be mapped
onto Booleans by combining tiiem with t's via the Has function,
but they can also be mapped unto Booleans directly via these

quantifier functions. Has maps P and t onto true, if t has the
property P. Forall maps P itself onto true, if every t has the
property P. Exists, similarly, maps P onto true, if there is some

t that has P, regardless of which particular t that is. Once we

T TE—

have Forall available to us, it will be a simple matter to specify
when two properties are equal (identical).

As well as characterizing the relationship, which we have just

r—

discussed, between type Property (of T) and type Boolean, we
must also characterize the internal structure of type Property
(of T). Properties constitute a Boolean lattice (FUN74), so we

P

AIV-5 |

HIGHER ORDER SOFTWARE, INC. » 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900




must include the axioms for a Boolean lattice in their algebraic
specification as a data type. The Eooleans also constitute a
Boolean lattice, but since there are only two Booleans, eﬁabling
us to list the values of their primitive operations explicitly,
we can prove the axioms for a Boolean lattice from that explicit
list of values. For properties, however, we must include the
axioms fpr a Boolean lattice as axioms of our algebra, because
there is nothing else that we can prove them from.

The foregoing discussion is summarized (and elaborated) in the
following AXES specification:

g T o LTy e el i Lo e

DATA TYPE: PROPERTY(OF T);

PRIMITIVE OPERATIONS: {
proPerty3 = Pand(proPertyl,propertyz); L |
pr0perty3 = Por(propertyl,propertyz): 2. ;
property2 = Pnot(propertyl): 3. é
property3 = Pentails(propertyl,propertyz); 4. %
boolean = Has(property,t); 5. E
boolean = Forall(property):; 6. j
boolean = Exists(property):; 7. E
boolean = Ident(propertyl,propertyz): 8. !
AXIOMS:

WHERE T IS SOME TYPE;

WHERE Pl’PZ'P3 ARE PROPERTIES;
WHERE t is a T;

WHERE Nec IS A CONSTANT PROPERTY;
WHERE Contra IS A CONSTANT PROPERTY;

Pand(Pl,Pz) = Pand(Pz.Pl); 1.
Por(Pl,Pz} = Por(Pz,Pl): 2.
Pand(Pl,Pand(Pz,P3)) = Pand(Pand(Pl,Pz),Pa): 3.
Por(Pl,Por(Pz,Pa)) s Por(Por(Pl,Pz),P3): 4.
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Pand(Pl,Por(Pl,Pz)) = Pl; 5.
Por (p,,Pand(P;,P,)) = Py; 6.
Pand (P, ,Pox(P,,P3}) = Por(Pand(P,P,), Pand(P,,P,)); 7
Po:(Pl,Pand(Pz,Pa)) = Pand(Por(Pl,Pz), Por(Pl,P3)); 8.
Pand (P,Pnot(P)) = Contra; 9.
por (P,Pnot(P)) = Nec; 10. f
Has(Nec,t) = True; 11, %

: Has(Contra,t) = False; 12. ;

i; Has(Pand(Pl,Pz)}t) = And(Has(Pl,t), Hés(Pz,t)); 13.

? Has (POr(Py,P,) ,t) = Or(Has(P;,t), Has(P,,t)); 14.

é Has (Pnot(P) ,t) = Not(Has(P,t)}: 15.

F Forall (Nec) = True; 16.

é: Exists(Contra) = False; 17.

F Forall(P) = Not(Exists(Pnot(P}))}; 18.

-? Exists(P) = Not(Forall(Pnot(P})); 19.
Entails(Forall(P), Same(Has(P,t),True)) = True; 20. ;
Enfails(Same(Has(P,t),True), Exists(P)) = True; 21. 2
Ident(P,,P,) = AndiForall(Pentails(Pl,Pz)), E

Forall (Pentails(P,,P,))): 22.

END PROPERTY (OF T)

i OPERATION: P, = Pentails(P,,P,):
| WHERE P),P,,P, ARE PROPERTIES:
WHEREBY P, = Por(Pnot(Pl),Pz):
END Pentails:;

Axioms 1-10 in this specification characterize type Property

fof T) as a Boolean lattice, and together with AxXiom 22, give us
the internal structure of the type. Axiom 22 is essential to
the internal structure, because it tells us when two properties
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are the same and when they are distinct. The value Nec is the
necessary property, which every t has, and serves as the unit
element of the lattice, while the value Contra is the contradic-
tory property, which no t has, and serves as the zer( element

of the lattice. Axioms 18 and 19 tell us that Forall and Exists
are related by dual negation, which is definable for any quanti-
fier (CUS76a, CUS76b). Axioms 11-21 characterize the interface
of type Property(of T) with type Boolean, but they also provide
the preregquisite for the meaningfulness of Axiom 22, We thus see

o s g

the sort of mutual dependence among the various aspects of speci-
fication, in this case between the internal structure and the
external interface, that is characteristic of algebraic specifi-
cation. One might think that Ident could be defined as an opera-
tion, since Axiom 22 defines it explicitiy in terms of already
defined operations. This would be wrong however, because a notion

of identi'y (equality) is essential to characterizing the internal
structure of the type. Without Axiom 22, Axioms 1-10 would liter-
ally be meaningless, because we would have no clearly specified
interpretation of the "=" signs that occur in them.

i PTG T e

We have stated (in Axiom 22) that two properties are identical

if they are mutually entailing for every member of the type whose
members they are properties of, that is, if they hold of exactly
the same members of that type. Ultimately, such a definition is
inadequate, because it treats certain properties as identical
which, for some purposes, should not be considered identical.

The two conjunctive properties, "both less than and greater than
2" and “"both less than and greater than 100", for example, are
distinct properties, in the general sense, because they “say
different things" about the objects they are supposed to hold of. i
By our definition, however, these two properties are identical :
and, in fact, are both identical to Contra, because they hold of
exactly the same objects, namely none. Since we are interested
in properties primarily as a way of specifying set partitions

g g2 i

i
il e

in system specifications, our definition of identity nevertheless
suffices for our purposes.

AIV-8

HIGHER ORDER SOFTWARE, INC. «+ 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900




Given the way we have characterized properties ag'au:abstract data
type, it is a simple matter to do the same for sets;. Because of
the way we have defined identity for properties, thie type Pro-
perty (of T), as we have specified it, will be isomeorphic to the
type Set (of T). For every property there is a set:, called the
extension of that property, which consists of exact.ly the objects
that have that property. Given our definition of piroperty identity,
this mapping from properties to sets is one-to-one. It follows
that we can characterize type Set (of T) isomorphicszlly to type
Property (of T) in terms of this extension mapping, 1if we guarantee
that tﬁe mapping and its inverse preserve the primittive operations
of the two typeé. This is done in the following speecification:

DATA TYPE: SET(OF T);
PRIMITIVE OPERATIONS:

sety = Inters(setl,setz); 1,
setqy = Union(setl,setz); 2.
set, = Comp(setl): 3.
set = Extension(property):; q.
property = Prop(set); ' =
boolean = Element(t,set); ' 6.
boolean = Subset(setl,setz): 7.
boolean = Equal(setl,setz); 8.
AXIOMS:

WHERE S1185,83 ARE SETS;
WHERE P IS A PROPERTY;

WHERE Null IS A CONSTANT SET;
WHERE T 1S SOME TYPE;

Inters(sl,sz) = Inters(sz,sl); 1.

Union(sl,sz) = Union(s,,s,); 2.

Inters(sl,Inters(sz,s3))= Inters(Inters(sl,sz),53); 3.

Union(sl,Union(sz,s3)) = Union(Union(sl,sz),s3): 4.
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Inters(sl,Union(sl,sz)) = 8y; 5.
Union(sl,Inters(sl,sz)) = sy; 6.
Inters(sl,Union(sz,s3)) = Union(Inters(sl,sz),

Inters(sl,s3)); 7.
Union(sl,Inters(sz,s3)) = Inters(UniOn(sl,sz),

Union(sl,s3)); 8.
Inters(s,Comp(s}) = Null; 9.
Union(s,Comp(s)) = T; , 10.
Extension(Prop(s)) = s; 11.
Prop(Extension(P)) = P; 12.
Prop(T) = Nec; 13.
Prop(Null) = Contra; 14.
Prop(Inters(sl,sz)) = Pand(Prop(sl),PrOp(sz)): 15.
Prop(Union(sl,sz)) = Por(Prop(sl), Prop(sz)); le.
Prop(Comp(s)) = Pnot(Prop(s)): 17.
Element(t,s) = Has(Prop(s),t): 18.
Subset(sl,sz) = Forall(Pentails(Prop(sl),Prop(sz))): 19.
Equal(s,,s,) = And(Subset(s,,s,), Subset(sz,sl))é 20.

END SET(OF T);

Axioms 1-10 in this specification characterize type Set of (T)
as a Boolean lattice, with the null set Null as the zero element
and the universal set T as the unit element. Axioms 11-17 define

the iscmorphism mapping between type Set (of T) and type Property
(of 7). The function Extension maps a property onto the set of
elements that have that property,and the function Prop, meaning
"propertv", maps a set onto the property of being in that set.
This automatically accounts for all properties because of our

s definition of property identity, as noted above. Axioms 18 and

3 19 define the usual notions of element and subset, and Axiom 20

- defines equality as mutual subset. Something is in a set if it

AIV-10

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 07139 - £617) 6618900

T



has the property that corresponés to the set and one set is a sub-
set of a second if everything that has the property of the first
has the property of the second. Two sets are equal if each is

a subset of the other. It is worth noting that T itself is a
grandmember of I in this case, because it functions as the unit
element of the algebra. Upon reflection, we realize that the

set Set (of T), i.e., the member of I, as opposed to the algebra,
turns out to be just the power set of T itself.

e

PRy P W

SR L] (S Ry

Now that we have sets and properties available to us, we can con-
struct an adequate specification of the natural numbers as an
abstract data type. As we noted in Appendix III, Guttag's speci-
fication of the type Natural Number is inadequate, because it
leaves out the crucial axiom of induction. This axiom can be
formulated as follows (FUN74, p. 72):

.'ﬁ".J"'Lr_-‘ T

A A

Koo i 2

If a property P of the natural numbers satisfies the follow-
ing two conditions, then P holds for every natural number:
(1} P holds for 0

(2) For every natural number n, if P holds for n, then
P holds fcr n% ~ '

it

where n' is the successor of n. This axioms tells us that we can
be sure every natural number has a given property, if we know that ¢
0 has that property and that n+l's having it follows from n's (
having it, for every n. If we begin at 0, in other words, and go

successively from each natural number to the next, then we eventu-
ally get to every natural number. This is a crucial characteris-

tic of the natural numbers and cannot be omitted if our intent is

] to characterize their data type as fully as possible.

kit St i

4

Since we now have the facility for dealing with properties, we
1 could formalize the axiom of induction as an axiom of type Natural
Number in terms of the members of type Property (of Natural Number),

by tcking ¢ = Natural Nunber, in other words, in our type Property
fof 7). It turns out, however, that the actual formulation of this
axiom in our framework is very complicated and somewhat unintui-
tive, so we are led to look for an alternative axiom that would
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have the same effect as the axiom of induction. Fortunately,

this purpose can be served by a characteristic of the natural

2 numbers called the "well-ordering principle", which states:that
every norn-empty set of natural numbers contains a least element.
The axiom of induction and the well-ordering principle are logical-
ly equivalent, in the sense that each can be derived from the

other within the context of the other axioms for the natural num-
bers (LAN67), so we are free to take either one as one of our
axioms. The well-ordering principle can be formulated very simply
in our framework, in contrast to the complexity and unintuitive
character of the axiom of induction, so we will adopt it to com-
plete our specificatipn_pf.type Natural Number.

This gives us the following AXES specification:

DATA TYPE: NATURAL;
PRIMITIVE OPERATIONS:

natural2 = Succ(naturall); 1.
! boolean = ?Zero?(natural); 2.
E boolean = ?Equal?(natural,,navural,); 3.
; boolean = ?>?(natura11,natura12): 4.
; natural = Smin(set(of naturaxs)l): ‘ 5.
E AXIOMS:
{ WHERE n,n, ARE NATURALS;

1
b
' WHERE s IS A SET(OF NATURALS);

WHERE Zero IS A CONSTANT NATURAL;

: ?%ero? (Zero) = True; 1.
g ?%Zero?(Succ(n)) = False; 2.
| ?Equal?(Zero,Zero) = True; 3.
3 ?Equal?(Succ(n) ,2Zero) = False; 4,
?Equal?(Zero,Succ(n)) = False; 5.
é ?Equal?(Succ(n),Succ(nl)) = ?Equal?(n,nl); 6.
?>?(Zero,2ero) = False; 7.
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?>? (Succ{n) ,2ero) = True; 8.
?>?(2ero,Succ(n)) = False; 9.
?>?(Succ(n),8ucc{nl)) = ?>(n,n1); l0.
Element(smin(s) ,s) = True; 11.
-Entails(Element(n,s), ?>?(n,Smin(s))) = True; 12.

END NATURAL;

This specification is identical to Guttag's specificaticn of type
Naturai Number, which we saw in Apperdix III; except for the new
operation Smin and the two new Axioms 1l and 12. Axioms 11 and
12, along with the presence of Smin in w, provide us with the
effect of the well-ordering principle. The fact that the Smin

is in w tells us that every set s of natural numbers is asscciated
with a natural number Smin(s). Axiom 1l tells us that the natural
smin(s) is an element of s and Axiom 12 tells us that Smin(s)

is, in fact, the minimum element of s. This specification, then,
completely specifies type Natural Number as the type of what we
usually think of as the natural numbers.

Now that we have a full Specification of the natural numbers,

we can define operations on their data type. Since we have

already characterized equality ¢f natural numbers as a prim-

itive operation of our data type, we are free to interpret the

"=" sign in our definitions as referring to that equality. e

will also use other operations, such as "And" in the customary

way, rather than the more complicated functional notations, as

long as these operations have been fully characterized (cf.

section 10)}. Some of the following operations, such as Sum and 1
Prod, meaning sum and product, respectively, are included be-

cause of their general usefulness; others are included because

they will be useful in specirying later data types: 1

DERIVED OPERATION: ny = Sum(nl,nz);
WHERE nl,nz.n3 ARE NATURALS;
Sum(Zero,nz) = n,y; 1.

Sum(nl,zero) = nl; 2.
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Sum(nl,Succ(nz)) = Succ(Sum(nl,nz)); 3.
Sum(Succ(nl),nz) = Succ(Sum(nl.nz)); . 4.

END Sum;

DERIVED OPERATION: Ry = Prod(nl,nz);

WHERE nl,nz,n3 ARE NATURALS;

Prod(Zero,nz) = Zero; 1.
Prod(nl.zero) = Zero; 2.
Prod(nl,Succ(nz)) = Sum(Prod(nl,nz),nl); 3.
Prod(Succ(nl),nz) = Sum(Prod(nl,nz),nz); 4.

END Prod;

DERIVED OPERATION: ny = Ndiff(nl;nz):
WHERE n,,n,,nq ARE NATURALS;

) 1

Sum(nl,Ndiff( nl,nz)) nz, 1.
Ndiff(z(nl,nz)) = REJECT; 2.
PARTITION OF (n,,n,) IS

1(n1.n2)ln13n2.

2

(nl,n2)|n2>n1:

END NAiff;

DERIVED OPERATION: n3 = Maxlnl,nz):
WHERE n1'“2'“3 ARE NATURALS:;

1 .
Max (nl.nz) ny; 1.

2
Hax (nl,nz) = nz, 2.

PARTITION OF (nl.nz) 1s
1l
(nll nz) I ?‘Zinl'
2
(nl,nz)ln1<n2.
EMD Max;
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DERIVED OPERATION: ny = Min(nl,nz);
WHERE nl,nz,n3 ARE NATURALS:

. Min(l(nl,nz)) ny; 1.

Min(%(n),n,))

PARTITION OF (nl,n IS

2)
1
(n) ,n,) {ny<ny,
2
(n),ny) [0y <ny;

END Min;

DERIVED OPERATION: n, = Quot(nl,nz):

WHERE nl'“2'“3 ARE NATURALS:;
Quot l(nl,nz) = REJECT; 1.
Sum(P 2 2

rod (Quot (nl,nz), Rem (nl,nz)))= n,: 2.

PARTITION OF (nl,nz) IS

1
(nllnz) ]n2 = 0'

2
(“1'“2)|“2 #0;
END Quot;

DERIVED OPERATION: ny = Gcn(nl.nz):

WHERE nl'nZ'nB ARE NATURALS;

Pactor(GCD(nl,nz),nl) = True; 1.

Factor(GCD(nl,nz),nz) = True; 2.

Entails(And(And(Factor(nl,nz),Factor(nl,n3)),Noti?Equal?(nI,Zero))L
Pactor(nl,GCD(nz,n3))) = True;. 3.

END GCD;

OPERATION: n3 = Rem(nl,nz);
WHERE nl'“2'“3 ARE NATURALS:; |

1

EITHER ny = (lnl, n2) OTHERWISE

KpEJECT

EITHER n, = IDENTIFYi(znl,znz) OTHERWISE
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WHEREBY n3 = Rem(Ndiff 3(n1,n2),3n2:

PARTITION OF (nl,nz) IS
1l .
(nl,n2)|n2 = Q,
2 .
(nl,n2)|n2 # 0 AND n; < n,,

3
(nl,n2)|n2 # 0 AND n, < ny;

END Rem:;

OPERATION: b = Factor(nl,nz);

WHERE Ny .0y ARE NATURALS:;

WHERE b IS A BOOLEAN;

WHEREBY b = ?Equal?(Rem(nz,nl),Zero);
END Factor;

Derived operations Sum and Prod give us addition and multiplica-
tion, respectively. Derived operation Ndiff gives us the sub-
traction of smaller naturals from larger ones. Derived opera-
tion Max gives us the larger of two naturals, derived opera-

tion Rem gives us division (guotient) with remainder, and opera-
tion Factor tells us when one natural is a factor of another.
Derived operation GCD gives us the greatest common divisor of two
naturals and will be needed in the specification of the rationals.

The Integers can be characterized as a data type in terms of the
natural numbers by recognizing that an integer is just & natural
number with a sign. Since we need two distinct signs, we can
take our signs to be the Booleans, with True interpreted as plus
and False interpreted as minus. This gives us the following
specification:

DATA TYPE: INTEGER;
PRIMITIVE OPERATIONS:

boolean = ?quual?(integerl,integerz); 1.
boolean = ?I>?(integer1,integer2): 2.
natural = Abs(integer): 3.
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boclean = Sign(integer);

integera Isum(integerl ; integerz) :
integer3 = Iprod(integerl,integerz);

integer3 Iquot(integerl,integerz);

. AXIOMS:
WHERE il,i2 ARE NATURALS:
WHERE Izero IS A CONSTANT INTEGER;
WHERE Icone IS A CONSTANT INTEGER;

?quual?(il,iz) = Or(And(?Equal?(Abs(il) . 2ero) ,
?gqual?(Abs(iz);Zero)),
And(?Equal(Abs(il).Abs(iz)).

Same(Sign(il).Sign(iz)))):

?I>?(11'iz) = (Same(Sign(i,),True) & Same(Sign(i,),True)
§?>2?(Abs(i,) ,Abs(i,)))
!(Same(Sign(il),False) & Same(sign(iz),ralse)
§2>2 (Abs(i,) ,Abs(iy)))

!(Same(Sign(il),True) & Same(sign(iz),ralse));

Abs (Isum(i,,i,)) = sum(abs(li)),abs(’i,)) AND
(Ndi££ (Max (Abs (%i,) , Abs(?i,)),
Min(abs(%1,),abs (%1,)));

PARTITION OF (i,,i,) IS
1(il-iz)lsign(il) = Sign(i,),

(i1 |sign(iy) # Sign(ip);
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Sign(Isum(i,,i,)) = Sign(lil) anp Sign(?i;) anp sign(*i,);
.PARTITION OF (il;iz) I8
Li,,i.)|Sign(i) = Sign(i.)
1:12 gnily gniizl.

2(1,.1,) |sign(i)) # Sign(i,) AND Abs(i,) < Abs(i,),

2(1,,4,) |Sign(i;) ¥ Sign(i,) AND Abs(i,) < Abs(i,);

Abs (Iprod(i,,i,)) = Prod(Abs(il),Abs(iz)):
Sign(Iprod(il,iz)) = Same(sign(il) ,Sign(iz)):
Abs (Izero) = Zero:;

Sign(Izero) = True;

Abs (Ione) = Succ(Zero);

Sign(Ione) = True;

Abs (Iquot (i),i,)) = QUOt(Abs (i) /Abs(i,));
Sign(Iquot(i,.i,)) = Same(Sign(i,),sign{i,));

END INTEGER;

DERIVED OPERATION: integer, = IOpp(integerl):
WHERE i IS AN INTEGER:

Sumii,IopP(i)) = Izero;

END Iopp;

OPERATION: 13 = Idiff(il.iz):
WHERE i,,i,,i, ARE INTEGERS;
WHEREBY i, = Sum(i,,Iopp(i,));
END Idiff;

DERIVED OPERATION: integer3 = IGCD(integerl,integerz):
WHERE :i.l,i2 ARE INTEGERS;
Abs(IGCD(il,iz)) = GCD(Abs(il),Abs(iz));
Sign(IGCD(il,iz))' True;
END IGCD:;
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fuziom 1 is couplicaced by the fact that zero cam have eithar a

plur (true) o ainus (false) siqn. We want Sigm to be a mapping,
however, (i.=., a function in the mathematical, mot AXES, sense,
c.f. HANM/6 (Gection §.0)) so we assume from the start that plus

zer¢o and minus zero are the same entity. In Axiom 8 we say zero
has - plas sign, but Axiom 1 tells us that if 2 minus zero occurs,
it ie really the sams integer as pids zers. Two integers arc egual
if the, have the same absolute vaiue and the same sign, nnless
their al':0late values are both z2rn. In that case, they are equal
ragardless of their rigns.

The rational nunbers can be characrterized, as irn modern arfth-
metic theory, as oréered pai.ss ¢f integei's that Kave no common
factors. Adopting this approach we get the follewwing specifi-
cati. i:

DATP TYPE: AavICLAY:
PRIMITIVE OFERATION:

boolean = ?Requal?(rationall,rationalz); 1.
bonlean = ?R>?(rationall,rationalr); 2.
integer = Num(rational); 3.
integer = Dencm(rational); 4.
rativnal = Rsum(rationall,rationalz): 3.
rational = Rprcé(rationall,rationalz)- 6.
boolean = Pos(rational); 7.
AXIOMS:

WHERE r,r,.r, SRE RATIONALS ;
WHERE Rzero IS n CONSTANT RATIONAT;
WHERE Rone IS A CONSTANT RATIONAL;

?Iequal?(Denon(r),I%erc) = False; 1.
IGCD(Abs (Num(r) ,Abs (Denom(xr)))) = ione; 2.
Rprcd (r,Denom(r)) = Yum(r):; 3.
?Requal?(r,y,r,) = ?quual?(lprod(Num(rli.Denom(rznla
Iprod(Denom(r,) Num{r,))); 4.
AIV-19
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Num(Rsum(r,,r,)) = Iquot(Cross(r),ry). I1GCD(Abs (Cross(r,,X5)),

Abs(DprOG(rl:rz))),r 5.
Denom(Rsum(rl,rz)) = Iquot(Dprod(rl,rz), IGCD(Abs(Cross(rl,rzl),
Abs(DPIOd(rlcrz)))) H 6.
Num(Rprod(rl,rz)) = Iquot(Nprod(rl,rz). IGCD(Abs(Nprod(rl,rz)),
AbS(DPrOd(rllrz)))): 7.
Denom(Rprod(rl,rz)) = Iquot(Dprod(rl,rz). IGCD(Abs(Nprod(rl,rz)),
AbS(DPI'Od(rlnrz))))F 8.
Num (Rzero) = Izero; li- |
Dencm(Rzero) = Ione: . f
T e 1
Pos(r) = And(Not(Equal(r,Rzero)) Same(Sign(Num(r)). i
Sign(Denom(r)))); 11. ?
PR>?(ry,r,) = Pos(RALiff(r,,r,)); 12. j
END RATIONAL; ?
OPERATION: ¥, = Cross(r,,r,); 4
WHERE rl .r2;r3 ARE INTEGERS? 4
WHEREBY r, = Isum(Iprod(Num(r,},Denom(r,)), 1

Iprod(Denom(rl).Num(rz)));
END Cross:;

OPERATION: r, = Nprod(r,,r,);
WHERE SRR ARE INTEGERS:

WHEREBY ry = Iprod(Num(rl).Num(rz)):
END Nprod;

OPERATION: ry = Dprod(rl,rz);

WHERE Fy1TpiTy ARE INTEGERS:

WHEFEBY ry = Iprod(Denom(rl),Denom(rz)):
EdD Dprod;
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é:

The functions Num and Denom give the numerator and denominator
of a "fraction” in the "lowest terms". The operations Iquot
and GCD are vsed throughout the axioms to guarantee that zums
and produvcts of rationals are always expressed 1 snch "lowest
terms". The operations Cross, Nprcd, and Dpr € are just useful

~abbreviations that ;. :atly simplify tne definitions of addition
and multiplicaticn.

DERIVED COPERATION: :ational2 = RGPP(rationall):
WHERE r IS A RATIONAL;

Rsum(r,Ropp(r)) = Rzero;

END Ropp:

i OPERATION: r3 = Rdiff(rl,rz)?
. WHERE rl,rz,r3 ARE RATIONALS;

\ WHEREBY r, = Rsum(r,,ROpp(£,}};
END RAiff;

DERIVED OPELNATION: rationa12 = Rinv(rationall);
WHERE r,rl,r2 AFE RATIONALS:
Rinv(Rzero} = REJECT;

n i 3 L 1
EITHER Nur(Rprod(r)) ,Riavir,}} = Kppapan(71)

(2r):

(lr)

(2r):

OTHEF4ISE Num(Rprod(rl).Rinv(rz)) = KIone

EITHER Denom(Rprod(r,Rlnv(rzf)) = KREJECT

OTHERWISE Denom(Rprod(r,Rinv(rz))) * Kione
PARTITION OF r IS

1r|r =0,

2r!r ¥ 0;

EMD Rinv;
OPERATION: ry= Rdiv(rl,rz);
WHERE rl.rz.r3 ARE RATIONALS:;

WHEREBY rq = Rprod(rl,ninv(rz)):
END Rdiv;

AIV-21

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

e T—




These are the usual opposite, difference, inverse, and division
for the rational numbers.

The problem of specifying the real numbers presents: a serious
problem for the 2lgebraic specification techniques introduced 1
by Guttag and expanded here. We have already seen how Guttag's
approach must be expanded to give an adeguate speciification of
the natural numbers. A complete account of the nattural numbers
reguires an axiom egquivalent to the axiom of induct:ion anéd well-
nrdering principle and such an axiom cannot be formmlated without
a specification of properties or sets as abstraci dtata types, or
some equivalent modification of Guttag's approach. 1In the case
of the reals we encounter a similar situation. The principal
reason for introducing the real numbers in mzthematiics is to

fill in the "holes,” so to speak, in the set of ratiionals visual-
ized as a "line." Speaking somewhat more formally, -there exist i
sequences of rationals that seem for all the world as if they
"ought" to converge, but for which there is no raticnal to which
they do converge. The reals are introduced tc p»roviide limits 3
for thiese cotherwise non-convergent sequences. Speakcing still
more formally, we introduce the following definitioms, where K
is the set of rationals (actually, any ordered fieldl) (LAN67, E
pp. 123-4): . %

ot Bl T dpleaiec.

A sequence {xn} in K is said to be a Cauchy secjuence if
given an eiement €>0 in X, there exists a positlive inte-
ger N such that for all invegers m, n > N we hawe

-x | <€
n m' —

An ordered field i which every Cauchy segusnce rconverges
is said to be complete.

The principal formal difference between the rationalss and the
reals is that, while the rationals constitute an ordiered field,
the reals constitute a complete ordered field. The bstacle we
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face in trying to axiomatize the reals in our modified Guttag
framework is that there seems at this time to be no clearly
satisfactory way to formulate this notion ¢f completeness within
that framework.

In retrospect, although we may eventually find a way to formu-
late completeness within our framework, it may be that our pre-
sent inability to do so is really a virtue, rather than a defect
of our framework. The real numbers have always been really a
convenient myth with respect to computer-based systems. Although
we often talk in terms of real numbers, the finite character of
our machines {and of ourselves) always forces us, in the end,

to "round-off" our real numbers and approximate them by ratiocaals.
The problems that arise as a result of this situation are widely
known (e.g. see (ZEL73)). This suggests that our present
inability to formulate completeness {and thus the reals) in

the framework of type algebra may, in fazt, be a strength of

that framework, rather than a weakness, reflecting its correct-
ress as a model of what computer-based systems are really capable
of.
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A¥PENDIX V
SAMPLE AXES SYSTEM SPECIFICATION

Specification of Data Type: WORD

In what follows, the axiomatization of type WORD is given, somne
abstract operations are specified, and a description of the primi-
tive and abstract operations on the type are given in Table AvV-1.

DEFINE WORD;

PRIMITIVE OPERATIONS:

word, = Setspaces(word, ,natural,);
word2 = Addelmt(wordl,naturall):
word, = Lastelmt(word,);

word2 = Removeelmt(wordl):
naturall = Nspaces(wordl):

natural1 = Nelmts(wordl):

booleanl = Samew(wordl.wordz):

AXIOMS:
WHERE 1 IS A CONSTANT NATURAL;
YHERE n,nl.nz ARE NATUPRALS:;
WHERE w,wl,wz ARE WORDS:
WHERE Nullword IS A CONSTINT WORD;
Nspaces (Nullword) = Zero;
Nelmts {(Nullword) = Zero:
Nspaces (Setspaces(w,n})) = n;
Nelmts (Addelmt(w,n)) = Sum(Nelmts(w),1l):
Samew({w,w) = True;
Samew(Setspaces(w.nl), Set5pace5(w,n2)) = Bqual(nl,nz);

Samew{Addeimt (w,n Addelmt(w,nz)) = Equal(nl,nz);

D
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TABLE AV-1
Description of Operations on Type WORD

OPERATION DESCRIPTION

Nullvord: Constant value, not an cperation.
The value of Word; will be a word with a null string of
elements and a space of length zero.

Setspaces: Word; x Nat; -+ Word:.
The element string of Word, will be identical to Word,.
Nat; will be the size of the space of Word:.

Addelmt: Word; x Nat; -+ Worda,.
Add Element. Word: will be the same as Word, except the
element associated with Nat, will be concatinated on the
end of its element string.

Lastelmt: Word; + Word,.

Removeelmt:

Nspaces:

Nelmts:

Sanew:

Lengthw

Element:

Addspaces:

Ndiff::

Last Element. The element string of Word: is the last
clement in the string of Word;. If the element string
of Word; is null, the element string of Wordz will be

null also. Word; will have a space of size zero,

Word, + Word,.
Remove Element. Word; will be the same as Word; except
the last element in the element string will be omitted.

Word, -+ Nat;.
Nat; is the size of the space of Word,.

Word, -+ Nat,.
Nat; is the number of elements in the element string of
Word,.

Word; x Wordz -+ Boolean;. .

Same Word? Boolean; has the value True if Word, and
V'ord, are identical in element string and space size,
It has the value Faise otherwise,

Word; -+ Nat,.

Length of Word. Nat; is the total length of Word;, i.e.,
the sum of the number of elements and the size of the
space of Word,.

Natl g I\'ord, N
Creates a word with 2 single element corresponding to Nat,
and a space of size zero.

Word; x Nat, -+ Word:.
Adds Nat: to the size of the space of Word: to create

Wordz. The element strings of Word: and Word: are identical.

Nat; x Xatz = Nat;.

Modified subtraction defined on the natural numbers., If
Natz is larger than Nat,, the value of Naty is zero in-
stead of error.
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Lastelmt(Addelmt (w,n)) = Element(n);

Removeelmt (Addelmt(w,n)) = w;

Nelmts (Removeelmt (w)) = Ndiffz(Nelmts(w),1l);

Lastelmt(Nullword) = REJECT;

Removeelmt (Nullword) = REJECT;

Samew(w, ,w,) = And(Equal(Nspaces(w,)Nspaces(w,)),

AndiSamew(Lastelmt(wl), Lastelmt(wz)),

(Samew(Removeelmt(wl), Removeelmt(wz))));

END WORL;

OPERATION: n = Lengthw(w);

WHERE n IS A NATURAL;

WHERE w IS A WORD;

WHEREBY n = Sum(Nspaces’w) ,Nelmts(w));

[ .

END Lengthw;

OPERATION: w = Element(n):
WHERE w IS A WORD;

WHERE n IS A NATURAL;

WHEREBY w = Addelmt (REJECT,n);
END Element;

OPERATION: w, = Addspaces(w,n) ;

WHERE WeW, ARE WORDS;

WHERE n IS A NATURAL;

WHEREBY w, = S~tspaces (w,Sum(Nspaces(w) ,n));
END Addspaces;

OPERATION: n, = Ndiffz(n Dy )
WHERE nl,nz,n3 ARE NATURALS
EITHER m ( (ml,m )) OTHERWISE

3 - zero
ny = Nd1ff( (nl,nz)):
PARTITION OF (n,.n,) IS
1 1’72
(nl.n2)|nl<n2,
2 -
END Ndiffz; AV-3
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Specification of Data Type: LINE

An algebraic specification of the line is given and some abstract :
operations that will be used in an example problem are defined. i
Table AV-2 is a description of the primitive and abstract opera- ’ ¢

tions that have been defined.

DEFINE LINE; 4

PRIMITIVE OPERATIONS:

.
11v\
il

¢y Wline(wordl):

.
wordl = lstword(linel);

natural, = Nwords(line,):; |
boolean, = Samel(linel{linez):

line2 & Head(linel.naturall):

line2 = Tail(linel,naturall):

line3 = Conc(linel,linez); |
AXIOMS:

WHERE 2,1 ARE CONSTANT NATURALS:
WHERE n,n; N, ARE NATURALS; i
WHERE w,wl,wz ARE WORDS;

WHERE line, linel, line2 ﬁRE LINES;

WHERE Nulline IS A COUNSTANT LINE; 4
Samel(Wline(wl),WIine(wz)) = Samew(wl,wz);
Nwords(Wline(w)) = 1; E
Samel(line,line) = Trueg;
Head (Nulline,n) = REJECT:
Tail (Nulline,n) = REJECT;

Conc (Nulline,Nulline) = REJECT; 3

Conc (Head(line,n),Tail(line,n)) = line;
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Description of Operations on Type LINE

OPERATION DESCRIPTICN

Wline: Word; = Line;.
Word to Line. A type transformation. Line; is a line con-
taining the single word Word,.

l1stword: Line; + Nat;.
First Word. Word; is the first word on Line;.

Nwords: Line; = Nat;.
Naty; is the number of words on Line;.

Samel: ' Line; X Line; - Boolean .
Same Line? Boolean; has the value TRUE if Line:; and Line»
are identical. 1t has the value FALCE otherwise.

Head: Line; X Nat; + Line;.
Line; consists of the first Nat;-l words on Line,. If Nat,
is less than or izual tc 1, then Lir=; is the NullLine.

Tail: »ine; X Naty + Lines.
Line; is what remairns or .. ~, nfte: toe Jirst Nat;-l1 words
are removed. 1f Nat, is greate¢. than NWordsi{Line;). ther
Line; is the Nulll.ijne.

Conc: Line; X Line; -+ Lines.
Concatination. Line. 1s the string of words on Line; con-
catinated onto the end of the string of words on Line;.

Nulline Constant value, not an operation.
Line; is the line with a aull string of words.

Length: Line; =+ Nat,.
Nat, is the sum of th: lengths of each of the words within
Line;.

Sumw: Line; X Nat; =+ Nat:.

Sum of Word Lengths. Nat: is th2 sum of the lengths of the
first Nat; words on Line;.

Compress: Line; =+ Line;.
Line; is the same as Line; except that the size of the space
preceding each word is zero for the first word and one for
all others.

Compact: Liney X Nat: =+ Lines.
Line; is the same as Line; except that the first Nat; words
are compressed.

Line; X Nztz -+ Line;.
Line; is the same 2: Line; except that the size of the space
of each word has bheen increased by Mat,.

Padcachw: Line; X Kat; a Natz - Line .
Pad Each Word. Line; is the same as Line; except thar the
size of the space of the first Nat; words has been increased
by Natj.
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Nwords(Conc(linel,linez)) = Sum(Nwords(linel),Nwordsjlinez));

N B Wy

l1stword (Conc {Wline(w) ,l.ine)) = w:

EITHER Head(Wline(w),n) = IDENTIFY%(Wline(w),ln) OTHERWISE 1

> ) N 1
Head(Wline(w) ,n) = KREJECT( n); ]
PARTITION OF n IS

1n|n=2,
21'1|ny‘2; ‘

EITHER Tail (Wline(w),n) = IDENTIFY%(Wline(w),ln) OTHERWISE %
Tail (Wline(w),n) = Ko pam(2 )3 1
PARTITION OF n 1§

1n|n<1, ;
2 - }
n|n>1;

SameJ(Conc(linel,linez),Lonc(linezflinel)) =
OR(Samel(linel,REJECT),Samel(linez,REJECT));

Head(Conc(linel,linez),n)'=

i ikl i i

1 2
KREJECT( n) AND Head(linel, n) AND
Conc(1ine1,Head(linez,Ndiffz(Bn,Nwords(linel)))) AND
IDENTIFYi(Conc(linelline2),4n):

PARTITION OF n IS

gx o PRI T PR

lnlnil, _ j
2n|1<n£Nwords(line1), ]
3nleordstline.)<n§Nwords(Conc(1ine1,1ine2))),

4n‘n)Nwordfs(Conc(line

1,1ineé));
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Tail(Conc(linel,linez),n) =

K (ln) AND

REJECT
Conc(linel,Tail(linez,Ndiffz(zn,Nwords(linel)))) AND

Conc(Tail(linel,3n),linez) AND

IDENTIFY%(Conc(linel,linez)4n:

PARTITION OF n IS
lnINwords(Conc(linel,linez)< n,
2n|Nwords(linel)<n§Nwords(Conc(linel,linez)),
3n|1<n£;\lwords(linel),

4n[nil;
END LINE;

OPERATION: n = Length(linel);

WHERE line1 IS A LINE:

WHERE n IS A NATURAL;

WHEREBY n = Sumw(linel,Nwords(linel)):
END length;

OPERATION: n, = Sumw(line'n):
WHERE 1inel is a LINE;
WHERE n,n2 ARE NAT?RALS
EITHER n, = KZerb(zllnel,zn) OTHERWISE
WHEREBY r, = Sumw ( 11ne1, n-1) + Lengthw(Extract( 11ne1, n)).

PARTITLON OF (n, 11ne1) IS

l(n,line ) In = Zero,
2(n,llne ) |n NOT= Zero;

END Sumw; 1

OPERATION: w = Extract(linel,n):
WHERE w IS A WORD;

WHERE linel IS A LINE;

WHERE n IS A NATURAL;

WHEREBY w = 1stword(Tail(linel,n)):

END Extract:;
AV-7
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OPERATION: 1ine2 = Compress(linel);
WHERE linel,line2 ARE LINES;

WHEREBY line2 = Compact(linel,Nwords(linel)):
END Compress;

g el - ok

OPERATION: line2 = Compact(linel,n);
WHERE n IS A NATURAL;
WHERE linel,line2 ARE LINES;
WHERE 1 IS5 A CONSTANT LINE;
EITHER WHEREBY line2 = Wline(Setspaces(1Stword(11ine1),Zero))
OTHERWISE WHEREBY line, = Conc(Compac;(zlinil,zn-lé,
w1ine1(Setspaces(Extract;“linel, n),1lj))
PARTITION OF (linel,n) IS
1(linel,n)|n§1,
2(line1.n)!n>1:

SR

praes 1011

S

L

i

IND Compact;

OPERATION: line2 = Pad(linel,n):
WHERE linel,line2 ARE LINES;
WHERE n IS A NATURAL;

WHEREBY line2 = Padeachw(linel,Nwords(1ine1),n):
END Pad;

PR e N )

OPERATION: 1ine2 = Padeachw(linel.nl.nz):
WHERE linel,line2 ARE LINES;
WHERE nllnz ARE NATURALS;

. l1... 1l l
EITHER WHEREBY 11ne2 = KRBJECT( (llnel, n,. nzl} ,

OTHERWISE WHERERY 1ine2 = Conc(Padeach(zlinel, n, - 1, nz),

WIine(addspaces(Extract(zlinez.nl).2i12))):
PARTITION OF (linel,nl,nz) Is '

l,...
(llnel,nl,n2)|n1= Zero,

2(1ine1,n1,n2)|n1N0’r= 2ero;

END Padeachw;
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Line Justifier

The Linejustify function is designed to adjust the spacing be- ‘
tween words of a line so that the last element of the last word i
of the line occurs at the specified margin. This problem,
suggested by (GRI7€) and modified in (HAM76), has been re~-
formulatea here to use data type LINE. %he functicn is further
constrained so that the size of the spaces between any two
words on the same line will differ by no more than one, and the

insertion of the larger spaces will be staggered to the left or
right in alternating lines. Thus, odd (even) lines will have i

larger spaces separating words at the left (right) of the line.
Also, the last line of a paragraph wil) be justified to the left
only, and not to the right. Any line which cannot be compreésed
into the size of the margin without eliminating a minimum word
spacing of size one will recurn an error condition. Table AV-3
lists the names and uses of variables of the Linejustify func-
tion, and Table AV-4 lists the names and uses of its subfunctions.

FUNCTION: line2 = Linejustify(1inel,Margin,Lpty,Ppty):

JOIN line2 = Pptychk{Compl,Margin,Lpty,Ppty) WITH
1 1l 1l
INCLUDE Compl = COmpress(linel) ALSO
(Margin, Lpty,Ppty) =
1 1 1

CLONE, (Margin,Lpty,Ppty);

EITHER 1ine2 = IDENTIFYiQICOmpl,lMargin.lety,lety) OTHERWISE
1 1 1

JOIN (ZCompl.zMarginrszty) =
1 1 1

IDENTIFY4 (ZCOmpl.ZMargin,szty,szty) WITH
1,2,3 1 1 1

1ine2 = Sizechk(ZCompl,ZMargin,szty):
1 1 1
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PARTITION OF (Compl,Margin,Lpty,Ppty) IS
1 1l 1l
1 ' G
ompl,Margin,Lpty,Ppty) |Ppty = True, 1
1l X 1

2(Compl,Margin,Lpty,Ppty)|Ppty = False;
1 1 1

3 1y 1, 1

EITHER line2 = IDENTIFYI( Compl, “Margin, 2Lpty) OTHERWISE |
1 1l 1
2, 2, 2,
EITHER line2 = Calcspaces( “Compl, “Margin, “Lpty) OTHERWISE |
1 1 1
32 3, 3.

line2 = KREJECT( CoTpl, fﬁaigin, Lpty);

PARTITION OF (2Compl,’Margin,’Lpty) IS
1 |

{ 1(2Compl.2Margin,2LptY)|Length{2C°mP1) = ?Margin,

L 1 1 1 1 1 :
E 2(2C0mpl'2Margin,2Lpty)ILength(ZCompl) < 2Margin, 1
' 1 1 1 1 1 i
3t2Compl,2Margin,2Lpty)ILength(ZCompl) > 2Margin: l
: 1 1 1 2 1 .1 )
i JOIN linez = Lptychk(?adedl,neml,-szgy) WITH
22 22
INCLUDE {Padedl,Reml)= F3( Compl, “Margin)
221 1 22
ALSO “Lpty = Clone, ( Lpty); 4
2, 2 2, 1 |
WHEREBY Extraspace = Ndiffz ( 2Margin,Length( 2Compl))..
1
22 * 1
n, = Nwords ( "Compl), i
1
2
Padedl = Pad( 2Comp1,0uot(Extraspace.nl)).
1
)
Reml = Rem(Extraspace,nl):
2
EITHER 1ine2 - Leftfill(l{Padedl.Reml, ZLR;y)) H
2 2,
OTHERWISE line2 = Rightfill(” (Padedl,Reml, “Lpty)):

2
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2 .
PARTITION OF (Padedl,Reml, ZLpty) IS
2

. 2 2.
* (padedl,Renl, szty)[ “Lpty = True,
2 2

2 2

2 (padedl,Reml, 2Lpty)| szty = False;
2 2

JOIN line2 = Conc(Taill,padleftl) WITH

JOIN(Taill,Pedleftl) = Flthadedl,lReml)

1 1
1
1 1 31 1 2,
WITH (" Padedl, "Reml) = IDENTIFYl ~(“Padedl, "Reml, Lpty)
1 1l re 2
WHEREBY R = (1Reml,1),
l
Laftl = Head(lPadedl.R),
1
Taill = Tail(lPadedl;R)-
1l
Padleftl = Pad(Leftl,l):
JOIN line2 = Conc (Headl,Padrightl) WITH
JOIN(Headl,Padrightl) = F,(’Padedl,’Reml)
1l 1
2
2 2 3 2 2 2y
WITH (“pPadedl, “Reml) = IDENTIFYl 2( Padedl, “Reml, - “Lpty):;
1l 1 ' 2

WHEREBY Rightl = Tail (>Padedl,Ntail),

Ntail = Nwords (2Padedl)+1-2Reml,
1 1

Padrightl = Pad(Rightl,l),

Headl = Head (’Paded),Ntail);
1

WHERE linel,linez.Compl,Padedl,Leftl,
Padleftl,Taill,Rightl,Padrightl, Headl ARE LINES;
WHERE Margin,Extraspace,nlrQ;
Ntail,Reml ARE NATURALS;
WHERE Lpty,Ppty ARE BOOLEAN;

END Linejustify:;
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TABLE AV-3
Key to Variable iiames

NAME TYPE DESCRIPTION

Line2 LINE Output line.

Linel LINE Input line.

‘Margin NATURAL Specified margin for output line.

Lpty BOOLEAN Line Parity. True for odd lines. False for even lines.

Ppty BOOLEAN Paragraph Parity. True for last line of paragraph.
False otherwise,

Compl LINE Compiessed Line. Ly after it has been left justified

‘ and reduced with a space of size one between each word.

Lengthcompl LINE Length of CompL.

Extraspace NATURAL Size of space needed to expand CompL to fill Margin.

N NATURAL Number of words of ComplL.

Quo NATURAL Quotient. Size of space to be divided evenly among
the words of ComplL.

Ren NATURAL Remainder. Number of spaces that must be increased
by one for PadedL to fill Margin.

Padedl LINE Paded Line. The line CompL after Quo spaces have been
inserted evenly among all its words.

Leftl LINE Left Line. First portion of PadedlL into which Rem
spaces will be inserted, one to a word.

Padleftl LINE Paded Left Line. The line LeftL after the size of each
space has been increased by one.

Taill LINE Tail Line. The last portion of FadedlL after LeftL has
been removed from it.

Neeil NATURAL Number of Words to be removed from the front of Padedl
so that increasiny by one the size of the spaces in
the remainder of the line will fill the margin.

Right) LINE Right Line. Remaining portion of PadedL after the
first NTail words have becn removed.

Padrightl L1NE Paded Right L:ne. RightL after 2ach of its spaces
has been incre sed by wne.

Headl L1INE Head Line. First NTail wnrds of PadedL.
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Table AV-4
Description of the Subfunction of LineJustify

NAME DESCRIPTION

Pptychk Paragraph Parity Check. Returns compressed line if it
is the last of the paragraph.

Sizechk Size Check. Examines the length of the conpressed line
to determine if there is an error or if the line already
fills the margin.

Calcspaces Calculate Spaces. Determines what space can be inserted
evenly betweer words and calculates the remainder that
must be inserted either to the left or to the right of

the line.
Lptychk Line Parity Check. Determines which side of the line to
insert extra space, depending on line parity (LPty).
Leftfill Inserts extra space to left of line.
Rightfill InssTrs extra space to right of line.
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NOTE: The purpcse of trLis sample system problem is to show the
use of AXES from the point of view of explicitly demonstrating
the interfaces of the system as they would appear t0 an automatic
analyzer. We are not attempting here to show various shorthand
methods that are available to the user. Thus, this sample prob-
lem does not iaclude, for example, the definition and the use of
new abstract control structures which would both shorten the 3
description of the system and provide for more reliable communi-

cation from the standpoint of the human analyzer. An example
of such a mechanism is demonstrated by the Fail Structure (c.f.
AXES Syntax Description, Section 14.0;.

T T AR T e s
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NOMENCLATURE

In the description of AXES the following nomenclature will be
used.

"=t means "is".
"{ }" means choose one of the rows contained within,
"( ]J* means the enclosed is optional.
‘e means repeat with different values as ofteﬁ as
necessary. '

In the syntax of AXES, the following nomenclature will be used.

Upper case names will designate lexical items of AXES (key~
words) .

"set of variables" means a list of variables possibly en-
closed in parentheses.

Constants and abstract contrcl structure names begin with
an upper cese character followed by zero or more lower case
characters.

A variable is indicated by all lower case characters.

A value of a particular data type can be indicated by the
name of the data type in lower case characters, possibly
subscripted.
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STRUCTURE |

-

'ISTRI]CTURE . n Y W M S n ( " bY4 ||) ; n

declaration...
definition...
"SYNTAX:" wuser defined syntax":;"
" ENDII S L1 ; "
user defined syntax: = comnector; Y, "=" 8, '("xl")"...

connector, y. W= 8, '(“xn")“
where x, y are variables or sets of variables whose values are
in the same types as the members of the ordered pairs that make
up the mappings in the tuples of Si
and S is a structure name;
and connectori is a user-defined name, possibly empty:;
and y; = Si(xi) is an unspecified mapping (see Section 10.0 for

use of user-defined syntax).

The unspecified mapping names, used in definition statements within
a structure, are nested subscripted names with respect to the root
module name,

OPERATION
"OPERATION:N y nzuoq n(u x n);n
declaration...
definition...
“ENDH L ||;||

where X, y are variables or sets of variables whose values are

in the same types as the members of the ordered pairs which are
the mappings,

and L is an operation name.
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FUNCTION

n FUNCTION:“ y ll=l‘l E n (“ x ll) :ll
declaration...
definition...

n ENDII F " : "

where x, y are particular variables or particular sets of vari-
ables whose values are in the same types as the members of the
ordered pairs which are the mappings,

and F is a function name.

DECLARATION
In declarationl, X is a variable, SERRE is a set of variables,

i B it | S S B

T is 2 constant or variable data type name, and "S" concatenated i

with T denotes a plural type name.

. g
declaration,: = "WHERE"] x "1Is" I“A“

1 o AN,.] [*consTANT"| T

"A"] Tiees
“AN"] {T;"OR"...T

"OF SOME TYPE" ]

)’1 4o "ARE" ["CONSTANT") THge o ; - 1
v ..o :
Tl-S' "OR"...Tn"S 1

“OF SOME TYPES"
“OF THE SAME TYPE"

X MISII .(Iylﬂ'l‘..ﬂ)ﬂ
T
“SOME TYPE"
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ki IV ke

In declarationz, ¥ is a variable or a set of variables enclosed’
in parenthesecs, Jy 1S variable or set of variables whose values

are members of the members of a partition of the set of values
of the variahles that x represents.

declaration,: = "PARTITION Dfv x wisv |ANT PARTITION © :
-y nln tvl u'u.“ ¥ njwn tvi Il;ll !
and
l.‘ n[ncxpln)ll
truc val exp: F"(Mexp...")"
cxp T exp
true val ‘exp
tvi: =

“("true val exp, ","...true val exp.')"

true val exp, evaluates to the boolean value True, and exp is

in terms of x and values of x.

q
|
DEFIHITION

In a definition, y,x are variables or sets of variables, and 1
F is a structure, operation, or function. 3
i

y .l:ll P '(I x ')'
definitioni: - primitive definition " i
user-defined definition i
mapping assertion 3

ins i L] "

Primitive definition: = defxnxtxonl S P

definitionn‘;'
- AVI-§
HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 6618500




user-defined definition: = connectorl_deflnltlonl...

connectorn definitionn

where a set of connectors is defined in a particular structure
definition (see Section £.0).

mapping assertion: = "WHEREBY" y "=" exp® ;"

EXPRESSIONS |

value

X

F (exp) l
exp: = exp F exp i

{exp)

exp, ... |

e m—

where F is an operation or a function name and

x is a variable.

CORRESPONDENCE BETWEEN INTRINSIC DATA TYPE OPERATIONS AND INFIX SYMBOLS

Operation Symbols

or, por !

And, Pand & ]

Not, Pnot, Iopp, Ropp prefix - {

Same, Ident, Equal, ?Equal?,

?Iequal?, ?Requal? ' =

?>?, 2I>?, ?R>? ]

Sum, Isum, Rsum + g

Idiff, RALiff - 1

P;Od, Iprod, Rprod = i

Rdiv 4

Cone i 5

1 -
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The precedence of AXES operators is as follows:

Highest
** prefix + - ;
* / i
4+ - 3
= < > = D=
& 3
Lowest

{ Operator Associativity

If an expression contains multiple .perators of equal precedence,
P

the meaning of the expression is determined by :he associativity
of the operators. All prefix operators and the "**" infix operator
are right-associative, and all other operators are left-associa- :

tive.

Left-associative operators give priority to other operators of ;
equal precedence to their left, while right-associative operators

give priority to operators of equal precedence tc their right.

For example,

DATA TYPES

“DATA TYPE:" name ";"
“PRIMITIVE OPERATIONS ;"
primitive operations...
“AXIOMS;*
declaration... 3
assertion (about a tvpe)...
"END" name":"

~ where
(1) name is the abstract data type name.

s Ft ) i T S
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primitive operation:= typenamei M=t Pi o typenamej,...”);"

where typenamek is a data type name in lower-case characters
and k is an integer, possibly empty, and Pi is a primitive
operation name.

w_n
r

, definitionl ‘ definition2
assertion (about a type): = "

F"("expl") ] expz

:::leaT boolean value
int";:r natural vajiuye
[} - 3 c .
Intrinsic types: = rational e i

value: = rational
Property (of T) nal value

property (of T)value :

i;; (cf 7 set (of T) value
€ line valye
extrinsic value
True
boolean value: =
False
)
3
2
3
ol -
natural value: = s coe
¢
2
[ ]
)
) 1
integer value: = {_} natura
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Iy ey bl S e g i

integerl.
["E" integer}

rational value: = '
integerl.integer2

property {(of T)

value: = "PROPERTY OF" t "IN" T"|"true
val exp,
' {value,,...} .
set (of T) value: = 1
' “SET OF" t "IN" T ”]" true val exp,

. - ‘any finite string.of symbols
line value: possibly empty’

Extrinsic data type values are defined as " 'CONSTANT' T" using
a declaration, statement (Section 9.0).

1 -
1

"DERIVED OPERATION:" y "=" D *(" x ");"

declaratiocn...
assertionfabout D)...

"END" D ";"

where x,y are variables or sets of variables and D is a
derived operation name.

definition2

qu (" expz Shi=

ldefinitionl
assertion(about D): = [rl“(”explﬂ" “at
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