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A FORTRAN COMPUTER PROGRAM FOR CALCULATING THE PROLATE
SPHEROIDAL ANGULAR FUNCTIONS OF THE FIRST KIMD

INTRODUCTION

The Helmholtz or scalar wave equation for steady waves (2 + kz)w = 0,
where k = 2x/)A with A equal to the wavelength, is separable in prolate
spheroidal coordinates (§, n, ¢). The factored sclution is written as
R(c,E)S(c,n)¢($). Here ¢ = ka/2, where a is the interfocal distance of the
elliptic cross section of the spheroid.

The angular function of the first kind Séi?(c,n) is one of two indepen-~
dent solutions to the ordinary differential equation in the angle coordinate
n arising from the separation of variables. This solution is characterized
by the four parameters m, £, ¢, n. For each of tke choices of m, £, ¢, and n
there exists a set of solutions to the prolate angular equation, each
solution characterized by a separation constant or eigenvalue Amﬂ' As with
the corresponding associated Legendre functions of spherical geometry, it is
often convenient to specify the argumeat n in terms of the angle 8 = cos-ln;
i.e., Sé}_)(c,n) = Su(ple)(c,cose).

The computer program PANGFN calculates numerical values for the angular
function of the first kind Séé)(c,n) and the associated eigenvalues Amﬂ for
desired values of m, £, ¢, and 8. PANGFY is intendad to veplace the prolate
portion of the FORTRAN computer program ANGLFN (1], which was previously
developed at the Naval Research lLaboratory (NRL) to evaluate both the prolate
and the oblate angular functions of the first kind. Unfortunately, ANGLFN
and two companion computer programs for calculating the prolate and oblate
radial functions of both kinds and tneir first derivatives [2,3] were
developed around the large exponent size (£307) of the CDC3800 computer at
NRL. These programs are not easily modified to run on computers with a
significantly smaller exponent range. The program PANGFN, however, is
designed to run on computers with any exponent range. It is written in

universal FORTRAN and should run on any computer that accepts this language.

Manuscript submitted December 10, 1980,




Similar universal computer programs will be developed in the future for the
oblate angular functions, prolate radial functions, and oblate radial
functions. A universal program culled LINPRO {4] already exists for
calculating the linear prolate functions and eigenvalues. These functions,
which are useful in the representation of band-limited and time-limited
physical processes, are constructed from the prolate angular functions with

m set equal to zero.

ANALYSIS

The prolate spheroidal system can be formed by rotating the two-
dimensional elliptic coordinate system, consisting of ellipses and hyperbolas,
about the major axis of the ellipse. The prolate spheroidal coordinates (g,
n, o) with 1 £ £ £, =1 € n <1, and 0 £ $ $ 27 are related to the Cartesian
coordinates (x,y,z) by the transformations:

x = (@/DUE -~ DA - )] %oss )
y = @2)LE: - DA - n2)])%sinp @

and
2 = atnf2 . 3)

The spheroidal coordinates § = const., n = const., and ¢ = const. define

the following set of orthogonal surfaces, as shown in Fi

g. 1t

e Do R o)

(a/2)2(g2-1)  (af2)2%g?

x2

ellipsoid of revolution:

K2 + y2 22

hyperbolcid of two sheets: - = -1, (5)
(a/2)2(1-n%)  (a/2)%n?

and

half plane containing the z-axis: ¢ = tan-l(ylx) . (6)
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Fig. L -~ The prolate spheroidal coordinate system

Separation of the Helmholtz equation
(v2 + K2)¥v=0 (7
in prolate spheroidal coordinates yields the following solution:
Y op ™ ng(C,E)SmL(C,n)¢m(¢) , (8)

where Rmz(c,g) is the radial function, sz(c,n) is the angular function, and
4 (é) is the azimuthal function.

The functions R (c £), sz(c n), and ¢m(¢) satisfy the fcllowing ordinary
differential equations

dR

.il.. 22 - 2 ._.m.z_._ =
71351 22 + IR = 0 (9)




ds
d o2y ml 2.2 _ _m2 «
dn[(l n ) dr‘ ] + [Amz cen l_nz}sm£ 0 ) (10)
d2¢m
T¢T+m2¢m’ o, (11)

where m and ALC are the two separation constants or eigenvalues occuring in
the separation of variables. Throughout the rest of this manuscript the term
eigenvalue is understood to be Amﬂ’ unless otherwise stated.

In physical problems in which the field has to be periodic and unique
over the range of the azimuthal coordinate ¢, it is required that m be an
integer. For fixed m and ¢ ¥ 0 the numbers Aml for which Eqs. (9) and (10)
have non-trivial convergent solutions are ordered numerically in an
ascending series and labeled with the integers £ = m, m+l, m+2,.... When
¢—0, Eq. (10) reduces to the ordinary differential equation of the
associated Legendre functions whose eigenvalues Am£ are equal to £(Z+1).

The two independent solutions of Eq. (9) are known as the radial function
of the first kind Réé)(c,i) and the radial function of the second kind
R;%)(qs\. Similarly, the sc%§§ions of Eq. (10) are known as the angular

function of the first kind Smt (c,n) and the angular function of the second
. (2
kind S

14
ml
functions are found in the monographs by Meixmer and Schafke [5] and Flammer

[(6].

Three volumes of tables of numerical values for the prolare radial

)(c,n). Excellent discussions of the uses and properties of these

functions and their first derivatives with respect to § were published in
1970 {7j. These volumes contain entries for the following range of parameter:
m=0 (Volume 1), m = 1 (Volume 2), m = 2 (Volume 3), £ = m, m+l, ..., m+49;

¢ = 1.00000001, 1.0000001, ..., 1.01, 1.02 (0.02) 1.2%*, 1.4 (0.2) 2.0, 4.0
(2.0) 10.0; ¢ = 0.1 (0.1) 1.0, 2.0 (1.0) 10.0, 12.0 (2.0) 30.0, 35.0, 40.0.

A single volume of tables of numerical values for the prolate angular
functions and the linear prolate eigenvalues was published in 1975 (8]. The
range of variables covered in this volume ism = 0; £ = 0 (1) 49; 8 = 0° (1°)

90°, where n = cos8; ¢ = 0.1 (0.1)1.0, 2.0 (i.0) 10.0, 12.0 (2.C) 30.0, 35.0,

The notation 1.02 (0.02) 1.2 indicates 1.02, 1,04, 1.06, ..., 1.2,
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40.0. Three volumes of oblate radial functions [9) and one volume of oblate

angular functions [10] were also published.

PROLATE ANGULAR FUNCTION OF THE FIRST KIND
Since the angular function of the first kind Séé)(c,n) reduces to the
associated Legendre function of che first kind Pz(n) in the limit c--«0, it

is convenient to expand the angular function in the following series:

xR
s¢8) (eum) WIRACLLLMUN (12)

n

The expansion coefficients dn(c|m£) are sometimes called the D constants.
The prime sign on the sum indicates that n = 0, 2, 4, ..., if £-m is even,
orn=1,3,5, ..., f £-m is odd. This ensures that the aagular function
S;?(c,n) has the same evenness or oddness with respect to n as the correspend-
ing associated Legendre function Pz(n), i.e., S;é)(c,n) is an even function of
n if £-m is even and is an odd function if £-m is odd. Ferrers' [ll]

definition of the associated Legendre functions has been adopted. Thus,

d"2_(n)
P2(n) = (1-n2)™2 (13)
dn
This leads to the following recursion relation:
m m m
(n~m+1)Pn+1(n) = (2n+1)nPn(n) - (n+m)Pn_l(n) , (14)
where
m
Pm-l(n) 0, (15)
Pm(n) = 2m-1) 11 (1-n%) , (16)

with Cm-1)!! = (2m-1) (2m-3)...(3)(1).




Substitution of Eq. (12) into Eq. (10) and use of the above recursion
relation for the Legendre functions leads to the following three-term

recursion relation in terms of the D constants,

2min+2) 2mtn+l) 24
(2m+2n+3) (2m+2n+5) n+2

+ [(m+n) (m#a+l) - Am&': + (17)

2 (mtn) (min+l) -2m2-1 cz] d
(2wt+2n+3) (2mt2n-1) n

n(n-l) 2
* nfin=3) Qoizne1) © da-2

= O *

Equation (10) has two regular singularities at n = 1. If the choice cf
Ae is arbitrary, solutions given by Eq. (12) may be divergent at either

n=11lorn=-l. It is necessary in physical applications, however, that
(1)
Sume
Eq. (12) converge. This requires that dn+,/dn———0 as n—e=, Use of eigen-~
values that satisfy both this conditiod and Eq. (17) above will result in
(1)

successful expansions of Sy (e,n).

(c¢,n) be finite at both n = 1l and n = -1. It is also required that

The desired eigenvalues are obtained by a two-step process. First an
approximation to the eigenvalue is calculated by use of formulas such as a
polynomial expansion in c. With this approximation as a starting value,
the eigenvalue is then calculated using a variational procedure developed by
Bouwkamp [12]. 1In the Bouwkamp procedure the three-term recursion relation

found in £q. (17) is rewritten in the following two forms:

-g"
= n ,ya 22, (18)
a-da s
and
o™
TS SN w
n




wheve

4m2-1
Yz = (win) (mintl) + (czlz)[l- (2m+2n-?)(2m+2n+3)] 020, 20

m n(n-1) 2mn) (2min-1)c”

fn = Tnt20-1)2 (2mt2n-3) CmbanrD) * 0 =2 » (21)
g . _(2min) (Zmin-1) o2 4 Lo (22)
"o T @mtn-1) @mizadl) © 40 T =T 2

Requiring that dn+7/dd———0 as n—» is equivalent to requiring that N:-——O

as n—e=, Equation (18) can be rewritten as a continued fraction in terms

of Y: R 7312, coes 82, S§+2, e.., and Amﬂ’ Equation (19) can also be

- : ; ; m m n m

rewritten as a continued fraction in terms of Ype2? Ypogr 0% sn-Z’ Bn-é,
i 1 = oy o N - m

+se, and Amﬂ’ using the fact that N2 Yo * A p and 33 ==Y + A p tO

terminate the sequence.

The starting value for the eigenvalue Am£ is inserted into the two
continued fractions, one with diminishing subscripts and one with increasing
subscripts, Ngim+2 is calculated using both expressions, and the difference
in the two values is used to determine a correction to AmZ' The process is
repeated until Am£ is obtained to the desired degree of accuracy.

When the value of AmZ has been accurately determincd, the D constants
can be calculated by successive application of Eq. (17). The D constants
obtained from Eq. (17) are un-normelized since this equation is homogeneous.
A sultable normalization is established by requiring that the angular
functions have the same normalization as the associated Legendre functions.
Thus

2 2 |
[sP em] an - HPE ] en - T - @23)
-1

-1

Substituting the expansion for S;é)(CJQ into Eq. (23) and using the known

orthogonal properties of the Legendre functions provides the followiqg




normalizing relation for the D constants:

X t (n+2m) ! dz
22 3
u=0,1

. _2(Lim)!
(2m+2n+l) n! (24+1) (£-m)! °

(24)

This normalization scheme was first used by Meixner and Schafke (5]. It has
the practical advantage of eliminating the need to numerically evaluate the
normalization factor‘/rl[Séz)(c,n)]zdn which is often enccuntered in problems
involving expansions in angular functions. Once the D constants have been
normalized, the angular function can be evaluated using Eq. (12), Alterna-
tively, the angular function can be evaluated using un-normalized D constants
and then corrected by multiplying by the ratio of the normalized to

un-normalized value of any one of the D constants, say qz_m.

BRIEF DESCRIPTION OF PANGFN

The computer program PANGFN calculates, in double precision arithmetic,
numerical values for A e and Séé)(c,n) for desired values of m, £, ¢, and 38,
where & = cos_l(n). The program is written in universal FORTRAN and should
run on any machine that accepts the language. The main program calls four
subroutines: "PLEG", "GETEIG", "CONVER", and "OUTPUTI". "PLEG" generates the
asscciated Legendre functions; "GETEIG" produces an approximation to the
eigenvalue for starting the Bouwkamp procedure; "CONVER" uses the Boutskamp
procedure to determine the eigenvalue; and "OUTPUT" prints the final
results. The processes of these routines are described in more detail in the
section entitied COMPUTATIONAL PRCCEDURES,

PANGFN is designed to accommodate the exponent range and word length of the
user's computer. It is necessary to change the first two executable
statements in the program to correspoad to the user's computer. These
statements specify NDEC, the number of decimal digits available for double
precision numbers, and NEX, the maximum possible exponent. 1In the unlikely
event that NDEC exceeds 36, the value for m given by PI in the third
executable statement must be extended to NDEC digits., The user should also
set the array dimensions large enough to accommodate the desired parameter
ranges, as described in the section entitled DIMEMSIONS AND STORAGE.
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The remainder of this report describes the program PANGFN. Included are

a listing of

the significant FORTRAN variables and a description of the major

computational blocks. A discussion of parameter input and resulting output

follows. A listing of the program and a sample output are also given.

SIGNIFICANT FORTRAN VARIABLE NAMES

ARG:

ARGG:
ARGL:

BLIST:

Cl:
CL:

CLSPAC:

COEF:
CsqQ:
DARG:
DC:
DEC:

DEC2:

DNUM:

Value of the angle 9 for which the angular function S;é)(c,cose)
is calculated.

Temporary holding array for outputing ARG.

Input parameter and initial value of the angle 8 for which the
angular function S;é)(c,cnse) is desired.

Array used in the Bouwkamp procedure. It contains the 32
coefficients defined in Eq. (21).

c.

Input parameter and initial value of c.

Eigenvalue Amﬂ' Initially equal to the approximation returned
by subroutine "GETEIG", then converges to Amﬂ during Bouwkamp
procedure.

The estimated spacing between two eigenvalues. Used to determine
if the Bouwkamp procedure has cunverged to the proper eigenvalue
and to approximate an upper bound on a new estimate if a new
starting value is needed.

Term used in computing the normalizing factcr.

c2,

Tnput parameter and step size used to generate ARG,

Input parameter and step size used to generate c.

-(NDEC+1)

A constant set equal to 10 Jsed to determine

convergence of the angular function series of Eq. (i2).

A constant set equal to 10~ (WDEC-1)

Used to determine
convergence of the Bouwkamp eigenvalue procedure.

The normalizing factor used tv provide Meixuer-Schifke
normalization for the angular functions. It is equal to the

normalized value of dﬂ-m’




EIG2, EIG3,

and EIG4:
ENR:

EX:

FL:

FTERM:

GLIST:

IBLIM:

IM:

IW6:

IX:

IXX:
JHI:

L:

LAMI-1AMS

LIML:
LNUM:

Previous eigenvalues used to generate the eigenvalue estimate
when £-m is large enough.
The array used to contain the D constant ratios returned from
"CONVER". The coefficients Nﬁ are calculated from these ratios
in the main program.

ENR(I) = dZI/dZI-Z , if £L-m is even,

ENR(I) = d /d , if £L-m is odd.

21~1

(NEX-5)

21+l
Constant set to 10 Used in testing numbers to prevent
overflow on the computer.

The eigenvalue approximation returned by "GETEIG".

The largest term in the series of Eq. (12) used to form the
angular function. It is used to estimate the resulting
subtraction error present in the angular function.

Array used in "CONVER" as part of the Bouwkamp procedure. It
contains the YE coefficients as described in Eq. (20).

The number of terms used in the angular function series of
IBLIM = LIML/2 - IX.

Input parameter and the increment used to generate desired

Eq. (12), determined as follows:

values for m.

(£-m)/2, truncated to an integer.

Equals zero if £=m is even; equals one if {Lam is odd.

IX-1.

The number of Legendre functions to be calculated for a given
JHI = 2%(LNUM+CMAX+NDEC) ,
where LMAX = Cl + (NC-1)*DC is the largest value desired for c.
L.

Coefficients used in "GETEIG" to generate the power series

argument, determined as follows:

expansion for the eigenvalue approximation in terms of c.

2% (L-}H-C+NDEC) .

The number of successive values of £ starting with £ = m for
which angular function values are desired.

m.

The number of decimal digits in the printed output for the

angular functions. This parameter is set to eight in this

10
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MMIN:
MNUM:

NACC:

NARG:

NC:

NDEC:

NEX:

PI:

PLEGL:

PNORM:
PTEMP:

PTEST:

iadaadating . i e ST T R T

version of the program. See the section entitled ACCURACY OF
RESULTS for information on when and how to change the parameter.
Input parameter and starting value for m.

Input parameter indicating the number of values of m for which
angular function values are desired.

Array containing a measure of the number of decimal digits that
are accurate in the printed value for the angular function.
Input parameter indicating the number of values of 8 for which
angular function values are desired.

Input parameter indicating the number of values of ¢ for which
angular function values are desired.

Initialization parameter that is set equal to the number of
decimal digits available on the user's machine in double
precision arithmetic.

Initialization parameter that is set equal to the maximum
exponent size that is available on the user's machine in double
precision arithmetic.

A doubly dimensioned array that contains the ratios of
successive associated Legendre functions, where P(k,l) = 1,
P(k,j) = szj/PmiJ-l’ with Pi given by Eq. (13). The index k
refers to the value of 8. The special cases of 8 = 0, 90, and
180° are handled somewhat differently, as described in the
section entitled COMPUTATIONAL PROCEDURES.

Value for m, specified to 36 digits but truncated to NDEC
digits by the computer.

Vector of length NARG containing scaling coefficients used to
prevent an overflow while forming PE(n).

Equal to log10 of Pz(n) as given in Eq. (16).

Vector of length NARG which contains values for P?(n). These
values are scaled, if necessary, to prevent computer overflow,

by IOPLEGl.

-7
Constant set to 10 ~ degrees. Tnput values of 6 are set equal

to 0, 90. or 180° if they are within PTEST of these values.
L-n.

11




RL: L.
RL2: 28,
RM: m.
RM2: 2m.
S: A temporary holding array for the angular function prior to
output.
SIGN: The si d, .
e sign of fm o
Sl: The angular function Spe (c,n).

DIMENSIONS AND STORAGE
The storage requirements for the program PANGFN are dominated by

dimensioned arrays. Everything else takes about 10,000 words of storage.
The minimum dimension requirement (M.D.R.) for each array is determined by
the desired range of parameters as follows:

1. The M.D.R. for BLIST, GLIST, and ENR is given by

(LNUM + CMAX + NDEC) where LNUM is the number of values

of £ desired, CMAX = Cl + (NC-1) *DC is the largest value

of ¢ desired, and NDEC is the number of decimal digits in

double precision words on the user's computer. This

dimension is set at 250 in the listed version of PANGFN.

2. The M.D.R. for PLEGlL, PNORM, and PTEMP is NARG, the

number of values of 8§ for which angular function values

are desired. This dimension is set at 10 in the listed

version of PANGFN. It can be increased (or decreased) if

more (or fewer) values of 8 are desired.

3. The M.D.R.'s of the doubly-dimensioned array P(K,J) are

NARG for K and JHI = 2%(LNUM + CMAX + NDEC) for J. The

value for JHI is just twice that of the M.D.R. for BLIST,

GLIST, and ENR given above in Item 1. JHI is set equal

to 50C in the listed version of PANGFN.

4. All other arrays have a dimension of three. This is

required for the printed output format.

If adequate computer storage is ;Vailable, it is advisable to set the

dimensions large enough to accommodate any anticipated parameter input and

then forget about them,

12




PARAMETER INPUT

The input to PANGEN consists of a series of data cards as follows:

Data

Data

Data

Data

Data

Data

Data

Data

Data

Card

Card

Caxd

Card

Card

Card

Card

Card

Card

1:

Format I5 - This card contains the integer MMIN, located in
the first five spaces of the card, right justified. MMIN is
the smallest value of m to be used in the computation of

the angular function.

Format I5 - This card contains the integer IM, located in the
first five spaces of the card, right justified. 1IM is the
increment used to generate subsequent values of m from MMIN,
Format IS5 ~ This card contains the integer MNUM, located in
the first five spaces of the card, right justified. MNUM is
the number of values of m for which angular function values
are desired.

Format IS5 - This card contains the integer LNUM, located in
the first five spaces of the card, right justified. LNUM is
the number of values of £ for which angular function values
are desired.

Format D20.10 - This card contains the value of ARGL,
located in the first twenty spaces of the card. ARGl is the
initial value for 9 and is used with DARG to generate all
the desired values of 3.

Format D20,10 - This card contains the value of DARG, located
in the first twenty spaces of the card. DAR 1is the
increment used to generate subsequent values of 6 from ARGL.
Format IS5 - This card contains the integer NARG, located in
the first five spaces of the card, right justified. NARG

is the number of values of 8 for which angular function
values are desired.

Format D20,10 - This card contains the value of Cl, located
in the first twenty spaces of the card. Cl is the initial
value of ¢ used with DC to generate subsequent values of c.
Format D20.10 - This card contains the value of DC, located
in the first twenty spaces of the card. DC is the increqent

used to generata subsequent values of c.
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Data Card 10: Format I5 - This card contains the integer NC, located in
the first five spaces of the card, right justified. NC is
the number of values of ¢ for which angular functions values
are desired.
The program can easily be modified if the user desires to specify values
for n = cosf rather than 6. The following changes are required:
l. Change ARG in statement 72 in the main program to BARG.
Add BARG to double precision list.
2. Add statement ARG = DARCOS (ARG*P1/180.D0) immediately
following statement 72 in the main program.

3. Change statement 150 in the main program to read ARGG(ISTEP) =
BARG.

4. Change statment 10 in subroutine "PLEG" to read BARG = ARG.

5. Add statement ARG = DARCOS(ARG*PI/180.D0) immediately
following statement 10 in 'PLEG".

6. Change the print format for A(I) 2 n in statement 1 of
subroutine "QUTPUT" from F8.3 to F8.5 to provide five digits
to the right of the decimal in the printed value for n.

PARAMETER RANGES
PANGFN was developed and tested on the PDP-11/45 computer at the
Underwater Sound Reference Detachment (USRD) of NRL for the following

parameter ranges:

0° £ g £ 180°
0.00001 £ ¢ £ 100

0 sm s 100

n <2 < m+l00

PANGFN is not limited to these ranges, however, They were chosen to be
compatible with the relatively small core memory of the PDP~11/45 computer
at the USRD. By increasing the dimension specifications above those given
in the program listing in Appendix B to allow for more terms in the series
used to calculate the angular functions, the ranges on ¢ and £-m can be
increased indefinitely. The minimum dimension specifications required for
larger values of ¢ and {-m are given in the section entitled DIMENSIONS AND

STORAGE. There are no limitations on the range for m. Increasing m does
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not require any changes in the dimension specifications. Values of ¢ smaller
than 0.00001 can be chosen, if desired. However, the output format
specification for c given in statement 1005 must be changed from F15.5 to
include more digits to the right of the decimal.

The version of PANGFN listed in Appendix B was also run on the Texas
Instrument (TI) ASC computer at NRL and tested for the range of parameters
given above. The results were consistent with those for the PDP-11/45,
Since the TI ASC computer has more than 500,000 words of core memory, the
dimension specification can be increased substantially on this machine. As
an example, the dimensions of BLIST, GLIST, and ENR were increased to 2500
and the second dimensicn of P was increased to 5000 (JHI = 5000). Values

of the angular function were then successfully computed for c¢ and £-m both
larger than 1000.

COMPUTATIONAL PROCEDURES
There are four major computations in PANGFN: 1) determination of
the eigenvalues, 2) determination of a normalizing factor for the D

constants, 3) determination of the Legendre functions, and 4) calculation

of the angular function.

Determination of the Eigenvalues
Accurate eigenvalues Am£ are obtained by use of the variational
procedure developed by Bouwkamp. This procedurc, found in subroutine

"CONVER", takes an approximate starting value for Am£ and produces a

correction 5Am£. This correction is added to the starting value to cbtain
a better approximation to the eigenvalue and the Bouwkamp procedure is
repeated with this new approximation as the starting value. Convergence
of the procedure is obtained when the relative contribution of the
correction becomes less than 1o~ (NDEC-1)

decimal digits used in the calculation.

, where NDEC is the number of

e e n e = st Tt o ans ¥ okl Pt A

The key to obtaining the correct eigenvalue lies in the choice of the
: initial approximation A;z). The Bouwkamp procedure will always converge to
an eigenvalue, but it will only converge to Ahﬂ when A;E) is sufficiently

close. Otherwise it will converge to another eigenvalue Amt,for the same

value of m and ¢. The reason for this is that the Bouwkamp procedure does
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not depend explicitly on £ but only implicitly through the eigenvalue

Amﬂ' In addition, since m is restricted to even or odd values depending
on whether £-m is even or odd, respectively, Eq. (17) has two distinct
forms--one for even {-m and the other for odd £-m. Therefore, the Bouwkamp
procedure always converges to a characteristic value Aml' such that £' has

the same parity as £.

The eigenvalues Amﬁ’ £ =mn, mtl, ... form a monotonically increasing
sequence of positive real numbers. For each eigenvalue there exists a
region of convergence sz for which the Bouwkamp procedure will converge
to that eigenvalue. If the value of Aéi) is slightly greater than the upper
bound of Qmﬂ or slightly lower than the lower bound of sz, convergence will
be to Am,£+2 or Am,i-z' respectively.

Several different methods are used to obtain approximations to the
eigenvalue for starting the Bouwkamp procedure. These include a power
series expansion in c2, an asymptotic expansion in l/c¢, extrapolation of
previous eigenvalues, and the approximation Ami = L(£+1). The choice of
methods depends on the parameters c, m, and £. Table I summarizes the

choices.

Table I - Choice of method to obtain eigenvalue approximation

c m Method
} £ =m, m+l c 56 all c? expansion
6<c<8 m <4 1/c expansion
§ 6 <c< 8 m24 c? expansion
! c>38 m <10+ ¢ 1/c expansion
| c> 38 m210+c¢ L(L+1)
£ = mt2, mt3 c$5 all c? expansion
5<cs6 all extrapolation
6<cs8 m<é 1/c expansion
6 <cc <8 m2a4 extrapolation
c> 38 m<6 i/c expansion
c > 8 m> 6 extrapolation
£ = mtb c <8 all extrapolation
¢ > 8 m<3 1/¢ expansion
c> 8 mz3 extrapolation
L > mts all ail extrapolation




This method does not, however, guarantee that A(é) lies in 2 ,; it
simply guarantees that A;E) is somewhat close to Aml For some m, £, and ¢

(1)

the region Amﬂ may be extremely narrow and, therefore, the estimate A
would have to be very clcse to A WAL achieve convergence. Yo 51mple

(1)

method can absnlutely guarantee that A lies in sz A procedure has
therefore been developed tu determine if the resulting value Amﬂ is actually
the correct eigenvalue. In ordar for Anﬂ to be coansistent with the other

eigenvalues previously obtained, it must satisfy the following conditioms:

Amﬂ > Am,ﬂ-l’

(1)

. (1)
Ami - Amﬂ

< Amﬂ - Am,£~l.

£ A o Passes both of these tests, it is the correct eigenvalue. If ng
ratls the first inequality, it is aqual to A -2, In this case
éi) can be considered(a; a lower bound for 4 wa An upper bound can be
determined by taking Amﬁ + 1,3*%CLSPAC where CLSPAC is the previous eigenvalue
spacing (A -1 m 2—7}

I§1§m2 fails the second inequality, it is equal to A m, 242 In this
case “mi can be considered as an upper bound for Amﬂ A lower bound can be
taken as Am,ﬂ-l' Once upper and lower bounds for the eigenvalue have been
established, a new starting value is taken as che mean of the bounds. The
Bouwkamp procedure is then repeated with this new approximation. The
resulting eigenvalue is tested to see whether it lies within the 'ounds.
If so, Ami has been obtained and the process is concluded. If the resulting
eigenvalue is less than the lower bound, then Amﬂ must lie between the
starting value and the upper bound, so that the starting value becomes the
new lower bound. If the resulting eigenvalue is greater than the upper
bound, thlen Amﬁ must lie between the lower bound and the starting value,
so that the starting value becomes the new upper bound. A new starting
value is taken to be the mean of the new bounds, and the process is

repeated until convergence to Amﬂ is obtained.
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Determination of the Normalizing Factor

The variational procedure of Bouwkamp includes as an intermediate step
the calculation of the ratios Ng = andn/dn-Z' Dividing by 8 as givea by
Eq. (22) results in the values of dn/dn-Z' These ratios are well-behaved
throughout the required range of n. They do not become either extremely
large or extremely small, It is convenient, for computational purposes,
to set the largest D constant equal to unity. The largest value occurs
in the region of n = £-m, therefore, dﬂ-m is set equal to onme. 1In theory
all of the other D constants can be obtained from dE—m by successive

multiplication of the ratios dn/dn- In practice, however, these

coefficients are not evaluated direitly in PANGFN due to the computer
underflow that would likely result from their extreme range in magnitude.
Angular function values obtained from Eq. (12) with dK-m set equal
to unity require a normalizing factor to provide the desired Meixner-
Schifke normalization. The first step in calculating this factor is to
evaluate the left-hand side of Eq. (24), starting at n = f£-m with ét-m set
equal to unity and proceeding both upward and downward in n until convergence
results. Each term in the series is obtained from the previous term by
multiplication (upward) or division (downward) by both the square of the
appropriate D constant ratio and by a ratio of integers to account for the
coefficients. Convergence is assumed when the relative contribution of the

last term (both upward and dowaward) is less than 10—(NDEC+1)

, where NDEC is
the number of decimal digits in double precision words in the computer.

This procedure should prevent underflow or overflow during evaluation of the
series. The normalizing facter DNUM is then obtained by dividing the
resulting sum into the right-hand side of Eq. (24) and taking the square root.
This quantity is the magnitude of the normalized value for d&—m required

to provide Meixner-Schafke normalization of the angular functicas. The
algebraic sign of dﬁ-m is obtained by progressive multiplication of the

signs of the ratios of the D constants, beginning with d?_/d0 or d3/dl,
depending on whether £-m is even or odd, and continuing to dﬂ-m/dﬂ—m~2'
Since d0 and d1 are always positive, this product of signs is equal to the
sign of 4E-m' The angular functions are then obtained by multiplying the

sum of Eq. (12) by dl—m'
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Determination of the Associated Legendre Functions
The associated Legendre functions required in Eq. (12) are calculated
in the subroutine "PLEG". Actually, ratios of successive associated
Legendre functions are calculated instead of the functions themselves because
of possible overflow problems when m is large. The recursion relation of

Eq. (l4) is modified for this purpose to give:

2n-1 nim-1
n -

n-m m
(n—m)Tn_1

T(n) = BN(a)/B__ (n) = , 0>, (25)

with Tz = 1 and Tm:l = (2m+l)n. The ratio T: is well behaved for n ¥ 0;
i.e., for 8 # 90°. If 68 = 90°, however, E: is equal to zero for n-m odd,
and T: is unbounded or equal to zero, depending on whether n-m is even or
odd. The relevant ratios in this case are those of successive nonzero values

of the associated Legendre functions. These ratios are calculated using
T(0) = 22(0)/2 7, (0) = ~(ntm-1)/n-m , n-m even , (26)

with T (0) = 1.

The ratios T:(O) for n~m even are stored in the odd J locations of
P(K,J). For convenience in calculating the successive terms in Eq. (12),
the ratios Tz(O) for n-m odd are set equal to unity and stored ian the even
J locations of P(X,J). To avoid possible numerical difficulties occurring
near § = 90°, the program sets 6 equal to 90° if it is within PVEST = 1077
degrees of this value. Tho <onstant PTEST is defined near the beginning
of the main program. The value of PTEST can be decreased if the user
desires angular function values for 8 closer than 1077 degrees to 90°,

The associated Legendre functions and thus the angular functions are
equal to zero when n = *1; i.e., when 6 = 0 or 180° and m is unequal to
zero. If the input value for 8 is within PTEST = 10“7 degrees of 0 or 180°
and if m is unequal to zero, the program assumes that the argument is equal
to 0 or 180°, respectively, bypasses the calculation of Tﬁ, and directly

sets the angular function S;é)(c,tl) equal to zero.
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(1)

For purposes of calculating the angular functiomns sz (c,n) using the
series of Eq. (12), it is convenient to set Pz(n), the associated Legendre
function that is multiplied by the D constant dﬁ—m‘ equal to unity, The
largest term in the series is now equal to or near unity. This choice
eliminates potential underflow and overflow problems in the series. The
sum of the series must then be multiplied by Pz(n) to correct for this choice.
The required value for P?(n) is obtained from Pz_l(n), which was used in
the same way for S;f%_l(c,n), by multiplicati?T by the stored ratio Pz(n)/

)(c,n), is calculated using

mm
Eq. (16). Since P?(n) can be extremely large when m is large, the value for

Pz_l(n). The value for Pz(n), required for S

Pz(n) is calculated and stored as a logarithm to the base 10 to avoid

overflow.

Determination of the Angular Functiomn

The angular functions are calculated using Eq. (12). The series is
evaluated by starting at n = £-m and proceeding both upward and downward
in n until convergence is obtained. Each term in the series is derived from
the preceding tew.n by use of successive multiplication (upward) or
division (downward) of the ratios of D constants and the associated
Legendre functions. To start the process, both d -m and Pz(n) and thus the
initial term dz_mP?(n) are set equal to unity. The logarithm to the buse
ten of the resulting sum is now taken and added to the corresponding
logarithm of Pz(n) and dﬂ-m‘ This corrects for setting both P?(n) and
dﬂ-m equal to unity. The resulting logarithm of the angular function is
passed to the subroutine "OUTPUT". '"OUTPUT" separates the mantissa from
the characteristic, takes its antilogarithm, and combines it with the proper
sign to obtain the base of the angular function. The number is the output
in two parts: the base (-9.9999999 < base < 9.9999999) and its exponent
(=999 < exponent S 999) as given by the characteristic. If the angular
function becomes as large as 101000, possibly for very large m, or as small
as 10_1000, possibly for § < 10"7 degrees or (180-8) £ 10-7 degrees, then the

exponent printout must be appropriately expanded.
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COMPUTATION TIME

The execution for PANGFN time depends on the input data. In particular,
larger values of ¢ and £-m take more time. The following examples are
representative of the execution times for PANGFN on the PDP-11/45 computer
at USRD and the TI ASC computer at NRL for § = 0°, 10°, ..., 90°: m = O;
£ =0, 1, ..., L00; and selected values of ¢ (see Table II). The execution
times are nearly independent of m; e.g., the same times as shown here are
obtained for m = 100 and £ = 160, 101, ..., 200. The execution times where
only one value of § is desired are greater than half of those shwon above.
Therefore, it is economical to include all desired values of 8 in a single
run. (If more than 10 values of 6 are desired, some of the dimension
specifications must be increased. See the section entitled DIMENSIONS AND
STORAGE.)

Table II - Execution time for selected values of ¢

c PDP-11/45 TIME TI ASC TIME

1.0 42 s 2.0 s
10.0 48 s 2.4 s
50.¢C 70 s 3.2 s
100.0 96 s 4,3 s

PRINTED OUTPUT
The ovtput from PANGFN consists of numerical tables, as shown in
Appendix A. Numerical values for the eigenvalue Aml’ the desired arguments

1y, R .
ol {c,cos8), and

8 together with the corresponding angular functions §
accuracy estimates are given for desired choices of ¢, m, and £.

The argument (ARG) is printed with three digits to the right of the
decimal point. The eigenvalues (EIG) and the angular functions (S) are each
printed with eight decimal digits. The accuracy estimate (ACC) is printed
as an integer and indicates the number of leading decimal digits in the
printed output that are likely to be accurate. A discussion of the accuracy
estimate is given in the section entitled ACCURACY OF RESULTS. A procedure
for changing the number of printed decimal digits in the output is outlined

under the following section.
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ACCURACY OF RESULTS

The procedure used to obtain the prolate eigenvalues is well-behaved
numerically. Therefore all eight digits printed in the output will be
accurate, with the last digit rounded.

The series expansion used to evaluate the angular function is not always
well~behaved numerically. Subtraction errors cam occur in the summaticn of
the saries, especially for large ¢ und low m and £. A good approximation for
the number of decimal digits of accuracy lost to subtraction error in
this summation is given by SE = LOG (|FTERM/S1|) where FTERM is the largest
term in the series and Sl is the sum c¢{ the series. It is estimated that
roundoff error, slight inaccuracies in the D constants, and the
representation of the angular function as a logarithm may contribute an
additional loss of two decimal digits of accuracy. Since NDEC is the number
of decimal digits available for double precision words, T = NDEC-SE-2 is the
expected accuracy of the calculated value of the angular function., If T
is gzreater than eight, it is reduced to eight to correspond to the number
of decimal digits printed in the output. If T is less than zero, it is
set equal to zero. The resulting value for T is stored in the array NACC(K)
and output under the heading ACC.

The only time that an accuracy less than eight decimal digits is likely
to be encountered is when c is larger than about 30, and when m and £ are
somewnat less than ¢. The subtraction error of SE digits obtained in this

case corresponds to a value of Séz)(c n) near 10 -SE Pm(n) with the largest

(

term in the series used to generate sz)(c n) having a value near Pm(n) In
other regions of the parameters ¢, m, and £, the value of the angular
function is usually accurate to all eight digits.

If the user wishes to change the number of decimal digits printed in
the output of this program from eight, he should make the following changes:
1. Change the Format statement numbered 1 in subroutine

""OUTPUT" to the desired number of digite.

2. Change the Format statements numbered 1009, 1010, and
1011 in the main program to line up the headings to
correspond to change L above.

3. Change the value of MAXAC to the desired number of

printed digits.
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4, Change statement number 10, the statement four lines
before statement number 10, and statement number 200 in
i the subroutine "OUTPUT" to contain MAXAC nines (9's):

i.e., as many as there are decimal digits in the output.
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S EIG= 0.35588084D 02
ARG

S
0.000000004+000
3:3948451014000
2.837587104002
1.112511804003

0.000
30.000
80,009
20.000

§ EIG= 0.57450485D o2
ARG S

0.000

30,9000
§0.,000
20,000

0.000000004000
5.028147404001
1.982479004003
0.00000006+000

? EIG= 0.79603227p 02
ARG s

0.000
30.000
60,000
90,000

0.00000000+000
3.71580550+002
$.5315504D4003
=5:460306404003

8 EIG= 0:10171211p 03
ARG S

0,000

30.000
60,000
90,000

0:000000004000
1.8158428014903
1.1008144804004
0.00000000+000

? EI6= 0.12429378p 03
ARG S

0.000

30.000
60,000
90.000

0.00000000+000
6.582327204003
4.35607642D4003
1.66884650+004

{0 EgI16= 0.14767823p 03
ARG S

0.000 0.00000000+000
30.000 1.88557141+004
60,000 ~2.0438275p4004
90.000 0.00000000+000

> P d
W OO Vo oo DO o O DO ®m aaa:mwg
o

VCOooo O

APPENDIX 4
OUTPUT EXAMPLE
C= 10.00000
ARG 5
10,000 7.44511370-063
30,000 2,0741893n4001
70.000  5,8520470p4+002
ARG s
10,000 1,3923450p-004
40,000 2,5905328n4002
700000 2,9275145p4003
ARG s
10,000 1.2731805n4000
30,000 1,5920220n4003
704000 4.8516398D4003
ARG s
10,000 7,7742883p+000
404000 6,339648704003
70,000 -1,690388104003
ARG s
10,000 3,5727130n+00y
40,000 1,8161787014004
704000 -1.726779714004
ARG s
10,000  1.3241838p+002
40,000 3,918454804004
700000 -1,74178390+004
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ARG
20.000
50.000
80.000

ARG
20.000
50.000
80.000

ARG
20,000
50,000
80.000

ARG
20.000
50,000
80,000

ARG
20.000
50,000
80,000

ARG
20,000
50,000
80,000

S
3-1487679D~001
8.694266!ﬁ+001
744898671 04002

S
$.2932335D4000
8.716768704004
2.3851983D+003

S
4.4828031 0400
4.1483854704003

=1.529442304001

S
245071580D4002
1.22148940+004

~1.,00928500+004

S
1,0563102D4003
2.330328104004

~2.824898204003

S
3571206104003
2,4027583114004
2.531431504004

OO ‘ZJODD‘Q Voo 0w me

DOwmO

Qoo




APPENDIX B
PANGFN LISTING

FROGRAM FANGFN

A FORTRAN COMFUTER FROGRAM FOR CALCULATING NUMERICAL

VALUES OF THE PROLATE ANGULAR FUNCTION OF THE FIRST KIND
AND ITS ASSOCIATED EIGENVALUES,

OO0 00

DNIMENSION BLIST(250),GLIST(250)ENR(250)sF(10+500)+5(3);
1ARGG(3) s IIS(I) +FNORM(LO) +NACC(3) »FLEG1(10) :FTENF(10)
DOURLE FRECISION AJ»ARGsARGG»ARGLsARR

DOURLE FRECISION BLIST

DOURLE FRECISION CLsCOEF

IOURLE FRECISION DARG,IEC,DC,INUM,DNEW,DOLL

DOURLE FRECISION EAYEIG2,EIG3,=IG4sEIGIsENRIEX,EXL
DOUBLE FRECISION FTERM

IOUBRLE FRECISION GLIST

DOUBLE FRECISION C,CSQsC1

NOUERLE FRECISION FsFI»FLEGL,FNORM,FTEHF,FTEST

DOURLE FRECISION RM RM2yRNDEC

DOUERLE FRECISION S,S51,SIGN

COMMON /EBLK2/ BLIST,GLIST/ENR

COMMON /BLK3/ LEC,NDEC

THE FOLLOWING TWO STATEMENTS MUST BE MODIFIED TO COMFORM WITH THE
USERS COMFUTER
NOEC! THE MAXIMUM NUMBER OF DNECIMAL DIGITS AVAILARLE CON THE
USER’S COMFUTER IN DOUEBLE FPRECISION ARITHMETIC.
NEX: THE HAXIMUM EXFONENT AVAILABRLE FOR A TNQURLE FRECISION
NUMEER

OO0OO000O000O0

NIDEC=14
NEX=7S

0

FI=3,14159265358979323846264338327950288L0
MAXAC=8

RNOEC=NDECH1

DEC=10,D0%% (-RNDEC)

EX=10,I0XX(NEX~3)

EX1=10.D0%%(5-NEX)

FTEST=1.0-7

READ IN INITIAL ARGUMENTS

=00

READ 1101,MMIN
READ 1101, IM

READ 1101 ,MNUH
READ 1101 ,LNUH
READl 1102,ARGL
READ 1102,DARG
SEADN 1101, NARC
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READ' 1102,C1
REAIl 1102,70C
READIl 1101,NC

EBEGIN FROGRAM

OUTER LOOF M LOOF
NEXT LOOF C LOOF
INSIIE LOOF L LOOF

00 500 IDUMM=1,MNUM
M=MMIN+(IDUMM=-1)%IM
RM=H
RM2=2,10XRH
JHI=2X(LNUM+C1+(NC-1)XDC+NDEC)
CALL PLEG(MsJHI/ARG1,DARGsNARGF»PNORM,FI,FTEST)
N0 400 JHC=1,NC
O 3 K=1,NARG
PTEMF(K)=1,00
FLEGL(K)=FHORM(K)
CONTINUE
C=C1+(JINC-1)%IC
csQ=CxC
EIG2=0.,010
EIG3=0.D0
EIG4=0.10
EIGS=0.0I!0
FRINT 1005sC»HH
00 300 IL=1sLNUNM
L=N+IL-1

GET THE STARTING EIGENVALUE
CALL GETEIG(L,»M+C,yCL,)EIG2,EIG3»EIG4,EIGS)
REFINE THE STARTING VALUE

CALL CONVER(LsMsC,CL,EIG3,EIGS)

IWs=(L-M)/2

IX=L-M-2%XIUWs

IXX=IX-1

IF(L.EQ.HMY GO TO 7

0 5 K=1sNARG
FTEMF(RK)=FTENF(K) %P (KyL-M+1)
IF(DARS(FTEMP(K))LT.EX) GO TO S
PLEGL(R)=DM.OGLI (QARS{(FTEMF(K)))4FLEGL(K)
IF(FTEMP(K) LT 0. DOIFTENF(K)=-1.,00
IF(FTENF(K).GT O OIFTEKF(K)=1.110

CONTINUE

CONTINUE

LIM1=2%(L-M+C+NDEC)

27




i
IELIN=LIN1/2~IX
SIGN=1,00
L 10 D0 30 I=1,IELIN
ARR=IX+I+I

EA=ARR+ARR+RM2
IF(I.GT,.IWS) GO TO 20
SIGN=SIGNX(ENR(I)/DABSC(ENR(I)))
ENR(I)=(EA-1.D0)X(EA+LI . DO)XENR(I)/ ((ARR+RM2) X
1 (ARR+RM2-1.00)%CSQ)
0 CONTINUE

[£8]
o

COMFUTE THE NORMALIZING FACTOR

(g B e Ne R

ONUM=1.00
COEF=1.D0
JLOW=L-M+2
JTERM=1IWS
00 50 J=JLOW,LIM1,2
aJ=J
JTERM=JTERNM+1
COEF=COEF¥( (AJTRMZ)XENR(JTERM) /AJ) X ( (AJ+RM2-1 . 10D X
¢ 1 ENRCJTERM) /7 (AJ-1,0110) )% (4JX2, D0+RM2-3.00)/ (AJX2, DO+RM2
1 +1.00)
INUM=DNUM+COEF
IF(DARS(COEF/LNUM)Y .LT.LEC) GO TO 40
50 CONTINUE
60 JLOW=L-H
IF(JLOW,LT.2) GO TO 71
COEF=1.00
JTERM=IWS
J=JLOUW
0o 70 JJ=2,JL0W,2
Ad=J
COEF=COEFX(AJ/(AJ+RM2)/ENR(JTERM) I X((AJ-1.,00)/(AJ+RHM2
1 -1, 00} /ENRCITERM) IR CAJKXZ HOFRMET1.00) / (AJKX2 . DO+RH2-3.D0)
JTERM=JTERM=-1
J=Jd=-2
ODNUM=DINUM+COEF
IF(DARS(COEF/LINUM) L.LT.DEC) GO TO 71

70 CONTINUE

71 ONUM=1,D00/DSQRT{IINUN)
ISTEFP=1
JLOW=TIWE+1

FRINT 1006,LsCL

IF(NARG.GE.2)FRINT 1009
IF(NARG.EQ.2)FRINT 1010
IF(MARG.LE,1)FRINT 1011

COMFUTE THE ANGULAR FUNCTION S

»x )OO
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EX) W

00 200 K=1,NARG
ARG=ARG1+(K-1.D0)XDARG

£

FOR ARG=0,90,0R 180 NEGREES USE SFECIAL METHODS 7O DETERMINE
ANGULAR FUNCTION

OO0 0N

IF((IMABRS(ARG~20.,110) ,LT.FTEST) +AND.(IX.,EQ.1)) GO TO 75
IF((GARS(ARG-180.010) JLT.FTEST) .ANDO,(M.NE.0)) GO TO 75
‘ IF((DARS(ARG) .LT.FTEST) .AND.(K.NEV0)) GO TO 75
GO TO 890
735 S(ISTEF)=-EX
IIS(ISTEF)=1
NACC(ISTEF)=MAXAC
GO TO 150
80 FTERM=EX1
noLn=1.00
IF(FTEMF(K),LT.O0,0O)DOLD=-1.,110
S1=DpOLD
00 100 J=JLOW» XRLIM
ONEW=LOLIXKENRC(JIKF (N JLJHTXXF2IRP(RKy JFIHIXXEL)
S1=S1+INEYW
IF(DAES(INEUW) .GT.FTERM)FTERM=DAEBS(DINENW)
IF(S1.EQ.0.00) GO TO 95
IF(DARSCINEW/S1) .LT.OEC) GO TO 101
9% DOLD=DNEW
100 CONTINUE
101 IF(YW6,LT.1) GO TO 111
poLD=1.00
IF(FTEMP(K).LT+O,LIO)DIOLI=-1,110
J=TU¢
0o 110 JJ=1,1IU6
ODNEW=DOLL/ (F (K JFJ+IXX+2)XP(Ky J+I+IXX+1) ) /ENR(D)
S1=S1+INEUY
IF{DABS(DNEW) .GT.FTERM)FTERM=DARS (ONEW)
IF(S1.,EQ,0.00) 5O TO 10%?
IF(DARS (ONEW/S1) .LT.DIEC) GO TO 111
109 DoLD=DNEW
J=Jd-1
110 CONTINUE
! 111 IF(S1.,EQ.0.}0) GO TO 120
S(ISTEF)=DLOGL1O(DAES(S1))+DLOG1O0(DABS(INUN) )+
1 DLOG1O(DARS(FTENF (KD ))+FLEG1(K)
. IIS(ISTEF)=1
IF(S1,LT.0.NO)IIS(ISTEF)=~1
IF(SIGN.LT.0.DO)IIS(ISTEF)==-1XIISC(ISTEF)
GO 70 125
120 S(ISTEF)=-EX
IIS(ISTEF)=1
125 NACC(ISTEF)=LLOGLIO{IIARS((FTERM+EXL) /(S1+EX1)))
NACC(ISTEF)=NDEC-NACC(ISTEF)-2
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IF(NACC(ISTEF) .LT.0)NACC(ISTEF)=0

IF(NACC(ISTEF) .GT . HAXACINACC(ISTEF =MAXAC
ARGG(ISTEF)=ARG

w
(o]

TIHE TO OUTFUT

Q00

IF(ISTEF.NE.3) GO TO 140
NUM=3
CALL OUTPUT{ARGG»IIS)SsNACCNUM)
ISTEF=0
140 ISTEF=TSTER+1
IF(N+NE.NARG.OR,ISTEF.EQ.1) GO TO 200
NUM=ISTEF-1
CALL OQUTPUT(ARGG»IIS»SsNACCNUM)
200 CONTINUE
FRINT 1007
300 CONTINUE
400 CONTINUE
500 CONTINUE
1005 FORMAT(A3X»2HC=sF15.5+,9X22HM=+16//)
1006 FORMAT(1X,2HL=,16,6H EIG=,015.8)
1007 FORMAT(/)
1008 FORMAT(1H1:,49X,23HFROLATE ANGLE FUNCTIONS/)
1009 FORMAT(S(8Xs3HARGs10Xs1HS»?Xs3HACC,3IX))
1010 FORMAT(2(8X»3HARGs10X»1HS»?X»3HACC,»3X))
1011 FORMAT(8Xs3HARG,10Xr1HS,9X»3HACC)
1101 FORMAT(IS)
1102 FORMAT(D20,10)
2999 CONTINUE
END
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SURROUTINE FLEG(M,JHI»ARG1l»DARG+NARGFsFNORMIFIFTEST)
IOUBLE FRECISION AFI»ARGsARG1

DOUELE FRECISION ERARG

DOUBLE FRECISION DARG

IOURLE FRECISION F,PIVFNORMPTEST

DOURLE FRECISION RJ»RJ2,RMsRMF

DIMENSION F(10,300) yFNORMCLIO)

c
C INITIALIZE VARIOUS COEFFICIENTS
c

AFI=F1/180.10

RH=H

MF=2%N-1

DO 200 K=1sNARG
ARG=ARG1+(RK-1.,00) XIARG
BARG=DCOS(ARG*AFPI)
FNORM(N)=0,10

FOR ARG=0v90, OR 180 DEGREES USE SFECIAL METHODS TO DETERMINE
LEGENDRE FUNCTION RATIOS

vy NeNw]

IF(DARS(ARG-90.00) LLT.FTEST) GO TO 150
IF((DARS(ARG-180,00) LT .FTEST) AN, (M.NE.O)) GO TO 190
IF((DRARS(ARG) LT .FPTEST) +ANID.(M.NEL0O)) GO TO 190

NORMAL COMPUTATION OF LEGENDRE FUNCTION RATIOS

ao0nn

0 F(Ks1)=1.010
P(K22)=(2,DI0%XRM¥+1.,00) XRARG
g 100 J=3,JdI
RJ=J+RHM
RJ2=2,D0%RJ
F(RKs3)=({RJI2=-3.00)XRARG-(RJI+RH-2.00) /F(KyJ=1) )/ (RJI-RM=-1.010)
100 CONTINUE
IF(4.EQ.0) GO TO 200
IM=4F
00 120 IIM=1,MF,2
RMF=1IM
FNORM(K)=FNORM(K)+DLOGLO(RMF)I+DILOGIO(ARS(ISINC(ARGXAFI)))
IH=IM-2
120 CONTINUE
GO TO 200

C
C COMFUTATION OF LEGENDRE FUNCTION RATIOE FOR ARG=90 IEGREES
(™
1

50 F(K»1)=1.00
00 160 J=3,JHI,2
FJ=J+RH
FORsJ)==(RIERM-2.00)/(RI-RH=-1.,T10)
FIKsJ=-1)=1.00
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160

170

190
195
200

CONTINUE
IF(M.EQ,0) GO TO 200
In=MF
NO 170 IIM=1,4F,2
RMP=IH
PNORM(K)=FNORM(K)+ILOG1O(RNF)
IM=IM-2
CONTINUE
GO TO 200
00 195 J=1,JHI
P(K2J)=0.100
CONTINUE
RETURN
END
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SUBROUTINE GETEIG(L,M,C)»CL,EIG2,EIG3,EIG4:EIGS)
DOUEBLE FRECISION EOSH

DOURLE FRECISION CL:C,CSQ

DOUBLE FRECISION EIG2,EIG3sEIG4sEIGS

DNOUBLE FRECISION RyRLsRL2,RMsRM2

DOUELE FRECISION LAM1,LAM2,LAN3sLAMA

c
C COMPUTE SOME HEAVILY USED VARIABLES
C
' CSQ=CxC
RL=L
RL2=2,DOXRL
RM=N
RM2=2.,D0XRN
R=RL-RM
c
C THE CASE OF SHALL M AND LARGE C
c )
IF(L,EQ.(M+4) .ANI.C.GT.8. D0, ANI', . LT.3) GG TO 200
C
C AFFROXIMATIONS KASED ON FREVIOUS EIGENVALUES, IF AVAILAELE
C
IF(L.GT.(M+3)) GO TO 30
c
C USE EXFANSION IN TERMS OF CSQ FOR LOW Cs» AND THE EXFANSION
C IN TERMS OF 1/C FOR LARGE C (Cx8)
c
IF(C.GT.8.,00) GO TO 100
IF(C.GT. 4,00, ANII M.LT,4) 5O TO 200
c
C COMFUTE COEFFICIENTS FOR CSQ EXFANSION
c

IF(L.GT.(H+1) . AND.C.GT.S.210) GO TO 30
LAML=RULA(RL+1.,00)

LAM2=,5% (1 .- (RHM2-1, )X (RM2+1 )/ ((RL2-1 )% (RL2+3.)))
LAM3I=.SX(RL-RM-1 )X (RL-RM)X(RL+RM-1.)%(RL+RM)/
LOCRL2=-3 )% (RL2=-1 )% (RL2-1 )X (RL2-1, )% (RL2+1.)) -
2,.9%(RL-RM+1 )X (RL-RM+2.)X(RL+RM+1. )k (RLIRNMN+2,)/
JCOCRL2+1 ) K(RL243, ) xX3XK(RL245,))

\ LAM4=(4 ., XRMXRM~-L )X ((RL-RM+1 )X (RL-RM+2.) X (RL+RM+1, )X (RL+RM+2,)
1/7C(RL2-1.)%(RL2+1, )X (RL2+3 ) XKSX(RL2+5, )% (RL2+7.))~
2(RL-RH-1.)x(RL-RM)X(RL+RM-1.)X(RL+RM)

] S/0(RL2-5. )% (RL2-3.)K(RL2-1 Y AXSX(RL2+1.)X(RL2+3.,)))

CL=LAML+CSQX (LAN2+CSQx(LAMI+LAMA4AXCSQ))
EIG2=EIG3Z
EIG3I=EIGA4
EIGA=EIGS
RETURN
0 CONTINUE

» O LI
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EXFANSIONS EASED ON PREVIOUS EIGENVALUES
FIRST THROUGH THIRD ORDER

o000

IF(L.GT.(3+M)) GO TO SO
IF(L.GT.(2+M4)) GO TO 40

c
C FIRST ORDER
C
CL=2.00X%EIGS-EIG4
31 EIG3=EIG4
EIG4=EIGS
RETURN
SECOND ORDER

0 CL=3.DOX(EIGS-EIG4)+EIG3
1 EIG2=EIG3
GO TO 31

c
C THIRD ORDER
C
S0 CL=4.DOX(EIG3I+EIGS -6, OKEIGY-EIG2
GO 70 41
100 CONTINUE
IC=C
C
€ IF M6 THEN THE EIGENVALUES ARE VERY REGULARLY SPACEIN
c

IF(M.GT.4.ANDL.GT.H+1) GO TO 30

C
C USE Lk(L+1) AFFROXIMATIONS FOR L=M AND L=M+1
C
IF(H.LT,.(10+IC)) GO TO 200
CL=RLx(RL+1.00)
EIG4=EIGS
RETURN
C
C COMFUTE ESTIMATE WITH ASYMFTOTIC EXFANSION
c
“

00 EOSH=1.00
IF(H.EQ.0) ROSH=0.,00
CL={R+R+1,)XC~-,25% (2 XKRXR+R+R+3 )= (R+R+1 YK (RXR+3,)/(CX16.)
t+RM*RM+ (RM-1 )X (RL-RHM) XROS
EIG2=tIG3J
EIG3=EIG4
EIG4=EIGS
RETURN
END

34




SURROUTINE CONVER(LsM,C-CL,EIG3sEIGY)
DOUBLE PRECISION BLIST

IOUBLE ®RECISION CL,CLL,CLSFAC,CLU:CORA,CORE
DQUERLE FRECISION DE.DEC,DL

DOURLE FRECISION EIG3,EIGSsENRsENRC
DOUBLE FRECISION FL

DOUERLE FRECISION GL»GLIST

DOUELE FRECISION C.CSQ

DOUKLE FRECISION RM»RM2sR

DIMENSTON BLIST(250),GLIST(250)ENR(25C)
COMMON /RLK2/ BLIST»GLIST)ENR

COMNMON /RBLK3/ DEC,NDEC

CALCULATE SOME HEAVILY USED' CONSTANTS

o000 o000

OO0

CSA=LKC
RM=H
RM2=2, DOXRHM

DETERMINE EIGENVALUE SFACING OF PREVIOUS EIGENVALUES

GL=EIGS

IF(L.,EQ.H) CLSFAC=CL
IF(L.NE.M) CLSFAC=EIGS-EIG3
IWé=(L-M)/2

EST<LAST EIG THEN EST=LAST EIG

IF(CL.LT.GL)CL=GL

FL=CL

JNIIE=0

IX=L-M-2%IWé

ISC=2+1IX
LIM1=2%(L~-M+C+NREC)

J=1

IF(LIML.LT.ISC) GO TO 25

COMFUTE EETA COEF,.

o000

[

0t
[ el

6 20 1=I1SC,LINL1,2
R=1I
BLIST(J)=R¥(R~-1,00)¥(RH2+R) X (RM2+R-1,1010)
XCSQR¥CSQ/ ((RM2+2,[1OXR=-1.,100)

K(RM24+2,00KR-1 ., L0) X (AM24L2 , NOXR-F DO X (RM2+2, IIOXKR+1.010) )

J=J+1
CONTINUE
J=1
In21=18C-1
LIM11=LINMI+1
IF(LIMLL. LT I021) 50 TO 35
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c

C COMPUTE THE GAMMA COEF. '

c

D0 30 I=ID21,LIM11,2
R=I-1
GLIST(J)=(RM+RIX(RM+R+1.,010)+.SHOXCSQAX(1.10
=(4 ., DOXRMXRM=1.00)/ ((RM2+
2,00XR=-1,10)% (2, DOXRM+2 . DOXR+3.110)))
J=J+1

CONTINUE

IFC=1

IRLIM=LIM1/2-1IX

IGLIM=IELIM+1

IRIO=INé+1

IW1=IW6+2

40 ENR(1)=CL-GLIST(1>

IF(IW&.LTV1) GO TO SS

[ N

ol Ol
ao

C
C EVALUATE THE CONTINUEID' FRACTION
c
N 50 I=1,IW6
ENR(I+1)=-RLIST(I)/ENR(I)-GLIST(I+1)+CL
S0 CONTINUE
95 ENR(IBLIM)=-RBLIST(IBLIM)/(GLIST(IGLIM)-CL)
IWLS=TI8LIM-1
IF=IW1+IW1S
IF(IW1S,LT.IW1) GO TO 645
C
C EVALUATE THE COMTINUED FRACTION
c

DO 60 I=IW1,IWL1S
IFI=IFP-I
ENR(IFI)=-BLIST(IFI)/(GLIST{IFI+1)-CL+ENRC(IFI+1))
60 CONTINUE
65 ENRC=-BLIST(IRIO)/(GLIST(IRIO+1)-CL+ENR(IRIO+1))
DE=ENRCXENRC/BLIST(IRIO)
COREB=DE
IF(IBLIM.LT.IWL) GO TO 795
c
C COMFPUTE THE DENOMINATOR IN THE EOUWKAMF
c
v 70 I=IW1,IRLIN
DE=ENR(I)XENRC(I)/EBLIST(I)XDE
CORE=CORE+LE
IF (DARS(NE/CORRYLLT.DEC) GO TO 75
70 CONTINUE
75 CORA=1.100
DE=1.D0
IF(IW6.LT.1) GO TO 990
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C COMPUTE THE DENOMINATOR IN THE ROUUWKAMF
c

o 80 I=1,IW6
DE=RLIST(IRIO~I)/(ENR(IRIO-I)XENR(IRIO~I))XDE
CORA=CORA+DE
IF(DARS(DE/CORA).LT.DEC) GO TO 90

80 CONTINUE -

»
C COMPUTE THE CORRECTION TO THE EIGENVALUE
c
?0 DL=(ENRC-ENR(IRIO0))/(CORA+COREK)
CL=CL+DL
c
C EIGENVALUE ACCURATE ENOUGH®?
c
IF(DARS(IIL/CL).LT.DEC) GO TO 100
IFC=IFC+1
IF(IFC.LT.NDEC) GO TO 40
100 CONTINUE
c
C IF RAMGE OF EIGENVALUE ALREAIDY ESTABLISHED (JNDE NE 0) ERANCH
C TO TEST WHETHER THE RESULTING EIGENVALUE IS WITHIN THE
C ESTABLISHELD RANGE
c
IF(IJNDE.NE.O) GO TO 120
c
C TEST OF THE EIGENVALUE FOR JNIDE = 0
C
IF(CL.GT.GL) GO TO 115
C
C CONVERGED TO THE NEXT LOWER EIGENVALUE OF THE SAME FARITY
»
CLL=FL
CLU=FL+CLSFACX1.500
GO TO 130
115 IF((CL-FL) /,LT.(FL=-GL)) GO TO 1490
>
C CONVERGED TO THE NEXT HIGHER EIGENVALUE OF THE SAME PARITY
C
CLU=FL
CLL=,5I0K(FL+GL)
60 TO 130
c
C NARROWING OF RANGE IF THE CORRECT EIGENYALUE HAS NOT REEN OKTAINEL
c
120 IF(CL.GT.CLL)Y GO TO 122
CLL=FL
50 70 130
122 IF(CL.LT.CLU) GO TO 140
CLU=FL
X
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c
C EIGENVALUE IS NOW SOMEWHERE IMN THE RANGE ESTABRLISHEDL AKROVE
C CHOOSE THE MIDFOINT. AND REFEAT THE BOUWKAMF FROCEDURE

c
130 CL=.300x(CLL+CLL)
FL=CL
IFC=1
JNDE=JUNDE+L
C IF MORE THAN 50 NARROWINGS ARE KREQUIREDI' THEN SOMETHING IS WRONG

IF(JNDE.EQ.S0) GO TO 900

GO TO 40
140 EIGS=CL
RETURN
C
C ERROR FRINTOUT
c

200 PRINT 999.L

999 FORMAT(1Xy37HERROR IN EIGENVALUE ROUTINE CONVER AT/
113H EIGENVALUE #,15,29H THIS VALUE MAY BE INACCURATE)
RETURN
END
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SUBRROUTINE OUTFUTC(A»IE,EsINACC»NUM)
DIMENSION A<3)rIB(3)+yB(3) sy DIR(I)yOR(I)»IIB(3) 2 IFL(3),IF2(3)>
1IF3(3)»ISIG(3)s»NACC(I3)
INTEGER FLUS,MINUS
IATA FLUS/1H+/MINUS/1H=-/
' DOUKLE FRECISION ArBsDIE,DD
00 S0 I=1,NUM
IF(B(I),LE.,-999.00) GO TO 100
IF(B(I),GE.299.00) GO TO 200
ODIRCI)=IB(I)
IIR(I)=R(I)
DR(I)=IIE(I)
R(I)=R(I)-DR(I)
B(I)=10,00X%XE(I)
IF(B(I) GT..29999992010) GO TO 10
B(I)=R(I)%X10.00
ITR(I)=TIIR(I)~-1
GO TO 20
10 IF(R(I)JLT.92.999299992010) GO TQ 20
E(I)=R(I)/10.D0

- ot L AR 4 e 8 Kl

[0 5]

ITRCI)=IIR(I)+1
20 B(I)=B(I)KDIECI)
ISIG(I)=FLUS
IF(IIB(I).GE.0) GO TO 30
ITR(I)=~1%IIR(I)
ISIG(I)=MINUS
30 IF1(I)=TIK(I)/100
; IF2(I)=IIR(I)/10~TF1(I)%10
L IF3(I)=IIR(I)-IF1(I)%100-IF2(I)%10
50 CONTINUE
FRINT 15 CACI)sRCI)»ISIGCI)»IF1C¢I)sIF2CI)IP3(I)sNACCCI) I=1,NUN)
RETURN
100  E(I)=0,00
ISIG(I)=FLUS
IF1(1)=0
IF2(I)=0
IF3(I)=0
\ GO TO 30
200 E(I)=9,999999900
ISIG(I)=FLLS
. IF1(I)=9
IF2(I)=9
IF3(1)=9
MACC(I)=0
G0 TO 90
1 FORMAT(Z(SXrFE,311XsFL10,7+ 1HU AL, 3115 3Xs1154%X))
END
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