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It is shown that several families of PBIB designs are

E-optimal over the collection of all block designs. Among
/o

these, the partial geometries with two associate classesgic “07 "

PBIB designs with Al =1, AZ = 0 and fewer blocks than }

varieties; PBIB designs with triangular schemes of size n , ///

. n _ _
Al =0 , AZ = 1 and block size k =2 5 (or kl =1 , AZ = 0/
and k 2 n - 1); PBIB designs with Li schemes basedJon/”Q

varieties with Xl =0 , 12 =1, k 2 /v (or <%1 =1, Az = 0
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iA
<)
1A
e
]
H
-
IA

and either i - 1

these designs are also E-optimal. When uniform on rows, these

designs remain E-optimal in the additive setting of two way
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elimination of heterogeneity.
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1. Introduction and notatiqﬂ

The object of this work is to investigate the E-opti-
mality of discretc statistical experiments in the additive
setting of one and two way elimination of heterogeneity. For

v ,b,k positive integers, we denote by Q the col-

v,b,k
lection of all k x b arrays with varieties 1, 2,...,v as

entries (2 < k < v). Any such array d ¢ is called

v,b,k
a design. The columns of d are called blocks. A design is
said to be binary if each block of d consists of distinct

varieties; d 1is called equireplicated if each variety occurs

the same numbers of times throughout the whole array d . 1If

each variety appears the same number of times in each row of
d , d is called uniform.

Let oy be the unknown effect of variety i and %
be the (unknown) effect of the 3P block. In the additive
model of elimination of heterogeneity in one direction, we

assume that the expectation of an observation on variety i

h

in the 3P block of d is o + B -

]

If, in addition, Ym denotes the (unknown) effect of the
mth row of d , and there is evidence of row effects in the
observations, we shall assume that the expected value of an
observation on variety 1 in block j and row m of d is
oy + Bj + Ym .

Under both models we assume the kb observations uncor-
related, with common (unknown) variance 02 . The main in-
terest is in comparing the variety effects O ¢ OgpenesO o

The information matrices of variety effects under the

two models are, respectively
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where Nd = (ndij) ' Md = (mdij) , with ndij (resp. mdij)
indicating the nunber of times variety 1 appears in the
jth block (recsp. row) of 4 ; Tai is the replication number

of variety 1 in d . J decnotes the matrix with all its

entries 1 and I is the identity matrix. By Adij we denote

the (i,j)th entry of NdNé . It is known that for any 4

both Cq and Ed are nonneéative definite with row sums

zero. Let further ¢ = <..

Mgg € Mgl S-S Mg,y-1 2@nd

~ ~

0 = by $ Mgy S---% Ha,v-1 be the eigenvalues of Cd anqd

Ed , respectively.

A design d* 1is called E-optimal over @ (under
v,b,k
a given model) if the maximal variance of normalized best
linear unbiased estimators of estimable functions is minimal
under d* . It is well-known (Ehrenfeld (1955); sce also
Kiefer (1959) and the beautiful expository article of Kiefer

(1978)) that d* is E-optimal over under the one way

Qv,b,k

elimination (resp. two way elimination) if and only if

(resp. for all 4d e Qv

Hax1 2 Ma1 Max1 Z Hgy)

short, E-optimality deals with the association

b,k

da ~» Cd -+ “dl

and the objective of finding the design d with maximal Y41

The experimental setting which involves relatively few

blocks (say 0 < b < 2v) is of notable practical importance.

Just to focus attention, suppose we have v = 15 varieties,
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]
H

3
b =15 blocks, k = 3 varictics pcf block and that there is
ovidence of an additive variety and block response. The ex-
perimenter would like to usc a design d° which (if not
optimal) is efficient in the E-sense, i.e., Hge1 2 Mgy for

most d . You would then say, well, maybe this d° will do:

1.1 8 8 12 14 1 13 13 9 9 11 2 13
d°: 14 10 10 4 10 4 6 2 7 7 3 7 3 5

8 4 6 12 14 6 15 9 3 5 11 2 5 15

It's connected, it's binary, it's equireplicated, and a pair

" of distinct varieties appears’ in at most one block. Looks

15

12 (1.1)
11

good, as it is M - S optimal, (see Eccleston and Hedayat (1974)

or Shah (1960)) and surely does not favor any variety (in the

senses mentioned above). Only trouble is, d° is in fact a very

inefficient design in the E-sense.

With a kit of luck you would have probably recommended:

i 1 1 2 2 2 5 5 5 8 8 9 9 7 6
d*: 4 10 3 4 3 10 4 3 10 7 12 & 11 11 14

7 13 6 9 8 14 12 11 15 15 13 15 13 14 12

which has features very similar to d° in the M - S sense
(but luckily not in the E-sense).
However, one should hope that you haven't sent him back

with such a design as

(1.2)

(1.3)




The surprizing fact is that 4 is E-belter than d°  and
the discrepancy in the B-performance between d* and d4d° is
by a factor of more than 8. The exact figures are 3ud°l = .571 ,
3ug, = -625 and 3y = 5 .

We would like to stress two things. That this is not
an isolated example (not when the number of blocks is small);
and that M - § optimal designs with large number of blocks
do not differ in the E-performance in such a surprizing way.
In the former case a way to avoid bad M - § optimal designs
is suggested in Constantine (1980).
In the next section we éhow that a design d* ¢ Qv,b,k
Maxl 2 TR
E-optimal over all block designs. This result has a number

with (r-1) (k-1) and r = bkv—l integral, is

of consequences in settings with b small. Various families
of PBIB designs (mentioned below) with 8y and AZ zZero or
one are proved E-optimal over all block designs. The partial 1
geometries with two associate classes are such instances.

Among the triangular PBIB designs with schemes of size n:

. _ _ n . =
those with Al =0 , Az =1, k 2 5 and those with Al l ,
A2 =0 and k 2 n - 1 . Among the ones with Li schemes:
those with A, =0 , A, =1, k 2 Yv and those with Ay =1,
A. =0 and either i -1 < Vv <k or k< vy <i -1 . The

2

duals of these designs are E-optimal as well. These E-optimality
results extend easily to the setting of two way elimination of

neterogeneity when the above designs are also uniform.

g;__Resulti

We denote by 1 the column vector with all its entries 1

- . AU S ' o : I
e
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5
and by J the (not nccessarily square) matrix with all its
entries 1. The following two lcmmas provide upper bounds for
¥a1 * Various bounds can also be found in Chakrabarti (1963},
Jacroux (1980), Cheng (1980) or Constantine (1979b).

Lemma 2.1: Let C be a v x v nonnegative definite matrix

with zero row and column sums. Denote the eigenvalues of

C by 0= Mg € My Se-eS Uy - Then the sum of entries in
any m x m principal minor of C is at least m(v=m) :

v Wyt

(Lsms v - 1) .

Proof: Observe that a matrix obtained form C by row and

(same) column permutations has the same eigenvalues as C .
it will therefore be enough to prove the lemma for the mxm
leading principal minor of C . Call this leading principal

- ()52 e(3) - 3)
()22 (@) - 9w - 252,

as stated. The inequality relies on the known fact that

<3

i

u, = min x'Cx
1 x'£=0 x'x
and on observing that ((O) -1 ; = 0 (since the 1 in (%)

is m x 1) . This ecnds the proof.

Our next lemma gives an upper bound for M4 when
d e Qv,b,k is equireplicated.
Lemma 2.2: If an equireplicated design d e Qv bk contains
’ ’

a block which consists of m distinct varieties (2 < m < k)

14




then

v
k“dl < mv=my (k-1) (mr-k) .

Proof: By eventually relabeling the varieties and reshuffling
the blocks, we can assume that the first block in d consists

1l's 2's ... and n m's . Index the

"d11 r Na21 dml

rows and columns of cd by the varieties 1, 2,...,v (in

this order), and let Md be the m x m leading principal

b

minor of Cd . Observe, firstly, that 2 n,.. = r and
b b =

z n;.. =>n... + Z

351 dij dil £

of

that

b
y n2 > r -n
i%2

aij 2 and therefore n + r - n,.

dil 1 ai3 * Mail ail °

Secondly, note that F A (a sum of m(m-1) nonnegative

m i7] m b
terms) satisfies Y = z Ngiy ndju > ) N4 ndjl .
i#]

W3 3

m
Using these two inequalities and the fact that Z n =k ,
we obtain:

l1'mMa 1

1]

=]

2}

g

1
.M 3
Ne go°

3

IA
3
=
=
|
~
5
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(%]
+
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=
| aad
o
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|

(k=1) {mr - k)

\'2

~~——0 (k=1) (mr - k) follows now from Lemma 2.1.
m(v-~m)

That kudls
This ends the proof.
Through the remainder of the paper, let the varieties in

a design d e QV be always labeled so that the replication

b,k




¥ S

4
4

numbers r3i satisfy r

ready to prove our first result.

41 s rd2 <...5% rdv . We are now

Theorem 2.1: Let r = bkv—l be an integer. A design

v

* 1 3 3 v . _ .
a* ¢ Qv,b,k which satisfies k“d*l ", (r-1) (k-1) 1is
E-optimal over all block designs.

Proof: Let d be any design in @ . Then d 1is either
—_— v,b,k

equireplicated or it is not. Suppose it is not. Then

rgy s ¥ - 1 and by Lemma 2.1 with m =1 we have:

v

\Y _ _ - \"
kudl < \—,—:frdl(k 1) < V=1 {r-1) (k-1) <

v-k

(r-1) (k-1) = kud*l

which show that such a design is strictly E-worse than d4* .
Assume now that d 1is equireplicated. We may also assume

that d has a block which consists of m distinct varieties

(2 < m< k). (Observe that if d has no such block, the infor-

mation matrix Ca is then the zero matrix, and hence for such

d we have =0 <y

.) By Lemma 2.2 we can write

Hal ax1

v

kudl < m (k—l) (mr - k) .

Let Q(m) = -kud*lm2 + (vkud*l - v(k-1)r)m + vk(k-1) . Note
that

v
m(v—m)(k“l)(mr - k) = kud*l , for all 2 < m < k

if and only if Q(m) = 0 , for all 2 <m <€ k . Since Q(m)
is a quadratic in m with negative leading coefficient and

Q(0) = vk(k-1) > 0 checking that Q(k) 2 0 would insure

that Q(m) 2 0 for all 2 < m £ k . By assumption




: : . 2
ki gup 2 V‘-_’)Z(r—l) (k=1) which implies ~k“pgu; a*l

v{k-1)xr + v(k-1) > 0 . 1In terms of Q this last inequality

+ vk

is simply k—lQ(k) 2 0. Since k 1is positive it follows
that. Q(k) 2 0 , as decsired. We have therefore shown
ki gy nTW‘j—mT(k—l) (mr - k) € kbg. o for all 2SS ms k.
This concludes the proof. A

The following aspect of Theorem 2.1 should perhaps be
stressed. It is easy to show that for two (recal) matrices

A and B , the products AB and BA have the same set of

eigenvalues. Given an eguireplicated design 4 ¢ @

v,b,k
A{with r = bkv_l integral), we call § ¢ Qb v.r the design
’ ’
i = ! ) = - !
dual to 4 , 1if N6 Nd - Hence rC; rkI Nde . By
the above remark it directly fcllows that de and rC‘S

have the same set of eigenvalues. Thus, if d* : Q
v.b,k

satisfies the assumption of Theorem 2.1, then

v b
FUgxy = kud*l Zv—k (r-1) (k-1) = B:;(k—l)(r-l) R

and hence G*E'Qb v.r satisfies also the assumption of the
7 I

theorem. This gives

1

Corollary 2.1 Let r = bkv be an integer. The dual of a

. * . _X__ _ - . - .
design d* e Qv,b,k with Ma*y 2 v_k(r 1) (k-1) is E-optimal
over Qb,v,r .

All the designs which we shall prove E-optimal next, have

E-optimal duals, in view of this corollary.

Although not apparent from the statement of Theorem 2.1,
the lower bound ;gf(r-l)(k—l) is useful for designs with

relatively small number of blocks (0 < b < 2v :+ Say), and




hardly ever otherwise. Let ur examine a few conseguences

of Thcorem 2.1,

& Theorem 2.2 A Partially Balanced Incomplete Block design
based on v varietiecs and b blocks of size k , with in-

tegral parameters as below, is E-optimal over all block de-
1

signs: r = bkv ' , A =1, 1, =0, n =bk(k-1)v'},
n, =v-1-bk(k-1)vt, ¢t = k(k-1) (bk-v)v L (v-k)7} ,
1 -2 -1

P1; = k - 2 + [k(k-1) (bk-v) - v{(v-k)](bk-v)v ~ (v-k) ’

Pil = bk (k-1) (bk-v)v 2 (v-k) TF .

Proof: Let a PBIB design with parameters as above be denoted

by d* . Then Cax is known to have two distinct nonzero

eigenvalues 0 < p where kpd*l =r{(k-1) -k +t +1.

ar1 © Yaxa v
For a proof sce Connor and Clatworthy (1954), Bose and Mesner
(1959) or Raghavarao (1971, p.195). It is straightforward to

check that

r(k-1) - k + t 4+ 1 = ku = —Z-(r-1) (k-1) .

d*l

We are then done by Theorem 2.1.
The partial geometries (r,k,t) with two associate
classes, defined by Bose (1963), satisfy the conditions of

Theorem 2.2. Whence,

Corollary 2.2. Partial geometries with two associate classes

are E-optimal over all block designs.

For a thorough reading on classical finite geometries we
refer the reader to the book of Dembowski (1968). Many PBIB

designs can be constructed from partial geometries. The




varieties would be the points ana the blocks would be the lines |
of the geometry. We mention the work of Seiden (1961) and
Ray-Chaudhuri (1962) in connection with this. The design (1.2)
is an example of a partial geometry of the simplectic type.

Bose and Clatworthy (1955} showed that PBIB designs with
b<v,Xx;, =1 and A, = 0 necessarily have parameters as

1 2

those listed in Theorem 2.2. We therefore have:

Corollary 2.3. A Partially Balanced Incomplete Block design

with b < v , Xl =1 and Az = 0 1is E-optimal over all

block designs.

Connor and Clatworthy (1954) found the nonzero eigen-

i values of the information matrix of a PBIB design with two

associate classes to be

]_ —_
kuy = r{k-1) + 2*[(A1—A2)(-Y +/a) + oAy + Azl
and
Kuy = r(k=1) + FLOG=A) (=Y = VB + A + )]

It is easy to see that My < My if and only if Xl < kz .

Y and A are expressed in terms of the parameters of the

b 2

L _ ! _ .2 _ 1.2
o association scheme as Y = pj, P> and 4 = (p12 Pyo) *
2(pi2 + piz) + 1 (See Raghavarao (1971, p. 126)).

We now prove the following:

Theorem 2.3 (a) A Partially Balanced Incomplete Block design

. with A= 0, 2, =1 and vy - /& + 1> 2EDLERV) 4 pgpes-

mal over all block designs; (b) A Partially Balanced Incomplete

2(k-1) (rk-v)
2 /B 2 v-K

- A 4

Ll TR

—

Block Design with Al =1, A, =0 and 1 -Y -
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is E-optimal over all block designs.

Proof: Let d* be a PBIB design as in (a). Then

2 (k-1) (rk-v)
v-k

> 2rk2 - 2vk - 2rk + 2v which, in turn, implies

Y -/ +1 2 implies (v-k)(y - V& + 1)

r(k-1) (v=k) + %—(v—k) (Y = vE + 1) 2 v(r-1) (k-1)

and which can be rewritten as

r(k-1) + %(-Y -VE+ 1) 2 Yo (x-1) (k-1) .

We are now done by Theorem 2.1, since it follows from the
paragraph preceding the statement of Theorem 2.3 that
kigey = rik-1) + %(Y - YA + 1) . As for part (b), it can be
similarly proved.

When specialized to various known association schemes

Theorem 2.3 yields several corollaries:

Corollary 2.4: A Partially Balanced Incomplete Block design

with a triangular association scheme of size n , Al =0,
Ay, = 1 and block size k » % 2 3 1is E-optimal over all

B block designs.

N Proof: In this case Y =n -5 and A = (n—2)2 , V = ﬂi%fll
and r(k-1) = iE:Zléﬂ:il . Now, for n 2> 6 we have the fol-

2v
TITk-T) 7T >

2v s (v-r(k-1) + 1)k=2k - v » r(k-1)k - v(k-1) =

Y = VA 41 =-22 2(k-1$£§k-v) , as desired. The proof can

lowing chain of implications: k 2~;=;>k2

now be concluded by part (a) of Theorem 2.3.
The family of PBIB designs mentioned by Shrikhande (1965)

satisfices the assumptions of Corollary 2.4. These PBIB designs




. R . BT —— Py g ~—-:==_1
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are therefore E-optimal over all block designs (with the same
v, b and k).
In a similar way, and with the help of Theorem 2.3(b),

we can prove

Corollary 2.5. A Partially Balanced Incomplete Block design i

with a trianqular association scheme of size n , Al =1,
Az = 0 and block size k=2n ~ 1 1is E-optimal over all block
designs.

Examples of such families can be found in Masuyama (1965).
Some can be obtained, for example, by just writing the rows of
the triangular association scheme as the blocks of the design.

We now turn to PBIB designs with Li schemes. Here
v = 52 (for some integer s 2 2) , Y=s - 2i + 1 and A = s2 .

In much the same way as Corollary 2.4 was obtained, we are

led to

Corollary 2.6. A Partially Balanced Incomplete Block design

with an Li association scheme, Al =0, AZ = 1 and block

size k 2 /v 1is E-optimal over all block designs.
When Vv is a prime or a prime power, Clatworthy (1967)

gives a class of PBIB designs with the following parameters:

v=52,b=s(s+1—i) , k=s ,r=s+1-1 ,‘Al=0 and )\2 =1 .

By our corollcry, all these designs are E-optimal.

Let us now derive:

Corollary 2.7. A Partially Balanced Incomplete Block design

with an Li association scheme, xl =1 , Az = 0 and the




P o 0
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block size k satisfying either i -1 < Vv < X or ks</v i -1

A

is E-optimal over all block designrs.

Proof: With Y and A as in the paragraph preceding Corol-
lary 2.6 we have - Y -/A+ 1 = 2(i-s) and r(k~-l) = is - i .
The condition i - 1< s=< k or k< s< i~ 1 can be written
as (s -1 + 1)(k - s)20 . Upon multiplying by s and ex-
pending, it leads to vi - vs + ks + vk - v ~ kis 20 . Using
the fact that r(k-1) = is - i this gives (v~k)(i-s) =2

{(k-1) (rk-v) or

-Y - VE + 1 = 2(i-s) > 2k=1) (xk-v)

v-k °

With this last condition satisfied, we are done by Theorem
2.3(b).
As an example of PBIB designs whose parameters satisfy

the assumptions of Corollary 2.7 we mention the ones with

v=sz, b=is ,k=s.,r=1i, )‘l=l and A2=0;(522) .

These designs appear in Clatworthy (1967).

Let us now turn our attention to the setting of two way

= _ .-1.-1
g~ C3=k"b

is nonnegative definite. Hence (see Bellman (1979))

elimination. Note that the matrix C Md(kI-—J)Mé

Mai S Mg -
l<i<v-1. If 4* is a uniform design , then M. = bv - J

and it is easily seen that ¢ =

g% Cd*‘ Moreover, if such a uni-

form design d* is E-optimal in the setting of one way elimi-

nation, then for any other design d we have

Hal S ¥41 S Mgx1 T Haw

and hence d* is also E-optimal in the setting of two way

- -y
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elimination. This simple argument e¢xtends to D - , A - ,
type I criteria (Cheng (1978)) and more generally to Schur-

optimality (Constantine (1979a). Our observation can be for-

mulated as

Lemma 2.3: A uniform E-cptimal design in the setting of one
way elimination is also E-optimal in the setting of two way

elimination.

The results obtained so far do then extend in the fol-

lowing way:

Corollary 2.8: 1If any of the designs in our previous theorems

and corollaries are uniform, they are then E-optimal for the

settings of both one and two way elimination of heterogeneity.
It is often possible to rearrange the varieties in each

individual block and thus achieve uniformity of the design,

As an example, the partial geometry (1.2) can be written as
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d**: 3 8 11 1 15 9 14 12 4 2 13 5 10 6 7 (2.1)

6 3 5 7 10 15 11 13 2 14 9 4 1 12 8

Let us remind the reader that if there is no evidence of
row effects in the observations, then d* and d** are equally
efficient to use. But if row effects are truly present, the
E-performances of d* and d4** are, respectively, 3;&,1 = ,7226
and 3Ed**l = 5 . Trusting that the response is indeed additive,

d** is then clearly to be preferred.
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