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ABSTRACT

It is shown that several families of PBIB designs are

E-optimal over the collection of all block designs. Among
/

these, the partial geometries with two associate classesLim ;'r.

PBIB designs with X1 = 1 , X2 = 0 and fewer blocks than

varieties; PBIB designs with triangular schemes of size n

X = 0 X 1 and block size k 2  (or X 1 , X 022 122f

and k n - 1); PBIB designs with L. schemes based on v

varieties with X1 0 , X2 = 1 ,k 2!/ (or 1= , 2 =0

and either i - 1 2 /v : k or k / !5 i - 1) The duals of

these designs are also E-optimal. When uniform on rows, these

designs remain E-optimal in the additive setting of two way

elimination of heterogeneity.
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design, information matrix, efficiency, eigenvalue.
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1. Introduction and notation

The object of this work is to investigate the E-opti-

mality of discrete statistical experiments in the additive

setting of one and two way elimination of heterogeneity. For

v , b ,k positive integers, we denote by v,b,k the col-

lection of all k x b arrays with varieties 1, 2,...,v as

entries (2 k < v). Any such array d E v,b,k is called

a design. The columns of d are called blocks. A design is

said to be binary if each block of d consists of distinct

varieties; d is called equireplicated if each variety occurs

the same numbers of times throughout the whole array d . If

each variety appears the same number of times in each row of

d , d is called uniform.

Let ci be the unknown effect of variety i and a*

be the (unknown) effect of the j th block. In the additive

model of elimination of heterogeneity in one direction, we

assume that the expectation of an observation on variety i

in the jth block of d is a. + j

If, in addition, Ym denotes the (unknown) effect of the
' th

m row of d , and there is evidence of row effects in the

observations, we shall assume that the expected value of an

observation on variety i in block j and row m of d is

ai + j + Ym

Under both models we assume the kb observations uncor-
2

related, with common (unknown) variance a The main in-

terest is in comparing the variety effects a1 , 2 ,...' v

The information matrices of variety effects under the

two models are, respectively

m



kC k ciay(r .... r ) - Nd N'd d dV dd

and

d k diag(rdl,.•.,rd) - Nd - b Md(kI-J)MA

where Nd  (ndi j ) , Md  mdi) , with ndi j (resp. mdi j )

indicating the number of times variety i appears in the

th block (resp. row) of d ; rdi is the replication number

of variety i in d J denotes the matrix with all its

enLries 1 and I is the identity matrix. By X di we denote
th

the (i,j) entry of Nd N' It is known that for any d

both Cd and Cd are nonnegative definite with row sums

zero. Let further 0 = d0 - dl - " "  d ,v-i and

S=dO : 1 ... dl W d,v-i be the eigenvalues of Cd  and

Cd ' respectively.

A design d* is called E-optimal over Qv,b,k (under

a given model) if the maximal variance of normalized best

linear unbiased estimators of estimable functions is minimal

under d* It is well-known (Ehrenfeld (1955); see also

Kiefer (1959) and the beautiful expository article of Kiefer

(1978)) that d* is E-optimal over 0v,b,k under the one way

elimination (resp. two way elimination) if and only if

, Pd*l - Jdl (resp. d*l dl for all d e Qvb,k In

short, E-optimality deals with the association

d - Cd dl

and the objective of finding the design d witn maximal Vd"

The experimental setting which involves relatively few

blocks (say 0 < b < 2v) is of notable practical importance.

' Just to focus attention, suppose we have v = 15 varieties,

I ... i | | i i i i , ,. . . ... . .
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b 15 blocks, k - 3 varie, ies: per Mlock and that there is

evidence of an additive variety aid block response. The ex-

perimenter would like to use a design d' which (if not

optimal) is efficient in the E-sense, i.e., Pdol ' dl for

most d You would then say, well, maybe this d* will do:

1 1 8 8 12 14 1 13 13 9 9 11 2 13 15

d°: 14 10 10 4 10 4 6 2 7 7 3 7 3 5 12 (1.1)

8 4 6 12 14 6 15 9 3 5 11 2 5 15 11

It's connected, it's binary, it's equireplicated, and a pair

of distinct varieties appears'in at most one block. Looks

good, as it is M - S optimal, (see Eccleston and Hedayat (1974)

or Shah (1960)) and surely does not favor any variety (in the

senses mentioned above). Only trouble is, d* is in fact a very

inefficient design in the E-sense.

With a Lit of luck you would have probably recommended:

1 1 1 2 2 2 5 5 5 8 8 9 9 7 6

d*: 4 10 3 4 3 10 4 3 10 7 12 6 11 11 14 (1.2)

7 13 6 9 8 14 12 11 15 15 13 15 13 14 12

which has features very similar to d ° in the M - S sense

(but luckily not in the E-sense).

However, one should hope that you haven't sent him back

with such a design as

1 1 1 1 1 1 1 1 1 1 1 1 10 11 13

d: 1 2 2 2 2 2 2 2 2 2 2 10 11 13 15 (1.3)

1 1 2 3 4 5 6 7 8 9 10 4 12 14 8

5 )

A|, l l - I I - I II II I
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The surpr - in g fJct is ihat d is fl-beLt.r Lhan d0  and

the discrepancy in the i1-p:rfui.mance between d* and d' is

by a factor of more than 8. The exact figures are 3 pdOl .571

3vdl .625 and 3 Pd = 5

We would like to stress two things. That this is not

an isolated example (not when the number of blocks is small);

and that M - S optimal designs with large number of blocks

do not differ in the E-performance in such a surprizing way.

In the former case a way to avoid bad M - S optimal designs

is suggested in Constantine (1980).

In the next section we show that a design d* e Qv,b,k

with >d*l vv (r-l) (k-l) and r = bkv 1  integral, is

E-optimal over all block designs. This result has a number

of consequences in settings with b small. Various families

of PBIB designs (mentioned below) with I and X2 zero or

one are proved E-optimal over all block designs. The partial

geometries with two associate classes are such instances.

Among the triangular PBIB designs with schemes of size n:

those with Xi = 0 , = 1 , k n and those with X 1,
1 2 2~

A2 = 0 and k n - 1 . Among the ones with Li  schemes:

those with X1 = 0, X2 = 1 ,k / and those with X I = 1,

X 2 = 0 and either i - 1 < Vv 5 k or k 5v&V i-l . The

duals of these designs are E-optimal as well. These E-optimality

results extend easily to the setting of two way elimination of

heterogeneity when the above designs are also uniform.

I

2. _Results

We denote by 1 the column vector with all its entries 1

ii -__ . _ _ __ _. _-,. . . . ... . " -- ..... . . ..
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and by J the (not !c;.:.iri .y :3q1:re) maLrix with all its

entries 1. The following two ] e11lmas provide upper bounds for

d1 "Various bounds can also be found in Chakrabarti (1963),

Jacroux (1980), Cheng (1980) or Constantine (1979b).

Lemma 2.1: Let C be a v x v nonnegative definite matrix

with zero row and column sums. Denote the eigenvalues of

C by 0 = 0 <  -''< pv-i Then the sum of entries in
m (v-rn)

any m x m principal minor of C is at least v pI;

(1 S m C v - 1)

Proof: Observe that a matriX obtained form C by row and

(same) column permutations has the same eigenvalues as C

It will therefore be enough to prove the lemma for the mx m

leading principal minor of C . Call this leading principal

minor M Then

-i Em1)' C g) m- i
1Mi ()

0 V 0 - v 1

(() v - i i _ W )

as stated. The inequality relies on the known fact that

X'Cx
min xx
x 1=0

and on observing that() - my i'i = 0 (since the 1 in (i)
is m x 1) This ends the proof.

Our next lemma gives an upper bound for Odl when

d c Sv,b,k is equireplicated.

Lemma 2.2: If an equireplicated design d c 0v,b,k contains

5a block which consists of m distinct varieties (2 s m ! k)
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then

k v (k-i) (mr-k)-'d m(v-m)

Proof: By eventually relabeling the varieties and reshuffling

the blocks, we can assume that the first block in d consists

of ndll l's , nd 2l 2's ... and ndml M's . Index the

rows and columns of Cd by the varieties 1, 2,...,v (in

this order), and let Md  be the m x m leading principal
b

minor of C d Observe, firstly, that Xindij r and

b b b j=l

that l nd i _ ndi I + J=ndi 2 JInj = r Hence
j=l 3=2 j3

b 2 b 2
n r - ndiI  and therefore nd nd I + r - ndi

Ji L 2i j=1

Secondly, note that Y Xdij (a sum of m(m-l) nonnegative

m i~j m b m
terms) satisfies Y d = l ndu d n d ii ndYl

m
Using these two inequalities and the fact that [ ndi = k

i=l

we obtain:
m b

l'Md = mrk - i nlj - X
i dlj j dij

m 2 m

2
mrk - C (ndn + r n ni ni=l ili

mrk - ( idl 2 -_r
n d i l m + n d i l .

"1 = (k-l) (mr - k)
v

That kpdlj m(v-m) (k-l) (mr - k) follows now from Lemma 2.1.

* This ends the proof.

Through the remainder of the paper, let the varieties in

a design d E b be always labeled so that the replication
vbk
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numbers rdi satisfy rdl rd 2 <...< rdv We are now

ready to prove our first result.

-i
Theorem 2.1: Let r = bkv be an iiteger. A design

d* C Qv,b,k which satisfies kiJd*l v-k (r-i)(k-i) is

E-optimal over all block designs.

Proof: Let d be any design in Qv,b,k Then d is either

equireplicated or it is not. Suppose it is not. Then

rdl < r -1 and by Lemma 2.1 with m = 1 we have:

k~dl <- rdl (k-i) v - (r-i) (k-i) < v- )(k-i) -s kd,

which show that such a design is strictly E-worse than d*

Assume now that d is equireplicated. We may also assume

that d has a block which consists of m distinct varieties

(2 !5 m _ k). (Observe that if d has no such block, the infor-

mation matrix Cd is then the zero matrix, and hence for such

d we have * dl 0 < ) d*l By Lemma 2.2 we can write

S(v-m) (k-i) (mr - k)
2

Let Q(m) = -kpd*lm + (vkw d*1 - v(k-l)r)m + vk(k-l) Note

* that

V
m(v-m) (k-i)(mr - k) _< kvd, 1 , for all 2 <- m < k

if and only if Q(m) -0 , for all 2 - m < k . Since Q(m)

is a quadratic in m with negative leading coefficient and

Q(0) = vk(k-l) > 0 checking tha- Q(k) > 0 would insure

that Q(m) - 0 for all 2 !5 m 5 k By assumption

5,



T" 2

kldl Y Z (r-l) (k-1) which implies -k 2d l + vkjid, 1

v(k-l)r + v(k-l) >_ 0 . In terms of Q this last inequality

-1
is simply k-i(k) Z 0 . Since k is positive it follows

that Q(k) 0 , as desired. We have therefore shown

kpdl - m)(k-i) (mr - k) S kidl , for all 2 5 m 5 k
dl -m(v-m) *

This concludes the proof.

The following aspect of Theorem 2.1 should perhaps be

stressed. It is easy to show that for two (real) matrices

A and B , the products AB and BA have the same set of

eiqenvalues. Given an equireplicated design d e bk

(with r = bkv -1 integral), we call 6 c Qb,v,r the design

dual to d , if N6 = N' Hence rC6 = rkI - NANd By

the above remark it directly fllows that kCd  and rC6

have the same set of eigenvalues. Thus, if d* -vbk

satisfies the assumption of Theorem 2.1, then

v _b
rp61 kPd, !-:! - (r-1) (k-1) = b--(k-l) (r-1) ,

and hence 6* E Qb,v,r satisfies also the assumption of the

theorem. This gives

Corollary 2.1 Let r = bkv - 1 be an integer. The dual of a

design d* E Qv,b,k with d*l v-k(r-l) (k-l) is E-optimal

over 0b,v,r

All the designs which we shall prove E-optimal next, have

E-optimal duals, in view of this corollary.

Although not apparent from the statement of Theorem 2.1,

the lower bound - --(r-1) (k-l) is useful for designs with
v-k

relatively small number of blocks (0< b <2v ,say), and
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hardly ever oLherwise. Let u.- examine a few consequences

of Theorem 2.1.

Theorem 2.2 A Partially Balanced Incomplete Block design

based on v varieties and b blocks of size k , with in-

tegral parameters as below, is E-optimal over all block de-

signs: r- bkv -  1 = 1 2 = 0 n I = bk(k-l)v-1-11 ' -'

n 2 =v - I - bk(k-l)v -1 , t k(k-l)(bk-v)v-l (v-k)- I

1 -2 -1
Pll = k - 2 + [k(k-l) (bk-v) - v(v-k)] (bk-v)v (v-k)

2 2 - 2 -1
Pll = bk (k-i) (bk-v)v (v-k)

Proof: Let a PBIB design with parameters as above be denoted

by d* . Then Cd, is known to have two distinct nonzero

eigenvalues 0 < Pd*l < 1d*2 , where kPJd, 1 = r(k-l) - k + t + 1

For a proof see Connor and Clatwortny (1954), Bose and Mesner

(1959) or Ragbavarao (1971, p.195). It is straightforward to

check that

r(k-l) - k + t + 1 = k - (k-i)
kdi6 1  v-k

We are then done by Theorem 2.1.

The partial geometries (r,k,t) with two associate

classes, defined by Bose (1963), satisfy the conditions of

Theorem 2.2. Whence,

4 Corollary 2.2. Partial geometries with two associate classes

are E-optimal over all block designs.

For a thorough reading on classical finite geometries we

refer the reader to the book of Dembowski (1968). Many PBIB

designs can be constructed from partial geometries. The

I
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varieties would be the points and the blocks would be the lines

of the geometry. We mention the work of Seiden (1961) and

Ray-Chaudhuri (1962) in connection with this. The design (1.2)

is an example of a partial geometry of the simplectic type.

Bose and Clatworthy (1955) showed that PBIB designs with

b < v , X I = 1 and X2 = 0 necessarily have parameters as

those listed in Theorem 2.2. We therefore have:

Corollary 2.3. A Partially Balanced Incomplete Block design

with b < v , X= 1 and A2  0 is E-optimal over all

block designs.

Connor and Clatworthy (1954) found the nonzero eigen-

values of the information matrix of a PBIB design with two

associate classes to be

1

k 1 = r(k-l) + [(Ll1 2 )(-Y +/ ) + A1 + A2]

and

1

2= r(k-l) + 2[(xI-X 2 )(-Y - ) + 1 + X2 )]

It is easy to see that P1 < 2 if and only if Xl < X2

Y and A are expressed in terms of the parameters of the

2 1 2 12
association scheme as Y P1 2  P1 2  and As (p12  P 2 ) +

1 2

2(p 1 + p12 ) + 1 (See Raghavarao (1971, P. 126)).

We now prove the following:

Theorem 2.3 (a) A Partially Balanced Incomplete Block design

i with A1  0 , X 2 = 1 and Y - /A + 1 2(k-l) (rk-v) is E-opti-• = v-k•

mal over all block designs; (b) A Partially Balanced Incomplete

Block Design with A1  1 , A2  0 and 1 -Y / A 2(k-l)(rk-v)= v-k



is E-optimal over all block designs.

Proof: Let d* be a PBIB design as in (a). Then

Y - / + 1 > 2(k-l)(rk-v) implies (v-k) (y - / + 1)- v-k

2rk 2 
- 2vk - 2rk + 2v which, in turn, implies

r(k-l) (v-k) + j(v-k) (Y - VT + 1) v(r-l) (k-i)

and which can be rewritten as

1 v
r(k-l) + T(y- /A+ 1) (r-l) (k-i)-kz

We are now done by Theorem 2.1, since it follows from the

paragraph preceding the statement of Theorem 2.3 that

k r(k-) + 1 (Y - /N+ 1) As for part (b), it can be

similarly proved.

When specialized to various known association schemes

Theorem 2.3 yields several corollaries:

Corollary 2.4: A Partially Balanced Incomplete Block design

with a triangular association scheme of size n , =0,

2 1 and block size k > n ? 3 is E-optimal over all

block designs.

Proof: In this case Y= n - 5 and A = (n-2)2 n(n-l)
2

and r(k-l) (n-2) (n-3) Now, for n a 6 we have the fol-

lowing chain of implications: k k 2 2v + >
v-r(k-l) + 1

2v (v-r(k-l) + l) k7--> k - v z r(k-1)k - vc(k-1) =

+ 1 -2 2k-1(rkv) as desired. The proof canv-k

now be concluded by part (a) of Theorem 2.3.

The family of PBIB designs mentioned by Shrikhande (1965)

satisfies the assumptions of Corollary 2.4. These PBIB designs

I
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are therefore E-optimal over all block designs (with the same

v, b and k).

In a similar way, and with the help of Theorem 2.3(b),

we can prove

Corollary 2.5. A Partially Balanced Incomplete Block design

with a triangular association scheme of size n , 1 1,

A2 = 0 and block size k n - 1 is E-optimal over all block

designs.

Examples of such families can be found in Masuyama (1965).

Some can be obtained, for example, by just writing the rows of

the triangular association scheme as the blocks of the design.

We now turn to PBIB designs with L. schemes. Here

2 2
v = (for some integer s 2) , y = s - 2i + 1 and A = s

In much the same way as Corollary 2.4 was obtained, we are

led to

Corollary 2.6. A Partially Balanced Incomplete Block design

with an L. association scheme, X1  0 , 2 1 and block
3- 2

size k A is E-optimal over all block designs.

When /-v is a prime or a prime power, Clatworthy (1967)

gives a class of PBIB designs with the following parameters:

2v=s , b=s(s +1-i) , k=s , r =s +l-i ,'X 1 = 0 and X2 =1

By our corolliry, all these designs are E-optimal.

Let us now derive:

Corollary 2.7. A Partially Balanced Inicomplete Block design

with an L. association scheme, X1 = 1 2 = 0 and the

3re
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block size k satisfying either i - 1 ! /-v ! k or k ! A/ vi - 1

is E-optimal over all block designs.

Proof: With Y and A as in the paragraph preceding Corol-

lary 2.6 we have - Y -VK+ 1 = 2(i-s) and r(k-l) = is - i

The condition i - 1 s k or k s ! i - 1 can be written

as (s - i + 1) (k - s) 0 Upon multiplying by s and ex-

pending, it leads to vi - vs + ks + vk - v - kis 0 . Using

the fact that r(k-1) = is - i this gives (v-k) (i-s) a

(k-l) (rk-v) or

-Y - + 1 = 2(i-s) 2 (k-l) (rk-v)
v-k

With this last condition satisfied, we are done by Theorem

2.3(b).

As an example of PBIB designs whose parameters satisfy

the assumptions of Corollary 2.7 we mention the ones with

V=S , =is , k = s, r = i, 1 = 1 and X2 = 0 ; (s ? 2)

These designs appear in Clatworthy (1967).

Let us now turn our attention to the setting of two way

elimination. Note that the matrix Cd - Cd = k b Md(kI J)M

is nonnegative definite. Hence (see Bellman (1979)) 1 di d

1 : i 5 v - I. If d* is a uniform design , then M d, bv-1j

and it is easily seen that d* = Cd*- Moreover, if such a uni-

form design d* is E-optimal in the setting of one way elimi-

nation, then for any other design d we have

dl ' dl ' "d*l = d*l

and hence d* is also E-optimal in the setting of two way

... .. .. . ..-.. -. - ,-.. . ... .... ... ....
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elimination. This simple argument extends to D - , A -

type I criteria (Cheng (1978)) and more generally to Schur-

optimality (Constantine (1979a). Our observation can be for-

ntulated as

Lemma 2.3: A uniform E-optimal design in the setting of one

way elimination is also E-optimal in the setting of two way

elimination.

The results obtained so far do then extend in the fol-

lowing way:

Corollary 2.8: If any of the designs in our previous theorems

and corollaries are uniform, they are then E-optimal for the

settings of both one and two way elimination of heterogeneity.

It is often possible to rearrange the varieties in each

individual block and thus achieve uniformity of the design.

As an example, the partial geometry (1.2) can be written as

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d**: 3 8 11 1 15 9 14 12 4 2 13 5 10 6 7 (2.1)

6 3 5 7 10 15 11 13 2 14 9 4 1 12 8

Let us remind the reader that if there is no evidence of

row effects in the observations, then d* and d** are equally

efficient to use. But if row effects are truly present, the

E-performances of d* and d** are, respectively, 31i =.

and 3pd**l = 5 Trusting that the response is indeed additive,

j d** is then clearly to be preferred.
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