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1. Introduction

The first order quasilinear system

(s) {"t“’x=o (v > 0)

arises in a variety of ways in several areas of applied mathematics; the

problem of establishing global existence and nonexistence theorems for

initial-boundary value problems associated with such systems has been
the subject of much investigation during the past fifteen years.

If (in a simple connected domain) in (x,t) space we set v = Yo o

w =y,  then (s) is transformed into the dissipative (if Y > 0) quasi-

linear wave equation

n

(1.1) oy * Wy =90y )y = MYy,

Wth Yy =0 , this equation was studied by Zabusky [1l] under the assumption

that A?(c) = (1 + ) and that the initial and boundary data are of the form

y(L,t) ,t >0

(1.2) y(0,t)

y(x,0) =y (x),y,(x,0) =0, 0<x <L

The initial-boundary value problem (1.1), (1.2) (with ¥ = 0) serves to model
the transverse vibrations of a finite nonlinear string. By employing the
method of Riemann invariants Zabusky proved that a smooth solution of (1.1),
(1.2) must break doﬁn in finite time as a result of some second derivative

of y(x,t) becoming infinite; this, in turn implies the development of

shocks in the solution (v,w) of the quasilinear system (S) . Using a

different argument (but one also based on Riemann invariants) Lax [2] in
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1964 extended Zabusky's finite-time breakdown results for (1.1), (1.2) to

the case of a general positive function M({) satisfying [A'(£)| > A, >0 ;

the assumption of positive A 1is equivalent to assuming that the system :
(s) , with Y>C , 4is strictly hyperbolic, i.e. that o'({) >0 ,

\fce Rl . In [3] MacCamy and Mizel again studied (1.1), with Yy =0 ,

subject to initial and boundary data of the form

0 ,y(,t) =0 , t>0

(0,1t)
3y ¥ 0 , ¥y(x,0) =F(x) , 0<x<L

y(X,O)

and extended the breakdown results of Zabusky and Lax to general functions
AMC) satisfying A(C) >0 , Vce R, M0)=1 ,and a'(g) SO for

¢ Z 0 ; they also proved that if either of the integrals i

Jo MO ox J77 Mo)ag

is finite, then there exist intervals on the x-axis in which the solution
must exist for all time even though it must breakdown for some x-values
outside these intervals. The latter results of MacCamy and Mizel can be

extended to more general initial conditions of the type
y(x,0) =¥ (%) , y,(x,0) =¥, (x), 0<x <L

with }i(x) + 5712 (x) #0 but no pair of initial data of the form (¥,(x),0)

can be found which allows for global existence in time of a smooth solutica

in some x interval. 1In a later series of papers [4], [5] MacCamy,

Mizel, and Greenberg considered the damped nonlinear wave equation

(13) ¥y = OCg) * Py,

s e
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and proved that initial-boundary value problems associated with (1.3) always

have smooth global solutions which are, in fact, asymptotically stable, no
matter how large the initial data §;(x) , ;&(x) are.

Much of the more interesting work concerning the damped versions (Y > 0)
of (1.1), and the related system (S) , is of a more recent vintage; there
has also been a concerted effort on the part of various researchers to resolve
the problem of global existence :». nonexistence of smooth solutions to non-
linear one-dimensional integrodifferential equations which arise in several
theories of nonlinear viscoelastic response and which involve damping mech-
anisms that are sometimes formally equivalent to that present in the system
(S) but which are often more subtle.

In a significant piece of work Nishida [6] has recently considered the'
initial-value problem for the damped quasilinear system of equations (S)
and has proven, using a Riemann invariant argument, that unlike the situation
in the undamped case (Y = 0) , global smooth solutions do exist if the '
initial data are small in an appropriate sense; to be precise, Nishida con-
siders ©(C) such that o'€) >0 for |G| <& , with o(:) € C2(|C| <v) ,

defines the Riemann invariants r , s via
r=gw) -v , s =-g(w) -v

where

1}

IO IEMVAER (SE]

and assumes, in his proof of global existence, that r(x,0) , s(x,0) , as

determined by the initial data v(x,0) , w(x,0) associated with (8) ,




b

satisfy
r(x,0) , s(x,0) ¢ Cl(Rl) with

(1.4) sup|r(x,0)| + sup|s(x,0)] < min (28 (8) , - 28 (-5)}

(1.5) sup|g£§§2-9l | <+« , sup | Sﬁéﬁigl | <+
and, for € > 0 sufficiently small,

(1.6) (sup| r(x,0)| + sup|s(x,0)])

+ (sup|{%%(x’o)| + supl%%(x’o)|) <e

Thus, under Nishida's hypotheses the system (S) 1is strictly hyperbolic
in Q = {(v,w)]ve Rl .|w] <8} ; this corresponds to the assumption that

the damped quasilinear wave equation (1.1) is hyperbolic in a neighborhood

of Yy = O . Nishida also obtains global existence and decay to zero, in
the La norm, as t = +» , of a unique smooth solution of (1.1) by adopting
Matsumura's modification [7] of an L2-energy method that is due to Courant,
Friedrichs, and Lewy [8] and depends upon the derivation of an appropriate 5
set of a priori energy estimates. In [6] Nishida conjectured that sing- 1
ularities in the first spatial derivatives of the solutions (v,w) of the

system (S) should develop, in general, in finite time, if one relaxes the
assumption that the gradients of the initial data (v,(x,0) , w(x,0)) be

small; this conjecture of finite {time breakdown of smooth, i.e., Cl solutions
(v,w) of the initial value problem associated with the damped quasilinear
system (S) , when the gradients of the initial data are no longer sufficiently

small, has been proven valid by Slemrod [9], [10], in connection with his




M - o
B s ot 2 e el L T

o
=

recent work on the instability of steady shearing flows in nonlinear vis-
coelastic fluids. Before proceeding, however, with a discussion of the
viscoelastic model considered.by Slemrod in {9] and [10], and its relation

to both the quasilinear system (S) and the quasilinear evolution equation
(E) wtt(x,t) = U(W(x,t))xx -y wt(x,t) »b 0<x<L, t>0

which is the subject matter of the present paper, we digress briefly to
delineate some recent results of MacCamy [1l], Dafermos and Nohel [12], and
this author {13] on a voscoelastic model which is closely related t§ the
nonlinear model considered in {9], {10}; we also comment below on some re-
lated work of Nohel [14] on the damped nonhomogeneous quasilinear wave equation
associated with (1.1).

The most widely studied mcdel of one-dimensional nonlinear viscoelastic
response seems to be the one which was first studied rigorously by MacCamy
in (11]; in this model the displacement field u(x,t) satisfies, on [0,L)x[0,]
a one-dimensional nonlinear integrodifferential equation of the form

(1) Uy = a(0) O(ux)x - fg aT(t-T)o(ux)x dr + %(x,t)

and initial and boundary data of the type

u(o,t) =0 , u(L,t) =0 , t>0

(1.7) o
u(x,0) uo(x) , ut(x,o) = ﬁi(x) », 0<x<L

n

By employing Riemann invariants and a set of suitably derived a priori
energy estimateg, MacCamy showed that the above initial-boundary value
problem has a unique classical solution for all t > 0 when the dafa term

& 1is suitably restricted and the inital data ﬁ; , ﬁi are sufficiently




small; it is also proven in [11l] that the solution is asymptotically stable,

1.e. that it tends to zero as t = + » . The essential hypotheses in [11]

are that a(t) =a_+A(t) ,a_,>0 ,Ace€ Ll(O,w) R (-1)ka(k)(t) >0, k=0,
1, 2,0(0) =0, 0'(() >e>0 , and |c(k)(g)]58 » k=0,1,2 forall
C e Rl » as well as various smoothness assumptions relative to o , i% ;ﬁi s

and & ; the restrictions on F take the form of boundedness and growth

conditions. Without loss of generality it may be assumed that a(0) =1 in

(I) . It can be shown that (I) has the equivalent form (see [10], [11],
or [12])
(1.8) | utt(x,t) + g% It k(t-T)ut(x,T)dT = o(ux(x,t))x + ¥(x,t)

for xe [0,L] , 0 <t <o , where k(t) is the resolvent kernel
associated with &(t) and &(x,t) is determined by k(t) and F(x,t)

Clearliy (1.8) is also equivalent to

(1.8a) utt(x,t) +y ut(x,t) = c(ux(x,t))x + 8

where the functional &(u) is given by

(1.80) & (u(x,t)) = &(x,t) = ¥k (t - T)u (x,7) ar

and vy = k(0) ; this damped quasilinear wave equation corresponds to the
nonhomogeneous version of (1.1) but has the obvious drawback that the non- 1
homogeneous (or forcing) term 3‘ depends on the displacement u , a problem
which is handled in [11] via the establishment of certain a priori estimates

for the solution.

J. A. Nohel [1k] recently considered the initial-value problem on Rl ,

for damped non-homogeneous wave equations of the form (1.8a) , with
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¥ = ¥(x,t) independent of u(x,t) , and extended Nishida's method for the
corresponding homogeneous equation (1.1) so as to obtain global existence

and uniqueness of smooth solubtions whenever the initial data are sufficiently
small (in the sense of Nishida [6], delineated above) and the Ll(o,w) and

L™(0,®) norms of &(t) = sup iikx,t)l and the L™(0,®) norm of
~ xeR
Ql(t) = suplléx(x,t)l are sufficiently small as well. In addition, Nohel
X€eR
[14]} is able to prove that the unique global smooth solution of the initial-

value problem associated with (1.8a) depends continuously on the data ﬁ; ,

~

G& , and & . In more recent work, Dafermos and Nohel [12] have applied

an appropriate modification of Matsumura's energy srguments [7] to the stand-

ard initial-boundary value préblems associated with the one-dimensional non-

linear integrodifferential equation (I) and deduced the existence of a_unique.

globally defined smooth solution which, under appropriate conditions (again,
suitably "small" data ﬁ; , ﬁi , &) decays to zero as t =+« ; it is to

be noted that unlike the arguments in {61, [9] - [10], [11] , which are

based on Riemann invariants, and hence are strictly limited to one-dimensional
problems, the method of Dafermos and Nohel [12] may be extended to problems

in two or three (or even higher) dimensions. It should also be noted that
both MacCamy [15], using Riemann invariants in conjunction with energy
estimates, and Dafermos and Nohel [12] , using energy estimates, have treated
the parabolic counterpart of (I) which arises in problems of heat flow in
nonlinear one~dimensional heat conductors with memory; Dafermos and Nohel {12]

also treat a problem of heat flow in a two-dimensional nonlinear heat conductor

with memory thus indicating how Matsumura's arguments extend to problems in
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higher dimensions.

In his 1975 paper, MacCamy conjectured that the viscous damping mech-
anism ipherent in (I) was too weak to prevent breakdown of global smooth
solutions if the data were sufficlently large in an appropriate sense; to
the best of this author's knowledge, that conjecture remains open although
Slemrod {9], {10] has proven a finite-time breakdown result for a closely
related model of nonlinear one dimensional viscoelastic response, a model
which leads to a damped ( vy > 0) homogeneous system of the form (S) as
opposed to a damped nonhomogeneous system of the type (1.8a) , (1.8b) (which
is, in turn, equivalent to (I) ) . This author has recently derived [16]
growth estimates for solutions of the initial boundary value problem corres-
ponding to (I) without making any assumptions about the size of the data;
these results are of the tollowing type: Suppose that a(0) =1, F=0,
that o(§) = X'({) with o' (£) > ' (¢) ,VC ¢ R* , and some a >2 and
that o >0 such that [o'({)] <o , \/C e R (no sign definiteness
assumptions are imposed on the a(kzt) ,k=0,21,2 as in[11] and [12]);
let T >0 be fixed. Then any surficiently smooth solution of thé initial

boundary value problem corresponding to (I) which lies in the class

(1.9)  c={u:lo1) =1 (o,u1] sup ol y < ¢

b

for some real number C > 0 must satisfy the quadratic growth estimate

2 ~ )2 ~ 2,2
(1.10) HuHL2 > HuollL2 + 2y HuOHL2t+ Vt5, 0<t<T

where v > 0 1s an appropriately chosen constant. To be more precise, the

growth estimate (1.10) holds for solutions u(x,t) e 02([0,L]x[0,T]) ne




C
.

-

[,
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with initial data (iro , Gl) satisfying

(1.11a) @ > v (B2 |
where :
v=2abd/ (a-~1) 3
_ 5 = max (£(0) , 5 %C°) y
(1.11b) 10, 2 L
E(t) = 5 [, dg(x,t)ax + j‘o T(u (x,t))ax > 0
%= la()r + (1 - ) up JE Ja(e-n)|ar

w1 (R - manPa

In (1.11b), E(t) > 0 follows from the fact that our two hypotheses on o(()

imply that X(¢) >0 , \/g ¢ R ; the growth estimate (1.10) applies, of

course; to the unique global smooth solutions of the initial-boundary value
problem associated with (I) when the initial data T, ’&2 are sufficiently
small in the sense of [11] or [12].

While global nonexistence of smooth solutions has not been proven for
the viscoelastic model represented by (I) , when the data G; s ﬁi », & are
appropriately large, it has been proven for a related model of nonlinear
viscoelastic response. 1In [9], [10] Sl-mrod considers steady shearing flows
in a nonlinear voscoelastic fluid in which the stress is given as a real-
valued, odd, analytic function o of the linear functional f:e'Ysig(x,t-s)ds ,
where ¥ (x,t) is the velocity field (actually the y-component of the velocity
field in a fixed Cartesian coordinate system (x,y,z)) and w;(x,t) is the

shear rate. Thus, the shearing stress Txy(t) is given by

(1.12) ™Y (¢) = o(f:e'YTﬁg(x,t-T)dT)




-
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and the equation for conservation of linear momentum then yields the evolu-

tion equation
(1.13) p T (x:t) = °(J'::e-\'s?/x(x,t-s)ds'»)x

where p > 0 is an (assumed) constant mass density. Associated with (1.13)

in [9], [10] are the no-slip boundary conditions
(1.1%) 270,t) =0 , Y{L,t) =V

where it is assumed that the fluid is confined between two parallel walls of
infinite extent at x = 0 and x =L with the top wall at x =L moving
with velocity V . The system (1.13), (1.14) admits the steady rectilinear
flow given by % x) = Vx/L as a solution and, thus, in order to study the
stability of the flow against shearing perturbations Slemrod sets

%Xx,t) = %(x,t) - Vx/L in which case the perturbed flow % (x,t) satisfies

(1.15a) pﬁi(x,t) = o(f: e'Ysii(x,t-s)ds + )

YL “x°

(1.15b)  R0,t) = 0, NL,t) = 0

to which is coupled the prescription of a smooth velocity history, i.e.,
(1.15¢) ikx,T) = ia(x,T) , =2<T1<0

Clearly, (1.15a) can be rewritten as

(1.15a') q}t(x,t) = 3(f7 ™ P (x,t-s)ds)x

with o(g). = 0 if we set

(1.16) 80 = = (o(C+ 3p) ~o(p)]




Slemrod [9], [10] now is able to transform the initial-history boundary
value problem (1.15a'), (1.15b), (1.15¢) into an initial-boundary value
problem for a damped quasilinear system of the form (S) by introducing

the new variables

(1.17a)  v(x,t) = f: e'Ys;i(x,t-s)ds

- A
(l-l7b) W(X,t) = I: e Ys %&(x,t-S)dS
Integration by parts in (1.17a) yields
v(x,t) = Y x,t) - ¥ f: e Y8 ikx,t-s)ds

It is then immediate that (v,w) satisfy

(8) Vg =V .
{."t = '72 = Yv= oW, - vv

in other words (v,w) satisfy (S) with o replaced by & . 1In view of

(1.15b), (1.15c¢) and the definitions of w(x,t), w(x,t) we have associated

with (S) the initial and boundary conditions

(1.18a) wWoO,t) =0 , WL,t) =0

(1'18b) V(xlo)

%8 , wx0) = w(x)

where ?% , 3% result from the insertion of the velocity history W’o(x,T)
in (1.17a), (1.17b). 1In order that the constitutive relation (1.12) be

nonlinear it is necessary that o'({*) £# O for some (* ¢ Rl . By choosing

the speed of the top wall V = YL{* it follows that, in addition to 8(0) =0,

t

el
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we also have &"(0) #0 . But the crucial requirement imposed in [9], (10]
on the system (§) is that it be strictly hyperbolic at least in a neigh-

borhood of the origin, i.e., that &'(g) > 0, VC € Rl such that |¢| <&

for some & >0 . 1In this case if one defines the Riemann invariants
(1.19) r(x,t) = v(x,8) + M%) /50 (gyag
s(x,t) = v(x,t) - fg(x’t)v/ G'(g)ag

and assumes that |r(x,0)| , |s(x,0)| are sufficiently small it is possible
(Slemrod [9], Nishida [6]) to prove that for as long as smooth solutions of
(S) (1.18a,b) exist, |[r(x,t)|, |s(x,t)] remain small. Thus, if &'(0) >0 ,
and [r(x,0)|, |s(x,0)] are chosen sufficiently small,it follows that for

as long as smooth solutions exist w(x,t) remains uniformly near zero and
hence &'(w) >0 . With the assumptions that |r(x,0)|, |s(x,0)] are
sufficiently small and either }rk(x,o)l or st(x,o)l is sufficiently
large Slemrod [9}, [10] is then able to employ a Riemann invariant argument

1

to prove that ¢~ (in (x,t) ) solutions (v,w) of (§) , (1.18a,b) exist,

for at most, a finite time . As Slemrod [9,84] notes this finite time

breakdown result depends crucially on the local hyperbolicity assumption i
'(0) >0 . For example, in the case of a fluid of integral grade three

where
o) =0, +0o C3
1 3

if, o, >0, o, <0 then, clearly, o'(f) <0 for |¢| sufficiently

1 3
large; however, if |v(x,0)|, |w(x,0)| are sufficiently small then [w(x,t)]

remains small for as long as smooth solutions of (S) , (1.18a,b) exist and
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one never has to worry about the case ICI “sufficiently large" as long as

~ I Y 2 jL 2
(1.20) a'(0) =o' ( T )© = o) + 3°3(YL) >0
i.e., as long as V/YL 4s small. If, on the other hand, V/vL 2~/01/3|a3|
then 6'(0) <0 loss of hyperbolicity results, and, as the author ([9],

[10]) notes no conclusions regarding either global existence or nonexistence

of solutions can be obtained from the analysis in [9], [10](2) .

Our aim in this paper will be to try to address the situation vis a vis
initial-boundary value problems associated with the damped (y > 0) quasi-
linear system (S) when o¢'(0) < 0 ; in general, it will be shown that,
for a variety of boundary conditions, one can not expect global smooth solu-
- tions of (S) to exist when o'(0) <O even if the initial data functions,
3;(x),;;(x) , and their gradients, are small in magnitude. In addition,
we obtain for various initial-boundary value problems associated with (8)
growth estimates for solutions which are valid on the maximal time interval-
of existence; many of these growth estimates apply to those well-posed
problems associated with (S) which are obtained by restricting, as in (6],
the initial data to be sufficiently small. Some of our global nonexistence

results may also be applied to the nonlinear viscoelastic fluid model con-

sidered in [9], [10] if we replace the no-slip boundary conditions (1.1L4) by

?

A R A
(2) We note, in passing, that 7£= c(w)x , 7& v, * W 80 that if (v,w)
‘ is not of class c; then the velocity field 7%{x,t) is not of class C1

(in (x,t))
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boundary conditions involving both the shear rates at x =0 and

x =L , or the shear rate at x =1 and its gradient at x =0 , and
work with the flow Yx,t) directly instead of with shearing perturbations
of a steady flow.
Our results also cover certain situations where &' (0)>0 but o'({) <O

for |C| sufficiently large. In the case of the fluid of grade three, for

example, i.e., o({) = clc + 03C3 » Oy >0 , 03 <0 , o' (g) <0 if
le) > cl/3|c3} . If the initial data Vo (x) , w_(x) are sufficiently small
then, with o¢'(0) = o, >0 , it is guaranteed, by the results of Nishida

[6] and Slemrod [9], that |w(x,t)| remains small and, in fact, smaller than
cl/3|c3| , for as long as smooth solutions of (S) exist; in this case
c'(w(x;t)) > 0 on the maximal time interval of existence. On the other
hand if |v(x,0)| , |w(x,0)| are not sufficiently small then there is no
guarantee that |w(x,t)| remains smaller than the critical value cl/3|o3|
in which case there may be values of (x,t) such that o'(w(x,t)) <0 ;
the global nonexistence result of [9], [10] do not seem to cover this
possibility either.

Our approach to the quasilinear system (s) shall be through the
equivalent damped quasilinear wave equation (E) . That (S) and (E)
are equivalent is easily established, i.e., if (v,w) is a solution of
(8) then by elimination between the first and second equations which comp-
rise (8) it follows that iv(x,t) satisfies (E) . On the other hand,

if w(x,t) satisfies (E) we may multiply (E) through by e* and obtain

the fact that w(x,t) satisfies
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(¥ (x,8))y = (eWolu(x, b)),

which (at least in a simply connected domain of (x,t) space) implies that
3 q(x,t) such that
t t
%hm)=gwémﬂ,qdmﬂ=eYdﬂmﬂ&
If we set v(x,t) = e-Ytq(x,t) it then follows directly that Ve = W, and

t

v, =o(w)_ -wyv, i.e., that (v,w) satisfies (S) . Actually, given that

t X

w(x,t) 1is a solution of (E) one may construct a function v(x,t) , such
that (v,w) 1is a solution of (S) by simply integrating the first equation

in (8) w.r.t. x to obtain

v(x,t) = _j‘;‘wt(y,t)dy + £(t)

and then substituting into the second equation in (S) and replacing the

resulting term wtt(y,t) by o(w(y,t))_ _ - th(y,t) ; in this manner, one

yy
easily obtains v(x,t) as

(1.2) v(x,t) = fzwt(y,t)dy + e-thZeYTc'( w(O,T))wx(O,T)dT

to within an arbitrary constant of integration. The pair (v,w) is then
a solution of (8) . If growth estimates for solutions of initial-boundary
value problems associated with (E) can be obtained then (1.21) can,in
principle, be used to derive growth estimates for the corresponding v(x,t)
‘b which is such that the pair (v,w) is a solution of an equivalent initial-
boundary value problem associated with (S)
Through the remainder of the paper we shall assume that o(({) is of

class CZ(Rl) , and genuinely nonlinear, so that 3C* ¢ R for which o"(C*) A0




In addition, we shall confine our attention to nonlinearities o({) that
satisfy a specific growth condition which is delineated in §2 ; this
restriction essentially limits the class of nonlinearities o({) to those
which are such that the absolute value of the indefinite integral of o(§)
grows slower than a polynomial in ICI of degree « , for an appropriate
a>0
Finally, by a regular solution w(x,t) of an initial-boundary value
problem associated with (E), with homogeneous boundary data w{0,t) = w(L,t) =0,
we shall understand, in the sequel, a solution w ¢ 02((0,L)x[0,°)) such

that w_(0,t) = lim ( du(y,t) ) <+ ® with
X + dy
y~-o 4
y (1.22).  wi(0, . ) € LT0,®) N LY0,e)

The motivation for this definition of regular solution will be clear from
the analysis in §2 ; for initial-boundary value problems for (E) with
homogeneous boundary data wx(O,t) =0 , w(l,t) =0 , the definition of
regular solution will be modified to mean a solution w ¢ 02((0,L) x [(0,%))
such that for 0 <t <= ,

(1.23) o' (w(0,t)) = lim _ o' (w(y,t)) < + =
y -0

- ———
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2. Some Basic Estimates

In this section we will derive an energy estimate as well as several
other estimates which are satisfied by a particular real-valued functional
F(w(x,t)) which is defined on regular soultions of initial-boundary value
problems associated with the quasilinear evolution equation (E) ; these
estimates will be used in &3 to prove nonexistence of regular solutions,
i.e., global nonexistence of sufficiently smooth solutions on [0,®) , as
well as to derive various growth estimates (lower bounds) which are valid
on the maximal interval of existence [O:tmax) » tpax < o, of a sufficiently
smooth solution w(x,t); without loss of generality we may take L =1 in
all that follows. Thus, let w(x,t) be a regular solution of (E) with

associated inital and boundary data of the form

(2.1) w(x,0) = Q;(x) , wt(x,o) = Gi(x) , 0<x<1

(2.2) w(0,t) =0, w(l,t) =0, t >0

where G;(.) , Gi(.) are assumed to be of class C° on fo,1]
Concerning the nonlinearity o( € in (E) , we will assume, in addition
to the hypotheses delineated in §1 , that o(0)

€ e Rl , satisfies

0 and that Z() = fg of(p)do,

(2.3) a T (€) > ¢ =), VCG R and some a >0

In the sequel our global nonexistence theorems and growth estimates will
hold for o(f) such that Z({) satisfies (2.3) for a in an appropriately

chosen interval of (0,®) For o(€) = olC + 03C3 it is easily seen that

(2.3) 1s equivalent to the statement that
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(2.4) 0 (F - 1) & o3 F -1 ¢! >0, Voot

If o, >0, oy >0, (2.4) 1is satisfied for any a > L4 . If o, <0,
03 < 0 then (2.4) is satisfied for any o , 0 <a <2 . With 9y >0,
93 <0, (2.4) is satisfied with 2 <a <4 while if o <O, o3 >0 (2.4)

1 The example of

is not satisfied by any a for all { ¢ R
o(f) = o 8+ 03C3 will be used in several places later on in the paper.
The inequality is a restriction on the growth of E({) in the sense that
1t1mnmstMtheRl,lzuH gclda for some C>0, >0 . The
additional restriction that |o'({)] <o , for some & >0 , would imply
that Z(¢) >0, VQ € Rl ; this hypothesis was employed in [13] but will not
be used in this paper and, in fact, we want to allow for o({) which are
such that £({) <0 for |{| sufficiently large.

For a regular solution w(x,t) of (E) , (2.1) , (2.2) we define an

energy functional

1]

(2.58)  B(t) = & [2([% w (v, t)ay) Pax + [T B(w(x,6))ax

and set

2
E(t) - ( quigl ) fz Wi(O,T)dT

We claim that E(t) <E(0) =E(0) , forall t, 0<t<®.

(2.5b) E(t)

In order to demonstrate this we compute
(2.6)  E(t) = [2([%v (v, )ay) (B, (v, t)dy)ax
. oo t'? o tt*Y’

+ 22 ((x, 8) Jw, (x, ) ax
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= Jy Uany (3 0)a0) ([5o(y, 0y, = W, (v,6))ay)ax
+ fiz'(w(x,t))wt(x,t)dx

= 0w 5 t)ay) o(wly,t)),y [X ax
- ¥ LB (v ) ay) Pax

+ .ri. z (W(x, t))wt(xat)dx

The result is also true on [O,tpax) for solutions which are of class Czon

(10,L) x [0,tp,y)), satisfying (1.22a-c), where [0, tyay) » tpax <@ » is

the maximal interval of existence. Thus
B(t) = M o 1™ wy(yt)ay)o(wix,t))lax
- v (x,8)o(w(x, t) )ax
+ [0 (wix, 8))w (x, t)ax
- o' (w(2,8))w (0,8) [5 (X w (y,t)ay)ax

1 2
-y J(‘o(.rz wt(y,t)dy) d-x

»

- o' (0w (0,8) [1([™w, (y,t)dy)ax

1
-V qro (,)pz Wt(y,t)dY)edx

as o(w(l,t)) =0(0) =0 and ¥'(¢) =o0(¢) , VCe R . If we set \(t) =

= J‘;L ) :Wt(y ;t)dy)ax , then we have (Cauchy-Schwarz Inequality)
2 1 2
N (8) < FoU7 v (v t)ay) “ax

and

(2.7)  -E(t) 2 [o' (0w, (0,6)M(t) + v¥(t)]
o'(o)v5§<>,t)
Y

=y [22(8) + ( ) alt))
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c'(O)wx(O,t)

= 'Y{)\(t) + ( 2y )]2
a'(o)w_(0,t) 5
-y (——F—)

Y

Therefore, dropping the nonnegative term on the right-hand side of (2.7)

we have

'2
(2.8 £ < = 0,0

or, for 0 <t <o ,

2
(2.9)  E(t) <E(Q) *+ 9—-,,—%91 "2 (0,7)ar

Yo x

2
E(t) - O_Eé(g)_Jpotwi(o’T)dT we see that E(t) <E(0) =

il

Defining Bt )
£(0) .  We state our result as

Lemma 1: Let w(x,t) be a regular solution of (E) , (2.1), (2.2), and
define

~ _ 1 pl ,px 2

B(t) =5 [ (g w(y,t)dy) ax

2
1ow(x,t) o “(0) ot .2
+ jojo o(p)dpdx - ——E%_l Io w (0, T)ar
Then, B(t) <E(0) forall t, 0<t<e

We now introduce the real-valued function JF(t) = F(w(.,t)) which is
defined, for 0 <t < @ , on regular solutions w(x,t) of (E) , (2.1),
(2.2) vy
(2.20)  3(t) = [o([X wly,t)ay)7ax + Bt + £ )°
where Bo >0 , to > 0 are arbitrary; we will obtain several lower bounds

on the derivative JF'(t) that will be used in the sequel to derive various

second order differential inequalities which are satisfied by F(t) when
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w(x,t) is a regular solution of (E), (2.1), (2.2). We begin by computing
directly

(2.11)  F(t) =2 [1 (% w(y,t)ay) (v, (v.t)ay)ax + 26(t + ¢ )

and

(2.12)  (8) =2 [T ([% v (v, 0)ay)°

+2IRFthmwG°“WAmwu+ee
=2 f'l(fx (y,t)dy) dx - 2v J'l (J5 wiy,£)ay) (5 v, (y,t)dy)dx
+2 5 (% w(y, ) [ (o(w(y, t)) [%)1ax + 28
=2 2 (% w (v, )y ax

+2 J (J5 wly>t)ay)o(w(x, ) ax

-2 0" (0)w (0,t) [t (JX w(y,t)ay)ax
-y (3 (t) -28(t +t))) +28

where we have used (2.11). Thus,

(2.13)  3(8) 2 - ' (8) + 2[5 (1% wy(y,t)ay) ax

v 2 [2 (% wly, t)ay)o(w(x,t))

- 2 o' (0w, (0,) [ ([Xwly,t)dy)ax + 28
On the other hand,

(2.24)  H(t) = -2y [ (% w(y, t)dy) (M (v, t)dy)ax
> - vfl X w(y0)an)® + (% v, (y,8)an)?) ax
> - v I3(8) - Bt + 871 = v [T ([ w(y,t)ay)Pax

Al X 2
> - v Fe) - vy (] v (v t)ay) ax

Using this estimate in (2.122) we have
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(2.15)  a(¢t)

v

1 x 2
-¥E(t) + (2-v)] ([ w (v, t)ay) ax
0 0

+

1l x
Efo(fow (v, t)dy)o(w(x,t)) ax

1l x
2o' (oW (0,t)[ (7 w(y,t)ay)ax + 2
0 O

We will now simplify the lower bounds (2.13), (2.15) for J'(t) by making
use of our hypotheses regarding o({),( eRl , our definition of a regular
solution, and the estimate given by Lemma 1; we begin with (2.15), integrat-
ing the third term on the right-hand side of the estimate by parts so as to

obtain

(2:16)  @(t) 2 - v F(t) + @-v) [T (% v (y,t)dy)7ax
-2 0" (0) w (0,t) [2 ([wly. t)ay)ax

-2 fi w(x,t)o(w(x,t))dx + 28
where we have again used the fact that o(w(l,t)) =0 ,0<t<® . By
adding and subtracting the term 2 fiz(w(x,t))dx in (2.16) we then obtain

' 1l 2

(2.27)  §'(8) > - v 3E) * (2-v) [, ([ (v, t)ay) ax

- 20 j'?; Z(w(x,t))dx

' 1 ,prx

- 2 a'(0)w,(0,8) [ (J§ w(y,t)ay)ax + 2p

+2 Ii(a L (w(x,t)) - wix,t)Z (w(x,t))dx
Now, as per our hypothesis relative to o({) , a¥v(¢) >CZ'(¢) , VC eRl ,
for some « > O ; choosing a in (2.17) sufficiently large(3)(i.e., restricting

1y 1t follows that we may

the growth of T(() so that |E(¢)| <cl¢i® ,Yeer
drop the last integral on the right-hand side of (2.17). Also, by the first

lemma,

(3) Sufficiently large means we will later have to restrict a so that

1 S¥<%

admissible nonlinearities o({)

Q where al 20 ,qa < . This further narrows the class of

2




(2.18) ecxfi Sw(x,t))dx = 2af(t) - a ji (j§ wt(y,t)dy)zdx

]
2
+ 225_191 It we (0, T)ar
Y o X

or
rl t /X 2
(2.19) 20" Z(w(x,t))dx > - 2aE(0) +a [ ([Tw, (y,t)dy)“ax
o - o Yot
]
2
ac “(0) pt 2
=LY, Io Wx(O’T)dT
and, therefore, (2.17) yields the lower bound

(2.20)  F'(t) > - v Ht) + (+a-v) [E (K w (v, 0)ay)® ax

2
t
- gg§qigl Io wi(O,T)dT

20' (0)w_(0,t) Ii (Iﬁ w(y,t)dy)ax

20 E (0) + 2B

v

-y ) + (2+a-v) [fi (fz wt(y,t)dy)gdx + 8]

'2
. oo ~(0) f; wi (0, T)dr

2y

20 (0)w, (0, t) Ii (I: w(y,t)dy)ax

-a[p +2 E0)]

where we have dropped a term B > O on the right-hand side of the last

estimate.

Now,

2 o' (0)w_(0,t) ji (j§ w(y,t)dy)ax

<2 0'2(0) wi(o,t) + % fi (f§ W(y,t)dy)zdx

<2 0'2(0) wi(o,t) + % (F(t) - B (t + to)g)
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so that

- 20'(0) wx(O,t) j‘; (_["c: w(y,t)dy)ax >

- 29 2(0)wi(0,t) - % 3(t)
Using this result in (2.202) we obtain
(2.22)  3'(8) 2= (v+3) 3(t) + @ +a - Iy i (v.t)ay)ax +p]

2 2 a et 2
- g “(0) [2wx(0,t) +§-\? Jo¥x

(0,7)ax)
-alg +2 E(0)]
However, as w(x,t) 1s assumed to be a regular solution of (E), (2.1), (2.2)

we have
1 2
(2:22)  3'(8) 2 - (v + D)3 (1) + (2+a-y) [[y ([ (v,6)ay) ax +p)
‘ 12 a
- o 2(0) 2l ‘0, )™ + ZIM(0, )]l 1]
-a [p + 2E(0)]
Setting,
= 2 |W? (o, - 1 :
"o = & W0+ 35 I 0y
we have, as our final estimate here
n 1 2
(2.23)  F'(t) > - (v + 1)3(t) + (2 +a- [ ([T w(y,t)ay) ax + 8]
- o [B + 1o 2(0) + 2E(0)] ’
and this completes the reduction of (2.15).
We now turn to (2.13) and work on this lower bound in an analogous
fashion, i.e., integrating the third term on the right-hand side of (2.13)

by parts we obtain

(2.28)  #'(t) > - v 3 (8) +2 [T (% v (y.0)ay)Pax
-2 fi w(x,t)o(w(x,t))dx

- 20" (03w, (0,8) [2 (% wly,t)ay)ax + 2p
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We again add and substract 2 fﬁ L(w(x,t))ax (on the right-hand side of
(2.24), employ our growth hypothesis relative to X({), (e R1 , and use
the first (energy) lemma so as to obtain the lower bound

(2.25)  F'(t) >v 3 (1) + (2 + &) [T (¥ w(v.t)ay)"ax + 8]

- a (B + 2E(0)]
|2'
- 9257191 : wi (o,T)dTr

- 20" (0)w (0,8) [3 ([5 wly.t)ay)ax
where we have added and substracted the term aBf>0 . Estimating the last
expression on the right-hand side of (2.25), as per the discussion preceding
(2.2),we obtain, in place of (2.23),

(2:26)  F(8) 2-v3' (%) - 3 3()
+ (2+a) [T (¥ v (v.t)an)%ax + )

-a (B +n, o 2(0) +28(0)]

We may, therefore, state

Lemma 2. If w(x,t) is a regular solution of (&), (2.1), (2.2) and@ o(() ,
Ce Rl , satisfies (2.3) then J(t) , as given by (2.10), with B >0, t, >0
arbitrary, has a second derivative F'(t) which possesses the lower bounds

given by (2.23) and (2.26).

We also have, directly form (2.25)

Lemma 3: If w(x,t) 1s a regular solution of (E), (2.1), (2.2) and o({) ,
¢ e R\, satisfies (2.3) then 3(t), as given by (2.10), with B >0, t >0

satisfies

A
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(2:27)  3'(8) >v (1) + (2 + ) ([T (¥ w (v, t)ay)%ax + p]

- a [p + 2E(0)]
whenever o'(0) =0
Now, suppose that we replace the boundary conditions {2.2) by
(2.2") %w¢)=0,wum)=0,t>0
In the proof of the energy lemma (lemma 1) we would then obtain, in place
of (2.65),

(2.6')  E(t) = - o' (w(0,8))w,(0,8) [T (I w, (v, t)ay)ax

i

Y Ii 5 wt(y.t)dy)edx

i

1 ,rx 2
- YJ‘O (J“O wt(y’t)dY) dx <0
provided we modify the definition of a regular solution to be such that

o' (w(0,t)) <+, t>0 . By (2.6'), E(t) <E(0) , 0<t<e® . Also,

" whenever the expression o'(w(0,t)) appears, it always appears in conjunction

with the boundary term wx(o,t) as c'(w(o,t))wk((xt) =0 by (2.2') and
the assumption that o'(w(0,t)) is finite for 0 <t <« . Repeating the
analysis that led to the estimate (2.25), and defining a regular solution of
(E), (2-1), (2.2') to be a solution w ¢ ¢-((0,1) x (0,®]) such that for
0<t<w

(2.28) o' (w(0,t)) = lm o' (w(y,t)) <+ =

we may state y-*O

Lemma 4. If w(x,t) is a regular solution of (E), (2.1), (2.2') and o({),
\{C eRl , satisfies (2.3), then 3J(t) , as given by (2.10), with p >0 ,

t, >0 satisfies (2.27).

Ll
l
]
|
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Remarks. The lower bounds represented by (2.23), (2.26) will lead to growth
estimates for smooth solutions w(x,t) of (E), (2.1), (2.2) which are
valid on the maximal interval of existence [0, tmax , tmax < + = ; the
lower bound represented by (2.27) will, on the other hand, yield the asser-
tion that,with appropriate assumptions concerning the initial data, regular
solutions of (E), (2.1), (2.2) can not exist whenever o'(0) = 0 and that
globally defined regular solutions of (E), (2.1), (2.2') can not exist (with
"regular’” interpreted in the appropriate sense for each of the respective
initial-boundary value problems). We have been unable to prove that a lower
bound like (2.27) is valid for regular solutions of (E), (2.1), (2.2) when

o’(0) # 0 although we conjecture that such a lower bound applies in this

situation also.
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3. Growth Estimates and Global Nonexistence Theorems

In this section we will indicate how the lower bounds on JF"(t) derived

in the last section lead to global nonexistence theorems and growth estimates
for the appropriately defined regular solutions of (E), (2.1), (2.2) and

(B), (2.1), (2.2'). Our results then carry over to solutions of the corres-
ponding initial-boundary value problems associated with the system (8): we
will also comment on the implications of our global nonexistence theorems
for initial-history boundary value problems that can be associated with the
nonlinear viscoelastic model defined by (1.13) when either o¢'(0) = 0 or
6'(€) <0 for |g| sufficiently large.

We begin with the case in which w(x,t) is assumed to be a regular
solution of (E), (2.1), (2.2) with o{{) satisfying o’'(0) =0 and (2.3),
Ce R1 ; in this situation (2.27) has been shown to be applicable where
F(t) is defined by (2.10), B >0, t, > 0 are arbitrary and

E(0) = 2 [T (% % (nay)Pax + [T 27, (x))ax
By (2.11)
(02 < b (2 (% ey, thay) (v (v, t)dy)ax + 8 (6 + ¢ )12

1 : 2
<8 1o (% wly.)ay)Pax 1 (% w (y,t)ay)%ax

+ 88 + t°)2
Therefore, by the Schwartz inequality
g3 - A28 5'% 5 Ly 33 - o 38 + 28(0))

+ (a+2){[f; (% wly,t)an)%ax + B(s + 1))
<[5 (% w (v, t)ay)°ax + p]
- (02 (% w(y,t)ay)ax 2% w, (v, t)day)Pax

+8%(t + to)g)}

M

— , -
et et
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>-yv3F ~aF( +280))

We now set y = géé and restrict our attention to those nonlinearities
a(C) , ¢ eRl , for which (2.3) holds with a >6 . (In those cases where
we may take B =0 in the analysis, repititon of the above argument
shows that

g3 - &2 52 5 53 - 2am0) 3,
applies with Eo(t) = fi (fﬁ w(y,t)dy)2dx ; in this case we set u = gﬁ-
and require that o({) , ;enl , satisfy (2.3) with « > 2). 1In either case
we have, therefore

2

(3-1) FF' - (WH)F S >v3F -aF (B +2E(0))

with 4 >0 . We now define the quantities
1 >4 2
3(g) = (5 & (v)ay)ax

Hen) =I5 (5 #9)ay) Uy My)ay)ax

and consider, first, the case in which the initial data satisfy

3.2) 4, W) >0
E(0) <0
In this case we may take B =0 in (3.1), p = gﬁg , and assume that o({)
satisfies (2.3) for some « >2 . Then (3.1) reduces to
" "2 )
(3-3) 33 - (wl) 3 >-v3F3 ,0<t<e

SO(t) = fi (fg w(y,t)dy)gdx , with w(x,t) a regular solution of (E), (2.1),
(2.2). However, (3.3) is equivalent to the differential inequality
(3-5) ("3, M))'1" <0 ,o0<t < i

Direct integration of (3.4) then yields the estimate
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-vt '(0) ;-1
(35)  3H(e) 230) 11 - (1o 0L

However, the expression in the brackets on the right-hand side of this esti-

mate will vanish at

t=tmELn[l-(§%)—£gfﬂl—-]'l/Y>o

Kwo, wl)
provided that J (?fo W) > (v/2p) s('Jo). It thus follows that regular

solutions of (E), (2.1), (2.2) can not exist, i.e. there can not exist a

solution w(x,t) of (E), (2.1), (2.2) which is such that
ow(y,t
we (l0,1] x [0,%]) , ;ifo ( %i——l) <He

with wi(o;-) e 1" {0,®) N Ll[O,w)

Example Take - o(() = 03C3 ; then ¢'(0) =0 and o(§) , CeRl , satisfies

(2.3) with a >4 if c3>0 . If o3

for 0 <a < 4 : the global nonexistence result above, however, only applies

< 0 then (2.3) is satisfied only

to those nonlinearities o({) for which (2.3) is satisfied, ‘lgeRl , for
some o >2 . Thus, with o(g) = 03C3 19 5 < 0 , the nonexistence theorem
(to be stated below) applies with (2.3) satisfied, \/CeRl , for any ae (2,4].

Note, moreover, that the hypothesis E(0) < 0 requires, in this case, that
lrwo(x)

2 ~ 2
o:foo o3 dpdax <- % [° (X F (y)ay)ax
i.e., that
2t (I (v)ay)ax
(3.6) oy <0 with |o3| > =2
- 1k
Iowo (x)ax

which implies that o(L) = 0353 is an admissible nonlinearity, relative to

the above nonexistence result only for 03 negative and sufficiently large
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in magnitude or for 03 negative and w(x,0) sufficiently large in the

sense implied by (3.6). 1In addition, the initial datum must satisfy

7 I (BT (S Hwawa > (D [2 (5 (v)ay)Pax

_a=2

where === . With o(C) = 03C3 ,0,<0, ae(2,4] so that

3
K max = % : it is sufficient that (3.7) be satisfied with L = pmpgye We

summarize our results for general case in the following.

Theorem I. Consider the initial-boundary value problem (E), (2.1), (2.2).

satisfy both (3.7), where u = gﬁg , and

~

If the initial-data G?o, Wy

(3.8) 2 [o®o(napax <- 21 (™ (v)ay)Pax

and the nonlinearity o({) satisfies o'(0) = 0 and the growth restriction
(2.3), for all QeRl , and some « > 2 , there can not exist a regular
solution of the initial-boundary value problem, i.e., there can not exist

a solution w(x,t)ec”([0,1) x [0,)) such that wi(o,-)eL“[o,w)n 10, =)

Now, suppose that E(0) < O but 9(%;, G&) <0 . 1In this case we

may first choose B =8

g = géé this time, reduces to

o such that B_ + 2E(0) =0 . Then (3.1), with
(3.9) 33 - (Wr1)FC>-VE , 0Kt <

provided o({) satisfies o'(0) = 0 and (2.3) for some a >6 . Inequality
(3.9) for 3F(t) is formally the same as (3.3) for 3o(t) and thus the
estimate (3.5) applies to J(t)¥ . 1In this case, (3.5), as applied to JH(t),
shows that J(t)" 1s bounded from below by a function which blows up as

t -t where
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~ 2
Iw,) + Bt

26oto - 2'}(';0,;’1)'

. . Y -1/y
t, = 4n 1-(;) />o

provided t_ > éL-IQ(G;,Gi)I also satisfies
o
~ 2
S(w) +B_t
%’L-) °._22 <1
QBoto - 2|9(wo,wl)|

A simple calculation shows that we should choose

(3200 £, < (B - (B2 - BiL; ECARTICIPCAAN

1/2

which, in turn, requires that

~ o~ ~ o~ (D
|96 %) | + () |90 | y1/2
B B2

o] o (o]

-}
(3.11) &>

Our results may be summarized as

Theorem II. Consider the initial-boundary value problem (E), (2.1), (2.2).
If the initial data satisfy

w (%)
(3.12) [ ° Te(o)dpax < -2 [T (5 W (yay)? ax

as well as (3.11) with p = géé , -
S A 2 1 1ol |
(3.13) By = - j’o (j’o wl(y)dy) dx + 5 U‘oj‘o o(g)dpdx| >0

where
G 2 Ema @y =9 F) <o,

and the nonlinearity o({) satisfies, VkeRl » (2.3) for some « >6 and

m

0'(0) = 0, there can not exist a regular solution of the initial-boundary

value problem.

Example Consider the problem (E) , (2.1), (2.2) with o() = akczk*l :

k > 0 not necessarily an integer, O <0, and Gi(y) =0, 0<y<1;

-
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Clearly o'(0) = 0 and (3.12), (3.14) are both satisfied. For B, We take
1% 1~ 2(k+1)

3-15) By = iy Jo (VX)) dx

and require of ?o(x)' that

~ 2 oyl
Ga6) [ (g Fmane s (5) iy Iy @0 Ve

so that (3.11) is satisfied. The last condition, i.e., that (2.3) be satisfied,

2(k+1); in

\/CeRl , for some a > 6 , reduces to the condition 6 <a
other words, (2.3) is satisfied, \Jteal , with a =6 +¢ ,e¢ >0 if

For the problem (E), (2.1), (2.2) with o(g) = o, <0,

T ST

s Gi(y)==0, 0<y<1, and ;;(y) » 0<y<1 satisfying (3.16),

where pu = €/8 > 0 , a regular solution can not exist.

Now, suppose that w(x,t) is a regular solution of (E), (2.1), (2.2')
with o(C) , CeR™ , satisfying (2.3) for some @ >0 . By lemma b, J(t) ,
as given by (2.10), again satisfies (2.27) and thus the estimate (3.1) holds
on [0,0) , with p = gﬁg (so that a > 2 is required) in those cases where
we may set B =0 , and with pu = géé (so that « > 6 is required) in
those cases where we apply the differential inequality with B #0 . 1In
particular, if conditions (3.2) hold, we may take B =0 , F(t) reduces to

EO(t) , and so(t) satisfies (3.3) on {0,») . 1Integration again produces

(3.5) and thus the fact that t., <t <= provided 9(%?0,{71) > (Y/eu)J(?O) .

We thus have the following corollary to Theorem I:

Corollary I. Consider the initial-boundary value problem (E), (2.1), (2.2').

If the initial data #,,¥, satisfy both (3.7) , with uw=%2 >0 , and

(3.8) and o(¢) satisfies (2.3) ,\/Cenl , and some @ >2 , there can not

FOREOP
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exist a regular solution of the initial-boundary value probelm, i.e., there
can not exist a solution w(x,t) € 02([0,1] x [0,=)) such that

o'(w(o,t)) <o, t>0

Remarks. We need not require in Corallary I that o'(0) =0 . However,
our results certainly do not contraiict the earlier work of Nishida [6] ,
et.al., on initial-value problems (on Rl) associated with the system §

For example, if o({) = 61€ + 0353 with 93 >0, o, >0 then (2.3) is

3
. y, 1 ) - \ _ 2

satisfied, V(eR™ , with a >4 . Also o'(¢) =0y +30,0° >0 ,

\/Cch so that S is a hyperbolic system; in this case the work of Nishida

[6] , et.al., implies the existence of a unique global smooth solution pro-

~

vided W _,w.,w W,
0’1 0,x’"1,x

olg + c3c3 » 9y >0, o3 >0 , however, (3.8) is never satisfied for any

are sufficiently small in magnitude. For o({) =

choice of the initial data, no matter how small the data are chosen and thus

the nonexistence result of Corollary I does not apply.

The case where o({) = a,C + 03C3 with o) >0 , oy < 0 is more
delicate. In this case, (2.3) is satisfied \lgeRl if 2<a< L . Also
0'(0) >0 , a'(C) = o= 3|°3l§2 > 0 provided |C] < (01/3|°3|)l/2‘ Recall
that in establishing the global existence and uniqueness result in [A] it is
only required that o'(0) > 0 ; this is because of the crucial observation
that if the initial data are chosen sufficiently small, the solution must
remain small (for as long as it exists) and thus, it is indeed possible to
choose the data so small initially that on the maximal interval of existence

of the solution w(x,t) , |w(x,t)| < (cl/3|o3|)l/2 . In this case, the
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fact that hyperbolicity of § breaks down for values of [ such that

lg] > (ol/3|°3|)l/2 has no effect on the fact that globally defined unique

smooth solutions exist. With o(() = o€+ 03C3 , 0, >0 , 0, <0, how-

3
ever, the condition (3.8) becomes

w o, ~b
an e, 2 - L3 oyax < 1 (1 & (nay)Pax :

In order to see what this condition implies, vis a vis, the existence theorem

of Nishida [6], et.al., consider the simple case in which ﬁi(y) £0,

0<y<1 . and (3.7) is satisfied. Then (3.17) certainly implies the

statement that
.se Nh

1 . ~ R
fo (o 9y - g (x) _ Ic l —%—(x))dx < 0 ; assuming that wo(-) is at least con-

1
tinuous on [0,1] this will be satisfied if(l)
1/2
(3.18) W(ﬂ|>0r7 +5 ,5>0

But if (3.18) is satisfied with & sufficiently large, i.e., if (3.8) is setisfied
with o(C) =0,C + 0363 » 8 >0 , 63 <0 , it no longer follows from the
results in [6] that |w(x, t)| remains below the bound (namely,(ol/3|°3|)l/2)
which would insure that o'(w(x,t)) >0, 0<x<1 , te[O,tmay). If
(3.18) is satisfied then, in general, o'(0) > 0 no longer guarantees that
c'(w) >0 for as long as smooth solutions exist. Hyperbolicity breaks

down and, as noted in Slemrod [ 9], [10), the global nonexistence and break-
down results proven there for data G;,Gi sufficiently small in magnitude,
with G;’x , Gi,x

a(g) = 0,6 + 0363 » 03 >0, ) < 0 and the data are chosen so that (3.7),

large, no longer apply. To summarize: if

(3.8) are satisfied then regular solutions of (E), (2.1), (2.2') can not

exist; this result compliments the results of Slemrod [ 9], [10] concerning

() For ¥ (x)| sufficiently large, therefore, 0 <x <1, (3.17) will be
satisfied for any data function wl( .} ; certainly, Iw (x)l: 0<x<1lwill
have to be at least as large as the lower bound (3.18).
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global nonexistence of smooth solutions for viscoelastic problems associated
with fluids of grade three (it applies to the situation in which the system
loses its hyperbolic character during the course of the flow) and does not
contraiict the global existence results implied by the work of Nishida (6],

et. al.

Concerning the initial-boundary value problem (E), (2.1), (2.2°) we

also have the following direct corollary of Theorem II:

Corollary II. For the initial-boundary value problem (E), (2.1), (2.2')

~

suppose that the initial data G;,wl

with p = g§§-> 0 and Bo given by (3.13), and the nonlinearity o({)

satisfy (3.12), (3.14) and (3.11),

satisfies,‘VC ch , (2.3) for some o > 6 ; then a regular solution of (E),

(2.1), (2.2') can not exist.

Remarks. The global nonexistence results contained in the statements of the
two theorems above, and the associated Corollaries, carry over in an obvious

way to equivalent initial-boundary value problems for (S) of the form

(0<x<1,t>0)
vy - c(w)x + Y =0

(3-19)
w(x,0) = G;(x) , v(x,0) = ?;(x) , 0<x<1

v(0,t) =0, vx(l,t) =0, t>0
In fact we have already seen that if w(x,t) is a solution of (E) , and we
define v(x,t) in terms of w(x,t) by (1.21) , then the pair (v,w) is a

. If we have initial conditions w(x,0) =w_(x) ,

solution of the system (S) o

-
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~ L ]
wt(x,o) = wl(x) associated with (E) then the corresponding initial conditions
associated with the equivalent system (S) are ﬁ;(x) and 3;(x) = zﬁi(y)dy
In the application involving Theorem I , the boundary conditions associated ;

with (E) have the form w(0,t) = w(1,t) = 0 and regularity involves the

assumption that wi(o,-) eLw(O,m)f\Ll[O,w) . In view of (1.21), the assoc- '*
iated equivalent boundary conditions on v(x,t) are v(0,t) =0 and
vx(l,t) =0 as o0'(0) = 0 in this case. In the application involving
Corollary I we do not require that o'(0) = O but we have wx(o,t) =0

and w(l,t) = 0 ; regularity involves the assumption that o'(w/0,t)) <o ,

\{t >0 . In this case the associated equivalent boundary conditions on

v(x,t) are again v(0,t) = vx(l,t) =0 . We leave to the read.r the simple

task of carrying over the conclusions of the above global nonexistence results

for initial-boundary value problems associated with (E) to equivalent initial-
boundary value problems of the form (3.19) which are associated with the

system (8) .

We now want to turn our attention to the derivation of growth estimates
for solutions of initial-boundary value problems associated with (E); these
estimates are valid on the maximal time interval [0, tmax) of a sufficiently

- smooth solution. While it is possible to derive a variety of such growth
) estimates from the estimates (2.23), (2.25) which were derived for regular
solutions of (E), (2.1), (2.2), and corresponding estimates which can be
derived for regular solutions of (E), (2.1), (2.2'), we will confine our

attention here to the initial-boundary value problem (E), (2.1), (2.2) and

the lower bound on J' that is given by (2.23). As we may have t . =T<=,




e ;

the corresponding growth estimate will apply to solutions w(x,t) of (E),

(2.1), (2.2) which satisfy w(x,t) ecz([O,l]x[O,T)) and

¥(0,+) ¢L70,7) N LHo0,T)

If we combine (2.23) with the estimate i
3 ()% <8 [T ((Ra(y,t)ay)%ax [T (% w (v, t)ay) ax
. +88(t +t)°

use the definition of 3F(t) , and then employ the Cauchy-Schwartz inequality,

we readily obtain the differential inequality

(3.20) 33 - {2V 52 5 ()P |

-a (B st'2(o) + 2E(0))

for 0<t <ty =T , where
=2 . L wl(o. -
(3-21) gy = 5 W0, Mo, my + 3 W50, )0 0y
If tmax = ® , and we are dealing with a regular solution of (E), (2.1),

(2.2), then n, in (3.20) must be replaced by x_ and (3.20) holds for

T

0<t<= . We first consider those cases in which

(3.22) nTo'Q(O) + 2E(0) <0

(r0'2(0) +2E(0) <O , if tgag=®) . If o'(0) = O then (3.22) re-

duces to the requirement that E(O) be nonpositive; otherwise we require
L
that the initial energy satisfy E(0) < - % ny O 2(

then we may take B =0 in (3.20) and reduce the differential inequality to

0) . If (3.22) holds

(3.23) 33 - @Y 525 (), 0<t <ty

We now set u = (¢ -y-2)/4 and require that (2.3) hold, VCeRl , for some

)




R

a>Yy+2; then >0 and (3.23) becomes

(3.24)  F I - (u+1)3;2 > (v +1)3§ , 0<t < tmax

We note that differential inequalities of the form (3.24) have appeared
previously in the literature (e.g. [16], $II) . Following the analysis in
[16] we set &(t) = Go-p‘(t) and note that 4'(0) = - “30'(LL+1) (o)sé(o) <0
if 3(’)(0) >0 , i.e., if g(v'i’o,v'}'l) >0 ; wnder these circumstances, we have
2'(t) <0 on some interval [0,7) . By (3.24) then &'(t) < p(v+1)&(t) and
thus, for te([0,T] we may multiply on both sides by 4'(t) and integrate

so as to obtain
(3.25)  #(8)% - #(0)° > p(v) (Kt) - H0))
Clearlyl the estimate (3.25) may br rewritten in the form
(3.26) (&' (t) +/ulvD) Ht)) (& (t) -/uly1) &)
> (& (0) +/u(y 1) H0)) (#(0) -/u(yH1) X0))
If 4'(0) < -/u(++1) #(0) , then by the assumed smoothness of w(x,t) ,

for €<t < tpgy» it follows that neither factor on the left-hand side of

(3.26) can change sign on (0, tpayl .- Therefore, for 0 <t < tpay »

&' (t) < ~/ulNy*1) &(t) , which implies that 4(t) exp (Vulyt) < 40) ,

or

/L
3 (t) > 3 (0) exp m t) , 0<t < tpay

Now, the condition that 4'(0) < -./u(y+l) £0) 1is equivalent to the requirement

that

PO
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where O > v+2 . We may, therefore, state the following

Theorem ITI. Let w(x,t) e 02([0,11 x [0,T)) be any solution of (E), (2.1),

(2.2), T <« , for which u, < ®» and assume that the nonlinearity o(¢)

T
satisfies (2.3) , ‘ngRl , for some o > y#2 . Then, if the initial data
LA Y satisfy

(1) E(©) < - 3 ny 0" (0)°

(1) KT%) > (Fok )2 5@)

it follows that

1 PX 2 ~ Y+l
(3.27) j‘o ([ wly,t)ay)ax > 8(W)) exp (2 v t) ,0<t<T

Remarks. If condition (ii) of the theorem is not satisfied, i.e., if

' 1 /yn v
3,0) <5/ &= 3 (0) with u=(a-v-2)/4 and

nTa'Q(o) + 2E(0) < 0

then we would work instead with the differential inequality (3.20). We
would first choose B = B, such that Bo + nTo'Q(O) + 2E(0) = 0 and then

choose to so large that

3 %

l) +Bot >x ﬁ%l J(v“r‘o)

o -2

= Q:g:é and o({) is required to

where, in view of (3.20) we now have
satisfy (2.3),\’CeRl , and some o > v+ ; an increasing exponential lower
bound for J(w(x,t)) of the form (3.27) again follows. If &'{0) = 0 the
condition (ii) of the Theorem reduces to the requirement that (3.12) be

satisfied. Finally, a series of simple estimates, employing only the

N,




Schwartz inequality, readily establishes that (3.27) implies an exponentially

increasing lower bound for Hw(~,t)H2 2( on [0, tpayl
L )

bl

Many of the results of this section may be applied to initial-boundary
value problems associated with the model of nonlinear fluid viscoelastic
response considered in [9], [10]. While our results to not apply directly
to the problem of shearing perturbations from a steady rectilinear flow with
associated no-slip boundary conditions, they do apply to the following sit-
uation: the evolution equation in the Slemrod model in [9], {10] is given by i

(1.13)) i.e.,

(1.13)  p¥ (x,t) =0 (f:e-Ys')fx(x,t-s)ds)x :

and there is a prescribed, associated smooth velocity history given by

(1.15¢), i.e.,

(1.15¢) U(x,7) = 'lfo(x,'r) , =®<T1T<0

Suppose we associate with (1.13) the homogeneous boundary conditions
(3.28) 7 (o,t) =0, 7 (L,t) =0, t >0

and, following the analysis in {9], [10] define

. f

(3.20a) v(x,t) = I:e-ysvt(x,t-s)ds » O

IN
]

<1,t>0

A
]
A

(3.29%) w(x,t) = I:e'YSW;(x,t-s)ds ,0<x<1,t>0

-

It then follows that (v,w) satisfy (S) and, thus, w(x,t) , as given by

(3.290) , satisfies (E) . Also, in view of (3.28), we have w(0,t) = w(l,t)=0 ,

and by (1.15¢), (3.29b) we have |

"*I\~)~<- — A .
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2
(3:30) (0 = [V & U (xs)as , W (x) = [0 " 2o 7 (x,5)a8

By Theorem I , therefore if the nonlinearity a(() in (1.13) satisfies
¢'(0) = 0 and the growth restriction (2.3),»& eRl , and some Q >2 , and
the initial velocity history W;(x,w) , ==<1<0 , satisfies the conditions

implied by (3.7), (3.8), where ﬁ;, w, are given by (3.30), it follows

1
that there can not exist a solution %x,t) of the initial-history boundary
value problem (1.13), (1.15c), (3.28) which is such that w(x,t) , as de-
fined by (3.29%) is regular, i.e., satisfies w(x,t)eCz([O,l] x [0,®))

2
and w;(0,°)eLm(O,w)ﬂLl[O,°). However, by the simple relations

W% = o(w)x
= Ve T YW

which are a direct consequence of (3.29a,b) it then follows that there can
not exist & solution % x,t) of the initial-history boundary value problem
(1.13), (1.15¢), (3.28) which satisfies ¥(x,t) ¢ C-((0,1] x [0,®)) with
Wix (O,')e.Lm[O,w) . In one sense this result extends the work of Slemrod
[9], [10] to the situation where o(() satisfies o'(0) =0 , a situation
that can not possibly be handeled by the Riemann invariant argument approach
in (9], [10]. On the other hand the result is weaker than the type of results
contained in {9], {10] in as much as the Riemann invariant argument employed
there (for o'(0) >0) yields global nonexistence of a solution in

Cl([O,l] x [0,#)) and shows that such global nonexistence occurs as & re-
sults of finite - time blow up of the space-time gradient (1;, %%) of
solutions. We leave for the reader the simple task of carrying over the

other global nonexistence results and growth estimates obtained in this
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section, for initial-boundary value problems associated with (E), to the
corresponding initial-history boundary value problems governing nonlinear
viscoelastic response; the results of Corollary II, in particular, may be
carried over with (3.28) replaced by the homogeneous boundary data

v =7 =
xx(o,'c) x(1,t) 0, t>0
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NOTE: This work was preformed while the author was visiting the School of

Mathematics at the University of Minnesota.
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