AD-A095 864  DEFENCE RESEARCH ESTABLISHMENT VALCARTIER (QUEBEC) 5/8
SEGMENTATION ALGORITHMS FOR DETECTION OF TARGETS IN IR IMAGERY ==ETC(U)
JAN 81 L SEVIGNY

UNCLASSIFIED DREV=-R-4180/81

4
I - ......




LINCLASSTH

TG VT LT TR U il

HivEL®
DHEY FERCH T 4180 o1
FILE: 365320007
JANUARY 1981

ULV RAATORY S18Urs
DUSSIER: 3€320 007
JANVIER 1981

AA095864

SEGMENTATION ALGORITHMS FOR

DETECTTION OF TARGETS IN IR IMAGERY

b Sesion

41

St
O

Eaia

" AT
‘L

‘T
>¢
Q.
-
<O Centre de Recherches pour la Défense
L_Jj Defence Research Establishment
L Valcartier, Québec
P
BUREAU RECHERCHE ET DEVELOPPEMENT RESEARCH AND DEVELOPMENT BRANCH
MINISTERE DE LA DEFENSE NATIONALE DEPARTMENT OF NATIONAL DEFENCE
CANADA CANADA
NON CLASSIFHE
DIFFUSION THLIRICE <
“7‘_.. 4

e ey e —————




% // e

CRDV R-4180/81 UNCLASSIFIED \-@EV’R—Also /81 :
DOSSIER: 3632D-007 FILE: 3632D-007

<)

SEGMENTATION ALGORITHMS FOR
[ DETECTION OF TARGETS IN IR IMAGERY

| = T -— .

(Algorithmes de Segmentation pour 1a
Detection de Cibles sur
IR) T

war

Images
_i:;;-

Accession For j
NTIS GRA&I )(
DTIC TAB (]
Unannounced O

Justification .. ___ |

By
| Distributiory )
3 Availability Coaes
3 ".Ava11 and/or | CENTRE DE RECHERCHES POUR LA DEFENSE
S
Dist i bz cfal DEFENCE RESEARCH ESTABLISHMENT
ﬁ ‘:‘ ) ' VALCARTIER

Tel. (418) 844-4271

Juebec,Canada

JON CLASSIFIE

A7 e




UNCLASSIFIED
1

RESUME

Ce ragport présente une classe d'algorithmes de segmentation
(segmenteurs) spécialisés dans la détection de cibles sur tmages IR et
fondés uniquement sur le principe voulant que la signature thermique
d'une cible dépasse en tmportance celle de tout objet de 1l'arriére-plan.
Ces algorithmes sont le résultat d'efforts visant & améliorer un premier
segmenteur, appelé générateur de silhouettes, 1maginé en fonction
d' images IR du type BOrORS. Le segmenteur en guestion découpe 1'image
en deux oparties d'aprés un seuirl d'intens:té unique. Sa fiche
d'extraction est généralement excellente lorsque 1'arridre-plan est
globalement plat. Lorsque cette condition n'est pas remplie, on peut
parfols se tirer d'affaire en utilisant une fonction seuil au lieu d'un
seuil fixe. Le générateur de si1lhouettes et ses diverses variantes
tentent de venir a bout de 1'arriere-plan simplement en morcelant
1! image. Une  solution plus prometteuse consiste & redresser
1'arriére-plan de fagon & réduire son emprise sur 1'image. C'est
précisément ce que la Technique de Redressement de 1'Arriere-Plan (TRAP)
fait. Etant donné que TRAP s'applique aux lignes aussi bien qu'aux
colonnes d'une image, il en résulte 2 1mages distinctes: structure fine
harizontale et structure fine verticale. Ces 1mages receélent maintes
possib1lités quant & la détection de cibles, lesquelles sont en grande
partie explicitées dans le rapport. (NC)

ABSTRACT

‘This report presents a class of segmentation algorithms
(segmenters) for detection of targets in IR imagery based on the single
assumption that the targets possess a larger thermal signature than the
packground. This class of algorithms emerged as a result of efforts to
improve an early segmenter devised to extract targets from IR BOFORS
imagery. This segmenter proceeds according to a Single Intensity
Threshold whence the name SIT Generator to designate it. The extraction
record of the SIT Generator is generally excellent whenever the
bdackground, on a large-scale basis, is relatively uniform. When this
condition is not met, one can use a thresholding intensity function in
lieu of a fixed threshold. The SIT Generator and its variants try to
cope with the background simply by partitioning the image. A more
promising avenue consists in levelling the background so as to curb its
ascendancy over the image. This is in essence what the Background
Elimination Technigue (BET) expounded herein does. Since BET can be
applied either to the set of lines or columns of an image, it generates
2 1images referred to as the Horizontal Fine Structure image and the
Vertical Fine Structure image respectively. These images offer many
vossibilities for detection of targets and several of them are
explicitly described in the report. (U)
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1.0 INTRODUCTION

This report presents a class of segmentation aljorithms
(segmenters) for detection of targets in IR imagery, based on the single
assumption, made explicit in Sect. 4, that the targets possess a larger
tnermal sijnature than the background. This class of algorithms emerged
as a result of efforts to improve an early segmenter devised to detect
targets in IR BOFORS imagery as part of an Automatic IR Target
Acquisition System (AIRTA3). That particular segmentation algorithm was
referred to in previous reports as a silhouette generator. It is a
fairly simple algorithm and hence should be easy to implement in real
time. Briefly, its defining procedure is: a) partition the image of
interest 1into a certain number of subimages; b) determine the histogram
of each subimage; c) estimate the upper gray level of the background and
d) threshold the image accordingly. The silhouette generator, then,
segments the image according to a single intensity threshold whence the
more appropriate name of Single Intensity Threshold Silhouette

Generator, or simply SIT Generator, to designate it.

The extraction record of the SIT Generator is generally excellent
whenever the background, on a large-scale basis, is relatively uniform.
This was indeed the case with the BOFORS imagery, but we should not
expect that condition to prevail when images more akin to real-life
situations, like those that make up the Alabama Data Base, are
considered. In such circumstances the image must be divided into
regions of uniform background and the SIT Generator applied to each of
them as we would do for distinct images. This procedure amounts to

defining several intensity thresholds in relation to the image being




considered. Jdore generally, one can in this way build a thresnoldimg
intensity function, that 1is, a function that assiyns a soecific
threshold to each line of an image. These concepts are examined in

Sect. 5 in the wake of a detailed description of the SIT Generator.

The SIT Generator and 1its variants try to cope with the
background simply by partitioning the image. This approach is opound to
succeed provided the regions are properly outlined which almost
inevitably calls for an adaptive vartitioning scheme. It is not easy,
however, to devise such a scheme. One possible avenue that we have
explored consists in coarsely estimat. - the position of the targets in
order to restrict the search to a smaller area than the image itself.
To this end, we performed a gross line-by-line ana'ysis of the image so
as to pinpoint tne lines carrying a target, based on the values of the
following set of parameters (most such statistical quantities are
defined in Sect. 3): mean value, median, standard deviation relative to
the mean value, standard deviation relative to the median, mean value
minus the median, ratio of the standard deviation relative to the mean
value over the mean value itself and, finally, a coefficient of
bimodality. The results obtained and given in Sect. 6, show that it
should indeed be possible to effect an algorithm which will give hints
as to where the targets are, thus enabling one to define a target area.
However, such an algorithm will be lacking in generality since it
implicitly assumes that the background 1is relatively uniform on a
line~-by-line basis. In other words, the algorithm will be

orientation-dependent which certainly constitutes a major drawback in

many oractical situations.
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The results obtained from the imagery considered through a gross
line-by-line analysis prompted us to find a means of rendering the
procedure orientation-independent. The problem here stems from the
nonuniformity of the background and hence the solution is obviously to
curb the ascendancy of the background over the image by levelling it in
some way. This is in essence what the Background Elimination Technique
(BET) expounded in Sect. 7.1 does. This technique operates on a
one-dimensional signal (any given line or column of an image) and uses a
narrow kandwidth low-pass filter to assess the general tendency of the
background in order to subtract it from the signal itself. Because of
its real time implementation potential, we opted for a recursive filter
and, more explicitly, for a 4-pole Butterworth filter (Sect. 2 gathers
background material related to such filters). Since BET can be applied
either to the set of lines or columns of an image, it generates 2 images
referred to as the Horizontal Fine Structure (HFS) image and the
Vertical Fine Structure (VFS) image respectively. The background of
these fine structure images can be considered uniform, on a large-scale
basis, although it is highly textured. It is shown in Sect. 7 that one
can define from HFS (extent in the y-direction) and VFS (extent in the
x-direction) a relatively small-sized target area, and in many instances
even pinpoint individual targets, simply by statistical considerations
(as was the case of the aforementioned gross line-by-line analysis).
This is very interesting since it means we can designate targets without

segmenting the image.

BET and the resulting fine structure images offer many
possibilities, let alone those we already apprehend. For instance, one

can exploit the uniformity of these images to segment them individually
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or in some combined form, with the aid of, say, a segmenter like the SIT
Generator, wnhich incidentally should be well suited for this task by its

very nature. This aspect is emphasized in Sect. 8.

This work was performed at DREV between November 1978 and April
1979 under PCN 32D07 Automatic Target Acquisition.
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FISURE 1 - Amplitude-vs.-normalized frequency characteristic of 4-pole
low-pass digital Butterworth filters for several values of
fc/fS(O.Ol, 0.025, 0.05, 0.075,0.1)
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2.0 RECURSIVE LOW-PA3S DIGITAL SUTTERWORTH FILTER

A Butterworth filter approximates a rectangular vassband via a
monotonic amplitude-vs.-frequency characteristic (Fig. 1). The
transition region of such a filter, although gradual, is more or less
sharp depending on the number of poles of its transfer function - the
greater the number of poles the narrower the transition band is. In
this section we give without proof a certain number of results
pertaining to a particular digital Butterworth filter, namely a 4-pole
filter, that has been used to estimate the background of IR images.

Most of this material is drawn from Refs., 1 and 2.

2.1 Z-Transfer Function

The Z-transfer function of a one-dimensional 4-pole low-pass

Butterworth filter is given by (Ref. 1):

2
HEZ) = z _ (1]

with o o (2]
exp[- 2nfC (cos 67.5 - jsin 67.5 )/fs] ,

™~
]

N
n

exp[- 2nf_ (cos 22.5° - jsin 22.s°)/fS] , (3]

where fc is the 3-dB cutoff frequency of the filter and fS the sampling
frequency of the signal. The asterisk denotes the complex conjugate.
when the denominator in (1] is multiplied out and the terms rearranged

we obtain:




UNCLASGIFICD
6
S T -2
Hez 7)) = boz. X - X - 3o
(1« bZ7" +b,2 (1% hyZ™" + b,Z (4]
with _ - L x ., *
R GO U N A e B N
(5]
* *
by = - (2, +2,) » by=2ZZ,
and where b0 is a coefficient to adjust the gain at w=0 to unity:
‘ b, + b )(1+ b, +b,)
= s = + + .
bg * sjo = (L * by by 37 % (6]

IH(Z) | Z=ce

Figure 1 shows plots of IH(Z_l)I ver sus f/fs for several values of

fc/fs.

2.2 Difference Equations

A 2-transfer function is implemented or realized via an mth~order

difference equation defining what is called an mth-order digital network

(Ref. 2) consisting of delays, multipliers, and summations. A direct

realization of a transfer function requires the smallest amount of

computation. However, in most instances it proves desirable {(Ref. 2) to
realize a given network by means of either cascade or parallel
combinations of second-order systems because the latter realizations are
less sensitive to the adverse effects associated with finite register
length. Hence [4] can be written

-2

Hiz'ly - by 2t meh (7)
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that 1s, as a cascade of two second-order systems. The resulting set of

linear difference equations (Fig. 2) is:

fl(nT) = x[{n-2)T] ,
fz(nT) = fl(nT) - b1 f2[(n-1)T] - b, fz[(n-Z)T] ,

. 8
fs(nT) = fz(nT) - b3 fs[(n—l)T] - b4 fS[(n—Z)T] , (8]

y(nT) = by £(aT)

To proceed with this set of equations it is necessary to define the

initial conditions of x, f. and f,.

2 3 These are usually set to zero.

2.3 Delay Time

It can be shown (Ref. 2) that the phase characteristic of the

Z-transfer function given in [1] is:

. . T
1 b1 sin T + b2 sin 2w

1 + bl cos wl + b2 cos 2uT
L .

¢ = - 24T + tan

1 b3 sin T + b4 sin 2wT

1 + b3 cos wT + b4 cos ZMTJ

[9]

+ tan

fFor small values of T, we have

1

sin wT = wT, cos wl =1 and tan ~ a=a .

Substituting these into [9] vields

[10)




x (nT)

{INCLASSIFIED
2
b
- - _ 0
772 H (2 L B,z v (nT)
£ £, f5
FIGURE 2 - Cascade realization of a 4-pole low-pass digital Butterworth
filter; T is the sampling interval.
FPBF FILTER

40T
D T
E 4
L

3071
A
Y -

o0+
T
I T
" 1

107
t

0 4 —+ ¥ 1
0 2

NORMALIZED FREQUENCY

FIGURE 3 - Plot of the delay time of a 4-pole low-pass digital
Butterworth filter vs. fc/fs
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This equation represents a linear phase characteristic meaning that the
output signal is shifted right a number of sampling intervals
approximately equal to the quantity (delay time) enclosed in square
brackets. The value of the delay time versus the normalized cutoff

frequency is plotted in rFig. 3.

2.4 Equivalent FIR Filter

It 1is well known that the transfer function of a rectangular FIR
filter is a sin x/x function. More precisely (Ref. 3)
sin L f/f
H(f) = ————= [11]
mL f/fs
where L is the number of sampling intervals spanned by the filter
impulse response. By definition, the 3-dB cutoff frequency is obtained
by solving '

sin wL f /f 1
¢’ s

wL fc/fs " 2

from which we readily get

fc/fS = 0.44/L . (12)

As a rule of thumb, we can use 1/2 L as the normalized cutoff frequencv

of any FIR filter of size L.
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3.0 ON THE ESTIMATION OF SOME STATISTICAL PARAMETERS

This section gives a certain number of formulas used for
estimating various statistical parameters referred to in subsequent
sections. In fact, this section is nothing but a precis of statistical
signal analysis as it relates to the subject of this report. For a more
comprehensive treatment, the reader is directed to the references cited

below.

3.1 Mean and Variance

Let {xn}; n=l, 2, ..., N be the data values of a single time
(space) history record x(t). It is often desirable to think of physical
data in terms of a combination of a static or time-invariant component
and a dynamic or fluctuating component. The first component may be
described by a mean value which is simply the average of all values
(Ref. 4):

§=§ E x [13]

This quantity (unless otherwise stated, all summations are for n=1 to N)
is an unbiased estimate of the true mean value. The dynamic component

may be described by a variance which is simply the mean square value

about the mean:
2_2_}_2: =2
"= x7 =g (xn-x) . [14]
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I'ne positive square root of the variance 1is called the standard

2 calculated here are

deviation and denoted s. The quantities s and s
biased estimates of the true standard deviation and variance

respectively. However, the bias is negligible for large values of N.
3.2 Skewness

The mean value and the variance are only the first two moments of
a probability density function. The third and fourth moments also prove
to be useful for describing physical data. The third moment or skewness
measures the lack of symmetry in a density function and is defined in

the following way (Ref. 5):

5 = Z x -0 Nt [15)

To grasp the physical meaning of the skewness it is better to write it

as indicated below

_ :: : - 3
S = E lxn - X|3 - Ixn - xl3 Ns . [16]

wnere the vertical pars denote the absolute value. From [16] we see
that in the case of a positively skewed signal the fluctuations that

matter occur above the mean value, and conversely for a signal

exhibiting a negative skewness.
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3.3 Kurtosis

The formula used for the computation of the fourth moment,

variously called kurtosis, excess or peakedness, is

K= E (x - 0t Nst -3 (17)

which includes a corrective factor of -3, the use of which in computing
kurtosis has the effect of making both skewness and kurtosis equal to
zero for a normal density function. This fact being established,
leptokurtic and platykurtic density functions are defined in terms of
deviations from the normal density function. Thus, the wusual
definitions (Ref. 6) are:
Leptokurtic - A density function that is peaked,

K>0, 18]
and
Platykurtic - A density function that is flat,

K<O0. (19]

The exact meaning of the kurtosis statistic is not clear to
statisticians (Refs. 6-9), let alone to laymen in this field. It seems
that it has long peen accepted that a symmetrical platykurtic density
function, with K<(0, is characterized by a flatter top and more abrupt
terminals than the normal curve and that a symmetrical leptokurtic
density function, with K>0, has a sharper peak at the mean and more
extended tails. However, Chissom (Ref. 6) cautions that it is difficult
to determine the shape of a density function from the kurtosis value

alone, since almost any density function may have a negative kurtosis

et
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value. Nonetheless, he recognizes that to have a positive kurtcsis
value the distribution of measures must contain a 3jood number of cases
in the tails, i.e. a tailing off effect must bpe present. Darlington
(Ref. 7), for one, reveals another amazing aspect of kurtosis. He
wonders if kurtosis is really peakedness, and concludes that a better
term for describing it is "bimodality", where the lower the kurtosis,
the greater the bimodality. Clearly, the most bimodal of all possible
density functions 1is a symmetric 2-point density, while the least
bimodal (or most unimodal) density function is concentrated entirely at
one point. It can be shown (Ref.7) that these density functicns have
respectively lowest and highest kurtosis because in a symmetric 3-point

density in which p is the density at the mean,

K=1/(1 -p) -3 . [20]

As p approaches 1 (i.e. as the density approaches being concentrated
entirely at its mean), K approaches infinity. On the other hand, when
p=0 (i.e. when the density is a 2-point, rather than a 3-point, density)
K achieves its lowest possible value of -2. But to confuse the issue,
Hildebrand (Ref. 8) exhibits a family of density functions that are

solidly bimodal, but have kurtosis coefficients ranging from -2 to +3.

In spite of all the trickiness associated with the kurtosis
statistic, the inequality X2c, where ¢ is an appropriate constant, has
been used in practice as a test of a normal density against densities
with heavier tails or, more generally, for testing light-tailed

densities against heavy-tailed ones. Other statistics (Refs. 9-10) used
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for the same purpose are:
52
U = 3
E {x - ml/N [21)
n
Vv = /2 ,
E Ix_ - m|/N (22]
n
_Z/2
== (23]
S
Ix. - X|/N

where m and 7 are respectively the median and the range (high extreme
minus low extreme) of the set of data. According to Hogg (Ref. 9), W
should be used only when trying to detect if a density function is
light-tailed or not. For the normal density function, the value of the
ratio defined by [24] 15‘4;;%=0.7979; this ratio will be higher for
platykurtic and lower for leptokurtic density function. The same is

true in reverse for the U statistic.

3.4 Autocorrelation Function

The autocorrelation function at the displacement r is defined

(Ref. 4) by the formula

A 1 E - -
Rr =/F'{\x(r) = (xn - X) (xrl P x) [25]
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where r is the lag number, and’ﬁ; is the estimate of the true value Rr
at lag r. The autocorrelation function may take on negative as well as
positive values. A normalized value for the autocorrelation function is

obtained by dividing'ﬁ} by'ﬁb where

AN _123 -2 2
Ry = R (0) = § (x, - X)) =s . (26]
when 'ﬁ; is normalized, one obtains the Jquantity 'ﬁ} / ‘ﬁb which
theoretically will be between plus and minus one, that is,
s ~
- 27
1 <R /Ry<1 . [27]

The importance of the autocorrelation function for describing
physical data stems from the fact that a sharply peaked autocorrelogram
which diminished rapidly to zero, is typical of wide~band random data.
For the limiting case of hypothetical white noise (random data with
energy distributed uniformly over all frequencies), the autocorrelogram

is a Dirac delta function at zero displacement.
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4.0 IR IMAGE MODELLING

The algorithms developed in this report, for detecting targets in
IR imagery, are based on the simple assumption that the targets appear
as hot regions within a cooler slowly varying surround. By slowly
varying surround we mean that in the absence of any targets the main
fluctuations, i.e. large-amplitude fluctuations, are concentrated at the
lower end of the spatial frequency spectrum. Superimposed on this
continuous background, which accounts for gradations of gray level
across the image, there might be (Fig. 4) sharp lines due to relatively

small-size targets.

LINE 175, IMAGE ALA 6 3

0 335
FIGURE 4 - Line 175 of image 6 (jray level or brijhtness vs. column
nunber) from the Alabama Data Base. The 3 peaks correspond
respectively to a tank, an APC and a jeep. Such a siqnal can

be interpreted as a set of sharp lines superimposed on an
otherwise slowly varyinj background.

o
-~
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5.0 SILHOUETTE GENERATOR

We will first describe an algorithm that has already been used to
detect targets (Refs. 11-13) in IR BOFORS imagery. This algorithm is
part of a computer simulated Automatic IR Tarjet Acguisition System
(AIRTAS) and was previously referred to as a silhouette generator. This
potential device starts from vartial histograms and attempts to estimate
the gray level corresponding to the maximum temperature prevailing in
the background. The thermoscopic image (Fig. 5Al) that illustrates the
working of the silhouette generator measures 420 x 335 pixels. It 1is
extracted from the Alabama Data Base where it is labeled ALA 6 3 (the
last digit specifies the spectral region: 3-5 uym band or 8-14 um band).
Figure 5A2 is an histogram equalized version of this image showing more

clearly details of the scene depicted.

5.1 Single Intensity Threshold (SIT)

The defining procedure of the original version of the silhouette

generator is:

1) Divide the image into a certain number of subimages.

The way a given image must be split should really be
determined by experiment. Because of its size (96 x 256
pixels), a BOFORS image was solely divided along the
horizontal axis. With a thermoscopic image, on the other
hand, we get best results when we divide both the

horizontal and vertical axes (Fig. 5A3) into the same

Lagia




2)

3)

4)
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number of regions, namely 4. wWe 7Jjenerally tend to make tne
subimages about square although this 1is not absolutely
needed. However, as a rule, at least one subimage should
be representative of the background, 1i.e., should not
contain any targets, Moreover, it should be large enoujh
to provide a good estimate of the gray level corresponding

to the highest temperature of the background.

Determine the histogram of each subimage.

This 1is the main mathematical operation performed by the
silhouette generator and since it is a one-pixel-at-a-time
process it can be easily implemented, “on the fly", by real

time hardware.

Determine the cutoff gray level of each partial histogram.

The histogram being scanned from the highest bin down, the
cutoff gray level (upper gray level of the background) is
defined as the gray level of the first bin occupied by at
least 3 pixels. One can imagine many variants to this
scheme and it might be worthwhile to investigate this point

further.

Choose the smallest cutoff gray level as an intensity

threshold for the whole image.
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In doing this one should exert some caution because it

might well happen that the smallest cutoff gray level will

be zero or something very small. To obviate such nonsenses
we restrict the choice to those cutoff gray levels greater
than the 80th percentile of the whole image. This amounts
to assuming that less than 20% of the surface of the image

is occupied by targets.

The thermoscopic image of Fig. 5A embraces 3 targets in a row near the
center of the image. From left to right, these correspond to a tank, an
APC, and a jeep respectively. The result obtained by applying the
silhouette generator to this unprocessed raw image is shown in Fig. 5Cl
{the pixels whose gray levels are greater than the threshold are
saturated while those whose gray levels are less than or equal to the
threshold are zeroed). This example demonstrates that under certain
circumstances the miss rate of the silhouette generator is unacceptably

high, and that the shape of the detected targets might be altered. On

the positive side, the segmented image is clean and consists of solid
blobs that are relatively easy to interpret - a blob stretching from one

side of the image to the other is certainly not a potential target.

5.2 Thresholding Intensity Functions

The algorithm just described is best suited to detect the
brightest targets. It will inevitably miss faint targets because many
background pixels have gray levels in the same range as the targets
themselves. In consequence, the 80th percentile is driven much too far

in the light portion of the gray scale. Using a lower percentile will
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FIGURE 5 - Silhouette generator

A)

B)
C)
1)
2)
3)

Image ALA 6 3 (l: raw; 2: histogram equalized;
subimages delineated) ;

Thresholding intensity functions;

Segmented images;

Single intensity threshold;

Staircase intensity threshold;

Interpolated staircase intensity threshold.
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not generally help because we might end up with targets embodied in a
very large blob., The probability of detection of the silhouette
generator can, however, be improved if we treat the image as (for the
case of Fig. 5Al) 4 vertically shifted images of size 105 x 335 pixels
and apply the algorithm to each of them indevendently. 1In this way, a
new threshold (Fig. 5B2) is derived for each horizontal slice and the
final result (Fig. 5C2) is a segmented image where the 3 targets stand
out clearly, and where their shape 1s better preserved. However,
artifacts may appear if the thresholds of 2 adjacent slices differ
widely, as is obvious in Fig. 5C2. A manifest remedy is to smooth the
transition between 2 slices by, say, linearly interpolating the relevant
thresholds. What results is a thresholding intensity function (Fig.
5B3), that is, a function attributing a specific intensity threshold to
each line of the image. The segmented image (Fig. 5C3) generated by
this continuous function is quite similar to the one obtained with a
staircase function except that there are no artifacts. The only
noticeable flaw seems to be a slight alteration of the shape of the
targets. The concept of a thresholding function can be easily extended.
However, as far as the silhouette generator is concerned, the crux

remains the manner in which the subimages or the slices are defined.
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6.0 GROSS STRUCTURE ANALYSIS (GSA)

In the previous section, we have shown that the silhouette
generator works fairly well provided the background is relatively
uniform. For those situations where this is true, we can rely entirely
on the Sit Generator. When this assumption does not hold, as is
generally the case with ground scenes, we can circumvent the problem by
slicing the image into a certain number of partial images presenting
each a uniform background. The unsettled question we will now tackle is

the way of defining the slices.

6.1 Gross Structure Statistics

As the targets are small and their number is limited, the image
is mostly background. Devising an algorithm that would discard large
portions of the image, so that we could restrict the search to a certain
target area much smaller in size than the image would help us greatly.
If the search area is smaller than the entire image, chances are that
the embedded background will be almost uniform. As a first attempt in
this direction, one may treat the lines of an image as a collection of
one-dimensional random signals and try to flag, by measuring various
statistical parameters, the 1lines that intersect a target. Fiqure 6
shows plots of 7 statistical parameters computed for the image of Fig.
S5A1 (we state again that all computations in this report are performed
on original unprocessed raw images but that, for display purpose only,

the images are postprocessed using a histogram-equalization technique).

These 7 parameters are:
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a)
b)
c)
d)
e)
f)
9)
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mean value,

median,

standard deviation relative to the mean value,
standard deviation relative to the median,
mean value minus the median,

ratio of c) over aj,

coefficient of bimodality.

From the plots of these quantities, we draw the following conclusions:

1)

2)

3)

4)

The mean value and the median are of no great use per se.
Nevertheless, they illustrate the fact that the background
luminance varies slowly but with an amplitude that can be

large.

The trends of the mean value and of the median are about
the same and so are the standard deviations relative to

both.

The standard deviations exhibit a well defined peak whose
height is an absolute maximum and wi.cse location matches

the position of the targets.

The absolute maximum of the difference between the mean
value and the median also lines up with the 3 targets. The
idea of using this difference as an estimator stems from

the fact that the mean value is very sensitive to outliers

that might be present in a set of data whereas the median

;
1
|
I
|
i
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is not. Based on what we said in Sect. 4, we can expect
this difference to be positive. Figure 6E confirms that

this is indeed the case.

5) The ratio of the standard deviation relative to the mean
value over the mean value itself is not very informative.
Because the mean value can go very low no meaningful peak

can be localized.

6) The coefficient of bimodality is 1low for target lines.
However, this must be interpreted as a seemingly necessary
but insufficient condition. The coefficient of bimodality
is defined (Fig. 7) as the number of times a given signal
crosses its mean value, where the lower this coefficient,

the greater the bimodality.

It should be possible with these findings to build an algorithm that
will give hints as to where the targets are and, therefore, enable one
to define a target area. However, we did not pursue this line because
the results are highly directional (for the case under discussion, for
example, processing the columns instead of the lines would be
frustating). The underlying assumption is to the effect that the
background is "uniform" for almost each member of the set of signals
considered (lines or columns). Although chis assumption is much less
restrictive than assuming the background is uniform for the whole image,
it is nevertheless too restrictive for applications involving ground

scenes.
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COEFFICIENT OF BINODALITY

FIGURE 7 ~ The coefficient of bimodality of the signal illustrated here
is 2 since it crosses twice the line corresponding to its
mean value. This is typical of a strongly bimodal signal.
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7.0 FINE STRUCTURE ANALYSIS (FSA)

:

The previous sections demonstrate that the background constitutes
a stumbling block that is very difficult to circumvent. wWhy not then,
instead of dealing with the image in its integrity, try to eliminate the
background, or at the very least to render it more “uniform”. This is

what we study in this section as a first step to further processing.

7.1 Background Elimination Technique (BET)

In Sect. 4 it was said that a signal (a given line or column of
an image) bearing a target can be thought of as composed of a sharp peak
surperimposed on an otherwise continuous (slowly varying) background.
To estimate the background one must then find a way to smooth the signal
but without including the peaks that might be part of it. The most
straightforward approach is to use a narrow bandwidth low-pass filter to
guess the general tendency of the background and then subtract it from
the signal. A low-pass digital filter can have a finite impulse
response (FIR filter) or an infinite impulse response (IIR filter) and
either can be realized recursively or nonrecursively. Because of its
real time implementation potential, we opted for a recursive IIR filter
and, more explicitly, for a 4-pole Butterworth filter (FPBF). Other
digital filters might do as well or better than this one but, since we
obtained good results with the FPBF, we did not explore other

possibilities.

To illustrate BET we will use the signal of Fig. 4, which
corresponds to 1line 175 of image 6 from the Alabama Data Base. This
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signal is fed to a low-pass FPBF digital filter whose 3-dB normalized
cutoff frequency (fc/fs) is equal to 0.01. The filtered signal
Jenerated is shown in Fig. 8A along with the input signal. From [12] we
see that to obtain an equivalent result with a rectangular FIR filter,
the filter size must be equal to 44, It is obviously advantageous in
such a situation to rely on a recursive IIR filter. Two points are

worth mentioning about the filtered signal of Fig. 8A:

a) since we deemed the initial conditions to be zero, there is

a droop in the curve at its origin, and

b) the filtered signal is shifted to the right. This is
evidenced by the distance separating the absolute maximums
of the 2 curves. Using [10] one can check that the shift
spans about 42 sampling intervals.

The first anomaly can be easily corrected by selecting the initial
conditions so that there is no transient at the origin. At this point,
the filter sees a step function of height H, where H is the value of the
signal at t=0+. One can then prove that the required initial conditions
are (the quantities appearing below are defined in Sect. 2):

f3(nT) = H/b0
and (28]
fz(nT) = H/(1 + bl + b2)
for n<0. These initial conditions are nothing but the asymptotic

response of the filter to a step function. Let us notice that one can
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FIGURE 8 - Background Elimination Technique (BET); Line 175 of image

ALA 6 3

A) FPBF filter initially at rest;

B) FPBF filter with nonzero initial conditions; the solid
line 1is the left filtered signal and the dashed line the
right filtered signal;

C) Arithmetic mean of the two filtered signals;

D) Fine structure or fluctuating component of the input
signal.

The cutoff frequency of the filter is 0.0l.
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use for H the average of the first 3 or 5 pixels, or anything else, in
lieu of the first pixel alone; this may even be necessary if the first
pixel manifests a tendency to wildness. Figure 88 shows the filtered
signal (solid 1line) that results when we use these new initial

conditions.

The second anomaly can be as easily corrected Ly shifting the
filtered signal to the left but we will take advantage of it to clip the
peaks. Let us consider Fig. 8B. The signal is fed to the filter from
left to right. Normally, we would expect the filtered signal to peak
at, or close to, the position of the main spike in the input signal.
Instead, it overshoots to the right. Therefore, had the signal been fed
from right to left, the overshoot would have occurred to the left
(dashed line in Fig. 8B). By combining both filtered signals in some
fashion, we can expect to obtain a curve that will completely bypass the
peaks to follow only the broad characteristics of the input signal. The

following combinations were tried:

1) minimum value,

xL(t), if xL(t) < xR(t)

[29]
y(t) =
xR(t), otherwise ;
2) arithmetic mean,
y(t) = (x (t) *+ xp())/2 (30]
3) geometric mean,
y() = Y3 (0 q® [31)
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where xL(t) and xR(t) are the left and right filtered signals
respectively. All things considered, the arithmetic mean (Fig. 8C) was
judged most satisfactory. Figure 8D exhibits the fine structure
(fluctuating component) of the 1illustrative signal, that is, what is
left of the signal once the estimated trend of the background is

removed.

The crux of BET is the choice of the proper bandwith or, what
comes to the same thing, cutoff frequency of the FPBF filter. We
attempted to define a procedure (based on Fourier spectra) for selecting
it but with no great success. Figures 9 and 10, built on the model of
Fig. 8, shed some light on the problem and its possible solution. This
signal constitutes a challenge since the target sits right in the middle
of a narrow well. If we use a cutoff frequency of 0.01 (Fig. 9), the
inertia of the filter is such that the well is bypassed, and
consequently shows up again in the fluctuating component (Fig. 9D). We
would of course like the filtered signals to follow the well. For this
purpose we have to use a wider bandwidth, as in Fig. 10 where the cutoff
frequency is 0.05. There the fluctuating component (Fig. 10D) is
intuitively more satisfactory. Another aspect of the same question
relates to the delay time introduced by the filter. That of a 0.01
cutoff frequency filter is about 40 sampling intervals and that of a
0.05 filter, 6. Therefore, combining the right and left filtered
signals, we can say that the first filter is geared to clip peaks 80
sampling intervals wide, whereas the second filter is possibly
restricted to much narrower peaks, of the order of 12 sampling
intervals. This is well evidenced by Fig. 10B where the filtered
signals peak on either side of the target hot spot. Conclusively, BET
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FIGURE 9 - Column 98 of image ALA 4 8: fc/fs = 0.01

although akin to highpass filtering, differs from it in one important
way, the target peaks are saved, i.e., they are not split into 2 peaks
respectively for the left and right edges.
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FIGURE 10 - Column 98 of image ALA 4 8; fc/fs = 0.05
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7.2 Fine Structure Statistics

We dropped the analysis of the gross structure of an image (Sect.
6) because the results, for ground scenes at least, are highly
directional. There was a great temptation to resume this sort of
analysis with the fine structure of the image. We did not resist.
However, it was not long before we realized that the set of statistical
parameters would have to be enlarged. For one thing, both the mean
value and the median are meaningless (both are close to zero) and, of
course, so is the difference between these two quantities and the ratio
of the standard deviation over the mean value. For another thing, the
coefficient of bimodality, as defined in Sect. 6.1, is no longer
informative. To make up for these parameters, we threw in the skewness,
the kurtosis and the correlation length. We did some exploratory wock
with the U, V, W and a statistics (Sect. 3) but we abandoned when it

became obvious we were heading for a disappointment.

The statistical parameters used to characterize the fine
structure of an image are then the variance (hereafter designated by V;
there should be no confusion with V statistics since we will not refer
anymore to this one), the skewness (S), the kurtosis (K) and the
correlation length. The defining formulas of the first 3 parameters and
their physical meaning are given in Sect. 3. The definition of the
correlation length is intermingled with that of the normalized
autocorrelation function [25-27]. Since full determination of the
autocorrelation function is liable to use too much computing time (in
prospect of a real time hardware implementation of the ideas put forward

here) only the first value (at lag number 1), of this function will be
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determined. However, we will assume that the shape of the
autocorrelation function matches an exponential curve,

c. =R/ ’;?O = exp(- /L) (32)
where L is the correlation length in unit of sampling interval. We are
going to use the correlation length as a rejection criteria, that is, if
the correlation length of a given signal is less than ﬂ , or 1if the
first value, Cl’ of the normalized autocorrelation function is less than
exp(-1/f ), the signal is discarded as noise. From this standpoint, the
postulated shape 1s rather conservative for two other commonly
postulated shapes (straight line and Gaussian) have a greater value

(Fig. 11) at r=l.

AUTOCORRELATION

LAG NUNBER

FIGURE 11 - This figure depicts 3 curves having the same correlation

length (L = 2). These correspond to commonly postulated
autocorrelation shapes.

S
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Figure 12 shows smoothed plots (3~point moving average) of the 5
statistical parameters (x, V, S, K and Cl) ascribed to each line and
column of image ALA 31 8. We recall that to obtain them, the signal at
hand (a given line or column of the original raw image) is first

deprived of its background by using BET in conjunction with a low-pass

FPBF filter whose cutoff frequency is 0.05. The 5 statistical
parameters characterizing the resultant fluctuating component are then
k calculated by using the formulas given in Sect. 3. As mentionned
‘ before, the mean value (Fig. 12A) is useless in regard to information
content, but since we need it to determine the other parameters we have
to calculate it anyhow. The variance, on the contrary, is highly

informative. It exhibits well-defined peaks (Fig. 12B), both along the

horizontal (top curve) and vertical (bottom curve) axes, whose position

corresponds precisely to the position of the targets. Moreover, each of

.

the 3 peaks that are part of the top curve spans a number of columns

representative of the width of the underlying target. In the other

direction, as the targets lined up, the width of the chief peak matches
the height of the largest target. It is to be noted that these are
qualitative observations. To do otherwise, one would have to define
what is meant by the width of a peak. The third statistical parameter, 3
skewness, Jisplays (Fig. 12C) the same behavior although less ?
convincingly, particularly as regards the vertical axis. Also, one
notices a negative spike that can be tracked down in the image as a cold
spot. In reality, this is a burn mark reproduced in all the images of
the aforementioned data base. Figure 12D gives the value of the

E kurtosis for every line and column of image ALA 31 8. Here again, the
targets are easily localized on the top graph, whereas the bottom curve

is misleading. The isolated peak to the right might well be interpreted
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as arising from a target hot spot but it may also result from a cold
one. To remove the ambiguity we must revert to the skewness: if the
skewness is negative it is a cold spot, otherwise it is a hot spot. We
recalled from Sect. 3 that a high kurtosis value ascertains the presence
of outliers in a set of data, but whether these outliers occur above or
below the mean value can only be fixed by the skewness. In spite of its
title, Fig. 12E displays the first wvalue of the normalized
autocorrelation function. The dashed lines on these graphs correspond
to the wvalue of Cl calculated for an exponential autocorrelation
function, [32], whose correlation length is 1.5 (Cl = 0.51), 1.0 (C1 =
0.37) and 0.5 € = 0.14). The idea is to set a lower threshold to
discard abnormal or noisy signals. A threshold of 0.51 works well for
the case considered but, as a rule, it is too severe. On the opposite
side, a threshold of 0.14 does not take a high toll but then one may
question its usefulness. The only threshold left (Cl = 0.37) proved, in
the light of experimental results, to be unreliable. We will explain in
a next section how we managed to solve the problem. However, we did not
arrive at a clear-cut solution and the role as well as the usefulness of
the normalized autocorrelation function, in the analysis of the fine

structure of an image, will have to be reassessed.
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FIGURE 12 - Fine structure statistics of image ALA 31 8. The cutoff
frequency of the FPBF filter used in conjunction with BET is
0.05. All these curves were smoothed using a 3-point moving
average. Top records correspond to column statistics and
bottom records to line statistics.
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7.3 Target Area Delimitation

Plots such as those of Fig. 12 contain all the information one
needs to pinpoint individual targets, or else to delimit a relatively
small-sized target area. We must now extract this information in a way
amenable to automation. We tried various schemes that are in fact
variations on the same theme - normalization and multiplication of a few
parameters coupled with a rejection criteria. After a long trial and
error, we decided on the following procedure based on the product of V,

the variance, by K, the kurtosis:
a) starting from raw data, the records of the various
statistical parameters are first smoothed using a 3-point

moving average;

b) the variance records are normalized so that their maximum

value is 1:

V = V/max (V) ; [33]

c) the kurtosis records are balanced and the values less than

zero clipped prior to normalization:

max ( (K-K) , 0), (34]

1=
"

=
"

K / max(K), [35])
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where K is the mean value of the record at hand;

d) the skewness records are likewise balanced:
3 = s-5; (36]
e) the threshold, g, for abnormal or noisy signals, in

relation with the autocorrelation records, is set to 0.51 (L=1.5)
provided this value does not exceed the upper quartile (p75) of the
record. Otherwise, it is set to 0.37 (L=1), subject to the same

condition, and as a last resort to 0.14 (L=0.5):

0.51 if p75 > 0.51, otherwise

q-= 0.37 if Pyg > 0.37, otherwise [37])
0.14;
f) we form VK-product records as follows:

VK(G) i£8(G) >0 and C () > q
VK@) = [38]

0 , otherwise,

Figure 13 shows the results of this procedure for the case of image ALA
31 8 considered before. From these graphs, we conclude easily that
there are 3 targets in this image and that they are ranged in a row
right in the middle of it. We are sure that the number of targets is 3
for there is only 1 peak along the vertical direction. However, had 2

peaks been present in the bottom graph of Fig. 13, we would have been
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PRODUCT VK(S,L> C(INMAGE 31. F=0.05)
1.07

0 | | | 335

.50

.25

|

0 420
FIGURE 13 - VK-Product records of image ALA 31 8
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confined to merely state that the number of targets is at least 3
(greatest number of peaks), and at the very most, 6 (product of the
numbers of peaks). Let us look back at the above procedure. Skewness
and kurtosis records are balanced to remove any bias that might be
present in these records. This is bound to happen because BET acts only
in one direction and then, as in a one-dimensional filtering operation,
features in a perpendicular direction go unnoticed (a good example of
this is Fig. 18C where a crevasse runs across the VFS image, with the

result that the skewness is negatively biased).

To reduce VK-product records to numbers specifying the exact

location of the targets, we proceed as follows:

a) firstly, VK-product records are smoothed using a 3-point

moving average;
b) the coordinates of the highest peak are saved;
c) a threshold is set at 10 percent of the maximum value:
g = max(VK(3j))/10 (39)
and a new, binary, VK-product record is generated:
1 if VK@) 2 q

VK() = [40]
0 if VK@) < q




d)

e)

£)
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a gap-filling algorithm is then used to join the runs of ls

that are separated by less than three 0s;

the runs of 1s of gap-filled, binary, VK-product records

that consist of less than three ls are discarded;

for each run of 1ls, we determine the coordinate of the
leading and trailing 1 as well as the length of the run and
its middle point.

The results for the VK-records of Fig. 13 are shown in Table I.

TABLE I

Target designation based on the VK-records: image ALA 31 8

Horizontally

{Top Record)

Target Range
Target Width

Target Midpoi

: (69, 92) ; (108, 124) ; (211, 218)
: 24 ; 17 ; 8
nt 80 ; 116 214

Vertically (Bottom Record)

Target Range : (206, 217)
Target Height : 12
Target Midpoint : 211
Highest Peak: (215, 212)
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Figure 13 and Table I depict a clear-cut situation. Fijure 14
and Table II, on the contrary, represent one of the worst case
encountered. Since there is more than one peak in both directions, we
do not know the exact number of target-like hot spots. However, we can
ascertain that this number lies somewhere between 5 and 10. Faced with
such an ambiguity, it is better to define a target area, that is, an
area including all the target-like hot spots detected with the
VK-product records. Such a target area can be delimited by using the 2
peaks farther apart in both directions (Fig. 15B), or else, to limit any
further search, by using the target range in one direction as the width

i (height) of the target area, and hence define not one but several (Fig.

15C and 15D) target areas. In the same wvein, one can use the

Rl B

coordinates of the highest peak to initiate a search, for experimental
results show that these quite often correspond to the position of a real

target.

7.4 Experimental Results

The ideas and techniques expounded in this section were
extensively tested on a set of 43 thermoscopic images known as the
Alabama Data Base. The spectral region of the majority (30 out of 43)
of these images corresponds to the 8-14 um band, and the remainder to
the 3-5 um band. Altogether the images contain 85 targets distributed

as follows (detailed ground truth accompanies Fig. 16): 40 tanks, 29

APCs, 15 jeeps and, finally, a bus. The size of the images is 420 x 335 g
pixels and they are digitized to 256 levels. !

bt e e o

s e i _ » lm‘
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PRODUCT VKCS,L> CINMAGE 41; F=0.05)

1.071

335

a A N

420

FIGURE 14 - VK-Product records of image ALA 41 3
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The analysis of the fine structure of an 1imnage was primarily
undertaken to improve the performance of the silhouette jenerator by
restricting the search for targets to an area that would ideally be much
smaller in extent than the image itself. This was also the vourpose of
GSA (Sect. 6) though it was discarded here for it turned out to be
orientation-dependent. But, as Fig. 16 asserted it, such is not the
case of FSA. Moreover, it so happens that in many instances the target
area delimited by FSA is tiny enough as to allow to pinpoint individual
targets (Table I and Figs. 16-31). This is very interesting since it
means one can designate targets without segmenting the image, simply by
statistical considerations. However, such pinpointing operations should
probably be limited to applications involving one target at a time,
although FSA manages well when confronted with several targets arranged
in a line (Figs. 16-2,8,12,14 etc.). In this last case, however, a
small target might well be obscured by a larger one next to it (Figs.
16-6,33). This phenomenon occurs in a direction parallel to the lipe
formed by the targets, for in a perpendicular direction FSA obviousiy
perceives only one target. Indeed, it can be said that FSA in a way
senses the targets as if they were projected on both axes. So, when the
projections along one axis partially overlap, the quantities measured
(target midpoint; see Tables I and II) do not necessarily fit with all
the targets involved. This explains why many crosses in Fig. 16 do not
sit right on top a nearby target (Figs. 16-16,19,22,31,36). It is also
for the same reason that a group of targets is interpreted as a single
target (Fig. 16-2), and that a target is missed in some L~shaped
formations (Figs. 16-17,35). On the other hand, whenever it is not
possible to unambiguously pinpoint individual targets (Figs.

16-4,7,9,23), one can always define somehow (Fig. 15) a target area and
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subject it to further processing, or possibly initiate a search by using
the position of the highest peak (Tables I and II) as an initial guess,
for experimental results (Figs. 16-28, 29,41) show, as mentioned before,

that this peak quite often corresponds to a real target.

TABLE TI

Target designation based on VK-records: image ALA 41 3

Horizontally (Top Record)

Target Range (115, 132) ; (298, 302)
Target Width s 18 ; 5
Target Midpoint 122 ; 300

Vertically (Bottom Record)

Target Rarge

Target Height : 8 ; 14 ; 5 11 ;
Target Midpoint 191 210 367 380

a0
-
-e

-e

flighest Peak: (120, 207)

Target Area: (115, 302 ; 188, 399)

(188,195) : (204,217) ; (365,369) ; (375,385) ; (391,399)

9
395
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FIGURE 15 - Various ways to represent the data of Table 1I. The
position of the highest peak is marked with a cross in b, ¢
and d, while the square in b represents the target area
defined by using the 2 peaks farther apart in both
directions.
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FIGURE 16 - All the images that constitute the Alabama Data Base have
been histogram equalized (top row) and the results,
(exemplified by Tables I and II) obtained by statistically
analysing the fine structure images mapped into them (bottom
row). We recall that the images are histogram equalized for
display purpose only. The images that were actually
processed are the original, unprocessed, raw images from the
aforementioned data base. When one of the following images
bears nothing but crosses, these designate the calculated
midpoint of the detected targets. On the other hand, a
cross that lies within a target area designates the position
of the highest VK-product peak.
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Alabama Data Base.

Target(s)

J.A.T
T.A
J.T.

T.AJ
T.A

J.T.A

T.A
J.A.T
T.A.J.

A.T
AJ.T

T.A
T.J

T.A.Jd

Ground truth,

Asggct(s)

3R.S.S
3F.3R
S.S
3F
S.8.8
3R
F.S
5.8.8
3F
3R
3R.3F
S.F.F
S.S.S
3F
S.S
S.3R.S
3R
3F.S
R.3R
R
3R.3F.S
S
F

Ry
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i

;< Image No. Target (s) Aspect(s)

:

§ 25 T S

: 26 T 3R

E 27 T.A F.F

E 28 T.A 5.5
29 T.A R.R
30 T.A.Jd S$.S.S

{ 31 T.AJ. S.S.S

] 32 T.A.J. F.F.S
33 B.A S.F
34 AJd 3F.S
35 J.T.A 5.S.5
36 T.A.J. S.S.S8
37 T.A 3R.3R
38 T.A 3R.3R
33 T.A 3R.3R
40 T 3R
41 T.A 3R.3R
42 T.A 3R.3F
43 T.A 3F.3R

Legend: A = APC, B = bus, J = jeep, T = tank,
s = side, F = front,
R = rear,
3 = 3/4 view

h |
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ORIGINAL

HORIZONTAL A VERTICAL

R ooy a..,..._ .m

FIGURE 17 - Thresholding of the fine structure images derived from image
6 3 of the Alabama Data Base
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8.0 THRESHOLDING OF FINE STRUCTURE IMAGES

Once the background of an image has been subtracted by using BET,
one has the choice between two alternatives: to process the resultant
fine structure images along the 1lines set out in Sect. 7, or to
threshold them by using the silhouette generator. In this last case,
since the background of the fine structure images is "uniform“, the SIT
Generator should be well suited for this task. This affirmation is

confirmed by the results of Figs. 17 and 18, Figures 178 and 18B show

the HFS images derived respectively from images 6 3 and 13 8 of the
Alabama Data Base, whereas Figs. 17C and 18C show the corresponding VFS
images. Tnese fine structure images were postprocessed, for display
purpose, first by adding a constant bias, so as to remove negative gray

levels, and then by stretching the gray levels bounded by the 5th and

95th percentiles linearly over the display range. The ideas alluded to
in this section are fully developed in Ref. 14.




e mu‘

b’&\)’w 3MW._»» ) _

FIGURE 18 - Thresholding of the fine structure images derived from image
13 8 of the Alabama Data Base.
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9.0 CONCLUSION

The present report laid the foundations of a class of
segmentation algorithms (segmenters) for detection of targets in IR
wmagery. The single basic assumption is that the targets possess a
larger thermal signature than other objects embedded into the
background. This class of segmentation algorithms emerged as a result
of efforts to improve an early segmenter devised to extract targets from
IR BOFORS imagery. This first segmenter proceeds according to a single
intensity threshold whence the name SIT Generator to designate it. Its
extraction record is generally excellent whenever the background, on a
large-scale basis, 1s relatively uniform. When this condition is not
met, one can use a thresholding intensity function in lieu of a fixed
threshold. The SIT Generator and its variants try to cope with the
background simply by partitioning the image. A more promising avenue
consists in levelling the background so as to curb its ascendancy over
the image. This is in essence what the Background Elimination Technique
(BET) expounded in Sect. 7 does. Since BET can be applied either to the
set of lines or columns of an image, it generates 2 images referred to
as the Horizontal Fine Structure (HFS) image and the Vertical Fine
Structure (VFS) image respectively. We have shown that one can pinpoint
targets merely by statistically analyzing these fine structure images,
without having really to segment them. Nevertheless, this last approach

seems very promising and we intend to fully exploit it.
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