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RESUME

Ce rapport pr6sente une classe d'algorithmes de segmentation
(segmenteurs) sp6cialis6s dans la d6tectLon de cibles sur images IR et
fond6s uniquement sur le principe voulant que la signature thermique
d'une cible d6passe en importance celle de tout objet de l'arritre-plan.
Ces algorithmes sont le r6sultat d'efforts visant am~liorer un premier
segmenteur, appel6 g6n6rateur de silhouettes, imagin6 en fonction
d' images IR du tyoe BOFORS. Le segmenteur en quf-stion decoupe I'image
en deux parties d'apres un seuil d'intensit6 unique. Sa fiche
d'extraction est g6n6ralement excellente lorsque I'arribre-olan est
globalement plat. Lorsque cette condition n'est pas remplie, on peut
parfois se tirer d'affaire en utilisant une fonction seuil au lieu d'un
seuil fixe. Le g6n6rateur de silhouettes et ses diverses variantes
tentent de venir bout de I'arrire-plan simplement en morcelant
l'image. Une solution plus prometteuse consiste redresser
l'arriere-plan de fagon r~duire son emprise sur l'image. C'est
pr6cis6ment ce que la Technique de Redressement de l'Arribre-Plan (TRAP)
fait. Etant donne que TRAP s'applique aux lignes aussi bien qu'aux
colonnes d'une image, 1l en resulte 2 images distinctes: structure fine
horizontale et structure fine verticale. Ces images recblent maintes
possibilit6s quant la d~tection de cibles, lesquelles sont en grande
partie explicit~es dans le rapport. (NC)

ABSTRACT

'This report presents a class of segmentation algorithms
(segmenters) for detection of targets in IR imagery based on the single
assumption that the targets possess a larger thermal signature than the
background. This class of algorithms emerged as a result of efforts to
improve an early segmenter devised to extract targets from IR BOFORS
imagery. This segmenter proceeds according to a Single Intensity
Threshold whence the name SIT Generator to designate it. The extraction
record of the SIT Generator is generally excellent whenever the
background, on a large-scale basis, is relatively uniform. When this
condition is not met, one can use a thresholding intensity function in
lieu of a fixed threshold. The SIT Generator and its variants try to
cope with the background simply by partitioning the image. A more
promising avenue consists in levelling the background so as to curb its
ascendancy over the image. This is in essence what the Background
Elimination Technique (BET) expounded herein does. Since BET can be
applied either to the set of lines or columns of an image, it generates
2 images referred to as the Horizontal Fine Structure image and the
Vertical Fine Structure image respectively. These images offer many
possibilities for detection of targets and several of them are
explicitly described in the report. (U)
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1.0 INTRODUCTION

This report presents a class of seqmentation algoritnms

(segmenters) for detection of targets in IR imagery, based on the single

assumption, made explicit in Sect. 4, that the targets possess a larger

tnermal signature than the background. This class of algorithms emerged

as a result of efforts to improve an early segmenter devised to detect

targets in IR BOFORS imagery as part of an Automatic IR Target

Acquisition System (AIRTAS). That particular segmentation algorithm was

referred to in previous reports as a silhouette generator. It is a

fairly simple algorithm and hence should be easy to implement in real

time. Briefly, its defining procedure is: a) partition the image of

interest into a certain number of subimages; b) determine the histogram

of each subimage; c) estimate the upper gray level of the background and

d) threshold the image accordingly. The silhouette generator, then,

segments the image according to a single intensity threshold whence the

more appropriate name of Single Intensity Threshold Silhouette

Generator, or simply SIT Generator, to designate it.

The extraction record of the SIT Generator is generally excellent

whenever the background, on a large-scale basis, is relatively uniform.

This was indeed the case with the BOFORS imagery, but we should not

expect that condition to prevail when images more akin to real-life

situations, like those that make up the Alabama Data Base, are

considered. In such circumstances the image must be divided into

regions of uniform background and the SIT Generator applied to each of

them as we would do for distinct images. This procedure amounts to

defining several intensity thresholds in relation to the image being

jI
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considered. Aore generally, one can in this way build a tnresnoldinq

intensity function, that is, a function that assigns a soecific

threshold to each line of an image. These concepts are examined in

Sect. 5 in the wake of a detailed descriotion of the SIT Generator.

The SIT Generator and its variants try to cope with the

background simply by partitioning the image. This approach is Pound to

succeed provided the regions are prooerly outlined which almost

inevitably calls for an adaptive oartitioning scheme. It is not easy,

however, to devise such a scheme. One possible avenue that we have

explored consists in coarsely estimat- - the position of the targets in

order to restrict the search to a smaller area than the image itself.

To this end, we performed a gross line-by-line an&.ysis of the image so

as to pinpoint tne lines carrying a target, based on the values of the

following set of parameters (most such statistical quantities are

defined in Sect. 3): mean value, median, standard deviation relative to

the mean value, standard deviation relative to the median, mean value

minus the median, ratio of the standard deviation relative to the mean

value over the mean value itself and, finally, a coefficient of

bimodality. The results obtained and given in Sect. 6, show that it

should indeed be possible to effect an algorithm which will give hints

as to where the targets are, thus enabling one to define a target area.

However, such an algorithm will be lacking in generality since it

implicitly assumes that the background is relatively uniform on a

line-by-line basis. In other words, the algorithm will be

orientation-dependent which certainly constitutes a major drawback in

many practical situations.
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The results obtained from the imagery considered through a gross

line-by-line analysis prompted us to find a means of rendering the

procedure orientation-independent. The problem here stems from the

nonuniformity of the background and hence the solution is obviously to

curb the ascendancy of the background over the image by levelling it in

some way. This is in essence what the Background Elimination Technique

(BET) expounded in Sect. 7.1 does. This technique operates on a

one-dimensional signal (any given line or column of an image) and uses a

narrow bandwidth low-pass filter to assess the general tendency of the

oackground in order to subtract it from the signal itself. Because of

its real time implementation potential, we opted fo- a recursive filter

and, more explicitly, for a 4-pole Butterworth filter (Sect. 2 gathers

background material related to such filters). Since BET can be applied

either to the set of lines or columns of an image, it generates 2 images

referred to as the Horizontal Fine Structure (HFS) image and the

Vertical Fine Structure (VFS) image respectively. The background of

these fine structure images can be considered uniform, on a large-scale

basis, although it is highly textured. It is shown in Sect. 7 that one

can define from HFS (extent in the y-direction) and VFS (extent in the

x-direction) a relatively small-sized target area, and in many instances

even pinpoint individual targets, simply by statistical considerations

(as was the case of the aforementioned gross line-by-line analysis).

This is very interesting since it means we can designate targets without

segmenting the image.

BET and the resulting fine structure images offer many

possibilities, let alone those we already apprehend. For instance, one

can exploit the uniformity of these images to segment them individually
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or in some combined form, with the aid of, say, a segmenter like the SIT

Generator, which incidentally should be well suited for this task by its

very nature. rhis aspect is emphasized in Sect. 8.

This work was performed at DREV between November 1978 and April

1979 under PCN 32D07 Automatic Target Acquisition.

FPBF FILTER
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FIGURE 1 - Amplitude-vs.-normalized frequency characteristic of 4-oole

low-pass digital Butterworth filters for several values of

fc/fs(0.01, 0.025, 0.05, 0.075,0.1)
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2.0 RECURSIVE LO-P\SS DIGIrAL 3UTTERAORTH FILTER

A Butterworth filter approximates a rectangular oassband via a

monotonic amplitude-vs.-frequencv characteristic (Fig. 1). The

transition region of such a filter, although gradual, is more or less

sharp depending on the number of poles of its transfer function - the

greater the number of poles the narrower the transition band is. In

this section we give without proof a certain number of results

pertaining to a particular digital Butterworth filter, namely a 4-pole

filter, that has been used to estimate the background of IR images.

Most of this material is drawn from Refs. 1 and 2.

2.1 Z-Transfer Function

The Z-transfer function of a one-dimensional 4-pole low-pass

Butterworth filter is given by (Ref. 1):

z2 [1
H(Z) = * . ]

(Z - Z1)(Z - Z1 )(Z - Z2)(Z - Z2 )

with Z1 = exp[- 271f (cos 67.50 - jsin 67.5°)/fs] [2]

z 2 = exp[- 27Tf (cos 22.50 - jsin 22.50)/f , [3]

where fc is the 3-dB cutoff frequency of the filter and fs the sampling

frequency of the signal. The asterisk denotes the complex conjugate.

when the denominator in [11 is multiplied out and the terms rearranged

we obtain:

I
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-Z 1 1 -1
1 ) (1Z x -1 2x [4b) ",- (I + 3 Z  b4 (4

(1 + 2l +1-- ( 4

with 7lib
= - (Zi + Z1  3 , = i Z

15]
b =-(73 2 Z) b4 = Z 2 Z 2

and where b is a coefficient to adjust the gain at w=O to unity:

bo= 0 = (1 + bI + b 2 )(1 + b3 + b4 ) [61Ili(Z) I I Z e

Figure 1 shows plots of IH(Z- )I versus f/fs for several values of
fc/fs"

2.2 Difference Equations

A Z-transfer function is implemented or realized via an mth-order

difference equation defining what is called an mth-order digital network

(Ref. 2) consisting of delays, multipliers, and summations. A direct

realization of a transfer function requires the smallest amount of

computation. However, in most instances it proves desirable (Ref. 2) to

realize a given network by means of either cascade or parallel

combinations of second-order systems because the latter realizations are

less sensitive to the adverse effects associated with finite register

length. Hence [41 can be written

H(Z-1 = b 0 Z- 2 HI(Z- H2 (Z- [71
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that is, as a cascade of two second-order systems. The resulting set of

linear difference equations (Fig. 2) is:

fI(nT) = x[(n-2)T]

f,(nT) = f(n'r) - b f2 [(n-1)T] -2 f[(n-2) T ] ,
11 2 2

f3(nT) = f 2 (nT) - b3 f3 [(n-I)T] - b4 f3 [(n-2)T] [81

y(nT) = b0 f3(nT)

To proceed with this set of equations it is necessary to define the

initial conditions of x, f2 and f These are usually set to zero.

2.3 Delay Time

It can be shown (Ref. 2) that the phase characteristic of the

Z-transfer function given in [1] is:

2w 
1 

+ tan b I  sin T + b 2  sin 2wT 
1

S1 + bI1 cos wT + b 2 cos 2wT]

-1 b 3 sin wT + b 4sin 2wT [9]

+ tan 1 + b 3 COS UT + b 4 cos 2wT]

For small values of wAT, we have

sin wT = wT, cos wT - 1 and tan a = a

Substituting these into [9) yields

bT 2 - + 2b
1 + b 1 + b2  1 + b 3 + b4

I 1 . . . . .. . . . " .. . .. ... . . . . . . . .. . .. . . . . . . .. . .. I .. . ... ... .. I I . . . . . . . . . . .. .. . .. . l I. . . .. . . . ." . . . : . . . ..W
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x (nT) H (Z-) H2 (Z ) y (nT)
fi f 2 f 3

FIGURE 2 - Cascade realization of a 4-pole low-pass digital Butterworth

filter; T is the sampling interval.
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FIGURE 3 - Plot of the delay time of a 4-pole low-pass digital

Butterworth filter vs. f/fs



UNCLASSI FI ED
9

Phis equation represents a linear phase characteristic meaning that the

output signal is shifted right a number of sampling intervals

approximately equal to the quantity (delay time) enclosed in square

brackets. The value of the delay time versus the normalized cutoff

frequency is plotted in Fig. 3.

2.4 Equivalent FIR Filter

It is well known that the transfer function of a rectangular FIR

filter is a sin x/x function. More precisely (Ref. 3)

sin TL f/f
H(f) = s [11]

TL f/f

where L is the number of sampling intervals spanned by the filter

impulse response. By definition, the 3-dB cutoff frequency is obtained

by solving

sin 7L f /f 1

7L fc/fs2C S __

from which we readily get

f c/fs = 0.44/L [12]

As a rule of thumb, we can use 1/2 L as the normalized cutoff frequency

of any FIR filter of size L.

-- --------
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3.0 ON THE ESTIMATION OF SOME STATISTICAL PARAMETERS

This section gives a certain number of formulas used for

estimating various statistical parameters referred to in subsequent

sections. In fact, this section is nothing but a precis of statistical

signal analysis as it relates to the subject of this report. For a more

comprehensive treatment, the reader is directed to the references cited

below.

3.1 Mean and Variance

Let {x n1; n=l, 2, ... , N be the data values of a single time

(space) history record x(t). It is often desirable to think of physical

data in terms of a combination of a static or time-invariant component

and a dynamic or fluctuating component. The first component may be

described by a mean value which is simply the average of all values

(Ref. 4):

= x [13]

This quantity (unless otherwise stated, all sumations are for n=l to N)

is an unbiased estimate of the true mean value. The dynamic component

may be described by a variance which is simply the mean square value

about the mean:

2 X2 I (x )2 [14]s ~ =n [4
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The positive square root of the variance is called the standard

deviation and denoted s. The quantities s and s 2 calculated here are

biased estimates of the true standard deviation and variance

respectively. However, the bias is negligible for large values of N.

3.2 Skewness

The mean value and the variance are only the first two moments of

a probability density function. The third and fourth moments also prove

to be useful for describing physical data. The third moment or skewness

measures the lack of symmetry in a density function and is defined in

the following way (Ref. 5):

S= (xn _x) 3 /Ns 3[15]

To grasp the physical meaning of the skewness it is better to write it

as indicated below

S I - -1I - X1 3)/ Ns3  [161

nn

wnere the vertical oars denote the absolute value. From [16] we see

that in the case of a positively skewed signal the fluctuations that

matter occur above the mean value, and conversely for a signal

exhibiting a negative skewness.
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3.3 Kurtosis

The formula used for the computation of the fourth moment,

variously called kurtosis, excess or peakedness, is

K (xn - X)4 /Ns4 - 3 [17]

which includes a corrective factor of -3, the use of which in computing

kurtosis has the effect of making both skewness and kurtosis equal to

zero for a normal density function. This fact being established,

leptokurtic and platykurtic density functions are defined in terms of

deviations from the normal density function. Thus, the usual

definitions (Ref. 6) are:

Leptokurtic - A density function that is peaked,

K > 0, [18]

and

Platykurtic - A density function that is flat,

K < 0 . [19]

The exact meaning of the kurtosis statistic is not clear to

statisticians (Refs. 6-9), let alone to laymen in this field. It seems

that it has long Deen accepted that a symmetrical platykurtic density

function, with K<O, is characterized by a flatter top and more abrupt

terminals than the normal curve and that a symmetrical leptokurtic

density function, with K>O, has a sharper peak at the mean and more

extended tails. However, Chissom (Ref. 6) cautions that it is difficult

to determine the shape of a density function from the kurtosis value

alone, since almost any density function may have a negative kurtosis

-
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value. Nonetheless, he recognizes that to have a nositive kurtosis

value the distribution of measures must contain a good na.nber of cases

in the tails, i.e. a tailing off effect must oe Present. Darlington

(Ref. 7), for one, reveals another amazing aspect of kurtosis. He

wonders if kurtosis is really peakedness, and concludes that a better

term for describing it is "bimodality', where the lower the kurtosis,

tne greater the bimodality. Clearly, the most bimodal of all possible

density functions is a symmetric 2-point density, while the least

bimodal (or most unimodal) density function is concentrated entirely at

one point. It can be shown (Ref.7) that these density functiens have

respectively lowest and highest kurtosis because in a symmetric 3-point

density in which p is the density at the mean,

K = 1/(1 -p) -3 [201

As p approaches 1 (i.e. as the density approaches being concentrated

entirely at its mean), K approaches infinity. On the other hand, when

p=0 (i.e. when the density is a 2-point, rather than a 3-point, density)

K achieves its lowest possible value of -2. But to confuse the issue,

Hildebrand (Ref. 8) exhibits a family of density functions that are

solidly bimodal, but have kurtosis coefficients ranging from -2 to +3.

In spite of all the trickiness associated with the kurtosis

statistic, the inequality K c, where c is an appropriate constant, has

been used in practice as a test of a normal density against densities

with heavier tails or, more generally, for testing light-tailed

densities against heavy-tailed ones. Other statistics (Refs. 9-10) used
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for the same purpose are:

2

U S

Ix - ml/N [21]

v Z/2

Ix mI/N [221

Z/2
2 [231

S

y Ix - xl/N

2
S

where m and Z are respectively the median and the range (high extree

minus low extreme) of the set of data. According to Hogg (Ref. 9), W

should be used only when trying to detect if a density function is

light-tailed or not. For the normal density function, the value of the

ratio defined by [24) is I2/7r=0.7979; this ratio will be higher for

platykurtic and lower for leptokurtic density function. The same is

true in reverse for the U statistic.

3.4 Autocorrelation Function

The autocorrelation function at the displacement r is defined

(Ref. 4) by the formula

N r r

r X(r) - (x -) [251
r X N- r n n + r
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where r is the lag number, and Rr is the estimate of the true value Rr

at lag r. The autocorrelation function may take on negative as well as

positive values. A normalized value for the autocorrelation function is

obtained by dividing Rr by R0 where

= Rx(O) = N (X = S (261

Ahen R is normalized, one obtains the quantity r /R which
r r0

theoretically will be between plus and minus one, that is,

-1 R /R < 51 [7

The importance of the autocorrelation function for describing

physical data stems from the fact that a sharply peaked autocorrelogram

which diminished rapidly to zero, is typical of wide-band random data.

For the limiting case of hypothetical white noise (random data with

energy distributed uniformly over all frequencies), the autocorrelogram

is a Oirac delta function at zero displacement.
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4.0 IR IMAGE MODELLING

The algorithms developed in this report, for detecting targets in

IR imagery, are based on the simple assumption that the targets appear

as hot regions within a cooler slowly varying surround. By slowly

varying surround we mean that in the absence of any targets the main

fluctuations, i.e. large-amplitude fluctuations, are concentrated at the

lower end of the spatial frequency spectrum. Superimposed on this

continuous background, which accounts for gradations of gray level

across the image, there might be (Fig. 4) sharp lines due to relatively

small-size targets.

LINE 175, IMAGE ALA 6 3

2001

160-

120-

80.

40.

0 335

FIGURE 4 - Line 175 of image 6 (gray level or brightness vs. column
number) from the Alabama Data Base. The 3 peaks correspond
respectively to a tank, an APC and a jeep. Such a signal can
be interpreted as a set of sharp lines superimposed on an
otherwise slowly varying background.
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5.0 SILHOUETTE GENERATOR

We will first describe an algorithm that has already been used to

detect targets (Refs. 11-13) in IR BOFORS imagery. This algorithm is

part of a computer simulated Automatic IR Target Acquisition System

(AIRTAS) and was previously referred to as a silhouette generator. This

potential device starts from oartial histograms and attempts to estimate

the gray level corresponding to the maximum temperature prevailing in

the background. The thermoscopic image (Fig. 5A1) that illustrates the

working of the silhouette generator measures 420 x 335 pixels. It is

extracted from the Alabama Data Base where it is labeled ALA 6 3 (the

last digit specifies the spectral region: 3-5 um band or 8-14 um band).

Figure 5A2 is an histogram equalized version of this image showing more

clearly details of the scene depicted.

5.1 Single Intensity Threshold (SIT)

The defining procedure of the original version of the silhouette

generator is:

1) Divide the image into a certain number of subimages.

The way a given image must be split should really be

determined by experiment. Because of its size (96 x 256

pixels), a BOFORS image was solely divided along the

horizontal axis. With a thermoscopic image, on the other

hand, we get best results when we divide both the

horizontal and vertical axes (Fig. 5A3) into the same
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number of regions, namely 4. We generally tend to make tne

subimages about square although this is not absolutely

needed. However, as a rule, at least one subimage should

be representative of the background, i.e., should not

contain any targets. Moreover, it should be large enough

to provide a good estimate of the gray level corresponding

to the highest temperature of the background.

2) Determine the histogram of each subimage.

This is the main mathematical operation performed by the

silhouette generator and since it is a one-pixel-at-a-time

process it can be easily implemented, "on the fly", by real

time hardware.

3) Determine the cutoff gray level of each partial histogram.

The histogram being scanned from the highest bin down, the

cutoff gray level (upper gray level of the background) is

defined as the gray level of the first bin occupied by at

least 3 pixels. One can imagine many variants to this

scheme and it might be worthwhile to investigate this point

further.

4) Choose the smallest cutoff gray level as an intensity

threshold for the whole image.
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In doing this one should exert some caution because it

might well happen that the smallest cutoff gray level will

be zero or something very small. To obviate such nonsenses

we restrict the choice to those cutoff gray levels greater

than the 80th percentile of the whole image. This amounts

to assuming that less than 20% of the surface of the image

is occupied by targets.

The thermoscopic image of Fig. 5A embraces 3 targets in a row near the

center of the image. From left to right, these correspond to a tank, an

APC, and a jeep respectively. The result obtained by applying the

silhouette generator to this unprocessed raw image is shown in Fig. 5C1

(the pixels whose gray levels are greater than the threshold are

saturated while those whose gray levels are less than or equal to the

threshold are zeroed). This example demonstrates that under certain

circumstances the miss rate of the silhouette generator is unacceptably

high, and that the shape of the detected targets might be altered. On

the positive side, the segmented image is clean and consists of solid

blobs that are relatively easy to interpret - a blob stretching from one

side of the image to the other is certainly not a potential target.

5.2 Thresholding Intensity Functions

The algorithm just described is best suited to detect the

brightest targets. It will inevitably miss faint targets because many

background pixels have gray levels in the same range as the targets

themselves. In consequence, the 80th percentile is driven much too far

in the light portion of the gray scale. Using a lower percentile will
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FIGURE 5 -Silhouette generator
A) Image ALA 6 3 (1: raw; 2: histogram equalized; 3:

subimages delineated);
B) Thresholding intensity functions;
C) Segmented images;
1) Single intensity threshold;
2) Staircase intensity threshold;

3) Interpolated staircase intensity threshold.
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not generally help because we might end up with targets embodied in a

very large blob. The probability of detection of the silhouette

generator can, however, be improved if we treat the image as (for the

case of Fig. 5Al) 4 vertically shifted images of size 105 x 335 pixels

and apply the algorithm to each of them indeoendently. In this way, a

new threshold (Fig. 5B2) is derived for each horizontal slice and the

final result (Fig. 5C2) is a segmented image where the 3 targets stand

out clearly, and where their shape is better preserved. However,

artifacts may appear if the thresholds of 2 adjacent slices differ

widely, as is obvious in Fig. 5C2. A manifest remedy is to smooth the

transition between 2 slices by, say, linearly interpolating the relevant

thresholds. What results is a thresholding intensity function (Fig.

5B3), that is, a function attributing a specific intensity threshold to

each line of the image. The segmented image (Fig. 5C3) generated by

this continuous function is quite similar to the one obtained with a

staircase function except that there are no artifacts. The only

noticeable flaw seems to be a slight alteration of the shape of the

targets. The concept of a thresholding function can be easily extended.

However, as far as the silhouette generator is concerned, the crux

remains the manner in which the subimages or the slices are defined.



UNCLASSIFIED

23

6.0 GROSS STRUCTURE ANA.LYSIS (GSA)

In the previous section, we have shown that the silhouette

generator works fairly well provided the background is relatively

uniform. For those situations where this is true, we can rely entirely

on the Sit Generator. When this assumption does not hold, as is

generally the case with ground scenes, we can circumvent the problem by

slicing the image into a certain number of partial images presenting

each a uniform background. The unsettled question we will now tackle is

the way of defining the slices.

6.1 Gross Structure Statistics

As the targets are small and their number is limited, the image

is mostly background. Devising an algorithm that would discard large

portions of the image, so that we could restrict the search to a certain

target area much smaller in size than the image would help us greatly.

If the search area is smaller than the entire image, chances are that

the embedded background will be almost uniform. As a first attempt in

this direction, one may treat the lines of an image as a collection of

one-dimensional randomn signals and try to flag, by measuring various

statistical parameters, the lines that intersect a target. Figure 6

shows plots of 7 statistical parameters computed for the image of Fig.

5A1 (we state again that all computations in this report are performed

on original unprocessed raw images but that, for display purpose only,

the images are postprocessed using a histogram-equalization technique).

These 7 parameters are:
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a) mean value,

b) median,

c) standard deviation relative to the mean value,

d) standard deviation relative to the median,

e) mean value minus the median,

f) ratio of c) over a),

g) coefficient of bimodality.

From the plots of these quantities, we draw the tollowing conclusions:

1) The mean value and the median are of no great use per se.

Nevertheless, they illustrate the fact that the background

luminance varies slowly but with an amplitude that can be

large.

2) The trends of the mean value and of the median are about

the same and so are the standard deviations relative to

both.

3) -The standard deviations exhibit a well defined peak whose

height is an absolute maximum and W,,,se location matches

the position of the targets.

4) The absolute maximum of the difference between the mean

value and the median also lines up with the 3 targets. The

idea of using this difference as an estimator stems from

the fact that the mean value is very sensitive to outliers

that might be present in a set of data whereas the median



UNLSIF Il ED
26

is not. Based on what we said in Sect. 4, we can exnect

this difference to be positive. Figure 6E confirms that

this is indeed the case.

5) The ratio of the standard deviation relative to the mean

value over the mean value itself is not very informative.

Because the mean value can go very low no meaningful peak

can be localized.

6) The coefficient of bimodality is low for target lines.

However, this must be interpreted as a seemingly necessary

but insufficient condition. The coefficient of bimodality

is defined (Fig. 7) as the number of times a given signal

crosses its mean value, where the lower this coefficient,

the greater the bimodality.

It should be possible with these findings to build an algorithm that

will give hints as to where the targets are and, therefore, enable one

to define a target area. However, we did not pursue this line because

the results are highly directional (for the case under discussion, for

example, processing the columns instead of the lines would be

frustating). The underlying assumption is to the effect that the

background is "uniform" for almost each member of the set of signals

considered (lines or columnns). Although chis assumption is much less

restrictive than assuming the background is uniform for the whole image,

it is nevertheless too restrictive for applications involving ground

scenes.
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COEFFICIENT OF BIMODAL ITY

FIGURE 7 -The coefficient of bimodality of the signal illustrated here
is 2 since it crosses twice the line corresponding to its
mean value. This is typical of a strongly bimodal signal.
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7.0 FINE STRUCTUJRE ANALYSIS (FSA)

The previous sections deonstrate that the background constitutes

a stumbling block that is very difficult to circumvent. Why not then,

instead of dealing with the image in its integrity, try to eliminate the

background, or at the very least to render it more "uniform". This is

what we study in this section as a first step to further processing.

7.1 Background Elimination Technique (BET)

In Sect. 4 it was said that a signal (a given line or column of

an image) bearing a target can be thought of as composed of a sharp peak

surperimposed on an otherwise continuous (slowly varying) background.

To estimate the background one must then find a way to smooth the signal

but without including the peaks that might be part of it. The most

straightforward approach is to use a narrow bandwidth low-pass filter to

guess the general tendency of the background and then subtract it from

the signal. A low-pass digital filter can have a finite impulse

response (FIR filter) or an infinite impulse response (IIR filter) and

either can be realized recursively or nonrecursively. Because of its

real time implementation potential, we opted for a recursive IIR filter

and, more explicitly, for a 4-pole Butterworth filter (FPBF). Other

digital filters might do as well or better than this one but, since we

obtained good results with the FPBF, we did not explore other

possibilities.

To illustrate BET we will use the signal of Fig. 4, which

corresponds to line 175 of image 6 from the Alabama Data Base. This
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signal is fed to a low-pass FPBF d-,jital filter whose 3-dB normalized

cutoff frequency (f/fs) is equal to 0.01. The filtered signal

generated is shown in Fig. 8A along with the input signal. From [12] we

see that to obtain an equivalent result with a rectangular FIR filter,

the filter size must be equal to 44. It is obviously advantageous in

such a situation to rely on a recursive IIR filter. Two points are

worth mentioning about the filtered signal of Fig. 8A:

a) since we deemed the initial conditions to be zero, there is

a droop in the curve at its origin, and

b) the filtered signal is shifted to the right. This is

evidenced by the distance separating the absolute maximums

of the 2 curves. Using [10] one can check that the shift

spans about 42 sampling intervals.

The first anomaly can be easily corrected by selecting the initial

conditions so that there is no transient at the origin. At this point,

the filter sees a step function of height H, where H is the value of the

signal at t=0+. One can then prove that the required initial conditions

are (the quantities appearing below are defined in Sect. 2):

f 3 (nT) = H/b 0
and [28]

f2 (nT) = H/(1 + b + b2)

for n50. These initial conditions are nothing but the asymptotic

response of the filter to a step function. Let us notice that one can

---- ---- ---- ----
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FIGURE 8 -Background Elimination Technique (BET); Line 175 of image

ALA 6 3
A) FPBF filter initially at rest;
B) FPBF filter with nonzero initial conditions; the solid

line is the left filtered signal and the dashed line the
right filtered signal;

C) Arithmetic mean of the two filtered signals;
D) Fine structure or fluctuating component of the input

signal.
The cutoff frequency of the filter is 0.01.
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use for H the average of the first 3 or 5 pixels, or anything else, in

lieu of the first pixel alone; this may even be necessary if the first

pixel manifests a tendency to wildness. Figure 8B shows the filtered

signal (solid line) that results when we use these new initial

conditions.

The second anomaly can be as easily corrected ty shifting the

filtered signal to the left but we will take advantage of it to clip the

peaks. Let us consider Fig. 8B. The signal is fed to the filter from

left to right. Normally, we would expect the filtered signal to peak

at, or close to, the position of the main spike in the input signal.

Instead, it overshoots to the right. Therefore, had the signal been fed

from right to left, the overshoot would have occurred to the left

(dashed line in Fig. 8B). By combining both filtered signals in some

fashion, we can expect to obtain a curve that will completely bypass the

peaks to follow only the broad characteristics of the input signal. The

following combinations were tried:

1) minimum value,

XL(t), if xL(t) < XR(t) [29]

y(t) =

xR(t), otherwise

2) arithmetic mean,

yMt = (XL (t) + XR~t) )12 ;[30]

3) geometric mean,

yL(t) x L(t) XR(t) ; 131]
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where xL tM and x R(t) are the left and right filtered signals

respectively. All things considered, the arithmetic mean (Fig. 8C) was

judged most satisfactory. Figure 8D exhibits the fine structure

(fluctuating component) of the illastrative signal, that is, what is

left of the signal once the estimated trend of the background is

removed.

The crux of BET is the choice of the proper bandwith or, what

comes to the same thing, cutoff frequency of the FPBF filter. We

attempted to define a procedure (based on Fourier spectra) for selecting

it but with no great success. Figures 9 and 10, built on the model of

Fig. 8, shed some light on the problem and its possible solution. This

signal constitute3 a challenge since the target sits right in the middle

of a narrow well. If we use a cutoff frequency of 0.01 (Fig. 9), the

inertia of the filter is such that the well is bypassed, and

consequently shows up again in the fluctuating component (Fig. 9D). We

would of course like the filtered signals to follow the well. For this

purpose we have to use a wider bandwidth, as in Fig. 10 where the cutoff

frequency is 0.05. There the fluctuating component (Fig. 10D) is

intuitively more satisfactory. Mother aspect of the same question

relates to the delay time introduced by the filter. That of a 0.01

cutoff frequency filter is about 40 sampling intervals and that of a

0.05 filter, 6. Therefore, combining the right and left filtered

signals, we can say that the first filter is geared to clip peaks 80

sampling intervals wide, whereas the second filter is possibly

restricted to much narrower peaks, of the order of 12 sampling

intervals. This is well evidenced by Fig. l0B where the filtered

signals peak on either side of the target hot spot. Conclusively, BET
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FIGURE 9 - Column 98 of image ALA 4 8; fc/fs = 0.01

although akin to highpass filtering, differs from it in one important

way, the target peaks are saved, i.e., they are not split into 2 peaks

respectively for the left and right edges.
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FIGURE 10 - Column 98 of image ALA 4 8; fcf 0.05
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7.2 Fine Structure Statistics

we dropped the analysis of the gross structure of an image (Sect.

6) because the results, for ground scenes at least, are highly

directional. There was a great temptation to resume this sort of

analysis with the fine structure of the image. We did not resist.

However, it was not long before we realized that the set of statistical

parameters would have to be enlarged. For one thing, both the mean

value and the median are meaningless (both are close to zero) and, of

course, so is the difference between these two quantities and the ratio

of the standard deviation over the mean value. For another thing, the

coefficient of bimodality, as defined in Sect. 6.1, is no longer

informative. To make up for these parameters, we threw in the skewness,

the kurtosis and the correlation length. We did some exploratory work

with the U, V, W and a statistics (Sect. 3) but we abandoned when it

became obvious we were heading for a disappointment.

The statistical parameters used to characterize the fine

structure of an image are then the variance (hereafter designated by V;

there should be no contusion with V statistics since we will not refer

anymore to this one), the skewness (S), the kurtosis (K) and the

correlation length. The defining formulas of the first 3 parameters and

their physical meaning are given in Sect. 3. The definition of the

correlation length is intermingled with that of the normalized

autocorrelation function [25-27]. Since full determination of the

autocorrelation function is liable to use too much computing time (in

prospect of a real time hardware implementation of the ideas put forward

here) only the first value (at lag number 1, of this function will be
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determined. However, we will assume that the shape of the

autocorrelation function matches an exponential curve,

r ' / 0 = exp(- r/L) [32]C r = r R 0

where L is the correlation length in unit of sampling interval. We are

going to use the correlation length as a rejection criteria, that is, if

the correlation length of a given signal is less than i , or if the

first value, C1 , of the normalized autocorrelation function is less than

exp(-l/j ), the signal is discarded as noise. From this standpoint, the

postulated shape is rather conservative for two other conmmonly

postulatud shapes (straight line and Gaussian) have a greater value

(Fig. 11) at r=l.

AUTOCORRELATION

1 .0

0

LAC NUI1YER

FIGURE 11 -This figure depicts 3 curves having the same correlation
length (L = 2). These correspond to commonly postulated
autocorrelation shapes.

lI
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Figure 12 shows smoothed plots (3-point moving average) of the 5

statistical parameters (x, V, S, K and C 1) ascribed to each line and

column of image ALA 31 8. Wqe recall that to obtain them, the signal at

hand (a given line or column of the original raw image) is first

deprived of its background by using BET in conjunction with a low-pass

FPBF filter whose cutoff frequency is 0.05. The 5 statistical

parameters characterizing the resultant fluctuating component are then

calculated by using the formulas given in Sect. 3. As mentionned

before, the mean value (Fig. 12A) is useless in regard to information

content, but since we need it to determine the other parameters we have

to calculate it anyhow. The variance, on the contrary, is highly

informative. It exhibits well-defined peaks (Fig. 12B), both along the

horizontal (top curve) and vertical (bottom curve) axes, whose position

corresponds precisely to the position of the targets. Moreover, each of

the 3 peaks that are part of the top curve spans a number of columns

representative of the width of the underlying target. In the other

direction, as the targets lined up, the width of the chief peak matches

the height of the largest target. It is to be noted that these are

qualitative observations. To do otherwise, one would have to define

what is meant by the width of a peak. The third statistical parameter,

skewness, displays (Fig. 12C) the same behavior although less

convincingly, particularly as regards the vertical axis. Also, one

notices a negative spike that can be tracked down in the image as a cold

spot. In reality, this is a burn mark reproduced in all the images of

the aforementioned data base. Figure 12D gives the value of the

kurtosis for every line and column of image ALA 31 8. Here again, the

targets are easily localized on the top graph, whereas the bottom curve

is misleading. The isolated peak to the right might well be interpreted
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as arising from a target hot spot but it may also result from a cold

one. To remove the ambiguity we must revert to the skewness: if the

skewness is negative it is a cold spot, otherwise it is a hot spot. We

recalled from Sect. 3 that a high kurtosis value ascertains the presence

of outliers in a set of data, but whether these outliers occur above or

below the mean value can only be fixed by the skewness. In spite of its

title, Fig. 12E displays the first value of the normalized

autocorrelation function. The dashed lines on these graphs correspond

to the value of C 1  calculated for an exponential autocorrelation

function, [32], whose correlation length is 1.5 (C1  0.51), 1.0 (C1

0.37) and 0.5 (C1  0.14). The idea is to set a lower threshold to

discard abnormal or noisy signals. A threshold of 0.51 works well for

the case considered but, as a rule, it is too severe. On the opposite

side, a threshold of 0.14 does not take a high toll but then one may

question its usefulness. The only threshold left (C 1 = 0.37) proved, in

the light of experimental results, to be unreliable. we will explain in

a next section how we managed to solve the problem. However, we did not

arrive at a clear-cut solution and the role as well as the usefulness of

the normalized autocorrelation function, in the analysis of the fine

structure of an image, will have to be reassessed.
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FIGURE 12 - Fine structure statistics of image ALA 31 8. The cutoff

frequency of the FPBF filter used in conjunction with BET is

0.05. All these curves were smoothed using a 3-point moving

average. Top records correspond to column statistics and

bottom records to line statistics.

I
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7.3 Target Area Delimitation

Plots such as those of Fig. 12 contain all the information one

needs to pinpoint individual targets, or else to delimit a relatively

small-sized target area. We must now extract this information in a way

amenable to automation. We tried various schemes that are in fact

variations on the same theme - normalization and multiplication of a few

parameters coupled with a rejection criteria. After a long trial and

error, we decided on the following procedure based on the product of V,

the variance, by K, the kurtosis:

a) starting from raw data, the records of the various

statistical parameters are first smoothed using a 3-point

moving average;

b) the variance records are normalized so that their maximum

value is 1:

V = V/max(V); [331

C) the kurtosis records are balanced and the values less than

zero clipped prior to normalization:

K = max((K-K), 0), [34]

K= K / max(K), [35]

~ -
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where K is the mean value of the record at hand;

d) the skewness records are likewise balanced:

S= S-S; [361

e) the threshold, q, for abnormal or noisy signals, in

relation with the autocorrelation records, is set to 0.51 (L=l.5)

provided this value does not exceed the upper quartile (P7 5 ) of the

record. Otherwise, it is set to 0.37 (L=1), subject to the same

condition, and as a last resort to 0.14 (L=0.5):

0.51 if p7 5 > 0.51, otherwise

q 0.37 if P75 > 0.37, otherwise [37]

0.14;

f) we form VK-product records as follows:

V-K(j) if S(j) > 0 and CI(J) > q

VK(j) [38]
0 , otherwise.

Figure 13 shows the results of this procedure for the case of image ALA

31 8 considered before. From these graphs, we conclude easily that

there are 3 targets in this image and that they are ranged in a row

right in the middle of it. We are sure that the number of targets is 3

for there is only 1 peak along the vertical direction. However, had 2

peaks been present in the bottom graph of Fig. 13, we would have been
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PRODUCT VK(S,L) (IMAGE 31; F=0.O5)
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FIGURE 13 - VK-Product records of image ALA 31 8
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confined to merely state that the number of targets is at least 3

(greatest number of peaks), and at the very most, 6 (product of the

numbers of peaks). Let us look back at the above procedure. Skewness

and kurtosis records are balanced to remove any bias that might be

present in these records. This is bound to happen because BET acts only

in one direction and then, as in a one-dimensional filtering operation,

features in a perpendicular direction go unnoticed (a good example of

this is Fig. 18C where a crevasse runs across the VFS image, with the

result that the skewness is negatively biased).

To reduce VK-product records to numbers specifying the exact

location of the targets, we proceed as follows:

a) firstly, VK-product records are smoothed using a 3-point

moving average;

b) the coordinates of the highest peak are saved;

c) a threshold is set at 10 percent of the maximum value:

q = max(VK(j))/l0 [39]

and a new, binary, VK-product record is generated:

1 if VK(j) 2! q

VK(j) = [40]

0 if VK(j) < q
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d) a gap-filling algorithm is then used to join the runs of Is

that are separated by less than three Os;

e) the runs of is of gap-filled, binary, VK-product records

that consist of less than three is are discarded;

f) for each run of is, we determine the coordinate of the

leading and trailing 1 as well as the length of the run and

its middle point.

The results for the VK-records of Fig. 13 are shown in Table I.

TABLE I

Target designation based on the VK-records: image ALA 31 8

Horizontally (Top Record)

Target Range (69, 92) ; (108, 124) ; (211, 218)

Target Width : 24 ; 17 ; 8

Target Midpoint : 80 ; 116 ; 214

Vertically (Bottom Record)

Target Range : (206, 217)

Target Height : 12

Target Midpoint 211

Highest Peak: (215, 212)
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Figure 13 and Table I depict a clear-cut situation. Figure 14

and Table II, on the contrary, represent one of the worst case

encountered. Since there is more than one peak in both directions, we

do not know the exact number of target-like hot spots. However, we can

ascertain that this number lies somewhere between 5 and 10. Faced with

such an ambiguity, it is better to define a target area, that is, an

area including all the target-like hot spots detected with the

VK-product records. Such a target area can be delimited by using the 2

peaks farther apart in both directions (Fig. 15B), or else, to limit any

further search, by using the target range in one direction as the width

(height) of the target area, and hence define not one but several (Fig.

15C and 15D) target areas. In the same vein, one can use the

coordinates of the highest peak to initiate a search, for experimental

results show that these quite often correspond to the position of a real

target.

7.4 Experimental Results

The ideas and techniques expounded in this section were

extensively tested on a set of 43 thermoscopic images known as the

Alabama Data Base. The spectral region of the majority (30 out of 43)

of these images corresponds to the 8-14 pmn band, and the remainder to

the 3-5 Prn band. Altogether the images contain 85 targets distributed

as follows (detailed ground truth accompanies Fig. 16): 40 tanks, 29

APCs, 15 jeeps and, finally, a bus. The size of the images is 420 x 335

pixels and they are digitized to 256 levels.



UNCLASSI FI ED

52

PRODUCT VK(S,L) (IMAGE 41; F=0.O5)
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FIGURE 14 - VK-Product records of image ALA 41 3
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The analysis of the fine structure of an image was primarily

undertaken to improve the performance of the silhouette generator by

restricting the search for targets to an area that would ideally be much

smaller in extent than the image itself. This was also the ourpose of

GSA (Sect. 6) though it was discarded here for it turned out to Oe

orientation-dependent. But, as Fig. 16 asserted it, such is not the

case of FSA. Moreover, it so happens that in many instances the target

area delimited by FSA is tiny enough as to allow to pinpoint individual

targets (Table I and Figs. 16-31). This is very interesting since it

means one can designate targets without segmenting the image, simply by

statistical considerations. However, such pinpointing operations should

probably be limited to applications involving one target at a time,

although FSA manages well when confronted with several targets arranged

in a line (Figs. 16-2,8,12,14 etc.). In this last case, however, a

small target might well be obscured by a larger one next to it (Figs.

16-6,33). This phenomenon occurs in a direction parallel to the lire

formed by the targets, for in a perpendicular direction FSA obviously

perceives only one target. Indeed, it can be said that FSA in a way

senses the targets as if they were projected on both axes. So, when the

projections along one axis partially overlap, the quantities measured

(target midpoint; see Tables I and II) do not necessarily fit with all

the targets involved. This explains why many crosses in Fig. 16 do not

sit right on top a nearby target (Figs. 16-16,19,22,31,36). It is also

for the same reason that a group of targets is interpreted as a single

target (Fig. 16-2), and that a target is missed in some L-shaped

formations (Figs. 16-17,35). On the other hand, whenever it is not

possible to unambiguously pinpoint individual targets (Figs.

16-4,7,9,23), one can always define somehow (Fig. 15) a target area and
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subject it to further processing, or possibly initiate a search by using

the position of the highest peak (Tables I and II) as an initial guess,

for experimental results (Figs. 16-28, 29,41) show, as mentioned before,

that this peak quite often corresponds to a real target.

TABLE II

Target designation based on VK-records: image ALA 41 3

Horizontally (Top Record)

Target Range (115, 132) ;(298, 302)

Target Width :18 5

Target Midpoint :122 ;300

Vertically (Bottomn Record)

Target Range (188,195) ; (204,217) ; (365,369) ; (375,385) ; (391,399)

Target Height 8 ; 14 ; 5 ; 11 ; 9

Target Midpoint : 191 ; 210 ; 367 ; 380 ; 395

Highest Peak: (120, 207)

Target Area: (115, 302 ;188, 399)
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I

c d

FIGURE 15 - Various ways to represent the data of Table II. The

position of the highest peak is marked with a cross in b, c

and d, while the square in b represents the target area

defined by using the 2 peaks farther apart in both

directions.
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FIGURE 16 -All the images that constitute the Alabama Data Base have
been histogram equalized (top row) and the results,
(exemplified by Tables I and II) obtained by statistically
analysing the fine structure images mapped into them (bottom
row). We recall that the images are histogram equalized for
display purpose only. The images that were actually
processed are the original, unprocessed, raw images from the
aforementioned data base. When one of the following images
bears nothing but crosses, these designate the calculated
midpoint of the detected targets. on the other hand, a
cross that lies within a target area designates the position
of the highest VK-product peak.
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Alabama Data Base. Ground truth.

Image No. Target(s) Aspect(s)

1T S

2 J.A.T 3R.S.S

3 T.A 3F.3R

4 J.T. S.S

5 T 3F'

6 T.P..J S.S.S

7 T 3R

8 T.A F.S

9 J.T.A S.S.S

10 T 3F

11 T 3R

12 T.A 3R.3F

13 J.A.T S.F.F

14 T.A.J. S.S.S

15 T 3F

16 A.T S.S

17 A.J.T S.3R.S

18 T 3R

19 T.A 3F.S

20 T.J R.3R

21 A R

22 T.A.J 3R.3F.S

23 T S

24 TF
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Image~t No a tS) Aspect(s)

25 T S

26 T 3R

27 T.A F..F

28 T.I\ S.S

29 T.A R.R

30 T.A.J S.S.S

31 T.A.J. S.S.S

32 T.A.J. F.F.S

33 B.A S.F

34 A.J 3F.S

35 J.T.Pi S.S.S

36 T.A.J. S.S.S

37 T.A 3R.3R

38 T.A 3R.3R

39 T.A 3R.3R

40 T 3R

41 T.A 3R.3R

42 T.A 3R.3F

43 T.A 3F.3R

L~egend: A =APC, B3 bus, J jeep, T =tank,

S =side, F front,

R = rear,

3 =3/4 view
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8.0 THRESHOLDIN4G OF FINE STRUJCTURE IMAGES

Once the background of an image has been subtracted by using BET,

one has the choice between two alternatives: to process the resultant

fine structure images along the lines set out in Sect. 7, or to

threshold them by using the silhouette generator. In this last case,

since the background of the fine structure images is "uniform", the SIT

Generator should be well suited for this task. This affirmation is

confirmed by the results of Figs. 17 and 18. Figures 17B and 18B show

the HFS images derived respectively from images 6 3 and 13 8 of the

Alabama Data Base, whereas Figs. 17C and 18C show the corresponding VFS

images. Tnese fine structure images were postprocessed, for display

purpose, first by adding a constant bias, so as to remove negative gray

levels, and then by stretching the gray levels bounded by the 5th and

95th percentiles linearly over the display range. The ideas alluded to

in this section are fully developed in Ref. 14.
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a

- e

FIGURE 18 - bresholding of the fine structure images derived from image

13 8 of the Alabama Data Base.

I --
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9.0 CONCLUSION

The present report laid the foundations of a class of

segmentation algorithms (segmenters) for detection of targets in IR

imagery. The single basic assumption is that the targets possess a

larger thermal signature than other objects embedded into the

background. This class of segmentation algorithms emerged as a result

of efforts to improve an early segmenter devised to extract targets from

IR BOFORS imagery. This first segmenter proceeds according to a single

intensity threshold whence the name SIT Generator to designate it. Its

extraction record is generally excellent whenever the background, on a

large-scale basis, is relatively uniform. 'When this condition is not

met, one can use a thresholding intensity function in lieu of a fixed

threshold. The SIT Generator and its variants try to cope with the

background simply by Partitioning the image. A more promising avenue

consists in levelling the background so as to curb its ascendancy over

the image. This is in essence what the Background Elimination Technique

(BET) expounded in Sect. 7 does. Since BET can be applied either to the

set of lines or columns of an image, it generates 2 images referred to

as the Horizontal Fine Structure (HFS) image and the Vertical Fine

Structure (VFS) image respectively. We have shown that one can pinpoint

targets merely by statistically analyzing these fine structure images,

without having really to segment them. Nevertheless, this last approach

seems very promising and we intend to fully exploit it.
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