®

"AD=A095 717 PATTERN ANALYSIS AND RECOGNITION CORP ROME NY F/6 9/2

UNCLASSIFIED PAR-GO-S! DC~TR=80=356

,m

ADVANCED QUERY FACILITY.{(U)

NOV 80 C P MAH F30602-79-C-017‘0

71

. i

e e

RADC-TR-80-356
Final Technical Report
November 1980

ADVANCED QUERY FACILITY

Pattern Analysis and Recognition Corporation

Dr. Clinton P. Mah

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DTIC

ELECTE}
QMARS 1981%-

ROME AIR DEVELOPMENT CENTER D
Air Force Systems Command
Griffiss Air Force Base, New York 1344l
i ,

This report has been reviewed by the RADC Public Affairs Office (PA) and

is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the gemeral public, including foreign nations.

RADC-TR-80~356 has been reviewed and is approved for publication.

APPROVED: M'; \:".0 t. OO‘L\'V

ZBIGNIEW L. PANKOWICZ
Project Engineer

o=

OWEN R. LAWTER, Colonel, USAF
Chief, Intelligence & Reconnaissance Division

FOR THE COMMANDER: %ﬁ ﬁdd/

JOHN P. HUSS
Acting Chief, Plans Office

APPROVED:

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your organizatiom,

please notify RADC. (IRDT) Griffiss AFB NY 13441. This will assist us in

maintaining a current mailing list.
Retain or destroy.

Do not return this copy.

UNCLASSTIFIED

SECURITY CLASSIFICA‘HON QF THIS PAGE (When Dullanltu'd)

ADVANCED QUERY FACILITY:/)

1§/ REPORT DOCUMENTATION PAGE BEFORE COMBLETING FORM
OR 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
RADCYTR-84-356 HD-po95 7/2 .
e e } 7 I Final. echnical'%g%g: =0

1. et e

B AR R e R

rm 7, il e
7 AU ﬁ—,u_ e J" . R LONTRNCTOR CRANT !UNBER(I)
Cl{gﬁon P 'Mah _ /@fi F30602 79-C~01*ﬁ‘@¢¢
e’y
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::giRAAwOERLKESslNTT'NPURMOBJEERCST' TASK
Pattern Analysis and Recognition Corporaé&on
228 Liberty Plaza ., | 62702F éiz)ifdég
Rome NY 13440 f\ﬁ2~9525k631 7 =]
11. CONTROLLING OFFICE NAME AND ADDRESS ,"”‘ 1 12, REPORT ODAYE -- -
Rome Air Development Center (IRDT) ¢ /7 /| November @980
Griffiss AFB NY 13441 e

~TT KUMBER OF PRoes
70

e MON&TORI__M._A\GENCY NAME & ADDRESS(if dillerent from Controlling Oflice) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

Same / - 7]
el rl
L__—__’__J 5a. DECL ASSIFICATION DOWNGRADING

SCHEDULE
N/A

L

16. DISTRIBUTION STATEMENT rof this Report)

Approved for public release; distribution ynlimited.

17. DISTRIBUTION STATEMENT fof the abstract entered 11 Block 20, if ditffetent from Report)

Same

¥ A T o o

TS et

18. SUPRPLEMENTARY NOTES

RADC Project Engineer: Zbigniew L. Pankowicz (IRDT)

19. XEY WORDS /Continue on reverse side il necessary and identify by block number)

Question Answering Methodology Computational Linguistics:
Relational Data Modeling

Multiple-Database Access

Natural Language Query Processing

0 ABSTRACT /Continue on reverse side If nacessary and identify by block number)

The report documents cumulative results of a 15-month R&D effort consist-
ing in development of an adaptive query facility (AQF) for interactive
exploitation of differently formatted target databases. AQF is a soft-
ware package intended for experimentation and testing in operational
environment. It provides a flexible and transparent on~line user access
to tarzet databases of arbitrary structure, and offers a variety of ser-
vices including natural language query processing, relational modeling..{

DD .5 5%%, 1473 coimion ofF Y Nov 65 15 0BSOLETE UNCLASSTFIED (Cont"d)

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

(<)) '\,' -
as—————

Item 20'(Cont'd)

D of target data structures, correlation of data from various databases,
and generation of informative report displays for users lacking
experience with computers. AQF operates through an intermediate
relational data model, thus insuring independence of the organization
of target databases and their respective database management systems.
Software package consists of a natural language query processor;

a general target database access module; an automatic report generator;
grammar and dictionary entry software; database mapping table software;
diagnostic and validation tools, and a basic grammar for English query
language. The package is written in FORTRAN for portability and run-
nable on small scale processors like DEC PDP 11/70 and PDP 11/45 under
RSX~11M. AQF is also implementable on a micro-processor. Some com-
mercially available CRT terminals can accommodate a 16-bit DEC LSI-11/03
micro-processor, up to 128K bytes of static MOS memory, serial inter-
face, and a dual floppy-disk drive at a total price under $12,000.
RSX~-11M can run on such a micro-processor system, thus insuring immedi-
ate implementability of AQF in the present FORTRAN version on the
system.

1
1

Accession For
[NTIS GRAXI p-¢
DTIC TAB O

Unannounced 0
Justification —

By
D@sgribution[o
_yAvailability Cades

" |Avail and/or -
Dist Spacial

UNCLASSIFIED

SECURITY CLASSIFICATION OF Tu'" PAGE(When Data Entered)

Section

1.
1.1.
1.2,
2.

v v FOF F OF W ow
[S

@]
. .

(€] £ w N =
. .

a OO w»n w»n
—

TABLE OF

CONTENTS

Introduction
AQF Description.
Background
Concepts « . « « o « «
Natural Language
Relational Hierarchies .
Intermediate Queries . .
Target Data Base Mapping
Access Paths
Semantic Dependence. . .
Organization
Query Language Processor
Reference Resolution . .
Access Path Generation .
Data Base Searching. . .
Report Generation. .
Sorting. « . . «
Comparisons.
Menu-Driven Systems. . .
Formal Language Systems.
Natural Language Systems
Setting Up . . «
Data Modeling.

Vocabulary

Special Access Procedures.

Target Data Types. . . .
Mandatory Fields
Further Work

Improvements

Page
1-2

1-2
1-10

2-1
2-2
2-4
2-7
2-8
2-3
3-1
3-1
3-3
3-5
3-8
3-11 :
3-1y *
u-1

4-1
4-3

-y
5-1
5-2
5-4
5-4
5-5
5-5
6-1
6-1

——

ST TR e e S T

Fo

Section
6.2.

TABLE OF

CONTENTS (Cont.)

Extensions
Conclusion
Capabilities
User Development .

Evaluation

Prospects. . . .

References

r — —m

EVALUATION

The objective of this effort consists in development of an advanced
query facility (AQF) for experimentation and testing, in order to assess
the utility of natural language access to on-line target databases in
the operational environment.

Although AQF is conceptually similar to a few other query systems with

f natural language front-end, it differs from them in the f0110w1ng important
respects: high degree of portability (AOF software is written in FORTRAN);
operational economy (implementability on processors as small as NEC PDP-
11/45); target database independence (AOF makes no aprioristic assumption
about database structure), and multiple-database access capability that
requires only a minimal additional programming. Furthermore, according

to the Report, operation of AQF requires no special software other than

a FORTRAN compiler at the level of DEC FORTRAN-IV-PLUS and a linker with
overlaying for operation on processors with small address spaces.

It is also worth not®ng that AQF can be implemented at a low cost on a
desk-top microcomputer, or on any off-the-shelf CRT termminal that can :
accommodate requisite microprocessing hardware components, such as those ‘
described in Section 7.2, USER DEVELOPMENT, pp 7-3 - 7-4.

According to the Report, "the main advantage of AQF is its applicability
to existing data" and "the capability of generating information displays
corre]ating data from different data bases." (cf. 7.1.2 Multiple Nata
Bases, p. 7-2)

i&“\,t\@o«.(u.

GNIEW L. PANKOWICZ
Project Engineer

1i4

- wy

1. INTRODUCTION

The Adaptive Query Facility (AQF) is a portable collection of data base
access software developed by PAR Corporation under contract F30602-79-C-0174
for the Rome Air Development Center. The facility was designed primarily to
address the problem of flexible, but transparent, user access to one or more
existing online formatted data bases. AQF operates through an intermediate
relational data model for data base independence and supports natural language
queries. It is implemented in FORTRAN and can run on medium-scale processors
like the DEC PDP-11/45 and PDP-11/70.

This report describes the various work carried out under +the AQF
contract. It also describes what AQF consists of, how the components of AQF
operate and interact, and where AQF might be applied most effectively.
Details of algorithms and their implementations are not described; these can
be found in the AQT project final and in the AQF program documentation. A
separate report, "The AQF User's Manual (System Manager's Implementation
Guide)" describes in detail how to configure an AQF system for a specific
target data base. In.Section 4 of this report, there is a comparison of AQF

with other data base access approaches.

1.1 AQF DESCRIPTION

AQF comprises a set of FORTRAN subroutines that may be incorporated into
an online information system to provide an interactive query capavility or
that may be built into a stand-alone user interface to a target data base. In
its full configuration, AQF is organized into five separate passes, patterned

after the structure of a compiler for a high-level programming language.

The overall design of AQF aims at providing a simple, but flexible query
capability oriented toward users with little computer training. There is no

intent to demonstrate any sort of machine intelligence in AQF; but the ability

of the different passes of AQF to support each other allows AQF to provide

1-1

Apdageiidy

g S o I

capabilities usually associated with more complex natural language systems.
The handling of linguistic reference in AQF is an example of this (see Section

2.2).

1.1.1 Design

Each of the five passes in full AQF performs a distinct function: }

Pass O is a table-driven query language processor that rewrites a
user query into an intermediate query referring to an internal
logical model for a target data base. User queries may be in
natural language, depending on the grammar driving the query
processor.

queries relative to an internal logical data model. This
handles references that cannot be handled conveniently in the
grammar for Pass O. It distinguishes between anaphoric
reference and co-reference. X

Pass 1 is a linguistic reference resolution module for intermediate {

Pass 2 converts a resolved intermediate query into a target data base
access sequence. This process is table-driven to allow AQF to
be independent of the target data bases. Some optimization is
carried out.

T,

Pass 3 interprets target data base access sequences to search for and
retrieve data. It creates lists of reirieved items that may
be referenced in following queries (co-reference).

Pass 4 formats lists of retrieved items for display. Information not
actually specified in a data access sequence may be included i
when needed for effective interpretation of displays. This is i |
table-driven.

Pass 5 actually puts up an AQF output display, with an optional
sorting of output lines by fields.

The five passes are modular. Pass 3 is in a sense the heart of AQF.

Depending on the circumstances, the other passes can be replaced or dropped

entirely.

In addition to the five passes, AQF includes various support programs to
create and to maintain the various tables driving the passes. All AQF tables
are in binary form, but they are generated from ASCII text files. The
programs for doing this range in complexity from a large grammar entry program
to programs that convert ASCII straight into binary. All support programs are
written in FORTRAN, like the rest of AQF.

1.1.2 Services

In its full configuration, AQF offers a variety of services to help a
user in the analysis of stored data. To begin with, AQF logical data models
lets the user see the structure of the target data base as a more simple
hierarchy of relations with conventions to make names correspond to natural
language usage. AQF itself can automatically translate references to an AQF
logical model 1into references to target data bases. Furthermore, the AQF
query processor combined with an English grammar allows even logical data
models to become transparent by automatically translating input queries into
intermediate queries. This also eleminates the need to learn any formal query

language syntax.

The AQF search and retrieval algorithm together with the AQF report
generator allows for correlation of data from different data bases, even
though they might have disparate structures. This provides a capability
similar to the JOIN operator of relational data base systems, but completely
transparent to user. AQF in effect can automatically construct data base

relations in response to an information request.

AQF can be applied to any target data base with only a little additional
programming. Such programming is unavoidable because AQF cannot anticipate
all possible data types and all possible data access methods, but this is

isolated to a small number of submodules called by the various passes of AQF.

1-3

S . M . A o W N s e A . . A

Use of AQF requires no special software other thanp g FORTRAN compiler at the
level of DEC FORTRAN-IV-PLUS and a linker with overlaying when running on

processors with small address spaces.

1.1.3 Examples

The following sample of AQF wusage is drawn from a stand alone
demonstration system having a Soviet fighter data base implemented with
FORTRAN files. This illustrates what AQF can do from the user's standpoint.
What AQF will actually do in an operational application will depend on the

query language vocabulary defined and the degi=e that the report generation

options are employed.

1-4

$ RUN ORVD
$A Q0 F DEMONSTRATION SYSTEM &
| VERGION 08-04-80 4

GRY>TELL HE ABOUT AIRCRAFT.

AIRCRAFT(?)
{:)

@1 AIRCRAFT

THIS IS A SOVIET FIGHTER AIRCRAFT PATA BASE,» DERJVED FROM
UNCLASSIFIED PUBLICATIONS. IT DESCRIBES CREWS, FUSFLAGES,
WINGSs» ENGINES: ARMAMENTSy AND PERFORMANCE.

GRY>LIST FIGHTERS ORDERED BY NATOD NAME,

AIRCRAFT(?)[ROLE:={AWIF {GAHSIH/BH/TH/AY)
» JOFNTIFTCATION(?)L/NATO/ NAME}=2'S]
()

ROLE /NATO/ NAME

F/B

FARMER HIG-19
F/R FARNER-C NIG-19SF
F/R FARHER-D NIG-19PF
F/ FARKER-D MIG-19PH
FGA/T FISHBED HIG-21
FGA/T FISHBED-C HIG-21F
FGA/T FISHRCD-D MIG-21PF
FGA/Y FISHMED-F MIG-21PFH
FGA/T FISHRED-J NIG-21PFMA
FGA/ FISHBED-J NIG-21MF
FGA/T FTSHRED-: NIG-21KF
FGA/Y FISHRED-L MIG-21MF
ARF [[SHPOT su-9
Fo/a FLOGGER MIG-22
rs/a +LOGGFR-B MIG-23B
F&/8 FLOGGER-C MIG-23U
F/k FRESCO NIG-17

GRYOWHAT ARE THE DIMENSIONS OF THE FARMER?

AIRCRAFT IDENTIFICATION(1!)[NATO NAME!=FARNER)

» DINENSION(?)
'
- £l f1 FT
HIG-19 FARMER LN: 48.83 HF= 13,19 WNS= 29.54 j
QRY>HOW MUCH DOES IT NEIGH?
+ AIRCRAFT MEIGHT(?){..}=1]
()
J
NEIGHT
- LB
HI16-19 FARMFR 19180
ORY>PRINT THE ARMAMENT OF THE FARMER. j
AIRCRAFT TDENTIFICATIONCI!)LNATO NANF:=FARMER]
, ARMAMENT(?)
()
j
H1G-19 FORMER 1CFRNE 1 A KISSILE ALKALI
3 CANNDN
ICFaNE 4 AS ROCKET
2 ROMK
3 CANNON
BCFGN® -1 AS ROCKET
2 BOKB
3 CANMDN

ORY>HOM FAST CAN IT FLY?

+ AIRCRAFT PERFORMANCE
> PFRFORMANCE(?)[SFEED:-%]
()

SPEED
-HACK -+
iI6-19 FARMER 0,50 80000
0.60 70000
0,75 60000
0.97 30000
1.24 40000
1.32 30000
1.09 20000
0.84 10000
0,66 0

QRY>THE FRESCO?

+ AIRCRAFT IDENVIFICATION(?)(1!)THATO NANE}=FRESCO]

()
SPEED
HACH --FT
N16-17 FRESCO 0.39 40000
0.48 30000
0.62 20000
0.80 10000
0.92 0

2

GRY>GIVE WEXGHTS OF FIGHTERS WITH COMBAT RADIUS OVER 500,

AIRCRAFTIROLE : = {AWIF{GAHSIH /BN H/AV)
» PERFORMANCEL/COMBAT/ RADIUS$>500]
+ NEIGHT(?)L..:=4]

)

ROLE /CONBAY/ RAMUS
N K1

FS/A MIG-23U FLOGGER-T, 600

F&/4 KiG-23B FLOGGER-B 600

FS/a H16-23 FLOGGER 400

FGA/T MIG-21PFWA FTSHBED-J 1183

FGA/T MIG-21PF¥ FISHBED-F 1183

FGA/T HIG-21PF FISHEED-D 1183

FGA/1 MIG-21NF FISHBED-1 1183

FGA/T HIG-21HF FISHRED-K 1183

FGA/T MIG-21MF FISHBED-J 1183

FGA/T HIG-21F FISHBED-C 1183

F6A/1 HIG-21 F ISHBED 1182

ROLE WEIGHT

Fs/a M16-23U FLOGGER-C 28000

F5/A NIG-21B FLOGGER-R 28000

F&/4 AI6-23 FLOGGER 28000

FGA/T MIG-2IFFMA FISHBER-.! 27750

FGA/T HIG-21PF¥ FISHRED-F 27750

FGA/T HIG-21PF FISHEER-} 27750

FGA/T MIG-214F FISHRED-L 27750

FGA/T MIG-21NF F 1SHBED-K 27750

FGA/T MIG-21HF FFIGHBED--J 27750

FGA/T MIG-21F F ISHBEI-C 27750

FGA/T MIG-21 FISKKED 27750

ARY:"Z

BYE...

1.2 BACKGROUND

Online data bases allow for fast responses to information requests and
make the data handling capabilities of computers available to users. The
actual usefulness of online data bases, however, will depend a great deal on
how well a user and a system can communicate. In many situations, this may be
difficult; for example, it might require the user to learn a private access
language and to be able to designate items of data in a particular way.
Typically this language will have a logical form, and the data will be
organized according to global systems constraints -- making the data base
opaque to a user who is neither a logician or a data base expert. A system
also may have problems communicating information back to the user in a way

that is readily interpreted.

An additional complication is the frequent existence of multiple data
bases, which for historical reasons were developed separately with their owm
private access languages and data base organizations. This multiplies the
difficulties for a user and makes it unlikely that the user will be able to
make connections between data stored iu different places. How to display such

data in a way that makes sense to a user is also not obvious, especially if

the connections are not a simple direct one-to-one relationship.

One important approach to improving communication between user and system
is the relational data model [3]. This approach defines data base access in
terms of an abstract model of stored data, where details not of interest to
the user are masked. Because there is much less to talk about, a private
access language can become simpler, and the designat.un of data items is much
easier. The problem of communication, however, has not gone away. In the
typical relational system, the nonexpert user still faces a private access
language in logical form and finds data organized primary according global
systems constraints. Furthermore, there is still the question of how to

impose a relational model effectively on existing data bases with different

kinds of siructures.

‘ 1-10
) - . N |. . N L . n i

1.2.1 History

The development of AQF began with a basic observation about the
designation of data in REL [7} system, an online 1interactive data analysis
system based on a binary relational model. In a proposed application of REL
L0 a Soviet aircraft data base, the names of relations tended to be rather
long and to contain many words in common; for example, "AIRCRAFT DESIGNATION",
“AIRCRAFT TYPE", "(AIRCRAFT) FUSELAGE LENGTH". This suggested that the
relation names might be factored out, yielding a hierarchical structure that
was generalized into the notion of a hierarchy of n-ary relations, each

designated by a single word (see Section 2.3).

The use of a relational hierarchy as a logical model made it fairly easy
to designate data in & query language because the factoring out of names
simplified the construction of a dictionary. This also made it easier to
construct a query language based on English syntax, since the semantics of the
query language would be limited to aspects of a relational hierarchy; that is,
a query has to map into references to relations, fields, functions, or values,

no matter how complicated it might be.

The major question of feasibility in this general scheme was whether
there existed a reason for automatically mapping a relational hierarchy
logical model into existing target data bases of arbitrary structure. This
matter was addressed in the Advanced Query Techniques (AQT) effort [5], in
which the basic algorithms now in Pass 1,2,3, and 4 of AQF were developed and
demonstrated in a system running with a Soviet fighter data base. This showed
that it was possible on a DEC PDP-11/70 to have a query facility in which the
structure of target data bases (as well as logical data models) could be made

almost transparent.

The Advanced Query Facility ef.ort grew directly from AQT. 1Its goal was
to develop a portable data base access facility out of the AQT demonstration

system. This involved the extensions and improvements of passes ' through 4,

PR,

the impiementation of pass O in FORTRAN, and the addition of pass 5, a sort

module. The overall structure of AQF was laid out to keep target data base
dependence to a minimum. Everything now has been brought together into one
software package available for distribution on a small (600 ft.) reel of
magnetic tape. Two AQF demonstration systems have been implemented, one with
the AQT Soviet fighter data base and the other with a U.S. airfield data

impl-mented with DEC RMO-11 data base software.

... helated Cystems

AQF is similar in concept to a number of other systems currently under
developmoent: PLANES fR}, LADDER [4], and others. These represent direct
application of natural language processing techniques to data base access
where the system developer has no control over the content of the data ba.e.
The content 1is determined by a user with a specific end in mind; and the
system is required both to accommodate initislly given data and to adapt to

any new data as user requirements change.

This is 1ifferent from laboratory natural language systems (e.g. SHRDLU
T*:) where the piranned carpabilities of a system usually determine the choice
of # data base. Duch a system tends to be so highly tailored to its data base
that it cannot be readily applied to a new one. It serves primarily as a
vehicie for investigating and demonstrating new natural language techniques;

it is not intended as a practical tool for actual users.

AQF and related systems have the opposite emphasis. These are supposed
to help users to overcome real information problems and need not involve any
new natural language techniques at all {although this almost always is still
so). Tne difference in emphasis means that simplicity, speed, reliability,
and urderstandability of a system are at least as important as its technical

capabilities, if not more so.

1-11

AQF differs from other natural language systems for applications in three 4
key ways:

& It is a self-contained package written in FORTRAN and developed to
run on medium-scale minicomputers.

® It makes no assumptior about the structure of a target data base or
about the data base manage system; multiple data bases present no
difficulty.

® It incorporates extensive report generation capabilities as well as
query processing capabilities.

AQF in short is designed to be applicable in almost any situation where data 1
base access might be a problem. It does not require any particular hardware

or software to run.

1.2.3 Target Applications

Although AQF can run on large mainframe processors, it is most

advantageous on mini-computers. It was originaily designed to serve users

such as intelligence analysts needing a dedicated processor to work with

h sensitive data. Typically this rules out large mainframes, and with smaller
' machines, the user has to work with data base systems having only primitive
interactive query facilities, if any at all. Given in addition that users

would tend to be inexperienced with computers, bringing a natural language

query capability to smaller machines seems a good idea.

Natural language data base access is helpful when a user has the problem
of correlating data from different places in order to perform a task. This
kind of situation is difficult for a menu-driven or similar fixed-query system
to handle because these imply fixed displays of information that are not
always presenting exactly what the user wants. Accessing more than one data

base at a time is a special case of this correlation problem.

1-12

The AQF software package aims at supporting users, expert or not, who
want to manipulate online data in various ways to discover possible
connections. Its natural query language front end, its general retrieval
mechanism, and its report generation capabilities sent to provide flexible
access when needed for analysis of data from different sources. It also

eliminates the need for any special user interface on data base systems.

2. CONCEPTS

The key concepts underlying AQF have already been introduced informally
L in Section '. This section will define these more rigorously in order to
provide a theoretical basis for subsequent discussion. Discussion will be in
the following worder: ‘') natural language, (2) intermediate queries, (3)
relational hierarchies, (4) table-driven data base mapping, (5) access paths,
/

and (6) semantir~ dependence of data.

2.1 NATURAL LANGUAGE

Nc one yet knows how to program a computer to understand language in all
the wiys that person can: reading a magazine, carrying on a conversation,
listening to a radio commercial, and so forth. ™.is does not mean, however,
that natura! language is impractical for computers. In any practical computer
appli~ation, there 1is never any question of completely emulating human
language behavior; rather the need is that of identifying the kinds of
} transactions between pergon and machine that have to take place and setting up

conventions t- make this process as painless as possible.

Natural language provides & particularly good source of potential
ronventions for transactions because it represents a highly evolved tool for
communication und is something that people can use skillfully without
congcisug efinrt, To build a natural language computer interface, the
strategy i3 straightforward: first, make no query language conventions that

confli2t Wwith natural language; and second, incorporate at least counterparts

to *Fe wasic referentia. conventions of natural language, including the
contextua, repaacement ot long linguistic expressions by short ones. The
firgt Lol of the strategy avoids making a user unlearn things; the second
Trtroducres 4t ieast the most Adevelopmentally primitive part of natural

Languare cut. taby talk' ointo s query language.

For a data access domain of discourse, not much more than this is
actually required for natural language. In the case of AQF, the semantics of a
query language is established by a relational hierarchy logical model;
anything meaningful must refer to some aspect of that model: relations,
fields, values, or functions. Syntax is relatively unimportant here, for no
matter how complex all meaningful syntactic relationships expressed in any
query have to be interpretable ultimately in terms of the hierarchical

structure of the logical model.

This enormous simplification of the natural language problem of course

entails a certain cost; "how" and why queries cannot be handled

conveniently, for example. Nevertheless, the query language that can be
defined is adequate enough for general data access, and there are certainly
implementational advantages to simplicity. A query language with relational
hierarchy semantics is in any event more natural than one based on predicate
calculus disguised to look like English by writing quantifiers and connectives

out as werds.

2.2 RELATIONAL HIERARCHIES

A relational hierarchy can be thought of as a special kind of relational
data structure. Formally, it is simply a collection of the usual sorts of n-
ary set-theoretic relations defined over various classes of data objects with
a partial ordering imposed on the relations. The partial ordering, is defined

linguistically as follows:

1. eech relation has a name consisting of a single common noun;
e.g. AIRCRAFT.

2. if a field is defined for a relation, then standard linguistic
usage permits the relation name to precede the name of field as
a modifer; e.g. AIRCRAFT NATO NAME for the field NATO NAME.

3. any completely ordered sequence of relation names is
linguistically acceptable; e.g. AIRCRAFT, AIRCRAFT ENGINE
IDENTIFICATION, ENGINE IDENTIFICATION.

4. each field is as high up in the relational hierarchy as
possible, consistent with the sense of the field name and
linguistic usage implied by the preceding requirements.

Here is a simple example of a relational hierarchy.

ATRCRAFT

. . . IDENTIFICATION [NATO NAME, SERVICE NAME]

.+ . WING

. . . . DIMENSION [SPAN]

+ + . FUSELAGE

. . . . DIMENSION [LENGTH]
. . . ENGINE [TYPE]

. . . IDENTIFICATION [MANUFACTURER, DESIGNATION)

The point of a relational hierarchy is to take advantage of the many
degrees of freedom possible in the definition of a relational data model so as
to define a model conducive to natural language. The form of relational
hierarchy represents in fact an attempt to make the designation of data
elements in a model correspond closely to linguistic usage regarding words
nmodifying other words. Data dependence in the model in some sense is made to

parallel linguis‘.c dependence in a natural query language.

Although this approach may seem simplistic as far as natural language
systems usua.ly go, it actually works out fairly well in the specialized data
base accese application that AQF is intended for. A.f does not really need to

have anything more elaborate, and from the standpoint of designing for maximum

portability, it should not. Relational hierarchies allow AQF to get by with

relatively little front end query processing.
2.3 INTERMEDIATE QUERIES

The first part of AQF query processing is to translate an incoming
natural language query string into a formal intermediate query string
referring to a relational hierarchy logical model of a target data base. This
appro-.ch has three important advantéges: it improves the modularity of the

query processor, the intermediate forms make it easier to deal with contextual

relationships between queries, and the intermediate query string can be

displayed to show a user whether an input query was processed correctly.

An intermediate query formally consists of a series of clauses having the

following form

XXX yyy zzz |AAA := TT, BBB :> UU]

where xxx yyy zzz is a sequence of consecutive relation names and the brackets
enclose an optional list of conditions on values as associated with fields of
the rightmost relation. A given clause may be dependent or independent

according to its contextual aspects.

A dependent clause is one that can be interpreted only in the context of
the preceding clause; in the intermediate query syntax, a dependent clause is
marked by a "." character at the start of the clause. The sequence of
relation names in dependent clauses need not start from the top level of a
relational hierarchy. An independent clause in contrast can be interpreted
absolutely without regard to context, and its sequence of relation names must

start from the top level of a relational hierarchy.

2-4

An intermediate query nsists’of a sequence of clauses, with the first

clause either independent or dependent and following clauses all dependent.
The relation name sequence must be extendable to the top of a hierarchy in a
way consistent with preceding cf:uses up to the first independent clause; the
sequence for a dependent claus® must start with a relation name that is either
the same as one occurring in the sequence for a preceding clause or

immediately belcw one with the respect to the relation hierarchy.

individual relation names in a sequence for a query clause may be marked

according to information to b returned if the conditions expressed in a query
-
can be satisfied in a target data base. Three markings are defined for AQF:

"(?)" to request retrieval of field values, (Y/N?) for a simple yes or no
response, and "(#?)" for a count of matching instances. In addition, a
relation name can be marked\yith a count specifier of the form (n!), where n
is number when a specific ccunt of matching instances is required or is
omitted entirely to 1indicate specificity of reference without a definite

count.

An intermediate query is terminated by one of three different possible
markers: "(.)"” denoting simple termination, "(&)" denoting termination with
expectation of a following intermediate q&bry related by a logical AND, and
"(1)" denoting termination with a following query related by logical OR
following. These pertain to the possible combination of results meeting
different query conditions to make a single information display.

'y
Here are some exemples of intermediate queries based on the relational

hierarchy example in S=ction 2.2.

2-5

© e N

AIRCRAFT (?) IDENTIFICATION [NATO NAME := *].

()
"GIVE NATO NAMES OF AIRCRAFT."

AIRCRAFT (#2)

. WING DIMENSION [SPAN :> 10 M]

(-)
"HOW MANY AIRCRAFT WITH WING SPAN OVER 10 METERS?"

. DIMENSION [3PAN :> 12 M]
()
"HOW MANY OVER 12 METERS?"

AIRCRAFT (Y/N?)

. WING DIMENSION [SPAN :»> 10 M]

(N

. FUSELAGE DIMENSION [LENGTH :> 15 M]

(.)
"ARE ANY AIRCRAFT WITH WING SPAN OVER 1C METERS OR
LENGTH OVER 15 METERS?"

The "*" value is a special "wildcard" that matches any defined value for a
field. By convention, values for all fields marked by "*" will be returned

when a query clause is marked with a "(?)".

Intermediate queries do not actually constitute a semantic formalism for
AQF in the sense of unambiguously specifying meaning. They are not yet
completely resolved contextually; this job is left for later stages of AQF so
as to lighten the task of the AQF parser, which must translate natural
language into intermediate query forms. The natural language portion of AQF
could also be dropped entirely, with the user either entering intermediate

queries directly or possibly employing some kind of interface software to

generate them indirectly.

2-6

2.4 TARGET DATA BASE MAPPING

This 1is the heart of AQF. The capability of map, 'ng a relational
hierarchy onto a target data base of arbitrary structure makes it possible for
query language processing to be developed without regard to any data base and
in the end provides AQF with its adaptability. The AQF mapping is a table-
driven procedure based on establishing connections between fields in a
relational hierarchy and data items in a target data base. This provides a
way of translating semantic dependence between designated fields of a query

into actual data access linkages in the target data Lac~.

In a sense, AQF is an expert on data base structure. Its mapping tables
and related access procedures constitute an overall description of a target
data base as needed for general interactive user access. Altogether, there
are three main tables, two main linkage procedures, and a special table and

procedure for indexed access.

o A field correspondence table associates a named field of a relation
with a data item of a particular record type within a target data base.

This includes information on data type and units of measurement.

o An intra-relational link table describes the varicus target data access
linkages that tie together the fields associated with a given relation.
This handles the case of a relation encompassing data from several

target data base record types connected by 1-to-1 linkages.

o An inter-relational link table describes the various target data access
linkages corresponding to the hierarchical connections between the

relations of a logical data model.

o The "first record” and "multiple" records procedures in AQF define
operationally the types of target data access linkages referenced in

AQF mapping tables. The first record procedure follows a link to get

the first record instance pointed to; the multiple records procedure
gets succeeding records after the first in case of a 1-to-many link.
Linkage procedures have to be tailored to a given target data base

because it is impossible to anticipate all possible linkages in AQF.

o For indexed access, an indexed fields table specifies the fields that
are listed in an index, and an associated procedure contains code for
using the various available indexes. Indexed access is treated
separately because it only applies only to the initial part of access

to a target data base.

The AQF mapping tables and procedures in general will not include all
possible linkages in a target data base. This is in part because working from
a relational hierarchy makes only 1-to-1 and 1-to-many linkages of interest in
the target data base. It is also usually desirable for security and other
reasons to limit the access of any given interactive data base user with
logical data models map onto the portion of a data base needed by the user and

no more.
2.5 ACCESS PATHS

An AQF access path is a branching sequence of target data references,
each except the first being related to the preceding by a single target data
base access linkage. Access paths are represented internally by AQF as tree
structures. They are wused by the AQF search and retrieval module in
traversing a target data base to find those data fields for which search

conditions must be checked or for which values are requested in a query.

AQF sees 3 target data base as a discrete two-coordinate "access space”,
with the first coordinate being a target data base record type and the second
being a logical mode relation through which data was referred to originally

(the retention of the identity of relations is needed for report generation

later.) The idea is to have each segment of an AQF access path show how to get

from one point of the access space to another.

An access path is constructed from an intermediate query by the following

procedure applied to each field specified in the query:

o Look up the field in the field correspondence table to get a target
record type for it. This locates the field specification within access

space.

o Use the inter-relational link table to move through access space in a

direction that corresponds to moving up in the relational hierarchy.

o If the preceding fails, use the intra-relational table to move to

another point in access space and try again.

0 Stop upon reaching a point in access space which can be reached by a
top-level access method, usually sequential or indexed. If this is
impossible , then the mapping tables are in error.

The access sequences for all fields in an intermediate query are finally

merged to get a single access path.

2.6 SEMANTIC DEPENDENCE

In order to generate a user interpretable display of retrieved data, AQF
has to keep track of the semantic dependence of data items, which is usually
not apparent from looking at a target data base alone. Such dependence is
defined by a data access path, in which is implicit the relational hierarchy
serving as the logical model for user access. The AQF usage of access paths

makes fields occurring along a path depend on all fields preceding it on the

path.

S

This dependence is the basis for AQF report generation. The idea is to

think of the fields specified along a branch of an access path as a kind of
composed data relation, not unlike a new relation formed from other relations
through set-theoretic operations 1like JOIN, INTERSECTION, and RESTRICTION.
The AQF report generator simply produces a display of each of the composed
relations defined by an access path, taking the designated field values from

retrieved record instances for the path.

The basic AQF display procedure“is augmented by what is here termed as
"mandatory key fields." These are fields that are important to show when
displaying a composed relation, but that are not always explicitly requested
in a query. AQF is set up to include these key fields automatically, working
from information in an AQF mandatory fields table. This table associates
implicitly requested fields with particular points in an access space so that
these fields can be inserted automatically into an access path where it

crosses those points.

Typically the maﬁdatory fields table includes the primary keys for a
target data base since these by definition serve to identify items of stored
target data. In a relational hierarchy model, those key fields will tend to
be in the upper part of a hierarchy because most other data fields will be
semantically dependent on them and thus be below them. Special non-data
fields required only for marking off displays can also go into the mandatory

fields table; these would contain no information, serving only to highlight

certain groupings of retrieved data.

3. ORGANIZATION

This section will look at AQF from an implementational standpeint. The
overall structure of AQF 1is 1like that of a multi-pass compiler for a
programming language. The multi-pass approach works out well when integrating
many diverse algorithms and it is a necessity where limited address space
prevents having everything in main memory. The discussion of AQF here will be

split up along these lines as well.

3.1 QUERY LANGUAGE PROCESSOR

Because the AQF Query Language processor 1is table-driven, it
theoretically can be set up to handle any kind of query language; but for the
most part, it is tuned for subsets of English. The query language processor
in Pass O has three principal components: a word stemmer, a sentence parser,

and a rewriting module.

3.1.1 Lexical Analyzer

To avoid a query language dictionary . having +to 1list all simple
inflectional variants of every word, AQF incorporates a -s, -ed, and -ing
suffix remover to get the root forms of words. This currently recognizes over

400 patterns of word endings and is able to restore final "e on words where

it has been dropped and to undouble final consonants where necessary.

In addition to the stemmer, AQF lexical analysis also includes special
procedures for handling numbers, unknown words, and multi-word lexical items.
The treatment of unknown words in query language processing is particularly
important because it is often inconvenient to include all the possible values
for a data field in a dictionary for the language; the basic AQF query
language grammar provides several mechanisms for interpreting unknown words as

literal values when they are associated with field names in a query.

W

. n S e L P vem R L e -

3.1.2 Parsing

The AQF parser is essentially the same as that described in the Advanced
Query Techniques final report [5]. It is a table-driven bottom-up parser
built up on the framework of Vaughan Pratt's implementation of the Cocke-
Kasami-Younger algorithm for parsing context-free languages [6]. The parser
has been enhanced for natural language application with the inclusion of
syntactic and semantic features, which are extensions in the direction of Van
Wijngaarten grammars; these allow the syntax of a query to be expressed with a
much smaller number of rules than in the case of a straight context-free

grammar.

The parser also makes special provision for right and left recursion in
parsing. Phrases that are absorbed into a larger phrase of the exact same
type by application of a right-recursive rule are eliminated from further
consideration, saving the effort of following any more syntactic consequences

for them. Left-recursion is recognized in a similar fashion, but only for the

case of rules relating the root form of a word and its inflectional endings.

The AQF parser is written entirely in FORTRAN, a reimplementation of the
assembly language parser used in the AQT demonstration system. It is actually
smaller in its overall space requirement than the AQT version because the use
of external dictionary files in AQF allows for smaller internal tables. The
parser is organized to be able to run easily within the address space of

processors like the DEC PDP-11/45.

3.1.3 Text Editor Semantics

The AQF parser produces a syntactic analysis of a query, describing the
rules of grammar applying to the query and giving the definitions of the words
in the query. This information is then used to rewrite the input query into
an intermediate query form. The procedures for doing this are incorporated in

the rules of grammar used for analysis snd the definitions for words.

In AQF, the semantics of any guery constituent is defined as a procedure
expressed in a special language for string manipulation. This language is
best described as a block-structured text-editor language, consisting of the
basic operations associated with an interactive text editor, like INSERT,
FIND, or DELETE, combined with structured programming control structures, like
TF-THEN-ELSE or DO-WHILE. The language implements recursion with both global

and local variables and provides for dynamic allocation of storage.

The AQF semantic language for gquery processing also provides for shared
access to local wvariables defined in procedures. These allow semantic
procedures to have some control over the execution of other semantic
procedures, letting the rewriting process for intermediate queries be

context-sensitive even though parsing remains on a context-free basis.

3.2 LEFERENCE RESOLUTION

For some natural language systems, reference tends to be an extremely

difficult problem. In AQF, the situation 1s simpler because the use of
relational hierarchies to define the meaning of queries severely limits the
possibilities for reference. The resolution of query references in AQF is
done in two stages: aspects involving only contextual substitution of words
are handled almost entirely in the rewriting component of the query processor;
more complex aspects are handled on Pass 1, which takes immediate queries as

input.

3.2.1 Anaphoric Reference and Coreference

Reference resolution in AQF consists of associating all references in an
intermediate query with specific elements of a relational hierarchy. This
involves two tasks in Pass 1: first, the intermediate query string from Pass
¢ must be converted into a tree structure where any semantic dependence
implicit in the ordering of clauses is made explicit; second, any reference to

preceding query must be clarified as either co-reference or anaphoric

e e i3 W

reference.

For AQF, co-reference means that a query is referring to the same things
that a previous query referred to. This is handled by restricting a search to
what was retrieved before. Anaphoric reference, on the other hand, makes no
such restriction; it requires rather that parts of a preceding query be copied
over to the current query in order to fill it out. For example, co-reference

with two intermediate queries

AIRCRAFT IDENTIFICATION [NATO NAME := FOXBAT]
.WING DIMENSION (?) [SPAN := *]

(.)

. AIRCRAFT FUSELAGE DIMENSION (?) [LENGTH := *]

(.)

as opposed to anaphoric reference

AIRCRAFT IDENTIFICATION [NATO NAME: = FOXBAT]
. WING DIMENSION (?) [SPAN: = ¥]
(.)
. AIRCRAFT IDENTIFICATION [NATO NAME: = FLOGGER]
)
In the anaphoric case, AQF must retrieve a completely different set of target

data base records in order to respond to the query.

Pass 1 of AQF determines the type of reference intended in a query by

comparing its field references with those of the resolved tree form of the

proceding query. Thls o ls to pooe whether any value associated with o field has
chanpged and whelther any new Uields or relations have beern antroduced. Zo-

reforence 15 ogssuned unless the preceding query LS sSuperseded in Sone way.

"

Th1s soneme 13 o extremely somple compared to reference in most natural language

systems, bu* seems to WOrk weil enough for intended AGF applications.

Most natural language systems devote much effort to handling gquery

sequences of tre following sort:

#hat is the length of the Foxbat?
2f the Foxbat?

The second query is a problem because it is a sentence fragment where a full

sentence is wanted. A special mechanism is needed %o expand the second query

into full form for processing, with complications for a parsing scheme.

AQF is unusual in that it has no problem with elliptiral queries at all.
Because AQF query processing primarily is looking for relations, fields, and
values, sentence fragments present no more dilficulty than full sentences.
Furthermore, +*the tYtreak down of intermediate queries into clauses makes
ellipsis transparent at that stage of processing. No new algorithms are

needed.
3.% ACCESS PATH GENERATION

Pass 2 of AQF generates a target data access path from a resolved
intermediate query. This is done by mapping each field reference in the
intermediate query into an item in the target data base, deriving an access
sequence for each item, and then merging these to get the semantic dependence

between referenced data items. The process amounts to imposing the semantic

3-5

relationships defined in a logical data model onto target data.

3.%.1 Target Data Linkage

AQF assumes that target data is organized into various types of records.
These may be data aggregations of arbitrary type, but usually will be
contipguous allocation of data storage with data items of different types
dwfined to begin at various offsets within a record. Extraordinary record
types, such as ones involving non-contiguous allocations or overlapping
allocations, must be handled by inclusion of special procedures in the AQF
access subroutines, which define access linkages specific to a target data

base.

The simplest target data linkage 1s the trivial one when two dependent
data items occur in the same record type. 1In general, however, data will be

in different record types not even directly linked, so that to get from one

item to another may be fairly complex; this may involve scanning of records
sequentially, following various kinds of pointers and 1ist 1links, hashing
secondary kKeys, or perhaps tracing some highly exotic linkage unique to given
*urget data bases. For example, the linkage between data in two different
1#1ta bases may consist of extracting a key value from one data base and

transform.ag it to an =analogous key value in the other.

There i3 considerable flexibility in defining data linkages for =@
particular A«® application. Not all target data base links of course have to
be madie kmown to AQF. In addition, data base links do not even have to
~onform stric*tly to a relational hierarchy. For example, instead of following
the shor*--o% path between two points in access space, one can insert a detour,
wrizh mny invnlv. data rot encompassed by a logical model or, for that matter,
virtual dst4 rnot even in a target data base. This 1is useful for report

sencrvation, degerited below in section 3.5.

-6

ddain.

L0500 Field Name Look-up

Pasy [expands Cield name reforences in a resoived intermediste query

before locking them up. This serves nmainly to simplify & problem in parsing
firld references where certain words have possibly ambiguous usage; for
exampie, the word TMAXIMUX"T in "MAXINUM LENGTH" could either be actually part
of 1 two-word Tiell name or be the specification of 4 function to be applied

to a Ffie,d1 ralled "LENCTH." This matter could have been addressed earlier in

Pass nas a itisambisuntion problem, but it is easier to deal with 'n Pass 2,

where informatinn on target data base mapping is available.

B,.aide recoerizing function specifications, AQP uses a special sub-key
table in the expansion of tield names in order to identify contexts when
certain worls m=y designate valuaes to select one of several similarly named

4 more complicated situation than the case of

w

fislds to process. This 1
“unetisns, betaure it gzenerally involves an additional target data item and
proiucir,s the spproprizte links to it. Sub-keys are helpiul to define,

vowever, because they simpiify a query language grammar.

% Tndexel Accese

Indexing rpli=s »nly to the start of a data access sequence when a

speaific value nas been given for an indexed field, identifiable through an
A«F tabie £5r cunh filolds. When indexed access is possible on a field, then
thuat .+ fncorporated by lass 2 to start an access path; otherwise, AQF

generates in access segquence for the field in the normal way. Only one use of

indexed wrcess 18 allowed per access path.

Actual amieving methols nuve to be supplied to AQF as part of an indexing
GADTIgane NS Gpeerific o4 target data base. In cases where an index
Cwoeys oon oo daty Stem o in oa preeccding record type, and thus not at the start
G aecertn oquwence, he imaexed access is treated se merely another kind of

Lorkenm in the AWM Uareet Jdats linkage subroutines.

S.5.4 dpecial Access Methods

AQF refers to target data in terms of a given record number of a given
record type plus a variable offset displacement for dealing with arrays of
values. All special access methods are encoded in the AQF linkage subroutines
(PIRSTR, “LTPSR), which tske a current instance of a target data base record
and a linkage type as arguments and returns a record number and array
lisplacement value for the record type linked to. An AQF record access
subroutine tailored for a target data (ACCESS) base serves to read in a

particular record instance given its number and type.

All array data must have array limits and array element sizes defined in
linkage procedures. Text data, such as a comment field in a target data
recorl, is rest treated as a special case of array data with array element
size equal to some fixed output line size. This, however, permits no output

buffering snd no formatting to avoid breaking up of words across output lines.

.4 DATA BAZBE DEARCHING

The AQF target data base search procedure in pass % is comparable in
complexity to the AQF parsing algorithm. It is probably the most important
romponent in AQF because it had to be developed before anything else could
work. The search procedure 1s responsible for the bookkeeping that underlies
the correlation of data from different places (possibly different data bases)

and the maintenance of a context for interpreting co~reference.

Tne pass * search algorithm keeps track of matching record instances for
1 g4y aocess sequence by saving them in lists according to data record type
and prelation referenced through. A record instance is added to a list when it
matcnes 1 sesrch condition on an access path, and it is deleted if it fails to
matoh qanther cearch condition. Deletion of a record instance from a list may
require purg.ins ©f 1l! semantic dependent record instances from other lists;

for thiz rencon, record instances are also linked across lists to retain

information sbout their access sequence relationships.

%.4.1 Pattern Matching

AQF has a special pattern matching procedure for string data. Tt
implements matohing of optional substrings, of initial substrings only, and of
alternative patterns against data items in a target data base. This serves
primarily to make retrieval on classes of strings convenient, but can also be
appliad to search for occurrences of words in text fields of target data
records. The latter capability would bYe useful for target data bases where
"comment" fields of free format text tend to contain more information than the

highly formatted portions of data records. This seems to be a fruitful area

for further development.

3.4.2 Purging Precedure

The AQF purging procedure in pass 3 makes it possible for data base
searches to be directed at results of preceding searches. The procedure was
originally implemented to let search conditions on one branch of a merged
access path further restrict the subsets of record instances matched for an
access sequence previously followed. This was needed to handle what is
essentially the co-reference problem within a single query; it also proved

applicable to the problem of co-reference across queries.

"n a auccessful AQF search, a matching record instance must be found for
each point alcong a data access sequence. Different parts of a query, however,
may refer to the same record instance, in effect applying multiple search

.

~onditions on it. 1f a second search condition eliminates a record instance
fron consideration, then it also eliminates all other record instances related
to it nlons the dAata access sequence originally matching and bringing them
tormether. This is because record instances are not retrieved individually but
alwaye as part of 1 semantically dependent set of record instances. In

offect, esch data access sequence defines a relational data n-tuple that has

i e ol

S e Ao

>

e

D o e L

+

o be treated as a ounit.

Pass 5 of AQF maintains the internal links necessary to find all those
semantically dependent record instances collected along a data access
sequence. This is updated with each new record instance matched; upon the
deletion of a record instunce, all record instances related to it will be
purzed, and the internal links revised accordingly. The entire operation is

completely invisible outside of pass 3.

3.4.%7 Multiples of a Record Type

The occurrence of one-to-many data access links in a merged access
sequence g1 _.ghtly complicates pass 3. DBecause AQF searches are deth-first

along a: access sequence, it is necessary to back up along a sequence to look

for possible multiples of 1 record type nfter a search fails or successfully

reaches ths end of the access sequence. Furthermore, multiple record
ins*tances that meet search conditions must be saved along with internal links

for dealing with co-reference.

AQ® treats multiple record instances as each corresponding to separate
reiastioral data n-tuples for an access sequence. As long as any one of the
multipies m2ets zearch conditions, then the sequence can be satisfied. The
pass % purge vrocedure keeps track of multiples collected at each point of an
access sequence 3o determine when all have failed to match and to initiate a

purge of senanti~aily dependent record instances then.

Tearches involving values stored in arrays are handled in AQF as a
speciel kind 2f multip’le. This involves listing the same record instance more
‘han once for 2t 4 poin' in A data access sequence, but with different array
displacements to iienti’y individual array elements. Maintenance of record

irstances and int-onal linke wouldl be as in the case of normal multiples.

2.5 REPORT GENKRATION

The internal links established by Pass % for retrieved record instances
serve as the basis for report generation in Pass 4. The idea is to display a
table of selected data items from record instances matched along a data access
sequence, looking at it as defining a kind of relational data n-tuple. Ttems
are selected for display either by being explicitly asked for in a guery or
implicitly from mandatory fields that have to appear in a response to make it
interpretable. Displays will be generated for each data access sequence
retrieving record instances with an explicitly requested field, until all such

fields have been taken care of.

Report generation comprises the largest amount of code in any of the

passes of AQF. It provides a flexible way of bringing datz from diverse

sources together in the manner of data manipulation with a relational

algebraic language. Queries of a yes/no or how-many type give the AQF user
the additional option of ascertaining the existence or extent of retrieved
data before producing a display. Queries specifying no fields at all have
special significance; they are by convention in*terpreted by AQF as meta-

jueries requesting on.ine documentation.

3 ‘.5, Mandatory Fields

A stiraight dump of data requested in a query often fails to provide

enough information for proper interpretation. For example, asking for the
"WEISHT TP ZOVIET THTERCEPTORS" should strictly yield a list of numbers, a
situaticn tixe having the scores for baseball games without knowing the teams
playing. 7o make output more meaningful, AQF puts tliree kinds of mandatory

fields inty displays besides explicitly requested data:

primary keys for target data records, since these can uniquely

identify data items.

2. sgspecial formatting used to separate and highlight display tables,

inserted as "constant" data items.

3. informational data of general interest.

Primary keys are always put dinto a display; the other two kinds of
mandatory fields are included depending on how specific a query is about the
data items to be retrieved by a query. All mandatory fields and the level of
specificity at which they apply have to be identified in the mandatory fields

table for a given application.

3.5.2 Display Headings

To help a user read AQF displays, two types of headings are produced.
The first consists of column headings for retrieved data items taken directly
from field specifications in an intermediate query. The second consists of
laheling columns accord to units of measurement for numerical data; this units
information is stored in each of the tables where target data items are
defined: the field name correspondence table, the sub-key table, and the

mandatory fields table.

3.5.% Virtual Fields

Target data encoded in exotic ways may not be immediately displayable;
for example, a bit encoding of color. To prepare this information for
display, it is necessary to convert such encoded data first into a string or
other more readily interpretable format. AQF accomplishes this by allowing
enccded data to be designated as virtual fields, marked by having negative
offsets in a target data record type. These virtual fields are computed as on

the fly through a special AQF entry point (COMPUT) to call generation

procedures defined for given target data bases.

Virtual fields included in the mandatory fields table can be used as a

device for report generation. The procedure for computing a virtual field can
be employed to produce arbitrary output based on the contents of a target data
record instance. Various kinds of output formatting can be obtained in this

way, including the delineation and highlighting of data items.

%3.5.4 Arithmetic

AQF report generation in Pass 4 can be set up to compute various
functions on a numerical data field and to display the results. The
particular functions executable for a given AQF application are defined
through special AQF entry points (DETFNC, COLFNC, and PRTFNC). The AQF
demonstration systems currently can compute sum, total, minimum, and maximum;
other similar functions can be defined as well. The problem of more general
arithmetic capabilities on several fields at a time is discussed in Section

6.2.2.

3.5.5 Meta-Queries

When a query makes no reference to any field in a relational hierarchy,
various different responses are possible. One possibility is to simply print
a diagnostic message and to disregard the query, but this is rather obtuse,
given that the query is intelligible. A second possibility is to dump key
portions of all data accessible to the user, but this is probably not a good
idea for data bases of any significant size. A third possibility, which is
implemented in AQF, 1is to interpret the query as a meta-query about the
structure of a data base rather than about its content; this is a convenient

way of providing online data base documentation.

ACF stores prepared text describing each of the relations in a relational
hierarchy logical model. The description of a relation is displayed when an
intermediate query marks that relation with a "(?)" but makes no reference to

any field. The text descriptions are entered at the time that a relational

3-13

|
|
--

hierarchy is set up as a logical data model. AQF provides a special input

program to convert text from an ASCII input file into the proper form for

retrieval and display.

3.6 SORTING

AQF implements sorting only on fields of the output display produced by
Pass 4. This is done in Pass 5 of AQF, which serves as the output module for
AQF; Pass 5 calls an AQF sort subroutine employing a standard partition-
exchange sort algorithm. The incorporation of sorting in a separate pass lets
AQF sort an output display entirely within an internal buffer. It is assumed
that such displays will never be much larger than the size of a typical CRT

screen of a user terminal.

Sort specifications are compiled automatically by AQF from a user's
query. Sorts may be in ascending or descending order; output fields are
sorted either alphabetically or numerically depending on their original data
type; and two levels of sort field priority are defined, allowing for simple
grouping of output data. Sorting can be specified separately for the

individual segments of output produced for each data access sequence derived

for a query.

e oS, O i

4. COMPARISONS

AQF provides an extensive range of capabilities for data base access and
in particular is useful for correlation of data from different data bases.
Tts actual value as a part of an overall 1interactive information system

depends on a variety of factors:
o The degree of training expected of users.
o The predictability of information requests by users.
o The complexity and size of target data structures.

o The type of computer hardware available.

How these factors affect the applicability of AQF in a given system is best
seen by 1looking at various alternatives to AQF and weighing the relative
advantages and disadvantages. This section will look at three main categories
of interactive systems for comparison: menu-driver query systems; formal
language systems, including most relational data base systems; and natural

language systems of various types.
4.1 MENU-DRIVEN SYSTEMS

In a menu-driven system, the user selects data for display from various
fixed options. Typically this is set up with several levels of options, where
selection made at higher levels determine the availability of selections at
lower levels. The scheme is straightforward to implement; and it is easy to
use, especially ir conjunction with graphic input aids like the 1ight pen, It
is probably the best approach to take when a data base has a fairly simple

structure and when queries are predictable.

The menu-driven system, however, tends to be inflexible. Major changes

to a data base or to the repertory of allowable queries and associated
responses all require reprogramming of the system. This approach does not
lend itself to applications where information needs are evolving or where

access to data is on an exploratory basis.

The entering of a query .rough a menu can also be inconvenient at times.
Although the number of manual operations to enter a query is reduced with
menus, the user is often forced to look through a great deal of irrelevant
data in order to make a selection. The actual selection process itself can be
highly unnatural if a user has to repeat a series of selections many times for

sequence of queries different only in a single detail.

Another difficulty with menu-driven systems is at the output end. Such
systems tend to have only a few ways of displaying information, and this may
consist of showing the contents of an entire target data record even though
most of that data is of no interest to the user. With fixed displays, there
is typically no easy way of correlating and comparing values across data

records.

In general, classical menu-drive:n systems are most useful when data is to
be processed on a production line basis or when the number of menu options is
small. In any kind of analytical situation where the structure of data is
complex too, a user needs much more flexibility in looking at data, and the
support capabilities of something like AQF become quite attractive. Relying
solely on menus also becomes impractical as a data base grows to the sigze

where there are too many retrieval keys to list in menu displays.

One interesting possibility here is to combine AQF with a menu~driven
aPproach. Instead of a natural language interface &s implemented in Pass O of
AQF, one can substitute a menu-driven front-end with provisions for manually
entering retrieval keys too numerous to list. This would combine the data

base modeling, data correlation, and report generation capabilities of AQF

L T s e N
s - 150 ;

o W B0 e e b < =

with the simplicity of a menu interface. It should perhaps be noted that
menus could be into much more powerful query entry tool with two dimension

displays and color graphics.
4.2 TFORMAL LANGUAGE SYSTEMS

Where flexible access to online data is needed, formal query language
systems are usually implemented. These allow users to express information
requests in a highly logical language that is well-defined syntactically and
semantically. The most prominent example of these are the retrieval languages
designed for commercial data base management systems and the various formal

user interfaces designed for relational data base systems (c.f. [1]{2]).

All formal query language systems require that the wuser 1learn an
artificial language, although in some case it may masquerade as being natural
by having words in place of mathematical or logical notation. This extra
demand on the user is usually Jjustified on two main grounds: first, that a
well designed artificial language is much easier to process by computer than a
natural language; and second, that the artificial 1language would be more
precise. If neither were so, then there would hardly be auy need of an

artificial language at all.

There are, however, problems with formal query languages in that they
closely resemble programming languages in their usage. Accordingly, formal
query languages are most suitable for persons who can readily learn a
programming language, meaning that most people will not take to a formal query
language quickly. This difficulty is aggravated by the fact that formal query
languages tend to be arbitrary in definition anyway and will often be somewhat

inconsistent from one system to the next.
Implementation problems also arise with formal query languages. Almost

all such languages are predicated on relatively simple logical models of data

that seldom correspond to the complexity of actual target data bases. Full

4-3

i
i
t
{

LA At

———r
hutous; Wil

use of these languages requires that existing data be reformatted to
correspond to how their logical data models look; for example, a user might
hav. to convert an entire data base into a relational representation. This

makes a query language much less useful than it might be.

The development of AQF addresses most of the issues raised here. The AQF
language is very natural and easy for non-programmers to learn, but yet it can
be processed readily enough even on medium-scale hardware. The biggest
advantage of AQF, though, 1is with large existing data bases of complex
structure because AQF can work with such data without any prior reformatting.
This makes it possible to develop a query capability for a target data base

without disrupting any data processing applications already supported by it.

4.3 NATURAL LANGUAGE SYSTEMS

There are two types of natural language systems that need +to Dbe
considered here: those that focus on natural language as a means of
exhibiting intelligent machine behavior, and those that look at natural
language usage as a source of ideas on how to improve communication between

computers and users. AQF is of the latter type.

4.3.1 Machine Intelligence

Intelligent natural language systems, of which SHRDLU [9] is probably the
best known, seek to understand language in the ways that human beings seem to
understand it. This encompasses such problems as recognizing all the
implications of a given sentence in a given context, filling in details that
are expected to be understood, and devising effective procedures for dealing
with pathological examples of language. These problems almost always have to
be approached through the compilation of large bodies of online world

knowledge and elaborate inference schemes.

4-4

Such technology is as yet not mature enough to build practical software

with., More significantly, however, it does not ieally appear necessary when
the goal is only to be able to request certain that items of data be retrieved
from a data base. So instead of aiming for intelligent behavior, AQF seeks to

develop simple, reliable tools to support interactive access to data bases at

reasonable cost.

For such reasons, AQF currently supports no general inference capability
and deals with no world knowledge other than the information in target data
bases or in a logical data model. These remain possibilities for the future.
Inferential techniques will be practical for query access facilities when they
can be made fast enough for interactive operation; employment of extensive
world knowledge to support general query access will be feasible when there is

a systematic way of constructing world models applicable to particular target

data bases.

4.3.2 Technology Transfer Systems

In the past few years, a practical approach to building natural language
systems has evolved. The premises of this approach are that a large body of
proven technology exists for natural language processing and that much of the
technology can be directly applied to improve the capabilities of software for
applications like interactive data base access. Work along these lines has
been promising (c.f. Section 1.2.2), leading to scores of efforts to develop

practical natural language systems of all kinds.

In the area of data base access, most systems including AQF take the view
that it does not really take much more trouble to go from a formal query
language to a reasonably natural query language. The problems of parsing and
interpreting natural language are fairly well understood, and if solutions do
not yet exist for all of them, they can at least be worked around in the

special case of data base access. Any extra overhead involved in processing

natural language queries in any event turns out to be relatively insignificant

compared to the normal overhead of searching for and retrieving items from a

target data base.

Natural language access based entirely on extension of formal query
language processing capabilities, however, inherits the problem of
aupplicability to existing target data bases. Their usefulness is diminished
when they require data to be converted into a special format like relational
data structures. Where target data is not already in a convenient format for
natural language access, the approach of AQF is helpful because its data base

mapping capability eliminates the need for any conversion.

The point to note again here is that AQF is not simply a natural language
query processor; the natural language front end of AQF can easily be replaced
by something altogether different. The particular virtue of AQF is that
natural language 1is well-integrated with versatile data base access
capabilities. This makes AQF most useful in situations where data base access

is actually a serious problem instead of merely being a little inconvenient.

715! Y‘ o v N - he v
) - W*‘-‘ REELY Y I—w e
[,

Y. TWTING U |
i
AGF 1s available for distribution in *re form of FURTRAN source files.

These can either be incorporuted into an existing data base (nterface or
employed 4s *the nucleus of = Soparate Query sys*em. This sect oL wWill outline
the basic procedires inveived 1 setting up AWl for use from ite distrivutiorn
source; a more complete description with examples s given ir the AqF User’s

Manual.

Tre basic steps 10 AQF setup are as follows:
P p

o Define a logizal model for target data of interest. This is =

relational hierarchy.

o Define target data record linkages pertinent to the logical model.

This may involve some programming.

o Compile a query language vocabulary for the logical model.

o Implement any special target data access methods.

o Implement any special data type conversions,

o Define mandatory fields for report generation.

o Compile and link AQF from supplied command files.

“ast 0f the work here involves seitting up various tables for AQF. In AQF, =il
tables are produced from source text files by special support programs, nne
for each type of table. the AQF query language grammar and an AQF dictionary

are treated as tables.

Any neceosary progranming of AGE for a target data base 1is restricted to

prodetinetd entry joint: in specific AQF modules.
5. DATA MODELING

The first priority 13 for u system manager to determine what data AQF
should work with. *his is done by generating a4 relational hierarchy as a
logital model of target data bases for AQE. The model would include all
relations defined for the AYF application, their hierarchical ordering, and
1 the Floldn delined For them. Fields of relations need not correspond to

legst directly computable from data items.

ot

1t iters, but shoull be ot

. .
LIrge

ctomLt date lrems need o be dncladed inoa logical model.

[Ea

Tne detinition of a2 logical model for AQF departs from standard
procet res of dnta base iesign in that the names of relations must come before
rhe velations fthemselves, n effect, the choice of relations and their
ori-rirg n oa niersrcry uoe determined by the prior selection of the relation
rames “or *he hieryrechy. This selection iz on linguistic grounds; a word is
mqdo o relnation name i f 1t orcurs fairly often as a modifier in natural
Toapuage designatione of target lata items. The ordering of relation name
% riz o the desicnstions then defines the hierarchical ordering of relations,

and filelds e Jrsertedl into this hiersarchy at the lowest relation name in a

lownwerd ctain of relation rames modifying the fielid.

cre .norno rard ruale on Wwhether to make s given data designation word
Lt et iar tame e ints part 2% A field name. This depends on the
Y S S T R ‘tanily, it will be advantageous to have as many
oot e o po bl bersause the greater articulation of a logical model
mece £ mree v R it jes in report penerstion. This, however, has to be
4 re Troxy e facr thnt mere reluations als0 means longer target data

R ST e bomure tarpset Antya record unatanees liste to maintain.

The relation names for a hierarchy go into the A(X relation name table;
this also specifies the immediate =ancestor relation name for each entry.
Descriptions of each relation go into a separate AQF relation documentation
table, which supplies the text to be displayed when a meta-query about the

structure of a data base 1s submitted by 3 user.

5.1.2 wuinkages

Once a relational hierarchy is defined as a logical model for AQF, it has ;
to be mapped into target data bases. The first step here is to define a field
name correspondence table showing the location of data items for fields in
terms of the target data record types containing them, their data type, and
their position in a record. If there are any virtual fields not corresponding
to any data item, then these should be noted in the table with a negative
offset position for some record type, and code to compute this field should be]

inserted in the AQF virtual fields subroutine.

With the field correspondences, each field can be identified with data
items at a point in access space. The next step is to define the access
linkages that wi | tie these items togethe». The goal is to have a set of
links such that for each data item, there is a data access sequence composed

of links that satisfy two criteria:

o The relation coordinates of 4an access sequence for a dJdata item
correspond to moving from a top level of a relational hierarchy down to

the relation containing the field designating the item.

o The record type coordinates correspond to a chain of accesses starting
“rom a directly accessible record type (e.g. by sequential or indexed

g2cess) down to the record type for the data item.

inks crozsine between relations are defined in the inter-relation link table:

1inks s*taying w:'i.:o ‘e uwame relation, in the intra-relation link table.
Code defining the iragre mechanisms should go intoe the AQF linkage procedures
(FIRATR, MLTOPu . in nddition, all indexed fields should be jdentified in the
AQF table for trem and the indexing methods added to the AGF indexed-access

subroutine [TNDXNS .

Do Yar o AGY gquery language grammar defines the syntactic function words

Tooe T, e)" and "is," whish nmake up the skeleton of natural language
i . .0 <t sontent words of 4 uery language, which refer to a
i N ,

parcLc ot tareer data base, must be defined in a dictionary table for a
prrtlooalar turget data base. The welection of content words will depend

IR

sroesatly wn the expeocted users of an AGF systen.
The wveneral ruie for vocabulary is tc include all words that can be
interpre=d as being a relation name, part of a field name, or an explicit

iteral value associated with some field. These are entered into an AQF

[

dictionary by assigning them to one of just over a dozen possible parts of

speech and establishing their relational hierarchy referents. Where there is

rossible ambiguity over referents, AQF allows for definition of a word with a
T al

special part of speech, which is processed so that Puss & will take on the

responsiblity of establishing the referent.

5.% SPECIAL ACCESS PROCEDURES

“or modularity, all AQF target data base access is through a single

R Y : .
ACCESS), which accepts a record type and record number as input

subroutine
argunents Yo indicate a particular target data record instance and returns
that reccerd instance in a2 given bufi-r. This procedure cannct be supplied
with 1 standard A0F distribution nackage because it must be designed for the
t dut*a hase and its data base management system. Writing the record

socesn aubroutine ean be simple or complex depending on whether the

4.4

—

organization of the target data base has structures corresponding closely with
the nominal record types recognized by AQF. Some remapping of data items may

be necessary.

In addition to the record access subroutine itself, the system manager
setting up AQF is responsible for supplying two special subroutines {1NACCS,
DEACCS) serving to attach AQF to a target data base and to detach it. Again,
these subroutines may be trivial or complex depending on the target data base.
A set of access procedures designed for data bases consisting of FORTRAN

sequential-access and direct-access files is available with AQF.

5.4 TARGET DATA TYPES

AQF currently recognizes only three data types: integers, floating point
numbers, and character strings, with integers and floating point numbers being
either single- or double-precision. Other data types in a target data base
nust be converted using AQF virtual field definitions and conversion code

called through z special AQF entry point (COMPUT). This is the responsibility

(=

of th

D

system manager setting up an AQF system.

Usars may deal with data only of the types recognized by AQF, whether
this ke actual or virtual data. Addition of other Jata types is possible, but
would involve significant changes of code in AQF passes 3, 4, and 5. This is
because the detailed characteristics of a data type must be taken into account

when matching target items, formatting them for display, and sorting on them.

.5 MANDATORY FIELDS

The no%tion of mandatory fields is the basis for AQF report generation.
The system manager setting up AQF must establish the varicus key fields,
nbels, ani default output fields that are to go into AQF output to make It
more rendabla and informative. This 1is accomplishad by putting mandatory

1ds av approprittte points along an access sequence so that they will be

ey

inserted into the relational n-tuples composed by AQF in response to a query.

Tne coordination of access links with mandatory fields allows for the
tailoring of output displays for users. The choice of access links governs the
kinds of relational n-tuples that can be produced as output; the choice of
mandatory fields governs the type of information appearing in a relational n-
tuple, exclusive of that specifically requested by a query. The access

sequence for requested data item thus establishes an associated output format.

A system manager has flexibility in defining output formats because it is
possible to define more than one distinct access sequence following the same
target data base record linkages. This can be done by defining unnamed
invisible relations in an access space that map into the same part of a target
data base as a named relation. The existence of such parallel relations allow

for the generation of data access sequences that are completely equivalent

except for the mandatory fields associated with them.

6. FURTHER WORK

The current AQF software package offers a broad range of services to the
non-expert computer requiring interactive access to online data. AQF as it
stands now, however, has much potential for continued evolution. The basic
multi-pass framewors of the original AQF demonstration system has proved to be
extremely workable, lending itself readily to the incorporation of many new

ideas.

This section will examine AQF not as a finished product but as a concept
of much wider scope. Various improvements and extensions of AQF will be
considered, all being practical undertakings. The important question to be
raised here is really not whether something can be done, but whether it ought

to be done in light of user information needs.
5.1 IMPROVEMENTS

There are a number of straightforward ways to enhance ©present

capabilities without having to develop any major new algorithms. These would

be areas of continuing work.

6.1.1 Grammar Improvement

The current AQF query language grammar consists of about 500 rules and
definitions describing a small subset of English. It has been developed
extensively through experimentation starting with the original AQF effort, but
more work remains to be done to extend the syntax handled by it. Rule storage
space in the current implementation of AQF could easily handle another 200

rules, so that there should be no problem with room.

The AQF parser plus grammar needs to be exercised by many more

experimental users since the acquisition of any kind of language inevitably

——— A

must come through exposure to many different examples. Persons unfamiliar

with AQF are very helpful in coming up with valid queries that are
rejected by AQF. 1In most cases, these point out areas where the basic AQF

query language grammar could stand improvement.

6.1.2 Code Optimization

Because AQF 1is experimental, 1its implementation was through a robust
programming approach that reduced the probability of errors, but probably
resulted in inefficient code. For example, a serious problem in this respect
for the most recent AQF demonstration system is with target data record
buffers; at present, only one buffer is available, forcing much rereading of
data during data searching involving several data record types. A better

buffer area management procedure would probably be helpful here.

Other aspects of AQF where optimization would be appropriate are in
access path generation, data conversion and packing, and output formatting.
Data base search and retrieval might also be open to improvement, but this is
probably something that cannot be improved upon within AQF alone. Output
formatting is a good possibility for optimization simply because it is so

large now.

6.1.3 Error Reporting

Th

®

diagnostic output produced by AQF in response to an uninterpretable
query is currently at a primitive level. The AQF query processor for example
could do more to indicate why a query could not be parsed; an error message
night show how far an analysis got and what unknown words appeared. Similar

improvements 1in error messages could be made in the other AQF passes for

various overflow conditions.

6.2 EXTENSIONS

Although the current AQF demonstration running under VMS compatibility
mode is already fairly large, there is still room for the addition of a few
major modules. Which additions to incorporate, however, has to be established

according to need.

6.2.1 Spelling Correction

Because spelling or typographical errors tend to be frequent in keyboard
entry of text, most natural language systems incorporate some capability for
their correction. This usually is called upon to process an unrecognizable
word, with the typical procedure being to look the word up a table to find
what might have been meant and then to present these possibilities for the
user to respond to. Some research on how to do this has been carried out
under the AQF effort, but nothing yet along these lines has been integrated
into the AQF package.

For AQF spelling and typographical correction, the approach would be to
implement a fairly simple scheme to catch som= of the most common problems;
letter transposition and wrong choice vowels, for example. AQF would maintain
an external file of target data reference words and English syntactic function
words that are likely to be misspelled. This would be applied both for
automatic correction and for corrections where the user has to choose between

possibilities.

A possible scheme for AQF would be to index words in the misspellings
file by their consonant occurrences irrespective of ordering in a word.
Candidate corrections obtained from this indexing for a misspelling could then
be filtered further according fo length, vowel occurrences, and other measures
of similarity with the misspelling. This sort of procedure would be

incorporated in the lexical analysis part of the AQF pass O.

- T DY T S

i 6.2.2 General Arithmetic

f Systems like REL [7] allow queries to specify computations on different
data fields of a logical model. Such a capability may be useful for AQF; it
could be 1implemented as extension of the arithmetic function computation
already in AQF. AQF would maintain special registers for carrying out these
operations and allow these registers to be referenced in queries as virtual
data base fields. More elaborate capabilities than this would probably be ‘
unnecessary in AQF, given that AQF is not intended as a kind of interactive

programming language.

6.2.3 Arrays

The current AQF scheme for handling arrays of data elements is awkward

for larger arrays and for multi-dimensional arrays. This could be remedied by
building into AQF a specific array bounds handling mechanism, which would
allow references not only to one array element at a time but also to an entire
range of array elements. Unformatted text data fields could also be handled

better with this capability.

The main changes to AQF would be in the way that matching target data
record 1instances are maintained and in the report generation and output
procedures. AQF record linkage procedures (FIRSTR, MLTPSR) would be employed
much the same way as before. The overall scheme would remain fairly simple,
although this would probably provide more array handling capabilities than

found in any other natural language data base access facilities.

5.2.4 Fuzzy Matching

Internal arithmetic operations on target data in AQF now is entirely with
fixed-point numbers, and matching for equality of values must be exact. This,
however, will probably be inconvenient or even unacceptable in many data

access applications and especially so where unit conversions or other

‘ 6-4

computations introduce round-off errors. It would be helpful for AQF to allow

for fuzzy matching of numerical values within some range of tolerance.

The easiest approach to fuzzy matching in AQF would be to extend its
notion of data type to include a range of tolerance expressed as a percentage.
This could be implemented with additional code in AQF Pass 3 and with a few
minor changes in AQF data structures and mapping tables. This could be done

without having to do anything else wi*th the rest of AQF.

6.2.5 Negation

AQF currently does not permit negation in queries, but this could be
added in a fairly straightforward way. There are only two possibilities where
negation might be applied to intermediate queries: on numerical values in
query markers of the form "(n!)" and on comparison operators relating a value
to a field. The first case would be best handled by encoding query counts
differently to include a comparison specification also; the second would
require only minor changes in Pass 3 field matching. Most of the work

involved in handling negation would be in extending the basic AQF query

language grammar.

6.2.6 Macro Expansion

Interest has been expressed in having AQF support a "macro" string
expansion capability comparable to that in REL, where the user can specify
that occurrences of a given "macro" string in a query be interpreted as an
expanded definition string. The definition string usually would include dummy
parameters that would be replaced by matching strings associated with the
occurrences of the "macro" string in a query. In this way, users could

develop a personal form of shorthand for queries.

In AQF, such a capability would be difficult to duplicate because the AQF
parser by 1itself 1is not as

powerful as the REL parser in input string
manipulation.

A possibility for AQF is to define a macro expansion in terms
of dependent clauses to be inserted into an intermediate query

rewriting phase of Pass O. This, however,

during the

would require extensive work, and

it is unclear how much use it would be.

»qi

™

7. CONCLUSTION

AQF at present is in a situation like the early days of compilers. The
existence of AQF at all shows what is actually possible to accomplish with
available resources and points in a direction for future work. It should
ultimately be possible to build a much better data base query facility than
the current AQF implementation, but AQF in the meantime will have helped to
clear the way by sharpening issues pertinent to developing more powerful query

facilities. .

The AQF software package is particularly workable for both applications
and development because of its modularity. It can readily be made to fit on
processors with limited address space, and it is easy to change. The basic
software has been run by a variety of users since the initial operation of the
AQT demonstration system two years ago. The FORTRAN source for this software i

is available for experimental use.
7.1 CAPABILITIES

The design of AQF aims at usability through simplicity. Although AQF

breaks no new ground in terms of machine intelligence, it manages to provide a

full range-of important capabilities for support of data base access.

7.1.1 Natural Language

Natural language in AQF is a method toc make access to a data base as
transparent as possible. It is not supposed to eliminate user training
entirely; instead, it allows a user to learn a query language that 1is
analogous %o what the user is already familiar with. This makes it easier to
describe :he kinds of restrictions for communication with AQF. In real 1life,

people szem to know already how to make allowarnces in talking with persons

lacking a full grasp of language, if such shortcomings themselves are natural

[}

£y AR 2 ik e

in some sense.

In contrast to most natural language systems, AQF query processing avoids
the problem of trying to recognize sentences. It focuses more on applying the
various conventions about linguistic usage that allows someone to designate an
item of data and 1its relationship to other data. This permits query
processing to be more simple and flexible in dealing with imput. Syntactic
analysis 1is fast enough to be negligible in an information request, almost

always in about a second at a user's terminal on a time-shared system.

7.1.2 Multiple Data Bases

The main advantage of AQF is its applicability to existing data. It
adapts itself to target data bases, rather than forcing data to take certain
formats or to be organized under specific data base management systems. AQF
is particularly useful when target data is distributed over several different
data bases, each with dissimilar user interfaces. The natural language

capability of AQF here would provide a convenient common data access language.

More significantly, however, AQF offers the capability of generating
information displays correlating data from different data Dbases. This
supports more effective analysis of online data as well as improving overall

access to existing data bases by analysts who may be non-expert computer

users. No other natural language systems implements such a range of services.

7.1.% Report Generation

This is perhaps an underrated aspect of information system design.
Although there 1is great concern about making information requests more
flexible and easier for users, there has been no comparable effort for the
flexible display of data in ways easy to interpret by users. In many cases,
there is a lack of distinction between data as opposed to information needed

by a user.

The approach in AQF is to avoid the mere dumping of data values requested

by a user. The semantic dependence of data items is also taken into account
in order to produce coherent output for a specific query. Unlike most
interactive information systems, AQF output is not restricted to a dozen or so

standard formats.

7.2 USER DEVELOPMENT

The effectiveness of the AQF approach can be assessed only by applying
AQF to actual data bases and letting it serve real users. In this way, one
can see 1in practice whether capabilities like natural language, relational
data models, table-driven data base access, and automatic report generation
can help anyone out significantly. If AQF does prove to be viable here, then

it can be developed further within a context of real information needs.

A perennial problem with truly new information systems in that they
seldom fit into the information flow patterns of organizations accustomed to
working with greatly limited information processing. The importance of a new
system may in fact ultimately be to alter information flow patterns radically
to improve the overall capabilities of an organization; but this canno*t be
sccomplished at a single stroke. A system must grow gradually into an
organization so that the organization can develop the necessary procedures to

take full =zdvantage of the system.

The adaptability of AQF works out well in this respect. It permits new
capabilities to be introduced in a fairly inobtrusive way into the
information flow of an organization. There is no need to convert existing
data bases or to acquire special support software or special hardware. It is

possible to try AQF out within an organization without incurring heavy costs.

One interesting possibility here 1is to implement AQF on a micro-

processor. For example, there are commercially available CRT terminals that

can acccmmodate a 16-bit DEC L3I-11/03 micro-processor, up to 128K bytes of

1

static M0 memory, serial interfaces, and a lual floppy-dick drive at a total

Y

prioe under S0 000, Because REX-11M can run on such a micro-processor

fa

system, the present FORTRAN version of AQF could immediately be implemented on

!

+he system, although a version with tighter assembly language code might be
more desirable.

Thee Jdee oo otoopat o all of AQE except for tarpet data base record access
or. o terminal that could be attached to any computer system supporting

current-loop terminal interfaces. To bring AQF up, it would only be necessary
write a t*arget data base access program to run on the host processor and to
cormmunicate with AQF on a satellite terminal processor. The entire operation
of AQF here could be made completely invisible to the host operating system.
A1l AQF tables would be maintained at a terminal on a floppy disk, with the

user able to change a logical model by simply inserting another disk.

7.3 EVALUATION

At the start of the AQF effort, it was intended that an AQF demonstration
system be se* up with real data for +trial operation by volunteer users,
analysts who would ordinarily work with the data. This was to provide the
basis of an operational test of AQF; but because of a variety of reasons
beyond the control of PAR Corporation, neither data nor users were ever
iden*ified, making an operational test impossible. The problem may have
stemmed in part from a curious paradox afflicting natural language systems:
although muchk 1lip service 1is paid to importance of natural language
communication with computers, it is hard to think of practical situations

where it might actually be applied to advantage.

To show the capabilities of AQF despite lack of real user data, it was
necesszary to bring up two different AQF demonstration systems with two
different locally generated data bases. These illustrated what was possible
with AQF: in one case, running independent of any data base software; and in

the other, interfacing with a basic data record management facility (RMS-11).

7-4

The AQF software developed for the latter case would also apply to data bases
generated with the SABRES data base management system, which is built on RM3-
1.

The two demonstration systems generated from identical code for the six
passes of AQF show that AQF is insensitive to the organization of target data
bases. Both systems run quite fast in PDP-11 compatibility mode on a VAX-
11/780. Both have been tried during demonstration sessions by various users
with only minor difficulties; in almost all cases, shortcomings identified by
users could be remedied shortly afterward with changes in the basic AQF

grammar or in the six passes of AQF.

7.4 PROSPECTS

Although AQF is not absolutely portable to all computers, its being
written in FORTRAN makes it reasonable to move to mcre different types of
processors than any other natural language system. As online data Dbases
become more widespread, AQF techniques with or without natural language should
provide a viable option of increasing importance for implementation of
interactive data base access. The only major requirement now 1is the

willingness of users to experiment with new techniques like that of AQF.

k"“w = o -

N

[

M.¥. Astrahan and D.D. Chanberlin. Implementation of a structured

Enplisn query language. Comm. ACM 182 (October, 1975), pp. H&0-5&8,

K.F. Boyce, D.D. Chamberlin, and W.F. King. Specifying queries as rela-
tional expressions : the OSQUARE data sublanguage. Comm. ACM 18

(November, 17/5), pp. 621-627.

E. Codd. A relational model of data for large shared data banks. Comm.

ACM 13 (June, 1970), pp. 377-387.

. Hendrix, E. Sacerdoti, D. Sagalowicz, and J. Slocum. Developing a
natural language interface tu complete data. ACM Transactions on Data-
base Systems 3 (June, 1978), pp. 105-147.

C. ¥ah and J. Norris. Advanced Query Techniques for S&T Intelligence.

RAZC-TR-£20, Rome Air Development Center, October, 1879.

V. Prat+. linguistics oriented programming language. A.I. Lab Memo.
No. 277, Artificial Intelligence laboratory, Massachusetts Institute of

Technology, February, 1973.

—_

F. Thompson and B. Thompson. Practical natural language processing: the
REL system as prototype. In Advances in Computers 13, M. Rubinoff and

M.C. Yovits, eds., New York: Academic Press, 1975.

—ear

P. Waltz. An English language question answering system for a large

relational data base. CACM 21 (July, 1978), pp. 526-5%9,

Leslaniat Lah skt aatint

TR I RS R, T

fo. T, Winograd. Inderstanding Natur:

Fress, 1972,

IYSSVAVEIFLITIN

oo
N W

York:

Academic

s gy

MISSION
of

Rome Air Development Cenler

RADC plans and executes researnch, development, test and
selected acquisition progroms Lin support of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineetring support within areas of technical competence
s provided to ESD Program Ofgices (P0s) and othen ESD
elements. The principal technical mission areas anre
communications, electromagnetic guddance and contrnol, sun-
vedllance of ground and aerospace objects, intelligence data
collection and handling, infonmation system technology,
Lonosphernic propagation, solid state sciences, michowave
physics and electronic reliability, mainteainability ard
compatibility.

