
LEYEL.

me

"-""°" DTIC
mlnilm0o ELECTE

""-- -] * N•'"2 1981

SLnI InTERmETRIE5

Best Available Copy
y 81 2 27 005

../

j1 ~NAL REPaIT.

.q ADA VST AND _.VALUATION ,

T6FE SWAM1181f

A.f PRO FOR PMT , aM .Z .&

DISTRI•UTION I.ZMIN)

[Acce!ssion For

NTI RA&I

Unannounced C"
Just if ication_ ..- _-,

By
Distribution/

Availabi Cod eECTEl

Dist Special 91 ~

'D " D

INTERMETRICS INCORPORATED 1 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 i (617)061.-140

TELEX NO. 710 320 r=

Submitted to: DARPA/IPTO
1400 Wilson Blvd.
Arlington, VA 22209

Contract: MDA 903-79-C-0497

Submitted from: Intermetrics, Inc.
733 Concord Ave.
Cambridge, MA 02138

The views, opinions, and findings contained in this report are,
those of the authors and should not be construed as an official
Department of Defense position, policy, or decision, unless so
designated by official documentation.

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE MASSACHUSETrS 021311 (617)681.1840
TELEX NO. 710 320 7523

r/

SECURITY CLASSIPiC-A-TION Of THIS PAGE ("14n a.0 m,,_._,

RE UREPORT DOCUMENTATION PAGE BFsORE CNWNLt'M G FroRm
1* I. 11731T iiuioeot 2. GOVT ACCESNON NO. S. N&PfanT* CATAI.OO NUMBER

IR#663 1 9_____________
4. TITLE (adSuuid,.e) S, TyE OF REpo" & PERIOD COVERED

FINAL REPORT ON ADA TEST AND EVALUATION Final Report
6. perPORmmG Cna. REPORT UNURER

7. AUTHOR(e) S. CONTRACT Ol GRANT NUNMER(.)

NA MDA90379C0497
S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AMA• &woRE UNITr NIUMUERS

Intermetrics,
Inc.

733 Concord Avenue
Cambridge, Mass. 02138 AO 3341

11. CONTROLLING OFFICE NAME AND ADDRESS 12. RONORT OATE

Defense Advanced Research Projects Agency 6 February 1981

1400 Wilson Blvd. 66
•,. ,.- , u ? N 66

14. MONITORINIG2 ENCY ANAME £ AOORESS(If diffemrt from Controlling Office) IS. SECURITY CLASS.,(f thle report)

Unclassified
IS&. OECLASINICATIo/OOWN OR AOING

SCHEDULE

I. OISTRISUTION STATEMENT (of thle Report)

APNOYM "R~ W"M IC X"LZASI

17. DISTRIBUTION STATEMENT (of the cahtrnct entered in Block 20. It dilffeemt from RPatr#

MI. SUPPLEMENTARY NOTES

I9. KEY WORDS (Continue on reverse elde it r.eceesery md Identify by block number)

ADA
Programming Language
Computers

ýFORTRAN

0.A ACT (Continue en reverse *dip It noce"Aly med Iden liy b block number)

(U) In June of 1979, following an extensive process of selection and
revision, the Preliminary Ada language definition was published. As a means
of further refining the language, it was Jecided to approach the prospective
user community and solicit their comments and reactions. This report
describes the methods used to gather and evaluate the many responses received,
and discusses the more prominent issues raised.

DO D , 1473 EoiToN or I NOVW 6 IS OBSOLETE rUNCLASSIFIED

SECURITY CLAMS;'ICATO. OF FIES PAGEC (1111, 0ale EnffereE

seCUFtiTV CLAWFIFCATION OF Twes PAeatW. Dam Boom*

SEURITY CLAISIFICAYIO" OF THIs PA@ierfoonoe Vantoemeed)

Table Of Contents

I. Introduction

2. Background

3. Ada Test and Evaluation Reports

4. Analytical Methods

S. Findings

5.1 Extracts
5.2 Lanqu~ag Comparison

5.2.1 Assembly language
5.2.2 Fortran
S.2.3 PL/I
5.2.4 Algol-like language

5.3 Major Issues

5.3.1 Tasking Issues
5.3.2 Program Structure, NMea Resolution, Separate

Compilation, and Related Issues
5.3.3 Predictability and efficiency of Object Code
5.3.4 Values and Expressions
5.3.5 Abstraction and Extensibility
5.3.1 Language Phase-In
5.3.7 Syntax

K. Difftculties in Intorpretatinq the TERs

7. Mandate* for Change

8. Conclusion: The Overall Response to Ada

APPENDIX A TER Topic Index

APPENDIX B Issues File
APPENDIX C Documents

APPENDIX 0 Accessing The Archive
APPENDIX E TER Code Breakdovn
APPENDIX P Document Logs

L

Report on Ada Test and Evaluation

1. Introduction

In June of 1979, followinq an extensive process of selection
and revision, the Preliminary Ada language definition was pcblished.
As a means of furthir refining the langureg, it was decided to
approach the prospective user community-and solicit their comments
and reactions. This report describes the methods used to gather and
evaluate the maiiy responses received,- and discusses the more
prominent issues raised.

2. Background

There were two major avenues used to solilit reactions. The
publication of the Preliminary Ada Reference Manual and Rationale, and
Ada newsletters in ACM Sigplan Notices, the major informal journal on
programming languages, assured wide. circulation of the language
definition and requests for comments.

The other major and more formal source of comments was the
Test and Evaluation reports. military organizations, defense
contractors, and the computer industry, were asked to analyze existing
applications programs, ponsibly reprogram rhem in Ada, and report
their experience. A few outside the military and its contractors also
submitted such reports.

The High Order Language Working Group (HOLWG) appointed a
.J1 of experts on programming languaqes, termed the Ada

0istinguished Reviewers, to oversee the review o! these comments and
further discuss language issues in order to assist the language design
team at CTT-Honeywell-Bull in its refinement effort. rntermetrics, Inc.
was contracted to coordinate comment processing and to r•pport the
Distinguished Reviewers adftnistratively.. This program was
Intermetrics Test and Evaluation.

The functione of the Intormetrics Test and- Evaluation program
have changed with the needs of the Distinguished Reviewers. Initially,
it was thought to be most productive for Intermetrics to prepare
position papers (Draft Change Requests), discussing controversial.
issues and proposing changes which would then be discussed by the
Distinguished Reviewers. if accepted by the Reviewers, the proposals
would be passed alonq to HOLWG for possible approval an Language
Change Requests.

-2-

This approach proved too rigid, as it put the lanquage design
team and the Distinquizhed Reviewers in an adversary relationship. In
subsequent Reviewers, meetings, Intermatrics did not present position
papers, but instead continued to preasre documents useful for the
Reviewers. These documents form the core of this report.

In addition to technical and administrative support,
rntermetrics performed some general analyses on the Test and
Evaluation documents. The results of the 'analyses were presented at
the Paris meeting to the Distinguished Reviewetsr their revised and
updated versions are found within.

rntermetrics also provided continuinq support Cor the Test
and Evaluation process by serving as the clearinghouse for
information and documents. Numerous inquiries concerning certain
aspects of the lanquaqe--from details of the syntax to questions
about its future importance to computer science--were received by
traditional and Arpanet mail, telephone, personal visits, and chance
meetings. These were answered and documents were sent as
appropriate.

3. Ads Test and Evaluation Reports

In addition to input from language designers ahd
theoreticians, the Test and Evaluation process considered the
opinions of system and application software developers.

Defense Department sites and contractors were asked to study
their existing applications and select one to reprogram in Ada. The
results of their experience are found in the Test and Evaluation.
Reports. The eiqhty-two TER's represent e broad spectrum of experience
on the part of the ,srticipants.

A TER comprises two parts. The primary section. contains a
questionnaire, composed by DoD, which addresses the participant's
experience with and reaction to using Ada in an applications context.
Additionally, the primary section often contains an algorithm written
in both a language normally used by the participant, and Ln Ads. Along
with these comparison programs are usually- sore extensive comments
dealing with issues that were beyond the scope of the questionnaire.

The supplementary section varies in nature and contents with
each report. Pany perticipants included system and language reference
manuals in addition to the source code in order to fully present their
applications.

To systematize their dissemination, the TtR's were numbered
and separated into their primary and supplementary sections. The
primary section carries a TER number only, the supplementary sections
carry the TER number and a suffixed section letter. The supplementary
material was further separated into original code sections (containing
code written in the original language), and Ada code sections (which

3

contained the Ada translation) in order to facilitate distribution of
Ada code samples to those wishing to analyze them. Appendix E
indicates the languages used in these code comparisons.

Since the Test and Evaluation Reports were not submitted in
machine-readable form, and their volume precludes entry, they are not
on line. The derived files produced during the Intermetrics
analysis, however, are all on line, and are described in the
Appendixes.

4. Analytical Methods

Given the form and content of the TER's, bome method was
needed to summarize the useful information they contained. One
possible tecchnique would have been to summarize each TER separately
and report its contents without any evaluation. This would faithfully
preserve the contents of the individual TER's and would be the manner
least influenced by the summarization. However, it would not help the
language review process since it does not address the difficulties in
understanding Ada, and the differences in training and experience
among the Test and Evaluation participants.

Alternatively, the TER's couild be analyzed into issues, as
ware the LIR's. This would be unsatisfactory as the TER's take quite a
different approach to prcblems than do the LIR's: rather than study
language issues, the TER's deal with language applicationr.

In order to avoid the problems described above, verbatim
extracts, a topical cross-reference, and a presentation of the
corelusions drawn by the TER analysis were prepared.

S. Firdings

5.1 Extracts

So that the language team and outside evaluators might gain
insight into the participants Individual reactions to Ada, verbatim
extracts from the TER's were compiled to preserve the original
phrasing and tone, which would otherwise not be accessible to those
unable to sift through the thousards of pages which comprise the
original reports.

The extracts were chosen and abridged to present a balanced
view of each report. Comparisons in the extracts refer to the
original implementation language, so that the phrase "Ada is more
debuggable" means "Ada is more debuggable than our current language".
The extracts are not intenddd to reflect difficulties in understanding
the preliminary manual or the languages these issues, are of central
con-ern to writers of manuals and expository treatments, difficulties

-4

in understanding the language will also manifest themselves in the
detailed technical summaries. Extracts were not taken from sections
of the TER's where the participants indicated that they did not fully
understand the language or the manual, as it is not clear how to
interpret such answers in the context of language changes. Comments
relating to concerns of compiler quality (i.e. degree of optimization,
speed, size, etc.), development environment, organizational problems,
and the like were similarly not included in this Sample. (The
extracts used in the analysis are found in Appendix P.)

5.2 Language Comparison

A review of the TER's shows that many conclusions drawn by
participants are heavily influenced by their experience. In, light of
this fact, some general responses to Ada are categorized by the
respondent's previous language.

5.2.1 Assembly language

Not surprisingly, assembly language programmers emphasize
control over object program and data. Many praise such facilities as
tasking and abstraction mechanisms in one breath, only to criticize
them as inefficiently implemented in the next.

Specific features desired by this group are static allocati.,-
of data, unsafe pointers, and representation specifications.

The most important factor in the acceptance of Ada by tnis
group will be the availability of compilers which use time and space
efficiently. The assembly language programmers do not believe it can
be done.

5.2.2 Fortran

Fortran programmers comment favorably on the presmnce of
structured programming constructs such as IF ... TRTI...ELSE and loops.
There is a definite split in opinion about GOTOs: some maintain they
are important; others woulJ like to eliminate them from the language
entirely in order to encourage better programming style. it Is not
clear whether this argument is based on experience or current trends.

One Fortran feature missed is formatted I/O. tf a formatted
1/O facility is not standard, will there exist such a capability for
every machine? Will the facilities for various machines be
compatible? Can a formattvd 1/O facility be written efficiently
using an Ada package?

5.2.3 PUT/

PL/s prograr -- s prefer PL/1's model of storage allocation
types in which therne 4 an explicit choice of allocation method at
the allocation o! each variable. The parallel *based variable*
facility is also missed.

Cource inclusion is sometimes preferred to the package and
separate compilation facility. Of course, source inclusion does
exist in A-s through the Include pragma.

5.2.4 Algol-like languages

Among the Test and Evaluation participants, there is a fairly
sizable contingent, primarily from England, using Algol-like languages
in embedded applications. This group misseu high-level Algol
constructs more than lower level constructs. Additionally, conaitional -

expressions and functional arguments are repeatedly mentioned AS
useful and efficient. It is not clear from the TER commantz whether
the revised Ada genArics would satisfy the request for functional
arguments.

5.3 Major issues

This section identifies the major issues which h3ve been
raised by Ada Test And Evaluation participants. For ease of

4 exposition, the issues have been grouped into seven categories:

I. Tasking
2. Program Structure, Name Resolution and Separate Compilation
3. Predictability and Efficiency of Object Code
4. Values and Expressions
5. Abstraction and Extensibility
6:. Language PhLse-In
7. Syntax

5.3.4 Tasking Issues

The rER reports present a variety of real-time applications
requfrir.g tasking. While many participants implemented their
real-time applications successfully in Ada, others were unable to do
so. The crucial question is whether this inability was due to
shortcomings In the language, or to inadequate education in the use
of Ada for such applications.

The difficulties which Test and Evaluation participants had
in applying the taiking model to applications prompted both the
Distinguished Reviewers and the Language [*sign Team to examine the
existing model. The Revised Ads tasking model will be subscantially
the same, but with some important extensions and changes resulting
from the Test and Evaluation process.

The Ada tasking molel differs radically from many previous
applications languages in that it recognizes tasks explicitly and has
a well-defined notion of task communication and synchronization
through the concept of the rende2vous. Careful education in the use
of Ada tasking and re-analysis of applications will be needed.

it should be noted that although features of Ada tasking were
rather extensively criticized, and that many of these criticisms led
to language changes, the Ada tasking mechanism a3 a whole was often
mentioned as a particularly strong feature of the language. Fully
fourteen of the TER's praised tasking explicitly.

The following is a detailed account of the major concerns
expressed:

5.3.1.1 -- Ada tends to encourage and sometimes require programmers to
define more tasks than they woild in other languages, and
there is a concern that this wi.l result in excessive
overhead, specifically in the areas of scheduling and context
switching. ?'CLOCK is a minor issue in this discussion some
say it must be sapported since it cannot be implemented
within the language, and others that it incurs unavoidable
an.' unacceptable overhead. The ability to pass arguments to
tasks at creation is another specific request related to
tasking efficiency. It has been asserted that the
Habermann-Nassi optimization answers the etficie.-c; concern.
However, there are questions about how to tell when it can,
should, or will be used, so some revieowers remain skeptical.

5.3-.1.2 -- Preliminary Ada does not at this point provtid sufficient
control of scheduling decisions, specifically the assignment
of tasks to available physical processors (or virtual
processors in a time-shared environment). Thfs area will
have a major impa,t on Ada's use in real-time systems rand for
systems programming. Some want the scheduling points to be
precisely defined, to be able to explicitly suspend and
resume tasks, or to be assured that scheduling is 'fair, cr
both.

5.3.1.3 -- the scheduling rules do not gLarantee that hardware
interrupts wil) cause the timely execution of the
corresponding Interrupt handler.

5.3.1.4 -- The mechanisms for sharing data between tasks seem overly-
involved to people who are used to having a mechanism for
representing synchronization information as data.

5.3.1.5 -- Many penple want to be able to determine task names during
program execution. For example, a server task might be doinq
work for severat other tasks and need to determine which one
has just been the partner in a rendezvous. People have also
wondered how to terminate an orrant task If they can't name
it. There is substantial support for the idea of having TASK

-7-

as a built-in type in the language as a solution to these
problems.

S.3.1.4 -- Some people have asked for a capability to dynamically
create and delete tasks at run-time.

5.3.1.7 -- Some people are concerned about the asymmetry in the
CALL-ACCEPT model for invoking task entries. The writer of a
task can prevent it from waiting indefinitely to be called by
using the SELECT and DELAY statement; but the writer of the
task making the entry call has no equivalent capability.
Conditional and timed entry calls are desired.

5.3.1.8 -- There may be problems associated with the handling of
possible error conditions that can arise when one of the
partners to a rendezvous has died.

5.3.1.9 -- The requirement for hierarchies of tasks as provided by
current Ada has not been demonstrated. Both users and
implementors have expressed a desire for restrictions in this
area to reduce complexity. Task hierarchies also may create
problems in the interaction between task termination and
scope exit.

5.3.1.10 -- The requirement for one task to be able to change another
task's priority has not been justified. Some people have
pointed out that the ability to change priorities can be
misused as a synchronization mechanism and should be
eliminated. The ability of a task to terminate its parent
has also been objected to.

5.3.1.11 -- Although the tasking model itself is clean and simple, it
is not always obvious how to apply it to problems which have,
been previously solved in other ways. This proved to be a
difficulty expressed in several TER's. The concept of buffer
task, for instance, although explained in the language
documentation, is not easy to grasp--indeed, it appears to be
inefficient at first glance. However, Habermann and Nassi
have shown that the use of buffer tasks does not imply that
they must be scheduled separately from the tasks they
service.

5.3.1.12 -- Many TER's requested that task priorities be strictly
enforced, and that the scheduling algorithm be well-defined.
The lack of definition of scheduling strategy left many
participants unable to define solutions to their applications
problems. One difficulty with strict priorities is the
possibility that they might be used as synchronization
mechanisms, defeating many of the advantages of tha tasking
model. Although forbidding this is unenforceable, on the
balance it was decided that strict priorities were in fact
needed in the language. As for the scheduling algorithm, the
decision to adopt strict priorities partially defines itj the
definition of scheduling points in revised Ada further

It

defines it

5.3.1.13--The semantics of Preliminary Ada Interrupts were often
mentioned as inadequate, as they implied queulng of
interrupts rather than providing Immediate service.
Interrupts in Revised Ada will correspond closely to the
traditional notion.

5.3.1.14 -- Where previous tasking models deal in low-level operations
and explicit suspension and resumption of tasks, applications
programs written in those terms cannot be easily translated
into Ada. Some TER's request these facilities in Ada, but it
it, not clear whether they are functionally necessary.

5.3.2 Program Structure, Name Resolution, Separate Compilatian," and Related Issues

Another area of concern is a perception that the mechanisms
Preilminary Ada provides for structuring programs are unnecessarily
rich, and hence, complex from the perspective of both users and
implemontors.

5.3.2.1 -- Some rules in the manual (e.g.i no aliasinq) would require a
complete pass through the entire system (a transitive
closure) to check. Such a check could make separate
compilation impractical.

5.3.2.2. -- Some people are concerred about the complexity of the
overloading resolution rules. For example, the interaction
of renames with the ability to change discriminants has been
mentioned. The design team has already decided that
parameter modes are not a sufficiently strong criterion for
overloading resolution, and that parameter names are not an
appropriate criterion for overloading operators. It has been
.irgued (persuasively) that overloading resolution with
optional named parameters is a computation exponential in the
number of parameters.

5.3'2.3 -- Users have difficulty under4tanding the multiple mechanisms
for s':acturing a program.

5.3.2.4 -- Some users have difficulty understanding the combination of
USE, RENAMES, and RESTRICTED. Examples (both good and bad)
used in these debates are often library packages which
contain large name spaces.

5.3.2.5 -- Problems can arise when packages call other packages 'during
initialization. It is not clear how the compiler must
determine a workable initialization order (it could be
expensive) or how the user can specify the order.

I•mw

r

-9-

5.3.2.6 -- Some peopie have objected to the private part)f the module
specification on both methodological and practical grounds.

5.3.2.7 -- The language currently does not require compile time
evaluation of static expressions. This means that some
compilers will detect errors at compile time and others at
run-tine.

5.3.2.8 -- Several people have asked that a conditional compilation
capability be added to the language.

5.3.2.9 -- Many important optimizations only work in the absence of
aliasing, but aliasing can only be detected with a transitive
closure computation. The language definition should take a
position on the validity of optimizations which depend on the
absence of aliasing. Also, some kinds of aliasing are useful
(and safe). A mechanism is under consideration to allow the
programmer to specify as part oZ a procedure or entry
declaration that the procedure has been written to produce a
correct result even if actuals are aliased through binding to
formals. Aliasing of globals passed as parameters would
still be an error In all cases.

5.3.3 Predictability and Efficiency of Object Code

One goal of Ada optimizing compilers is to generate code that
is competitive with machine code handwritten by a skilled system
programmer. This section discusses several efficiency-related issues
for sequential Ada.

5.3.3.1 -- Preliminary Ada specifies efficient parameter passing with
some sacrifice of safety and portability in three special
cases: variables shared between tasks, exceptions, and
aliasing. Explicit copies must be made to prevent variables
from being shared between tasks, the state of OUT and INOUT
actuals is indeterminate if the exit is caused by an
exception, and aliasing is illegal.

A typical implementation allows the calling program to
pass/return small objects in registers or on the stack and
to pass reference pointers to larger objects. Great care
must be taken in reference implementations for INOUT and OUT
parameters when the actuals are more tightly constrained than
the formals; an incorrect implementation could result in
asstgning an illegal value to the actual which overwrites
adjacent memory. An incorrect implementation could also
leave an incorrect value in the actual after an exception.

, A-.. . r •• ," •.. '

I

Some of the criticism of preliminary Ada's parameter passing
mechanisms comes from a mistaken belief that it is less
efficient then reference passing.

Other criticism comes from people who object to the fact that
a programmer can determine whether the compiler which
implements a particular call be reference or by copy, and
exploit that fact to write nonportable programs. Most people
who insist on precisely defined semantics want pure copy
semantics; they have not been able to convince the people who
are primarily concerned with efficiency that large objects
can be safely passed by reference while guaranteeing copy
semantics and without a transitive closure analysis.

5.3.3.2 -- Users are confused by the distinction between functions and
value returning procedures. The current definition of
function seems not to allow desired optimizations, seems to
outlaw *benevolent" side-effects (e.g., garbage collection,
instrumentation), and requires a transitive closure
computation to check.

A popular proposal is to allow value returning procedures
full functional notation and be usable wherever a value of
the type is required. Under this scheme, it would be
acceptable to eliminate pure functions. A declaration might
be provided as part of the value returning procedure
declaration to specify that calls may optimized under the
assumption of abstract functionality.

5.3.3.3 -- Some people are concerned that Ada will force programmers to
use dynarmic storage allocation and require the run-time
system to do garbage collection. Garbage collection is
unacceptable in many real-time systems. Examples of
capabilities which have been requested to overcome these
inefficiencies are explicit Allocate and Free mechanisms and
pointers to static data.

5.3.3.4 -- Some participants in the T&E analysis have asked that the
language provide an explicit overlay capability. There does
not seem to be any w&y to write such a facility in Ada
without a primitive operation which says *execute this data
as code".

5.3.3.5 -- A much more robust set of standard implementation parameters
is needed. For example, memory size, storage, remaining
stack storage, target machine, word size.

5.3.3.6 -- Many people have criticized the UNSAFE PROGRAMIKNG feature
of the language. In part, the problem-is the name, which
implies that the use of the facility is inappropriate,
whereas it is in fact the only way to implement some very
important operations such as the mapping of input data into a
typed variable. One reviewer has stated that the language
should have exactly one such feature, and UNSAFE PROGRAmmING

- 11 -

is the correct one. Others have suggested that there are
degrees of unsafeness, and that really dangerous operations
such as turning an integer into a pointer should be
distinguished from safer kinds of type conversion.

5.3.4 Values and Expressions

A variety of issues have been raised with respect to
variables, values, expressions and the initial values of variables.
Some of these are minor, and have already been addressed in language
changes under consideration. For example, NO VALUE ERROR will be
eliminated, a private type will be defined fr tin;, Overlap error
will be eliminated, the Underflow exception will be eliminated,
exceptions occurring during the elaboration of declarations will be
passed to the containing scope, the MOD function will have the
conventional definition, and qualification will be required for one -
component aggregates.

5.3.4.1 -- Several LIR's request the capability to initialize part- of
aggregates. With the deletion of NO VALUE ERROR, this
capability seems reasonable and desirable.

5.3.4.2 -- Some people want pointers initialized to NULL, others want
them initialized to an illegal value (i.e. not NULL). Others
point out that such automatic initialization would introduce
a non-uniformity into the language. The language change
under consideration suggests initialization to NULL.

5.3.4.3 -- People have had trouble understanding type derivation and
type conversion.

5.3.4.4 -- Many LIR's suggest changes to the built-in numeric types,
espocially fixed point.

5.3.4.5 -- The language does not contain a built-in *SET type as
required by Steelman. The notation for bit string constants
is presently somewhat awkward.

5.3.4.'0 -- Many people have requested more convenient capabilities forhandling variable length strings.

5.3.4.7 -- Some people have asked to be able to specify default initial
values with type definitions.

S.3.4.R -- rmplementation dependencies can arise in certain cases
becauie the language does not define a semantic order of
evaluation for expressions, and does not specify the
mathematical properties of operators which cai be assumed.

- 12 -

5.3.5 Abstraction and txtensibilit'

Ads has advanced capabilities for defining new data types and
operations and for defining generic procedures. These abstraction and
extensibility features set Ada apart from exIstinq programming
languages for embedded systems. They are also the focus of some of
the most active debates in language issue and TZR's. This sectlan
summarizes some of the main topics of debate.

5.3.5.1 -- Zn preliminary Ads, the equality operation for record end
array types is defined in terms of the predefined equality of
the component types. When the user has the possibility of
redefining equality, this may lead to strange anomalies. The
problem of assignment for composite types is akin to thac of
equality, though less acute because assignments are not user
definable.

5.3.5.2 -- It has been suggested that parameters should be named when
overloading a function, and that the same overloading rules
should be used as !or generics.

5.3.5.3 -- There is no way to set discriminants (e.q. array bounds or
variant record selectors) of private types at ran-tine,
because the component names are not visible. A limited
window into private types* mechanism is under consideration
which would allow the programmer to speci!y that anme of the
discriminants embedded in a private type are externally
settable at initialization time.

S.3.0 Language Phase-In

A variety of issues have been raised regardinq interfaces to
other lanquages, interfaces to e*isting operiting systems,
representation of external interfaces, and tnpuL/.utput packages.
While these will have a major impact on the acceptance ot the language
and, in particular, on how quickly it will come ir€o widespread ne*,
they are the responsibility of the environment rather than the
language. The one language change currently identified as addressing
the above issues Is to have the visible part of a module specify the
relevant language processor if the body consists of foreign code.

5.3.7 Syntax

13 -

A large number of comments on the language syntax have been
received, most frequentiy making mention of such issues as name or
keyword, the position of semi-colon, parameter association, and the
like. It is eeommended that these be studied carefully after the
language semantics have been finalized. The goal of standard Ad&
syntax should be readability for documentation purposes and for use in
publishing algorithms. It is assumed that software tools such as
language oriented text editors will be used to s!mplIfy the writing
and entry of Ada programs.

A. Difficulties in rnterpretating the TIRs

Some of the material in the TER's was discounted because of
Jdmitted or obvious misunderstandings of the language. It was not
always possible to consult individually with participants when they
had problems, misunderstandings or had missed points. The root of the
problem may lie in the fact that the preliminary language manual was
not a tutorial docut-Ant, and that those tutorial documents which were
available did not txamine all aspects of the language. Visibility,
for example, was one area widely misunderstood in the LRM. However,
TER's which reflected some confusion or misunderstanding ultimately
played an important role in evaluating Ada, as they helped pinpoint
areas of ambiguity.

Many of these problems in understanding the language arose
when the participant was required to use mutually interactive
features. However, this is precisely the sort of problem covered
rather extensively in the LIR's; thus the TER's and LIR's complement
one another.

Other material which had to be discounted in the TER's was the
body of comvents pertaining to the efficiency of various language
features. Although it is cirtainly true that certain constructs can
be shown to have intrinsic inefficiencies, and that efficiency is
essential in many embedded applications, the TER'I often do not
identify what function must be performed efficiently, but rather
indicate that a particular implementation of that function might be
expected* to compile poorly Lsing the compilers familiar to the TER
writer.

The underlying application requirements in a TER often become
difficult to interpret -;non the writer presents his or her own
language solutions rather than working within the framework of the
desired functionality. Por instance, many TER's request static
allocation- of variables as a language feature, apparently for time
efficiency and ease durinq debugging. It i& possible that with modern
compiler technology, non-static allocation could be more efficient
without compromising debugging. This is a language and compiler
design matter. Yn this case, the functionality desired is fairly
clear, and the matter has been discussed at meetings of the
Distinguished Roviewers.

-. 14 -

7. Mandates for Change

Zn sone areas, there was great unanimity oa opinion about
necessary language changes. nhese are presented below with
indications of design team actions.

7.1 -- Some way of guaranteeing exact fixed-point representation is
desired. The approximate fixed-point system of Preliminary
Ada does not suffice for many applications. Exact
fixed-point arithmetic also is desired. These concerns night
be answered either through a change to fixed point or &
demonstration that the applications requirements can be met
through the writing of packages. The Language Design Team is
revisinq fixed-point.

7.2 -- The syntax of the case statement, OCals ... of when ... ' is
widely disliked as not resemblinq Enqlish. The semantics
appear to be satisfactory, but the syntax will be changed.

7.3 -- Variable-lenqth str..ngs are needed, again either through the
language or through definable libraries. The Distinguished
Reviewers and the Language Design Team have studied this
matter carefully, and will meet the need.

7.4 -- A more complete 1/O package is desired which would include
multiple data types per file, Fortran-like formatting
functions, and more functions in the standard packL0e. This
requirement can currently be met with the package mechanism.
To what extent a larger standard 1/O package should be part
of the language and not the environment is still an open
issue.

7.5 -- True Interrupts are needed. Revised Ada will have them.

7.6 -- Many T"P's request ObitstringsO. This to a very widespread
demand, but it is not clear what functionality is desired in
using bitstrings The Preliminary Ada Unsafe Conversion
function (nov renamed to Unchecked Conversion) can certainly.
convert between integers and pacied arrays of booleans.
Packed arrays of booleans themselves can represent sets.

.Thus the bitstring representation of sets is easily captured
by Ada. LIR's mention the lAck of set notation for this kind
of set and the awkwardness of the aggregate notation.

9. Cot. lusion: The Overall Response to Ada

At

- 15 -

The TSE Reports show an extremely favorable attitude and a
great deal of acceptance for hda among the prospective users.
Repeatedly, Test and Evaluation participants mention the advantages of
coding in Ada, maintaining systems written in Ads, transporting Ada
programs to other target machines, and so on.

Twenty-three TER's explicitly favored strong typing; the
strongest comment on any one feature. Other features with strong
appeal were enumeration types, overloading, packages, the separation
of specifications from bodies, restricted visibility, tasking, separate
compilation, exception handling, and generics.

There are consistently strong complaints about functionality
only in one area: casking and interrupts. There is a great deal of
concern that the tasking And interrupt constructs cannot handle the
requirements of embedded applications. There are two sides to this
concern: one, semantic iunctionality, the other, performance
requirements.

1any reviewers indi-ated that they liked some other language
better. Yet, there was virtually no agreement on which language was
preferred. It is clear from the results that Ada is the most viable
candidate for standardization of any present language. Almost
everyone praises some features of Ads. There are groups of people who
say that, for example, PASCAL if. just a toy, FO!R'TAN is hopelessly
backward, LISP is no good for Oreall projects, etc. The reactions to
Ada are more along the lines of 1rf only they would change one little
thing...-. It is expected that final Ads will meet the very ambitious
objectives of the DoD common high order language project.

Another major theme apparent throughout the T&E analysis was
the need for better manuals and tutorial materials.

There is a :ense of optimism that the issues which have been
identified by the T&E snalysis can be resolved, and that the result of
the design refinement process will be a polished and effe*tive tool
which fully meets the objective of the Common Nigh Order Language
Program.

APPENDIX A: TER Topfc rndex

The TER Topic Index cross-references specific technical
concerns mentioned in the TER's with LRM chapters.

The Index basically serves two major functions: it reflects
a general sense of the technical opinions of the Test and Evaluation
participants, and it may bring up or emphasize topics which might
otherwise not be considered.

I

- 16 -

The TER questionnaire contains several sections which ask
Test and Evaluation participants to list which language fiatures they
liked, which they thought ought to be changed, and. which they thought
Were redundant. Since many of the proposed changes were in fact
proposed additions, the responses to these questionnaire sections are
divided into categories labelled Add, Change, Like, and Redundant.

Although this Topic Index certainly does not represent all
the concerns of Test and Evaluation participants. it represents those
issues which they considered most important. The questionnaire
answers wetr put into uniform nomenclature, and %Lmilar answers Were
merged.

The index entries were categorized by LPR chapter number
rather than LRM section number, as most replies were not specific
enough to be related to a particular section. After each topic entry
are listed the TER's mentioning it. Some groups have submitted more
than one TTRI some TER's are more extensive in their coverage than
others; some TER's are more carefullf ionsidered then others; some
topics are closely related to others. rot these reasons. it was
considered unwise to take a count of the number of TER's mentioninq a
topic. It would be even less wise to base decisions aboct the
language on such a count, since the varying importance and expertise
of submitters of TER's are nowhere accounted for.

1: A Language subsetst 25,
1: C Make declaration syntax more uniform: 30,
It C Improve syntax: 4,
I: C Require blocks tather than sequence of statements: 31,
2: A Abbreviations for keywords: 3, 30,
2: A imtedded con.&ents: 31, 72,
2: A Alternate character set support: 13,
2: A Bit string constants: 13, 41, 44, 51, 59,
2: C Make I * non-significant: 30, 48,
2: L ' 0 in-identifiers: 19,
2: L Long identifiers: 19, 37, 7S,
2: R Bases other than 2, 8, 10, and 14: 18,
2: P Significence of " " in tokens: 7.,
3: A 3it handling: 26, 71, 77,
1: A Function as data: 7,
3: A Multi-level structures: 3,
3: A Implicit conversion of numeric types (when no loss of prectsion): 36,
3: A Reference variables: 7, 19, 30,
3s A Simula classes: 7,
3: A Static allocation of access objoectst 13,
3: A Jnsafe pointers: 14,
3: A Strings: 29, 35, 36, 45, 59, 61, 63, 72,
3: A Variable declarations after local program bodiest 84,
3: A Statis variables: 84,
3: C *a>* has two meanings: 19, 36,
3: C Ranqes should not have to be contiguous: 10.
3: C Delta is poor keywordi 19,
3: C Expressions in: range constraints(?): 8,

:-- I

- 17 -

3: C Fixed-point delta should be exact: 27, 28,
3: C Require specification of maximum size of strings: 2,
3: C Store matrices by column: 18,
3: C Types too restrictive: 15,
3: C Allow anonymous types in record fields: 28,
3: C Use structure equivalence for arrays: 36,
3: C Guaranteed one--step conversion between derived types: 36,
3: L Aggregate syntax: 7,
3: r. Aggregates: 29, 49,
3: L Arrays: 13,
3: L Enumeration types: 7, 34, 35, 37, 38, 58, 68, 75, 88,
3: L Derived types: 88,
3: L Machine-independent data definition: 2.
3: L Overloading: 2, 7, 35, 37, 42, 61,
3: L Precision specification: 13,
3:-L Record syntax: 19,
3: L Record variant semantics: 29,
3: L Initialization in declarations: 86,
3: L Strong typing: 2, 3, 19, 16, 18, 26, 29, 31, 46, 48, 59, 52, 54, 58,.
3: L Variant arrays in records: 86,
3: L Arrays with unspecified index range: 85,
1: L Type constraints: 1, 26, 49,
3: L User-defined types: 5, 17, 26,
3: L Scope for access types: 29,
3: R Subtypes: 87,
3: R Either subtypes or deriveJ types: 19,
3: R Derived types: 29,
3t R Named components in agqreqatess 25,
4: A Conditional expressions: 7, 28, 36,
4: A Multiple assignments: 39,
4: A Method of expressing parallelism in expression evaluation: 21,
4: A 'Free' operation: 29, A9,
4: A Standard built-in math library: 19,
4: A Standard built-in array operations: 16, 19,
4: C Accurate fixed point arithmetic (specification, coercion): 8, 85, 88,
4: C Define mathematical properties of user-defined operators: 1,
4: C Moro control over allocation: 13, 15,
4: C Quali'ed expression syntax: 13,
4: C Time should not be floatinq point: 19, 86,
4: C User type names should be overloadable as conversion functions: 83,
4: L Attributes: 28, 2i, 29,
4: L Expression structure: 19,
4: L Array slicing: 29, 88,
4: L No automatic type conversion: 14,
4: R Allocators for access types: 1,
4: R Array slicing: 18,
5: A Combined For and While statements: 16,
5: A Compound statements: 7,
5: A Loop failure exits: 17,
5: A More loop constructs: 13, 16, 27, 87
5: A Block exits: 83,
5: A Exit from named block: 30,
5: C Remove mandatory semicolon before end, eltif, etc.: 38,
5: C Allow mixing of "and than* and *or elseo, 28,

5: C Use 'do' not 'loop' as keyword: 19,
5: C Allow VlP's as conditions: 30,
S: C Overloading rules too complicated v.r.t. parameters: 86,
6: L Recursion: 26, 21, 22r
5: L Sttuctured programming constructs: 2, 5, 19. 13,
5: R alsil: 18, 19,
5: R Exit when: 8, 54, 85,
5: R Exit: 4,
5: R Function call syntax: 20, 86,

R5: KReyword parameter-agsociation syntax (:-:, etc.): 7, 19, 27,
5: 9 Assert: 30, 54, 64,
S: R Labels and gotos: 1, 4, 30, 84,
5: R Short circuit conditions: 18, 54. 88,
S: R VRP's: 29,
4: A Functional arguments: 8, 20, 21, 28, 41, 74, 85,
6: A Intermixed declarations: 7,
C: A Generalize initialization in type declarations: 30,
4: A Not recursive/reentrant doclaration: 2,
0: A Variable nurber of parameters: 29,
4: A Guaranteed ')y-value calls: 84,
6: C Define parameter passing: 18,
6: C Reference passing preferred: 14,
6: C Functionality should not be compiler-verified: 86,
6: L Initialization in declarations: 29,
6: L Default parameters: 7, 29, 35,
6: L Functions and VRP'st 21, 22,

L: r Parameter modes: P6,
4: R Declarations in blocks: 7,
6: R Default parameters: 25,
6: A Initial values in decl,-rations: 25,
6: R Optionality of block declarations: 1,
4: R Recursion support: 13,
6: A Tasks and Procedures should be merged: S,
6: A VRP's: 26,
7: C Allow representations in private part: 28,
7: L Information hiding/data abstraction in general: 12, 14, 20, 34,
7: L Packages: 4, 8, 19, 14, 29, 40, 46, 50, 52, 56, 58, 61, 48, .73,
7: L Private types, parts: 2, 8,
7: L Separate specifications: 1, 2, 13, 19, 38, 47, S0, 58, 69,
7: R Nested packages: 15,
7: R Scoping hierarchy: 13,
7: R Separate specifications: 18,
8: C Clarification of separate compilation and visibility: I.
8: C Loop index should be valid beyond end of loop: 27,
8: C Reqtricted is poor keyword: 19,
8: C Visibility rules disliked: 13, 46, 49,
R: L Logical scope rules: 16, 18,
A: L Restricted visibility: 4, 22, 23, 55, 87,
8: L Private types: 87,
R: R Use clause: 25,
9: A Background tasks: 13,
9: A Initiate parameters: 11,
9: A Mutual exclusion to data access: 22, 23,
9: A Timed-out entry calls: 30, 86, 87,

- 19 -

9: A Suspend and resume of tasks: 82,
9: A Easier cyclic scheduling: 88,

: f Disallow data shared between tasks: 21, 21,
): C Forbid aborting or changing priority of parent tasks: 8, 85,
9: C Interrupt semantics:13, 24, 82,
9: C more control over scheduling: 13, 26. 82,
9: C Preemptive priorities: 27,
9: C Rendezvous too restrictive: 15,
9: C Static priority: 1,
9: L Taskinq: 4, 10, 21, 21, 27. 29, 33. 71, 75, 77, 83, 85, 86, 88,
9: L Task familiesi 88,
9: L Rendezvous arguments: 29, 38,
9: R Tasking too comr-*x: 1s,
9: R Signals and semaphores: 30,

I: C Allovinq deferred constants to be.set in a separate compilation unit:
19: C Have different visibility rules for separate compilation: 38,
1: C. Separate units should have full upward visibility: 87,
10: L Program structure: 16,
10: L Separate compilation: 19. 19. 26. 54, 68, 72, 73, 87
11: L Exception handling: 7, 18, 29, 29, 33, 38, 58, 86,
11: C Exceptions in declarative parts should propagate up: 86,
12: A TYpe restrictions for generic parameters: 8. 85.
12: A Component names as generic parameters: 29.
12: C Generics: 29,
12: L. Generics: 2, 18, 38, 58. 48, 86, 87, 88,
12: R Generics: 3. 49,
13: A Overlays: 1, 26,
13: A Representation of integers as bit fields: 16.
13: A Records with overlapping fields: 29.
13: A Representation specification of fixed point binary point: 18, 19,
13: A Setter Fortran interface: 87,
13: C Improve alignment specifications: 13,
13: C Machine code inserts clumsy: IS, 41, 47.
13: C Incorporate representations into type definitions: 27,
13: L Record representation: 19, 38, 44,
13: L Representation specifications: 19, 27, 56, 88,
13: L Machine-code insertions: 27,
13: L Unsafe conversion: 88,
14: A Timoout on 1/0: 11,"
14: A Fortran-like Formats: 9,
14: A Mixed-mode files: 82,
14: A A high-level real-time 1/O mechanism: 82,
14: C COF not exception: 14, 42,
14: C I/0 incomplete: 13,
14: C Operating system assumed too big: 13.
14: C Extend Text I0: 6,
14: L I/O as package: 1, 7,
14: R Send control, Receive control (in Low level O): 1,
Z : C KeyZrds are overloadid: 87,
Z : L Matching keywords (e.I. if -- endif): 87,

- 29 -

APPENDoX B: Issies File

Just as the Topics tndex cross references TER issue, wIf.h the
Ada Language Reference Manual, the issues file cross references
concern found in the LIR's with the LRi.

The Issues file is organized by sectior numbe• Gf the
Preliminary Ada LR•q. Under each section number are grouped abstracts
of comments relating to that section. The comments are numbered by
section number with a serial letter following. Thus, *2.3.A" is the
first comment on section 2.3.

The reldtion of comments 'to sections is at beat approximate,
since many issues cross section boundaries. rn order, therefore, to
make thc document more useful, cross-references to other sections are
entered under comments. Text processing tools can extract these
cross-references and place them under the sections cross-referenced.

The content of an issue abstract is Intended to reflect the
intent of the comment writer; no evaluation of its substance is
Intended. Several comments which make the same general point are
indexed ender one issue abstract; they may nonetheless differ in
detail. Althouqh the abstracts are intended to be informative and
useful apart from the comments, in general it is necessary to read the
comment itself in. order to understand the analyss. justifications,
and suqqestions contained in it.

The abstracts are generally self-explanatory. In order to
keep them concise, they are often presented as statements of fact even
though the point may be debatable (e.g. *tasking is Inflexible").
Syntactic terms and reserved words are capitalized (e.g.
Exponentiating operator, Begin). *Presumably* means that the comment
writer felt thi manual was incomplete (e.g. "labels are pres'imably in
a different name space°). An absolute statement such as "Ada forbids
subscriptinq of functional valuess may safely be taken that the author
of the comment felt this construct sho-ild not be forbidden. An
indication of *(?)" after an abstract indicates that the abstractor
feels that he may not have fully understool the intent of the comment.

rnternal Format

The file is organized in such a way as to make automatic
processing relatively easy. When formatted vers'ons of the issues
file are produced, a copy is put in <TNE-Archive> under the name
Issues. Formatted. In order to allow for the variety of output
devices, the "FormattedO file Is not paginated, since the LUP log is
annotated with references to the Issues file, it to possible to see
where a particular LIR has been entered and cross-referenced.

There are three kinds of entries: section names, abstracts.
and references. Section name entries are of the forms

/

- 21 -

"*$ <section number> <section name>.

Each section of the LRM is represented by its section name as found in
the table of contents, even if no abstracts are found under it.
Abstracts of comments are of the form:

*to <Section number>.<comment serial letter>
<comment abstract> <cross-references>

Comment serial letters run A-Z then ZA-ZZ. Cross-references are of
the form:

OXXO <section number)' .

References to other documents are of the form O<references>*,
where the references are document numbers separated by commas. In
certain categories of documents (notably P2Rs) , section or page
numbers within the document are given In parentheses after the
document numbers: these page numbers are usually stripped off before
further processing of references.

A representative.fragment of the internal form of the Issues
file follows:

S 6.7 Blocks

I 6.7.A It should be possible to name all blocks, perhaps uniformly
with loops. XX5.6!
I LIR.16, LIR.222

<end of abstract>

The formatted Issues file contains exactly the same
information, but is formatted for human readability. The processed
LIR log found in another section of this report contains
back-references from LIR's to issue entries.

1. INTRODUCTION

1.1 Design Goals

l.l.A The language addresses too many conceptual levels: pragmas and
separate compilation, for example, are support system functions. XX2.7
XX19.0
LIR.584

1.2 Language Summary

1.3 Sources

1.4 Syntax Notation

- 22

1.4.A Clarify th4 meaninj of brxckets.
LIR.489

1.4.3 The syntax rules should be numbered for easy. unambiguous reference
LYR. •IS

1.4.C Nonterminals should be capitalized. This helps distinguish syntact
Name from the concept of 'name'.
LIR.637

1.4.D Some better metasyntax for one or soue repetitions (with separators
shnuld be used, eq "Name list ,' or 'Name , ... 0 for present 'Name {G Name)
LZR.637

1.4.E Observing the grammatical distinction between 'which" (descriptive)
and 'that* frestrictive) would clarify manual explanations.
LIR.938

1.5 Documentation

2. LEXICAL ELEMENTS

2.0.A There should be a complete lexical grammar, separate and distinct f
the phrase structure grammar, in the LRM.
LrR.939

2.1 Character Set

2.1.A Commas are preferred to vertical bars in the syntax. XX3.6.2 XX3.7
XX5.5 XXll.2
LIR.368

2.1.C The Ada character set uses characters reserved for national use
according to ISO 646. 0I0 in particular should be removed.
LIR.394

2.2 Lexical Units and Spacing Conventions

2.2.A The symbol "->O should be replaced by I:=* in aggregates and 'then'
in case-like statements. XX3.6.2 XX3.7.2 XXS.5 XX9.7 XXlI.2
LIR.205 LrR.313

2.3 Identiflers

2.3.A Underscores should be allowed but not be significant.
LTR.346

2.3.8 For compatibility with other naming conventions (GCOS, CP-6
Multics), "'O should be a le1*er and terminal ' should be allowed.
LIR.482

• ' ' 'I Ii i i t

I

i

- 23 -

2.4 Numbers

2.4.A Real numbs.: literala should not require a decimal point or t rtilinc
or leading zero.
LrR.049 LIR.425

2.4.8 A number's form should not affect its type: 0230 should be a legal
floating number, and 01.2E6 a legal integer.
LrR.148

2.4.C There Is no way to write a Boolean-array constant (bitstring) an a
numeric literal.
LIR.245 LIR.245

2.4.D Based integers need not he built In. Numrd(616#2AO) suffices.
LIR.294

2.4.Z " for spacing should be permitted anywhere within a number.
LrR.321

2.5 Character Strings

2.5.A The interchangeability of " and I as string delimiters causes
unnecessary confusion.
LIR.084 LIR.104 LIR.217 LIR.493

2.5.8 There should be a distinct convention for character literals, eq
'a', Sa, Ia, rather than allowing the lenqth-one string to stand for them.
XX4.4
LIR. 297

2.5.C The character I'" does not distinguish opening and closing and is
not Steelman approved. <<...string...>> is suggested. XX2.1
LIR.314

2.5.D What is the syntax of character literal? XX3.S.1
LIR.499

2.6 Comments

2.6.A Embedded comments desired.
LIR.345 LrR.402 LrR.560

2.6.0 Comments should appear at the beginning of lines, terminated by --
LIR.193

2.7 Pragmas

2.7.A Pragmas that alter the semantics of programs should be deleted or
incorporated as language features, eg Environment, Include. XXS.6 XXB
EVR.0l(p15) EVR.682(#215) P2R.622(t#7) LrR.669 LIR.169
LIR.532

Ii

- 24 -

2.7.a Redundant pragmas should be deleted. Pragmas which never
Influence compilation should not be addressed in the LRM.
EVR.002(1392) P2R.022(t15)

2.7.C There should be some indication of the compulsory strength of a
praqma. The programmer should be notified whenever a pragma is not acted
upon by the compiler.
EVR.00l(plS) EVR.695(#3.0)

2.7.D There should ba a canditiona: compilation praqma.
LrR.036

2.7.E There should be a praqma requiring compile-tim. initialization.
LrR.249

2.7.F Pragmas should have well-defined scofes and syntactic positions.
LrR.292

2.7.G There should be a sliding scale of space vs. time optimization.
LIR.380

2.7.H Pragmas should be part of the support system, not the language.
LrR.584

2.7.! Praqmas should be alloied static expressions or at least names as
parameters.
LIP. AV

2.7.j The Environment and Suppress pragmas have Oname. parameters, despit
the syntax definition. XXS.6 XXll.9
LrR.217

2.8 Reserved Words

2.8.A The word 'delta' should not be reserved: It is too common a
variable name. XX3.S.5
LrR.401

S. DECLARATIONS AND TYPES

3.0.A Explicit type parameters should be permitted for any user-defined t
arrays should not be a special case. Type parameter3 should be bound for
individual variables of the type at the point of their allocation (e.g. at
point of declaration for non-access types).
EVR.002(9103) P2R.0l3(#02) P2R.918(#Ol) P2R.027(#05) P2R.627(#06)
P2R.038(I06) P2R.639(#eS) P2R.946(#03) LIR.142

3.0.B Name equivalence should apply to types.
P2R.012(403)

"Ai!

- 25 -

3.1.C PL/1-like based %ariables are d-sired.
LIR.129

3.@.o The concept of OelaborationO is not fully and clearly defined.
XX7.0 XX9.1
LrR.143 LIR.325

3.0.9 Types should have attributes such an 'rs.Scalar for use In
restrictive assertions in generics. XX12.0 XXA
LIR.258

3.0.p Pull functional values are desired: variables should be allowed to
have functions as valuesl functional arguments and values should be allowec
Some errors will be undetectable by the compiler, but integration into the
language is safer than machine insertions.
LrR.335 LIR.369 LIR.596

3.9.G Parameters of types should be explicit; there should be a defaultir
mechanism for them.
LIR.142

3.1 Declarations

3.1.A Ads, like Pascal, requires declaration before use. This is
a semantically empty restriction on program structure.
P2R.013(065)

3.1.8 Declarations should start with a keyword. This makes parsing and
reading easier.
LIR.630

3.2 Object Declarations

3.2.A There should some way to force static allocation of local
variables. XX13.0
LIR.326

3.2.8 If No Value Error is to be removed, all objects should be required
to be initialTzed eoplicitly or implicitly, 9g, integers to Maxint, access
objects to Null.
LIR.426

3.2.C The semantics of constants should more completely specified (cf.
private types, constant record components). XX3.7.?
LIR.485

3.2.0 The right hand side of object initialization should allow an
expression list.
LIR.695

3.2.E Constants set at load time are needed.
LIR.137

3.3 Typ. and Subtype Declarations

3.3.A See 3.4.A.
P2R.039(023)

3.3.8 The Ads set type Is adequate for bit string operations, but is not
an acceptable substitute for lets. True Pascal-like sots would be a valuat
aid to readability and conceptual clarity in complex flow-of-control problE
ZVR.005(g13.0) P2R.082(*I) LIR.95R

1.3.C For Implementation of library packages, a mechanism to defeat stror
typing should be provided. This could be provided by the Oany* type.
P2R.036(*13)

3.3.0 It should be posrible to define Initialization and finalization
routines for types.
EVR.003(#3.3) P2R.046(#92)

3.3.E Constraints do not appear to be the distinguishing feature of
subtypes. There is some confusion in the definittom. Constraints should t
reformulated so that types zan genuinely be composed. Without this, the
Important notions of eciularity A la Parnas are difficult to express.
EVR.003(43.1) P2R.013(#Ol) P2R.@39(006)

3.3.F Incomplete type declarations are unneoessary since the identifiers
thus declared must needs be types in the contexts where they are used.
LZR.RS4

3.1.G Type declarations should be able to provide default initial values
for all types.
LlR.14 LIR.355 L1R.497

3.3.H It seems that Otype t is range O..19 de~fies t as a subtype of an
anonymous base type. What is that type? What arithmetic is ueed for t anc
intermediate expressions of type t expressions? XX3.S.4
LrR.266

3.3.1 Subtypes should be eliminated as defeating strong typinq, in favor
of derived types alone.
LrR.312

3.3.j Convenient and intuitive syntax for sets (arrays of booleans)
would be very helpful. Pascal 3ots liked.
LrR.400

3.3.K Are incomplete type declarations restricted to mutually dependent
4ecess types? What can you do with them?
LIR.495

3.3.L it should be made perfectly clear that a subtype is compatible witt
its parent.
LIR.496

, • I I I I I

-27-

3.3.M Subtypes are types with the sot of values restricted. It should
also be possible to restrict the attributes. AX7.4
LIR.551

3.3.M1 The difference between 'typ* TI is new' integerO and 'subtype T2 is
IntegerO appears to be only that In certain positions Ti objects must be
explicitly converted. Does this slight difference justify having both
concepts?
LIR.445

3.3.0 Subtypes should never be implictly Introduced via type derivation e
XX3.4

*LrR.61S

3.3.P Name equivalence of array types forces a proliferation of type nameI
Array type* should be subject to'structural equivalence. Type specificatic
should be allowed as well as type -namos for formal parameters. XX3.6 XX4.6
LIR.221

3.4 Derived Type Definitions

3.4.A The facility for implicit definition by inheritance of operations f
underlying types using the "now" type declaration should be flexible enouge
allow (encourage) alternative definitions of individual operations when the
.default is inappropriate. XX7.4
EVR.6I2(#2U6) P2R.027(007)

3.4.B After the declaration *Feet is now Integerg, the langu go
automatically derives an unwanted operation that multiplies two values of t
Pest, returning a value of type Feet.
P2R.913(003)

3.4.C Derived types should Inherit constants from their ancestral type..
LiR.029

3.4.D Deriving from a private type should presumably be forbidden. XX7.4

3.4.E Subprograms declared after derivation are presumably not inherited.
LIR.498

3.4.P Does a type derived from an access type share the parentos
collection? Does It inherit the length specification? what attributes doe
It Inherit? XX3.9 XXl3.2
LR562

3.4.G Inheritance of operations by derived types leads to such confusion.
Automatic inheritance by conversion is superior. Inter'alia,'it allows for
.mixing of types and derived types as appropriate.
LIR. 204

3.S Scalar Types

- 28 -

3.5.A See 3.5.S.G.
LIR.113

3.5.8 'Ord and 'Val are subject to pathologies and are not fully defined.
LIR.116 LrR.043

3.5.C There should be a 'Range attribute: A'Ranq*e - A'First..A'Last, or
perhaps a type name should be able in general to stand for T'Range. XX3.6
XX3.3
LIR.027 L!R.IS@ LZR.223 LZR.23S tZR.636

3.5.0 Pred and Succ should be overloaded functions rather than functional
attributes of types.
L1R. 1S5

3.S.E 'Pred, 'Succ, 'Ord. and 'Rep (and, eventuellement, 'Range) should t
allowed for objects as well as types. This would make anonymous types more
usefil. XXA
LrR.223 LTR.428

3.5.? what are 'first and 'Last of empty ranges? and 'Ord -f 'First?
LIR.221

3.5.G There is no way to write an empty range of a type with just one val
LIR.229

3.5.1 Enumeration Types

3.5.1.A The extent to which overloaded literals' meaning Is determined by
contextual information is left unclear.
LrR.074

3.5.1.3 Are a and 0a0 equal enumerals? What is the 1/O form? XX14.3.7
LrR.362

3.5.1.C Unordered enumerated types are desired. Why should, eq, colors be
ordered? Of course, this would require the facility of using type names te
represent the whole collection of objects of the type. XX3.6
UP, A40

3.5.2 Character Types

3.5.3 Boolean Type

3.5.4 Integer Types

3.5.4.A The type *integer* introduces unfortunate machine dependency.
LIR.091 LrR.1S4

3.5.4.B Integers should be pure ranges (not derived from tntsger).
LrR. 383

: • : ! ! l I II. i I

- 29 -

3.5.4.C Integer types are derived from one of Short Integer, etc.: can a
Short Integer value be added by standard 0÷" to an Tnteger value? If yes
say so; if no, portability suffers. XX4.5 XX6.6LIR. 516

3.5.4.0 Can Short•-ntegers be ansigned (converted?) to Integers?
LIR.501

3.5.4.9 Unsigned integers desired. XX13.0

LrR.I13

3.5.S Real Types

3.5.5.A The implemented fixed point delta should be an integral divisor of
the specified delta. The fixed point range specification should constrain
rather than determine the implemented representation.
EVR.102(0202) P2R.025(#93) P2R.628(#03) '2R.039(IOl) P2R.044(#l)
P2R.044(002) LIR.ss8

3.S.S.8 Fixed point literals and values shvulu .. :' be rounded implicitly.
EVR.062(42P2)

3.S.5.C It should be possible to specify the range of exponents.
2"R.SOS(12.2) P2R.639(162)

3.5.5.D A semantic model of Ada numerics is needed.
LrR. 020

3.5.5.E The delta-type accuracy constraint syntax incorrectly specifies
range constraint as optional.
LIR.1i5 LIR.270 LIR.4d3 LIR.695

3.s.5.F Fixed-point arithmetic should support general scaling.
LIR.232

3.5.5.G Range constraints are simultaneously too vague in specifying
endpoints (open vs. closed intervals) and too restrictive in requiring
exact endpoints (hampering development of efficient machine independent coc
LIR.113

3.5.5.H Ranges shculd be closed, not open.
LrR.316

3.P.S.i Floating precision should be specified not by digits, but by relat!
delta, which is more accurate and more useful.
LIR.330

3.5.5.J Define the terms Ofloating point type' an4 "fixed point type*.
LIR.502

3.5.5.K Are T'Small etc. defined by the range and accuracy constraints
(one or both?) alone or also by the implementation?
LIR.503

- 36 -

3.5.5.L What are TSmall and T'Larg* for fixed types?
LIR.564

3.5.S.m Do not complicate ranqes with open vs. closed etc.
LIR.208

3.6 Array Types

3.0.A The distinction between type mark and discrete range specification
of array bounds makes for unnecessarily complex rules: array(T) should be
equivalent to array(? Range T'First..T'Last). This would a&so be a more
convenient notation in many cases. XX3.5
P2R.039(123) LIR.152 LIR.474 LIR.S93 LIR.612

3.0.8 Ragged arrays are desired.
LIR.334

3.0.C Arrays should be stored by rows.
LrR.379

3.6.D The syntax and semantics of multiple-index arrays should be clarifi
is array(ab) entirely equivalent to array(a) of array(b)? £n particular,
is the type of subarrays? Can the notation A(xy) be used for arrays of
arrays? Can catenation be aoplied to multidimensional arrays interpreted a
(one-dimensional) arrays of 3rrays? Is 'Length(2) meaningful for arrays of
arrays? Why must all or no index positions be specified by discrete ranges
XX4.1 XX4.5.3
LIR.487 LIR.506 LIR.513 LXR.567 LIR.615

3.6.E The integer i in 'Pirstfi) should be required to be static (if it
is not, what exception does a bad value raise?): the rare dynamic case can
be handled with a Case statement.
LIR.595

3.0.F If Tl is an array of T31s, how do we declare a subtype of TI with
index constraints on T3 (another array type)? Extensive discussion.
Discussion of the interaction of a6rays of arrays and private types.
Components of a structured type must be subtypes; a clear set of rules for
coercion .!rom a type to a subtype must be given. Forbid subtypes of subty;
Let the ncnterminal type mark denote a subtype: de•fne coercion rules for I
Disallow index ranges in-an array typedefinition. Give the unconstrained
integers and reals type names.
LIR.615

3.6.1 Index Range of Arrays

3.6.1.A Arrays should be one-origin by default.
LrR.043

A

- 31 -

3.6.1.8 The rule on index ranges of arrays in records seems to exclude
constant-length arrays within records with index range determined by
external nonconstants, eg, Record S: Array(l..x) End, where x is a variable
(not a record field). Bounds determinable at type declaration elaboration
should be allowed.
LIR.508

3.6.2 Aggregates

3.6.2.A Having to specify values for all components of an aggregate is
both awkward and inefficient.
LIR.068(s3.3) P2R.046(401) LIR.163 LIR.361

3.9.2.B Mixed array aggregates with array bounds which are not static
result in unnecessary run time inefficiencies.
OPA.013

3.6.2.D initializing multidimensional non-constant aggregates is
painful in the current syntax.
LIR.134

3.6.2.E Component association syntax should use 0:-0 rather than ->
for consistency. XX2.2
LIR.135 LIR.313

3.9.2.? The use of simple parentheses to denote aggregates is hard on the
parser and strains the type disambiguation mechanism. XX4.6
LIR.999

3.9.2.G is 5 I Others a legal component association?
LIR.569

3.6.2.H The syntax of Choice should indicate that the expressions on the
right hand side must be static (italicized prefix Static).
LIR.665

3.6.2.1 The use of 010 is corfusing. A preferred syntax for aggregates
would be, eq, (1,3,1) for positionas, and ((l,3)->1,(2)->3) for named
component selection.
LIR.295

3.6.2.J Mull aggregates require a superfluous value: (1..A.)dummy).
LIR.220

3.6.3 Strinos

3.5.3.A Maximum string length should be an independent syftem attribute
not Integer'Last.
LIR.117

3.6.3.5 Strings should be of fixed size but variabiv length or
heap-allocated.
LiR.126 LIR.985

- 32 -

3.4.3.C Ada 'Strings' are not the same beast as strinqs in other languages.
Better strings (variable length) are needed: perhaps access type with
special lexical/syntactic form.
LIR.177 LIR.265 LrR.365 LIR.404 LIR.456

3.6.3.D Better strings are wanted: in particular, strings of different
(physical) length should be type-compatible.
LIR.386

3.5.3.E Null strings should be permitted. XXC

LIR.456

3.7 Record Types

3.7.A The rules for allowable (dynamic) dependencies among record
components are too restrictive.
LIR.09S(s2.1)

3.7.3 Distinction between discriminants constrained statically (at
declaration) vs. dynamically (on initialization or sstignment) causes
confusion.
LIR.808(s2.2)

3.?.C Current semantics of record discriminants interfere with efficient
implementation of parameter passing.
LIR.488(s3.3)

3.7.D It should not be possible to assign the discrieinant of a variant
record without assigning the entire record.
EVR.102(*201) P2R.813(#64) P2R.15S(002) P2R.@46(#@Il)

3.7.E Union types can appear only as variant record fields. The general
union tfpe approach is preferred over variant records. XX3.3
EVR.003(13.6) P2!.Al3(tI2) P2R.15(462) P2R.926(1831 P2M.646(46i)
P2R.04f•(07) LIR.634

3.7.? The same field name should be able to appear in differer't variants
of a record. Representation specifications would need revision. XX13.4
LIR.018 LIR.165 LIR.213

3.7.G Null records should be forbidden.
LIR.634

3.7.H There should be a dummy field name for constant record components
which are never referred to.
LrR.457

3.7.r Only one dynamic array should be allowed per record, and it should
be the last component, as for variants. Requiring explicit access
implementations for the general case makes costs more apparent.
LIR. 51

3.7.1 Constant Record Components and Discriminants

- 33 -

3.7.1.A Eliminate (non-deferred) constant record components.
OPA.217

3.7.1.B Constants as well as deferred constants should be allowed as
discriminants of records.
LIR.149

3.7.1.C Define *complete record assignment* explicitly.
LIR.511

3.7.2.0 Dynamic arrays should cause immediate storage overflow if their
maximum size is too great (eq integer'Last).
LIR.512

3.7.2 Variant Parts

3.7.2.A There should be a way to set a record discriminant, presumably in
the Unsafe Programming package. XX13.1i
L!R.385

3.7.2.3 Must the discriminant variable be declared in the record?
LIR.458

3.7.3 Record Aggregates and Discriminant Constraints

3.7.3.A Discriminant constraints and record aggregates are semantically
1istinct and should therefore be syntactically distinct as well.

3.7.3.8 All defterred constant components should be specifiable through
discriminant constraint specification. XX3.7.1
LIR.588

3.8 Access Types

3.8.A Initialization of eleoents of access types should not be required
the p;int of allocation.
M lt.002(#203) P2R.g19(162) OPA.I6S LIR.477

3.8.8 There should be a free operation on access objects.
EVR.003(02.3) EVR.O@S(#4.I) LIR.037 LIR.127 LIR.212
LrR.250 LIR.408 LIR.566

3.8.C It should be possible for one access type to refer directly to
another access type.
P2R.015(ffl)

I.8.D The built-in storage allocation mechanisms are much too restrictiv,
and d4 not allow user-defined mechanisms. Extensive proposals.
LIR.123 LIR.5ss

[

-34-

3.8.t Th.c rules for access constants (and therefore also access In
parameteo.s) severely constrain use of access types; nonetheless, constants
of-access types are not truly real-only. XX5.2.3 XX6.3
L!R.l6I LIR.132 LIR.200 LIR.216 LIR.538

3.8.F Discriminants in access va'riables should be changeable.
.LIR. 05

3.8.G The access section is vague.
LIR-. 12

3.8.0 It should be clear whether there is a garbage collector.
LIR.233

3.8.1 PL/r-like separation of declaration and 'allocation' of storage
areas is preferred.
LIR. 246

3.8.J It should be possible to point to static data.
LIR.337 LIR.399 LIR.414

3.8.K Conversion to ancestral type of an object of derived access type
can violate strong typing and create dangling references. XX3.4
LIR. 348

3.8.L There should be provisýon for allocating access-typ* objects at
compile time when possible.
LUR.419

3.8.M It would be nice if access types could be efficient for tightly
packed data, usinq pointers into fields of a word and minimal-length
pointers.
LIR.417

3.8.N ..Any variable or field of access type should be initialized to Null
if it is not explicitly initialized at declaration. XX3.2
EVR.062(#2g3) P2R.g19(912) OPA.695 LIR.478

3.8.0 'A reference count scheme shoulo be used for deallocation. M?)
LIR.479

3.8.P Access type:model preferred to traditional pointers.
LIrR.ll

3.8.0 Anonymous access types are aoparently useless. Shouldn't they
therefore be illegal (either in the syntax or the semantics)? XX3.3
LrR.201

4. NAMES, VARIA6LES, AND EXPRESSIONS

dt

- 35 -

4.0.A Functions' values cannot be subscripted, sliced, or selected.
LIR.697 LIR.1S6

4.1 Names

4.1.A In the case of generic parameters, generic associations, and renam:
declarations, the syntax is presently incomplete. The syntax formula
"rname.ldesignatorg does not cover the case of a functional attribute such
T'SUCC or TIORD. XXZ
OPA.018

4.1.B The syntax of Oname" excludes designators. XXS.5 XX12.1 XX12.2
LIR.136 LIR.225

4.1.C Subprogram calls (returning access types) should be names.
Consider P(a).all -
LIR.271

4.1.D It should be made clear that a name cannot be used for more than
one purpose in a scope: variable, type, function, etc.
LIR.483

4.1.E There are examples of 'simple names', but what is the definition?
LIR.514

4.1.F Due to limitations concerning use of *designator', it would not be
possible to use stubs within the subprogram body when overloading an operat
since the designator cannot subsequently appear in the visibility list of
sub-unit body. XX8.O
LrR.203

4.1.1 Indexed Components

4.1.2 Selected Components

4.1.2.A Dot selector notation can productively be considered a variant
syntax of function calling.
LIR.133

4.1.2.B Implicit dereferencinq is disliked.
LIR.259

4.1.2.C The concept of user-defined type attribute is unnecessary. XXZ
LIR.273 LIR.619

4.1.2.D Component selection syntax should be uniform with that of function
calling and array indexing (i. parentheses). !
LIR.334

4.1.2.E Must not the parenthesized index expression of an array level
immediately follow the array identifier and precede the identifier of the
next level? Say so.
LIR.490

-36-

4.1.2.E The syntax of selected componients provides no way to distinguish
among the overloading& of a name by signature when type attributes would b,
ambiguous. XX3.3 XX6.6
LrR.469 LIR.sis

4.1.3 Predefined attributes

4.1.3.A The notation for user-d fined and predefined attributes should be
the same; dot notation is preferred.
LrR.034

4.1.3.8 Editorial: identifiers are not subprograms, but their names.

LIR.491

4.2 Literals

4.2.A Enumeration literals should be quoted in order to distinguish them
from variables.
LIR.359 LIR.153

4.2.8 There should be a Null value for ail types, which would cause an
exception to be raised if calculated with. XX11.1
LIR. 343

4.2.C User-defined literals are needed. Curres-tly, too many explicit
conversions are needed (consider private types). XX4.6 XX7.4
LIR.185

4.3 Variables

4.3.A Suggests that 'name' include '<name> . all', and 'name' be substitt
for 'variable' in the definition of 'primary', thus eliminating the syntact
term 'variable'.
LIR.272

4.3.8 Slicing is clumsy: start arid length ranges and default endpoint
ranges are desired, ie arr(first loc SIZE len) and arr(..cutoff).
LIR.338

4.3.C .value or .val preferred over .all.
LIR.356

4.3.D Clarify the syntax and description of Slice variable, Name, and
Variable.
LIR.455

4.3.E An access variable should denote the object, not the access. A
special syntax should be used for access assignment.
LIR.488

4.3.? Replace array.all with array(all). M?)
LIR.481

+I

-37-

4.4 Expressions

4.4.A Regarding an expression as possibly a one-component aggregate of i-
type leads to ambiguities, difficulty of implementation, and opaque code.
XX2.S
LIR.067 LIR.185 LIR.494

4.4.B Some easy way to perform such operations as incrementation is
desired. The suggestion. is a primary 'self' or ' as a shorthand on the
right hand of an assignment for the left hand sidi, thus var:-self+l. XX5.'
LIR. 261 LIA.378

4.5 Operators and Expression Evaluation

4.5.A The precedence rules for user defined operators are the same as the
for the built-in operators. The lack of implicit semantics for overloaded
operators can lead to programming errors. I
M2.010(091)

4.5.8 The primitive floating point operations of floor, fraction, and
modulus are missing and cannot correctly be implemented within the languagf
xxc
LrR.10A4

4.5.C Expression evaluation order should be left to the compiler.
LIR.635 LIR.090

4.5.0 The relational operators should be represented by alphabetical
keywords rather than graphics and graphic digraphs. Suggests EQ, NE, LT
etc. Also suggests making all operators the same length. XX2.2
LIR.397

4.5.E The basic bitstring operations And, Or, Shift, and Rotate are
lacking. XX3.3
LIR.342

4.5.F Unary operators should have the highest precedence.
LIR.357

4.5.G Expressions should have their mathematical meaning, with order of
evaluation left unspecified, except that parentheses should restrict that
order, and a pragma should be provided to cause code to choose the most
accurate evaluation order at runtime.
LIR.438

4.5.H The types of the two operands of logical, adding, and multiplying
operators should p~esumably be the same (but cf. fixed-point multiply).
LrR.516

4.5.1 Undefined sequences of operator characters should be operator
lexemes definable by the user (haV4.ng some fixed precedence). Consider, ec

+:=. XX2.2 XX5.l
LIR.594 LrR.627

- 38 -

4.5.j Why are In and Not In omitted from the operator (precedence) tables
Is this to imply that they are not overloadable? XX4.5.2
LIR.217 LIR.665

4.5.K Operators with partial evaluation (cf. And then) are desiree: a rml
-- Not a OrElse b; a Default b a- if not null(a) then a else b. XXS.4.1
LrR.192

4.5.L The non-terminals Exponentiating operator and Logical operator are
never used. XX4.4
LIR.217

4.5.1 Logical Operators

4.5.1.A Precedenie rules for *And" and "Or0 should be defined.
EVR.014(#4) P2It.044(#03) LIR.230 LrR.437 LIR.448

4.5.1.8 Can ligical operators have boolean arrays of differing bounds as
operands?: what e:e the result's bounds? (?)
LrR.517

4.5.2 Relational and Membership Operators

4.5.2.A The definition of any one of the four ordering operations should
automatically define the other three so that A>S iff B<A, A>-B iff not A<B,
A<-B iff noc B<A.
EVR.092(*204) P2R.038(#07)

4.5.2.9 The implicitly defined aggregate equality should be defined in ter!
of the equality of its component types.
EVR.012(1205) EVR.097(s2.7) LIR.A0E(p@2) OPA.003

4.5.2.C If a component of a composite type Is of a restrlcted type
assignment is not defineJ for the composite type. If a component of a
compnsite type is of a restricted type, comparison for equality or inequali
is not defined for the composite type (unless equality is defined expliciti
in the package defining the type).
OPA.004

4.5.2.D Presumably, a *corresponding range... means one of the same type
as the first argument to In. (4-7 line 13)
LR.5_ 5

4.5.3 Adding Operators

4.5.3.A Catenation should apply to bitstrings.
LIR.245

4.5.3.3 What is meant by *the accuracy of the result is the accuracy of
the operand type'?: the type's constraint, or the mathematically determinec
accuracy? What is the accuracy of an operation between two values of the
same type but different accuracy constraint?
LIR.518 LrR.05

-39-

4.5.4 Unary Operators

4.5.5 Multiplying Operators

4.5.5.A The definitions of mod and integer division violate tue
mathematical property a mod b = (a-b) sod b. The current operation is in
fact the *remainder" operation: both are needed.
EVR.167(s2.5) P2R.025(002) P2R.038(40l) P2R.146(*19) LIR.0I0
LIR.079 LIR.104 LIR.042 LIR.079 LIR.176
LIR.317 LIR.358

4.5.S.8 Mod and Rem should be functions, not infix operators.
LIR. 317

4.5.5.C mod should be everywhere well-defined.
LIR.439

4.5.5.D Presumably fixed-point values of different type can be
multiplied. XX4.5
LIR.516

4.5.5.E To multiply values of distinct fixed-point types, you apparently
have to convert them, which loses accuracy: qualification of the result she
be sufficient. XX3.5.5
L:R.195

4.5.6 Exponentlating Operator

4.5.6.A In Integer**x. must x be positive (per 4.5.6) or non-negative
(per C-1)? XXC
LIR.519

4.4 Qualified ExpressiJ.ns

4.6.A The notation Otype name (...) is used both for resolving ambiguit,
and for explicit conversion, which can confuse the meaning of widely
different semantics. Bad interactions with parameter semantics.
LIR.ol LIR.111

4.9.B The syntax can lead to ambiguous expressions.
LIR.162

4,6.C It should be possible to overload .type names as conversion
functions. XX6.6
LIR.418

4.6.D Parenthesis notation is confusing. cf. use of " " (7?)
LIR.483

4.6.! There should be some way to convert to the underlying type without
knowing its name. This is particularly useful for private types In their
own modules to reduce tae effects of a representation change.
LIR. 599

48-

4.6.F Why are derived type conversions not allowed on the left-hand side
assignments?

$ 4.4.1 explicit Type or Subtype Specification

0 4.6.1.A It is hard to sea when qualification would indeed be needed in tt
rnstr Code(?ix) case--presumably ! has some type, which would disambiguate
Fix, Unless perhaps I is an overloaded function of no arguments, certainly
rather obscure case for an example! Consider using the example of the ranc
part of an array declaration.
LrR.$2§

4.4.2 Type Conversions

4.4.2.A The semantics of real-integer conversion are left vague.
LIR.1os LIR.521

4.7 Allocators

4.7.A Does New supply additional storage or provide a pointer into a
predefined area set up by the compiler?
P22R.04(093)

4.7.8 In present Ada, an allocator must provide initialization of
dynamically allocated objects. Consider the possibility of providing a par
agqreqatt limited to discrlminants (as foe constraints).
OPA.I66 LIR.163 LrR.589

4.7.C The user should be able to define his own allocator, and redefine
the system allocator for his own types.
LIR.SS LIR.025

4.7.D The Keyword "newl Is overused: for allocation, generic
instantiation, and type derivation. XX3.3 XX12.2
LIR.025 LZR.5Q8

4.7.8 Storage areas as well as individual objects should be explicitly
allocated at runtime independent of declarations.
LIR.244

4.7.P It should be possible to allocate without initializing.

LR.o477

4.8 Static Expressions

4.8.A The language definition should make it clear that static expressior.
may be used everywhere literals may. Static expressions should be just the
expressions evaluable at compile or load time. The value of constants canr
always be determined before the corresponding scope entry. Similarly,
predefined operators, functions, and attributes are not always compile timq
evaluable. Static expressions should not be restricted to predefined
operations, functions, and types. The definition of types is always known
during compilation. User defined functions are compile time evaluable undt

/ 5

-41-

the same circumstances as predefined ones.
EVR.962(*l*7) C0ON.063

4.8.5 Case (f) should presumably be restricted to constants Initialized
by static expressions and static Indices In Indexed components.
LIR. 522

4.@.C Despite (d), not all predefined attributes are static.
LIR.217

5. STATEMENTS

5.0.5 present Ada forbids go to out of a block but permits exit and retw.
statements. Implementation problems exist when there are tasks lc'cal to t!
block.
OPA.~00

S.F.C Sequences of statements should be allowed to have a value, the
value, of the last *xpression/statement. XXS.4
LIR. 341

5.1 Assignment Statements

S.l.A The prohibition against altering discriminants of access variables
Is a confusing irregularity.
LIR.908(*2.2)

5.1.C The symbol 6- should be used for assignment.
LIR. 315

5.1.0 Ther* should be an 'exchange' operator, ':-tl.
LrR. 3?7

5.1.1 There should be multiple assignment, 'a,b:-31: compute all
destinations beforo any assignments.
LIR.141 LrR.432

5.1.t rt should be. possible to combine a binary operator, with assignment
la Alqol-AS, C), thus x:*-2 doubles x. This is particularly useful with I(
left-hand sides. XX4.4
LIR-468 LIP.614

5.1.1 Array and Slice Assignments

5'.1.1.A Overlapping slice assignment should be permitted, with copy
semantics.
LIR.992 LrR.257

- 42 -

5.1.1.8 Is assignment between variables of the same multidimensional
array type with inaices specified by type marks and with the same number of
components, always allowed even if the arrays are of different shape? If
multidimensional arrays are considered strictly equivalent to an array of
subarrays, the problem does not arise. XX3.6
LIrR.523

5.1.2 Record Assignments

5.1.2.A The current rule allows the discriminant of a recore within a recor
denoted by an access variable to be altered. Is this a loophole?
LIR.210

5.2 Subprogram Calls

5.2.A There are too many ways to make a procedure call and define aggrege
values.
P2R.015(#04)

5.2.B A subprogram call statement should be explicitly forbidden or
explicitly permitted-to call a function or a value returning procedure.
LIR.021(p#2)

5.2.1 Actual Parameter Associations

5.2.1.A The indication of parameter mode on call should be required even
without keyword association.
LrR.262 2

5.2.1.8 Keyword parameter association is liked.
LIrR.2;7

5.2.i.C Parameter mode in calls and specifications should have similer
syntax. In, etc. preferred for both.
LrR.329

5.2.1.D Mode should not be distinguished In actual parameter syntax.
LIR. 347

5.2.1.E What is the definition of a *qualified variable'? XX4.6
LIR.524

5.2.1.7 The order of evaluation of subprogram parameters should be specifie
as undefined to allow optimization and reduce the complications implied by
variety of calling syntaces.
LR.214

5.2.2 Omission of Actual Parameters

5.2.2.A There should be some placeholder argument specifying the default
value and not requiring nAming the remaining positional parameters.
LfR.558

- 43 -

5.1.3 Restrictions on Subprogram Calls

5.2.3.A The aliasing restriction should be ztatically defined.
LIR.082 LIR.158

5.2.3.B All aliasing should be prohibited.
LIR.158

S.2.3.C Aliasinq via parameter passinq should be allowed.
LIR. 368

5.2.3.0 Aliasing by way of access objects is inevitable and undetectable.
It should not be prohibited.
LIR.538

5.2.3.E How strict is aliasing detection?

LIR.581

5.3 Return Statements

5.4 If Statements

5.4.A When can a type derived from Boolean not function as a condition ir
If statement3? XX3.5.3
LIR.930

5.4.8 Conditionals should be allowed as expressions. XX4.4 XX5.5
LIR.346 LIR.595 LIR.635

5.4.C There shovld be some way besides Goto to have common actions in
branches of an If: 4lse Else construct suggested.
LIR.434

5.4.D There should oe a simple syntax for multiple End If's: End If * 3?

LIR.434

5.4.1 Short Circuit Cond..tions

5.4.1.A *And then" and Ocr else' should be allowed in any boolean
expression: current syntac within if statements does not even allow groupir
with parentheses. Their precedence should be specified. Note also that
current syntax is not LALU(1) unless And then is made a special case in thf
lexical analysis.
P2R.039(#04) P2R.043(Oll: P2R.046(4l9) LIR.121 LIR.192
LIR.199 LIR.443 LIR.608

5.4.1.9 Since the compiler should feel free to reorder evaluation, "and
then' and 'Or else' are superfluous: they should be the normal
interpret-'Ion of "and' and 'or*.
LIR.035 LIR.050 LIR.073 LIR.243 LIR.230
LIR.274

__ ___ 1

"14 -

5.4.1.C Although partial evaluation of boolean expressions should be the
rule in conditionals, full evaluation should be the rule in expressions.
LIR.243

5.4.1.0 Short-circuit conditions should be named *and* and "or*; boolean
operations should be called *&S and "10. XX4.5.1
LrR.2@S

5.5 Case Statements

5.5.A Ada requires non-manifest expressions as selectors. This restricts
the order of testing which degrades optimization.
P2R.039(ill) P2R.046(#l1)

5.5.8 Does the keyword 'of* add anything useful to the form of this
statement?
P2R.019(107) P2R.039(#22)

5.5.C Change the syntax. Suggests Pick... When w>
LIR.389

5.A Loop Statements

5.6.A An Until condition Loop statement should be added to the language.
P2R.019(496) LIR.OA5

5.6.8 A variable increment should be speciflable on a Loop.
P2R.019(#19) LIR.012 LIR.044

5.6.C While is unnecessary: Exit suffices.
P2R.033(#U!) LIR.251 LrR.275

5.6.D It should be possible to define and use loop indices outside the
loop: currently, their scope is unclear and seemingly not very useful.
P2R.835:185) LIR.044

5.A.E Loop labels should not look like Goto labels; nor should their
scope extend outside the loop body. What is the identifier in "end loop
fidentifier1"?
LIR.151 LIR.222 LIR.539 LIR.662 LIR.606
LIR.616 LIR.632

5.6.F For loop over sets desired. XX3.3
LIR.400

5.6.G Loop parameters should be accessible to (outside??) exception
handlers.
LIR.433

5.0.H Loop indices should require explicit declaration as such.
L114.467

- 45 -

5.t.r Loop indices should be of type Integer if not otherwise known from
context, on analogy with array bounds, as should other ranges. XX3.5 XX3.f
LrR.517

5.9.J User-defined iterators are needed for abstraction: this may imply e
need for functional arguments (one LIR says yes, the other no). XX3.0
LIR.596 LIR.634

5.6.K More loop types are wanted: Until (While Not) and loop test at the
bottom.
LrR.185

5.0.L Loops should be generalized to allow actions ('adjustments* or
°epilogues") after the exit. Loop labels would no longer be necessary.
Perhaps there should also be even more complex loop constructs. Details.
LIR.194

5.6.4 If the loop index is not used, it should not have to be written.

LIR.224

5.7 Exit Statements

5.7.A Add Exit Unless to Exit When.
P2R.046 (#15)

5.7.8 There should be a multiple-level exit with an argument of the numbO
of levels.
LIR.145

5.7.C The Exit statement is unnecessary; Goto suffices.
LIR.242

5.7.D Either remove When or generalize it to Raise, Return, and Goto.
LIR.382

5.7.E Allow When after several other types of statements. (Retracted)
LIR.024

5.7.F Keep Exit- but remove When.
.IR.440

5.7.G The loop label should be required in an Exit; thus, if the loop is
3nonymous, it is patent that premature exit cannot occur.
LIR.602 LIR.632

5.8 Goto Statements

5.8.A Ada allows transfer of control between THEN and ELSE clauses in an
statement and alternative sequence of the case statement.
P2R.635(692) P2R.037(#02)

5.8.8 The scope of a label is too small, asymmetric, and irregular.
LIR.112 LIR.122 LIR.548 LrR.569 LIR.617

-46-

5.8.C Label and Goto syntax and semantics are unclear.
LIR.072

5.8.D Conventional label syntax (*Label:') Is preferred.
LIR.256

5.8.E Replace Goto with a block Exit statement.
LZR.324

S.8.? Labels are presumably in a name space entirely distinct from
declared identifiers.
LIR. 549

5.8.t. Labels should be declared as in Pascal, thus clarifying their scopik

LIR.617

5.9 Assert Statement

5.9.A Assertions cannot be stated to hold over regions of programs; nor c
they be quantified, nor can they refer to the history of variables.
LIR.033

5.9.8 The action to be taken when assertions are not satisfied should be
controllable.
LIR.033

5.9.C The assert error exception is unnecessary and dangerous, since it
allows violations of assertions tu influence program execution.
LIR.071

5.9.D The assert statement Is unnecessaLr• and ineffictent.
LIR.244

5.9.9 The current simple assertion facility suffices.
LIR.209'

6. DECLARATIVE PARTS. SUBPROGRAMS, AND BLOCKS

6.. Declarative Parts

6.1.A Top-down organization of declarations is precluded by the linear
elaboration of constituents of a declarative part. XXS.4
LIR.447

6.1.8 Enforced divorce of declarations and representations is unnatural
and error-prone; if it is to remain, representations should. follow the bod!
not precede it. Bodies might also be allowed to be intermixed with
declarations. XX6.l
LIR.525 LIR.631

a

- 47 -

6.1.C There is a syntactic ambiguity whereby module declaration and
module specification can be confuted.
LIR.546 LIR.624

6.1.D The grammar should express the (context-free) restrictions
on declarative parts by Introducing variants. XX6.4 XX7.1 XX7.3 XX7.4 XX9.
LIR.624

6.1.9 Declarations and bodies should be everywhere interspersible.
LIR.624

6.1.? Different kinds of declarations are too non-uniform in syntax: in s
the name precedes, in otheri it follows, a terminal. LIR prefers consister
use of name:declaration.
LIR.625

6.2 Subprogram Declarations

6.2.A There should be some way to tell the compiler that a subprogram noe
not be compiled to be reentrant or recursively callable.
LIR.032 LIR.039 EMV.OSS(#ll.0)

6.2.B LRM does not specify case of character-string designators, e.g. 'am
LIR.o34

6.2.C The supposed inefficiency of allowing all procedures to be recursi¶
or reentrantly callable is a myth. The present design should be retained.
LIR. 16

6.2.D Comma should be allowed to separate parameters in procedure
declarations as in calls.
LIR.322

6.2.E The syntax of parameter declaration should enforce the prohibition
on defaults for Out and In Out parametors.
LIR.541

6.2.F There should be functional arguments. XX3.8
LIR.178 LIR.623

6.2.G Operators should have a nonterminal in order to tighten up the
definition of designator. The quotes around them appear unnecessary.
LIR.614 LIR.627

6.3 Formal Parameters

6.3.A The semantics of parameter passing should be better defined.
Both reference and copy semantics are desired.
EVR.001(p67) EVR.992(0102) EVR.093(*l.l) IVR.0o4(#2) EVR.095(tS.6)
EVR.@@#(s4.a) 1VR.807(s2.3) P2R.014(#02) P2RSl5(6SM) P2R.022(413)
P2R.02R8(64) P2R.828(#0l) P2R.936(4ll) P2R.038(#@S) P2R.043(0gl)
DCA.9Ii LIR.039

I,

-4-

6. 3.8B Named parameters complicate the lanquage and contribute little.
Deffiulted parameters appear dangerous: accidental omission of one or more.
parameters is a source of hard to find errors.
EVR.203(13.5) EVR.004t*6) ZVR.IU5(#6.I) P2R.043(#69) DCIR.I62 -

6.3.C Are the rules for type checking of actual against formal parameters

wall defined? rs utreated just as in assignmentO sufficient?
EVR.094 (fl)

6.3.D The semantics of parameter binding s;,Iould be defined. The defInIc!

should be by copy only.

A.3.E Allow certain formal and actual names to be marked as volatile'I
depending on their behavior. Allow the translator to bind all
non-volatilts obfects by reference if it can. thereby gain efficiency.
LIR.01-(p@3)

6. 3.P Parameter passing semantics should be more precisely defined
in terms of copyInq; reference passing would be considered an Impl*.montatic
that compilers may use when it does not affect the meaning of the program.
rf this optimization is to be of reasonable applicability. it may be:
necessary to mark variables shared by several tasks.
OPA.0ll DCR.U66

0;.3.G We do not need both keyword and positional parameters.
M2.012(M0) DCR.092 LIR.687

6.3.H There Is some redundancy is giving three parameter binding classes-.
TM, OUT, tN-OUT.
P2R.433 (002)

4.3.1 Programs should be able to parse their own parameter lists.
LrR. 136

6.3.j LIR considers the semantics of In Parameters vague.
LrR.077

6.3.K All Out parameters should be strictly undefined after unhandled
exceptions.
LIR.PPI4

6.3.L Default parameters have poorly-defined :.valuation time:. the default
value should be caiculated at the point of call.
LIR. 143

A. 3.M Default values for In out and o-it parameters should be allow.ed:
for in out, the default would be used for in and ignored on out; for out
it would be the out value if no other value were given.
LIR.164

49¸

-- 49 --

5.3.0 The current copy semantics are good. The LRM should specify the
conditions under which reference implementation will be 'safe'.
LIR.256

6.3.P There should be ways to force reference and copy binding.
LIR.450

6.3.0 Can a formal Out parameter be read after being assigned to?
LIR.542

A.3.R Constraints on actuals should not constrain formals: they should bt
,hected on return. XX3.3
LIR.543

6.3.S Reference binding is not compatible with portability across
architectures.
LIR.161

6.3.T The subprogram specification should be able to enforce keyword or
positional form of call for uniformity's sake.
LIA.190

5.4 Subprogram Bodies

6.4.A What are *identical subprugran specifications* in this context?
LIR.034

6.4.9 Semantics of 'Inline* are vague and inefficient, and hard to implev
for recursive or separate subprograms; a macro preprocessor is preferred.
LIR.045

6.4.C Can recursive programs be Inline?
LIR.544

6.4.0 What is the rule of equivalence between subprogram bodies and
declarations? Presumably, it does not distinguish X:T and X:in T, but doe!
distinguish X,Y: T := expr and X: T :a expr; Y: T t- *xpr (consider side
eoffects). Presumably types are differentiated by meaning, not by name.
(Signature issue)
LIR.217 LIR.545

6.4.D The note about Inline appears to preclude inline expansion when it
not requested: compilers might well want to expand, og, subprograms called
once.
LIR.605

6.4.E In there any difference between the elaboration and the execution c
a program?
LIR.0585

5.4.? The conformity among unit bodies could be emphasized through a come
syntactic category. XX6.7 XX7.1
LIR.624

_ _ _ _ _ _ _ _ _ _

- 50J.

6.5 Function Subprograms

A.S.A The user should be able to designate the difference between those
side effects (i.e., references and assignments to non-local variables) of
functions for which the Implementation preserve the ordor and number of
occurrences, and those for which the Implementation need not.
EVR.I01(pflS) EVfi.092(#195) EVR.006(s4.d) POS.603(pfl) P2R.637(6U4)
P2R.139(B11) LrR.II5(pal)

5i.S.B rt Is not necessary to restrict calls to value returning procedures
to assignment statements, initializations, and procedure calls.
EV1R.I*3(fl.S) EVR.004(17) EVR.065(s4.c) EVR.007(s2.8) M2.026(#08)
LIR.Ne5(pffi) LrR.l4l

4.5.C Functions should be allowed to perform storage management.
EVR.102(4l0S) LIR.045cpP4) LrR.060(pR4)

6.5.1) The present definition of functions and value returning procedures
does not appear simple to explain or to use.
OPA.008

fi.5.E Functions and VRP's should not be distinguished.
LrR.03S LIR.075

6.5.? No -vs lue error should be raised in the caller's environment.
LIR.068

6.5.G The distinction between VRP's and functions Is good.
LIR. 253

fi.5.1 VRP's should be allowed Out parameters.
LrR. 344

A. 5. r Functions with side effects are useful, Perhaps best eliminratft
VRP's and add a side-effects pragma for functions.
LTR.43I

6.5.3i No value error for function values should be checked statically and
thus not bio an elception.
LrR.546

6.5.K VRP's should be allowed anywhere functions are allowed; they should
also be allowed out parameters (consider file var'ables).
LIR. 141

6.6 Overloading of Subprograms

6.6. A Overloa"' resolution should be simplified: parameter names should nc
be used in overload resolution; type and order of unnamed actual parameters
should be used. The meaning of *ambiguous" calls on overload definitions
should be clearly defined by the language, not implementations.
EVR.001(p08) EVR.002(6108) EVR.003'tl.6) EVR.007(s2.1) P2R.637(0I5)
P2R.043(007) OCR.002 LIR.131 LrR.076 LIR.687

- 51 -

A.8. When potentially conflicting declarations appear in the same local
scope they should be illegal at the point of declaration.
M•9V.12(#108) DCR.102

6.6.D It is unreasonable when outputting a single character to require
Put(String ("A')). The TEXT 10 overloaded procedure Put at present forces
this.
LIR.021(p63)

6.6.E There should be no overloading on result type.
LIR.277

6.i.? Are defaults part of the subprogram signature?
LIR.547

6.6.G rho overloading resolution rules should be clarified.
LIR.582

9.6.H Accidental overloading teems likely (especially with use of
libraries); this will weaken type safety. Is prevention to be left to
utilities?
LIR.131 Lri.562

6.6.1 Entries should be overloadable. XX9.5
LIR.587

A.A.j There should be overloading resolution changes so that there is ali
a aimple and unambiguous way of calling a given (espocially local) procedut
LIR.076

6.6.K New overloadinqs can change the meaning of programs. Overloaded
function calls are hard to read. Accidental redeclaration or overloading
too easy. Therefore, overloading should be resolved by Type and Order onl'
non-default parameters; only defaultable parameters should be passable by
redeclarations must be restricted; literals and parameterless functions mus
almost always be qualified; and other functions may not be overloaded on tr
type. XX6.3
LIR.132

6.6.1 Overloading of Operators

6.6.1.A When one overloads -, the operator /- is automatically
overloaded. Does any similar relation exist between < and >- or > and <-?
P2R.846(#22) LrR.269

6.6.1.B The properties expected of functions overloading built-in operatorE
should be defined by the language (eg, < returns boolean; + is commutative;
LIR.114 LIR.269

6.6.1.C Asisg.wment should be overloadable. Consider 'receive" as a
parameter mode. XXS.l
EVR.003(03.2) *LIR.006(p92) LIR.034 LIR.586

/- \

4

-52r

6.6.1.0 It may be desirably to provide not-predefined overloadable
built-in operators, using symbols such as .++ 44& ,/.
LIR. 269

6.6.1.2 What exactly are the overloadable operators? (rln? XX4.5.2
LIR.217

9.7 Blocks

6.7.A It should be possible to name all blocks, perhaps uniformly with
loops. XX5.6
LrR.056 LrR.222

6.7.8 Declare.. .beqin.. .end is too verbose: a conciser form is preferred.
LrR.339

6.7.C Blocks should be allowed visibility clauses. XX8.3
LrR.484

7. MODULES

7.@.A When are package bodies elaborated?
LrR.095

7.0.8 Packages with mutually dependent initializations have poorly define
semantics.
LIR.o96

7.0.C Packages, subprograms, and tasks should be made more similar:
Initiate should have the syntax of subprogram call; the visible part of a
task should allow variable and module declarations; it should be possible t
Initiate packages; subprogram and module should have the same syntax (the
formal part should occur at the end of the visible part); visibility shoulc
be specifiible for subprograms. XX6.@ XX9.0
LrR.279

7.0.C The military standard "module" differs from the Ada module:
military standard modules are compilation units.
LrR.323

7.0.D A package specification should be able to be associated with more
than one body, with a choice at link tiue. XXI0.0
LIR.411

7.1 Module Structure

7.1.A Data blocking in meaningful groups and specification of data blocks
on import and export lists should be allowed.
P2R.035(#06)

-53

7.1.8 The somic:ilons kn the syntax of module decl and moduile-spetc are
inconsistent with their subprogram ana~logues..

7.1.C There should always be a module *body,oven. if only *null*- this
simplifies linker and library.manaqeuent.
LIR. 319

.7.l.D What ire the semantics of packaged data in the presence of
teen trancy?
LIR.469

7.i.z. Module specifications should not be differentiated as Package and
Task--this distinction should be made only in the body. Procedures and ent
should not be differentiated in the specification part: the linker can talc.
care of any separate. compilation problems.
LrR.1897 LrR.las

7.2 module Specifications

7.2.A Specifications and program should not be separable: a textual inset
mechanism should be used for common declarations.
LIR.247

7.3 Module Bodies

7.3.A Direct nesting of modules confuses visibility badly with no increat
in functionality.
LIR.068 LIR.198

7.4 Private Type Declarations

* 7.4.A The inability to parameterize private types for d~fining constraint
causes problems with type composition. XX3.0

* LIR.908(s3.0) LrR.142

7.4.8 Generics are not an adequate way of defining constrainable private
types, because each Instantiation gives a new type.
LIR.008(s3.2)

7.4.C Restrictions on operations available should apply to private type.
expressions within the visible part In which the type Is defined.
L!R.034

7.4.D Package specification do ntot need explicit sprivate parts*: the'
declaration *type x Is private* suffices; all else should be in the body.
LrR.236 LIR.583

7.4.E Can literals of restricted type be written usirg the qtialifted
expression notation outside their modules? Propumably not.
LIR .-237

/1
/

- 54

7.4.? Some easier way of inheriting operations for restricted types is
desired, e", 'type t is... inheriting (<,u,>).
LZR.268

7.4.G Objects of restricted private type should be required to be
initialized inside their type definitions.
LrR. 384

7.5 An Illustrative Table Management Package

8. VTSTSTLITY RULES

8.1 Scope of Declarations

9.1.A The visibility rules should be simplified. There should be uniforr
visibility rules regardless of whether a definition is built-in, prodefines
or user-defined. Use and Restricted should not treat built-in and user-
defined definitions differently.
EVR.102(0214) EVR.003(03.7) EVR.605(112.0) P2R.014(#g31 P2R.A26(#13)
P2R.03-?(#Sl) P2R.038(IU8) P2R.043(#66)

8.1.8 There should be partial import for management control, perspicacitj
and improved optimization.
EVR.003(c2.4) EVR.094(93) P2R.625(#05) P2R.g27(00l) P2R.032(#Gl)
P2R.636(#04) LIR.049 LXR.138 LrR.2S9 LIR.570

8.1.C There should be a partial export of record field names; this would
allow information hiding in the Parnas sense. Currently, such hiding is
nearly impossible.
EVR.093(#2.5) P2R.036(#04)

8.l.D There should be import and export of variables as read-only.
EVR.013C12.6) P2R.832(402) P2R.836(185) P2R.639(12) LrR.938
LIR.234

8.1.E The scope rules of the language should be modified to closed scope
instead of open scope. This would support maintainability.
P2R.036(#02) LIR.50i

8.1.F There should be partial export in general.
LIR.038, LIR.138

8.1.G The scope of Accept formal parameters is omitted: it presumably
extends from the declaration to the end of the Accept.
LIR.281

8.1.H The visibility mechanism as a whole contributes more to wrttabilitl
than readability, contradicting the design goal stated in 1.i.
LIR. 578

- 55 -

8.1.! The terminology used in describing scope is confusing. In particular
"definitions" should not have OscopesO, *declarations* should. Visibility ru.
should be based on simple principles, listed in the LIR.
LIR.190

8.2 Visibility of Identifiers

8.2.A XX4.1 XX5.A XXS.8
LIR.066

8.2.3 The note on redeclaration is apparently extraneous: an inner
declaration of an object hides an outer declaration of a homonymous function
regardless of types. The restriction on enumeration variables is also
questionable.
LIR.SS5

8.2.C It is not clear what is visible where. What is the relation
between scope and visibility? Is an. enumeral of anonymous typo defined in a
record declared in a block visible in the body of the block?
LIR.551

8.2.D The restrictions on redeclaration may be good style, but should not bf
part of the language. These restrictions will also slow the cumpiler.
LIR.440

8.2.Z Does the restriction on redeclaration apply to the visible part of a
module specification, the private part, and its tody's outermost declarative
part considered as one declaration list?
LIR.217

8.3 Restricted Program Units

R.3.A Make Restricted mandatory before a compilation unit.
LIR. 023

8.3.8 The keyword "restricted" is used, counterintuitvely, to specify what
is visible, not what is restricted.
LIR.041 LIR.484

R.3.C Clarify what unit names may appear in a visibility list.
LrR.281 LIR.552

8.3.D Use often forces inclusion in the Restricted list. The functions
of Restricted and Use should be reorganized to recognize that most items in
Use clauses have to be imported.
LIR.303 LIR.446

8.3.1 Non-enclosing sub-programs (eg library units) should be allowed in,
visibility lists. XXlM
LIR.435

8.3. Input output seems to appear in a viSibility lilt where It Is not
visible. Is This because it is a 'library'? xxli.l

8.3.G Importations can be hidden deep within code. There should be san.
control over this.
LrR.570

8.3.H The importation and visibility restriction functions of the
restricted list should be separated. The first name restricts scope: all
the others enlarge it. XXlI.2
LrR.12P, LIP.203 LrR.~64 LrR.611 LIR.633

8.4 Use Clauses

8.4.A It should be possible for a use, clause to refer to a module declared
in the same declaration part. (Currently the use clause must come first and
there are no forward references.)
P2R.039(024) LtR.219 LIR.252

9.4.B Any unambiguous reference to identifiers should be permitted, as in
PL/T: the use, clause would then be unnecessary.
LrR.229

8.4.C It should be possible to mix Use, clauses Ath declarations freely.
LrR.219 LIR.2c2

8.4.0 The Use clause sh.:uld be doletel as detrimental to readability: an
Improved Rename would be a partial replacement. XX8.5
LIR. 385

8.4.8 Identifiers rendered ambiguous because of the Use clause should be
invisible In the scope of the invisibilit7,.
LIR. 553

8.5 Renaming

8.5.A ORenamo* complicates verification and aliasing analysis.
LIR. 159

8.5.3 Rename should be a statement, not part of a declarative part. XXS.O
LIR. 362

8.9 Predefined Environment

8.f.A The Environment pragma greatly complicates visibility. Remove it
or at least clarify its effect.
LrR.4S4

9. TASKS

- 57 -

9.0.A Tasks intended as parallel threads of control (Oprocesses*) and
tasks serving to synchronize access to shared data objects (Omonitors*) are
logically distinct (with different implementation strategies as we'l), so
the determination cannot be left to the translator. There are also
difficulties with termination, optimization, and recognition with the
interface task approach.
LrR.909 LrR.I61

9.8.8 A task defining a class of sharable objects should be considered
as a data type, so as to permit named instances of such objects to be declare-
to be included as components of other data objects and to be passed as
parameters; neither task families nor generics are adequate for this purpose.
LrR.089(s3.1)

9.N.C Capabilities for specifying the low-level implementation of
synchronization disciplines should be provided without forcing- the user to
abandon the basic tasking framework.
LIR.009(s3.2)

9.8.D Allowing unrestricted access to (shared) global variables is not
only unreliable and/or inefficient, but also leaves the semantics of basic
operations (e.g. assignment) undefined in the presence of concurrent executio.
LIR.069(s3.4)

9.0.E The absence of anonymous tasks, tasks as generic parameters and
operations applicable to all tasks (e.g. suspend, :eschedule, etc) seems to
limit capabilities.
LIR.069(s4.18)

9.O.? There should be a way to name task invocations and to control them.
EVP.4@I(pP9) EVR.80I(pll) EVR.#62(4101) EVR.883(*l.2) EVR.865(tl.4)
EVR.087(s2.6) P2R.813(#66) P2RoM_4(#89) P2R.018(#83) P2R.918(188)
P2MO8l8(409) P2R.027(082) P2R.830(182) P2R.803(604) P2R.838(#03)
P2M.840(#09) P2R.049(010) LIR.124

9.0.G It should be possible to achieve efficient and safe sharing of
variables. Current mechanisms are either inefficient or unsafe. Perhaps the
should be syntactic brackets of critical regions.
EVR.081(p09) EVR.8U1(pl2) EVR.002(#106) EVA.813(*l.4) EVRo.05(*l.2)
EVR.@fl#(s4.e) P2R.006(#03) P2R.912(#82) P2R.614(#09) P2R.019(#81)
P2R.819(#13) P2R.022(#04) P2R.828(005) P2R.633(983) P2R.836(001)
P2R.039(914) P2R.643(062) P2R.043(#03) P2R.046(#14) LCR.147
LrR.453

9.8.H Test and set and spin-lock, or equivalent functions, are desired.
EVR.002(#106) EVR.8#6(s4.*) P2R.664(061) P2R.018(#63) P2R.018(#05)
P2R.622(482) P2R.825(964) P2R.627(964) P2R.036(#03) P2R.046(#12)
P2R.846(013) OPA.867 LIR.147

9.6.! It should be possible for the user to write and use hx. own scheduler
EVR.f@7(sl.2) P2R.863($61) P2R.018(962) P2R.618(986) P2R.025(#64)
P2R.827(044) P2M.034(483) P2R.835(tf1) LIR.157

51;
- 58 -

9.S.J It is not possible to define i full pledged event abstraction that
can guard a select.
P2R.818(0#4)

9.0.K It should be possible to handle interrupts efficiently. The interrup
information channel is now connected to a task entry. What is required is
execution of interrupt handling not upler scheduler control.
EVR.001(p12) EVR.003(#2.2) EVR.006(s4.b) RVR.017(81.2) 02R.061(|G1)

P2R.923(#61) P2R.615(#09) P2R.T17(#02) P2R.017(C13) P2R.017(#64)
P2R.036(BI9) P2R.039(#18) POS.01

9.P.L The interrupt interface is an information channel; what is needed
is access to the fact of the interruot as a control event.
EVR.00l(pl2) LIR.021(p*6) POS.061 LIR.600

9.0.M There is difficulty in linking a family of task activations with a
set of interrupts. It should be possible to attach the entuy point of a
family of tasks onto an arbitrary set of interrupt addresses.
P2R.019(#18)

9.0.N The capability of passing parameteis to tasks at activation time
should be provided; passing them via entry/accept is subject to waiting.
LPVR.0#5(#1.R)

9.0.0 There are significant problems with dynamic tasking on distributed
system architectures.
POS.002

9.0.P There is no way of guaranteeing indivisible operations.
LIR.,36

9.0.0 All intertask variable &ccess should be forbidden; communication
should be accomplished with entry and function calls. This simplifies
semantics and extends to distributed architectures.
LIR.254

(3.0,R Tasking should be more controllable: specification of preemptivity
and resumptivity.
LrR.248

9.0.S Task variables are needed to avoid a problem with the visibility of
the index type in task families.
LTR.282

9.0.T On distributed architectures, it should be possible to specify the
subsystem on which to run a particular task (as part of Initiate?).
LIR.283

9.0.U Suspend and resume are desired.
LrR.354

K

-59-

9.0.V To avoid buffer tasks, there should be a predefined parameterized
type Queue. XX9.12
LIR.373

9.0.W Too many buffer tasks are seen as required. The proposed solution
is a mechanism to delegate the comspletion of an ongoing rendezvous from one
task to another, allowing it to be completed in the second task and freeing
the first task. Discussion.
LrR.406

9.0.X rf task families are to substitute for task variables, there should
be some way of finding how many members of the family are active, and some
way to get the index of an inactive one.
LIR.467

9.@.Y Some concept of channels is necessary to allow configuration of
communication lines among tasks defined in a library at system generation.
Otherwise, either the software must be rewritten for each configuration, or
installation-dependent communications tasks must be defined.
LIR.590

9.0.Z Too many buffer tasks are required. There should be a variety of
entry (with rn parameters only) which does not wait for completion of the
rendezvous, and queues entry calls.
LIR.591 LIR.61I

9.0.ZA Task variables are needed so that a :arver task can reply to user
tasks which are not members of the same task family.
LIR.592

9.0.ZB Although the Rationale emphasizes the distinction, the LRM confutes
tasks and threads of control. There should not be such ambiguities. XX11.5LIR.620

9.0.ZC There should be a unique runtime key Zor task activations, since ther
is no way to guarantee such with current language facilities.
LIR.124

9.0.ZD Low-level synchronization mechanisms should be provided. Channels
should be primary, not rendezvous.
LIR.197

9.1 Task Declarý;tlons and Task Bodies

9.1.A Se.eral problems are raised by procedures in the visible part of a
task:
1) When initiating a task a procedure call can only be achieved once the
declarations •" the corresponding task are elaborated.
2) When a tsr erminates (normally or abnormally) there may still be ongoing
procedure cal.
3) The interaction of procedures and accept statements is complex.
4) Without some precautions procedures permit access to locals of a task
and raise issues similar to those of shared variables. XX9.4
OPA.626

9.2 Task Hierarchy

9.2.A Tasks should not be nested within procedures or functions; tacks
should only be nested within other tasks.

9.3 Task Initiation

9.3.A If a procedure in the visible part of a tez' is called, it may be*
able to access variables whose declarations have not yet been elaborated.
The semantics of the initiate statement are unclear: what assumptions can be
made about the state of an initiated task?
LIR.631 OPA.019

9.3.8 Initiate should be allowed parameters.
LIR.278 LIR.374

9.3.C It would often be useful to have tasks initialized at elaboration
(eq semaphores).
LIR. 279

9.3.D More precise definition of task initiation is needed: two tasks
cannot be made active simultaneously, eg, in the presence of Lnrerdependent
declaration elaborations.,
LIR.572

9.4 Normal Termination of Tasks

9.4.A There is no facility for synchronous termination of embedded tasks
(particularly when such tasks are encapsulated).
LIR.019(s3.6) LTR.284

9.4.B There are problems of logic and implementat.on connected with
the exit of scopes containing active tasks.
LIR.622 LIR.311

.9.4.C Task termination is ambiguous and in fact may never occur.

9.4.D Suggests that synchrorous termination be accomplished by predefining
a 'condition indicating that the task's containing unit wishes to terminate.
LIR.284

9.5 Entry Declarations and Accept Statements

9.5.A Separating entry bodies (like procedure bodies) would make tasks
easier to read and understand.
LIR. 09(s3.8)

9.5.8 There is no syntactic difference between an entry and a procedure
invocation.
P2R.035(903)* P2R.P39(#17)

/s

-61-

9.5.C *Then" or *Begin* is preferred to "DoO in the accept statement:
Do is an unnecessary extra keyword with incorrect implications.
LIR.332

9.5.0 Entry declarations should be restricted to task specifications. An
interrupt representation specification may appear in the task body. XX13.5.1*
LIR.441

9.5.9 Even null bodies of Accepts should have a syntactic terminator.
LIR.442

9.5.r Entries should either be quite distinct from procedures, or unified
somehow. It is currently not clear whether many rules apply to entries:
overloading, renaming, address specification, placement of declaration and
bodl. generic subprograms, Inline. Do the rules apply diftorently when an
entry is renamed as a subprogram? XX6.6 XX8.5 XX13.5 XX6.1 XXC.2 XX6.4
LIR.444

9.5.G The 'identifier' in entry declaration is presumably the entry name:
what part of it should be used as the identifier?
LIR.554 LIR.S71

9.5.H Why is initiation of a task prohibited in an accept body? XX9.3

LIR.572

1.6 Delay Statements

9.6.A The definition should indicate that a delayed task will be queued for
scheduling once the designated delay interval has passed.
EVR.002(1207)

9.6.B In addition to delaying for a specific real time interval, there
should be a provision for a delay with respect to another task's
execution time.
P2R.032(*13)

9.6.C The semantics of the delay statement 3re context dependent. (See
Select statement)
P2R.036(408) LIR.053

9.0.D There should be some way to wait for a condition (eg resource
available) as well as waiting a particular length of time.
LIR. 375

9.7 Selec- Statement

9.7.A There is no provision for selectively waiting for the acceptance of
an entry call (eg timed-out calls).
LIR.009(s3.1) Lr1.359 LIR.369 LIR.452

- 2-

9.7.B The language should guarantee fairness in the select statement:
it sho-ild not be possible for a qiveued entry call to be permanently
blocked by subsequent entry calls sharing the same select statement.
EVR.002(#104) P2R.0l5(B6') LIR.189

9.7.C The language should either (a) restrict the variables that can
appear In the guards of a select statement to those that cannot change
while awaiting the entry call, or (b) guarantee reevaluation befors,
selection of any alternative with a guard that may have changed.
EVU.992(#209)

9.7.D There should be conditional entries as well as conditional accepts.,
EVR.002(#216) P2R.039(115) LIR.002

9.7.E The language should guarantee that 3 waiting entry call will always
be selected in preference to a delay.
EVR.802 (4104)

9.7.? There is a need for a select guareO that is true only if all others
are false. When Others should be added to the select statement.
LIR. 020

9.7.G Select should clearly be specified to act non-deteruinistically, as
any programs depending on fairness will likely be implementation-dependent.
Lrp.oag

9.7.H1 The select statement Is too complicated; a lower-level mechanism is
r'referred.

9.7. The present rendezvous concept is good: timed-cut entries and
suse~nd/resume would hurt effectiveness and unifcrmity.
LR.;M5

9.7.j It should be possible to have exception handlers vith *cop*
co-extensive with one select alternative to catch propagated exceptions.
LIR. 295

9.7.K Thero- should be entty call timeouts. The details of a correct
implementation are discussed.
LIR.319

9.7.L Entry calls should be allowed in Select as are Accept's In order to
express a nondeterministic choice between consumption and production. XX9.6
LIP. 397

9.8 Task Priorities

9.8.A The language should giiaran'se that priorities will be rigidly enforcer
during scheduling.
EVR.002 ($210)

" 63 "

9.8.8 Task priority should be assignable at initi&tion time; queue
reordering should also be possible.
EVR.00l(pll) EVR.005(1l.3) P2R.l P2R.I18(t7) P2R.835C(01)

9.8.C Scheduling is vague and too restrictive. Implementation dependency i;
encouraged by not specifying that scheduling is non-deterministic.
LrR.060 LIR.080

9.8.D The semantics of priorities are unclear, especially in the presence o
monitor-type tasks.
LIR.081 LIR.083

9.8.E Interrupt handlers should have priorities but should not be subject tc
scheduling.
LIR.146

9.8.? There should be some mechanism for specifying the mapping between
Ada's priority and tasking constructs and the machine's.
LIR.298

9.8.G Preemptive scheduling should be possible in any implementation.
LIR. 352

9.8.H Tasks should be able to set their children's priorities, but why
should they be able to set their own?
LIR.665

9.9 Task and Entry Attributes

9.10 Abort Statements

9.10.A Both the ABORT statement and raising FAILURE are extremely
dangerous. In particular asynchronous termination of a rendezvous causes
severe problems in maintaining the consistency of in-ernal data.
LIR.009(s3.7)

9.13.8 The Abort statement is unnecessary.
LIR.242

9.10.C Abort should not take a name, but a variable as an argument; it
should be possible to abort oneself and one's parent without knowing their
names.
LIR.363

9.10.0 Tasking exceptions should be described in the tasking section, not.
the exception section, as other exceptions are described with their
constructs, or at least cross-referenced XXll.4
LIR.555 LIR.558

9.10.E The semantics of Abort should be simply those of raising Failure but
Ignoring exception handlers. XXll.5
LIR.621

-64 -

9.11 Signals and Semaphores

9.11.A The built-in (generic) tasks SIGNAL and SEMAPHORE are
non-traditional, difficult to use and unnecessary.
LIR.099(s3.9)

9.11.B Making semaphores into tasks precludes their incorporation into
data objects.
LIR.066

9.11.C What is the meaning of the priority of a semaphore?
LIR.083

9.11.0 What is the meaning of priority to interrupts? What happens to
priority when a high-priority task needs the services if a low-priority
task? Discussion.
LIR.427

9.12 Example of Tasking

1I. PROGRAM STRUCTURE AND COMPILATION ISSUES

10.0.A 6IndependentO compilation for units communicating only through
parameter lists and not global environment should be defined for external
units, such as dynamically loadable units and foreign language units.
LIR.130

10.0.B The separate compilation feature is unnecessary. Source inclusion
or support utilities should deal with separate compilation.
LIR.144 LIR.584

l0.0.C What units are actually loaded? What is the minimum one can
expect of the library and loader in terms of not loading unused units? What
is the unit of loading? Subprograms, modules, compilation units?
LIR.321

10.1 Compilation Units

10.1.A The present system has both too many surprising consequences, and
precludes too many useful optimizations. A simpler system wculd be quite
adequate.
EVR.@0"(#l.3) P2R.805(*95) P2R.905(#06) P2R.006(0S5) P2R.030(tol)
P2R.837(067) DCR.003 LIR.128

1.1.8 The language allows separate compilation of nested entities
(modules, procedures, tasks); for the programmer, it will be very difficult
to know the environment of such a separately compiled entity.
P2R.014(#07)

• • ... •-'---'* 1

-65-

1M.I.C The physical Interface contains too much information. In particular
the privato part should specify the representation of any visible private
types.

10.1.D Visibility restrictions are overly restricted in separate
compilations.
LIR.139

16.1.E Stubs for subunits can sometimes be ambiguous. XX1I.2
LIR.118

10.1.? The system of separate compilation incorporates too much information
about what units will be compiled together into the text of the program.
LIR.123

l0.1.G It can be impossible to distinguish identically named subunits
without blocking their vision of a common enclosing unit.
LIR.140

10.1.H What exactly IS a program library?
LIR.556

16.1.! Syntax of compilation unit should presumably be
rvisibility restriction (SepaFatell unit-body (cf. 10-5 line 1).
LIR. 573

10.1.J There are cases weere separate compilation seems unnecessarily
illegal. (Example)
LIR.622

10.2 Subunits of Compilation Units

10.2.A Selected components of compilation units should be specifiable in
Restricted statements, eg if main has subunit A, permit Restricted(Main.A).
OPA.016

19.2.8 The enclosing unit of a subunit should be explicitly specified in the
compilation unit header--it is otherwise ambiguous for reader and compiler.
XXR.3
LIR.128 LIR.241 LIR.436o LrR.445 LIR.574
LIR.597 LIR.604 LIR.609 LIR.61i

10.2.C Separately compiled overloaded subprograms within the same
enclosing unit should not be allowed. XX1.1
LIR.364

10.2.D Separation of bodies from specification should not be restricted
to the outermost scope. XX7.0
LIR.449

10.2.E What IS a subunit?
LIR.574

10.3 Order of Compilation

19.3.A The strategy for ordering separate compilations does not work In
the presence of separate generic units, inline subprograms, representation
specifications, and certairn requirements concerning calls to procedures
with side effects.
P2R.0U5(661) LIR.004 COM.002 DCR.003

16.4 Program Library

16.4.A The program library file should not be updated by all compilations
as this may compromise its integrity.
LR.12_

16.5 Elaboration of Compilation Units

16.6 Program Optimization

10.6.A rt is unclear that some optimizations concerning functions and
variables with *abnormal* behavior can be performed by the translator.
POS.003(pfl) DCR.903

10.6.8 There should be explicit conditional compilation, using pragmas.
LUR. 03A

10.6.C The programmer should be able to ask for many implementation
choices and optimizations explicitly: omission of GC; static allocation; use
of global flow analysis; suppression of runtime checks. XX2.7
LIR.410

16.6.D Discussion of optimization should be left to the Rationale.
LIR.575

11. EXCEPTIONS

ll.O.A Manual does not make clear what exception ghts. raised for some cases
of constraint violation.
LIR. 08(s3.3)

11.0.8 Underflow should not be an exception.
EVR.005(#2.1) LIR.366

ll.@.C There is no way to handle user exceptions propagated beyond the scope
of their definition (OUnhandledO exception). Should Others handle them?
LIR.048 LIR.559

ll.O.D There should be no exception facility as it introduces too great an
overhead.
LIR.244

- 67 -

l1.9.E What happens when an exception propagates beyond its scope?
Making exception definitions global is suggested.
LIR.246

11.0.F Explicitly raised exceptions should leave variables' values well
defined.
LIR.367

11.1 Exception Declarations

11.1.A No value error is Ill founded.
OPA. 15

11.1.8 No value error is too expensive to implement.
LIR.034

11.1.C No value error from a function should be raised in the caller's
environment. -
LIR. 688

11.1.D It is not clear when and where which predefined exceptions are
raised.
LIR.557

11.2 Exception Handlers

11.2.A The language should guarantee that actual Out parameters will not be
assigned if the routine is exited abnormally (i.e., by exception). XX6.3
EVR.002(C162) P2R.043($13)

11.2.8 There is a need for exceptions that will not be handled by When
Others.
LIR.61f

11.2.C Exception handlers should have access to the environment at the point
of an exception for testing and debugging.
LIR.057

11.2.D It should not be possible to access/reference unelaborated or
incompletely elaborated declarations from within an exception handler.
EVR.002(0213) DCR.AS5 OPA.012

11.2.E It should be possible to specify explicitly in the exception handler
whether terminative or resumptive semantics apply to the particular handler.
EVR.16S(R 15.6)

11.2.F There should be some way to identify an exception caught by
"Others* for debugging and error messages.
LIR.184 LIR.399

11.2.G It should be possible to return and continue after an exception.
LIR.465

- 63 -

11.2.H Exceptions should pass parameters, eq Assert(35) x>f;. XX5.9
LrR.466

11.2.! If an exception propagates out of a scope and back in, is it
handled by the named handler or Others? Presumably the named handler.
Example given.
LrR.526

11.3 Raise Statements

11.4 Exceptions Raised During Tasking

11.4.A Propagation of Tasking error compounds the problems of asynchronous
termination, especially with regard to procedures in the visible part of task,
LrR.0g9(s3.7)

11.5 Raising an Exception in Another Task.

11.S.A The asynchronous.exception Tasking error may be raised on the
accepting task during a rendezvous. This 'isruption causes problems for
tasks that require indivisible updates of their data structures In order to
maintain consistency.
LrR.083

11.5.o The semantics of raising the failure exception in another task
are unclear and sometimes counter-intuitive.
LIR.119

11.5.C The semantics of the failure exception are complicated in the preuencs'
of multiple threads of control corresponding to a task: exception propagation
is dangerous. The example of Rationale 12.4.1 is flawed and demonstrates the
dangers. The Failure exception should only take effect when the thread of
control executes inside the task or when it returns to it. The question
remains as to whether a thread of control waiting in an entry is executing
inside or outside the task. XX9.0
LrR.620

11.6 Suppressing Exceptionr

11.4.A The language should restrict the consequences when a suppressed
exception occurs.
EVR.002(6212)

11.6.B The semantics of suppressing the ASSERT ERROR exception should be
specified.
LrR.019

12. GENERIC PROGRAM UNITS

- 69 -

12.0.A There should be task generic parameters. For exasple. task entries
should be allowed as generic parameters.
P2R.639(008) LIR.15

12.0.5 There is a need for a specification and assertion language for
generics. it is not clear at this time what the problems will be. There are
strong reservations about a language that allows thing to look the same but
have different meanings.
P2R.943(#05)

12.@.C The generic facility does not provide true parameterized types nor
can it express type interrelations and properties (eg T is a discrete type).
How can a record field be guaranteed to exist?: the type cannot be restricted
nor can the field name be a generic parameter. Consider also the interaction
with separate compilation.

- LiR.078 LIR.196 LIR.388

12.0.D Overloaded generic subprograms cannot be disambiguated: prohibit
them. XX4.1.2 XX6.4
LIR.527

12.0.E A generic subprogram can have the same signature as a non-generic
subprogram but be distinguishable. Can one overload the other? XX6.6
LIR.528

12.0.F Overloading of generic subprograms by generic clause is not
allowed. Put it could be. XX6.6
LIR.529

12.0.G Generic functional arguments may require implementation techniques
identical to those required for functional arguments. XX6.9
LIR.623

12.0.H Generic parameters should be allowed to be generic subprograms.
LIR.623

12.0.? All compilation and error-checking of generic subprograms should
occur at instantiation time.
LIR.207

12.0.J A general macro facility is desired.
LIR.211

12.1 Generic Clauses

12.1.A The concept of a 'designator' as an *attribute of a type" is vague
and confusing.
LIR.136

12.1.8 The syntax of Subprogram specification as a Generic Parameter allows
Generic clause. Forbid this either in the syntax or the semantics.
LIR.215- LIR.287 LIR.473

7-

12.1.C What are the exact semantics of generic Out and In out parameters?:
suggests forbidding them.
LIR.288

12.1.0 The attribute 'Size of a generic type parauieter should be
available in the generic body.
LIPR.296

12.1.3 Allow entries as generic parameters.
LIR.291

12.1.7 Generic uwtits and entries should be allowed as generic parameters.
Visibility for the generic body should be defined by the point of
instantlation. Extensive discussion of interdependent generic tasKs.
LIR.398

12.1.G Record component names should be allowed as generic parameters.
LIR.419 LIR.474

12.1.H There should be a way to indicate that the parameter declarations
among the generic parameters are commutative. C??)
LZR.459

12.1.! Exceptions and packages should be allowed as generic parameters.

LIR.474

12.2 Generic rnstantiation

12.2.A implicit instantiation of generic subprograms is needed. Implicit
instantiation of other generic definitions is not needed.
EVR.092(6301) E'JR.003(#3.4)

12.2.B Ada relies heavily on generics. in particular, they are the means
for realizing parameterized types. Procedures and functions that take
parameterized types must also be generic. Thus the compiler must be able to
recognize when generic procedure instantiations may share code. Can it?
EVR.003(P02)

12.2.0 There is a problem with instantiating a generic with a type that is
an unconstrained array type.
LIR.628

12.2.E *New namew should presumably read Onew designator*.
LrR.034

12.2.F The syntax of generic association should allow "designator IsO, but
formal parameter restricts it-to identifiers.
LIR.571

12.2.G Generic parameters used in static-evaluation contexts in the body
should not be required to be static.
LIR.289

- 71 -

12.2.H The syntax of generic definition and instantiation violates the
principle that specifications should parallel uses. Syntax suggested.
LIR.191

12.3 Example of a Generic Package

13. REPRESENTATION SPECIFICATIONS AND IMPLEMENTATION DEPENDENT

FEATURES

13.@.A There should be an escape mec'-;.<nism that will permit the user to
specify the storage management algorithm £or pointer/heap storage. XX3.8
EVR.602(0304)

13.6.B The programmer might be restrained if acceptable space and access
afficiency were needed, for example by prohibiting arrays with dynamic bounds
or minimizing shared variables. XX3.6
EVR.001(pl3)

13.0.C Programs using pointers cannot be guaranteed to be free of garbage
collector overhead. XX3.8
P2R.022(fOl) LIR.24. LrR.258

13.0.D Non-stack storage allocation Is needed to implement parallelism and
dynamic storage: where, then, is local storage for a task allocated? In a
single address space model, the new process must be allocated storage of
some fixed size at initiation. Fixup action must be taken on overflow; or a
probe is needed before growing the stack. Both are too inefficient for
embedded computer applications. XX9.6
P2R.027(*03)

13.0.E There or* no facilities for program overlays.
LIR.001

13.0., Make it clear that I length specification fcr a collection
inhibits garbage collection (and hence permits user definition of
Allocate and Free as shown in Washington April meeting). XX3.8
OPA.602

13.0.G Representation change is prohibited for derived record and
enumeration types with user attributes but not for similar array types.
LIR.160

13.0.H Representations should be a part of type declarations (not separate)
and have a more compact form. XX6.1
LrR.157 LrR.249 LIR.276

13.0.1 Is bit 0 the low-order or the high-order bit? XXA
LIR.157 LrR.351

-72-

13.@.3 The For/Use construct is overloaded.
LXR.247 LIR.249

13.@.K More of the attributes of a type should be incorporated into
declarations rather than representations. XX3.*
LIR.249

13.O.L There should be a representation specification for fixed-point
numbers defining the value of the most significant digit and precise layout.
(Some suqqest making this part of the type definition itself.) XX3.5.5
LrR.306 LIR.350 LIR.391 LIR.412 LIR.413
LIR.423

13.2.M Lack of inheritance of representations by derived types seen as
possibly burdensome.
LIR.462

13.@.N Some sort of representation specificatior is desired for arrays.
tIR.463

13.1 Packing Specifiestions

13.2 Length Specifications

13.2.A The length specification for an access type should not be required
to be static.
LIP.429

13.2.a What is the type of the static expression?
LIR.577

13.3 Enumeration Type Representations

13.3.k It should be possible to specify contiguous representations of runs
of enumerals without writing them all -ut: suggests that unmentioned
enumerals received the representation of the preceding enumeral plus one.
LIR.28I

13.3.B The current syntax for enumeral representation is not transparent
in meaning. The requirement that a representation aggregate be named when
there is but a single enumeral is a disturbing irregularity In the-syntax.
Perhaps the syntax of aggregates is to blame. XX3.6.2 XX4.6
LIR.531

13.4 Record Type Representations

13.4.A The syntax is considered clumsy and redundant.
LIR.-04

13.4.8 Alignment clause cannot specify, e.g., 1 mod 8, but only 6 mod 8.
LIR.093

-73-

13.4.C OAt* is a poor keyword here.
LXR.993

13.:Z Address Specifications

13.5.A Can two variables be given the same, address? Clarify manual.
LIR. 352

13.5.B For. ...Uso at Is too static and one-memory oriented. XXA
LIR. 396

13.5.1 rnterrupts

13.5.1.A Interrupts should not be queued.
LIR. 146

13.5.1.8 Interrupts should be "masked out" Inside their own handlers.
LIR. 146

13S.5..C What happens when two entries are attached to the s.,Le
Interrupt?
LIR.239'

13.5.1.D How does one, guarantee immediate servicing of Interrupts?
LIR. 239

13.5.1.E There is apparently a problem In Implementing Ads interrupts on the
UYI(-20.
LIR.180

13.06 Change of Representations

13.7 Configuration and M9achin* Dependent Constants

13.7.A A floating-point real-time clock Is Impractical; moreover, the
clock should measure time of day rather than time since Initiation. There
is an ISO standard on date and time which should be consulted.
E" .002(#208) P2R.602(**3) P2R.025(#06) DCR.1rS LIR.301
LIR.393. LIR.422

13.7.8 The notion of task cumulative processing time ('Clock) forces
inefficiencies; System'Clock, however, is useful.
OPA.009 DCR.006

13.7.C There should be an implementation-independent fixed-point clock.
LIR.415

13.7.0 What manner of beast are System and Option? They are predefined
names, but not reserved words or package names. Are they object names? LIR
suggests they be predefined Internal packages; their attributes w-3uld thus
be selected by dot notation. XXA XXC
LIR.471 LIR.492

-74-

.13.8 Machine Cod* insertions

13.8.A Thare should not be any special mechanism unique to machine,
and/or assembly language.
EVR.002(#111) P2R.914(*3E) P2R.022(006) M2.628(#02) P2R.042(#61),

13.8.8 This section is too vague.
L!R.034

13.8.C Assembler insertions should have conventional syntax..
LIR. 424

13.9 Interface to Other Languages

13.9.A The same mechanism should be used for assembly languLage
and machine code interfaces as is used for interfacing other'programming
languages.
EPVR.002(.211) P2R.o#8(#Ol) P2R.944(0071

13.9.B It is not specified how ta invoke a procedure from another language.
P2R.037ceI6)

139C There are some problems with the foreign code interface for
Fortran, e.g. matrix representation, slice parameters, functions as
parameters, and variable length parameter lists.
LIft. 14

13.9.D How are Ada programs called by programs in other languages?
LIR. 157

13.9.E It Is suggested that the Ada Interface conventions for a given
machine become the standard conventions for -the other languages on that
machine. All machine and OS formats should be defined as' Ada data
Structures. Ada Should be the standard intermediate language.
LIR. 290;

13.9.1P There should be, a standard (unisafe) way of building an Ada array
from a block of storaga pasmed Intoý an Ada routine from a non-Ada'routine.
LIR. 387

13.9.G More support is needed for interface to other languages, Perhaps
machine-dependent code should be isolated in a special module as proposed in
Euclid.
LIR.57B

13.10 Unsafe Type Conversion

13.10.A Reinterpreting the type of an object without real conversion Is
desired.
LIP. 092

13.10.B The name Unsafe programming is too strong.
LIR.309 LIR.451

//

//

- 75 -

13.10.C The applicability of Unsafe conversion to 1/O is not made clear.
LIR.349

13.10.D What exactly does Unsafe Conversion do? When it is imposing a
type on previously untyped data,-it should check for Range_Error.
LIR.451

14. rNPUT-OUTPUT

14.0.A For an I/O handler, multiple instantiations and numerous names
are required to use files of all types. This is extremely cumbersome if
many types ate present.
P2R.039(#07)

14.0.B The untyped binary I/0 on which typed binary 1/O is built should be
visible to users and standard across implementations, since it must of
necessity exist under Input Output.
LIR.107

14.0.C The I/0 model is at too high a level, too sequentially oriented
and overly attache'ý to the idea of one data type per file.
LIR.046

14.0.0 There should be a high-level model of real-time data stream I/O.
LIR.327

14.0.E The I/O package should not be'addressed in the LRI.
LIR.371

14.0.F There should be some standard way to time-out from I/O.

LIR.376

14.1 General L'ser Level Input-Output

14.1.A The departure from conventional I/O techniques may lead to
nonstandard I/O techniques between similar systems. In particular
"conventionas" read, write, and format statements are missing.
EVR.005(15.O) LIR.238

14.1.8 Objects of mixed types should be allowed to coexist on files.
LIR.107 LIR.327

14.1.C A standard package implementing Fortran-like formats should be
defined.
LIR.299

14.1.1 Files

14.1.1.A There should be a function for determining whether a fllename
corresponds to an existing and accessible file.
LIR.421

14.1.1.8 Renaming of files is missing. There is no way provided to write
and end of file mark or change the valid length of a f~le. It should not be
necessary to open a file to delete it.
LIR.206

14.1.2 Pile Processing

14.1.2.A The names Read and Write should be exchanged with Get and Put
for naturalness and Pascal compatibility. XX14.3
LIR.372 LIR.395

14.1.2.8 End of file should be a predicate, not an exception. XXC
LR.43_

14.1.2.C Read without advancing the file pointer is missing.
LIR.206

14.2 Specification of the Package INPUT OUTPUT

14.2.A It is worthwhile to treat 1/O devices as uniformly as possible.
This raises many subtleties of treatinq I/O devices as files.
LIR.007 LIR.013

14.2.8, Acray I/O should be defined.
LIR.106 LIR. 327

14.2.C Some method of forcing buffers out (i.e. draining, flusbinq) should
be defined.
LIR.109

14.2.D The exceptions in different instantiations of the generic package
Input Output cannot be distinguished. The package bnould have functions
which--return information as to what caused the exception. XXlI.l XX12.2.
LIR.475

14.2.0 Delete Is missing (cf. 14.1.1).
LIR.217

14.3 Text Input-Output

14.3.A Imbedded carriage control characters would be nonstandard across
systems, and cause confusion in Ada 1/O; thus, a machine Independent
mechanism should exist for carriage control.
LIR.ls8

14.3.8 Can Ada 1/O support a text editor efficiently? nore support is
needed for terminal text 1/O.

L1 I I I I I I I.I I I579I I !

-77

14.3.C There should be some standard te~tt 1/O for structured types
(records).
LrR. 579

14.3.0 Simulated I/O (Fortran Encode/Decode) Into Strings Is desired: Got
a,'d Put should be overloaded on the Pilo parameter.
L19. 182

.14.3.t Input and output of text lines are desired.
LIR.183

14.3.1 Standard Inpui and Output Files

14.3.2, Layout

14.3.2.A OTabO Is used for ONTO despite Appendix C. XXC
LIR.lI5

14.3.2.8 Th. effect of Tab Is nonstandard (should be next multiple of
eight plus one).
LrR.gs5 LIR.S80

14.3.2.C Do control characters actually appear In files, or do they l'ust
Indicate effects? In particular, the distinction between Nowlin* and CR
LF is unclear. If the charrcters appear in files, how does the file ~system
work on record-oriented systems?
LIR. 898

i4.3.2.D Tab stops sh~ould be user-specifiable. Outputting.& Tab should
insert the appropriate number of spaces.
LIR.18l

14.3.3 Input-Output of Characters and Strings

14.3.3.A LRM confuses Issue of quotes within strings.
LrR.103

14.3.4 'Input-Output for Other Types

14.3.5 Input-Output for Numeric Types

14.3.5.A Real number Input syntax should be more liberal.
LIR. 116

14.3.5.A The Get function rounds Inputs to FloatoDigits rather than to
the full precision of the object gotten.
LIR. 165

14.3.5.9 D'o positive numbers print with initial 0+, blank, or digit?%
LIR.699

14.3.6 Input-Output for Boolean

- 78 -

14.3.7 Input-Output for Enumeration Types

14.3.7.A The case of enumeration types' output should be specifiable.
LIR.099

14.4 Specification of the Package TEXT To

14.4.A An expression on 14-11 is missing needed qualifications.
LIR. 1S

14.4.8 Tab stops are poorly defined and probably non-standard.
LIR.125

14.5 Examp?- of Text Input-output

14.6 Low Level Input-output

A Predefined Language Attributes

A.A Thf word "machine' is used where "implementationO is meant.
LZR.105

A.B The definition of ASCII as an enumeration type is circular.
LIR. 063

A.C T'Rep Is incompatible with Put in that it does not take width and fra,
arguments.
LIR.099

A.D There should be a useful 'Address fcr data not word-alLgned.
LIR.260 LIR.381

A.E 'Size should apply to program units. This is useful for memory
allocation, swap control, and overlays.
LrR.263

A.? The 'Address for non-contiguous packages (eg pure and impure parts)
is not well defined and not entirely useful.
LrR.264

A.G What are the types of 'Delta, 'Small, System'Min. nt, and
System'Max Int? XX3.5.5 XX13.7
LrR.330 LIR.470 LIR.492

A.H What is the meaning of 'Address in segmented and multiprocessor
architectures?
LTR.331 LrR.396

A.r The attributes 'Size, etc. should be defined in terms of diqits, not
bits, and the base of the machine should be a system attribute. 'Small and
'Large should also be defined in a radix-independent way. XX13.2
LIR.331

_ _ _ _ _ _ _ _ _ _ _ _ _ __I i , 3 .

- 79 -

A.J Sit positions should be l-origin, not #-origin. XX13.4
LIR.331

A.K Page size should be a system attribute.
LIR. 376

A.L 'Bits and 'Radix should only be defined for floating point types.
'Bits should be renamed 'Mantissa; abolish 'La and 'Small. XX3.5.5
LrR.379

A.M Abolish 'Access Size--the meaning of 'Size should be uniform.
Zntroduce, eq, 'Denoted"Size if desired.
LIR.380

A.N 'Size should be clearly defined to be the maximum size of an object
of the type. tConsider records with variants, etc.)
LZR.381

A.O There should be a: predefined attribute of any type converting to a
fixed length array of character.
LrR.420

A.a? The identifier Priority is both an attribute name and a type. This
is legal but confusing. Change the type to Task Priority.
LIR.472

A.0 Why are there no System'Min Float and 'Max Float? XX3.5.5
LIR.665

A.R 'Rep should allow more than three digits of exponent when necessary.
LIR.179

8 Predefined Language Pragmas

B.A When Pragma 'Optimize is not used, are no optimizations performed?
How does one optimize only part of a module? What is the default state of
Optimize?
LIR.533

B.B Define the effect of. the praqmas Page, List, and rnclude on listings
more precisely.
LIR.534 LIR.535 LIR.536

C Predefined Language Environment

C.A Attributes of record components should not be applicable to
discriminants, since they need not be present.
LrR.08S(s4.0)

C.. The characters 0, 1, I, and 0 lack enumeration literals.
LIR.103

- SI -

C.C There should be a predefined type Time interval distinct from Time
with only appropriate operations on each (eq ni Time÷Time).
LIR. 331

C.D Exponentiation and Mod should be defined for more combinations of
types to encoutage uniformiti. XX3.S
LrR.333

C.2 Common mathematical functions (square root, sine, etc.) should be
predefined.
LIR.392

o Glossary

D.A Suggests some addit.oni in the area of access variables. XX3.8 XX4.7
LrR.477

E Syntax Summar

E.A There are too many 'indeterminisms' in the current syntax.
LIR.293

E.B Syntax summary is incomplete.
LIR.295

Index

Index.A The index is inadequate.
*LIR.115

Index.B The index omits Program Units (1.7) and Declare (6.7) and indexes
Initial value incorrectly.
LIR.464

Index.C Some grammar non-terminals are not in ,he index. The standard
identifiers (First, Environment, Integer) should certainly be included also.
LIR.537

Z General questions of syntactic style

Z.A The syntax has too many noise words and too much redundancy In
general. On the other hand, some keywords are overloaded with quite
distinct meanings in different contexts, e.g. else, exception, for, new
others, restricted, range, is....
LIR.041 LIR.597 LrR.601 LIR.603 LIR.617
LTR.929

Z.B Syntax is too verbome and keywords are too long.
LIR.047 LIR.078

Z.C The permissible nesting of subprograms, generics, and modules is vaqu.
LIR.052

t,~1

- 81 -

Z.D Every type of Oendg should be qualified by the block name or type. A
least, the meaning and optionality of identifiers after End's should be
uniform. Currently they are not: End name for task bodies, but End Case for
cases, and just End for Begins. XXS.6 XX6.4 XX7.1
LrR.094 LIR.217 LIR.583

Z.E The syntax is far too permissive: semantic distinctions are blurred at
ambiguities often engendered. XX7.1 XXS.5 XX2.6.2 XX3.5.5 XX3.6 XXl9.2 XX5.2
XX6.2
LIR.162 LIR.628

Z.F Semicolons should be used for statement termination only; comas
should be used to separate items in a series (eq parameters).
LIR.205 LIR.250

Z.G Semicolon should be a statement separator, not a terminator: consider
especially, the semicolons after end's of different kinds.
LIR.443

Z.8 In several places, the syntax rname.ldesignator is used where it seem:
new nonterminal, subprogram designation, defined as name I
(name.1character string, wo~ld be more appropriate. Cf. renaming declaration
genectc paramete7, and generic association. XX4.1 XXS.S XXl2.1 X212.2
LIR.18--

Z.I The "upper-level" syntax (unit headers) is ad hoc and poorly structur.
For instance, generic names appear at the wrong place. The whole upper level
should be redesigned starting from the abstract syntax. XX12.1 XX8.3
LIR.633

Z.J Empty fields (not *null;') are allowed in some surprising places.
Usually, thb metasyntax (...) is used where *one or more* would seem more
appropriate. XX3.7 XX5.O XXS.5 XX6.7 XX9.7
LIR.202 LIR.218

APPENDIX C: Documents

A significant number of Oquestions. of interpretation* about
Ada arose (primarily from implementors). These were questions about
unclear points in Preliminary Ada, and were not intended to bring up
questions of design. The objective was to answer questions of
immediate importance to implementors and users in general.

These questions were submitted to the language design team
and were answered in November 1979. It was planned that the asking
and answering of questions would be an ongoing process, but few
questions came up later.

- 82 -

It should be recalled that these questions and answers refer
to Preliminary Ada only and may be irrelevant or incorrect with
respect to Final Ad&.

The questions and their respective answers are found in the
file 0uentions.Answered. Both question and answer are preceded by'a
section number.

APPENDIX D: Documents Maintained By Intermetrics For Ads
Test and Evaluation

Nine types of documents have been archived during the Test
and Evaluation process. Each has its own log and set of files
containing the text of those individual documents which have been
received in machine form. Logging conventions and file naming
conventions are consistent over types. Each log file is named XXX.LOG
where OXXXO is % 3 letter code for the type. The text of documents is
stored in files narid XXX.I0l, XXX.002, XXX.063, etc. Again, *XXX* is
the 3 letter code corresponding to a particular type; the sequence
number provides a uniform and unique reference to such documents.

Log files contain one line of summary information about each
document of the type they log: a sequence number, length, source, and
subject. All log files contain at least a sequence number and source.
Most log files also record the length of the documents. An entry of 0
in this field indicates that the document is not available on-line.

The source is the person(s) or organization submitting the
document. If an institutional affiliation is known it !s put in
parentheses after the author's name. Some documents have been
submitted without an indication of source; others h.-ve only an
institution's name. Note that should a document have as its source
the name of an institution, its contents does not necessarily reflect
the official position of that organization.

The subject field is an attempt to encapsulate in a very
small space the most informative title or summary for a given comment.
If a subject reaches a conclusion, that conclusion is briefly
indicated; If a comment indicates a problem in a certain area, that
problem is made as explicit as possible in the small field available.

An entry, then, looks like this:

Doc # Length Source Subject

01 32 pgs. J. Jones (X Corp.) Parameterized
Types Needed

- 83 -

Text files are simply on-line copies of the original
documents. If the document was mailed to us via the Arpanet the block
header is retained for reference.

Document Types Logged

1. Phase Two Reviews (P2R)
These documents are not actually available on line, but are

nonetheless logged in order to establish sequence numbers by which
they may be uniquely identified.

Log file : P2R.LOG
Text files: P2R.001, P2R.002, P2R.0.3,

2. Evaluation Reports (EVR7
Evaluation reports include extracts of se-lected Phase Two

Reviews as well as portions of documents previously designated as 'All
Others.* Most documents of this type are available as on-line text.
The set of EVR's was essentially closed rather early. Newer documents
are generally archived as one of the types described below.

Log file : EVR.LOG
Text files: EVR.0I1, EVR.002, EVR.903,

3. Language Issue Reports (LIR)
Language Issue Reports are received by tntermetrics from the

community at large.They must generally be in the format specified by
HOLWG in order to be classified as LIR's. About 804 of these were
submitted in machine form (either over the Arpanet or by transportable
media) and are therefore on-line.

Log file : LIR.LOG
Text files: LIR.01, LrR.002, LIR.003,

4. Comments (COM)
There are Comments of many types: comments on LIR's, short

points, questions, dialogs on certain issues etc. In general, whereas
LIRs are intended to address one topic each, comments may address a
range of topics within one document. This often leads to more general
comments, or to comments related to an overall analysis of suitability
of Ada to particular areas. The titles of comments are therefore less
specific than those of LIR's. Comments are heterogeneoty in form,
content, and topicality. MSG headers are retained for each comment in
order to preserve their history.

Log file : COM.LOG
Text files: COM.01, COM.002, C0M.003,

5. Position Papers (POS)
Various individuals or groups were expected to submit

position papers. These were to be in-depth treatments of specific
problems or related issues. This has not proven to be a popular type
of submission.

Log file : POS.LOG
Text files: POS.601, POS.002, POS.003,

___ N

- , ,.

- 84 -

6. Draft Change Requests (DCR)
As described in section 2. a formal procedure was established

whereby drafts of proposals for language changes written by
rntermetrics and discussed by the Distinguished Reviewers would be
submitted for review and action by HOLWG.

Those documents, called Draft Change Requests, were generated
until the procedure was discontinued. They were and still are
considered drafts; their presence in the log does not indicate their
evolutionary disposition.

During the review process, certain Draft Change Requests
(DCR's) underwent revisions, reflecting the comments and opinions
expressed during Reviewers' Meetinqs. A version number is thus
appended to the name of all such files. The log indicates the most
current version.

Log file : DCR.LOG
Text files: DCR.081, DCR.002, DCR.0.3,

7. Language Design Notes (LDN)
These are proposals from CII-HB for changes to the lanquaqe.

They should not be construed as a commitment by the language design
team to implement the changes.

Log file : LDN.LOG
Text files: LDN.001, LDN.602, LDN.993,

8. Official Problem Acknowledgments (OPA)
These are statements about language problems officially

recognized by the CUI-NB Design Team.
Log File : OPA.LOG
Text Files: OPA.101, OPA.002, OPA.003,

The full logs appear in Appendix r.

APPENDIX D: Accessing The Archive

The files described have been made available for public
inspection and use over the Arpanet at the University for Southern
California's information Sciences Institute machine 1E0, Arpanet
address USC-ISlE.

The IST! machine is a Tops-20 system. It accepts File
Transfer Protocol (FTP) and Remote Login (Telnet) connections across
the Arpanet. Files relating to Ada test and evaluation are found on
the disk directory <TNE-Archive>.All comments on the Ada language
which were submitted via Arpanet mail are stored here, or archived on
the ISI magnetic tape backup.

as]

- 85 -

During the Test and Evaluation period, all the files
described have been made available on-line for public access by the
community. The files will continue, to be accessible on-line
indefinitely, although requests may have to be entered to the ISI
system for retrieval of files from tertiary (magnetic tape) storage..

An anonymous account is available for Pile Transfer Protocol
connections.

The following dialogue is an example of a typical FTP User
program:

Ftp -- invoke Ftp.
C...machine response

Conn ISIE -- connect to MSlE
... machine response
Login Anonymous your name -- login to ISTE
... machine response

Get TNE-ARCHIVE>file name -- do file transfer

Disc -- disconnect from ISIC
Quit -- return from FTP

APPENDIX E: TER Code Breakdown

Many participants in the TE analysis submitted'algorithms
written in a language normally used by the participant, and often
included a version of that algorithm written in Ada; this offered not
only an excellent means of comparison between the two languages, but
also helped illustrate Ada in an applications context.

The list below indicates which of the submitted contained
code samplings.

TER 0 Original Code Ada Code

1 - A
2 - A
3
4 -AS - A

5 - A

9 -
I1 -A

11 -A

12 - A
13 e, D C, B, A
14 - B, A
15 - A

16 A

S.. 86 -

1'7 A B

i8 C, B A
19 - 'A
26 - A

21 - A
22 - -
23 - A
24 A
25 A
26 DA E, P, C, a
27 - A
28 A
29 A 8
36 - -

31 - A
32 - A
33 e
34 - -
35 - A
36 A -
37 A B
38 - -
39 A B
46 - A

41 A B
42 - -
43 - -
44 - -
45 - -

46
47 -
48 - -
49 - -
50e - A

, 51 - -
* 52 D, A C

53 - A
54 C, A B
55 A -
5f; A B
57 - A
58 A -
S9 - -
66g - -

61 A B
62 A, R, D0 E F, B
63 - .
64 A, D, C B
65 B A
66 C, A B
67. - -
S8' - -

0!9 - A
76 - A

- 87 -

71 -

72 A
73 - A
74 - A
75 - A
76 -
77 - A
78 - A
79
80 A81
61 --

82 -

83 -
84 A85 - A :

86 - A

APPENDIX F: Document Logs

P2R 4 SIZE SOURCE

001 60 pgs. Levin/Jones/gladen(USAF)

062 go pgs. (Boeing)

003 06 pqs. (Lear Siegler)

094 60 pqs. (Grumman - USAP)

065 66 pqs. (Boeinq - USAF)

066 66 pqs. (TRW - USAF)

607 go pJs. (ESD/TOIT - USAF)

008 66 pgs. (AFCCPC - USAF)

669 66 pgs. (Hq.SAC - USAF)

616 66 pgs. (Aerospace Corp. - USAF)

611 60 pqs. (RADC - USAF'

612 o6 pqs. (TM - USAF)

613 so pqs. (Sperry Univac)

614 of pgs. (French MOD)

015 60 pqs. (Stanford Al lab)

I

616 of pqi. (U. of Grenoble)'

617 of pgs. Windaur/Goded(me&P Gor)

618 of pqs. uilfin9*r/V~wc~m*r(CMU)

619 of pqi. (TRW - USAF)

121 of pqs. (BGS)

321 so p99. LoblI i ng(POL)

622 of pqs. Ivafls/Motqgf/For sdick(BDN)

623 of pqs. Poirtaq/molliar-Saith(SRI)

624 of pqs. Wult(CMU)

625 go pqs. (OCA)

920; of pqe. Wirth(ETH Zurich)

627 of pgs. (CORAIDCOM - %RMY)

628 of pg.. (Brown U.)

629 of pqm. (Swedish DRI)

630 of pge. 9lzer(Doflier System Gmbh)

631 go 991. Hab~rISanf (CMU)

632 s6 pgs. (Mitre Corp.)

633, of pqs. (NASA)

634 669 pgs. (General Electric)

635 gI p95. (System Consultants, Inc.)

363 66 PqR.(AD Ger MOD)

031 09 pgs. (Univ.*rsitat Karlsruhe)

638 of p95. (UK Dept. of industry)

639 of p95. (LPT-9)

646 as pgs. (UK MOD)

641 6f pgs. Schuman/Abrlal(Prench Navy)

642 60 pqs. (computer Sciences Corp. -USAF)

-89-

043 00 pg3. (U. Texas)

041. 00 pgs. (General Ressearoh Corp.)

045 ' 00 pgs. (HqMC, Code CC&-50)

046 00 pgs. uomputer Science Dept.(CNU)

EVY * SIZE SOURCE S3UBJECT

001 17 pgs. (HOLWO) Washington Review Summary

002 09 pgs. fisher/Wetherall Phase 2 Change Requests

003 02 pg3. Wulf Change Requests

001 02 pgs. Good/London Change Requests

005 01 Pgs. (Navy) Language IssuL

006 01 pg3. (USAF) Language Issues

007 02 pgs. (NOD) Language Issues

008 19 pg3. Interustries Language Issues

LIR 0 SIZE SOURCE SUBJECT

001 01 pgs. I.C. Pyle (lork) Program Overlays

002 03 Pgs. Andy Hisgen (CMU) Timed Out Entry Calls

003 03 pgs. Andy Hisgen (CMU) TASKING ERROR Exoeptions

004 09 pgs. Tichy/Hubbard (CHU) SeparateCompilation

005 09 pgs. Sax* (CHU) Functions and VRP's

006 07 pgs. Saxo/Snith (CHU) User-Detined Types

007 01 pgs. Nassi (DEC) TEXTIO Proposals

008 19 pga. ilftinger (CHU) Discriminant Constraints

009 41 pgs. Hiltinger (CHU) Tasking Faoilities

010 02 pgs. Firth (RHCS) MOD pe-sator

- 90 *

011 03 pgs. Firth (3HCS) Explicit Conversioni

012 02 pgs. T. Sepan (Hughes) Iteration Variable

013 03 pgs. Springer (IBM) 1-0 Package

014 02 pas. NaoLaren (Boeing) Fortran Intorface

015 03 pgs. NaoL&ren (Boeing) gatry Generic Parameters

016 02 pas. Firth (1MCS) Exception Handling

017 05 pgs. Firth (RNCS) Parameter Biading

018 02 pas. Firth (AMC3) Variant Records

019 02 pas. Firth (RACS) Suppressing A$SERIoJRROR

020 11 pg3. Pirth (RMCS) Seeantics of Numerics

021 09 pgs. Woodger (UK) LAN Clartfications

022 03 pgs. Firth (RMCS) Task Termination

023 02 pgs. Firth (1NC5) Compilition units

024 02 pgs. Firth (RMCS) EXIT WHEN Extensions

025 02 pgs. Firth (RMC3) Allocator Function

026 03 pgs. Firtb (RMCS) SELNCT Guards

027 02 pga. Firth (AMCS) RANGE Attribute

028 02 pgs. Firth (RNCS) Array Generic Parameters

029 02 pgs. Firth (RNCS) Derived Types

030 02 pas. Firth (RMCS) BOOLEAN Type

031 03 pgs. Firth (RNCS) Procedures in Tasks

032- 01 p~s. T. Sepan (Hughes) Rec'trsLve*/eentrant

033- 01 ps., Taylor (loeing) Aslertions

034- 03 pgs. Goes (Karlsruhe) Diver*se Points

035- 03 pgs. Gons (Karlsrubs) Functions and Order

036- 02 pgs. Goes .Karlaruhe* Conditional Compilation

037- 01 pas. (Ger.MOD/IABO) Absence, of FREE

-91-

038- 02 pga. CGer.NOD/IABG) Visibility Restrictions

039- 01 pg.. (cer.MOD/1ABG) Reoursive/le-oatrant

0110- 01 pgs. (Ger.NOD/rAUO) Numeric Literals

0111- 01 pg.. (Cor.NOD/ZABG) Keyword Overloading

0412- 01 pgs. (Ger.NOD/IABG) MOD Operation

0413- 01 pg.. (Oor.MOD/IABG) Array Bound&

0441- 01 pgg. (Ger.NOD/IA3G) Loop Syntax

0115- 01 pg.. CGer.MOD/IABG) INLINN ?rags&

0416- 02 pgs. CGer.NOD/IABG) Input/Output

0117- 02 Pg.. (Ger.MOD/IADG) feywords

0118- 01 pg.. (Ger.'NOD/IAU0) Unhandled Exceptions

0119- 01 pg.. CGer.NOD/IABO) Vis ibility-Rul*6

050- 01 pg.. (0erý.MOD/IAB0) Conditional &valuation

051- 01 Pro (GordtOb/ZADO) Declaration Syntax

052- 01 pgs. (Gor.NODIIABG) Syntax Description

053- 01 pgs. (Gor.NOD/IABO) Usage of DELAY

0511- 01.pg.. CGer.NOD/IABG) Incomplete Type Declaration

055- 01 Ogg. (Oer.NOD/IABG) Dynamic Allocation

056- 01 pg.. (Cor.MOD/IABG.) Scope Rules

05T- 01 pg.. (Oer.NOD/IABG) Exceptions

058- 01 Pg.. CGor.MOD/IABO) Absence ot SET Type

059- 01 pas. (Ger.NOD/IABO) Pollution of Name-apace

060- 01 pgs. (Ger.MOD/IADO) Low-Level Tanking

061- 01 pgg. (Ger.moo/rABG) Asynchronous Communication

062- 01 Pgs. (Ger.NOD/1ABG) Storage Management

063- 02 pgs. (Oer.MOD/!AIO) Type CHARACTER

0611- 01 pgs. (Gor.MOD/IAUG) Record Representation*

091- 03 Pgs. Nagle(Ford Aerospace) Integers

- 92 -

66S- 61 pgs. (Ger.MOO/IABG) Loop Control

666- 02 pqs. Firth (RNCS) Named Block

067- @1 pg.. Knut Ripkin One-Conponent Aggregates

068- 02 pg.. Knut Ripkin Module Visibility

669- @1 pqs. Fisher/Dewar (NYU) Suppress Praqmst

676- 03 pga. Fisher/Dewar (NYU) Generic Facility

671- 02 pgs. Fisher/Dewar (NYU) Assert Error

672- 02 pgs. Fisher/Dewar (NYU) Labels and Goto's

673- 61 pgs. Fishor/Dewar (NYU) 3oolean Operators

674- 02 pgs. Fisher/Dewar (NYU) Overloaded Literals

675- 61 pgs. Fisher/Dewar (NYU) Functions and VRPs

076- 81 pgs. Fisher/Dewar (NYU) Overloading

677- a1 pg.. Fisher/Dewar (NYU) IN parameters

678- 61 pgs. Fisher/Dewar (NYU) Keywords

679- 61 pgs. Fisher/Dewar (NYU) MOD Operator

086- 62 pqs. Fisher/Dewar (NYU) Scheduling Semantics

081- 62 pgs. Fisher/Dewar (NYU) Priorities

682- 61 pgs. Fisher/Dewar (NYU) Aliasing

683- 61 pgs. Fisher/Dewar (NYU) Definition ot Semaphore

684- 61 pgs. Fisher/Dewar (NYU) Character Strings

685- 61 pgs. Fisher/Dewar (NYU) Character String*

686- 01 pgs. Fisher/Dewar (NYU) OUT parameters

687- 01 pga. Fisher/Dewar (NYU) Named Parameters

088- 61 pgs. Fisher/Dewar (NYU) No Value Error

689- 62 p9s. Fisher/Dewar (NYU) Select Statement

096- 62 pg.. Fisher/Dewar (NYU) Evaluation Order

691- 63 pgs. Nagle(Ford Aerospace) Integers

- 93 -

092- 02 Pgs. Firth (RNCS) Overlapping Slice Assignment

093- O! pgs. (Oer.MOD/IABO) Alignment Clause

094- 01 Pgs. (Oer.MOD/1ABG) END Statements

095- 02 pgs. Andy fusion (CMU) Package Elaboration

096- 03 pgs. Uisgen/Tichy (CHO) Package Initialisation

097- 02 pgs. Andy Hlsgon (CMH) Subprogram Result Values

098- 04 pgs. Bruce Leverett (CMU) Control Characters in 1/O

099- 02 pgs. Bruce Leverett (CHU) formatting: Put and Rap

100- 02 pgs. Mary Shaw (CMU) Derived Types

101- 0 pg.. We. A. Wulf (CMH) Access Type Constants

102- 02 pgs. David R. Smith (CMU) Access Types

103- 02 pgs. David R. Smith (CMU) The Characters 0, 5, * and

10"- 02 Pgs. David R. Smith (CMU) Floating Point Values

105- 02 pgs. David R. Smith (CMU) Reference Manual Froblems

106- 01 Pgs. David R. Smith (CMH) Array r/O

107- 02 pgs. David R. Smith (CMU) Binary Files/Mixed Types

108- 03 P62. David R. Smith (CHU) Control Characters

109- 02 pg.. David R. Smith (CMU)) 1/O Buttering

110- 01 Pgs. David .R. Smith (CMU) Real Numbers

111- 05 pgs. Ronald Brender (CMU) Qualified Expressions

112- 02 pgs. Ronald Bronder (CMU) Scope of Labels

113- 0 ps2. David R. Smith (CMU) Range Constraints

114- 02 pgs. Wm. A. Vulf (CMU) Properties of Operators

115- 01 pgs. Joseph Nevcamer (CHU) Inadequacy of Index

116- 02 pgs. Joseph Nevwomer (CHU) Problems with ORD

117- 01 pgs. Nassi (DEC) String Length

118- 01 pgs. I.C. Pyle (York) Ambiguous Stubs

e~q

119- 02 pgs. Goodenough (SotTech) FAILURE Exception ambiguity

120- 02 pgs. (Ger.NOD/IABG) Separate Compilation

121- 03 pgs. Bruce Leverett (CMU) Short Circuit Conditions

122- 03 Pgu. (Ger.MOD/IABO) Scope of labels

123- 13 Pus. 9. Van Horn Dynamic Storage Allocation

124- 03 Pgs. Firth (RNCS) Task Rusttio. dentity

125- 01 pga. Finseth (MIT) Tab Stop Columns

126- 01 pga. Finseth (MIT) String Length

127- 01 pg.. Finseth (MIT) FREE Statement needed

128- 0 Pgs. Firth (RWC$) Identification of stubs

129- 01 pga. Finseth (MIT) Based Variables

130- 01 pgs. Finseth (MIT) Independent Compilation

131- 10 Pgs. Firth (RMCS) Overloading

132- 03 pgs. Firth (RNC3) Access Constant

133- 05 pgs. Firth (RNCS) Virtual Record Components

134- 01 Pgs. Thompson (TRV/DSSG) Array Aggregates

135- 01 pgs. I.C. Pyle (York) Aggregate notation

136- 01 pis. I.C. Pyle (York) Syntax or lases

137- 00 pss. T. Sepan (Rughes) Need BLOCK DATA

138- 00 pgs. F. Cox (Georgia Tech) Visibility Control

139- 00 pgs. F. Cox (Georgia Tech) Visibility Restrictions

14O- 00 pgs. F. Cox (Georgia Tech) Separate Subunits

141- 02 pg.. Habermann (CHU) Value Returning Procedures

.142- 03 Pgs. Haberuann (CHU) Parameterized Types

143- 02 ;6s. Iurkinshav (IABG) Default Values ror Parameters

144- 01 pgs. Michael Compton Order o. Compilation

145- 01 pgs. Michael Compton EXIT and other Loop Constructs

417

- 95 -

146- 17 pgs. MacLaren (Boeing) Interrupt Handlers

147- 64 pgs. MacLaren (Boeing) Shared Data

148- 02 p9s. Levine (IntermetrIcs) Numeric Literals

149- 61 pgs. Levine (Interfetrics) Variant Records

150- 02 pgs. Levine (Internetrics) RANGE notation

151- 61 pgs. Levine (rntermetrics) Loop and Block Label Scope

152- $1 pgs. Levine (IrtermetrIcs) Array Bounds Speciftcation

153- 91 pgs. Lavine (Intermetrics) Enumeration Literals

154- 02 pgs. Levine (Intermetrics) Integer Type Definition Form

155- I1 pgs. Levine (Intermetrics) T'PRED and TISUCC

156- 01 pgs. Levine (Intermetrics) Component Selection

157- 64 pg.. T. W. Jones Diverse Points

158- 61 pgs. R. Schwartz Allasing Restrictions

159- 12 pgs. R. Schwartz RENAMES Statement

166- 61 pqs. J. Keeton (MITRE) Pragma Semantics

161- 04 pgs. Firth (RMCS) Models of Access Types

162- 02 p9g. D. Perry (CMU) Permissive Syntax

163- 02 pg.. D. Perry (CNU) Partial Aggregate Initialization

154- 62 pgs. D. Perry (CMU) Consistent Initialization

165- 6f pgs. J. T. Galkowaki (IBM) Field Names in Variants

166- of pgs. J. T. Galkowski (IBM) Recursion is Efficient

107- *f pgs. J. A. Edwards Obsolete

168- of pgs. 3. A. Edwards Obsolete

169- Of pgs. J. A. Edwards Obsolete

176- of pgs. Joe Parley Obsolete

171- of pg.. 3. A. Edwards Obsolete

172- of pgs. J. A. Edwards Obsolete

- 96 - -

173- 00 pgs. .3 A" Edwards Obsolete

174- 00 pgs. J. A. Edwards Obsolete

1 00 Pgs J. A. Edward* obsolete

176- 00 p96. D. Jones MOD Funotion

177- 01 ps. T. Hastings (DEC) Varying StringS

178- 01 pss. T. Hastings (OEC) funOtions, Arguments

179- 01 p9s. John Sauter (DEC) Floating azponents

180- 01 pgs. Dennis Noble Interrupt Handling

181- 01 pg.. Michael King (UdC) TAR Character
182- 01 p9S. Michael King (SWC) Used for Simulated 'a

183- 01 pgs. Michael King (NWC) qtT.LINE and lT_.LZNE aeede

184- 02 pes. Michael 1in0 (MIC) Exception Handler

IRS- 02 098. Michael King (NVC)
Need More Loop Constructs

186- 01 pgs. Michael tinS (WNC) Lack Ot User Defined Literals

187- 01 pgs9. A. rutar (NiL) PACKAGI sad TA39''

188- 01 pg.. I. Krutar (NIL) PROCEDORN and ESTIT

189- 01 ps.I. Krutar (NIL) Entry Calls

190- 01 pgs. R. Kruter (tIL) Subprogram Calling

191- 01 pas. i. Krutar (NIL) Subprotrss Calling

192- 01 9gs. 1. Krutar (NRL) hID THEN and 0 iL3t

R93- 01 pgs. I. grutat (NRL) Comment Convention

193- 02 pgs. R. Krutar (I'L) EXIT Statement
195- 103 Pgn. Marc RubbArd (WC) Filed Point Rounding
1 95 - 0 3 P g s . l t y n a 4 u o

196- 03 pga. 9. Uber (IVC) Generic Ta

197- 02 pgs. M. Vettstti (ZIABO) Tasking Facilities

198- 02 pgs. i. Huber (NVC) Scope Rules &mbiglous

199- 02 pgs. Levine (InterUetrics) Short Cir-uit Conditions

- 97 -

200- 01 pgs. Levine (14tersetrios) Access Constants too Restricted

201- 01 pgs. Levine (Cateruotrice) Anonymous Accsse Types

202- 03 Pas. .Leviae (Intermetrics) Ada Grammar Allows lmtT Fields

203- 02 pas. 21is Thomas (sDo,) Identitifotion-of Stubs

204- 02 pas. D. Notkln (CHO) Derived .Types in Ada

205- 02 Pas. D. Notkin (CMU) Ada Syntax

205- 02 pgs. 0. Notkin (CHO) Ada 1/0

207- 00 pas. Michael Compton Relax Generic Parm Constraints

208- 00 pas. Michael Compton Range Checking

209- 00 pgs. Michael Compton Assertion facilities

210- 00 pas. L. J. Gallaher Variant Records or Type Accees

211- 00 pas. I. Johnson (Boeing) Macro Facility

212- 00 pgs. R. Johnson (Boeing) Fill Statement is Needed

213- 00 pgs. J. T. Galkovski (IBM) Field Names in Variants

214- 00 pas. Goos (Karlsruhe) Sub Irogram Calls

215- 00 pgs. Goos (Karlarube) Geniria Clauses

216- 00 pgs. Goes (Karlsruhe) Access Type Objects

217- 03 pae. 1llis Thomas (SL) Inconsistencies in the LIN

218- 01 pgS. 0U DO! ITL/2 Team Null Statement

219- 02 pas. UK DOI RTL/2 Team Use Clause

220- 02 pgs. 1. DO UTL/2 Team Empty Subranges

221- 02 pas. UK DOI RTLI2 Team Types of Array Bounds

222- 02 pgs. UK DO! RTL/2 Team Named Blocks

223- 02 pas. UK D0O RTL/2 Team Range Notation

224- 01 pas. 0K DO! RTL/2 Team Loop Indioes

225-, 03 pas. UK DO! RTL/2 Team Syntax of Names

226- 02 pas. UK DO! RTL/2 Team Visibility Rules

- ..-.

I. /°

- 98 -

227- 03 pgs. 09 DOI RTL/2 Team Arrays and Strings

228- 02 pus. 99 DO! RTL/2 Team Syntax Rules for Types

229- 00 pgs. Michael Compton USE Claus* Redundant

230- 00 Pgs. Michael Compton Short Circuit; Boolean Syntax

231- 00 pga. Michael Compton SELECT Statement

232- 00 pOg. Michael Compton Fixed Point variable&

"233- 00 P85. Michael Compton Garbage Colleotion

239- 00 pgs. Michael Conmpton READONLT EXPORT Desired

235- 00 pgs. Michael Compton RANGE Attribute

236- 00 pOg. Michael Compton Private Parts st Specisications

237- 90 pg.. Michael Campion Restricted Types

238- 00 pg.. Michael Compton Formatted 1/0

239- 00 pgs. Michael Compton Interrupts; Context Switching

?20- 00 pgs. Michael Compton ExceptLon Declaration

241- .00 Pga. Michael Compton Compilation Unit Genealogy

242- 00 pg.. J. A. Edwards EXIT and ASORT

243- 00 pOg. J. A. Edwards Short Circuit Conditions

24- 00 pgs. J. A. Edwards Exception Overhead; Assert

245- 00 pga. Joe Parley Ditstring Literals

246- 00 pgs. J. A. Edwards Storage Management

247- 00 pgs. J. A. Edwards Package Declarations

248- 00 pga. J. A. Edwards Task Scheduling; Select

249- 00 pgs. J. A. Edwards FOR/USE Overloading

250- 00 pgs. J. A. Edwards Releater etc. Syntax

251- 00 pgs. J. T. Galkowaki (IBM) HILE..S.LOOP Supertluous

25- 00 pgs. J. T. Oalkovski (IBM) Positioa of US3

253- 00 pgs. J. T. Galkovski (IBM) Functions and IRP's

~ \

F.. ..

-99 -
254- 00 pas. J. T. Galkowskl (IBM) Forbid Intortask Data 3Saring
255- 00 pal J. T. 0alkowski (1NN) Current Tasking Beot
256- 00 pgs. J. T. Gelkovskl (INN) Current Binding Semantics lest
257- 00 pgs. J. T. Galkoseki (IBN) Overlapping Sice. Assignment'
258- 00 pas. A. 0. a. Cooper Generic Type Parameters
259- 00 Pgs. A. 0. a. Cooper Seleotive Importing
260- 00 pas. A. 0. 3. Cooper Bit Position Attributes
261- 00 psi. A. 0. 5. Cooper Inorementing eto. (self)
262- 00 pgs. A. 0. B. Cooper OUT Parameters in Calls
263- 00 pgs. A. 0. 8. Cooper 'Size of Program Units
264- 00 Pg$. A. 0. 3. Cooper lonoontiguity and Addresses
265- 00 Pga. A. 0. 8. Cooper Better Strings Desired
266- 00 pas. A. G. 9. Cooper 3ubtypes of Aaanyaous Types
267- 00 pg.. A. G. S. Cooper Xeyvord Parameters Liked
268- 00 pg.. A. a. a. Cooper Operation Inheritance
269- 00 pgs. .G. a. Cooper Overloaded Relational Operators
270- 00 Pgs. I. J. N. Van Oila 3yntag of Acouraoy-Constraint
27t- 00 pg.. A. J. N. van Oils Procedure Call on LH3
272- 00 Pgs. A. J. M. Van Oils Syntax or Primary
273- 00 pas. A. J. N. Van Gila Subprogram Attribute
274- 00 pg.. A. J. N. Van Oils. Short Ciroult Conditions
275- 00 PIS. A. J. N. van Oils VNIL8 Redundant
276- 00 pas. A. J. N. Van'Oils Private Representation SeolfLost,
277- 00 pas. A. J. N. Van Oils Overloading Disembiguation
278- 00 pas. A. J. M. Van Oils Give Initiate Parametersr
279- 00 pas. A. J. N. Van Oila Consistency for Tasks, Modules

* 280- 00 pgs. A. J. N. Van Oils ACCIPT Parameters Scope

. - -I

- 100 -

281- 00 pOg. A. J. M. Van G.la Visibility Lists

282- 00 pas. A. J. N. Van Ols$ Task Variables

263- 00 pie. A. J. N. Van Gila Distributed Slatems

284- 00 pIS. A. J. N.-Van Gila Task Terminati@o

265- 00 pgs. A. J. M. Van Gila Except Propagation fro* Rendesuou

286- 00 psg. A. J. N. Van Gils RepresentatioS at Knumerals

267- 00 Ogg. A. J. N. Van OGil Syntax of Geacria Parameter

288- 00 pga. A. J. N. Van Gils Generic Instasti&tion Semantics

'89- 00 pgs. A. J. M. Van Gila Generic Parameters

290- 00 pga. A. J. N. Van Oils 'Size of Geaoria Type Paraetetrs

291- 00 p55. A. J. N. Van Oils Allow Entrie, as Generic Paramete

292- 00 pas. A. J. N. Van ails Syntactic Position of Pragmas

293- 00 pgs. A. J. N. Van Oils Syntax Ambiguous

294- 02 pgs. William A. Whitaker Radix Syntax

295- 01 pas. William A. Whitaker Completeness of Formal Syntax

296- 00 psa. J. T. Galkovski (IBM) Interface Coaventiaft

297- 02 pas. Firth (RNCS) Character Literals

298- 01 pas. William A. Whitaker Priorities sad Hardware

299- 01 Pg.. William A. Whitaker 1/0 formatting

300- 02 pas. William A. Whitaker OPTIMIZE SPACE or TINE

.n1- 03 pus. Wiliiam A. Whitaker better TINE and INTIRVAL

302- 01 pga. GU DOI Core166 Team RENAMES AlloYed Only as Deolarati

303- 01 pas. UK DO! :oral6
6 Team Use and Restrieted

304- 01 pgs. Ellis Thomas (SDL) Separate Comptlation and Overload

305- 01 pg8. UK DO Coral66 Team Use and Nanm Space

306- 02 pgs. Goodenough (Sofoah) Fixed Point Representations

307- 02 pas. William A. Whitaker Use Fortran-like Relational Opera

F.

- 141 -

318- 03 pgs. William A. Whitaker Banish Vertical Bar (I)

309- 01 pgs. William A. Whitaker Rename OUnsafe.Programming"

316- 01 pg.. Ellis Thomas (SDL) Modules Without Bodies

311- 62 pgs. Thomas & Gilbert (SOL) Local Tasks

:12- of pgs. m. Devlin (APSCF/BJS) Banish Subtypes

313- 62 pga. William A. Whitaker Right Arrow Symbol

314- 11 pgs. William A. Whitaker Quote Character

315- 62 pgs. William A. Whitaker Use "-' for Assignment

316- 02 pqs. William A. Whitaker Range-IndpointS

317- 62 pgs. William A. Whitaker MOD and REM

318- a1 pgs. William A. Whitaker LR4 Erratum

319- 62 pgs. MacLaren (Boeing) Timed Out Fntry Calls

326- 61 pos. Ellis Thomas (SDL) Number Syntax

321- al pgs. Thomas & Gilbert (SDL) Separate Compilation a Linking

322- 61 pgs. Lieberman & Kiernan Parameter Syntax

323- 01 pgs. Lieberman & Kiernan Meaning of *Module*

324- @1 pgs. Lieberman & Kiernan eliminate Goto

325- el pgs. Lieberman & Kiernan Package glaboration/ZnJtializatic

326- 61 pgs. Lieberman & Kiernan Loial Static Variables

327- 62 pg.. T. Conrad (NUSC) Device 1/0

328- 91 pgs. ?. Conrad (HUSC) Educational Materials Meeded

329- 6l pgs. William A. Whitaker Parameter Syntax

336- 63 pga. William A. Whitaker Floating Precision not Digits

331- 62 p•s. William A. Whitaker Non-Binary Machines

332- 91 pg.a William A. Whitaker "Do" in Accept

333- 02 pgs. William A. Whitaker Predefin. Operators for All Typae

334- 62 pgs. William A. Whitaker Selection by Parentheses

'I

1- 12 -

335-- It P12. T. A. Montgomery procedural Variables and Argument

336- 10 pg.s. T. A. Montgomery Arrays of Array4

337- '0S Pgs.. T. A. Montgomery Locatives

338- Of pqs. T. A. 'Montgomery Slicing Clumsy
339- IIg pg.. T. . Montgomery Local Declarations Verbose

340- Is pqs. T. '. Montgomery Conditional Expressions Desired

S341- II pgs. 7. A. Montgomery Allow Statements in Conditions

342- If pg.. T. A. Montgomery Bit Vector operators

343- so pgs. T. A. Montgomery Null Valve

344- IO pg.. T. A. Mqntgomery VRPps Overly Constrained

345- so pgs. T. A. Mortgomery Embedded Coments Desired

346- so pgs. T. A. Montgomery Make %_ mot Signifiacnt

347- so pg.. T. A. Montgomery Parameter Association Symbols

348- of pgs. Arthur Sorkin (SELl Dangling References

349- so pg.-. Jnot Louie (IBM) Word-Eevel Referencing

350- of pgs. Jtnet Loule (IBM) Fixed Point Representation

351- go pga. Janet Louie (IBM) Where is Bit 0?

.352- of pga. Janet Louia (TBMW Address Specification Vague

353- 02 pgs. macLaren (Boeing) Preemptive priority Scheduling

354- 61 pqs. UK DO! Coral•6f Team S.iSPEND and "REltI1e of Tasks

355- al pgs. UK DO! RTL/2 Team Default Initial Values for All Tý

356- 01 pgs. UK DOI RTL/2 'aem The notation .all is strange

357- 01 pqg. UK DO! RTL/2 Team Precedence of Unary Operators

358- 01 pga. UK DO! RTL/2 Team MOD Operators

359- 61 pgs. UK DO! RTL/2 Team Entry Calls with Timeout

360- 01 pqg. UK DO! Coral66 Team Timeouts

361- 62 pgs. UK DOr Cora166 Team Incomplete Record Assignment Des,

- 193 -

362- @1 pgs. UK O0! Cora166 Team Quoted Literal Ambiguity

363- 12 pgs. UK DOT Coral66 Team Task Variables

364- 91 pgs. UK DO! Coral66 Teas Arrays of Arrays - String@

365- el pg.. UK DO! Fortran Team Large Attributes

366- 61 pgs. UK DO! Fortran Team Underflow

367- 12 pg.. UK DO! Fortran Team Exceptions

368- 62 pgs. UK DOI Fortran Team Aliasing

369- al pgs. UK DO! Fortran Team Procedure Parameters

376- 9l pgs. UK DO! Fortran Tees Array Layout and paging

371- 61 pgs. UK DOI RTL/2 Team I/O is Inadequate

372- of pgs. Nils Jargon Olason Text. O Procedure Names

373- If pg.. Nils Jorgon Olson Built-in Queues

374- to pgs. Svon Tafvelln Initiate with Arguments

375- Io pgs. Sven Tafvelin Waiting for Resources

376- Of pgs. Sven Tsafvelin 1/O Timeouts

377- of pg.. L. J. Gallaher *8xchangeq Operator

378- i1 pgs. Surkinshaw (TABG) Long Identifiers

379- 91 pg.. I. C. Pyle (York) Real Type Attr: 'LARGE, 'BITS, ot

386- 61 pg.. 1. C. Pyle (York) 'SrZE of Access Types

381- @1 pg.. I. C. Pyle (York) 'SIZE of Records with Variants.

382- Ot pgs. 1. C. Pyle (York) When Clause Irregular

383- of pg.J. 3. T. Galkowski (1M) Integers as Pure Ranges

384- Of pgs. Arthur Sorkin (SEL) Restricted Private Tyve Init.

385- 06 pgs. Bureau of the Census Unsafe Discriuinant Setting

386- of pgs. Bureau of the Census Need Variable Length Strings

387- 66 pg.. Bureau of the Census Access to Laternal Formats

388- of pgs. Bureau of the Census Type Attributes in Generics

-10-

389- 00 pgs. V. 1. Carson Case Syntax Awkvard

390- 00 pgs. Wayne Johnson (IBM) Pointers to Stotie ObJeots

391- 00 Pgs. Wayne Johnson (IBM) Binary Point Position

392- 00 pga. Wayne Johnson (1NN) Predefine Common Math runctiona

393- 00 pgs. Wayne Johnson (INB) Make Tim* an Integer

394- 00 Pgs. JorAS Agerborg Charsater Set

395- 00 Pgs. Jonas Agerberg 1/0 Funotion NUses

396- 00 pgs. Jones Agerberg Singleo-Neory Orientation

397- 00 pgo. Arthur Sorkin (SL) Allov Entries in Selects

398- 00 pgs. William Zventoff Visibility and Goenrias

399- 00 pgs. William Eventotf Identifying mothers gxceptions

*00- 00 ego. tventoff 4 Rabinowitt Provide Sets

401- .00 pgs. Eventorf & Rabinowitz Oeltas BSad Keyword

402- 00 pgs. Rventoft & Rabinovitz Allow Embedded Comments

403- 00 pg.. Ivontoff & Rabinowita Aaouaroy-Constraint Syntax

0- 00 p06. Eventoff & Rabinowitz Strings Inadequate

*o0- 00 pg.. Christopher Henrioh Aggregate Notation

*06- 00 Pgs. Oreg Burns (ITT) Duffer Tasks: Rendezvous Delegat:

*07- 00 pga. Groeg Burns (ITT) Task Family Attributes

*08- 00 Pgo. Harry Carl (Honeyvell) Garbage Colleotion

*09- 00 P~s. Barry Carl (Honeywell) Require Specified Optimizations

*10- 0, Pgs. Harry Carl (Honeywell) Run Time Environment

*11- 00 Pga. Harry Carl (Honeyvell) Many Bodies with One $ase

412- 00 pgs. Braudavay & Louis '(iBm) Fizod-point Representation

413- 90 pg.. Wayne Johnson (ISM) Fixed-point Representation

1- 00 pgs. Wayne Johnson (IBM) Poainting to Statia Object*

*15- 00 pes. Draudaway & Johnson Time

I!

- 105 -

.416- 02 PIS. 1. J. Scarpolli (AVAL) Access Type Initialization

417- 01 pgs. A.. J. Soarpelli (APAL) Access Typos for Small Object&

418- 02 Pg.. Richard Wolff (NVC) Conversion of User-Defined Types

419- 01 pas. V. Roes & J. Cross Component lames as Generic Peru

420- 01 pgs. D. Ioldsvorth Fixed-Length-fesult 'Rap Desired

421- 01 pas. 9. Kopper Exist Predicate for Files Destrer

422- 01 peg. Charles Eckert Time should be PFied or Integer

423- 01 pIS. Charles Eckert Fixed-Point Scale Factors Desirer

424- 01 pgs. Charles Eckert Machine Code Insertions Clumsy

425- 01 Pgs. Charles Eckert Allow .#, #., and # for Float Los

426- 01 pas. t. Hopper Require Init. (given no 0._VALZ1

427- 01 Pgs. [. Hopper Priority on Entry Queues

428- 01 Pgs. John Hutohison Anonymous Types Lack ittributes

429- 01 P6s. John Hutohison Dynmito Length Spe for looses T,

430- 01 Pgs. B113 Robinson End of File as Predicate

431- 01 pgS. Bill Robinson VRP a function + Prague

432- 01 pgS. P. Burkinshaw (ZAB1) Multiple Assignments

433- 01 Pgs. P. Burkinshaw (1ABO) For Variable Scope (Exceptions)

434- 01 Pgs. P. Burkinshav (ZABG) Collapsed Else's; Multiple End 11

435- 01 Pgs. Ellis Thomas (SDL) Subprogram aense In Visibility L.

436- 01 Pgs. Bill Robinson Multiple Subunits - Same lame

437- 01 pCs. 1ll Robinson Logical Operators' Precedence Ru:

438- 02 PIS. Willisa A. Whitaker Expression Evaluation Order

439- 02 Pg.. William A. Whitaker MOD

440- 02 PIS. Firth (RMCS) Remove Exit When

411- 01 Pgs. Brian Wichmann Entries Declared an Task Bodies

442- 00 PIS. Thomas J. Wheeler Accept Syntsz

- 106 -

443- o6 pgs. ravid Gries And then vs. Cand

444- 01 pgs. 1. C. Pyle Entries as Subprograms

445- 61 pgs. Maureen Z. Gordon Restricted Clause and Enclosure

446- @1 pgs. Maureen Z. Gordon Use Clause Redundant

447- 61 pgs. Maureen 9. Gordon Order of Declaration Elaboration

448- $1 pgs. Maureen E. Gordon Logical Operators' Precedence

449- 61 pqg. Maureen 2. Gordon Allow Body Separation Everywhere

4560- 1 pgs. Maureen E. Gordon Allow Reference/Copy Choice

451- @1 pqs. Maureen 2. Gordon Clarify Unsafe Conversion

452- @1 pq8. Maureen Z. Gordon Entry Call Time-Out

453- 91 pqs. Maureen t. Gordon Data Locking

454- 63 pgs. Ronald Brender (DEC) EILminate/Clarify Environment Pre

455- of pg.. Dan W. Scott Array Slicing; Array Syntax

456- of p1s. Dan W. Scott Strings

457- o6 pg.. Dan W, Scott Constant Record Components' NHmei

458- so pgm. Dan W. Scott DiscrimInants

459- 69 pgm. Dan W. Scott Generic Parameter Permutation

466- o6 pgm. Dan W. Scott Reentrancy; Own

461- of pg.. Dan W. Scott Humorous Cement

462- 6o pgs. Dan W. Scott Representation

463- so pgs. Dan W. Scott Representation of Array*

464- 66 pg.. Dan W. Scott LRM Index Shortcomings

465- 6o pgs. Dav'd T. Moore Resumptive Excertions

466- of pg". David T. Moore Identifying Instances of Exceptic

467- 6f pg.. David T. Moore Loop Indices' Declaration

468- of pgs. Ray Van Tassle Ubsolete

469- of pgs. 1. C. Pyle 'Address of an Overloaded Subproc

- 107 -

470- 00 pag. I. C. Pyle Type of 'Delta and '3mall?

4T1- 00 pas. 1. C. Pyle Vbat are 'System' and 'Option'?

472- 00 pgs. 1. C. Pyle Priority as Type Name

473- 00 pgs. 1. C. Pyle Generic Subprog as Generic Pari

474- 00 pgs. I. C. Pyle Field Names, eto. as Generic Par

475- 00 pgs. 1. C. Pyle tzoeptions in Generlo Packages

476- 00 pga. 1. C. Pyle Types as Array Bounds

477- 00 Pgs. Dan V. Scott Access Types: Allocation, Init.

178- 00 pgs. Dan V. Scott Access Typ. Initialization

479- 00 pgs. Dan V. Scott 'Free' Operation

480- 00 pgs. Dan V. Scott Dereferencing Considered Clumsy

181- 00 pgs. Dan V. Scott .all of Arrays

4182- 00 pas. Dan V. Scott *$" and *_0 in Identifiers

4e3- 00 pas. Dan V. Soott Qualification Syntax Disliked

84.- 00 pgs. Dan V. Scott 'Restricted'; Blcoks' Visibility

485- 00 pgs. Dan V. Scott Constants

186- 00 pIS. Dan V. Scott Types Derived from Private Types

487- 00 pas. Dan V. Scott Nultidemensional Arrays

488- 00 pgs. Dan V. Soott Scope names

489- 00 pgs. Dan V. Scott i...] in Neta-Syntax

190- 00 pgs. Dan V. Scott Selected Component Syntax

191- 00 Pgs. Dan V. Scott Corrtgendum 4.1.3

192- 00 pg.. Ads Group Tokyo Vhat is System?

493- 00 pgs. Ada Group Tokyo 'String S and *string % string'

494- 00 pgs. Ada Group Tokyo Strings of Length One

195- 00 pgs. Ada Group Tokyo Non-Access Incomplete Type Deal.

196- 00 'Pas. Ada Group Tokyo tI a Subty Compatible v/its base

- 106 -

497- 00 pas. Ida Group Tokyo Allow talt. for Won-Ueoord Type.

498- 00 pgs. Ada Group Tokyo Zuheritaeca ot 3ubprg by Derivet

499- 00 pga. Ada Group Tokyo Syntax of Cheraoter.Literal?

500- 00 pis. Ads Group Tokyo Allow SbortZnteger # Integer

501- 00 pgt. Ids Group Tokyo Compatibility among Int, Short_:

502- 00 pas. ids Group Tokyo Vhat are Floating & Fixed point

503- 00 pgs. Ada Group Tokyo Clartfy 'small and 'large

504- 00 pas. Ada Group Tokyo small and 'large or Fixed Poine

505- 00 pas. Ada Group Tokyo Make I in 'Length (1) Static

506- 00 pas. Ida Group Tokyo Vhat is the Type, of Subarraym?

507- 00 pgs. Ida Group Tokyo Type of Range Components in For

508- 00 pgs. Ada group Tokyo sounds of Dynamic arrays

509- 00 pgs. Ada Group Tokyo Is *2 I Others a> 0* Legal?

510- 00 pait. Ada Group Tokyo Allow Only One Dynamic Arr per

511- 00 pas. Ida Group Tokyo What is complete Record kAsign.,

512- 00 pas. Ada Group Tokyo Arrays with Index Type Integer

513- 00 pas. Ada Group Tokyo Multi-die Arr as arrays of Arra:

514- 00 pas. Ada Group Tokyo What is a Simple lame?

515- 00 Pas. Ada Group Tokyo Ambiguity of Subprg as Type Att

516- 00 pg.. Ida Group Tokyo Defino.Type Compatibility for 0,

517- 00 pg.. Ada Group Tokyo Logical Oper arrays of Diff Boui

518- 00 pgs. Ada Group Tokyo Define Result Aocuraoy Preois*e

519- 00 pas. Ada Group Tokyo Is tateger*00 Allowed?

520- 00 pg.. Ada Group Tokyo Improve Type Qualification Exam

521- 00 Pgs. Ada Group Tokyo Define tat (Roel) Unambiguously

522- 00 pg.. Ada Group Tokyo Clarity Static Expressions

523- 00 ps.. Ada Group Tokyo Compatibility ot Multi-9in Arra

4..

- 109 a I a Qualified Vorlabls?

52"- 00 p an. Ada Group Tokyo ? ar stio

525- 02 9s. Naureen 9- Gordon Interleave Reps. wit' D0olaratio
• ! •e

x c ep t io n p r o p a ga t io n

526- 00 pg.. Ada Group Tokyo IowtO veroadaiOn

"527- 00 pas. Ads Group Tokyo Disallow.Overloedinl of GenoStiO

528- 00 ps. &Ada Group Tokyo Inter-Overload or Generic & Subp

529- 00 pas. Ada Group Tokyo GenerictoverioedLn6

530- 00 pas. Ada Group Tokyo Taproo jtp/&Lgregato Syntax

530- 00 pas. Ada Group Tokyo arify mInt*g0ra in Appendix A

532- 00 pAS. Ada Group Tokyo Prag anvir.. include Chang* 3el.

"533- 00 pas. Ada Group Tokyo • Clarify Optinize Pragma

534- 00 pgs. Ada Group Tokyo Clarify page Pragma

535- 00 p55. Ada Group Tokyo Clarify List PragIa

536- 00 pas. ida GrouP Tokyo Clarify include Proem&

A53- 00 pgs. Ada Group Tokyo ý,,rav* LAN index
53T 00 Psas- bjso ts p assed "I

538- .00 pgs. Ada Group Tokyo %,tossd t

539- 00 pgs. Ada Group Tokyo DefLne 7abel after End Loop

539- 00 pas. Ada Group Tokyo Syntax or Nodules AmbiguOus

510- 00 pas. Ada Group Tokyo Are Default$ ALoW0d for CutLInC

542- 00 pgW. Ada Group Tokyo Can an Out Formal be Aead In Sod

543- 00 DES. Ads Group Tokyo Do Cnstr on Actual Apply to Foro

544&- 00 paS. Ada Group Tokyo Can Reaursive SubprograBC be Inl

545- 00 pas. Ada Group Tokyo Define Identity Of Signatures

546- 00 pgs. Ada Group Tokyo Check Puno. No.yalErr StatIcaIl

5o47- 00 pgs. Ada Group Tokyo Are Defaults Part of SignatureaV

5 8. 00 psi. ida Group Tokyo Label Scope

549- 00 pgs. Ada Group Tokyo. Name Space of Label$

550- 00 pg.. Ada Group Tokyo clarify overloading vs. Hiding

- 110 -

551- 00 pgs. Ada Group Tokyo Clarity Scope and VTisiblity

552- 00 pas. Ada Group Tokyo Contents of VLsLbilLty Lists

553- 00 pgs. Ada Group Tokyo 00e0 Conflict Rule

554- 00 pas. Ada Group Tokyo What is tta End Zdont. in Accpt;

555- 00 pgs. Ada Group Tokyo Explain Tasking Except. in Task

556- 00 pas. Ada Group Tokyo What &s a Prograr Library?

557- 00 pas. Ada Group Tokyo Define Predefined Except. Precise

558- 00 pgs. Ada Group Tokyo Cross-Neterence Tasking._Error

559- 00 ogs. Ada Group Tokyo' Let *Others Includ Out of Scope E

560- 00 pas. Japan Joint System3 Imbedded Comments Desired

561- 00 pgs. Japan Joint Systems Partial &ttr Inheritance by Subt)

562- 00 pgs. Japan Joint Systems Derived Access Types

553- 00 pgs. Japan Joint Systems Subtypieg and Reoursive Types

564- 00 pgs. Japan Joint Systems Ezpr. Evaluation, Order Over-Restr

565- 00 pgs. Japan Joint Systems Corrigendus t.5.Z

566- 00 pgs. Japan Joint Systems Free Operation Desired

567- 00 pgs. Japan Joint System. Multidia. Arrays as Arrays of Arr

568- 00 pgs. Japan Joint Systems Default Positional Parms. Desirec

569- 00 pgs. Japan Joint Systems Label Scope

570- 00 pgs. Japan Joint Systems Selective Import Desired

571- 00 pgs. Japan Joint Systems Define Label after End

572- 00 pgs. Japan Joint Systems Clarity Initiation

573- 00 pas. Japan Joint Systems Corrigendum 1O.t

574- 00 pgs. Japan Joint Systems Specifying Enclosing Unit of SubL.

575- 00 pgs. Japan Joint Systems Opts Discussions belong in Ratior

576- 00 pgs. Japan Joint Systems Disignator as GenerLc Parameter

577- 00 pas. Japan Joint Systems Type of Length Expression

S• - • - - -- 1 .

- 111 -

578- 00 pas. Japan Joint Systems Improve Other-Language interface

579- 00 pas. Japan Joint Systems improve 1/0: Terminals, Rooords

580- 00 Pgs. Japan Joint Systems Corrigendum 14.3.2

581- 00 pgs. Japan Joint Systems Clarify Definition of AlLasing

582- 00 pas. Japan Joint Systems Overloading DisambLguation

583- 00 pgs. Japan Joint Systems Syntax Irregularities

58o- 00 pgs. Japan Joint Systems Pragnas e*t. Are Not Language Is*

.585- 00 pgs. kkira Nagashima (CHO) Make Fixed-Point Delta Exact

586- 00 pas. Akira Nagashima (CNU) User-Defined Assignment; VR'Ps on

587- 00 pgs. Akira Nagashima (CHU) Allow Entry Overloading

588- 00 pgs. Akira Nagashima (CHU) Allow Deterred Coast as Disorim C

589- 00 pgs. Akira Nagashima (CHU) Provide Discrim Cnatr in Allocato

590- 00 pgs. 3jarne Dacker (Sveden) Dofining Accept/Call Relations at

591- 00 Ogs. 8jarne Dacker (Svsden) No-Wait Message Pasain& Desired

592- 00 pg.. Ujarne Dacker (Sveden) Dynamic Task Identification Desir

593- 00 pgs. Thomas J. Pennello Subtypes as Ranges

594- 00 pas. Thomas J. Pennello Add User-Defined Operators

595- 00 pgs. Thomas J. Pennello Conditional Expr*ssions Valuable

596- 00 pis. Thomas J. Pennello Iterators Desired

597- 00 pgs. Thomas J. Pennello "*estriated* Overloaded

598- 00 pas. Thomas J. Pennello 'Rev* Overloaded

599- 00 pas. Thomas J. Pennello Base-Type Function

600- 00 pas. Thomas J. Pennello Unordered Enumerations Desired

601- 00 pgs. Thomas J. Pennello *Range Overloaded

602- 00 pgs. Thomas J. Pennello Distinguish Loop from Goto Labels

603- 00 pgs. Thomas J. Pennello R1s" Overloaded

604- 00 pgs. Thomas J. Pennello Separate Visibility from Importat

A

- N. •'

- 112 -

"605- 00 pgs. J.F.H. Winkler Syntax Consents

606- 00 pes. Richard J. Meyers Loop & Goto Labels

607- 00 pgs. Richard J. Meyers Overloading OVev

608- 00 peg. Riohard J. Meyeri AND THEN and OR ELSE Anywhere

609- 00 peg. Richard J. Meyers State Subunit's Identity

610- 00 pgs. Richard J. Meyers Asynchronous Entries

611- 00 Pgs. Richard J. Meyers Restricted Overloads*.

612- 00 psg. Richard J. Meyers Types as Discrete Range.

613- 00 peg. Ray Van Tassle Unsigned Integer Type

614- 00 pgs. Ray Van Taogle Incrementing eto (":*s*)

615- 00 peg. (UnLv. of Copenhagen) Distinguish Types from Subtypes

616- 00 peg. (Univ. of Copenhagen) Define Label after End Statement

617- 00 pgs. (Univ. of Copenhagen) Label Scope

618- 00 pgs. (Univ. of Copenbagen) Syntax of Subprogram Attributes

619- 00 peg. (Univ. of Copenhagen) Improve Identification of Subprgs

620- 00 pgs. (Univ. of Copenhagen) Snmantios of Task Failure

621- 00 peg. (Univ. of Copenhagen) Semantics of Abort

622- 00 pg.. (Univ. of Copenhagen) Separate Compilation

623- 00 pgs. (UnLy. of Copenhagen) Allow Functional Arguments

624- 00 pgs. (Univ. of Copenhagen) Syntax Incomplete and Ambiguous

625- 00 pg.. (Univ. of Copenhagen) Regularize Declaration Syntax

626- 00 Pg.. Frank be Remer Allow Static Expressions in Pragm

627- 00 pg.. Frank De Nemer Oper Designators; User-Coined Ope

628- 00 pg.. Frank De Remer Tighten Up Syntax

629- 00 pas. Frank Do Romer Overloading of Keyvords

630- 00 peg. Frank De Rem~r Regularize Declaration Syntax (LA

631- 00 pgg. Frank De suer Freer Flacement of Rep. Specs.

- I

/.

- 113 -

"632- 00 pg.. Frank Do Ramer Distinguish Loop trom Goat Labels

633- 00 pgs.. Frank Do NRmer Nestruoture Unit Header Syntax

634- 00 pRO. Frank Do Reser Union Types; Iterators

"635- 00 pgs. Frank Do Roner Conditional Expressions Valuable

636- 00 pgs. Frank Do Rvert Subtypes as Ranges

637- 00 pgs. Frank Do lease Cap. Non-TermLnals; M. .'eotasyn

638- 00 pgs. Frank De RNaer Restrictive Clauses: "That*

639- 00 pgs. Frank Do Resre Lexical Grammar

640- 00 pgs. Frank Do lease Remove Redeclaration Restrictions

641- 06 Pgs. Goodenough (SofTech) Optimization and Exceptions

652- 04 pga. Firth (NMCS) AND THEN and ON ELSE

643- 02 pgs. Goodenough (SofTich) Omitted Exceptions?

6454- 02 P6s. Benjamin K. Drosgol Semantic Checking of Generic Bodi

645- 0 pgs. Goodenough (SofTech) References to Unelaborated Object

6456- 07 pgs. Goodenough (SofTech) Effticient Machine Code Insertions

647. 01 pgs. Belsont (Intersetrics) Type in Range Constraints

6148- 01 pg.. William A. Whitaker Order of Evaluation

649- 01 pgs. V. Paul Sherer Allow Overlapping Slice Assignmen

650- ,- pgs. William A. Whitaker Need for a FREQUENCY Pragma

651 00 pgs. Foldesuon (SAAB-SCANIA) Delay and Cyclic Programs

652 00 pgs. Douglas W. Jones Parameters and Tasking

CON # SIZE SOURCE SUBJECT

001- 01 Pgs. Nagle (Ford Aero.) Integer Semantics

002 01 pgs. Goodenough LIR.003

003 01 pgs. Goode"ough EVR.002

. -. I

1

u00- 08 pas. Ptrth Comments es DCR 1-6 (VI)

005- 01 pas. Holdvorth Standard Fartabke Lasguags

006- 01 pas. Demaont Structure at NODULES

007- 01 pas. 54lmont Separate CompiLatios

o008- 0 pas. Goodenough Notes, Au#.6 Revev NRooting

009- 01 pas. lil1mann Ada Syntax

010- 05 pas. Compton 16 Diverse, points

-011 02 pg.. Relz Revised OC.003

012- 01 pan. Gillmenn Constant arrays and records

013- 01 Pgs. German MOD LCR.003

S01- 164p9s. Habermann et al. iverse Points, GAIDALY

015- 05 pas. Firth Parameter Passing

016- 02 PaS. M. 8en-Art $looks, 3b1rt Circuits

017- 01 pas. 3. Ljungkuist Set Type

018- 03 pas. E. . areene General Coameats

019- 01 pgs. 0. T.. Moore 'IADDRESS Attributefsegtsters

020- 16 pas. Robert Milne General Coments

021- 03 pas. NacLaren Phystoal Interfaoes

022- 13 pgs. Hiltinger Comments oa DCE.003

023- 03 pgs. Firth Side-orfrets

02'- 11 Pg.. Firth Minutes of Sept. NeRting

025- 01 pas. Firth Draft an Sido-Etfee8s

026- 01 pgs. srovn1i* Tasking

027- 02 pgs. Firth Thougbs• om Ads 4IE

028- 00 pC&. C. Yandow Task/Nodule Distinetiou

029- 00 pgs. 0. T. Moore Indexing tato Records

030- 00 pg.. J. 0. Cox Proposed Enhancements

|Z ,..

i

- 115 -

031- 00 Pgs. J. Byrd Negative Numbers

032- 00 pgs. R. 0. Johnson Macro Facility Needed

033- 00 pg.. 1. 0. Johnson F392 Needed

034- 00 pgs. M. T. Devlin Siapliftcations

035- 01 pgs. Firth Comments on v3 DCR's

036- 07'pg.. Goodenough Comments on Y3 DCRi's

037- 02 pgs. MacLaren Comments on v3 OCR's

038- 01 Pgs. Goodenough Comments on v4 DCR's

039- 01 pgs. Davis Response to COM.029

040- 08 pgs. Evans Ada Tasking

041- 03 pgs. HJlftiner Comments on COM.040

042- 03 pgs. MacLaren :nterface Concepts

043- 02 pgs. Hilfinger Comments on COM.042

044- 07 pgs. MacLaren Interface Costs

045- 00 pgs. Shulman Comments on Reference Manual

046- 00 pgs. Cooper Binary File 10 In Ada

047- 00 pgs. Archer ADA Subset Definition

048- 02.pg.. Paul Hilftinger Comments on Interface Costs

049- 00 pgs. Mark Hapner Parameter Binding Semantlcs

050- 00 pgs. mark Hapner !.arge Applications

051- 00 pgs. Mark Hapner Comment on DCR.002v3

052- 00 pgs. Mark Hapner Reentrancy

053- 00 pg.. Mark Hapner Compound Type Constraints

054- 00 Pgg. Mark Hapner Tasking

055- 00 pgs. Kenneth Dickey Square Brackets for Subscript3

056- 00 pg.. J. 9. Reid Intrinsic Functions for Floats

057- 00 pgs. RudoLf Marty Padding on String Assignment

- 116 -

058- 01 pgs. Jean 3. 3amuot Need for Real Time CLokI.

059- 09 pgs. Richard L. Schvartz Aliasing and Ada

060- 00 pas. Serafino Amoroso BCL's revlew of Ada

061- 01 pgs. Robert Firth Comment an LZR.203.

062- 02 pas. NADC-ADA Static Variables'

063- 02 ps. Robert Firth Ada Cons.ruotfon Kit

064- 01 pgg. .ee MacLaren Fixed Point Representatt4n

065- 01 pIs. Lee HccLaren Dynamic Prioritiou

066- 01 pas. Paul Hilfinger Foreign Procedure :praqaters

067- 07 pas. R3bert Firth Ada 'Blackboard' a isi

068- 02 ps. Mark Davis Named Paraaeters and Overloading

069- 01 Pgs. Mark Davis Side-effeots and Functionality

070- 00 pas. A. 0. Hill I/O; Izoeptions; eto.

0?1- 00 pas. M. K. Shen Suspension; 3abeduling; Gort

072- 00 pas. Franeisco Oyarsun Priv. part; Derefor; Incomplete t

073- 00 pca. James A. Harls Listings; Pragmas

074- 00 pga. Alexander Goodall Select Statement

075- 00 pas. 0. 0. Elliott Numbers; gxtensibilityr *to.

076- 00 pas. Neil Parker Form of Manual; Syntaxi wto.

OT?- 00 pas. Thomas R. Amoth Repeat Until and Vhila Do

078- 00 pas. A. Silbersohat: Accepts vs. *Parts*

079- 00 ps. C. H. Lindsey Meologisms; Various Points

080- 00 ps. V. R. LaLonde Strings

081- 00 ps. (ZABO) Systems Programming: Various Poin

082- 00 pas. Lawrence J. Gallaher Scheduling; Iteration

083- 00 pai. Raymond T. Route Arbitrary gastrin: Various Points

08o- 10 pas. Lee MacLaren (Boeing) Object-Oriented Synchronization

- 117

085- 03 pas. William Whitaker Pascal Standards Meetint

086- 01 Pgs. MacLaren Vatting at Scope Exit

087- 01 pgs. MacLaren No Taaking...rrors in Servers

088- 00 pgs. (Univ. of Tokyo) Give Examples or Pathologies

089- 0 pas. MacLaren Entry Families vs. Task Objects

090- 00 pas. Dr. Neumann (Germany) Extended Rendezvous

091- 00 pgs. Dr. Neumann (Germany) Telegram Communication

092- 00 pas. Teodor Rue (Rumania) Seantic Formalization

093- 00 pgs. (Finland) Various Points

094- 00 pgs. Andrew Arbiaster Human Faetor. Uepoet

095- 00 pgs. Peter Valli& Literals of Oser-Derined Type

096- 00 pgs. (Germany) Else Syntax Error-Prone

097- 00 pg.. V. R. LaLonde String.

098- 00 Pg.. Thomas A. Marainial Permanent Data'St-uotures eta.

099- 00 pas. A. 9. Chandler Constant Graphs

100- 03 Pgs. Firth (RMCS) Reaursion is Efficient

101- 02 pgs. Firth (AMCS) Overloading

102- O pg.. Firth (RMCS) Low Level Tasking

103 00 pg.. R. Schwartz (SMI) Artificial Intelligence Applicett

104 00 pgs. 0. Sage ML N Ericsson) Gene-alization of Tasking

105 00 pgs. Tolkesson (SHA&-SCAMIA) Cycles: Delay and 'Clock

106 00 pg.. J. Welsh & A. Lister Tasking: CCSP and DPS

107 00 pgs. (Dow Inc.) Task Efficiency and Multiprocessi

108 02 pgs. Davis Stevenson fairness and the H-M Technique

109 11 Pgg. (Intel Corp.) Extensions

110 00 pis. (Univ. of Copenhagen) Comments on Preliminary Ads

. . /

- 118 -

POS SIZE SOURCE SUBJECT

Sol 1 pg&. U9 ROD Interrupt Seandling

102 3 pgs. UK MOD Modern Architectures

063 $1 pg. Firth (MOO) Side Effects And Optimization

DCR * SIZE SUBJECT

001v4 01 pgs. Parameter Binding Semantics

092v4 a1 pgs. Parameter Passing Conventions

063v4 02 pgs. Physical Interfaces

904v3 el pgs. Array Slice Assignment

095v3 el pgs. Exceptions In Declarations

066v3 61 pg.. Real Time Clock

007v3 62 pg$. Side-Effects and Functionality

069v4 62 pg.. Type Compostlon

OPA 0 SIZE SOURCE SUBJECT

eel 1 pg. Design Team Transfer Statements

062 1 pg.. Design Team Garbage Collection

663 1 pg.. Design Team Composite Type Equality

664 1 pg.. Design Team Restricted TYpes

665 1 pgs. Design Team Access Variable Initialization

666 1 pgs. Design Tess Access Types, Allocators

667 1 pg.. Design Team Spin Locks, etc.

See 1 pgs. Design Tesm Functions, VIP's

-7

- 119 -

369 1 pgs. Design Team Cumulative Processing Time

sit I Pgs. Design Team Type TINE

ol1 I pqs. Design ?eam Parameter Passing

012 1 pgs. Design Team Exception Handler

013 1 pgs. Design Team Array Aggregates

114 1 pgs. Design Team Mull String

@1s 1 1p;s. Design Team 3O VALUE ERROR

616 1 pqs. Design Team Compilation Unit Naming

017 1 pgs. Design Team Constant Record Components

p18 1 pgs. Design Team Syntax: tname.ldesignator

619 1 pg.. Design Team Task Initiation

626 1 pgs. Design Team Task Procedures

TEit roprcs, *sWARIEs, m ExT1ACs

Adn: Language subsets: 25
Changs: Make ceclaration syntax more uniform: 30

.lprove syntax: 4
'Require b•Lock -ather ,ra sequence of statesbnts:

Add: Abbreviations for keywords: 3,
:xb•eb comseats: 30, #2
"A.ternate character set support: 13
Sit string constants: 13, 41l. 4AI.4 51, 59

leoc•d: Eases other then 2, 6, 10. and 16: 16

.Lot~irs
Chance: Make "-*' n.cn-signif Icant; 30,4
!-ike: "_* in identifiers: 19

Lcrg ientifiers: 19, 57, 75
Recuno: Signifticance aft.. in to0kens:

Add: Strings: 25. 55, id, 45, 59, 61, 63, i2
Sit handling: ;.6. 71, 77
Function as data: 7
uj.ti-leve•l structures:

Reference variables: 7, 19, 30
SUsIa classes: 7
Static al'ocatir.n of access objects: 13
Unsafe pointers: Ik
7ar.ab.e declarations after local p•lgrsm bodies: 64
Static variables: 0i

..hangs: *a)" has tw meanings: 19. ',0
Ranges should -at nave to be ccntiguous: 30
Delta is poor kceyword: 15

xz;ressions In range constraintstl): a
Require speci(icaticn of =aximum size 3f strings: a
Store satrtces by column: it
Tyeps ,oo restrictive: 15
A2.ou anonymous types in -eccr-4 fields: i.
'se str,;cture equivaience for arrays: 0G
luaranteea one-step conversion tetbeen nertvec types: ,--0

" "e: Aggregate syr.tax:
Aggregates: is, *0
Arrays:
•rnusratlon types: , , , So a, n5, to
Derived types: 30
MaChine-uLoepen~ont cats zefinitlcn: i
cverlosaing: Z, al3, 7 .,c

Record s"uax: 19
Record variant mmantics: as
In•tializtion in declarations: *6
Strong typing4: 2, S, 10, 16, ib, 26, 2S, !1. 46, '6, 50, 52, 54, Sb, 61, 62. 6i,

71, 72, 73, 77, 60, 66
Variant arrays in records: 86
Arrays Withl tcapecif led index range: b6
Type constraints: 1, 20, *9
User-defined types: 5, 17, Z6
Scope for access types: ;.

Reduso: Subtypes: o7
zither subtypes or carived types: 19
Derived types: is
Usaed omponents in aggregates: i5

Numbers
Add: Implicit conversion of numeric types (when no loss of precsion): A0
Cbange: FIXed-point delta Should be exsot: V?, i6
.Iks: Precision specification: 13

Add: Conditional expressions: 7, 26, 30
multiple ssigunment: 0
Mqethod of expressing parallelsm i.n expression evaluation: 3l
'Free, operation: .9, 69
Standsr" built-i~n sath ~i~brary: 19
Standard bu±..tin array operations: 16, 19

Change: Accurate fixed point ar"inmetic (specifLcation, coertionj: o, 05, CA
DeWine mathematical properties of user-oct ned operators: I
Nore control ever allocation: 11, 15
Qualified expression syntax: Il
Tine should not ýe floating point: 19, •6
User type names houldo be oterloacable as conversion functions: @

Like: Attributes: ZO, 21, 3C,
Expression structure: 19
Array slicing: ii, o6
So automatic type conversion: i1

Redund: Allocators for access types: I
Array slicing: I*

Ado: compound statements: 7
blccK exits: 63
Exit from amaea block: 10

'hange: Aemove manoatcry semicolon before end, ejsif, etc.: *0
Allcv mixing of "san tinOc Lno *-r else": i6
Al1oW VRP'S as conditions: :0
Overl.oading rulles -oo cempl~catea v..,. parameters: :6

, /

Reound: EIlif: 16. 19
Function call syntax: •o., 6
Keyoerd parMeter-Asooiatiod syntax (::,* etc.): 7, 19, 2•7
Assort: 301,54, 64
Labelpj and ptos:1 4, 50, •, 4
Short circuit conditions: 1b. 514, b64

Loops
AMd: More loop constructs: 13, 16. V., 67

- Change: Use OW not- loop as keyw.ord: IS

Lik~e:' Structureo prurammng constructs: Z, S; 10, 13
Reduna:*suit ioen: a. 54, 8

~iit: 4

A44: Functional i•igusev.ts: 0, 20, 21, 26, 40, V', aS
Iziterw-1xeo declartti•on: 7
Generalize i.nitalization i nyp. aecla.-l.tion: •
.4ot recursivereerstrant 3eclaration: Z
"?aria14le nusber of parametes: i9
Guaranteed by-value calls.: •.4

Change: Define paraseter pesshng: 16

Reference passing ;referred: 14
Functionality should not be zoupiler-ve'.tlred: o6

L..!o: laitia~ization to declarations: Z9
Zefauljt parameters: 7. ;.9, 1.
Recursion: a.0, •, 62
Fmct1ons ana MPIs: 21, •2
?arameter mase: i6

jocund: :4eclarstioas Ln blocks: 7
-efau.t par•moeters: as
":nitisl values In declarations: 1S
Cptionality of block declarations: 1
Recursion support: 13
Tasks and Proceduree smoul be merged: S
VRPS:a.

Zhaue: Ali.ot representations in private part: .6
".oe: Information .taing/aata abstraction in general: 10, 14, aO, "..

Packages: 4, a, 0, 16, i9, -0. 4, 50. 52. 56, 5S. al. 06,
Privat*e types, parts: a. 6
Separate specificationsa. 1. i 1, 19, 16. 47, 50, 56. 09

Redund: Nested packages: 'I
Sccpins •ierarre•.y: '3
Separate specifications: 'a

I i. . - -

Change: Clarification of separate compilation and visibility: 1
Loop in4ex should be valid bcyonc en* of loop: 41
Restricted IA poor keyword: IS
Visibility rules disl•tked: 13, .6, 49

Like: Logical scope rules: 16. 16
Rlestricted visi.bility; 4. 2., 2j, 55, 67

Private types: 67
Redund: Use clause: 5

Add:, Lclrouno tasks: 13

Initiate paraeteors: 1i
Mutual exclusion to oats access: U,
"1*ed-out entry calls: 50, 66, ol
Suspend and resuae of task&: o2
Easier cyclic £.Ghoulinc: b6

Change: Lisasllou cata shared between tasks: 10, i1
Forbi4 aborting or changing priority ot parent tasks: 0. 65
Interrupt semantics: 13, 26, *1
Mors contr-.l over scneduling: 13, i6, 62
Preemptive priorities: 3?
RendeZvous too restrictive: 15

Static pricrity: I•Like: looking•: 4. Ia. 20. 2.1, 27, 29•. 33. 11, 75. 11, b3. 0., *6, bb

.&sm fsailies: 66
Rendezvous arguments: 19, 3b

Redund: looking too couplex: 15
Signals and aemapnors: ýO

Change: Allowinr deferred constants to be set in a separate compilation unit- 1
have different visibility rules for separate capilation: 3G

Separate uaits should have full upwlard visibility: b1
Like: Program structure: 16

Separate compItio,: 10, 15, 16, 5$, 66, 72, 7., a7

Like: Exception handling: 7, 16, 20, 1,. 33, 6. 56, 06
Change: Exceptions in declarative parts should propagate up: 6

own

kao: lype restrictions for generic asaeters: 6, aS
Component mnaes as generic parameters: Zý

CChange: Generics: ;.0
Like: Generics: k, lb, 5b, 56, 68, b6, 67, b6
Recuma: Generics: •, 65

Ado:' Overlays: 1, 26

Represent•tJion of integers as bit fields: 16
Records -jth overlapping fields: 6,
R•ep-sentatioa specification of fixed point binary Point: 16, 19
%etter Fortran interface: 67

Cange: I-mprove aligiment specifications: 13
Machine coo. inserts Clumsy: 15, 1, 47
Incorporate representations into type aefinitions: 27

Like: Record representation: 15, B6, 44
Representation specifications: 15, 27, 56, 66
Machine-cooe insertions: 27
Unsafe corweralon: b6

Add:- lmeout an 1.10: 1
Fnrtran-like Formats: 0

Mixed-mode files: 0
A high-level real-tJe 1/O mechanism: b2

Changs: ECF not exception: i1, 62
1/0 Incompl•te: 13
Operating system astumed too big: 11
Extend IextJO: 0

Like: 11/0 as pa:kage: 1.
Redund: Senccontral, kecesiveontrol (in Lo _levelJO): 1

Change: Keywords are overloaeed: b7
Like: Matching keyvoars (eg •f - endif): b?

++/

!est And Eva'.;At-on Report Data Su-aW'v
24 March 1980

Number. nsttitutiU•c country]: author
(leneral description -- (R) means program was redesigned.
Original language(s).
Host computer(s) -> *arget computer(s) fit gives).
Number of Ada statements and Identifers used (if given).

l.a L.dicates that the information was not given in the TV

1. University oa York (England]: I. C. Pyle
Non-text I/O of coded time signals iL real tlie
Modula
DEC PDP-11 -- DEC POP-11
28 statements; 32 identifiers

2. Hughes Aircraft: Tony Sepan
Real time, multiprogramiaa system
Hiftran (Struntured rortran)
DEC PDP-11/70 -> DEC PDP.11/70
276 3tatements; 151 identifiers

3. - tavanl:-
PL./I syntax checker
CPL-B (PL/I zubset)
- -> Fujitsu M, Hitachi N, NEC ACOS, Mitsub1shi Cosno
478 statements: 140 identifters

4. Aerospace Corp.: Charles A. Crumer

IBN 360/75 -> IBM ASP 202
200 statements: 70 identifiers

5. -: Lt. Robert C. Seigrist
Student text processing exercise
Cobol

Burroughs 6700 -) Burroughs 6700
37 statements: 10 identifiers

\.i

2

6. lnstitute for Defense Anayses: V. Schneider
PAS Real-time executive
SPL (Jovial)
CDC 7600 -> RC& SCP-23M
104 statements

7. Lnternational Computers Ltd. [England]: '. A. Montgomery, I. Marshall
Formatted listing or ecmpiler output (ClE, map, etc.)
$3 (Algol 68)
ICL 2900 -> ICL 2900
611 statements: 230 identifiers

8. Naval Surface Weapons Center: Mare Hubbard
Real time fire control
Assembler
IBDM 370, UYK-20 -> UKK-20
191 statements: 39 identifiers

9. Air Force Armament Division: Lt. Col. William A. Whitiker
Iertial guidance--computatlonal kernel (R)
Fortran, Jovial
0 statements: 0 identifiers

10. Computer Sciences Corporation: Dale D. '1urtig
Real time digital autopilot
Assembler, Fortran Subset
HP -> Special purpose micro
148 statements: 118 identifiers

11. Chalmers University of .echnology (Sweden]: Sven 7afvelin
Data bufferiag and spot processing in a radar system (R)
Pascal

12. RADC/ISIS: Capt. Clair Rolla
Data manipulation, word packing and unpacking
jovial
Honeywell 6080 -> Honeywell 60W0
550 statements

13. General Dynamics: -
Real-time, multiprograming, data bases, network support
C
DEC PDP 11/34 -> DEC POP 11/3M

IU. IBM Corporation: -
Character handling, video display formatting, control block formattiag
Assembler
IBM 360 -> IBM 360
689 statements: 336 identifiers

N'

1,

• ,. .\
.. :'•

-3

* 15. IBM4 Corporation:-
7elops: Satellite data capture, storage,.and retrieval
Assebler
ION 370 -)IBM 370

.16. IBM Corporation:
VEPC: Signal procesaing simulation: bit*, armye*, nsinbers
Fortran
IBM 3-0 IB 1M 370

17. IBM4 Corporation:-
Terminal uamuicat ions package: character string traanslation
Fortran
laterd1ata 8/32 .> raterdata 8/32
256 otatemeats: 35 identifltrs

18. IBM Corporation: - (0)
Fixed point, 1/0, representation
CMS-2Y
AN/UTK-7 -) AN/U!Y(-7
339 statements: 99Identifiers

19. IBM4 Corporation:-
Signal processing: real-time, low-lovel 1/0
SPL (Assembler)
CDC 6600 -> AN/UYS-1
625 statements: 210 identrifirs

20. IBM Corporation:-
Sit manipulation, aessafte translation, real time comunications (R)
Fortran, Assembler
IBM 370 -> IBM lLPi/ML-1

21. IBM Corporation:
Mathematical computation, real time processing (3)
Assembler, Fortran
IBM 370 ->IBM I&Pi/ASP

22. IBM Corporation:-
Real-time Processing
Assembler
IBM4 370 -> Zilog Z8o

23. I34 Corporation:-
Character Handling, String handling (W)
Assembler
IBM 370 IB 1M 370

24. IBM Corporation: -
String & character handling, -anor mathematical computations

IBM 370 ->IBM 370
155 statements: 31 identifiers

25. IBM Corporation: -
Solo! Single-user operating system
Pascal
DEC PDP-11/45 -> DEC PDP-11/45
1288 statements: 462 identifiers

26. Orumman Aerospace Corporation: Charles Mooney
Real time trainer: equations of motion (R)
Fortran
ILterdata 8/32.-> Interdata 8/32
155 statements; 197 identifiers

27. E-Systems Inc.: T. W. Jones
Hardware driver: I/O, bits, real-tiMe
Assetbler
UYK-20 -> UYK-20
83 statements: 31 identifiers

28. System Development Corporation: Erwin Book
Simulation of 0210 table (R)
Modula, ALGOL, Sue, Jovial
Burroughs 7.00, IBM 370, ANFSQ-32 -> Burroughs '700, IBM 370, ANFSQ-32
350 statements: 143 identifiers

29. Sperry Univac, Defense Systems Division: -
Display fault table: characters, data-base, reentrancy (R)
DSPL (Pascal,
Untvac 1100, Unlvac 1600, AN/U.K-20, Univac 1600, AN/UYK-20 -> N

30. SP1 International [England): Brian Dobbiag
Process control: real-time, operator I/0

.V RL/2
DEC PIDP-11/3k -> DEC PDP-11/O4
588 statements: 580 identitiers

31. Hollandse Signaal Apperatcn B.V. (Netherlands]: Phillip van Liere
Instrument servo control fR)
RTL/2, Assembler
lLollAwse Signaal S4R-MU -) Holladds* Signaal SMR-MU

32. Raytheon Company: 1. Nedzynski
Iateractive coordinate transrormations: matrix operations (R)
Fortran
Univao 1108 -> Uliivac 1108
"691 statements: 96 identifiers

I1

' " " ... ',.;

33. Marti.a Marietta Aerospace: W. 9. Carson
Eveat-driven automatic recoafiguration (3)
Fortran, Assembler
DEC POP-11/70 -) DEC PDP-11/70

34. UK Coral 66 Team (England]: D. N. Shorter & K. Resander
Process control: graphics (R)
Coral 66
DEC PDP-11/45 -> DEC PVP-11/45

35. Bureau of the Census: -
Generalized mass storage sort: heavy 1/O WR)
Assembler

36. Lund Institute of Technology (Sweden]: -

Process control with operator (model program)
Pascal, Concurrent Pascal
DEC LZI-11 -> DEC LSI-1¶

37. MeDonnell Douglas Astronauties: -
Real-time processing, Array processing, Fixed point arithmetic
Assembler
CDC Cyber -> RCA SCP 2311

200 statements: 350 Identifiers

38. Air Force Communications Computer Programming Center* James E. Emmert
Real-time ecmunications

39. The Mitre Corporation: Maureen H. Cheheyl
ACCA7 Guard
Gypsy
DEC .'PS-20 -> -
37 statements: 16 identifiers

4O. DUACS, Nations! Physical Laboratory [England]: Maurice Cox, Sven HamarlIng
Numerical sortware library (R)
Algol 60, Fortran
portable -> portable

41. TRW Corp.: H. Hart, J. Thompson
Benchmark Flight algorithms: mathematical
Jovial J73/13
DEC PDP-10 -> DEC PDP-1O
1000 statements: 394 identifiers

42. General Dynamics: -
Avionics: numbers, bits (a)

Jovial J3b
ZIB 3033 -> 1362-F2

43. General Dynamics: -

Display generat ion
Assembler
Intel 8080 -> Intel 8080

44. General Dyna•ics: -

Real time processing (R)
PL/M
MM-80 -) Intel 8080. microprocessor
19 statements: 8 Identifiers

45. General Dynamics: -
- (R;

Jovial J38
ILM 370 -> Delco M3627

"Gr. Gueman AerosPace, Software Systems Dept.: J.A. Garry

'rajectorY couPutaticon
Fortran
IBM 360 -> Hoaeywell 6060
57 statemeAts: 52 identifiers

47. Gruman AerosPac*e Software Systems Dept.: "J. Kneleilk

Special-purpose data base manager

Assemble!r
Iaterdata 8/32 -> Interdata 8/32

291 statements: 29 Identifiers

48. OGr aa Aerospace, Software Systems Dept.: P. Welnaer
Real-time flight Oontrol

Assembler!
... > Honeywell 5301
27 statements; 39 Identifiers

49. GCE Sylvania Inc.: Charlene Hayden
Real tiase proces~tng
(.130-2
I8N 370 -> AN/U'LK-20
62 identifltrs

50. -he Foxboro Co.: M- E. Gordon
Model controller operating system (R)

?'is

-'7-

51. The Foxboro Co.: N. B. Robinson
Industrial controller (R)
Assembler

52. Air Force AFAL/AAT: Alf'-ed J. Scarp-ell
Avionics local executive
Jovial J13/I
DEC PDP-10 -> AN/ATK-1S
533 statements: 285 Identifiers

53. Texas Instruments: -
Denchmarks: GPS, image processing
Assembler, Pascal (HMiron.P)
- -> !1 9900
2000 statements

5,. Burroughs Corp.: Jane Pouwada
Real-time operating system (0)
Assembler (CAL)
Burtoughs, "74 -> -
200 statements

55. Army 'JSACEEIA: Leon !. Dixon
Message Annotator
Assembler
AS/S ;IBM 370) -> AS/5
300 statements: 200 identifiers

56. A"1 Corporation: P.A. Durf, N.L. Icagrvey
Disk 1/0 (3)
Pascal
Perkin Elmer 1/32 -> Pertkin Eimer 7/32
300 statements: 3105 Identifiers

57. ?echnology Service Corp.: 0. Hollingworth. J. Uoyd
Array processor lterface (0)
- -) Goodyear Staran
166 statements

58. Rockvell International: John L. Whited
Comunications operating System
Assembler
Data General olipse -> ROLM 1602

59. Georgia Iast!tute or •echnology: Fred Cox
Fire Moatrol MR)
Assembler, Fortran (Flees)
Data General Eclipse 3/1.0 -> 1U4 1602A

60. (Obsolete)

61. Georgia ITstitute of 7echoology: Lawrence J. Gallaher
7rac" radar
Fortran (Flecs)
Data General Mava 3 -) Data General Nova 3
2035 statements: 240 identifiers

62. Honeywell: P.D. Stachour, F.G. Christiansen
Character pcocescing
95 statements

63. Honeywell: P.D. Stachour, 7.G. Christiansen
User coemand (N)
PL/I

Hney4Wll level 68 -) Ho0e4e11 level 68
38 statements: 23 Identifiers

64. Systems Consultants Ilc.: -
Command processor
€24S-2y
AN/UYK-7 -> AN/UTK-7

65. Systems Coasultants Inc.: -
Document ldezer
Fortran
11-3000 M) HP-3000

66. Hoaeywell Avion•cs: J. M. Kainrd
On-board real-tme Control syStem (3)
Assembler
Latel 8085 -) zntel 8085
165 statements

67. HoneyWell Avionics: C. Taadow
Flight executive (A)
Assembler

68. Hoaeywell Avionics: J. M. Holachbaah
Real-time radar detection
Assembler
Intel 8085 -> Intel 8085
190 statements: 89 identifiers

69. IABG (Germany): Peter Surtinshaw
Graph theory: Hauiltoaian path finding
Pascal

.CDC Cyber -, Or Cyber
93 statements: 21 identifiers

-] • , -- 7--

,N

/

-9-
70. HO SAC/ADSW: Lt. .homas J. Croak

Mathamiatical calculations (R)
Aisembler
Uaivac 1100/42 -> Unlvac 1100/a2
16 statements: 6 identifiers

71 * .: -
Conditional testin4, bit manipulation (R)
CKS-2y
AN/UTK-? -> A/UYIK-?
159 statements: 37 identifiers

72. Perkia-Iluer Data Systems Group: -
Interactive transaction processing system (A)
Assembler
Perklin-Elmer 7/32 -> Perkin-Elmer 1/32

73. Hughes Aircraft Company: J. Whita tr
Real-time fire control system
CM5-2Y
AN/UYX-7 AN/UYK-7

74. British Airways (England]: -
Record 1/3 oackage
Neliac, Assembler
DEC PDP-10 -> DEC PDP-10
29 statements: 66 identifiers

"75. HO SAC/AD03: Lt. Steven C. Bush
Database manager (R)
Fortran, Assembler
tIN 360/85 -> IBM 360/85
40 statements: 9 Identitiers

76. Air Porce ASD/ADSD: Lt. Steven K. Pogers
Real-time 290 Analyzer: Cross-assembler (R)
Fortran, Assembler
- -> Intel 8085

77. Pacific Missile !eat Center:
Diverse night software
Meta p..an

Xerox 560 -) CDC 54OOB
2a statements

78. Naval Avionics Center: -

Navigation Computation (R)
Assembler
Honeywell 635 -) AI•4-l

-10-

79. Naval Avioaics Center: -
Dual processor Lnterface test
Assembler

Honoeyell 635 -> AYl-l.

80. Naval Electronic Systems Command: -
CommunicatloAs module (R)
Assembler

UYK-7 -> 1311-20

81. Dept. of the Navy: -
Mathematical amputation, comparison and interpolation (R)
Fortran IV
SEL 32/55 -> SEL 32/55
383 statements: 'h9 identifiers

82. Dept. of the Navy: Robert Zile
Real time mathematical computation (A)
Fortr8A
AN/UYK-? -> AN/UYK-7
925 statemeats: 150 identifiers

83. Dept. of the Navy: -
Mathematical computation (CR)
Fortran, Cqs-2, Assembler
- -> IBM UPi
200 statements: 90 Identifiers

81. Dept. of the Navy: -

Mathematical computations (3)
F- an. SPL/T

600 -> CDC 6600, kSP
5',j statements: 154 identifiers

85. Naval Surface Weapons Center: Marc Hubbard
Real time processing, fixed point arithmetic
Assembler
IBM 370 -) UtK-20
191 statements: 39 identifiers

86. -: -
Generic menu package (R)

87. Sanders Associates: Robert E. Rice
rFT, search, sort (R)
Fortran, Pascal, Mortran (Fortran), Ratfor
DEC Vax 11/780 -) -
76 statemeats: 26 identifier.

ee. MeDonaell Doutlas: J.J. Cobble
Autopilot, data base, moeoa;e handler
Asasmbler

89. Naval Re.earch Laboratory: 1. Croata, J. Oannon, D. eias&
Sortwar-e •gLe*riag taests (R)

4.1 ari ~the particular b-lme I COW. thee would be no
signitficant 441U ne I~ beme - MmLa ad Ada, buit far ruv
deveopens I tb~aA Ada would be fater because sapsate acoulee
emJAl bnUed without itimi.

4.3 It is moc voluminous aid minma repetitive. but thi~s is moe
often a help than a hu.drane. SupLauitts by a syM tl am
cram rtofu~ list it Would be Very sm awe Console.

Z.4 . .u Versiuon is mae partwale.
4.1 US 6.veFpna sh-JA be ft~eft dueto be lliy at =09114C

- ~flnq illegal, cc .mcthodaxcc"a~ . It is &snumw goo oinqpn
beolt vutl =W rth ~A" dMIwpe1ut, uysetm.

4.4 Vlary little would te gmirM by amin Mda uacW ft pac mllt
4.5 All dope"" anatae

d~cumentation
-WegLlaity *t U2.4 Overtiss
AdMa comp I f±in es (00 ced proum c Ire detectwa)
U mwct ectamar (l±ieary i:w@faMe. to~I. STAMCMO ew.i

-a ftiodly developmit enr iAnt rystem
-drooeopmet of a set t Mda praqvimo pru~a

3.1 2be of ;WAN wase amy W 4'wtm zo ditcut to

4.2 In CM4 (vnsasA , Wlcit typs movrsm is tm mos
we=i pran fewuze.

4.4 As fte lmage" featre, 0L" is powctul. Mogh

3.2 ftues sob as soems tm, privat rips, am avelowirq ao
rat -na %" led thmelves to te project ~an. Appretly
teM Gesigmi dome wut bov Ma in mind, do design do"e not leno
itsl to many of the no hess.

3.3 k conspicuously telown is bm hiearchical tainnt.
3.4 A" am" to be ale to acomodte any situatim tot arose Lr. ~L
4.1 It would tame longer to 6rmZA a 6ebigge pqcm in MA"tw eb .g. L

=Is Me Prgram DW**aoPM ad NeUMWnMa bystm.) UM~ autoc
o~f PM decided to keep teM Imiqe saimpe and impoe part at too
smad~olay through the Owtzomant e.g. so liawvcafe ~M~. Auoatiuc

-- A

inienting. mb lunium. can guarantee quality progrqMUL. Uwae Mast
be training sessions ad a strict uettidology ag~ee upn by the
progrming te- Suba.

4.2 1 feel that strong typing is important ad eveni fesilitatos
Coding.

4.3 As I mentione *we, I thaink that MAd couald be cons~aecLy
once readale. flw syntax is many time o~omue.

4.5 The main wcflm that would mcise is that the per sonel woula
have to be sold on th vaftatages at Ad over e.g. K~iahs.

4.9 M~CAM, IMTR = Ni ThB are yacticularly ticillat.

TER9

2.7 Yoe. 2we Ad commucts pwm much awe adaptal then colool.
3.5 Since the Ma design es so Such awe compat mdstspL then

the Cobol pc~rn I decided to implimn~t a ow. sequenuAla~ sethm.
3.6 The prorm Seems vecy clear and efficient.

TDER0

2.2 '&e main executmie pertixan of the new design ace vw~ %eta.e
to raw than the original becamue they a*sch ad Nrw * with poct~ona
o~f the original coe relegated to ssmoutume.

3.6 8a v iq in Ma re"z '-J in a Small ingovemnt. in strwage
efficiency ftz~± exampe.

4.3 Ahor~aiizatin witt codititonaL scAtOint$ MKOMe the
temwility.

4.4 WP-ing Ma probily would haee the Sit effect as any *ame
madrta 1aqgame. like Pascal or PL/i.

o 1 believe that our epr -mce is peticularly ipertmint because
we are comparing MAd with a peiwaiL, modern language lases an
Algal-68. Wb lwo Ma typs thic.ai ace mub superior m out own
bit WO find that MAdes rigid s~tWatmt Sexiteaxe peemits im ±r
wrtiting natural solutions to our Prolnms.

o Wlith this xia mLeption we ame an the whole pleased with Ma.
3.3.2.2 Little scip was found tot decived types or subtypea...
3.3.2.3 Ortmnsivo redesign of Soe eistingj interfaces was coy-, on.

to circumvent tri lack of raw of procedures, Whiich, tbftqh MCCeptanl
in the cam of LM,. would have preeanit a m aacsp-table cowewze in
the cam of a prorim suh as the S3 compiler
We feat that MEAfl PrOGANK All. m a pr onet feature in
programs wh~ich musCinter face with rmi-AM 4e, ar wizzc mint he
very Copict at, efficient.

3.3.2.4 Generic pakages ate a powerful facility ad im uses them

to provide procedure parameters to a tree weli"a packs"e. however,
we feel that a run time pareeferisation is necessary ("l býi)

3.3.3.1 ACK eneperes well with S3 i.n tocas of resanbility of source
cod*. It -rores beer y by the introduction of mniaerstuon types,
wh~ich see a major aid in self documentation. Similarly, the
except ion handling facilities encourage readability by separating
error hendling; fcas the main path. The tue of default parimters
is a further asset....
Same of the syntactic features of AM hinder readability, howevr.
Theme we, notably the lack of cord itionAl expressions am too
absence of canoud statements.... The verbosity of AMY further

- hinders readaility, in particular the .=mpLoity of array slicing.
Thsyntas of a block... .disoucages the declaration at oata near:

to the paint where it is used. The syntax of qgrtegatea... ise
preferred to the S3 equivalent.

3.3.3.2 Ada, on the whtole, is a sor verbose lwAgage then S3i,
although in sme areas it 1aWoves on it. . .. so features at Ma
say, actively encourage progrmuzaj errors and so reauce peagremr
productivity:
(1).* The significarce of breeak characters in identifiers;
(2). H Ne to introduce blocks to introduce raw local Gata itas";
(3). coditional inPresei"~ not being pameitted;
(4). re; cifying typ declarations in order to ada represent'.r' -

specification.
3.3.3.3 Ada cade amy well prove to he awe maintainable than

equivalent S3 Code asa resut of it beting me* self cocumenting.
3.3.3.4 Ma permits eor elecoate rum tie checkin than ae

S3.... Ada training couseas dmuld momize correct use ot types.
3.3.3.4 ... ax aiparlence with S3 is that (refereecs vaciableal

ace a valueble tool in the bode of the axperioencw pogrinmer.
3.3.3.5 The separate coopilation systma is me* versatile tnan

that of S3...
3.3.3.6 Ado looks to be oncellent in aigudering portable programs.
.3.3.3.7 The muception handling facility of Ada provides a

conve ient, high level way of handling scrors detecton withi neastea
procedure calls.

3.3.3.10 Mda's provision of this facility (Inpit-Output) is a
considerable advance on S3.

3.3.3.11 Bo~th Adsad S3 are suitable larquqes foerprogram'n in
the large, with the nodular aspcts of Ada being further eamaincea
by nesting packages ard having visible ad private parts. - the
proposed compilat ion systse left itself to large scale softwaere
construction systina, rather than one-one-off, mall scale progrumng
MAd is not very easy, either to learn at wits, particularly in
that it introduces several features foreign to Alqol-bo-jixe
lqengiage.... An S3 style of program"n based on nesting at
constructs has evolved, and en Ada style does not grow easily out
of this. The minghsis on statiments rather thean expesazoiw
seies retrograde, art the very strong typing will prove Lrre
to systems programers. Genetics in particular are illticult.

to Wasp...
*3.1 We were masuhat Confused since string$ are Ies C~MM with

references to a~rays as used in S3.
4.1 Ada code will probably tak~e longe to wtite than equivalent &5i

code because of the verbosity of the language. We expect that the
time taken~ to debug a program wi11 be less as a result at the
extenisive run tUse checking, and because Lmanyl poutiatal run time
bugs use food during comilation...

4.6 AMa is likely to s~ar in a better light '.hu a wmtatmre systsm
is designed with the knowledige tht Mda w.ll beusda h
iimplmetation language.

4.10 Ma hes derived many useful features from its MCAL
backorowd , particularly its excel lent typing. -It ma a Pity that
many of the useful. features of Algol b8, particularly its oz~esaxnn
structure and use of reference types, have not been similaly
incorporated in Mda.

TU 4

2.3 Use of packages helped tremendously to define the interfaces
and Data Bass Types. Enumerated types were ilso bouuiczal. lype
definitions were srmonic and readable.

3.1 .. .1 kept muittingD for IF statements of tom&: if emition
than satenien (si"le) proaby a Casso mistake.

3.6 The constructs allwe for proper aweeasion of my protaii6
We certain consructs are disturbing to me.

4.1 Duelm,to' time would usually be about the soe it not
shorter, than newt languages. Cmiler wAU catch a8ýwmyaisas.
Loarning Mda may be longer then usual.

4.3 Source cod in Ma is as r~adablo as other languages.
4.4 production would increase since ,as pogra"z is dame in,

asmuily langumy. Program maintnwumce would be sacs easily
perfrs aow d m transition to another person/agency wwuIo be ts.
Becamea of compiler, awry mistakeas will be caught at CPI* tme
aid rat during executions.

4.9 (Taskirqj is easy to urderstan and use. Privats typese
package structures are also wall designed ad should be umchsngem.

0 The working part of the ~rnr was ememously dotoram.
for the first tame it was readabe in a form fmsiliar to are
versed In the science.

3.4 Qi UeKe there mny interactions-. that caused you dliffcatLW~s

4.1 11
4.2 ... [Itpe cheCking) will facilitate douming m inre.e the

reliablity of thbe pcogran.
4.3 149l The block and stateent sructure facilitate remam.lity.

4.6 ktPoct to WCOin ter the Sea om mm O 1WYS iommtesr
with nw tols.

4.7 1b rouduint foatucas whtch Would he deleted wce detectso...
4.8 ... not owe that hanges ace required.

3.1 1 had no difficulties to wdcrumd the different foaturse in
the lanuage

4.1 It will take dmorter tine to yacm in Mas thi in other
languages.

4.3 The code written in Ad is gumally mace reable than progrms
written in most other languages.

TE 412

4.4 The current poject uses a miztice of amoral languaes. sin
only Mda mmns that a maintewnace programme only has to lean one
lanuagqe.

4.6 1 would strongly r rI~ it because of the mmtagen
wopmunq tacum s that M• Waiourqes.

TER 613

0 Ox majoc conclusions ore that MA is suitle fat both
mbedded c*•er wftomre a a in cot insftwre. he ace cancmm n,

howv~er, that t hiqh cam-.in ty of the mMqume am its
restrictive type checkinq may result in incnmmsient and intt•icent
use of, the language u'd higher than anticipaed~ life cycle coam.

L.3.1.2 For misical processinug MAd deserves praise as in its
ability to define precision by specifying the nmber of aligms, the
rmqe, cc the delta. In comciman with other anquaqes, Am is
rated satisfactory to sperior...
For realtm mecutive mWort MAd is inadaquate. it aut •e momitio
to r ecaI`is that intarrupts mat he prcesx Se pr ptively.

2.3.2.1.1 ... Ma would he quite sufficient in these arem, isarate
cmpilation OWe mIud offers decided advantages oser the carrespamuqn
PLM cmstruncts.

2.3.2.2 In many re1cts MA would be a me suitable lmauage...
than IL/H, even thtoigh " smmsem to be specially ocientea to t~
kind of mpicatioa.

2.3.2.3 ... Ad& offers excellent facilities in the are of progrm

vaial declarations

difiul. Us-l, -Ada onycnue iaeeeprgmes

waiablte r del ratins. neta iltngtem= etiy

2.3.7.3 ... Ada as itu to may woe l noctable or thebtt. dsue uto
ofe w~ayin. syutcitI devies itate ru lty. of the impinso hage.

2.36. mae..te n isiltye detesminlyg macto the Ada's usflns ..w
bAdificlt effiieny. i aaol ofssuitnae~g m
..whileu sthin current versiot on Adaisolat ueflo thestis kiectwaty
app3.7.ion future veitsions co~iuld b hngt te bije. suintabe
the ...Ad is appsc intl macsuintabe frr . f the rncsion* t Sup anr e

software of software tools.
2.5.1~.1 The current Mda pointers are musmeablo 2Wr static at

structures.
2.5.1.2 One of the features lackirq in Mda is the aequaite control

of dynamic strage allocation.
o In general, Ada is suitable for borth embeddd coputer progress

ad supprt softwers. Howenver, the desiqn appars to favor tne
latter.

TO #44

2.6 ... I didn't L-now enough about Mda %hs starte. Us 1 ko
then %bat I know now, I would have never tried to -fit into an
aKisting system, rather,* I would have redesigned the systm tron
stratch.

2.7 'The prolems wre all with pointers aid access types.
3.2 none in particular
4.1 Camping Mda to PL/ ad to Assmbler will probaly promuce

an "bxxt equal" compisn. I think that ewen if it takes lonper
to writs an Mda program (ad I am not catain that it doss), the
costs and tione fcr naintanme wil he lower. Certainly the
readability and oorretse *Axld he better then WM- OU1
current lma~ngm.

4. 4.A Mda requires better planning,* interface sipification. an
documetat ion.

4.4.D The use of a totally now lingumge is man amoeinat Vehicle tor
helping to remm old habits hmch as looping into ami with out
thinking, use of rmv-structured programmin, et~c.

TER As5

2.2 MAd would prnvide better controls Over the usm of data muo
hW%:e better wait level design in quite a few aeon of the systam,..

7•;-\ 1 .,

4.1 Appylication logic duld be shorter.... Longer laplsmumation
for syst design aid sys iterLtrfame.

4.2 Strong data typing WeRS to be highly ovrsrat. as a
techniqa siqnificamdy avoidig pogranlm g errors.

4.3 Mea ca be uwed to create highly realdl.e cide a does" at
to dicoage poor pctices.

3 The ada dveA;mnt is in geneal IUch ankmncd.by clea ams
eciss Um of tachnical terImnalgy. iowever imme uWnau kages

sm to hat crept in.

L.2 Thoiqh no redesign was done the cc"e was better tha betore
--A i I wa easie to read.

2.5 Overything necessary for acray, handling i& available in Moa.
but onadditional capbilitiers would be helptul.

2.6 By putting the ;cocalime ad data in paczagem tbec we& a
better feel for the relationship bet en variables in the ýzoqrm.
lwlng a feature like pacmaes aen¢ ou esane to do this.

3.1.1 Problams arise trying to fig•re out wers VA, vacxwe
qhouji be declared.

J. 1. 4 .. in discussions with eple ,woe"ng an other Mda pogreI
fod access types very confusing.

3.5 Motre W rience in the us. of overloading oators is
necessary before a decision as to wethw or not to ue it can be

In general the code was clew Rd a good ClI lWr would pobabLy
wmncate efficient obect code from It.

4.1 It would sem that roqgringdbq ing in AMa woula tas a
little leow tim.

4.2.2 ... it would pea that t•ye dmakizq is a very h& uL
aid in detecting ecrocs.

4.3.1 &A Ma code is .. .ee
4.3.2 a*e synta of camwets male the code low rem~il*.
4.4.1 Better data oqaniiation ad interaction though the use ot

-5.

4.4.2 Better rogras organization through the us of str•mut.•
•oe clts.

4.4.3 Lses eecution time errors bocause of Ma's type checu .
4.4.4 Cleaner aception hadling bcaui of Ma's uexcptuo

4.5.4 For a project that could be witten all in A ad did not
need amh low l l s rt... MA woud be a good choice.... for
signal pcceesing qalications. I m not camwised that any hign-leve
Lalueae is suitable.

'IU #17

-.......--.--..---.

3.1 -3.6 Tbe only difficulty (of Other then a sixmr awtuee
ww~outerad in this Ada imlawlm~ation ms in deteminizq tto act&&
(limit in records)
Altkough the Ada data structure is definitely supriat toth
Pw4M implin.wtation, thee is cancan abut... reptesitation

4.2 111 believe that many errors not racma~ly detectabl ~atil,
aiscuition will be caugqht by the laqueqe ttawLatac.

4.3 Ine Ma code resmbles the design language w Closely that
'.mll-witten progrms avild require fewr ciame than in
non-structtr larquages.

4.6 Assuming... (a good] ciec~e... I vauld walcm th use
of Ma on my nit ... pxoject.

4.9 Mwe ~taxu st~ructue ad data typing facilities at Ana, we
features that shmuld dsf initely ramain in the language.

TE #18

2.2 The redesign is far better thac the original. to prgrm is
shorter in loqth..., maula in structurze. easier w resm. ia
addit~ion, there are fewer ==atrl flag...

TZ #19

2.6 The Ada coe will be better struc~tured. iniated ab3in ace
grqc e together in packaes. ileadaility is et~ami.

3.6 1 believe that clear atpession of tbe program wN pMmit'le
Ma does promte reaale cod*...

4.1 1 tiiirv developing a now progras will tafa lIqeVr In M&atha
in a laquqe with lIos typing. The difference wsould in in cm~
rigorous definition ard speification of types, initializing Pam"
objects by aggegatee insteed of hex, mO the spsciticatinn ot
Subwoqrin POCOMta lets. HMaver, I believe that t type
ctr'..ling, owe. performed by an Mda comiler will catch -wy ot
the routune errors custmarily made in progtansngz.

4.3 1 believe an Ma progra can be self docuw~eting....
4.4. 1 do believe Ma tn be 4 very uvable laquqge, unlike m

other WES....

TER 920

2.2 *w desin is better than the original in that it is Ur ~
robet and maintainable. Mwe nwe design is not worse tb tm
original in any significent %my.

4.1 rt will definitely towe irwyer to develop a pqrogam....
Hoeer, the resulting Ad progress wili be far better
... .the extended mout of time required to program in Ama irs a
came upon the hoomwd amerw in t*1Lch yeeumt aay k are

usdto develop DoD softmzer....
4.4 An aplicationt prga *A d stand mace of a ch e of

being coctect. maintainable, ad moifiable.
4.7 The features of Ada are very 1interdependent and uicis$.ons

cuurnot be made withaout a great deal of care. I wouJla like to use
somthing damabout excessive lzwangae cmlexity... Ibuti it 1s
not something decided by taxing a vote.

TER 21

4.1 Por tbis particuilar problem. devloping a 44bgss ytogzaa
Woud probly be emiet and faster....

4.3 Amaptiona of proble solution age owe explicit. howoer.
tim e of i less readale Ithmin that for am spcial-purpose compiler,

4.4 . ..the main advntse Ada provides is a met of wal-tqougt-out,
rcncpts lik. ftask ,', rendezvousO an lientriWe for osealin witn

concucreny. These &smm designing an umplamnt~ing a correct pcoalam
solution for easier the with ad hoe muLtitaskung facilzus

4.7 The features of Mda are very interdependent am excisions
or chang cannot be sock without a great deal of care. . .. theme
changes idetailed list Izac~eaI might compromse language uiaolitý.

To 22

4.1 Given the Iee uaie of the Ma learning cut". I believe Ana
progress will not be significwtly awe difficult to assign, om
or debug. Ada is a very clogcis language. %exch doula &Ulow a
pcogramier with expeieince in it to uspiasaen a program 11 it wt
no moce difficulty then before.

2.2 ThA now' design is definitely more readable ans .antainasle.
Bac data structur and operation is clewarm to its purpose

M 024

2.6 in MAd it wee easier to Othink Structurae* Iliitas numbr of
remmnleb ~ arreaints - vs MA/ this assisted ae in coming a
structured program.

4.1 After a little familiarization ar practice Ma to~ing ma nta
tame as long....

4.4 Mda apeas to be an excellenit larquage to teach basic
p.rogaming fundametals in. It is readale, fairly easy to us.,
an extremely savy to transfous algatitlas from a EDeeig Lanuage
(e-g., ML into.

4.1 1 beliamp. that dammloping a iebapW jxpl it MdA will an

(1) Adats laKwi
(2) A" is tnot -cwsidealy am* petfull

I would aspet Ada would be in a suh m favorable fat**u
qapilit older tmupaq. sueb as Sottzm 09 Rd' I.

(3) the ability to tue Proesses. cinema ad iwtcs as tztul GUa
types in Camrru t Pascal is nti quite satom 1A MAds

4.3 1 believe my Ada ceoagrinaq of the S= oVKw4.n SYeMA 'A,
lam readabe than the oc iqin&i. MThe Iy r -I tot thiS Is tm
inaility to tum WckA" nines as ecmmWS of othe P5qeS. -

Otbeevi, it would he" been rolqhly Ms geadbe 41 the ac'iZua".

M $26

4.1 Dwe1lqd a deiuggW wropri may very wel~l UMr 10"Wr in
Ada thnin Pfoetrui. The Ada requuxmmutorf UpiiC~LUY tYPjji
wrety vertale will load to bettat pcoqras that are me 9*Liaj
urd ;pocaby tamiet to maintain -w the total lift cycle. hDAMw4.c
the detailed specification of each variable te *Ofes 1*40 to
edditinrAl lines of code that bins to bmaelpd ONOLP10qg12vm Ja
in -~ae.

4.2 '&A tfil Checkiug of Vaialed; is in MY *PiM&wn a MY feetige
Of A"....

4.3 ... Ada did tnot mmiv to oFFec joy .WreCMabilitY *hmt ftctrdm
mHtmvsr if this Was coded initially in MAd.... it to conceivable,
that hiqhiy readable pcrogu would result.

4.4 A untivescal (real tiael aMqum"e... has very Obvious bv*Le'tB
mW this wmuid apLy to all amgot cs

%U #27

4.1 ... 1 feel that de'eeloping proram in A" wii ll tOn no e
time thint dsemolcping ;qrot in avy othw high creel lnl~use....

*4,3 *: felt that Mda is moe readable then FWD" Alt aMmLY
loqagt,. but mn moe readable the Pascal cc AL=..

4.9 Itie definition of tasks in tihe UMlpme allot tim USSR to .
easiy we the towsa.

2.2 It is tac moe amdetstwdi.l then the AML, MA. cc *V1l"

3.1 Iarmi-ication was well suited to Meanmu tbarofoe I ham no
difcu-tyintheus of Ida...

3.6 1 do tool that the program is expresse cloeely and yt wl
p.mit & goW onatle togenerate efficient came.
41I believ developing a dduggW rcogea in Ada will tate less
tim tha in any othe languae within my -xpmri , n..amely JOVILAJ,
A=., 016-2. Asmb~ler, LISP, Sue, *A=&. hodula. an* am* *tmes
tha at ifo wiiar to the War4. Ibis is for two pri~ncipal ceasons.

*A moe. undrsandable program can be written
*A smmemful, o.1ad Ion som testuqiz~s amh further alang.

4.3 IPV Ma pqram is moe cae~le than the 4 .. wuxn vecsins
of this program. .. .th Mda i~mplmenation -am naealy reflects my
design conpt.

4.4 The moe people that work on a pro~ect the owe the valuen of
Ada bcom.. apprent.

4.5 If Ma ware excluixvely use in my appli~cation ame. no eqciau
probems waoLd result.

4.6 1 look forweed with plemac. to the usa of Ma Woe my neat-mse capuer systmi. 2mee will be ammy toewr poblins.
4.9 1 lik te auveall cbcatat ad oonsistency ot the .anquqe

ads I would not like to sme it chuangd anmy signilicanr way.
4.10 Ovn before Ma comilers are anailacle, the lanqueqe cm

te used asa desiqn tool. It is a ter ova ieio vqftcle unin t
current crop of MLsyd cod".

TO #29

2.2 CMwoJ redesigns... were, Judged to be majac impovemmits,... for
all the right reasns - greaw" clacity, see of m=&tcarion, mu
tesig to-a 641810n. OW.
2me solutions to the other three steow... ware !us satisfying.

4.1 Warning to s- Ma Proprly smine tu take con.16eMue Uime
but it is a .*emnt~ial tiwmprvaet ovor other languages.

4.2 Theu two believes that in I- -al Strong typing pemots gono
design aid facilitates testing.

4.3 Uee memers had sm~amha conflictin~g opinions to 3ust tow
msuch owe readabl* Meae is L.... All agreed that Mac was at least
bettec, ad that ;caems weitten in Ada woul~d be ""ase to *masi
W- toea.

4.4 Ma..* inc~reaees the proab~ility of writing correct progress.
4.6 bmywwa but paticipant p6 definitely agreed that if a goo* maa

amptlet We* Avai1labl, they would greM their neat peo~ect In A".
4.10 A" mmw e be generally w~ iot, Wd subeqeqnt aesagne

shaw req~AtoInels effort.

2.6 ave Original xM wst Very Wall desig?" MA "Ba rely aUGWW
this design to be .qm~d into SlhqM~y battr CdOO...

4. 1.1 "1"l 6 aid S3:
*mrall, I think that dSVoI PO I "m tabe lone in MAd Cub to
trn r1igOrir reqUirOmntS 'ft the design WA dL1R ALOJ.
progra are oftua asd~ voifat lomy

4.1.2 RCV2 and Algol 60:
loes lav~nguaes ace significantly *we gewicten aid in'ze thi
Algol " wd consequeutly, I think that MAd dweve apmt to ILUl
be Siailar to thes 1AIV.Mes.

4.1.3 ?ortran ad Coral 64:,
2we ininowitty of thess Lwavuses came* efiassiemw 00MMUR tuaS.
MAf dould be bic Ceta.

4.1.4 Asimbler (Various) :
Ada dwevel~ time for a dabupqW rpvm souild be osual

4.2 ... MAa WtivelY eOWNOMae 1-4e "oU~tion Ot *esrre ctG Uzn
4.3 A" program do unt mW tO b may IMe redleS thin XV4f

adAlgol " prggm --wa we several proa Komn:
separate cU eputu-Aan imawe- 3 abudance ot bloca 3-1waratorn ttoc £
local data: goeral Verbosity.

4.4.1 Ada aaald o..~oe na 1r-,~tibi~iti*S in interfceSS....
4.4.2 All rsoe'e are :tcroumY onmvrptIabl vwea it wcttma

in a portable laquap. A" should caus a CMVIW40 EWA
in this trod.

4.5.2 lack of reOrmi~nge (W)l staticL.C2ectsis &0 taMmtWal,
and mcoum. pra1me.

IU 31

2. 1 teCONe of modules paemitted trn defiaition ton structs
to be localizini. (fteviouslyI each npected onsuun wes
available througiwx the eatire pqrsa.

2.2 2w gunaaIxty of th wdul. structure puonts tha h~airq
of MwmCSmary details frMtheUr interfane qecifcatiOne UMWA WA
aoceall str~uctue ernier to under stand. The diwtAnCtieo betlesm
the logical prapertise Of an eCbu~ WA its MWeeintaift WrO at
help in this area.

2.6 ... the ability to pectOM izafOOaatiOn Win*u... greWAtY
facilitates the read ing of the Woote test.

4.1 ... progres will take IS tift to prouc Int GedqM94 &M...
(because of thai omplete cuatro 01e CPUu 1t~erM....

4.3 flue cam is wmocmrdalo mainly'darn to trn ability Of
defining types with wall defirad logical PeOPuties

4.5 ithe diversity of feaviee offered by te M VUQ lau Mq it
difficult to moim a choice in certain came.

4.6 Strongly in twavt. . .. the featmres ot Ada... onto tit trn
direct uneeds of the adefde c=PAe seftware SCOW.

M #32'

2.2 weem. zinterfacing be mm ite Was Cmlez. logo cOVplS
ard error prom...

3.1 1b real difficulty using or alying features correctly owee
they hwe wrdainw.

3.4 ... the namy testrictiorA wd qualificAtions, am the lacm ot
a jatteff or Intuitive parallelism far them creates a bucoen tor
the wagramma....

4.1 Ada is owec. pLn the mny o~lauage with thici I as
feniliar.

4.2 2w greate qwification of data ad ttm nomof for atpixcit
casmeesion of trws is a nuisnc. (It] addm aispectem coeruman
srocs; lized point arithmtic was a major Problem.

4.3 11
4.4 Jbfe
4.5 Vener qua1ity of sfetwe dwqeloput due to co1mpeity

-of Ad&.

4.6 *...A" is comlex. auaimard ad ~infs" wUvOCeSay bueomna

4.7 The deletion of refdmnat features umxal probiy impair
th Uab~ility of the language for many Programmes.

4.1c it to difficult to identify a mal basic subst within
Ada w use as a starting point for learnng the language -w tor
bqinhirq to progra in it. Mda memm to in ae up of a uet Or
ssb-Inqueas that are partially disjoint, rathee then being
Oaiuu'gric. as is the ýcin with othe prammum lmquages.

Tn-iL3
2.2 it is betrbeame it awe cloealy expesses my intent.
2.5 me Wobl - infact, itwas areliefteobe ablewao I tr enAle

to Adel
0, ... A .me found to provide the basis for mab greater earn w

clarity of formulation and cmmlcatzon of cooeps....
Meda' aexpessiveness will cornr bmae WM~entiaLly to mottware

maintainabiity...

TI 34

4.1 ... we doo~ thet dAxq thee will be significantly different....
4.4 en increase in reliabilitys possibility of re-usin cme

decreaem in dependence on porietary mofttve.
4.6 AdunsiWe at the cinrcital risks of de4 dn an as yet

~uwwmen tegial features.

M 35

0 Orecall, our imemion of the loumeiwa ms a very ml 4vte am.
3.3 There were tw Mnaj owsiiom for us. valable l0g6th stzU1s

ad a attsd Ido.
4.1 ... Me would be yet tnter. It is so such better thin languages

such as Frcm at m mler lrque. as to saw the campL
lamighable.

4.2 . .. a Very umeful feat•re.
4.3 Yes, for a mrmer of reasns iwludin m atiion types.

ability to m oad pocdues and operators, ability to nave
turctions returz my ty, * e=c.

4.6 Love it.

T *36

2.1 Mat can be dome (currently) cam be dae in as with aoiy
minor mdif2cation.

2.2 It is possible to describe the sam stcum*e in a obootee.
nics€ ad mote readable my in Ma.

TIM #37

2.2 Th Ma is mce readable than the assembLy or the flow chacts.
4.1 , elo nt of a 64bqW peo;m would be faster tn i

am bl~y laruqe, ad given that the interrupt: pew2oity ct&oe
is mlved, faster thain Fbrr.tm.

4.2 ... Ada man to discrimnate by requiring the fixem point
iOMO •to live With strW.r4C typing tha the floeu•;p PoAnt
or ,aset inte• wrgrm must endure.

4.3 ... the reo of the lanquage is almost obaus awithmut
mplastio,, ad represnts a viable prestation lmqu"ee as is.

4.4 ... it twuld proba1y be esier to teach how to rtem a than
to I- the srct-ure rd fotjet of a sizable aplication pqrna.

4.1 ... aW t AM form you to do iý to spend MraeM te t t.
manlyses ad amesw Omase.

4.3 It loom to be as redable as ant other hlgh amer larquages.
4.4 The c of infomation binding, etract data type. OUL

be ud imtensively - thus allowing better sf ino prtit•l.o• •g
of wok

TR #.3

3.2 Mapping am existing concureacy amcbminm into MAd is
diff icult.

4.1 Given a decent program"t enilronment, I woulan't expect
Progro development to tafe any longer in Ad -than in anatrer
high order lanquae.

4.2 1* MAd code, particularly if formatted properly, is very
remaibl* cimparel to that of other languages.

4.4 The Lm of MAd would benefit 0,g pro~qct in two mAjoc ways.
First, MA" has several [tmful] features. Secom, MAd is expecr.o
to to a military standard. (Ozr aKPrIauta1 WC In COMPUte

RaIMrity will thus be moe emsily applied to reeL peogrs.
4. 5 Vlarifiability may turn out to be a problem for security woz

althug~h it may be psesibl* to generate a verifiable aset....

4. 3 Pbr* rwdable then Piortrail L UK nevessarily more remml.
then Algol 60, but this may be a famiarmisation problm. Lm toe
whole MAd gives a good &.gorithmic demcciption.

4.4 POrtability Of nImgrcsl softwace across wmerwe range".
~ug q ad error detoction dtjid te much easier mn Ma.

4.1 no significant difference is m; cted.
4.2 strong type chmescing is imprtant not only ft detecting

r prgraming errors but for eabaullig ;rcgr remmiulity.
4.3 Devera Ad&a coft is understandable by anyoe nseo has

knolede (lilateil of MAd comertucts cc good xowleage of any

4.6 Other then gAwtioning coier eavalability,, bullish
4.9 As a general rule, the wqroga and control structures of MA"

are good.

TIM $2

3.6 It did am pmsiblo to write cleaw yet effieusanly camplable
coe excoept in isolatesiInstances....

TER *43

2.5 MAd is not the kind of languae you can cow a mannual on am
thin easily begin Ienwmting code. It Is too comlex for that.

3.6 1 do not feel that Mda parmits very cleaw eapresson ot a
program.

4.1 MAd Is uneceesarily coplea and restrictive. ftemmy
Oicr~acesmor aplications I feel that MAssoec oc Partran woula
b. better.

4.3 Th saltitudse of program types sems artificial.
4.6 1 would not like it at all beacuse I feel that MAd in its

present form, is not suitable, for jq'j i1cro4maremsr aplications.

3..- many constructs was to also have a lot at mtra karmams.
4.3program readaility soo to be signitr~cutly x~o mer

other lanuqnea.... Swngr specifications ace mars eaaily
undrto in MAd in som causes than in *#Ams aImouages.

4.6 As lic" as the pro~ect did not require a great oal. of bit
pattern amnipulation... dotng a ro2act ini MA WM e fawaore.

TE #45

1. 4 '2e nufer of statements (md typeuj *uhoua be auch the
uo*. The area in which the hip will r*uxe s*r mac in the
declarations and the aaowmt of visibi~lity allow=e. Little
expoi.namexists with the cmlqx MAd uc vi , sd vsblt
rules. 1his is an area wh~ich may add to the mautmme e=art
for large programs.

.0 046

2.2 'Oe raw cad* is smoe reelable at the mmcuubIe level mn
dmnos vt require a long introductory yrolagu pranariky because
of the MAd declarative requxromenta.

4.4 Lanuage is relatively easy to leawn for the type at
lanume features required; large P - data bl*:s wiill be
simpler and lesn error-prone with contral/facility ot patliage.,
and "se* statements.

4.6 . .. 1 would welcome the Opportunity to wae Ma in an ainmm
software project.

4.9 Typing ad pakaging features; the reambiLity am traneOality
that fteeilts is worth the adittional efforts.

TER 647

2.2 The Ads ver sion would he eassie to maintain since the caoe
is Mee descriptie.

4.9 MAd fnrces a more structured sftwae design, tixrut oan an
overall program level by meows of thespcification section am
then in a mae detailed body section.

4.1 ... 1 feel that the time to de"u apagra will be less.
4.3 The =de is definitelyae readable. The progra logic

wa muh easier to follow when it came to concurrent tasks oui to
atsmmts which facilitate msuc....

4.6 1 would look forward to doing my nut cmpauter
roject in Ada. Although it requizes we writng. 1 feel in
the long ru I'd get the j dam .

4.9 Although smewhat tedious, I would ot like to m the typing
of data thuvp.

2.6 The design wa sot significantly better; I primarily followen
original design whiich was strutured~ and amapa easily into)a&.

2.7 Pl- e to follow original design, in usring M 1 f*m
simpLer machanim and constrrut in sme cans. e.g. lnit~alization.

4.1 .. .r e numerous progrmming teciques availaoe with Ma coula
aem program umanaement difficult.

4.3 The Ads progri was definitely moce redable. Ma is oefinitely
the me readable language I have ever encounterd.

TER M
3.6 1 hae great reservations abou the ability to o,,,nuo A"

code s the lanuage is currently defined.
4.1 In Ie ralI, ttW that MA facilitates the program

develoent procees. It is difficult to am* preaictions,....
4.3 Gnerally, a As program in not very resable: deciarations

must be prome * otortp-up; bqzin-loop-melect oemm too amch
nsing. Sepsr..inq logical declations fre physical.
representation secification is &Awmad. A heavy laiguage (no
abtreviations).

2.2 The n design offers better protection of the aaa ob3cts
because of the strong typing used.

2.5 Tw Weao areas of difficulty had to do with halnaing
eaceptional cditions and with cs -ing the ben oars representations.

3.1 Surprisingly, text lqayut was a btobls. MAd ooes not ailow
presentation in top-dmd fashion [of sructures, but in lact
recuires p ogrminerr to perform a topological sert so tAt no
focuard references Occur, Not only is this a nuisare to urm

writer, but I don't ue it as usneful fot the tender.
3.3 Th. critical feature missing in Ma tor our appi~cation

was a well-defined scheduling policy ad the lack nt facilities
for introduc1.q one.

4.3 In am ways it is loes readable. The procedural code
is probably as goo in MAd as in other high level languages.

VUft-pr0C~dwal Coe, such as type dQ1ertionts. has a Very severe
restriction pl"aci n its presentation. Thea o-foewatra-reteram
rule enforces the botton-up order.

4. 4 The pmmibil ity of designin all interfaces an * iIU
them independuenly of Iimpementations will be a plus.

4.6 1 would not be reluctant to une MAd on prouction wogrms.
Ithinkk it is, in the large, a well-cmutructm language.

TER 52

3.2.1 Access types could have been used to greatly improe
ace, s per fomance but they are riot capale of den~tiq scat=c
variables.

4.4 IThe AMa source code would be self documenting am much easier
to read ad followi. A maintenance program would have a greater
understanding of the progra with less effort.
MAd pr e top-dosm strutetxv. progtammziq.
'The jo of transprting programs from am machine to inotbac wouJlc
be eaier,
Strong typing would prevent subtle type errors.... psmaes will
prevent procedures from accessing and .momiying data that they
should not have acesto.

4.6 MAd is a very capble langutge. It pamits good structure*
code and the strong typing helps maintain data integrity. AkAL
would like to tune MAd in future projects. howver, ineffici-encies
in the language may force the continued tme of JOVIAL for real
time aplicatironsunless the problems are revolves.
The greatest concern is with access types. The hasi - mgt
is atcellent but the associated ptalima so thas of 14-I~tma
value for MAL applications.

TER 053

4.0 overall tapeeeions of the MAd language are very favorable.
It* pacage cowmip* is perhaps the cleasmat solution to aate
for the deveIopownt of general purpoem library routume.
'There was no major difficulty in learning to uine a caowenxent
subet of MAd. The only signtificant prolea encounterem wom
int the tasking facilities.
MAd is an ogtremaly verbose lanuage.

2.2 =oc=t the u- of Ada ad therey the interfaces ssVortao
by th aruntiue system, contributes to making an applications
program more maageale.

2.7 Original ly smwe of the data was repreuented by enuseration
types. but die to the lmited nmber of operations tha.. Coulo
be parfomI with snuneration type data, recor ad array structures
were chosen instead.

4.1 Ada may hae an advantage in the dstin wase because of its
readaility and because most programs written in it tow to be
structured sotht it is not difficult to follow the path at oata
through a poram.

4.4 The greaten advantage accusd from use of Mda an a pro~act
would probaby be progra maintaumbility.

4.9 The data strutures, p~rorm structure and separate comilation
facility in Mda we its prme assets as progtnazig tools.

TM *55

4.9 1 particularly lii. the ability to restrict visibility in Ama
prgress becamse I have morxed on pro~ects wmer this feature
would have prmoven pobInS Caused by multiple PCOqrMMS
making miltiple uses of a particular data field.

M *56

2.2 The nwdesign is more portable because the Pascal version
had to uwe non standad 1/0 ;rocedures. The now ansig is moe
efficient dhins to eaceptio handling for errors am ents in
the WWIdd of loo. The now design is easie to wowrtu
ad usnes shared packages.

4.1 Although ads is slightly toce verbose than Pascal, no moula
therefore require more origisal coding work, it mould take lees
time to dwelop a debugged Ma pocgra. This is be becamse Aaa
is eanter to underet4i. mid it hasor safety features.

4.3 Ma is much wee ceadW* than othr laqugiae.

4.0 Our t~esston of Ada wee that it was an eceedingly
cemplas Laiguege. Ne now feel that although it is cmlea. mac
is no. significantly met so than severaL other I~A&.

ToA

0 ... with the appropiate cbui9 [interruts) to am real-time
reairementsa. we give Ma an W....
One cw hardly inmaine a better ,c e0ual modeling tool then
Ma tasking, but the Aappirq into iaplMWtion MMM latent,
with difficulties.

4.3 Another mphmtic yes, primarily becamm it rods more
like 3nlisb taet the a prm laguage.

4.10 Wr like Mal

M #61

4.4 1 believe that sI'N ~ad will Woo up project comlevmon
and reduoe costs.

TER 62

4.1 I would my that a de Mda would tAw less tu to
deelo because type-d "i Would msure clean interfaces -
avoid type sing ir (rucigq garbae).

2.2 New design considere g eptalay clearer because of tor
interfaces (sutJarmes) where suons taume placS caOW.Ly.

4.3 the stadard package with name for all haracter mam"
rogrias of this type we portable....

4.4 Dimenion aalysis rolems caght at C€Qtl*-t.ls.

2.5 In general the 6esign mp easily. 2 aeras aot trouble
were machine depedent.

3.1 inding the boe way to divide a program up between pcsameS,
ocedlres. and tasa woa the problem. This will coequie a oairternt

design outlook then we've used in the past.
4.1 MA would slimlify the 1oimenutation of deqqas ew to

spcitication. MAd would alow tatting better.
4.4 Ihe parallel tasks of Ma would simlify the desiga o omplex

machine slaulutions. flu U wasn a 9Woblas in~ Um current systaw....
The covolions which were necsmsary for this we unelievable.
Ite recursive nature of MA would allow easxer imlementation ot m
algorithms. We cm otoiuly do the calculations non-r-ec.rsiv*lY
but o as neatly.

4.5 Ma sould (hel'p) by allowig us to desim staza coventions,
at a hiqh Wvel in peck"ae d then reqa•irxr the i ot toem
def inttion$.

4.6 Us would make life esseit by a11owin; us to define the otat
and peocssing intecrfces in the early conceptual design, am tomn
im1aan the details within 'ie Constraints. ALSO the review
of ;cqtr design aid style wouild he smeiec in MAd because of i.ts
structure ad readability.

TIM6

3.3 There is no questim ha thet redesign is. better toma 0-s
original in many ways - coneptual simplicity, readability,
meintainbilfty, modulaity, machine independence, etc.

2-3 %lbe task facility i~s a natural foc this afpication assite
th (priority] fin.. The use of pockages ad tasks provides an
effective meems of decomplirig the different partsn o! the system..
Abstract types, , reially enameate type, waro useful. in maxim~
the design more readable. Sapeeeutation specifications wcer
effectively emloyed to elimiat~e obscure bit maipulation am to
am"e the whole design les swume dependunt

2.4 'flu re~esentation spcifications enale the camesign to
metthe storage requiramints of the ~l ication.

3.1 U-z uinabiiy of the taim facility to suapem am resume
background tor 3awee priority) tasks to uecvia Mowhe ciocity
tasks is vimvas~ a sevee liaitat. in....

3.6 Wy only cacern for the optimization of any construct in my
peroga ise the optimization of tasks. The beasi ad babo
!te"I iqua V~iow rms.

4.1 Any incre~mad tam spent in cod~zq an MAd prorm is a=* tean
off set by reduing pWhlems due to type mimemones am proceoure
inteeface mismatches. c nxm sourcs of prolems. In amition,
pornras in Adsace definitely moe reudable....

4.3 2. MAd pr~m ise aowe readable than the orqigaj. proqr in
esery possible way By using ebtrat types, ; eial~y enimecatea
types, the P9OgcINK CaM PrdC a Prqz. that is Moe oeeCXiIPCVV
&Ad jzola oriented.

4.4 'The advantages of MAd ate imy end wall know: machine
independent; moe readable ad maintainblia more reliable; structuram
p~rorm design.

4.9 1n as vay mnthusiastic aiftu the whole language. In particular:
the separation of the logical ad physizali. opecti*es of a program ate
supported by the language synttm, despite the flaw. discoverem in tre
task facility (mm b~qse 3.1). the tas facilirl pesowum an

TER 067

2.2 The nows design is better than the original. design because tre
MAd design is struturalxe.... The use of Mad caduce the vo.Lm of
Source code.

2.3 1he Ada talking concept so naturally fitted the Wproe'
the' it s eqpssible t conceive of may other mWosch gmre cs
qappe d natural.

4.1 The languae so naturally up;rts tasking (logical), that
my only complaint is *Jhat the is a bkit of ca:•cetuaL owLAom•gn
of the teom task.

4.2 In addition to detecting type serocs at cple tiame, Ma
forces an es ly focus on data as a gnera L n to be oee"gin.

4.3 Ma is very readale because mmecaton type fit so tiat, Aily
into oblems.

4.4 dvantasgt fram using Me are poabmly goaq to c !Mfron its
readailtty initially, ad portability in the lancum. Othew areas
tdewe Ma app s valual~e ace me sabtle. It sm remonmLe to

ampct the quality of Ma code be better ti other laiquages, th
use of Asembly cade to be reduced ad to me rame attention to
data design.

4.5 The avantaqes may be offset by da's tiolauess. A progtame
suat undoerstaid concurrent processing to unmewstad tamiug, sros
to Lue generics ard "type* to code at a11.

2.6 Using the Mea -,uage reultad in a better design. Uns yping
of each •bject gave race uitoration abzou the oata being use.
ftnmeratd typing encouraed me mr.eiptive o asiqics. Us
sematics of the • aquage added to its readaility.

4.4 Ada could be umsd very effectively as a osign lamnge.
The Lanquage requtree a strong, clwe qecificatio of a&.1 the
objects being used. Ite readability supomms am tallY| ortn

2.2 W-rw, om M, L statment hod to be inutduced ftwr a lare-l
in order to aoid assigning the label to the following "d
etatment and then having to spuiously rep•at tkh labal in rrn
9I LOOP statmesint, hiich would ho"s mid the wngrm me azft-cult

, maIntAin. I but better in m WAr*@eMc, such as thre ace no
anonyvius MI statments, there ace mny tfet WaM tam .n fscaL
becaume Aa provides the DWV Iftich is miming in fNwAk.

3.6 rit a clearly or as ccisely as in Peac•l.
4.4 At preent Ad in incaable of eaportln; the apLcatrouw

we we interested in....

InD *70

Ji

• . .. \

2.2 The new design is maoe straight forward and far more reaamle,
possibly at the cost of rmocy space. It is hopeo that the Ma
version may be able to erecute slightly faster.

2.3 the general goal of the Steeln reguitimments for more
readable, more easily maintainable code. It is significant trAa
in trying to understand the ssmbler version in oroo to remesgn
it, two relatively ma3or flaws in the logic were discoverse wti.r,
could return erroneous data in m circumstnces. it is telt that
this •v•ld not have hapened in Ma.

2.6 The problem in the past has bowl twisting the Program
Dwel• pn language arouad to match the ML

4.0 ANY goed structured design could be very easily iaplmm•to
in MAd. Cr the *ther hord, a nom-structrox aesign wouLa me noaroe
to implanm. The pgqrm evolves easily from the tram oesign,
howmer, it is not at all easy to transliterate fto ma unstruc•tur
misting HL.

TM #71

1.0 It is felt that ida should receive additional taw for rmesign
ard develawent uni-ch conentrates on •raerly Development ot ""e
Software to Systms with eded copuers; Eanicming am
clacifying Ma semantics; Sumplifyiqng Ma's syntax; Incxporating
additional real-time capabilities.

3.0 Mda syntax, is extensively verbose aid in many cams
gramatically incorrect.

3.1 Access types and allocawts ace very difficult to wure tcam
ol mae.

3. 2 The IF-statent nested with itself and/or Loop-statemnuts
created wnorapcted difficult un application. hany levels of
nesting wer virtually unintelligible. Wlith each level, co•usion
increased. In following the logic of the peogrm, one is never
quite axe %6ere ome series of statments as ad anlother O"Umsi.
Additional cýting was necessary to help alleviate them
probeass. Debugging is difficult at best.

4.1 Developing a debugged progr with stuMdard 1/0 ce•a•remns
would tase no longer nor dortec in Mda.

4.3 Ma rod•ces less readable code than other high-level
lamgMe5. Verbosity SeWS to he the keyword. Ma, in its att--p
to provide mre. readable code, has gne to the otner extree.
Aditional keywrds are attaclud to basic pxogram construct•r wn
ace wncessary. They convey no additional significant meaning
that could not be picked up by the ume of delimiters.

TE 072

4. 1- 1 do no s htuigA nta tCnurn

4.1 A dnumitber iv thf prgo mit Macc wndette ed o y to~rah LA" c

eTo Translator
4.3 2we Ada source code is exceptimmnlly clear. I havQ fWt

this way aout every program . have weitten in Aiae. bmvez. Itais,
dmp,'4s on the identifiers and coinstructs uasd...

4.4 Ma could be used to develop an entire system, elimiaz"r~i
the need for aseessivo mactne code or assmly languag**
insertioms, and would therefor* increase productivity ara resuce

the costs associated with~ prorm inazntenovoe.

2. 6 1do rot feel that knowlede -if Ma helps me arrive at a7
better design but the lanqug~e aI'lowed me to revesnt toe oesign
better in potgrm' s implaetati . the p~rorm structur6 beceS
more cl-~sely tied to the fwict :wal reguirements of the poola&..

2.5 The translation of the mathematcs in trus exmpl* tro a
specification into the Ada tAqueusq was extermaiy straigot

&rftrwd; Hota, using t.'A Ada fizw point representation
w~uLd proaby be much moe diffi~ult.

2.1 .. .peciceqes. acess types, and private typs... sioula er
2.6 A k owledge of Ada did rot produce a better coesin aswe a-

Iwiped. Partaps .f we could obtain a better Wderstancin of row. to
us access types. we night find a ay. to succesa~u1ly use tra to
imprwo the cucreot design.

41. .. .wr iting prorams will tage, lorqe. Ther is mote error
checianiq, but tft lanquag consequently requires a great "&Il nore

2.2 '~IMnowa design i much estilr to redmIte haso taoe losg time
in3 J.sthas Joand Ibes amentioe of the Adait ato etactin your~n

errors and suroutine ',vterfwoce urinsisteqscles at ccmpile t~ime.
The strong type c~hecckin~ of Mda that rewuire greater specification.
of dat and its usage is needed for emeded systems.

TER *77

4.3 Mw MAd coding is written in &wre of an ..wlim ammie wuni
3maxe it easier to understand.

4.4 With Ada's detailed data type definitions and its run time
type checking and structured program" *acfltSutetu oe p* oonlms
viii. be eliminated in the design an *@bu phasee of progra
dwevl'peent. 7his should reduce tra problem in trA vecitication
and validatton phases.

4.5 It weill he very difficult to convert the qast~zi NMNAIUS came
wityvA. a mAjoc -redesgn ... It is Wte Satructure ItmW fiarm
sense ad does not flow tr top to bottom am AG rograms =at.

.a majoir ruedesign... is almotst aMatory....
4.10 TheAd Manquigiae is certainly a language of the 19ou's.

Its structured and highly readable canstrutts wil1 provme cosaper
and more reliable software in the ftur~e.

TER $78

C 14y upecienc* with MAd has been disauinting. It is a well
eought out law"usefulti& in a taecfnin .SwiUM"Nt am t o
limited value for use in seall real-tsine compuers. UWi two Woe'
flaw in the MAd design ate its umumual aelta oc fixen tye
variable ontation ad its comle interface with ammamll lnguage.

2.5 in general. Ada is a sledge kmmr where OnLy a tacK rumnrI
is needed. It sewed to tazoe moe time to set up a praceoure ma
code its Doiler platespecificationl than to actually oftsiop am
iplament the real operation.

4.6 Ithe utra time it viuld c-3ousas would rat m~m At woctanole.

4.1 ... coding would certainly he done quicxer in Ma. It*e
deV Ingu process would probaly he quic~w for an esaaly
manquqe version.

4.3 If astansive nesting of different typs of siules is *ane,
the oproga can he very confusing.

2.3 2We apprevlatentessof the MAd record, awsrqte. WA
pa~g constructs for this application made them convenient
cwmididtes and thetef,3re these comepts intluseces the rsoesiqn
significantUy.

2. 5 Much oif the redesign wse accconpl ishea with certan MA"

features in mind. 5,owmew, aftec the FW. was wiztetn, it was very
"may to translate the 1WL directly into Ada code.

2.6 in *Any cassi. Urn Mda cmwutJ. watt very approprate;
i.e. affregates, records.

4.1 Th se cific problem could hw* been zesotvem in a Awrter
time by musin I qu~si with, constrwma similar to trn SXMCM6121
attrtbites. entities aid se"s. althouqb this laqumq* woula lac'i

-im If the highly desirable fesuires of kMa.

TER *61

LS5 ...we coujldn't figure am how to 6o suiniw ~wmecsio in f&.
2.7 We dwsped several of our design uhma ourinq the *setcu

primar ily to tax* advantap oif tane nvub;M featuces of Ada mQ
only MC*e to secaPR & OK ioUS diOffICUlty. flrn Specific ±vatUt
tbat had the stronges influence an ýYw radestgn was pac~apnV
and visibility rules.

4.5S ... IM in Mda seem to be *itzror sadly lcinwW or at leas
badly explatned, especially for input MCII string -,mmersion.

2.6 Haevingq mowledge of Ma does help to active at a better
destqn. 2%is was i latcated by Urn history of my runesqtns. as my
uadeestandinq of MAd increased. soe did the qjiality of my assign.

4.4 It is liMly trat trn c~ansa ies; of ch&nges to Ada ;tcrin~s
will be ere, qu~ickly and accurately wdersooa tnan Vat gcoqrmso
written ,in other lawqumqes.

