0 A095699

. <] V. | B
N \ DBE. £1LE. copy,

=2t DTIC

ELECTER

l INTERMETRICS

Best Avallable Copy

81 2 27 005

.4

Y n»es3].
(G [EWAL nep"'r.

an CTTTTTTONT
. f* ADA yss'r AND EVALUATION t

) /// I esssuﬁi&é«u ;
gJ

. T\ A I —_— 17‘, ”'d; e /; !
} & AREA Ordev- 3341 }

e b

‘\ ‘::
q"“«;-—‘

P

APPROTED FOR PUBLIT REIZASE
DISTRIBUTION WILINITED

Accegsion For ~4
NTIS ‘GRAKL

DTIC TAB O
Unannounced O

Justificeation .

By
Distribution/

Availatillt Codes

‘Amil aadgtor
Dist | Special

(] -

ZEx b | |
INTERMETRICS INCORPORATED » 733 CONCORD AVENUE ¢ CAMBRIDGE, MASSACHUSETTS 02138] {817)661-1840
TELEX NO, 710 320 7823

p—

o e A D A A LB ok N S0 ey r

'-;l:«.fﬁ -

¢

e

Submitted to: DARPA/IPTO
1400 Wilson Blvd.
Arlington, VA 22209

Contract: MDA 903-79=-C=0497

Submitted from: Intermetrics, Inc.
733 Concord Ave.
Cambridge, MA 02138

*

The views, opinions, and findings contained in this report are:
those of the authors and should not be construed as an official
Department of Defense position, policy, or decision, unless so
designated by official documentation.

INTERMETRICS INCORPORATED o 733 CONCORD AVENUE ¢ CAMBRIDGE, MASSACHUSETTS 02138 » (817)661.1840
' ‘ TELEX NO. 710 320 7323 o

e e ———— e oo - . . M'ﬂ“

,'/ ' ‘ s
- ‘ L I -
L AR U U s o o .
¥
} .
5 UNCLASSIELIED
‘ SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) :
: READ INSTRUCTI
: REPORT DOCUMENTATION PAGE IMSTRUCTIONS
i [T REPORT NUMBER 2. GOVT ACCESSION NOJ 3. -mcm:ur's CATALOG NUMBER
b IR#663 [/]D 4095 699

4. TITLE (and Subtitle)

FINAL REPORT ON ADA TEST AND EVALUATION

5. TY®E OF REFORT & PERIOD COVERED

Final Report

| 6. PERFORMING CRG. REPORT NUMBER

7. AUTHOR(s)

NA

§. CONTRACT OR GRANT NUMBER(s)

MDA90379CO497 .)
.

8. PERFORMING ORGANIZATION NAME AND ADORESS
Intermetrics, Inc.
733 Concord Avenue
Cambridge, Mass., 02138

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WARK UNIT NUMBERS

A0 3341

11, CONTROLLING OFFICE NAME ANO ADDRESS

Defense Advanced Research PrOJects Agency
1400 Wilson Blvd.

12. REPORT DATE
6 February 1981

13. MUMBER OF PAGES
66

A;l;nq:gp VA ...22209
. MONITORING AGENCY NAME & ADORESS(/! different {rom Controlliing Oftice)

18. SECUMITY CL ASS.. (of this report)

Unclassified

[T8a. DECL ASSIFICATION/ DOWNGRAGING
SCHEOULE

18. DISTRIBUTION STATEMENT (of this Report)

APPROVED POR PU”LIC RALEASE
_ DISTRIBUTIC® OLIMITED

]

CISTRIBUTION STATEMENT (of the abatract satered in Block 20, {f different {rom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on teverse glde If recessary and identily by block number)

ADA

Programming Language
Computers

'F ORTRAN

L

20. AB ACT (Continue en reverse eside Il necessary and identity by block mumter)

describes the methods used to gather and evaluate
and discusses the more prominent issues raised.

(U) 'In June of 1979, following an extensive process of selectiom and
revision, the Preliminary Ada language definition was published. As a means
of further refining the language, it was decided to approach the prospective
user community and solicit their comments and reactions. This report

the msay responses received,

DD [1473 eomon oF 1 nov es 15 oRsoLETE

UNCLASSIFIED

SECURITY CLASMTICATION OF THIS PAGE (Wien Data Entersd)

SECUMTY CLASSIFICATION OF THiS PAGE(When Date Bntarnd)

SECUNITY CLASSIFICATION OF THIS PAGK(Then Deta Bntered)
A U N S . S S T

—

Table Of CQnécnts

1. Introduction

2. Background

3. Adas Test and Evaluation Reports
4. Analytical Methods

S. Findings .

S.1 Extracts

5.2 Language Compacrison

.1 Assembly lanquage

2 Portran

3 eL/t

4 Algol-like language

ajor Issues

1 Tasking Issues

2 Program Structure, Nezne Resolution, Separate
Compilation, and Rejated Issues

3 Predictability and Zfficiency of Objact Code

4 Values and Expressions

5

[

7

t

NN

c s Ko o o

Abstraction and Extensibility
" Language Phase-In
Syntax

LR RV NV NT) W v R R RV
.

6., Diff'culties in Interpretating the TERs

7. Mandates for Change

8. Conclusion: The Overall Response to Ada

APPENDIX A TER Topic Index
APPENDIX B Issues Pile

APPENDIX C Documents

APPENDIZ D Accessing The Archive
APPENDIX £ TER Code Breakdown
APPENDIX P Document Logs

L4
2

Report on Ada Test and Evaluation :fuﬁﬂ“

1. ‘Introduction o " .
In June of 1979,. following an extensive procoli of selection
and revision, the Prelimirary Ada lanquage definition was published.

As 2 means of further refining the langurge, It was -decided to
approach the prospective user community and solicit their comments

‘and reactions. This report describes the methods used to gather and

evaluate the many responses received, and discusses the more
prominent i{ssues raised. ' - .

‘2. Background

There were two major avenues used to solicit reactions. The
publication of the Preliminary Ada Reference Manual and Rationale, and
Ada newsletters in ACM Sigplan Notices, the major informal journal on
programming lanquages, assured wide. circuiation of the language
definition and requests for comments, -

The other major and more formal source of comments was the
Test and Evaluation reports. Milicary organizations, defense
contractors, and the computer industry, were asked to analyze existing
applications programs, pessibly reprogram rhem in 2da, and report
their experience. A few outside the military and its contractors also
submitted such reports.

The High Order Lanquage Working Group (HOLWG) appcinted a
2l of experts on programming languages, ‘termed the Ada
vistinguished Reviewers, to oversee the review of these comments and
further discuss language {ssues in order to assist the language design
team at CII-Honeywell-Bull {n {ts refinement effort. Intermetrics, Inc.
was contracted to coordinate comment processing and to support the
Distingquished Reviewers adninistratively. = This = program - was
Intermetrics Test and Evaluation. . ’ L

The functione of the Intermetrics Test and Evaluation program -
have changed with the needs of the Distinquished Reviewers. Initially,
it was thought to be most productive for Intermetrics to prepare
position papers (Draft Change Requests), discussing controversial.
issues and proposing changes which would taen be discussed by the
Distingui{shed Reviewers. [If accepted by the Reviewers, the proposals
would be passed along to HOLWG for possible approval as Language
Change Requests.

2 s————————

-2 -

This approach proved too rigid, as ic put the language design
team and the Distinguithed Reviewers in an adversary relationship. In
subsequent Reviawers® meetings, Intermetrics did not present position
papers, but instead continued to prenmare documents useful for the
Reviewers. These documents form the core of this report.

In addition to technical and administrative support,
Intermetrics performed some genersl analyses aon rhe Test and
tvaluation documents. The results of the analyses were presented at
the paris meeting to the Distinquished Reviewecs; their revised and
updated versions are found within. ' :

Intermetrics also provided continuing support {or the Test
and Bvaluation process by serving as the clearinghouse for.
information and documents. Numerous inquiries concerning certain
aspects of the language--from details of the syntax to questions
about its future importance to computer science--were received by
traditional and Arpanet mall, telephone, personal visits, and chance
meetings. These were answvered and daocuments vare sent as
appropriate.

3. Ada Test and Bvaluation Reports

in addicion to input from langusge designers and
theoreticians, the Test and Evaluation process considered the
opinions of system and application software developers. -

Defense Department s{tes and contractars wers asked to study
their existing applications and select one to reprogram in Ada. The
results of ctheir experience are found in the Test and Evaluation.
Reports. The eighty-two TER‘s represent @& broad spectrus of experience
on the part of the participants.

A TER comprises two parts. The prisary sectian contains a
questionnaire, composed by DoD, which sddresses the participant's
experience with and reactLion to using Ads in an applications context.
Additionally, the primary section often contains an algorithm written
fn both s lanquage normally used by the pecticipant, and in Ada. Along
with these comparison programs are usually mare extensive comments
dealing with {ssues that were beyond the scope of the guestionnaire.

The supplementary section varies {n nature and contents with
ecach report. Many tarticipants included system and langusge reference
manuals in addition to the scurce code in order to fully present their
applications.

To systematize their dissemination, the TER's were numbered
and separated into their primery and supplementsry sectiona. The
primary section carries a TER number only; the supplementary sections
carry the TER number and a suffixed section letter. The supplementary
material was further separated into originsl code sections (containing
code written in the original language), and Ada code sections (which

LG

-3 -

contained the Ada translation) {n order to facilitate distribution of
Ada code samples to those wishing to analyze them. Appendix E
indicates tha languages used i{n these code comparisons,

Since the Test and Evaluation Reports were not submitted in
machine-readable form, and their volume precludes entry, they are not
on 1line. The derived files produced during the Intermetrics
analysis, however, are all on line, and are described in the
Appendixes, ‘

4. Analytical Methods

Given the form and coatent of the TER's, some method was
needed to summarize the useful information thev contzined. One
possible technique would have been to summarize each TER separately
and report its contents without any evaluation. This would faithfully
preserve the contents of the individual TER's and would be the manner
least influenced by the summarization. However, it would not help the
lanquage review process since it does not address the difficulties in
underscanding Ada, and the dif{ferences - in training and experience
among the Test and Evaluation participants,

(3

Alternatively, the TER'S could be analyzed into issues, as
were the LIR's. This would be unsatisfactory as the TER's take quite 2a
different approach to prublems than do the LIR'S: rather than study
language {ssues, the TER's deal with lanquage applicationc.

In order to avoid the problems described above, verbatim

‘axtracts, a topical cross-reference, and a presentation of the

corclusions drawn by the TER analysis were prepared.

5. irdings

S.1 Extracts

So that the language team and outside evaluators might gain
insight into the participants individual reactions to Adas, verbatim
extracts from the TER's were compiled to preserve the original
phrasing and tone, which would otherwise not be accessible to those
unable to sift through the thousards of pages which comprise the
original reports.

The extracts were chosen and abridged to present a balanced
view of each report. Comparisons in the extracts refer to the
original implementation language, so that the phrase "Ada is more
debuggable® means "Ada is more debuggable than our current language®.
The extracts are not intended to reflect difficulties in understanding
the preliminary manual or the language: these issues, are of centrel
con~ern to writers of manusls and expository treatments, difficulties

-4 -

in understanding the language will also manifest themselves in the
detailed technical summaries. Extracts were not taken from sections
of the TER's where the participants indicated that they did not fully
understand the language or the manual, as {t is not clear how to
{nterpret such answers in the context of language changes. Comments
relating to concerns of compiler quality (i.e. degres of optimization,
speed, size, etc.), development environment, ocganizational problems,
and the like were similarly not included in thig sampie. (‘he
extracts used in the analysis are found in Appendix P.}

5.2 Language Comparison

A review of the TER's shows that many conclusions drawn by
pacticipants ara heavily influenced by their expsrience. Im light of
this fact, some general responses to Ada are categorized by the
respondent's previous language.

5.2.1 Assembly lanquage

Not surprisingly, assembly language programmers emphasize
control over object program and data. Many praise such facllities as
tasking and abstraction mechanisms in one breath, only to criticize
them as inefficiently implemented in the next.

Specific features desired by this group are static allocatiuva
of data, unsafe pointers, and representation specificacions.

The most important factor {n the acceptance of Ada by tnis
group will be the availability of compilers which use time and space
efficiently., The assembly lanquage programmers do not betieve it can
be done. '

$.2.2 Portran

Portran programmers comment favorably on the presence of
structured programming constructs such as IF...THEN...ELSE and loops.
There Is 2 definite split In opinion about GOTO's: some maintain they
are important; others would like to eliminate them from the language
entirely {n order to encourage bstter programming style. It {s not
clear whether this argument is based on experience ar current trends.

One Portran feature missed {s formatted I/0. If a formatted:
1/0 facility is nor standard, will there exist such a capability for
every machine? Will the facilities for various machines be
compatible? Can a formattyd [/0 facility be written efficiently
using an Ada package?

5.2.3 PL/T

-5 -

PL/1 prograr "~-s prefer PL/1's model of storage allocation
types 1in which therm . an explicit choice of allocation method at
the allocation of each variable. The parallel “based variable®
facility {s also missed.

Cource inclusion is sometimes preferred to the package and
separate compilation facilizy, Of course, source inclusion does
exis: in Ada through the Include pragma.

$.2.4 Algol-like languages

. Among the Test and Evaluation participants, there is a fairly
sizable contingent, primarily from England, using Algol-like languages
in embedded applications, This group misses high-level Algol
constructs more than lower level constructs. Additionally, conaitional
expressions and functional arguments are repeatedly mentioned as
useful and efficient. It is not clear from the TER comments whether
the revised Ada genarics would satisfy the request for functional
arguments.

S.3 Maijor Issues

This section identifies the major {ssues which have been
raised by Ada Test and Evaluation pacticipants. PFor ease of
exposition, the i{ssues hsve been grouped into seven categories:

1. Tasking

2. Program Structure, Name Resclution and Separate Compilation
3. Predictability and Efficlency of Object Code

4, Values and Expressions

S. Abstraction and Extensidbility

6. Language Phise-In

7. Syntax

$.3.1 Tasking Issues

The TIER reports present a variety of real-time applications
requirirg tasking. While many participants implemented thelr
real-time appiications successfully {n Ada, others were unable to do
so. The crucial question i{s whether this inability was due to
shortcomings in the language, or to inadequate education in the use
of Ada for such applications. :

The difficulties which Test and Evaluation participants bhad
in applving the tasking model to applications prompted both the
Distinguished Reviewers and the Language lesign Team to examine the
existing model, The Revised Ads tasking model will be subscantially
the same, but with some important extensions and changes resulting
from the Test and fvaluacion process,

- f -

The Ada tasking model differs radically from many previous

applications languages in that it recognizes tasks explicitly and has
a well-defined notion of task communication and aynchronization
through the concept of the rendezvous. Careful education in the use
of Ada tasking and re-analysis of applications will be needed.

It should be noted that although features of Aca :askihg were

rather extensively criticized, and that many of these criticisms led
to language changez, the Ada tasking mechanism 39 a whole was often

mentioned as a particularly strong feature of the language. Fully

fourteen of the TER's praised tasking explicitly.

The following is a detailed account of the major concerns

expressed:

5.3.1.1

5.3.1.2

5.3.1.3

5.3.1.4

$.3.1.%

--Ada tends to encouraqge and sometimes require pragrammers to
define more tasks than they wonld in other languages, and
there is a concern that this wi.l result in axcessive
overhead, specifically in the areas of scheduling and context
switching. T'CLOCK (s a minor iscue in this discussion some
say it must be supported since it cannot be implamented
within the language, and others thet ([t incurs unavoidable
and unacceptable overhead. The ability tc pass arguments to
tasks at creatfon is another specific request related to
tasking efficiency. It has been asserted that the
Habermann-Nassi optimization answvers the efficieicy cancern.
However, there are questions about how ta tell when {t can,
should, or will be used, so some reviewers remain skeptical.

--Preliminary Ada does not at this point pravide sufficient
control of scheduling decisions, specifically the assignment
of tasks to available physical processors (or virtual
processors in a time-shared environment). This area will
have 3 major impact on Ada's use in real-time systoms and for
systems programming. Some want the schecduling points to be
precisely defined, to be abdble to explicitly suspend and
resume tasks, or to be assured that scheduling is *fair®, cr

both., .

-~The scheduling rules do not guarantee that hardware
interrupts wil) cause the timely execution of the
corresponding interrupt handler.

-~The mechanisms for sharing data between tasks seem overly-
involved to people who are used to having a mechanism for
representing synchronization informatisn as daca.

--Many people want to be able to determine taak names during
ptogram executinn. Por example, a server task might be doing
work for severai other tasks and need to determine which one
has just been the partrer in a rendezvous. People have also
wondered how to terminate an orrant task {f they can't name
it. There |s substantial support for the {dea of having TASK

RPN e— Y

-7 -

as a built-in type in the language as a solution to these

‘problems,

5.3.1.6

£.3.1.7

5.3.1.8

$.3.1.9

S.3.1.18

$.3.1.11

--Some people have asked for a capability to dynamically
create and delete tasiis at run-time.

~-Some people are concerned about the asymmetry in the
CALL~ACCEPT model for invoking task entries. The writer of a

task can prevent it from waiting indefinitely to be called by

using the SELECT and DELAY statement; but the writer of the

task making the entry call has no equivalent capability.
Conditional and timed entry calls are desired.

--There may be prcblems associated with the handling of
possible error conditions that can arise when one of the
partners to a rendezvous has died. .

-=The requirement for hierarchies of tasks as provided by
current Ada has not been demonstrated. Both users and
inplementors have expressed a desire for restrictions in this
area to reduce complexity., Task hierarchies also may create
problems in the interaction between task termination and
scope exit.

" ==The requirement for cne task to be able to change another
task’'s priority has not been justified. Some people have
pointed out - that the ability to change priorities can be
misused as a synchronization mechanism and should be
eliminated. The ability of a task to terminate ita parent
has also been objected to.

-=Although the tasking model itself is clean and simple, it
is not always obvious how to apply it to problems which have.
been previously solved in other ways. This proved to be a
difficulty expressed in several TER's. The concept of buffer
task, for {nstance, although explained in the language

‘documentation, is not easy to grasp--indeed, it appears to be

inefficient at first glance. However, Habermann and Nassi
have shown that the use of buffer tasks does not {mply that
they must be scheduled separately from the tasks they
service.

5.3.1.12 «-Msny TER's requested that task priorities be strictly

enforced, and that the scheduling algorithm be well-defined.’
The lack of definition of scheduling strateqy 1left many
participants unable to define solutions to their applications
problens. One difficulty with strict priorities {s the
possibility that they might be used as synchronization
mechanisms, defeating many of the advantages of tha tasking
model. Although forbidding this {3 unenforceable, on the
balance ({t was decided that strict priorities were in fact
needed in the lanquage. As for the scheduling algorithm, the
decision to adopt strict priorities partially defines it; the
definition of 'scheduling points In revised Ada further

dctincs tt...

5.3, 1 13- --Tho so-antlcs of Prolinlnary Ada’ {nterrupts wecre often
menticned - ~as inadequate, as they ({aplied queuing of
“interrupts rather than = providing immediate service.
"Interrupts in Revised Ada wtll correspond closely to the
traditional ‘notion,

S. 3 1 14 -<Where previous tasking modols desl in low-level oparations
- - and expliclt suspension and resumption of tasks, applications
programs written in those terms cannot be easily translated
into Ada. Some TER'sS request these facilities in Ada, but |t
{# not clear whether they are functionally necassary.

5.3.2; Program Structure, Name Resolution, "s.paratc Compilation,
and Related lssues

Another area of concern is a perception that the mechanisms
Preiiminary Ada provides for structuring programs are unnecessarily
rich, and hence, complex from the perspective of both users and
i{mplementors.

5.3.2.1 --Some rules In the manual (e.q., no sllasing) would require a
complete pass through the entire system (a transitive
closure) to check. Such a check could make sSeparate
compilation impractical. J

$.3.2.2. -~Some people are concerred about the complexity of the
overloading resolution rules. PFfor example, the interaction
of renames with the ability to change discriminancts has been
‘mentioned. The design team has ilready decided that
parameter modes are not a sufficiently strong criterian for
overloading resolution, and that parameter names are not an
appropriate criterion for overloading operatars. It has been
arqued (persuasively) tha: overloading resolution with
optional named parameters is a computation exponential in the
~number c¢f parameters. .

5.322.3 --sers have difficulty undorscandlnq the -ultlplo mechanisms
for sroucturing a program.

5.3.2.4 -=Some users have ditticulty'undorstandlng the combination of

' USE, RENAMES, and RESTRICTED. Examples (both good and bad)

used in these debates are otton library packages which
‘contain large name spaces,

5.3.2.5 -~Problems can arise when packages call othor packages during
iniri{alizattion. It i{s not clear how the compiler must
determine a workable initialization order (it could be
expensive) or how the user can spscify the order.

S o

gt o

Sanns

¥

wpy

5.3.2.4

5.3.2.7

5.3.2.8

5.3.2.9

-9 -

~-Some peopie have objected to the private part of the module
specification on both methodological and practical grounds.

require compile tini
This means that some
and others at

~-The language currently does not
evaluation of static expressions.
compilers will detect errors at compile time
run-time. ’

--Several people have asked that a conditional compilation
capability be added to the language.

--Many important optimizations only work in the absence of
aliasing, but aliasing can only be detected with a transitive
closure computation. The language definition should take a
position on the validity of optimizations which depend on the
absence of aliasing.
(and safe). A mechanism is under consideration to allaw the
programmer to specify as part of a procedure or entry
declaration that the procedure has been written to produce a
correct result even If actuals are aliased through binding to
formals. Aliasing of globals passed as parameters would
still be an error in all cases.

5.3.3 Predictability and Efficiency of Object Code

One goal of Ada optimizing compilers is to generate code that
is competitive
programmer.

with machine code handwritten by a skilled

for sequential Ada.

5.3.3.1

JOSpRN

--Preliminary Ada specifies efficient parameter passing with

some sacrifice of safety and portability {n three special
cases: variables shared between tasks, exceptions, and
aliasing. Explicit coples must be made to prevent variables
from being shared between tasks, the state of OUT and INOUT
actuals is Indeterminate {f cthe exit {is caused by an
exception, and aliasing is illeqal.
A typical {mplementation allows the calling program to
pass/return small objects in registers or on the .stack and
to pass refersnce pointers to larger objects. Great care
must be taken in reference implementations for INOUT and OUT
parameters when the actuals are more tightly constrained than
the formals; an incorrect Iimplementation could result in
assigning an illegal value to the actual which overwrites
adjacent memory. An incorrect {implementation could also
leave an incorrect value in the actual after an exception.

Also, some kinds of aliagsing are useful

system
This section discusses several efficiency-related issues

5.3.3.2

5.3.3.3

5.3.3.4

5.3.3.5

5.3.3.56

e S et Mok et e

- 10 -

Some of the criticism of preliminary Ada‘'s parameter pa-slmi
nechanisms comes from a mistaken belief that it Is less

efficient than reference passing.

Other criticism comes from people who object to the fact that
a prugrammer can determine whether the compiler . which
implements a particular call be reference or by copy, and
exploit that fact to write nonportable programs. Most pecple
who insist on precisely defined semantics want pure copy
semantics; they have not been sble to convince the peopls who
are primarily concerned with efficiency that iarge obiects
can be safely passed by reference while guaranteeing copy
semantics ané without a transitive closure anzlysis.

~-Users are confused by the distinction between tunccionc and

value returning procedures, The current definition aof

function seems not to allow desired optimizations, seems to
outlaw "benevolent® side-effects (e.g., garbage collection,
{nstrumentation), and requires a transitiver closure
computation to check. .

A popular proposal {s to allow value returning procedures
full functional notation and be usable wherever -a value of
the type is required. Under this scheme, it would be
acceptable to eliminate pure functions., A declaration might
be provided as part of the value returning pracedure
declaration to specify that calls may optimized under the
assumption of abstract functionality.

-=Some people are concerned that Ada will force programmers to
use dynanic storage allocation and require the run-time

system to do garbage collection. Garbage collection {3

unacceptable in many real-time systems. Exasples - of

capabilities which have been requested to overcome these

fnefficiencies are explicit Allocate and Pree mechanisms and

pointers to static data. :

~-=-Some participants in the T&tE analysis have asked that the
language provide an explicit overlay capability. There does
not seem to be any w&y to write such a factlity in Ada
without a primitive operation which says “execute this datca
as code”,

-=A much more robust set of standard implementation parameters
is needed. Por example, memory size, storage, remaining
stack storage, target machine, word size.

--Many people have criticized the UNSAFE_PROGRAMMING feature
of the language. In part, the problem is the nawme, which
implies that the use of the facility {is {nappropriate,
whereas it is in fact the only way to implement some very
important operations such as the mapping of input data into a
typed varisble, One reviewer has stated that the language
should have exactly one such feature, and UNSAFB_?ROGRAHMING

- 11 -

is the correct one. Others have suggested that there are
degrees of unsafeness, and that really dangerous operations
such as turning an integer into a pointer should be
distinguished from safer kinds of type conversion.

5.3.4 Values and Expressions

A variety of issues have been raised with reuspect to
variables, values, expressions and the initial values of variables.
Some of these are minor, and have already been addressed in language
changes under consideration. Por example, NO_VALUE _ERROR will be
eliminated, a private type will be defined for time, Overlap_errcr
will be eliminated, the Underflow axception will be eliminated,
exceptions occurring during the elaboration of declarations will be
passed to the containing scope. the MOD function will have the
conventional definition, and qualification will be required for one -
component aggregates.

$S.3.4.1 ~-Several LIR's request the capability to {nitfalize parts of
aggregates. With the deletion of NO_VALUE_ERROR, this
capability seems reasonable and desirable.

S.3.4.2 --Some people want pointers initialized to NULL, others want
them initialized to an {llegal value (f.e. not NULL). Others
point out that such sutomatic initialization would lntroduce
& non-uniformity into the language. The 1language change
under consideration suggests initialization to NULL.

$.3.4.3 --People have had trouble understanding type derivation and
type conversion.

S.3.4.4 --Many LIR‘s suggest changes to the built-in numeric types,
especially fixed point.

5.3.4.5 -~The language does not contain a built-in "SET* type as
required by Steelman. The notation for bit string constants
is presently somewhat awkward.

S.3.4.6 --Many people have resquested more convenient capabilities for
* handling vaciable length strings.

5.3.4.7 ~~Some people have asked to be able to specify default {nitial
values with type deafinitions.

5.3.4.8 -~Implementation dependencies can arise {n certain cases
because the 1lanquage does not define a semantic order of
evaluation for expressions, and does not aspecify the
mathematical properties of operators which can be assumed.

[%- *

e Tt R R Y

-12 -

5.3.% Abstraction and Extensibility

. Ada has advanced capabilities for defining new data types and

operations and for defining generic procedures. These abstraction and
extensibility features set Ada apart from existing programming
languages for embedded systems. They are also the focus of some of
the most active debates in langquage {ssue and TER's. This sectioun
summarizes some of the main topics of debate.

$.3.%.1 «=In preliminary Ma, the equality operation for record and
array types is defined in terms of the predefined equality of
the component types. When the user has the possibility of
redefining equality, this may lead to strange anomalies. The
problem of assignment for composite types is askin to thac of
equality, though less acute because aasignments are not user
definable. T

$5.3.5.2 ~<It has been suggested that parameters should be named when
overlosding a function, and that the same cverioading rules
should be used as for generics.

$5.3.%.3 ~=There is no way to set discriminants (e.g. array bounds or
variant record selectors) of private types at run-time,
becsuse the component nanes are not visible. A ®limited
window {into private types” mechaniss {s under considecation
which would allow the programmer to specify that scme of the
discriminants embedded {n a private type are externally
settable at inictialization time.

$.3.4 Lanquage Phase~In

A varlety of iassues have been raised regarding interfaces to
other languages, interfaces to existing operiating systems,
representation of external interfaces, and input/rutput packages.
While these will have a major impact on the acceptance ot the language
and, in particular, on how quickly it will come ({inrco widespread use,
they ars the responsibility of the environment rather than the
language. The one language change currently {dentiified asw addressing
the above issues s to have the visible part of a module specify the
relevant language processor if the body consists of foreign code.

$.3.7 Syntax

- 13 -

A large number of comments on the language syntax have been
receéived, most frequentiy making mention of such issues as name or
keyword, the position of semi-colon, parameter association, and the
like. It is tecommended cthat these be stuiied carefully after the
language semantics have been finalized. The goal of standard Ads
‘syntax should be readability for documentation purposes and for use in
publishing algorithms. It {s assumed that sof{tware tools such as
language oriented text edftors will be used to simplify the writing
and entry of Ada programs.

6. Difficulties in Interpretating the TERs

Some of the materisl in the TER's was discounted becsuse of
ddmitted or obvious misunderstandings of the language. It was not
always possible to consult individually with participants when they
had problems, misunderstandings or had missed points. The root of the
problem may lie i{n the fact that the preliminary language manual was
not a tutorial docurent, and that those tutorial documents which were
available did not examine all aspects of the language. Visibility,
for example, was one area widely misunderstood {n the LRM. However,
TER's which reflected some confusion or misunderstanding ultimstely
played an impnrtant role in evaluating Ada, as they helped pinpoint
areas of ambiguity.)

Many of these probless {n understanding the language arose
when the participant was required to use mutually interactive
faatures. However, this is precisely the sort of problem covered
.rather extensively 1in the LIR's; thus the TER's and LIR's complement
one another.

Other material which had to be discounted in the TER's was the
body of comments pertaining to the efficiency of various language
features. Although f{t i{s cartainly nrue that certain constructs can
be shown to have Iintrinsic inefficiencies, and that efficiency |is
essential in many embedded applications, the TER's often do not
identify what function must be performed efficiently, btut rather
indicate that a particular implementatfon of that function might be
expected to complile poorly Leing the compilers famillar to the TER
writer.

The underlying application raequirements in a TER often become
difficule to interpret “nen the writer pressnts his or her own
language solutions rathe:r than working within the framework of the
desirad functionality, Por {instance, many TER'S request static
allocation- of variables as a lanquage feature, apparently for time
efficliency and ease during debugging. It {s possible that with modern
compiler t:chnoloqr. non-static allocation could be more efficient
without compromising debugging. This s @& language and compiler
desfgn matter. In this case, the functionality desired is Cfairly
clear, and the matter has been discussed at neetings of the
Distinguished Reviewers.

7.

necessary language changes. These are presented Dbelow with

- 14 -

Mandates for Change

In some areas, there was great unanimity of opinion about

indications of design team actions.

’.1

7.2

7.3

7.6

Cot.

~~S5ome way of gquaranteeing exact fixed-point representation is

desired. The approximate fixed-point system of Preliminary
Ada does not suffice for many spplications. Exact
tixed-point arithmetic also is desired. These concerns might
be answered elither through a change to fixed point or a
demonstration that the applications requirements can be met
through the writing of packages. The Language Design Team is
revising fixed-point.

«=The syntax of the case statement, "Case ... of when ...* is
widely disliked as not resembling English. The semantics
appear to be satisfactcry, but the syntax will be changed.

-=Variable-length strings are needed, again either through the
language or through definable 1libraries. The Distinguished

Reviewers and the Language Design Team have studied this

matter carefully, and will meet the need.

~=A more complete /0 packaqe is desired which would include

multiple data types per file, Portran-like formatting
functions, and sore functions in the standard packige. This
requirement can currently be met with the package mechanisa.
To what extent a8 larger standard 1/0 package should be part
?t the ‘anquage and not the environment is still an open
ssue.,

-~True interrupts are needed. Roy!lqd Ada will have them.

-«Many TER's request "bitstrings®. This s a very widespread
demand, but it is not clesr what functionality is desired in
using bitstrings The Preliminary Ada Unsafe Conversion
function (now renamed to Unchecked Conversion) can certainly .
convert between integers and packed arrays of booleans,
Packed arrays of booleans themselves can represent sets.

,Thus the bitstring representation of sets i{s easily captured

by Ada. LIR's mention the lack of set notation for this kind
of set and the awkwardness of the aggregate notation.

lusion: The Oversll Response to Ada

- 15 =

The T&E Reports show an extremely favorable attitude and a
great deal of acceptance for Ada among the prospective users.
Repeatedly, Test and Evaluation participants mention the advantages of
coding in Ada, maintaining systems written in Ada, transporting Ada
programs to other target machines, and so on.

Twenty-three TER's explicitly favored strong typing; the
strongest comment on any one feature. Other features with strong
appeal were enumeration types, overloading, packages, the separation
of specifications from bodies, restricted visibility, tasking, soparato
conpilatlon. exception handling, and generics.

There are consistently strong complaints about functionality
only {n one area: casking and interrupts. There is & grest deal of
concern that the tasking and interrupt constructs cannot handle the
requirements of embedded applications. There are two sides to this
concern: one, semantic functionality, the other, performance
requirements. ;

Many reviewers indicated that they liked some other lanquage
better. VYet, there was virtually no agreement on which lanquage was
preferred. It is clear from the results that Ada {s the most viable
candidace for standardization of any present language. Almost
everyone praises some features of Ada. There are groups of people who
say that, for example, PASCAL {r 3just a toy, FORTRAN is hopelessly
backward, LISP is no good for ®real® projects, aetc. Tha reactions to
Ada are amore along the lines of *If only they would change one little
thing...". It is expected that final Ada will meet the very ambitious
objectives of the DoD comman high order language project.

Another major theme apparent throughout the TsE analysis was
the need for better manuals and tutorial matertals.

There is a cense of optimism that the {ssues which have been
{dentified by the TL¢E snalysis can be resolved, and that the result of
the design refinement irocess will be a polished and effective tool
which fully meets the objective of the Common High Order Language
Program.

APPENDIX A: TER Topic Index

The TER Topic Index cross-references specific technical
concerns mentioned in the TER's with LRM chapters.

The index basically serves two major functions: {t reflects
a8 general sense of the technical opinions of the Test and Evaluation
participants, and it may bring up or emphasize topics which might
otherwise not be considered.

- 16 -

The TER questionnaire contains several sections which ask
Test and EBvaluation participants to list which llnqua?c fratures they
* liked, which they thought ought to be changed, and which they thought
were redundant. Since many of the proposed changes were in fact
proposed additions, the responses to these questionnaire sections are
divided i{nto categories labelled Add, Change, Like, and Redundant.

Although this Topic Index certainly does not represent all
the concerns of Test and Evaluation participants, it represents those
issues which they considered most {mportant, The questionnaire
answers wers put into uniform nomenclature, and similar ansvers were
nerged, :

The index entries were categorized by LRM chapter number
rather than LRM saction number, as most replies were not specific
enough to be related to a particular section. After each topic entry
sre listed the TER's mentioning it. Some groups hive submitted more
than one TER; some TER'S are more extensive in their coversge than
others; some TER'S are more carefully zonsidered than others; some
topics are closely related to others. For these reasons. (it was
considered unwise to take a count of the number of TER's mentionirg a
topic. It would be even less wise to base decisions about the
language on such & count, since the varying importance and expertise
of submitters of TER's are nowhere accounted for.

Lanquage subsets: 25,

Make declacvation syntax maore uniform: 34,

Improve syntax: 4,

Require blocks tacher than sequence of statements: 18,
Abbreviatfons for keywords: 3, 38,

Imtedded cox .ents: 39, 72,

Alternate character set support: 13, .
Bit string constants: 13, 41, 44, S), %9,

Make ® ® non-significant: 39, 48,

* * {n {dencifiers: 19,

Long identifiers: 19, 37, 75,

NNNRNDIN RS e e
ot an we %= 80 2 we se e es

2: Bases other than 2, 8, 10, and 16A: 18,

2 Significance of * " {in tokens: 7,

3: 3{t handling: 26, 11, 17,

3 Function as dsta: 7,

3: Multi-level structures: 73,

3: Implicit conversion of numeric types (when no loss of procislon):
3 Reference variables: 7, 19, 34,

3 Simula classes: 7,

3: Static allocation of accesa objects: 13,

3: Unsafe pofinters: 14,

3 Strings: 29, 35, 3R, 4S5, %59, A1, 63, 72,

3 Variable declaractions after local program bodies: 4,
3: Statis variables: 84,

3 "s>* has two meanings: 19, 3¢,

Ranges should not have to be contiguous: 28,
Delta is poor keyword: 19,
Expressions {n range constraints(?): 8,

nann>>>—>>>>>>)>nnr~r~n>>>>nnnrA-A

ia,

S TR

0

AABA NS DL LD DD 8dh S i w w i d w1l) W W W W) W W

e 46 ®0 E % B8 Ve b s es B8 Sr P ae &6 S a2 & e e B8 Ge 62 S s 46 46 S8 0% 98 «8 O 44 ¢ 6 4% Fe 05 %4 04 65 S5 oo 44 64 s 4* LE %4 e

nn>>>>>>n:nr-r~r-r-nononn>>>>>>:nnn:urrrrrrrvr‘brrrrrrrnnnnnnn

w
-

w
o

- 17 -

Pixed-point delta should be exact: 27, 28,

Require specification of maximum size of strings: 2,

Store matrices by column: 18,

Types too restrictive: 15,

Allow anonymous types in record fields: 28,

Use structure equivalence for arrays: 38,

Guaranteed cne-step conversion hetween derived types: 34,
Aggregate syntax: 7,

Aggregates: 29, 44,

Arrays: 13,

Bnuncratton types: 7. 3s, 35, 37, 38, S8, 68, 75, 88,
Derived types: 88,

Machine-independent data detinition: 2,

Overloading: 2, 7, 35, 37, 42, 6K},

Precision specification: 11,

Record syntax: 19,

Record variant semantics: 29,

Initialization in declarations: 86,

Strong typing: 2, 3, 19, 16, 18, 26, 29, 31, 46, 48, 58, 52, 54, 58, ¢
variant acrrays in records: 86, .
Arrays with unspecified index range: 8K,

Type constraints: 1, 28, 49,

User-defined types: S5, 17, 26,

Scope for access types: 29,

Subtypes: 87,

Either subtypes or derived types: 19,

Derived types: 29,

Named components in aggregates: 25,

Conditional expressions: 7, 28, 138,

Multiple assignments: 34,

Method of expressing parallelism in expression evaluation: 21,
‘Pree’ operation: 29, A9,

Standard built-ir math library: 19, :

Standard built-in array operations: 16, 19,

Accurate fixed point arithmetic (specification, coercion): 8, 85, 88,
Define mathematicsl properties of user-defined operators: 1,
More control over asllocation: 13, 15,

Qualif'ed expression syntax: 13,

Time should not be floating point: 19, 86,

User type names should be overloadable as conversion functions: 83,
Attribures: 28, 2i, 29,

Expression structure: 19,

Array slicing: 29, 88,

No automatic type convarsion: 14,

Allocators for access types: 1,

Array slicing: 18,

Combined For and While statements: 16,

Compound statements: 7,

Loop faflure exits: 17,

More loop constructs: 13, 16, 27, 87

Block exits: 83,

Exit from named blnck: 18,

Remove mandatory semicolon before end, elrif, etc.: 34,
Allow mixing of "and then® and "ar slse": 28,

e sr vt sa ws se ee

PSR RARBARRBARUVBANRUNILIA ARG AN

% YS S8 66 86 S8 s 40 av 4% %6 ab ov ws €5 e 4o 4 es o8 S0 ee 8 ae 06 b

I)

~)

~
e as s ee es

X
- e e

» ® oD >D
“ * ee ee e

OO
. e

>>>>zr-r-r-nnnn:::u:ur~rr-r-nnmnxnnnrrrrnnn‘y,>>>>znwwnmzm:ﬂrr‘nnn

-g -

Use "do® not “"loop” as keyword: 19,

Allow VRP's as conditions: 34,

Overloading rules too complicated w.r.t. parameters: 86,
Recursion: 28, 21, 22,

Stiuctured ptograuuinq constructs: 2, 5. 19, 13,

Elsif: 18, 1

Exit when: 8. 54, 85,

Bxit: 4,

Punction call syntax: 28, 86,

Reyword parameter-association syntax (:=:, etc.}: 7, 19, 27,
Assert: 3m, 54, 64,

Labels and gotos: 1, 4, 30, 84,

Short circuit conditions: 18, 54, 88,

VRP's: 29,

Punctional arguments: 8, 28, 21, 28, 4@, 74, 85,
Internixed declaracions: 7,

Generalize initi{alization ln type declarations: 3@,

Not recursive/resntrant declsration: 2,

Variable nurber of parameters: 29,

Guaranteed “y-value calls: 84,

Define paraester passing: 18,

Reference passing preferred: 14,

Punctionality should not be compller-veri{fied: 86,
Initialization {n declaracions: 29,

Default parameters: 7, 29, 1315,

Punctions and VRP's: 21, 22,

Parameter modes: 256,

Declarations in blocks: 7,

Default pacameters: 28,

Inftial values in decl-rations: 25,

optionality of block declarations: 1,

Recursion support: 13,

Tasks and Procedures should be merged: §,

VRP's: 26,

Allow representations in private part: 28,

Information hiding/data abstraction {n general: 13, 14, 28, 34,
Plckaqciz 4, 8, 18, 16, 29, a9, 46, 56, S2, 56, 48, 61, A8, 73,
brivate types, parts: 2, 8, .
Separate specificatfona: 1, 2, 13, 19, 38, 47, Sa, %8, 69,
Nested packages: 15,

Scoping hierarchy: 13,

Separate specifications: 18,

Clarification of separate conpilatlon and visibiliey: 1,
Loop index should be valid beyond end of loop: 27,
Restricted {8 poor keyword: 19,

Visibility rules disliked: 13, 46, 49,

Logical scope rules: 16, 18,

Restricted visibility: 4, 22, 23, 5%, 87,

Private types: 87,

Use clause: 25,

Background tasks: 13,

Initiate parameters: 11},

Mutual exclusfon to data access: 22, 23,

Timed-out entry calls: 38, 86, 87, }

S —— i . ¢ 2

9:
9:
9:
):
9:
9:

9:
9:
9:
9:
9:

19:
18:
1a:
10:

11:
11:
12:

12:
12:
12:
13:
13:
13:
13:
13:

13:

13-
13:
13:
13:
14:
14:
14:
14:
14;
14:
14:
14;
14:
14:
Z:
2z

ool - Rolae iRl 2 b b HoloaNoNoleReNel 2 B b B B Nollol B NoloEololeRele R R Nl ol o Ne Xz e o X2 Xa KRR 2

- 19 -

Suspend and resume of tasks: 82,

gasier cyclic scheduling: 88,

Disallow data shared between tasks: 20, 21,

Porbid aborting or changing priocrity of parent tasks: 8, 85,
Interrupt semantics: 13, 25, 82, .

More control over scheduling: 113, 26, 82,

Preemptive priorities: 27,

Rendezvous tooc restrictive: 15,

Static priority: 1},

Tasking: 4, 10, 20, 21, 27, 29, 33, 71, 75, 77, 83, 85, 86, 88,
Task families: 88,

Rendezvous arquments: 29, e,

Tasking too comp.ex: 15, .
Signals and semaphores: 34,

Allowing deferred constants to be set in a separate compilation unit:
Have diffecrent visibility rules for separate compilation: 136,
Separate units should have full upward visibility- 87,
Program structure: l6,

Separate compilation: 1¢, 19, 26, S4, 68, 72, 73, 87
Exception handling: 7, 18, 28, 29, 33, 38, S8, 86,

Exceptions in declarstive parts shcould propagate up: 86,

Type restrictions for generic parameters: 8, 85,

Component names as generic parameters: 29,

Generics: 2@,

Generics: 2, 18, 38, S8, A8, 86, 87, 88,

Generics: 31, A9,)

Overlays: 1, 26,)

Representation of integers as bit flelds: 16,

Records with overlapping tields: 29,

Representation specification of fixed point binary point: 18, 19,
Better Portran interface: 87,

Improve alignment specifications: 113,

Machi.se code inserts clumsy: 15, 41, 47,

Incorporate representations into type definftions: 27,

Record representation: 19, 18, 44, :
Representation specifications: 19, 27, 56, 88,

Machine-code insertions: 27,

unsafe conversion: 88,

Timeout on [/0: 11,

Portran~like Formats: &,

Mixed-mode flles: 82,

A high-level real-time I/0 mechanism: 82,

EOF not exception: 14, €2,

1/0 incomplete: 13,

Operating system assumed too big: 13.

Extend Text_[0: 0,

1/0 as package: 1, 7,

Send_control, Receive control (in Low_level I0}: 1,

Keywords are overloaded: A7, .

Matching keywords (e.5. {f -- endif): 87,

- 20 -

APPENDIX B: Issues Pile

Just as the Topics Index cross references TER issuew wich the
Ada Langquage Reference Manual, the |[ssues flle cross references
concern found in the LIR's with the LRM, .

The lssues file {s organized bv sectior numbe: cf the
freliminary Ada LRM. Under each ssction number are groubed abstracts
of comments relating to that section. The comments are numbered by
section number with a serial letter following. Thus, %2.3.A" is the
first comment on section 2.3.

The relation of comments to sections is at best approximate,
since many issues cross section boundaries. In order, therefore, to
make thc document more useful, cross-references to other sesrtions are

- entered under comments.. Text processing tools can extract these
cross-references and placc them under the sections cross-referenced.

) The cont:nt of an [ssue abstract is intended to creflect the
intent of the comment writer; no evaluation of its substance is
intended. Several comments which make the same general point are
{ndexed vnder one issue abstract; they may nonetheless differ in
detail, Although the abstracts are intended to be informative and
useful apart from the comments, in general it is necessary to read the
comment {tsalf in order to understand the analysis, justifications,
and suggestions contained in it.

The abstracts are generslly self-explanavory. In order co
knop them concise, they are often presented as statements of fact even
though the point may be debatable (e.g. “tasking is inflexible®).
Syntactic terms and reserved words ace capitalized ' (e.g.
Exponentiating operator, Begin). "Presusably® means that the comment
writer felt the manual was incomplete (e.g. "labels are presumably {n
a differeat name space®). An absoclute statement such as "Ada forbids
subscripting of functional values” may ssfely be taken thet the auther
of the comment felt this construct should not be Cforbidden. An
indication of *(?)" after an abstract indicates that the abstractor
feals thar he may not have fully understood the intent of the comment.

Internal Pormat

The file is organized in such a way as to make automatic
processing relatively easy. When formatted ver~ivns of the {ssues
file are produced, a copy is put (n <TNE-Archive> under the nawe
Issues,.Pormatted. In order to allow for the variety af output
devices, the “Formatted” file i{s not paginated. since the LIR log is
annotated with references to the Issues file, it is possible to see
where a particular LIR has been entered and cross-referenced.

Thofc are three kinds of entries: section names, sbstracts,
and references. Section name entries are of the form:

FOTSR

- 2] -
"$* <section number> <section name>.

!ich section of the LRM is represented by its section name as found in
the table of contents, even if no abstracts are found under {t.
Abstracts of comments are of the form:

"%* <section number>.<comment serial letter>
<comment abstract> <cross-references>

Comment serial letters run A-Z then ZA-2Z. Cross-~refsrences are of

the form:
XX" <section number>" ",

References to other documents are of the form "<references>",
where the references are document numbers separated by commas. In
certain categories of documents (notably P2Rs), section or page
numbers within the document are given in parentheses after the
document numbers: these page numbers are usually stripped off before
further processing of references. .

A representative fragment of the internal form of the Issues
file follows:

$ 6.7 Blocks

$ 6.7.A It should be possible to name all blocks, perhaps uniformly
with loops. XXS.A4!
1 LIR.#66, LIR.222

<and of abstract>
The formatted Issuass file contains - ekactly Ehe same
information, but is formatted for human readability. The processed

LIR log found in another section of this report contains
back-references from LIR's to issue entries.

1. INTRODUCTION

1.1 Design Goals

1.1.A The language addresses too many conceptual levels: pragmas and
separate compilation, for example, are support system functions. XX2.7
XX18.08
LIR.584

1.2 Lanquage Summary

1.3 Sources

1.4 Syntax Notation

- 22 -

1.4,A Clarify the mesaning of brackets.
LIR. 489
, 1.4.8 The syntax rules should be numbered for easy, unambiguous reference
LIR.AOS ’ .
1.4,C Nonterminals should be capitalized. This heips distinguish syncact‘; f ‘{
Name from the concept of ‘name’.) o b
LIR.637 . i
1.4.0 Some becter metasyntax for one or moie repetitions (with soparatbfs g) 17
shnuld be used, eg "Name list .' or 'Nau- s «ea" fOor present "Name {, Name} i
LIR.637 S i‘
l1.4.2 Observing the grammatical distinction between "which® (descriptive) g
and "that® (restrictive) would clari‘y manual explanations.) 3
LIR.A38 .)

1.5 Documentation

2. LEXICAL ELEMENTS

2.9.A There shnuld be a complete lexical grammar, separate and distinct f
the phrase structure grammar, in the LRM. i
LIR.R39 :
2.1 Character Set E
2.1,A Commas are preferred to vertical bars in the syntax. XX3.6.2 XX3.7 ?
XX5.5 XX11,.2 , L
LIR. 398 ;
2.1.¢C The Ada character set uses characters reserved for national use’ :
according to ISO 646. *{* in particular should be removed. ki
LIR. 394 i
2.2 Lexical Units and Spacing Conventions %
1
2.2.A The symbol “=>* ghould be replacad by ":=" in agqgregates and 'thcn' g
in case~like statements. XX3.6.2 XX3.7.2 XX5.5 XX9.7 XX11.2 4
LIR. 2485 LIR.313 %
2.3 Identifiers
2.3.A Underscores should be allowed but not he significant.
LYIR. 346
2.3.8 For compatibility with other naming conventions cccos; C?-6

Multfcs), “S* should be a le:iter and terminal " * should be allaowed.
LIR. 482 -

- 23 -

2.4 Numbers

2.4.A Real numbe: literals should not require a decimal point orvt:iillng
or leading zero. :
LIR.#48 LIR. 425

2.4.8 A number’'s form should not affect its type: “23" should be a legal
floating number, and "1.2E6" a legal integer.
LIR.148

2.4.C There is no way to write a Boolean-arréy constant (bitstring) as 2
numeric literal.
LIR, 245 LIR.245

2.4.D Based integers need not he built in. Numrd("163#2A") suffices.
LIR,294

2.4.E ®_" for spacing should be permitted anywhere within a number.
LIR.320

2.5 Character Strings

2.5.A The interchangeability of ® and & as string delimiters causes

unnecessary confusion.
LIR.#84 LIR.104 LIR.217 LIR.493

2.5.8 There should be a distinct convention for character literais, eg
'a', Sa, #a, rather than allowing the length-one string to stand for them.
XX4.4
LIR, 297

2.5.¢C The character ""* does not distinguish opening and closing and is
not Steelman approved. <<...string...>> is suggested. XX2.1
LIR.314

2.5.D What is the syntax of character_literal? XX3.5.1
LIR. 499

2.6 Comments

2.6.A Embedded comments desired.
LIR. 345 LIR. 492 LIR.SA@

2,6.8 Comments should appear at the beginning of lines, terminated by ®--
LIR.193

2.7 Pragmas

2.7.A Pragmss that alter the semantics of programs should be deleted or
{ncorporated as language features, eg Environment, Include. XX8.6 XXB
EVR. 301 (pl15) EVR.002(#215) P2R.822(487) LIR.069 LIR.168 -
LIR.532 .

2.7.8

2.7.C
pragma.
upon by

2.7.0
LIR.036

2.7.2
LIR. 249

2.7.F
LIR.292

2.7.G
LIR. 340

2.7.4
LIR.S584

2.7.1

. LIR.A26
2.7.3

LIR.217

- 24 -

Redundant pragmas should be deleted. Pragmas which never

influence compilation should not be addressed in the LRM.
EVR.A02(#3082) P2R.222(#05)

There should be some indication of the compulsory strength of a
The programmer should be notified whenever a pragma is not acted
the compiler.

EVR.001 (p1S) EVR.205(#3.9)

There should ba a conditional compilation pragma.

There should be a pragma requiring compile-time initialization.

Pragmas should have well-defined scores and syntactic positions.
There should be a sliding scale of space vs. time optimization.

Pragmas should be part of the support system, not the lanquggo.

Pragmas should be alloved static expressions or at least names as

parameters.

The Environment and Suppress pragmas have “"name” parametars, despit

the syntax definition. XX8.6 XX1ll.A

2.8 Resarved Words

2.8.A

LIR.401

‘The word ‘'delta’ should not be reserved: it {s too common a
variable name. XX3.5.5

1, DECLARATIONS AND TYPES

3.0.A

3.8.8

Explicit type parameters should be permitted for any user-defined t

arrays should not be a special case. Type parameter3 should be bound for
individual variables of the type at the point of their allocation (e.g. at
point of declaration for non-access types). .

EVR.#92(#1A3) P2R.A13(#62) P2R.018(8061) P2R. 027 ($85) P2R.O27(4#06)
P2R.938 (#06) P2R.#39(#0S5) P2R.G46(403) LIR.142

Name equivalence should apply to types.

P2R.B12(#a3)

o |
!
%
. i
;
i
- 25 - i
3.n.C PL/1~1ike based variables are dusired. {
LIR.129)
3.8.0 The concept of “"elaborztion® is not fully and clcarly defined. ;
XX7.6 XX9.8
LIR.143 LIR.325 , '
3.e.2 Types should have attributes such as °'Is.Scalar for use in
restrictive assertions in generics. XX12.8 XXA
LIR, 258
3.0.P Pull functional values are desired: varlaﬁlot should be allowed to

have functions as values; functional arguments and values should be allowec
Some errors will be undetectable by the co-pilor, but integration into the
language is safer than machine insertions.

LIR. 338 LIR. 369 LIR.596
" 3.9.C Parameters of types should be explicit; there should ve a dctaulttr |
mechaniss for thems. 1
LIR.142 i
i
3

3.1 Declarations

3.1.A Ada, like Pascal, requires declaration before use. This is
a semantically empty rcstriction on program structure.
P2R.013(%085)

3.1.8 Declarations should stact with a keyword. This makes parsing and
reading easier.
LIR.630

R

3.2 Object Declacrations : . . i

3.2.A There should some way to force static allocation of local g
variables. xX13.9 H
LIR, 326 i

3.2.8 If No Value Error is to be removed, all objects should be required E
to be inftialTzed explicitly or implicitly, eg, integers to Maxint, 2ccess
objects to Null.

LIR.426

3.2.C The semantics of constants should more completely spocitlcd {cf,
private types, constant record conponcnes). Xx3.7,1
LIR. 485

3.2.0 The right hand side of object_initialization should allow an
expression_list,

LIR.64@S)
3.2.k Constants set at load time are needed.

LIR.137

£ L A B e DI

s asanuis i M

- 26

3.3 Type and Subtype Declarations

3.3.A See 3.5.A.
P2R.#39(#23)
3.3.8 The Ada set type is adequate for dit stiing operations, but is not

an acceptable substitute for sets. True Pascal-like sets would be a valuat
afd to readability and conceptusl clarity in complex flow-of-control proble
EVR.905(#13.8) P2R.00Z(401) LIR.#S8

3.3.C FPor implementation of libracy packages, & mechanisms to defeat stror
typing should be provided. This could be provided by the “any* type.
P2R.#36(#11)

3.3.0 It should be pos-ible to define inftialization and finalization
routines for types.
EVR.363(83.3) P2R.$46(802)

3.3.2. Constraints do not appear to be the distinguishing feature of
subtypes. There is some confusion in the definition. Constraints should t
reformulated so that types -an genuinely be composed. Without this, the
"important notions of mciularity 3 la Parnas are difficult to express.
EVR.AA3(#3.1) P2R.G13(#81) P2R.0OII(4O6)

3.3.r Incomplete type declarations are unnecessary since the ldentifiers
thus declared must needs be types in the contexts where they ace used.
LIR.#54

3.3.G6 Type declarations should be able to provide default initial values
for all types.) '
LIR. 164 LIR. 355 LIR. 497

3.3.H It seems that "type t is range 9..18" defines t as & subtype of an

anonymous base type. What is that type? What arithmetic is used for t anc
intermediate expressions of type t expressions? XX3.5.4

LIR, 2R6

3.3.1° Subtypes should be eliminated as defeating s:zrong typing, in favor
of derived types alone.
LIR.312

3.3.3 Convenient and intuitive syntax for sets (arrays of baoleans)
would be very helpful. Pascal sets liked.
LIR. 4060

3.3.K Are incomplete type declarations restricted toc mutually dependent
access types? What can you do with them?
LIR.49% ' :

3.3.L It should be made perfectly clear that a subtype ls compatible wit}
its parent.
LIR. 496

H
e
&
t
¥
'

. . . u-.mm'..umma’»-«}»m,-:.wmm,. B e
) - 27 ‘}‘-_ :] ‘
3.3.M Subtypes are types with the set oE valuc- restricted. It should
also be polslblo to restrict the attributes. XX7.4
LIR.561) i :
3.3.8 The dlttorcnco between 'typi'Tl is niwlintoqcr' and 'iubcypo T2 ig

Integer® appesrs to be only that in certain positions T1 objects must be
explicitly converted. Does this slight difference justify having both
concepts? B - - . :
LIR.6AS

XX3.4
LIR.81S

- 3.3.0 Subtypes should never bo implictly introduced via type derivation e

3.3.p Name equivalence of array typcs'torcei a proliferation of type name
Array types should be subject to ‘structural equivalence, Type spoclficntlc
should be allowod as well as typc namas for formal para-otors. XX3.6 XX4.6
LIR.221

3.4 oerivod Type Definitions

J.4.A The facility for implicit definition by inheritance of operations f
underlying types using the "new” type declaration should be flexible enougt
allow (encourage) alternative definitions of individual operations when the
-default is inappropriate. XX7.4
EVR.302($206) P2R.927(487)

3.4.8 After the declaration "Peet is new Inteqer®, the langquage
automatically derives an unwanted opcra:lon that multiplies twojvalues of ¢
Peet, returning a value of typo Feet.

P2R.213(#0))

3.4.C Derived types should lnhottt-c@nstanc: from their ancestral type.
LIR. 929 ' o
3.4.D Deriving from a private type ihonld presumably be forbidden. XX7.4
LIR. 486 , S .
3.4.82 Subpreqrams declared after derivation are presumably not»lnhoritod;
LIR. 498 : ’ ')
S 3.4.0 Does a type derived fron'an access type share the parint‘

collection? Does {t inherit the length lpocltlcatlon? what a:trtbutol doe
it {nherit? xXXx3.8 xX13.2 :
LIR.S62

3.4.G Inheritance of operations by derived types leads to much confusion.
Automstic inheritance by conversion is superior. Inter alia, ‘it allows for
mixing of types and derived types as approprtntc.» .

LIR. 204)

- 3.5 Scalar Types

it

P N T TRy

- 28 =~
3.5.A See 3.5.5.G.
LIR.113
3.5.8 ‘0red and 'Val are subject to pathologies and are not fully defined.
LIR.116 LIR.#43 :
3.5.C There should be a 'Range attribute: A'Range == A'First..A'lLast, or

perhaps a type name should be able in general to stand for T'Range. XX3.6
xX3.3

LIR.827 . LIR.1S5@ LIR.223 LIR. 238 +IR.636

1.5.0 Pred and Succ should be overloaded functions rather than functional
attributes of types.
LIR. 155

3.5.2 ‘Pred, ‘'Succ, '0Ord, and ‘'Rep (and, eventuellement, ‘Range} should L

allowed for objects as well as types. This would make ancnymous types more
usefal., XXA

LIR.223 . LIR.428

3.5.r . What are 'First and 'Last of empty ranges? and 'Ord ~f ‘Pirst?
LIR,220

3.5.G There ls no way to write an e-pcy range of a type with just one val
LIR. 220

J.5.1 Enumeration Types

3.5.1.A The extent to which overloaded literals’ meaning is determined by
contextual information {s left unclear.
LIR.A74

3.5.1.B Are a and "a” equal enumerals? What is the I/0 form? XX14.3.7
LIR,.362

3.5.1.C Unordered enumerated types are desired. Why should, eq, colors be
otdered? Of course, this would require the facility of using type names tc
represent the whole collection of objects of the type. XX3.6
LIR. 600

3.5.2 Character Types

3.5.3 Boolean Type
3.5.4 Integer Types

3.5.4.A The type ®integer® introduces unfortunate machine dependency.
LIR, P91 LIR.154

3.5.4.8 Integers should be pure ranges (not derived from Integer).
LIR, 383

S RPN

i Aol s

————

- 29 -

3.5.4.C Xntaqci types are derived from one of Short Inicqer. etc.: can a
Short_Integer value be added by standard "+* to an Tnteger value? If yes
say s0; If no, portability suffers. XX4.5 XX6.6
LIR. %09

3.5.4.D0 Can Short_Integers be assigned (converted?) to Integers?
LIR.S@1 .

3.5.4.E Unsigned integers desired. XX13.9
LIR.A13 :

3.5.5 Real Types

3.5.5.A The implemented fixed point delta should be an i{ntegral divisor of
the specified delta. The fixed point range specification should constrain
rather than determine the implemented representation.
EVR.AA2(#202) P2R.A25(883) P2R.A28(4063) 12R.939(#01) P2R.A44(401)
P2R.A44 (902) LIR.58S '

1.5.5.8 Fixed point literals and values shoulu ...¢ be rounded implicitly.
EVR.262(48282)

3.5.5.C It should be possible to specify the range of exponents.
EVR.085(#2.2) P2R.239(#02)

3.5.5.D A semantic model of Ada numerics is needed.
LIR.828 . .

3.5.5.E The delta-type accuracy constraint syntax incorrectly specifies
range constraint as optional. :
LIR.17S LIR.270 LIR. 403 LIR.60%

3.5.5.F Pixed-point arithmetic should support general scaling.
LIR. 232 .

3.5.5.G6 Range constraints are simultaneously too vaque in specifying
endpoints (open vs. closed intervals) and too restrictive in requiring
exact endpoints (hampering development of efficient machine independent coc
LIR.113

3.%5.5.H Ranges shculd be closed, not open,
LIR.316 :

3.8,5.1 Ploating precision should be specified not by digits, but by relat:
delta, which is more accurate and more useful.
LIR.330

3.5.5.0 Define the terms “floating point type® and "fixed point type®.
LIR.502

3.5.5.X Are T'Small etc, defined by the range and accuracy constraints
(one or both?) alone or also by the implementation?
LIR.583

- 38 -

3.5.5.L What are T'Small and T'Large for fixed types?
LIR.S84

3.5.5.M Do not complicate ranges with open vs. closed etc.
LIR, 208 . :

3.6 Array Types

3.6.A The distinction between type mark and discrete range specification
of array bounds makes for unnecessarily complex rules: array(T) should be
equivalent to array(T Range T'Pirst..T'Last). This would aisc be 2 more
convenient notation in many cases. XX3.S ’

P2R.#39(#21) LIR.152 LIR. 476 LIR.593 LIR.612
3.6.8 Ragged arraye are desired.
LIR.336 ,
3.6.C Arrays should be stor2d by rows.
LIR.379
3.6.D The syntax and semantics of multiple~index arrays should be clarifi

i{s array(a,b) entirely equivalent to array(a) of array(b)? In particular,
i{s the type of subarrays? Can the notation A(x,y) be used for arrays of
arrays? Can catenation be avplied to multidimensional arrays interpreted a
(one-dimensional) arrays of srrays? Is 'Length(2) meaningful for arrays of
arcays? Wwhy must all or no index positions be specified by discrete ranges

XX4.]1 XX4.5.3 .
LIR.487 LIR. 596 LIR.513 ‘LIR.567 LIR.61S

3.6.E The integer i in 'Pirst(i) should be required to be static ({f it
is not, what exception does a bad value raise?): the race dyna-ic case can
be handled with a Case statement.

LIR,.54%

3.A.F 1f T1 {s an array of T3's, how do we declare a subtype of T! with
index constraints on T1 (another array type)? Extensive discussion.
Discussion of the interaction of arrays of arrays and private types.
Components of a structured type must be subtypes; a clear set of rules for
coercion ‘rom a type to a subtype must be given. Porbid subtypes of subtyp
Let the nonterminal type_mark denote a subtype: define coercfon rules for |
Disallow index ranges in an array_type_definition. Give the unconstrained
{ntegers and reals type names.

LIR.K1S

3.6.1 Index Range of Arrays

3.6.1.A Arrays should be one-origin by default,
LIR,. 843

- 31 -

3.6.1.B The rule on {ndex ranges of arrays in records seems to exclude
constant-length arrays within records with index range determined by
external nonconstants, eg, Record S: Array(l..x) Bnd, where x is a variable
{not a record field). Bounds determinable at type declaration elaboration
should be allowed.
LIR.508

3.6.2 Agqgregates

3.6.2.A Having to specify values for all components of an aggregate is
both awkward and inefficient.
LIR.008(s83.3) P2R.F46($01) LIR.1A3 LIR,. 261

J.A.2.B Mixed array aggregates with arvay bounds which are not static
result in unnecessary run time {neffliciencies.
OPA. 813

J.6.2.D tnitializing multidimensional non-constant aggregates is
painful in the current syntax.
LIR.134

3.6.2.E Component association syntax should use ":=" rather than "=>*
for consistency. XX2.,2
LIR.135 LIR.313

3.6.2.F The use of simple parentheses to denots aggregates is hard on the
parser and strains the type disambiguation mechanism. XX4.6
LIR.999

3.A.2.G Is 5 | Others a legal component_association?
LIR.509

3.6.2.H The syntax of Chcice should i{ndicate that the expressions on the
right hand side must be static (italicized prefix Static).
LIR.62S

3.6.2.1 The use of "|" {s corfusing. A preferred syntax for agqregates
#ould be, eq9, (1,3,1) for poli:iona). and ((1,3)=>1,({2)=>3) for nancd
component soloction.
LIR. 2085

3.6.2.3 Null aggregates require a superfluous value: (l..8<>dummy).
LIR,. 220 : : '

J.A,3 Strings

3.6.3.A4 Maximum strinq lcnqth should be an independent system attribute
not Inteqger’last,
LIR.117

3.6.3.8 Strings should be of fixed size but variabies length or
heap-allocated. .
LIR.126 LIR.88%

- 32 -

J.6.3,C Ada 'Strings®' are not the same beast as strings in other languages.
Better strings (variable length) are needed: perhaps sccess type with

special lexfcal/syntactic form. :
LIR.177 LIR.26S LIR.36S LIR. 404 LIR. 456

3.6.3.D Better strings are wanted: in particular, strings of dfffecent
(physical) length should be type-compatible.

LIR.38€
3.6.3.8 Null strings shou.id be permitted. XXC
LIR. 456
3.7 Record Types
3.7.A The rules for allowable (dynamic) dependencies amang record
components are too restricrive.
LIR. A48 (s2.1)
3.7.8 Distinction between discriminants constrained statically (at

declaration) vs. dynamically (on infcialization or assignment) causes
confusion,
LIR.BA8B(s2,2)

3.7.C Current semantics of record discriminants interfere with efficient
implementation of parameter pasging.
LIR.488 (3.3}

3.7.D It should not be possible to assign the discriminant of a variant

record without assigning the entire record.
EVR.002(8#201) - P2R.O13(#04) P2R.A15(4#82) P2R. 346 (481}

3.7.8 Union types can appear only as variant record flelds. The general
union t,/pe approach is preferred over variant records. xXx3.3
EVR.0A3(#3.6) P2R.A13($02) P2R.AL1S5(242) P2R. 026 (483} P2R.G48(48])
P2R.P4A(487) LIR.A34

3.7.¢ The same field name should be able to appear {n differert variants
of a record., Representation specifications would need revision. xXX131.4
LIR. 018 LIR.1AS LIR.213

3,7.G. Null records should be forbidden.
LIR. @34

3.7.8 There should be a dummy field name for constant record components
which are never referred to.
LIR. 457

3.7.1 Only one dynamic array should be allowed per éocotd. ang it should

be the last component, as for variants. Requiring explicit access
implementations for the general case makes costs more apparent,
LIR.S12

3.7.1 Constant Record Components and Discriminants

- 33 -

3.7.1.A Eliminate (non-deferred) constant reccrd components.
OPA.817

3.7.1.8 Constants as well as deferred constants should be allowed as
discriminants of records.
LIR.149

3.7.1.C Define “complete ricord assignment® explicitly.
LIR,511 .

3.7.2.D0 Dynamic arrays should cause {mmediate storage overflow if their
maximum size is too great (eg Integer’Last).
LIR.512

3.7.2 Variant Parts

3.7.2.A There should be a way to set a record discriminant, presumably in
the Unsafe_Programming package. XX13.18
LIR.38S

3.7.2.8 Must the discriminant variable be declared in the record?
LIR. 4S8 :

3.7.3 vRocord Aggregates and Discriminant Constraints

3.7.3.A Discriminant constraints and record aggregates are semantically
distinct and should therefore be syntactically distinct as well.
LIR.162 i

3.7.3.8 All deferred constant components should be specifiable through
discriminant constraint spec{fication., %XX3.7.1
LIR.588

3.8 Access Types

3.8.A Initiallization of elecents of ICCOll‘tprI should not be required ¢
the puint of allocation,
EVR.292(#203) P2R.019(#82) OPA.8ES LIR.477

3.8.8 There should be a free operation on access objects.
EVR.963(82.3) EVR.39S(#4.8) LIR.#37 LIR.127 LIR.212
LI4.250 LIR. 408 LIR.566

3.8.C It should be possible for one access type to refer directly to
another access type.
P2R.015(961)

31.8.0 The built-in storage allocation mechanisms ars much too restrictive

and dy not allow user-defined mechanisms. Extensive proposals.
LIR.123 LIR,.8%%

j
g
{
!

R —

3.8.6

LIR.2081

4. NAMES,

-~ 34 -

Tﬁe’fdlii for access constants {and therefore also access In

paramete.s) severely constrain use of access typos, nonetheless, constants
of -access types are not truly read-only. XX5.2:3 XX6.3

LIR.IGI LIR.132 LIR 208 i LIR.216 LIR.538
3 8 r Discrlnlnancl in acccls variablos should be changeable.
“.LIR.855 :
" 3.9.6 The access section is vaque.
: LIR.19#2
3.8.H It should be clear whetter there is a garbage collector. §
LIR, 233 ' : :
3.8.1 PL/1-1ike soparation of declaration and 'allocat!on' of storage
‘areas (s proferred.
LIR zah
3.8.J3 It should be possible to point to static daca.
LIR.337 " LIR,390 LIR.414
3.8.K Conversion to ancestral type of an object of derived access type
can violate strong typing and create dangling reterences. XX3.4
LIR.348
3.8.L There should be provi fon for allocating access-type objects at
compile time when possible.
LIR.AIS .
3.8.M It would be nice {f access types could be efficient for tightly
packed data, using pointers into fields of a word and minimal-length
pointers.
LIR.417 .
3.8.N " __Any variable or Eléld of access type should be initialized to Null
1f it is not explicitly initialized at declaration. XX3.2
EVR.402(#283) P2R.919(8#A2) OPA.0#0S LIR.478
3.f8.0 ‘A reference count scheme shoulo be used for deallocation. (?)
LIR.479
3.8.pP ' Access type .model preferred to traditional pointers.
LIR.1A1 '
3.8.0 Anonymous access types are anparently useless. Shouldn't they

therefore be illeqal (either in the syntax or the sonantlcsl’ XX3.3

VARIABLES, AND EXPRESSTONS

I SO

- 35 -

4.6.A Functions' values cannot be subscripted, sliced, or selected.
LIR.@97 LIR.156

4.1 Names

4.1.A In the case of generic parameters, generic associations, and renanm:
declarations, the syntax is presently incomplete. The syntax formula
*fname.]}designator®” doas not cover the case of a functional attribute such
T'SUCC or T'ORD. XXZ

OPA.818)

4.1.8 The syntax of "name® excludes designators. XX8.5 XX12.1 XX12.2
LIR.136 LIR.225

4.1.C Subprogram calls (retur~ning access types) should be names.
Consider P(a).all := ...
LIR.271

4.1.D It should be made clear that a name cannot be used for more than
one purpose in a scope: variable, type, function, etc.
LIR. 483

4.1.E There are examples of ‘simple names’, but what is the definition?
LIR.514 -

4.1.F Due to limitations concerning use of "designator®, it would not be

possible to use stubs within the subprogram body when overloading an operat
since the designator cannot subsequently appear in the visibility list of
sub-uni® body. XX8.8

LIR.203

4.1.1 Indexed Components

4.1.2 Selected Components

4.1.2.A Dot selector notation can productively be considered a variant
syntax of function calling.
LIR.133

4.1.2.8 Implicit dereferencing is disliked.
LIR. 258 .

4.1.2.C The concept of user-defined type attribute is unnecessary. XXZ
LIR.273 LIR.619

4,1.2.9 Component selection syntax should be uniform with that of function
calling and array indexing (ie parentheses). :
LIR.334 ;

4.1.2.E Must not the parenthesized index expression of an array level
immedistely follow the array identifier and precede the identifier of the
next level? Say so.
LIR.4G@

P

- 36 -

4.1.2.2 The syntax of selected components provides no way to distinquish
among the ovorloadlnqs of a name by signature when type attributes would be
ambiguous., XX3.3 XX6.6
LIR.469 LIR.S1S

4.1.3 Predefined attributes

4.1.3.A The notation for user-G :fined and predotincd actribnt-l should be
the same; dot notation is preferrcd.
LIR.334

" 4.1.3.8 Editorial: idencltiors are not subprograms, but their nsmes.
LIR.491

4.2 Literals

4,2.A Enumeration literals should be quoted in order to dlstlnqulsh them

from variables.
LIR.0259 LIR,.153

4,2.8B Thete should be a Null value for all types, vhich would cause an’
exception to be raised if calculated with. XXl1l.1}
LIR. 343

4.2.C User-defined literals are needed. Curversly, too many asxplicit
conversions are needed (consider private types). XX4.6 XX7.4
LIR.186 :

4.3 Variables

4.3.A Suggests that ‘name’ include '<name> . all', and °'name*® be substiti
for *‘variable’ {n the definition of 'ptlmary', thus eliminating the syntact
term 'variable’.

LIR,272

4.3.8 "Slicing is clumsy: start and length ranges and default endpoint
ranges are desired, ie arr(first_loc SIZE len) and arr(..cutoff).
LIR.338 :

4.3.C .value or .val preferrad over .all.
LIR. 356 : .

4.3,D Clarify the syntax and description of Slice_variable, Name, and
Variable. .
LIR. 455

4.3.E An access variable should denots the object, not the access. A’
special syntax should be used for access assignment.
LIR.480

4.3.P Replace array.all with array(all). (?)

LIR.481

e e+ - - - e o v AENE

- 37 -

4.4 Expressions

4.4.A Regarding an expression as possibly a oﬁo-co-ponont aggregate of f{:
type leads to ambiguities, difficulty of implementation, and opaque code.

XX2.5
LIR.AKT LIR.#8S LIR. 494

4.4.8 Some easy way to perform such operations as incrementation is
desired. The suggestion.is a primary 'self’ or ' ' as a shorthand on the
“right band of an assignment for the left hand side, thus var:=self+l. XX5.:

LIR.261 LI.378

4,5 Operators and Expression Evaluation

4.5.A The precedence rules for user defined operators are the same as thc
for the built-in operators. The lack of implicit semantics for overloaded

operators can lead to programming ecrors.

~ P2R.014a(#81)

4.5.8 The primitive floating point aperations of floor, fraction, and
modulus are missing and cannot correctly be implemented within the language
XXC .
LIR.104

4.5.C Expression evaluation order should be left %o the co-pilor.

LIR.®835 LIR.9O8
4.5.0 The relational operators should be represented by alphabetical

keywords rather than graphics and graphic digraphs. Suggests EQ, NE, LT
ete., Also suggests making all operators the same length. XX2.2
LIR.307

4.5.E The basic b!tsttinq'oporations And, Or, Shift, and Rotate are
lacking. XX3.3
LIR. 342

4.5.F Unary operators should have the highest precedence.
LIR, 357

4.5.G Expressions should have their mathematical meaning, with order of

evaluation left unspecified, except that parentheses should restrict that
order, and a pragma should be provided to cause code to choose the most
accurate evaluation order at runtime.

LIR.438

4.5.H The types of the two operinds of logical, adding, and multiplying
operators should prasumably be the same (but cf. fixed-point multiply).
LIR.516

4.5.1 Undefined sequences of operator characters should be operator
lexemes definable by the user (having some fixed precedence). Consider, ec
4w, XX2.2 XXS.1)

LIR.594 LIR.627

R P SRS

EE T S XY IRE e

- 38 -
4.5.3 Why are In and Not In omitted from the operator (precesdence) table’
Is this to imply that they are not overloadable? XX4.5.2
LIR.217 LIR.605
4.5.K Operators with partial evaluation (cf. And then) are desired: a Img

z- Notza OrElse b; a Default b == {f not null(a) then a else b, XXS5.4.1
IR.19

4.5.L The non-terminals Exponentiating_operator and Logical operator are
never used. XX4.4
LIR.217

4.5.1 Logical Operators

4.5.1.A Precedence rules for "And”® and "Or* should be defined.
EVR.G64 (34) P2R.944(803) LIR.238 LIR.437 LIR.448

4.5.1.8 Can isgical operators have boolean arrays of differing bounds as
operands?: what are the result's bounds? (?)
LIR.517

4.5.2 Relational and Membership Operators

4.5.2.A The definition of any one of the four ordering operations should
automatically define the other three so that A>B 1iff BCA, Ad>eB iff not A<B,
A<=B {ff not B<A.
EVR.002(42084) P2R.238(#07)

4.5.2.8 The {mplicitly defined aggregate equality should be defined in terrw
of the equality of {ts component types,
EVR.002(#205) EVR.007(s2.7) LIR.AD6(pd2) OPA.9283

4.5.2.C If a component of a composite type is of a restricted type
assignment is rot defined for the composite type. If a component of a
compnsite type is of a restricted type, comparison for equality or inequali
is not defined for the composite type (unless equality is defined explicitl
in the package defining the type).
OPA. 004

4.5.2.D0 Presumably, a “corresponding range,.." means one of the same type
as the ficst argument to In. (4-7 line 13)
LIR.5AS

4.5.3 Adding Operators

4.5.3.A Catenation should apply to bitstrings.
LIR. 245 .

4.5.3,8 What {s meant by "the accuracy of the result is the accuracy of
the operand type®?: the type's constraint, or the mathematically determinec
accuracy? What is the accuracy of an operation between two values of the
same type but different accuracy constraint?
LIR.518 LIR.GOS -

L P S

e
SRR R e

PENERE L

- 39 -

4.5.4 Unary Operators

4.5.5 Multiplying Operators ' . i

4.5.5.A The definitions of mod and {nteger division violate tiie 4
mathcnacical property a mod b = (a-b) mod b. The current operation is in i
fact 'the "remainder® operation: both are needed..

EVR.087(s2.5) P2R.025(#82) P2R.838(461) P2R.846($19) LIR. 0610

LIR.879 LIR. 104 LIR.042 LIR.679 LIR.176
LIR.317 1L.IR,358
4.5.5.B Mod and Rem should be functions, not infix operators. ‘ i
LIR.317 : ;
4.5.5.C Mod should be everywhere well-defined. ;
LIR.439 : §
¥
4.5.5.D Prosu-ably fixed-point values of different typ. can be) i
multiplied. XX4.S] o
LIR.S16 -

4.5.5.2 To multiply values of distinct fixed-point types, you apparently
have to convert them, which loses accuracy: qualification of the rcsult shc
be sufficient. XX3.5.5
LIR.195

4.5.6 Exponentiating Operator

4.5.6.A In Integer**x, must x be positive (pcr'l.s.s) or non-negative
! (per C=1)? XXC
LIR.519

4.6 Qualified Expressions

e W 2

4.6.A The notation "type_name (...)" is used both for resclving ambiguit;
and for explicit conversion, which can confuse the meaning of widely
different semantics. Bad interactions with parameter semantics.

LIR.811 LIR.111
4.6,B The syntax can lead to ambiguous expressions. f
" LIR.162 '
4,6.C It should be possible to overload type nancs as conversion

functions. XX6.6

LIR.418
4.6.0 Parenthesis notation is confusing. cf., use of *.". (2?2)

LIR.483 g
4.6.E There should be some way to convert to the underlying type without

knowing its name. This is particulariy useful for private types in their
own modules to reduce ihe effects of a representation change.
LIR.599

-2 s %, Bld 2 i i L " . RPT— - P

- 48 -

4.6.P ~ Why are derived type conversions not allowed on the left-hand side
assignments?

$ 4.6.1 Explicit Type or Subtype Specification

8. 4.6.1.A It {s hard to see when qualification would indeed be needed in tt
Instr_Code(Pix) case--presumably I has some type, which would disambiquate
Pix, Unless perhaps I is an overloaded function of no arguments, cectainly
rather obscure case for an example! Cons{der using the example of the ranc
part of an array declaration.

LIR.S20

4.6.2 Type Conversions

4.8.2.A The semantics of real-integer conversion are left vague.
LIR.10S LIR.521

4.7 Allocators

4.7.A Does New supply additional storage or provide a pointer into a
predefined area set up by the compiler?
PIR.AG4(493)

4.7.8 In present Ada, an allocator must provide initialfzation of

dynamically allocated obiects. Consider the possibility of providing a par

aggregats limited to discriminants (as for constraints).

OPA . 0406 LIR.i63 LIR,.589

4.7.C The user should be able te define his own allocataor, and redefine
the system allocator for his ovn types.
LIR. 35S LIR.02S

4.7.D The Keyword "new” is overuased: for allocation, generic
instantiation, and type derivation. XX3.3 xXx12.2
LIR.025 LIR.S98 .

4.7.8 Storage areas as well as individual objects should be explicitly
allocated at runtime independent of declarations.
LIR.24K :

4,.7.0 It should be possible to allocate without {nitializing.
LIR.477

4.8 Static Expressions

4.8.A The langusge definition should make {t clear that static expressior .

may be used everywhere literals may. Static expressions should be just thc
expressions evaluable at compile or load time. The value of conatants canr
always be determined before the corresponding scope entry. Similarly,

predefined operators, functions, and attributes are not always compile time
evaluable. 3tatic expressions should not be restricted to predefined

operations, functions, and types. The definition of types is always known
during compilation. User defined functions are compile time evaluable unde

BRI+ 5 ot o B S e b S o vt

06000 —————
i ‘ S e " ? W " KSRl O e e e e .

- 41 -

the same circumstances as predefined ones.
EVR.#82(4#147) COM.003

4.8.8 Case (f) should presumably be restrictad to constants initialized
by static expressions and static indices in indexed components.
LIR.S22

4.8.C Despite (d), not all predefined attributes are static.
LIR.217 :

S, STATEMENTS

5.0.B Present Ada forbids go to out of a block but permits exit and retu:

statements. Implementation problems exist when there are tasks lccal to t!
block. ‘

OPA.d8)

5.8.C Sequences of statements should be allowed to have 3 value, the
value of the last expression/statement. XXS.4
LIR.341 '

5.1 Assignment Statements

S.1.A The prohibition against altering discriminants of access vacriables
is a confusing i{rregularity.
LIR.968(82,2)

5.1.C The symbol *=° should be used for assignment.
LIR.315§

5.1.D rhcéc should be an ‘exchange’ operator, ':=:°,
LIR.377

S.1.E There should be multiple assignment, 'a,b:=3': compute all
destinations befors any assignments,
LIR.141 LIR.432

5.1.p It should be possible to coabine a binary operator with assignment

la Algol-68, C), thus x:*=2 doubles x. This is particularly useful with 1«
left~hand sides. xXx4.4
LIR.4K8 LIR.614

S.1.1 Array and Slice Assignments

5.1.1.A Overlapping slice assignment should be permitted, with copy
semantics.
LIR.292 LIR. 257

e e o o

P
i
i
i
1

- 42 -

5.1.1.8 Is assignment between variables of the same multidimensional

array type with indices specified by type marks and with the same number ot
components, always allowed even {f the arrays are of different shape? If
wultidimensional arrays are considered strictly equivalent ta an array of
subarvays, the problem does not arise. XX3.6

LIR.523

S.1.2 Record Assignments

S.1.2.A The current rule allows the discriminant of a record within a cecor
denoted by an access variable to be altered. Is this a loophole?
LIR.218 .

5.2 Subprogram Calls

$.2.A There are too many ways to make a procedure call and define aggreg:
values.
P2R.O1S5(%04)

5.2.8B A subprogram call statement should be explicitly forbidden or

explicitly permitted to call a function or a value returning procedure.
LIR.A21(pA2) '

5.2.1 Actual Parameter Associations

5.2.1.A The indication of pacameter mode on call should be required even
without keyword assocfation.
LIR.2A2

5.2.1.8 Keyword parameter association is liked.
LIR.2A7 : .

s.2.1.c Parameter mode in calls and spoclticu:ions should have similar
syntax. In, etc., preferred for both. .
LIR.329

5.2.1.D Mode should not be distinguished in actual parameter syntax.
LIR.347 K .

5.2.1.E What is the definition of a "qualified variable®*? XX4.6
LIR.S524 ' .

S.2.1.F The order of evaluation of subprogram parameters should be specifie
as undefined to allow optimization and reduce the complications implied by
variety of calling syntaces. B
LIR.214

$5.2.2 Omission of Actual Parameters

5.2.2.A There should be some placeholder argument specifying the default
value and not requiring naming the remaining positional parameters.
LIR.S568

S.

-~ 43 -

7.3 Restrictions on Subprogram Calls

S.

5.

S.

S.

S.

2.3.A The aliasing restriction should be statically defined.

LIR.982

2.3.8 All aliasing should be prohibited.

LIR.1S8&

2.3.C Aliasing via parameter passing shkuuld be allowed.

LIR.368

LIR.158

2.3.0 Aliasing by way of access objects is 1ncvitnb1e and undetoccabla.

It should not be prohibltcd.

LIR.S538

2.3.E How strict is aliasing detection?

LIR,.S581

5.3 Return Statements

S.

S.

5.

5.

S.

S.

4 If Statements

4.A Whar can a type derived from Boolean not function as a condition ir
If statements? XX3.5.3

LIR.830

4.8 Conditionals should be allowed as expressions. XX4.4 XX5.5

LIR. 349 VIR, 598 LIR.635

4.C There shouvld be some way besides Goto to have common actions in
branches of an If: clse Else construct sugqested.

LIR,.434

4.D There should e a simple syntax for multiple End If's: End If * 3?
LIR.434 _

4.1 Short Circuit Conditions

S.

S.

4,1.A *And then" and "cr else” should be allowed in any boolean

expression: current synta¢ within if statements does not even allow groupis
Their precedence should be specified.

with parentheses.
current syntax {s not LALR(1l) unless And then {s made a spacial case in th-

lexical analysis.

P2R.0939(4064)
LIR.199

P2R.O43(#11:

LIR.443

P2R.D46(#18)
LIR.698

LIR.121

Note also that

LIR.192

4.1.8 Since the compiler should feel free to reocrder evaluation, “and
then® and ">r else” are superfluous: they should be the normal

interpret-.
LIR.013S
LIR.274

LIR.BS@

fon of "and" and “or®.

LIR.073

LIR.243

LIR.239

- 14 -

$.4,1.C Although partial evaluation of boolean expressions should be the
rule in conditionals, full evaluation should.bc the rule in expressions.

LIR.243

5.4.1.D Short-clircuit conditions should be named *"and” and "or®; boolean
operations should be called “&" and “I*, XX4.5.1
LIR. 205

5.5 Case Statements

5.5.A Ada requires non-manifest expressions as selectors. This restricts
the order of testing which degrades optimization,
P2R.O39(#11) P2R.P46(417)

5.5.8 Does the keyword "of" add anything useful to the form of this
statement?
P2R.A19(407) P2R.839(822)

5.5.C Change the syntax. Suggests Pick...When => ,...
LIR.389

5.4 Loop Statements

S.6.A An Untll condition Loop statement should be added to the language.
P2R.019(#06) LIR.ORS

5.6.B A variable increment should be specifi able on a Loop.
P2R.019(#89) LIR.B12 LIR.044 :

5.6.C While is unrecessary: Exit suffices.
P2R.A33(801) LIR, 251 LIR.275

5.6.D It should be possible to define and use loop i{ndices cutside the

loop: currently, their scope i{s unclear and seemiagly not very useful.
P2R.835:445) LIR.A44

5.6.E Loop labels should not look like Goto labels; nor should their
scope extend outside the loop body. What is the identifier In "end loop
{identifieri*?

LIR.151 LIR.222 . LIR.S39 LIR.682 LIR.6406
LIR.616 LIR.632 .

5.6.F For loop over sets desired. XX3.3
LIR, 400

5.6.6G - Loop parameters should be accessible to (outside??) exception
handlers.
LIR,433

S.6.H Loop indices should require explicit declaration as such.
LYIk.467

- 45 -

S.6,1 Loop {ndices should be of type Integer {f not otherwise known from
context, on analogy with array bounds, as should other ranges. XX3.5 XX3.¢
LIR.S587 i

5.6,7 User-defined iterators are needed for abstraction: this may imply ¢
need for functional arguments (one LIR says yes, the other no). XX3.¢
LIR.596 LIR.634

5.6.K More loop types are wanted: Until (While Not) and loop test at the
bottom.
LIR.185

5.h.L Loops should Le generalized to allow actions (®adjustments® or

"epiloques®) after the exit. Loop labels would no longer be necessary.
Perhaps there should also be even more complex loop constructs. Details.
LIR.194 : . :

S.6.4 If the loop index is not used, it should not have to be written.
LIR.224

5.7 Exit Statements

S.7.A Add Exit Unless to Exit when.

P2R.34A (#15) . '
" 5.7.8 There should be a multiple-level exit with an argument of the numbe

of levels,
LIR.145

5.7.C The Exit statement is unnecessary; Goto suffices.
LIR.242

$.7.D Either remove When or generalize it to Raise, Return, and Goto.
LIR,382

5.7.E Allow When after several ather types of statements. (Retracted)
LIR.#24)

S.7.F Keep Exit, but remove When.
LIR.440 _

5.7.G The loop label should be required in an Exit; thus, {f the loop is
Jnonymous, {t is patent that premature exit cannot occur.
LIR.6D2 LIR.632

5.8 Goto Statements

5.8.A Ada allows transfer of control between THEN and ELSE clauses in an
statement and alternative sequence of the case statement.
P2R.B35(#02) P2R.037(302)

5.8.8 The scope of a label {s too small, asymmetric, and irregular.
LIR.112 LIR.122 LIR.548 LIR.S569 . LIR.617

S e 3 Sk s -

.-
- S

- 46 ~
5.8.C Label and Goto syntax and semantics are unclear.
LIR.272
5.8.D Ccnventional label syntax (“"Label:®) is preferred.
LIR.2S58 .
5.8.8 Replace Goto with a block Exit statement.
LIR.324
5.8.P Labels are presumably in a name sjace entirely distinct from
declared identifiers.
LIR.S49
5.8.G. Labels should be declared as in Pascal, thus clarifying their scops
LIR.617

5.9 Assert Statement

$.9.A Assertions cannot be stated to hold over regions of programs; nor ¢
they be quantified; nor can they refer to the history of variables.

LIR.233

5.9.8 The action to be taken when assertions are not satisfied should be

controllable,

LIR.233
5.9.C The assert_srror exception {s unnecessacy and dangerous, since it

allows violations of assertions tu influence program execution.

LIR.O71
5.9.D The assert statement s uhnecossary and ineffictent,
LIR, 244

5.9.8
LIR. 209

The current simple agsertion facility suffices.

6, DECLARATIVE PARTS, SUBPROGRAMS, AND BLOCKS

Declarative Parts

Top~down oréanlzation of declarations is precluded by the linear
XX8.4

[

6.1.A
elaboration of constituents of a declarative part.

LIR. 447

6.1.8 Enforced divorce of declarations and representations i3 unnatural
and error-prone; i{f it is to remain, representations should. follow the bed:

not precede {t., Bodies might also be allowed to be intermixed with

declarations. XX6.1
LIR.525% LIR.63]

%
%
1
#
4
%
i
i
b

o e,

4t U, LY o L VMM AL 15 2 Vo o2 18t e s

- 47 -

6.1.C There is a syntactic ambiguity whereby module declaration and

. module specification can be confuted.
LIR.54F LIR.624
6.1.D0 The grammar should express the (context-free) restrictions

on declarative parts by introducing variants., XX6.4 XX7.1 XX7.3 XX7.4 XX9.
LIR.624

6.1.E Declarations and bodies should be everywhere 1neotsporslbio;
LIR.624
6.1.t‘ Different kinds of Jeclarations are too non-uniform in syntax: in ¢

the name precedes, i{n otherx it follows, a terminal. LIR prefers consister
use of name:declaration.
LIR.62S

ﬁ.f Subprogram Declarations

6.2.A There should be some way to tell the compiler that a aubprogram nes
not be compiled to be reentrant or recursively callable. :
LIR.A32 LIR.A39 EVR.205(#11.0)

6.2.8 LRM does not specify case of charactur-ﬁtrinq designators, o;g. ‘me
LIR.®34 ’ ‘

6.2.C The supposed inefficlency of allowing all procedures to be recursit

or reentrantly callable i{s a myth. The present design should be retained.
LIR.166 . :

6§.2.D Comma should be allowed to separate pa—anceers in proccdurs
declarations as ln calls,
‘LIR.322

6.2.E The syntax of parameter declaration should enforce tho prohibition
on defaults for Out and In Out Parametors.
LIR.541

6.2,PF There should be functional arguments. XX3.4
LIR,178 LIR.A23

f.2.G Operators should have a nonterminal in order to tighten up the

defirition of designator. The quotes around them appear unnecessary.
LIR.624 LIR.A27

6.3 FPormal Parameters

6.3.A The semantics of parameter passing should be better defired.

Both refecence and copy semantics are desired.

EVR.0081 (p07) EVR.002(#102) EVR.003(#1.1) EVR.BC4($2) EVR.205(%#8.8)
EVR.006 (s4.a) EVR.307(s82.3) P2R.B14(482) P2R.A15(#05) P2R.B22(403)
P2R. 028 (404) P2R.0328(#01) P2R.E3A(E11) P2R.238(405) P2R.G43(#01)
DCR. 2@} LIR.$39

[

ik

- 48 -

6.3.B Named parameters complicate the lanquags andvcontribute little.

Defaulted parameters appear dangerous: accidental omission of one or more. -

parameters is a source of hard to find errors.
EVR.993($3.5) EVR.AA4(8#6) EVR.B9S(#6. l) P2R.O43(#689) DCR.982

6.3.C Are the rules for type checking of actual against formal paranotcte i 'I"*

well defined? 1Is 'tteated just as in assignment® sufficient?
EVR.304 (#1) .

6.3.D The semantics of parameter binding siiould be defined. The dotlnicl':

should be by copy only.
LIR.917(pal) DCR. @@l

6.3,.E Allow certain formal and actual names to be marked as volatxlel
depending on their behavior. Allow the translator to bind all
non-volatile ob‘ects by reference if it can thereby gain .ftlclency.
LIR.A17(p@3)

6.3.° Parameter passing semantics should be more precicely defined

in terms of copying; reference passing would be considered an 1mp1¢moncatici

that compilers may use when it does nut affect the meaning of the progranm.
1f this optimization is to be of reasonable applicability, it may be :
necessary to mark variables shared by several tasks.

_ OPA.B11 DCR. @41

6.3.G We do not need both keyword and positional parameters.
P2R.312(#05) DCR. 292 LIR.887

6.3.H There is sowe redundancy is giving three parameter binding classes:
IN, OUT, IN-QUT.) .
P2R,.#33(#82)

6.3.1 Programs should be able to parse their own parameter lists.
LIR, 130

6.3.3J LIR considers the semantics of In parameters vagus.
LIR.977 .

6.3.K All Out parameters should be strictly undotlnc& after unhandled
exceptions.
LIR.#2A

6.3.L Default parameters have poorly~defined .valuation time: the default
value should be calculated at the point of call.
"LIR.143

6.3.M Default values for in out and ot paranbtetl should be alloved:

for in out, the default would be used for in and ignored on out; for out '
it would be the out value If no other value were given,
LIR,.164

-~ 49 -

6.3.0 The current copy semantics are good. The LRM should specify the
conditions under which reference implementation will be ‘safe’.
LIR. 256
! 6.3.P There should be ways to force reference and copy binding.
LIR. 4S8 : : P
6.3.0 Can a formal Out parameter be read after being assigned to? |
LIR,.S542 i
f.3.R Constraints on actuals should not constrain formals: they should be i
rhecked on return. XxX3.3 ’ 3
LIR.543 :
f
6.3.8 Reference binding f{s not compatible with portability across b
architectures. . ‘
LIR.161
6,3.T The subprogram specification should be able to enforce keyword or
positional form of call for uniformity's sake.
LIR.194

f.4 Subprogram Bodies

6.4.A What are “"identical subprugram specifications® in this context?
LIR.934 .

6.4.8 Semantics of “Inline® are vague and inefficient, and hard to implen
for recursive or separate subprograms; a macro preprocessor {s preferred.
LIR. 845

6.4.C Can recursive programs te Inline?

LIR.544 :
6.4.D What is the rule of equivalence between subprogram bodies and

declarations? Presumably, it does not distinguish X:T and X:in T, but does
distinguish X,¥: T := expr and X: T := expr; Y: T := expr (consider side
effects), Presumably types are differentiated by meaning, not by name.
(Signature issue)

LIR.217 LIR.545 ;
6.4.D The note akout Inline appears to preclude inline expansion when it o

not requested: compilers might well want to expand, eg, subprograms called E

once,)

LIR.665 | 8

; 3

6.4.E Is there any difference between the elaboration and the executisn ¢ %f ‘

a program? o i3

LIR.645 1 3
f.4.P The conformity among unit bodies could be emphasized through a come

syntactic category. XX6.7 XX7.1

LIR.624

-.50 -

6.5 Punction Subprograms

6,5.A The user should be able to designate the difference bstween those
side effects (i.e., references and assignments to non-local variables) of
functions for which the {mplementation preserve the order and number of
occurrences, and those for which the implementation need not.

EVR.901 (pa8) EVR.082(#1085) EVR.006(s4.d) POS.803(pol) P2R.E37(864)
P2R.A39(#10) LIR.@05(pdl)

6.5.8 It Is not necessary to restrict calls to value returning ptocodutes
to assignment statements, initializations, and procedure calls.
EVR.003(#1.5) EVR.@384(%7) EVR.006 (84.c) EVR.067(82.8) P2R.026(#08)
LIR.A05 (pd6) LIR.141 :

6.5.C Punctions should bovallowed to perform storage management.
EVR.A#M2(#19%) LIR.29S5(pA4) LIR.OG6(pA4)

f.5.D The present definition of functions and value returning procedures
does not appear simple to explain or to use,
OPA . 088

6.5.E Functions and VRP's should not be distinguished.
LIR,.33S LIR.27S

6.5.F No_value_error should be raised in the caller's environment.
LIR. @88

6.5.G The distinction between VRP's and functions {s good.
LIR. 253

6.5.H VRP's should be allowed Out parameters,
LIR. 344

f.S5.T Functions with side effects are useful. Perhaps beat eliminate
VRP's and add a side-effects pragma for functions. .
LIR.431

6.5.3 No value error for function values should be checked statically anc
thus not be an exception.
LIR.546

6.5.X VR?'s should be allowed anywhere functions are allowed; they shoulc
also be allowed Out parameters (consider file var‘ables).
LIR.141

6.6 Overloading of Subprograms

6.6.A Overloas” resolution should be simplified: parameter names should nc
be used in overload resolution; type and order of unnamed actual parameters
should be used. The meaning of "ambigquous” calls on overload definitions
should be clearly defined by the language, not implementations.

EVR.781 (pa8) EVK.002(#168) EVR.003/%#1.6) EVR.807(s2.1) P2R.B37(#05)
P2R. 243 (R0T) DCR. 302 LIR.131 LIR.@76 LIR.887

- 51 -

A.A.8 When potentially conflicting declarations appear in the same local
scope they should be illegal at the point of declaration. .
EVR.862(#198) DCR.0G2

6.6.D It i{s unreasonable when outputting a single character to require
Put(String ("A®")). The TEXT !0 overloaded procedure Put at present forces
this, =) .

LIR.021(p03)

6.6.8 There should be no overloading on result type.
LIR.277 . ‘

6.h. P Are defaults partvof the subprogram signature?
LIR,547 _ '

6.6.G he overloading resolution rules should be clarified.
LIR.582

f.6.H Accidental overloading <2eems likely (especially with use of

libraries); this will weaken type safety. Is prevention to be left to
utilities?

LIR,131 - LIN.S562
6.6.1 Entries should be overloadable. XX9.5
LIR.S87
R.6.J There should be overloading resolution changes so that there is alv

a simple and unambiguous way of calling a given (especially local) procedur
LIR.A76

6.6.K New overloadings can change the meaning of programs. Ovarloaded
function calls are hard to read. Accidental redeclaration or overloading :
too easy. Therefore, overloading should be resolved by Type and Order onl:
non-default parameters; only defaultable parameters should be passable by r
redeclarations must be restricted; literals and parameterless functions mus
almost always be qualified; and other functions may not be overloaded on re
type. XX6.3
LIR.132

6.6.1 Overloading of Operators

'6.6.1.A When one overloads =, the operator /= is automatically

_overloaded. Does any similar relation exist between < and >= or > and <=»?
P2R.346(8#22) LIR, 269 h

6.6.1.B The properties oxpécted of functions overloading built-in operators
should be defined by the language (eg, < returns boolean; + is commutative’
LIR.114 LIR.269

6.6.1.C Assigament aﬁould be overloadable. éonsidor ®"receive” as a
parameter mode. XXS.1
EVR.063(#3.2) - LIR.9#6(pd2) LIR.334 LIR.586

s

- 52 =

f.6.1.D0 It may be desirably to provide not-predefined ovorloadiblc
built-in operators, using symbols such as ++, &, //.
LIR. 269

6.6.1.E What exactly are the overloadable operators? (In?) XX4.5.2
LIR.217) '

6,7 Blocks

6.7.A " It should be possible to name all blocks, perhaps uniformly with
loops. XXS.6

. LIR.A66 LIR,222

6.7.8 Declare...begin...end is too verbose: abconclsot form is preferred.
LIR.339

6.7.¢C Blocks should be allowed visibility clauses. xx8.3
LIR.484

v

. MODULES

7.0.A When are package bodies elaborated?

LIR.895)
7.8.8 Packages with mutually dependent {nitializations have poorly define
semantics,
LIR.396
7.4.C Packages, subprograms, and tasks should be made more similar:

Initiate should have the syntax of subprogram call; the visible part of a
task should allow variable and module declarations; it should be possible ¢
Initiate packages; subprogram and module should have the same sSyntax (the
formal_part should occur at the end of the visible part); vislbility shoulc

be specifiable for subprograms. XX6.8 XX9.0

. LIR.279
7.8.C The military standard *module® differs from the Ada module:
military standard modules are compilation units.
LIR.323
~7.8.D A package specification should be able to be associated with more

than one body, with a choice at link tiaie. XX10.90
LIR. 411

7.1 Module Structure

7.1.A Data blocking in meaningful groups and specification of data blocks
on i{mport and export lists should be allowed.
P2R.835(#406)

- -3 -

7.1.8 The semicalons in the syntax oE nodule decl and modulc lpoc are

inconsistent with their :ubptoqran analoquos.
LIR.4S1 _ S

7.1.C There thould always be a -odulo body. sven it only 'null'- this
simplifies linker and library. -anago-cne. !
LIR.3148 ‘ o o

. 7.1.D What are the scnantlcs ot packaqod data in the presence of
reentrancy? 3 . .)) .
LIR.469

7.1.8 Module specifications should not be dlffcrcn:!atcd as Package and

Task-~this distinction should be made only in the body. Procedures and ent
should not be differentiated in the specification part: the linker can take
care of any senarate. conpillcion problenms.

LIR.187 - LIR.188

7.2 Module Spacifications

7.2.A Specifications and pfoqial shouid not be separable: a textual inse:

mechanism should be used for co-lon declarations.
LIR.247

7,3 Module Bodies

7.3.A Direct nesting of modules confuses visibility badly with no increa:

in functionality.
LIR.#68 LIR.198 - !

7.4 Private Type Declarations

7.4.A The {nability to pataﬁototlz- private types for defining constraint
causes problems with type conposttlon. XX3.8
LIR.#08(s3.9, LIR.142

7.4.8 Generics are not an adoquatn way of dotinlnq constrainablu private
types, because each instantiation.gives & new tyre.)
LIR.398(s3.2) .

7.4.C Restrictions on oporatioﬁa available should applybto private type.
expressions within the visiblo part in which the type Is dotinod.
LIR.0834

7.4.D Package specification do not need explicit “private parts' the’
declaration "type x is private® suffices; all else should be in the bcdy.
LIR.236 LIR.5813 .

7.4.E Can literzls of restricted type be written usirg the gunalified
expression notation outside their modules? Presunnbly not.
LIR 237 .

o bt i s

- 54 -

7.4.7 Some easier way of inheriting operations for restricted types {s
desired, eg, 'type t f{sa... inheriting (®"<",%=",">")*,
LIR. 268 ’ .
7.4.G Objects of restricted private type should be required ta be ‘i\
initialized fnside their type definitions.-
LIR. 384

7.5 An Illustrative Table Management Package

8. VISIBILITY RULES

8.1 Scope of Declarations

8.1.A The visibility rules should be simplified. There should be uniforr
visibility rules regardless of whether a definition is built-in, predefinec
or user-defined. Use and Restricted should not treat built-fn and user-
defined definitions differently.

EVR.P02($214) EVR.063(#3.7) EVR.B05(#12.8) P2R.2L4(#63) P2R.826(#13)
F2R.237(401) P2R.338($#9d8) P2R.0A43(#06)

8.1.8 There should be partial {mport for management control, perspicacity
and improved optimization,)
EVR.AG3($#2.4) EVR.284(#)) P2R.0225(#05) P2R.A27 (4681} P2R.332(#61)
P2R. D36 (#04) LIR.249 LIR.1238 LIR.259 LIR.S78 .

8.1.C - There should be a partial export of record field names; this would
allow information hiding in the Parnas senge. Curreatly, such hiding ix
nearly impossible.

EVR.283($#2.5) P2R.0A36(H64)

8.1.p There should be import and export of variables as read-only.
EVR.A03($#2.6) 'P2R.@32(#82) P2R.036(#85) P2R.839(812) LIR.838
LIR.234

8.1,E The scope rules of the language should be modified to closed scope
instead of open scope. This would support maintainability.
P2R.O36($02) LIR.2%6

8.1.p There should be partial export in general.
LIR.938. LIR.138

8.1.G The scope of Accept formal parameters is omitted: it presumably
extends from the declaration to the end of the Accept.
LIR,. 288

8.1.H4 The visibility mechanism as a whole contributes maore to writabiliecy
than readability, contradicting the design goal stated in 1.i.
LIR.570

e Ren s e 1o

- 55 -

8.1.1 The terminology used in describing scope is confusing. 'In particular
*definitions® should not have “scopes®, ®declarations® should. Visibility ru:
should be based on simple principles, listed in the LIR.

LIR.198

8.2 Visibility of ldentifiers

8.2.A XX4.1 XXS5.6 XXS5.8
LIR.600
8.2.8 The note on redeclaration {s apparently extraneous: an inner

declaration of an object higes an outer declaration of a homonymous function
regardless of types. . The restriction on enumeration variables is also

questionable.
LIR.SS@
8.2.¢C It i{s not clear what i{s visible where. What is the relation
between scope and visibiiity? Is an enumeral of anonymous type defined in a
record declared in a block visible in the body of the block?
LIR.S51
8.2.D0 The restrictions on redeclaration may be good stylo,'but should not bs

part of the language. These restrictions will also slow the cuvep:ler.
LIR.640

8.2.2 Does the restriction on redeclaration apply to the visible part of 2
module specification, the private part, and its hody's outermost declarative
part considered as one declaration list?

LIR.217

8.3 Restricted Program Units

8.3.a Make Restricted mandatory before a compilation unit.
LIR.623 . S
8.3.8 The keyword "restricted” i{s used, counterintuit.vely, to specify what
is visible, not what is restricted.
LIR. 0241 LIR.484
f.3.C Clarify what unit names may appear in a visibility list.
LIR.281 LIR.S52
8.3.D0 Use often forces inclusion in the Restricted list, The functions

of Restricted and Use should be reorgarized to recognize that most items in
Use clauses have to be imported.
LIR.303 LIR.446

8.3.E Non-enclosing sub-programs (eqg library units) should be allowed in
visibility lists. Xxl9
LIR.435

- §6 -
8.3.F Input_Output seems to appear in a vl;ib'lity list where it is not
visible, 1Is This because it is a 'library*'? xx1¢.1
LIP.556 '
8.3.6 Ilpoétltlons can be hidden deep within code. There should be some
control over this.
LIR.570
8.3.H The importation and visibility restriction functions of the

restricted list should be separated. The first name restricts scope; all
the others enlarge it. xX172.2
LIR.128. LIR. 243 LIR.A64 LIR.611 LIR.631

8.4 Use Clauses

8.4.A It should be possible for a use clause to refer to a module declared
in the same declaration part. (Currently the use clause must come first and
there are no forward references.)

P2R.#39(#24) LIR.219 LIR.2S2

8.4.B Anv unambiquous reference to identifiers should be permitted, as in
PL/I; the Use clause would then be unnecessary.
LIR.229

8.4.C It should be possible to mix Use clauses sith declarations freely.
LIR.219" LIR.2%2

8.4.D The Use clause shculd be deleted as dotrinen:al to rnadability- an
{mproved Rename would be a partial replacement. XX8.S
LIR. 345

8.4.8 tdontifi-zs rendered ambiguous becauae of the Use clause should be
invisible in the scope of the invisibility,
LIR.552

8.5 Renaming

8.5.A "Rename™ complicates verification and aliaslnq analysis.
LIR.159

8.5.8 Rename should be a statement, not part of a declarative part. XX5.8
LIR.3082

8.6 Predefined Environment

8.A.A The Environment pragma greatly complicates visibility. Remove it
or at least clarify its effect.
LIR.454

- 57 -

“9.8.A Tasks intended as parallel threads of control (“"processes”) and
tasks serving to synchronize access to shared data objects ("monitars®”) are
logically distinct (with different implementation strategies as we'!l), so
the determination cannot be left to the translator. There are also
difficulties with termination, sptimizaticn, and recognition with the
interface task approach.

LIR.B09 LIR.@61

9.9.8 A task defining a class of sharable objects should be considered

as a data type, So as to permit named instances of such objects to be declare
to be included as components of other data objects and to be passed as
parameters; neither task families nor generics are adequate for this purpose.
LIR.@09(s3.1) :

9.a4.C Capabilities for specifying the low~level implementation of

synchronization disciplines should be provided without forting the user to
abandon the basic tasking framework.
LIR.899(s3.2)

9.4.D Allowing unrestricted access to (shared) global variables is not
only unreliable and/or inefficient, but also leaves the semantics of basic
operations (e.g. assignment) undefined in the presence of concurrent executio
LIR.099(s3.4) :

9.a4.E The absence of anonymous tasks, tasks as generic parameters and

operations applicable to all tasks (e.g. suspend, reschedule, etc) Seems to
limit capabilities,
LIR.709(s4.18)

9.a4,.F There should be a way to name task invocations and to control them.
EVR.a81 (pB9) EVR.961(pll) EVR.302(8#1061) EVR.243(#1.2) EVR.265(#1.4)
EVR.0@7(82.6) P2R.A13(#86) P2R...4(489) P2R.0P18(403) P2R.018(4e8)
P2R.318(489) P2R.A27(#82) P2R.936(302) P2R. 230 (#04) P2R.038(#93)
P2R. 946 (909) P2R.946(#18) LIR,124

9.0.G It should be possible to achieve efficient and safe sharing of

variables, Current mechanisms ave either inefficient or unsafe. Perhaps the
should be syntactic brackets of critical regions.

EVR.261 (pa9) EVR.081(pl2) BEVR.002(#106) EVK.003(#1.4) EVR.085(#1.2)
EVR.046 (s4.0) P2R.POG6(#03) P2R.O12(4#82) P2R. 314 (#99) P2R.O19(#01)
P2R.B19(#13) P2R.322(#04) P2R.E28($05) P2R.033(#483) P2R.A36(#A1)
P2R.039($14) P2R.943(#82) P2R.P43(#03) P2R.O46(#14) LIR.147

LIR.453

9.6.8 Test and set and spin-lock, or equivalent functions, are desired.

EVR.002(#106) EVR.A06(s4.2) P2R.0OA4(#D]) P2R.318(#83) - P2R.A18(4065)
P2R.822(382) P2R.825(#04) P2R.827(404) P2R.@36(#83) P2R.G46(#12)
P2R.O46(#13) OPA.297 LIR.147

9.0.1 It should be possible for the user to write and use his own scheduler

EVR.007(s1.2) P2R.303(#081) P2R.ILB(#82) P2R.018(#086) P2R. 025 (484)
P2R.B27(804) P2R.03A(843) P2R.835(#081) LIR.157

ey

- 58 - L

9.0.J It is not possible to define - full pledged event abstraction that ' “i
can guard a select.) ok
P2R.@B18(404) : . . j
9.0.K It should be possible to handle interrupts efficiently. The interrup f

information channel is now connected to a task entry. What is required is S
execution of interrupt handling not under scheduler control.

EVR.801 (pl2) EVR.A03($#2.2) EVR.086(s4.b) EVR.007(sl.2) P2R.JG1(#81)
P2R. 293 (#01) P2R.215(#A9) P2R.A17(#02) P2R.O17(863) P2R.B17(404)
P2R.B36 (#29) P2R.939(#18) POS.001 :

st amae T

9.8.L The interrupt interface is an information channel; what is needed
18 access to the fact of the interrupt as a control event.
EVR.281 (pl12) LIR.#21(p#6) POS.@01 LIR.860

9.0.M There is difficulty in linking a family of task activationas with a

set of interrupts. It should be possible to attach the entity point of a
family of tasks onto an arbitrary set of interrupt addresses.

e BRSNS g At At bt e

P2R.339(#18)
9.8.N The capability of passing parameters to tasks at activation time
should be provided; passing them via entry/accept is subject to waiting.
EVR.ABS (#1.8) H
/
9.4.0 There are significant problems with dynamic tasking on distributed ;
system architectures. i
POS.002 i
9.8.P There {3 no way of guaranteeing indivisible operations. :
LIR. 268 ' ;
9.8.Q0 - All intertask variable access should be forbidden; communication ' f .

should be accomplished with entry and function calls. This simplifies
semantics and extends to distributed architectures.

LIR, 254
$.8.R Tasking should be more controllable: specification of preemptivity
and resumptivity,
LIR.248
9.8.8 Task variables are needed to avoid a problem with the visibility of
the index type in task families. ' , .
LIR.282 ‘
9.4.7 On distributed architectures, it should be possible to specify the :
subsystem on which to run a particular task (as part of Initiate?). .
LIR.283 : :
9.0.U Suspend and resume are desired.

LIR.354

S AN S A

- 59 -

9.8.V To avoid buffer tasks, theéo should be a predefined parameterized
type Queue, XX9.12 .
LIR.373 '

9.0.W Too many buffer tasks are seen as required. The proposed solution

is a mechanism to delegate the coapletion of an ongoing rendezvous from one
task to another, allowing it to be completed in the second task and freeing
the first task. Discussion.

LIR.406

9.8.% If task families are to substitute for task variables, there should
be some way of finding how many members of the family are active, and some
way to get the index of an inactive one.

LIR.487

9.8.Y Some concept of channels is necessary to allow confiquration of
communication lines among tasks defined in a library at system generation,
Otherwise, either the software must be rewritten for each configuration, or
installation-dependent communications tasks must be defined.

LIR.59¢

9.8.2 Too many buffer tasks are required. There should be a variety of
entry (with In parameters only) which does not wait for completion of the
rendezvous, and queues entry calls.

LIR.S591 LIR.618

9.0.2ZA Task variables are needed so that a ~aerver task can reply to user
tasks which are not members of the same task family.
LIR.S592

9.9.28 Although -the Rationale emphasizes the distinctlon. the LRM confutes
tasks and threads of control. There should not be such ambiguities. XX11.5
LIR.626

9.0.2C There should be a unique runtime key {or task- activaiions, since ther

is no way to guarantee such with current language facilities.
LIR,124

9.0.2D Low-level synchronization mechanisms should be provided. Channels

should be primary, not rendezvous.
LIR.197

9.1 Task Declarutions and Tésk Bodies

9.1.A Sereral problems are raised by procedures in the visible part of a
task:
1) When initiating a task a procedure call can only be achieved once the
declarations - © the corresponding task are elaborated,

2) when a tar erminates (normally or abnormally) there may still be ongoing

procedure cal.._.

3) The interaction of procedures and accept statements {s complex.

4) Without some precautions procedures permit access to locals of a task
and raise {ssues similar to those of shared variables. XX9.4

OPA.0@20

S e ¢ s s,

- 6a -

2.9.2 Task Hisrarchy : P

9.2.A - . Tasks should not be nested within procedures or functions; tacks
should only be nested within other tasks. :
!VR 0'5('1 5)

" 9.3 ‘Task Initiation

159;3,A“' If a procedure in the visible part of a ta2s: is called, it may be-
able to access variables whose declarations have not yet been elaborated.

The semantics of the initiate statement are unclear: what assumptions can be

made about the state of an initiated task?

LIR.G31 OPA.B19
.9.3.8 Initiate should be allowed parameters.
" LIR.278 LIR.374
§ 3.¢C It would often be useful to have talks initialized at elaboration
. {eq semaphores),
LIR. 279
9.3.D More pracise definition of task initiation i{s needed: two tasks

cannot be made active simultaneously, eg, in the presence of intrerdependent
declaration elaborations. .
LIR.572

9.4 Normal Termination of Tasks

!
9.4.A There i3 no facility for synchronous termination of ambedded tasks
_(particularly when such tasks are encapsulated),
"LIR.209(s3.6) LIR 284

9 4.8 There are problems of logic and implementat.on connented with
the exit of scopes containing active tasks.
LIR 922 LIR.311

9. 4.» Task termination 1s amb!guous and in fact may never occur.
EVR.205(41.6) .

9.4.D Suggests that synchronous termination be accomplished by predefining

a condition indicating that the task's containing unit wishes to terminate.
LIR.284

9.5 Entry Declarations and Accept Statements

9.5.A Separating entry bodies (like procedure bodies) would make tasks
easier to read and understand.
LIR.3M9(s3.8)

9.5.8 There - {s no syntactic difference between an entry and a procodure
invocation.,. . .

P2R.A3IS(#63) P2R.AIV(MLT)

o
o
e
3

PP N T

- 61 -

8.5.C “Then® or “"Begin® is preferred to "Do" in the accept statement:
Do {s an unnecessary extra keyword with incorrect implications. .

LIR.332

9.5.0 Entry declarations should be restricted to task specifications. An
interrupt roprosoneation specification may appear in the task body. XX13.S5.1°

LIR.44]1

9.5.¢ Bvsn null bodies of Accepts should have a syntactic terminator.
LIR.442
9.5.F Entries should either be quite distinct from procedures, or unified

somehow. It is currently not clear whether many rules apply to entries:

overloading, renamxing, address specification, placement of declaration and
bodt, generic subprograms, Inline. Do the rules apply difrorently when an
entry is renamed as a subprogram? XA6.6 XX8.S5 XX13.5 XX6.1 XX€.2 XX6.4

LIR.444

9.5.G The ‘'identifier' in entry_declaration is prosumably the entry name:
what part of it should be used as “the ldentifier?
LIR.554 LIR.571

9.5.8H Why is infitiation of a task prohibited in an accept body? 'XX9.3
LIR.572

3.6 Deslay Statements

9,6,A The d-tinit{on should indicate that 3 delayed task will be queued for
schéduling once the designated delay interval has pasased.)
EVR.082(#24a7)

9.6.B In addition to delaying for a specific real time interval, there
should be a provision for a delay with respect to another task's

execution time.
P2R.A32(#83)

9.6.C The semantics of the delay statemant are context dependent. (See

Select statement)
P2R. 036 (408) LIR.9S3

9.6.D There should be some way to wait for a condition (eg resource
available) as well as waiting a particular length of time.
LIR.37S

9.7 Selec - Statement

9.7.A There {s no provision for selectively waiting for the acceptanco of

an entry call (eq timed-out calls).
LIR.209(s3.18) LIR.359 LIR. 368 - LIR.452

e 2 S kR s A i A" . iy e 1) s

W | W

- (2 -

$.7.8 The language should guarantee fairness in the select statement:
ft shou1ld not be possible for a queued entry call to be permanently
blocked by subsequent entry calls sharing the same select statesent.
EVR.002(#104) P2R.G15(#87) LIR.189

9.7.C The language should either (a) restrict the variables that can
appear in the guards of a select statement to those that cannot change
while awaiting the entry call, or (b) guarantee reevaluation before
selection of any alternative with a gquard that may have changed.
EVR.202($289) .

9.7.D There should be conditional entries as well as conditional accoptsm
EVR.0A2(#216) P2R.439(#15) LIR.202

9.7.8 The language should guarantee that 2 waitinq entry call will always
be selected in preference to a delay.
EVR.802(#104)

9.7.7 There is a need for a select guard that {s true only if all others
are false. When Others should be added *o the select statement.
LTR. 224

9.7.6 . Select should clearly be specified to act non-deterministically, as
any programs depending on fairness will likely be implamontaelon-doponden:.
LIR.989

9.7.H Tho select statement is too complicated; a lower-level mechanism is
rreferred.
2,230
9.7, The present rendezvous concept is good: timed-cut entries and
sus.end/resume would hurt effectiveness and unifcrmity.
LIR. <55
9.7.J It should be possible to have exception handlers with scope

co-extensive with one select alternative to catch propagated excepciouns.
LIR.28S

9,7.K There should be entty call timeouts., The details of a correct
implementation are discussed.
LIR.319

9.7.L Entry calls should be allowed in Select as are Accept'‘s in order to

express a nondeterministic choice between consumption and production. XX9.8@
LIR.397 :

9.8 Task Priorities

9.8.A The language should guaran“se that priorities will be rigidly enforcer

during scheduling.
EVR.#02(4219)

- 63 =

. 9.8.8 Task priority should be assignable at initiation time; queue
reordering should also be possible.
EVR. 361 (pll) EVR.2305(81.3) P2R.0O1S(#10) P2R.218(#07) P2R.935(#01)

9.8.C Scheduling is vague and too restrictive. Implementation dependency i.
encouraged by not specifying that scheduling is non-dotornlntstlc.
LIR.968 LIR.088

9.8.D The semantics of priorities are unclear, especially in tho presence o
monitor-type tasks.
LIR. 081 LIR.083

9.8.F Interrupt handlers should have priorities but should not be subject t«
scheduling.
LIR. 144

9.8.F There should be some mechanism for specifying the mapping between
Ada‘'s priority and tasking constructs and the machine's.
LIR.298

9.8.G Preemptive scheduling should be possible in any implementation.
LIR.352

9.8.H Tasks should be able to set their children's priorities, but why
should they be able to set their own?
LIR.685

9.9 Task and Entry Attributes

9.19 Abort Statements

9.18.A Both the ABORT statement and raising FAILURE are extremely
dangerous. In particular asynchronous termination of a rendezvous causes
severe problems in maintaining the consistency of in-ernal data.
LIR.969(33.7)

9.18.8 The Abort statement is unnecessary.
LIR.242

9.18.C Abort should not take a name, but a variabie as an argument; it
should be possible to abort oneself and one's parent without Xnowing their
names,
LIR.363

9.18.D Tasking exceptions should be described in the tasking section, not.
the exception section, as other exceptions are described with their
constructs, or at least cross-referenced XX1l.4

t LIR.555 LIR.558

9.18.E The semantics of Abort should be simply those of raising Failure but
ignoring exception handlers. XX11.5
LIR.621

a
. g e = g s . . e wm e e —— e e -
DRI AT N SALREREE -~ e —— A" . - |

- 64 =

9.11 Signals and Semaphores

9.11.A The built-in (generic) tasks SIGNAL and SEMAPHORE are
non-traditional, difficult to use and unnecessary.
LIR,.099(s3.9)

9.11,.B Making semaphores into tasks precludes their incorporation into
data objects.
LIR.P60

9.11.C what is the meaning of the prtorlﬁy of a semaphore?
LIR.0B83

9.11,D What is. the meaning of priority to interrupts? Wwhat happens to
priority when a high-priority task needs the services of a low-~priority

task? Discussion.
LIR.427 -

9.12 Example of Tasking

16. PROGRAM STRUCTURE AND COMPILATIOM ISSUES

18.8.A “Independent® compilation for units communicating only through
parameter lists and not global environment should be defined for external
units, such as dynamically loadable units and foreign lanquage units.

LIR.130

19.0.8 The separate compilation feature is unnecessary. Source inclusion
or support utilities should deal with separate compilation.
LIR.144 LIR.584

19.0.C What units are actually loaded? What is the minimum one can
expect of the library and loader in terms of not loading unused units? What
i{s the unit of loading? Subprograms, modules, compilatioa units?
LIR,.321

18.1 Compilation Units

18.1.A The present system has both too many surprising consequences, and
precludes too many useful optimizations. A simpler system wculd be quite
adequate,

EVR.267(#1.3) P2R.GO5($05) P2R.965(#06) P2R. 0066 (#85) P2R.038(#081)
P2R.B37(#67) DCR. 003 LIR.128)

la.1.8 The language allows separate compilation of nested entities
{modules, procedures, tasks); for the programmer, it will be very difficult
to know the environment of such a separately compiled entity.
P2R.214(#07)

- 85 -
10.1.C The physical interface contains too much information. In particular
the privata part should spocity the representation of any visible private

types.
DCR. 883
19.1.D Visibility restrictions are ovarly restricted in separate
compilations,
LIR.139
18.1.E Stubs for subunits can sometimes be ambiguous. XX10.2
L1R.118
l19.1.7 The system of separate conbilation incorporates too much information

about what units will be compiled toqcthot into the text of the program,
LIR.120

18.1.G It can be impossible to distinguish identically named subunits
without blocking their vision of a common enclosinq unit.
LIR. 144

14.1.H What exactly IS a program library?
LIR.554

19.1.1 Syntax of compilation_unit should presumably be
fvisibility restriction {Separate]] unit body (cf. 18-5 line 1).
LIR.S573

18.1.3 There afe cases where separate compilation seems unnecessarily
illegal. (Example) .
LIR.622

18.2 Subunits of Compilation Units

18.2.A Selected components of compilation units should be specifiable in
Restricted statements, eqg if Main has subunlt A, permit Restricted(Main.A).
OPA.0B16

14.2.8 The enclosing unit of a subunit should be explicitly specified in the
compilation unit header-~it is otherwise ambiguous Eor reader and compllor.
Xx8.3

LIR.128 LIR.241 LIR.420 - LIR.445 LIR.574
LIR.597 LIR.AO4 LIR.6@9 LIR.61:

18.2.C Sevarately compiled overloided subprograms within the same
enclosing unit should not be allowed. XX10.1
LIR. 384 .

14.2.D Separation of bodies from specification should not ba restricted
to the outermost scope. XX7.08
LIR.449

19.2.E What IS a subunit?
LIR.574

A o . 4 W 2PN s ve:

- 66 -

19,3 Order of Compilation

19.3.A The strategy for ordering separate compilations does not work in
the presence of sepacate generic units, inline subprograms, representation
specifications, and certair. requirements concerning calls to procedures
with side effects. :

P2R.AOS (#61) LIR.004 COM. 382 DCR. @02

10.4 Program Library

10.4.A The program library file should not be updated by all compilations
as this may compromise its integrity.
LIR.120 '

10.5 Elaboration of Compilation Units

10.6 Program Optimization

10.6.A It {s unclear that some optimizations concerning functions and
variables with “"abnormal” behavior can be performed by the translator.
FOS. 803 (pol) DCR.303

180.6.B "here should be explicit conditional compilaticn, using pragmas.
LiR.0236 : .
18.6.C The programmer should be able to ask for many {mplementation

choices and optimizations explicitly: omission of GC; static allocation; use
of global flow analysis; suppression of runtime checks. XX2.7
LIR. 410

18.6.0 Discussion of optimization should be left to the Rationale.
LIR.S7S

11. EXCEPTIONS

11.0.A Manual does not make clear what exception gets raised for some cases
of constraint violation.
LIR.098(s3.3)

11.0.8 Underflow should not be an exception.
EVR.805(#2.1) LIR.366

11.0.C There is no way to handle user exceptions propagated beyond the scope
of their definition ("Unhandled" exception). Should Others handle them?
LIR.248 LIR.S539

11.8.D There should be no exception facility as it introduces too great an
overhead.
LIR.244

- 67 -

11.8.E whac happens when an exception ptopaqatos beyond its scope?
Making exception definitions global is suggested.
LIR. 2443 .

l11.0.F Explicitly raised exceptions should leave variables' values well
defined.
LIR,.367

11.1 Exception Dsclarations

11.1.A No_value_error is i1l founded.
OPA.315

11.1.8 ‘No_value_error is too expensive to implement.
LIR.834 .

11.1.¢C No value_error from a function should be raised in the caller's
enviranment.
LIR. 488

11.1.0 It is not clear when and where which predefined oxceptions>are
~ raised.
LIR.557

11.2 Exception Handlers

11.2.A The language should guarantee that actual Qut parameters will not be
assigned {f the routine is exited abnormally (i.e., by exception). XX6.3
EVR.002(¥1A2) P2R.B43(#13)°

11.2.8 There {8 a need for exceptions that will not be handled by When
Others,

LIR.B1A .
11.2.C Exception handlers should have sccess to the environment at ‘the point
of an exception for testing and debugging. .
LIR.A57
11.2.D It should not be possible ta access/reference unelaborated or
incompletely elaborated declarations from within an exception handler.
EVR.0G2(#213) DCR.AES OPA.#812

11.2.E It should be possible to specify explicitly !n'the exceptlon‘handlet
whether terminative or resunptive semantics apply to the particular handler.
EVR.805(#15.8)

11.2.F There should be some way to identify an exception caught by
"Others® for debugging and error messages.
LIR.184 LIR.399

11.2.G. It should be possible to return and continue after an exception.
LIR.465 '

- 68 =

11.2.% gxceptions ihould pass parameters, eg Assert(3%) x>8;. XXS.9
" LIR.466 :

11.2.1 If an exception propagates out of a scope and back in, is it
handled by the named handler or Others? Ptcsunably the named handler.
Example given.

LIR. 526

11.3 Raise Statements

11.4 Exceptions Raised During Tasking

11.4.A Propagation of Tasking_error compounds the problems of asynchronous
termination, especially with regard to procedures in the visible part of task:
LIR.909(s83.7)

11.5 Raising an Exception in Another Task.

11.5.A The asynchronous exception Tasking error may be raised on the
accepting task during a rendezvous. This Jisruption causes problems for .
tasks that require indivisible updates of their data structures in order to
maintain consistency.

LIR.@03

11.5.8 The semantics of raising the failure exception in another task
are unclear and sometimes counter-intuitive.
LIR.119

11.5.C The semantics of the Failure exception are complicated in the presencs
of multiple threads of control corresponding to a task: exception propagation
is dangerous. The example of Rationale 12.4.1 is flawed and demonstrates the
dangers. The Pailure exception should only take effect when the thread of
control executes inside the task or when it returns to it, The question
remains as to whether a thread of control waiting in an entry is executing
inside or outside the task. XX9.0
LIR.624

11.6 Suppressing Exceptione

11.6.A The language should rcstrict the consequences when a suppressed '

exception occurs.,
EVR.002(#212)

11.6.8 The semantics of suppressing the ASSERT_ERROR exception should be

specified.
LIR.819

12, GENERIC PROGRAM UNITS

E—— ‘ I - - — M ki

- 69 -

12.0.A There should be task generic parameters. PFor exarple, task entries
should be allowed as generic parameters.
P2R.939(408) LIR.815

12.0.8 There is a need for a specification and assertion language for
generics, It is not clear at this time what the problems will be. There are
strong reservations about a language that allows thing to look the same but
have different meanings,

P2R.243($05)

12.8.C The generic facility does not provide true parameterized types nor
can it express type interrelations and properties (eg T is a discrete type).
How can a record field be guaranteed to exist?: the type cannot be restricted
nor can the field name be a generic parameter. Consider also the interaction
with separate compilation.

LIR.879 LIR.196 LIR.388

12.8.D Overloaded qenoric subprograms cannot be disanbiquaeed- prohibit
them., XX4.1.2 XX6.
LIR.527

12.8.E A generic subprogram can have the same signature as a non-generic
subprogram but be distinguishable, Can one overload the other? XX6.6
LIR.528

12.0.F Qverloading of generic subptoqtams by generic clause is not
allowed. PRut it could be. XX6.6
LIR.529

12.9.G Generic functional arguments may require implementation techniques
identical to those required for functional arguments. XX6.8
LIR.623

12.4.8 Generic parameters should be allowed to be generic subprograms.
LIR.623 .

12.0.1 All compilation and error-checkinq of generic subprograms should
occur at instantiation time.
LIR.287

12.9.3 A general macro facility is desired.
LIR.211

12.1 Generic Clauses

12.1.A The concept of a “"designator” as an "attribute of a type" is vaque
and confusing.)
LIR.136

12.1.8 The syntax of Subprogram specification as a Generic_Parameter allows :

Generic_clause. Forbid this eitRer in the syntax or the semantics.
LIR.215" LIR.287 LIR.473

-7 -

12.1.C wWhat are the exact semantics of generic Out and In out plzanotots?-
suggests torbiddinq them.
LIR.288

12.1.0 The attribute 'Size of a generic type parareter should be
available in the generic body.
LIR. 296

12.1.8 Allow .nfrics as generic parameters.
LIR,. 291

12.1.°7 Generic uunits and entries should be allowed as generi{c parameters.
visibility for the generic body should be defined by the point of
instantiation. Extensive discussion of interdependent generic tas«s.

LIR,.398

12.1.G Record component names should be allowed as generic parameters.
LIR.419 LIR.474

12.1.8H There should be a way to indicate that the parameter declarations
among the generic parameters ars commutative. (2?)
LIR.4%9

12.1.1 Exceptions and packages should be allowed as generic parameters.
LIR.474

12.2 Generic Instantiation

12.2.A ° Implicit instantiation of generic subprograms is needed. Implicit
instantiation of other generic definitions is not needed.
EVR.002(#361) EVR.AA3(#3.4)

12.2.8 Ada relies heavily on generics. In particular, they are the means
for realizing parameterized types. Procedures and functions that take
parameterized types must also be generic. Thus the compiler must be able to
recegnize when generic procedure instantiations may share code. Can it?
EVR.0¢3(PB2)

12.2.0 There is a problem with 1nstantiat1ng a qoneric with a type that is
an unconstrained array type.

LIR.028
12,2,E "New name"” should presumably read "new designator”.
LIR.9834
12.2.p The syntax of generic_association should allow “"designatar Is®, but
formal parameter restricts it to identifiers.
LIR.S7%
12,2.G6 Generic parameters used in static-evaluation contexts in the body

should not be required to be static.
LIR. 289

-7 -
12.2.H The syntax o generic definition and instantiation vlolltcs'tﬁe
principle that specifications should parallel uses. Syntax suggested.
LIR.191 '

12.3 Example of a Generic Package

13. REPRESENTATION SPECIFICATIONS AND IMPLEMENTATION DEPENDENT

FEATURES

13.8.A There should be an escape mech.a<nism that will permit the user to
specify the storage management algorithm iur pointer/heap storage. XX3.8
BVR.8082(#304) . i

13.6.8 The péoqtamner might be restrained {f acceptable space and access
afficlency were needed, for example by prohibiting arrays with dynamic bounds
or minimizing shared variables. XX3.6

EVR.301(pl3)

13.0.C Programs using pointers cannot be guaranteed to be free of garbage
collector overhead. XX3.8
P2R.J22(481) LIR.245 LIR.259

13.8.D Non-stack storaqe allocation is needed to implement parallelism and

dynamic storage: where, then, is local storage for a task allocated? 1In a
single address space model, the new process must be allocated storage of
some fixed size at initiation., Pixup action must be taken on overflow, or a
probe i3 needed before growing the stack. Both are too inefficient for
embedded computer applications. XxX9.4

P2R.827(#483)

©13.0.E There 2re no facilities for program overlays.
LIR. 801 : .

13.0.P Make it clear that ® length specification fcr a collection
inhibits garbage collection (and hence permits user definition of
Allocate and Pree as shown in Washington April meeting). XX3.8
OPA. 082

13.6.6 Representation change is prohibited for derived record and
enumeration types with user attributes but not for similar array types.
LIR. 100

13.0.H Representations should be a part of type declarations (not separate)
and have a more compact form. XX6.1
LIR.157 LIR.249 LIR.276

13.0.1 Is bit 8 the low-order or the high-order bit? XXA
LIR.157 LIR. 351 ’

.

s A a e S ne

- 72 -

13.0.3 The Por/Use construct is overloaded.
LIR, 247 LIR.249

13.9.K More of the attributes of a type should be incorporated into
declarations rather than representations. XX3.8
LIR. 249

13.8.L There should be a representation specification for fixed-point
numbers defining the value of the most significant digit and precise layout.
(Some suggest making this part of the type definition itself.) XX3.5.5

LIR.306 LIR,. 350 LIR,391 i LIR.412 LIR.413
LIR.423 . i :

13,.0.M Lack of {nheritance of representations by derived types seen as
possibly burdensome.
LIR.4A2

13.0.N Some sort of representation specificatior {s desired for arrays.
LIR.46A3 . .)

13.1 Packing Specifications

13.2 Length Specifications

13.2.A The length specification for an access type should not be required
to be static.
LIR. 429

13.2.8 What is the type of the static expression?
LIR.5377 .

13.3 Enumeration Type Representations

S 13,3.A It should be possible to specify contiguous representations of runs
of enumerals without writing them all ~ut: suggests that unmentioned
enumerals received the representation of the preceding enumeral plus one.
LIR.286 . :

13.3.8 The current syntax for enumeral representation is not transparent
in meaning. The requirement tha: a representation aggregate be named when
there is but a single enumeral is a disturbing irregularity in the syntax.
Perhaps the syntax of aggregates is to blame. XX3.6.2 XX4.6
LIR.531 ’

11.4 Record Type Representations

13.4.A The syntax is considered clumsy and redundant.
LIR.8K4 .

13.4.8 Alignment clause cannot specify, e.g., 1 hod 8, but only @8 mod 8.
LIR.293 ' .

e AR TE e - TR

- 73 -

13.4.C "At" is a poor keyword here.
LIR.993 ;

13.. Address Specifications

13.5.A Can two varlables be given the same address? Clarify manual.
LIR.352

13.5.8 For...Use at is too static and one-memory oriented. XXA
LIR.396 :

13.5.1 Interrupts

13.5.1.A Interrupts should not be queued.
LIR. 146

13.5.1.8 Interrupts should be “"masked out® inside their own handlers.
LIR.146

13.5.1.C wWhat happens when two entries are attached to the s.ce
interrupt? .
LIR.239"

13.5.1.D How does one guarantee immediate servicing of interrupts?
LIR.239 . :

13.5.1.E There is apparentiy a problem in i{mplementing Ada interrupts on the
UYK-24.
LIR.184

13.6 Change of Representations

13.7 Confiquration and Machine Dependent Constants

13.7.A A floating-point real-time clock is impractical; moreover, the
clock should measure time of day rather than time since initiation. There
is an ISO standard on date and time which should be consulted.

EVR.002(#2088) P2R.A402(3$83) P2R.025(#A6) DCR.9ES LIR.2381
LIR.393 LIR.422

13.7.8 The notion of task cumulative processing time (‘Clock) forces
inefficiencies; System'Clock, however, is useful.
OPA. @209 DCR.206

13.7.¢C There should be an implementation-independent fired-point clock.
LIR.415 :

13.7.D What manner of beast are System and Option? They are predefined
names, but not reserved words or package names. Are they object names? LIR
suggests they be predefined internal packages; their attributes wauld thus
be selected by dot notation. XXA XXC
LIR.471 LIR.492

.13.8 Machine Code Insertions

13.8.A There should not be any special -.eh-nl:n unique to aachino o -“

and/or assembly language.
EVR.302(#211) P2R.014(#06) P2R.922(#96) P2R.928(#02) PZR l42(0!1)

13.8.8 This section is too vague.
LIR.834

13.8.C Assembler insertions should have conventional syﬁtat.,
LIR.424 .

13.9 Interface to Other Languages

13.9.A The same mechanise should be used for assembly language

and machine code interfaces as i3 used for lntortaclng other ptoqranning
languages. e

EVR.102($211) P2R.BA8(#41) lPZR 844807

13.9.8 It is not specified how tuv invoke a procedure from anothor lanquaqc.
P2R.A37(406)

13.9.C There are some problems with the foreign code interface for
Fortran, e.g. matrix representation, slice parameters, functions as
parameters, and variable lenqgth parameter lists.

LIR.214

13.9.D0 How are Ada programs called by programs in other languages?
LIR.157

13.9.E It {s suggested that the Ada interface conventions for a . given
machine become the standard conventions for the other languages on that
machine. All machine and OS formats should be defined as Ada data
:gruct:ros. Ada should be the standard intermediate language.

R.29

13.9.P There should be a standard (urisafe) way of building an Ada array
from a block of storage passed int» an Ada routine from a non-Ada routine.
LIR.387

13.9.G6 More support s nlodcd for interface to other lanquaqcs. Porhaps
machine-dependent code should be isolated in a special module as’ ptoposod in
Euclid.
LIR.578

13.18 Unsafe Type Conversion

13.18.A Reinterpreting the.type of an object without real conversion is

desired,
LIR,.9R2

13.19.8 The name Unsafe programming is too strong.
LIR. 309 LIR. 451

- 75 -

13.18.C The applicability of Unsafe_conversion to I/0 is not made clear.
LIR.349 ’ : .

13.18.0 wWhat exactly does Unsafe Conversion do? When it is imposing a

type on previously untyped data, it should check for Range_gfrror.
LIR.451

14. INPUT-OUTPUT

14.9.A For an I/0 handler, multiple instantiations and numerous names
are required to use files of all types. This is extremely cumbersome {f
many types are present. ’

P2R.239(407)

14.8.B The untyped binary /0 on which typed binary I/0 is built should be
visible to users and standard across implementations, since {t must of
necessity exist under Input_Output.

LIR.187

14.8.C The I/0 model is at too high a level, toc sequentially oriented
and overly attache~ to the idea of one data type per file.
LIR. 246

14.9.D0 There should be a high-level model of real-time data s:reai 1/0.
LIR.327

14.0.E The I/0 package should not be addressed in the LRM,
LIR.371

l4.0.F There should be some standard wa& to time-out from I/0.
LIR.376

14.1 General User Level Input-Qutput

14.1.A The departure from conventional I/0 techniques may lead to
nonstandard [/0 techniques between similar systems. In particular
“conventional® read, write, and format statements are missing.
EVR.005(#5.0) LIR.238

14.1.8 Objects of mixed types should be allowed to coexist on files,
LIR.107 LIR.327

14.1.C A standard package implementing Portran-like formats should be
defined,
LIR.299

14.1.1 Piles

-

boe
o

.

1 R

- 16 -

14.1.1.A There should ba a function for determining whether a filename
corresponds to an existing and accessible file.
LIR.421 ‘
14.1.1.B Renaming of files is missing.
and end of file mark or change the valid length of a f:le.
E:coslary to open a file to delete it. .
R, 206

There {s no way provided to write
It should not be

14.1.2 Pi{le Processing

1‘;1 2.A The names Read and Write should be exchanged with Get and Put
for naturalness and Pascal compatibility. xx14.3
LIR,372 LIR,39%

14.1.2.B End of file should be a predicate, not an exception.
LIR.430 _

14.1.2.C Read without advancing the file pointer is nlssinq.
LIR. 206

14 2 Specification of the Package INPUT OUTPUT

14.2.A It is worthwhile to treat I/0 devices a3z uniformly as possiblo.
This raises many subtleties of treating 1/0 devices as files.
LIR.807 LIR.813

14.2.8 Avray I/0 should be defined.
LIR.1086 LIR.327

Some method of torcinq buffers out (i.e. drnlninq, tluﬂhinq) should

AXC

14.2.C
be defined.
LIR.189 _
14.2.D The exceptions f{n different instantiations of the generic package
The package snould have funcctions

Input_Output cannot be distinguished.
XX1l.l XX12.2.

which return lntornation as to what caused the exception.
LIR.47%

14.2.¢ Delete is missing (cf. 14.1.1).,
LIR.217

14.3 Texr Input-Output

14.3.A Imbedded carriage control characters would be nonstandard across
systems, and cause confusion in Ada 1/0; thus, a machine independent
mechanism should exist for carriage control.

LIR.108 .

Can Ada I/0 support a text editor efficiently?

14,3.8 More support is

nesded for terminal text /0.
LIR.S579

et

- T7T -

14.3.C There should be some standard tett /0 for structured types
(records) .
LIR.879

14.3.0 Sfmulated I/0 (Portran Encode/Decode) into strings is desired: Get

and Put should be overloaded on the Pile parameter.
LIR.182 '

L 14.3.2 Input and output of text lines are desired.
LIR.183

14.3.1 Standard Input aﬁd output Piles

14.3.2 Layout

14.3.2.A “"Tab® is used for "HT” despite Appendix C. XXC
LIR.105

14.3.2.8 The effect of Tab is nonstandard (should be next multiple of
eight plus one).
LIR.165 LIR.S589

14.3.2.C Do control characters actually appear {n files, or do they just
indicate effects? In particular, the distinction between Newline and CR &
LF {s unclear. 1If the charzcters appear in files, how does the file yystem

work on record-oriented systems?
LIR.#98

14.3.2.D Tab stops should be user-specifiable. Outputting. a Tab should
insert the appropriate number of spaces.
LIR.181

14.3.3 Input-Output of Characters and Strings

14.3.3.A LRM confuses lssuo of quotes within strings.
LIR.183

14.3.4 Input-Output for Other Typcs

14.3,5 1Input-Output for Numeric Types

14.3.5.A Real number input syntax should be more liberal.
LIR.110 :)

14.3.5.A The Get function rounds inputs to Float'Digits rather than to
the full precision of the object gotten.
LIR.185

14.3.5.8 Do positive numbers print with initial *+*, blank, or dfgit?
LIR.299 .

14.3.6 1Input-Output for Boolean

i
i
;

ARG ek mn e el SN

DRV A SR i, it oy g PP W Vb 2 B0 s el GV e v e o

- p—
PP

- 78 -

14.3.7 Input-Output for Enumeration Types

14.3.7.A The case of enu-oratlon‘typc:' output should be specifiable.
LIR.399

14.4 Specification of the Package TEXT IO

14.4.A An expression on 14-11 != miscing needed qualifications.
LIR.105 .

14.4.8 Tab stops are poorly defined and probably non-standard.
LIR.12S

14.5 Examp!)~ of Text Input-Output

14.6 Low Level Input-bucput

A Predefined Language Attributes

AN The word *"machine” is used where "implementation® i{s meant.
LIR.108S

A.B. The definition of ASCII as an enumeration type is circular.
LIR.863

A.C T'Rep {3 incompatible with Put in that it does not take width and fra.
arguments. ‘
LIR.299

A.D There should be a useful 'Address fcr data not word-aligned.
LIR. 268 LIR.381

A.E *Size should apply to program units. This is useful for memory
allocation, swap control, and overlays.
LIR.263

A.F The ‘*Address for non-contiguous packages (eg pure and impure parts)
is not well defined and not entirely useful.
LIR, 264

A.G What are the types of 'Delta, 'Small, System'Min Int, and
System'Max_Int? XX3.5.5 XX13.7
LIR.330 LIR.47@ LIR.492

A.H What {e the meaning of 'Address in segmented and multiprocessor
architectures?
LIR.331 LIR.396

A.T The attributes ’'Size, etc. should be defined in terms of digits, not

bits, and the base of the machine should be a system attribute. *'Small and
‘targe should also be defined in a radix-independent way, XX13.2
LIR.331

—

DU

g iR

-79—

o

A.J i Bit posttions should be l-orig!n, not O-origln. XX13.4

LIR.331 Do PR
. A.K . Page size should be a systnn»atttlbute. o |
LIR. 378 : o ' '

A.L 'Bits and ‘Radix should only be defined for floating point types.
'Bits should be renamed 'Hancissa; abolish 'La and °‘Small, XXx3.5.5
LIR,179 . v

A.M Abolish 'Accuss Size--the moaninq of *Size should be uniform.
Introduce, egq, 'Dcnotcd Size lf .desired. .

LIR.380 _

A.N 'Size should be ciearly defined to be the maximum size of an object
of the type. (Consider records with variants, etc.)
LIR. 381 S

A.O - There should be a-predefined attribute of any type converting to a
fixed length array of character.

LIR.429 ‘ ‘

A.p The identifier Priority is both an attribute name and a type. This
is legal but confusing. Change the type to Task Priority.
LIR.472 :

A0 Why are there no System’Min_Ploat and ’'Max_Float? XX3.5.5
LIR.685 . J

A.R 'Rep should allow more than three digits of exponent when necessary.
LIR.179 . .

B Predefined Language Praqmas

B.A When Pragma Optimize is not used, are no optimizations performed?
How does one optimize only part ot a module? What is the default state of
Optimize?

LIR.533

B.B Define the effoct of the pragmas Page, List, and Include on listings
more precisely.

LIR.534 LIR.S53S . LIR.S536

C Predefined Language Environment

C.A Attributes of record components should not bo appl!cable to
discriminants, since they need not te presene.
LIR.088(s4.8)

c.B The characters 8§, ", |, and & lack enumeration literals.
LIR.183 . : -

e s e e a3 o

c.C There should be a predefined type Time_interval distinct from Time
with only appropriate operations on each (eg no Time+Time).
LIR. 381

c.D Exponentiation and Mod should be defined for more combinations of

types to encoutage uniformity. XX3.5
LIR.333

c.t Common mathematical functions (square root, sine, etc.} should be
predefined.
LIR.392

D Glossarx

D.A Suggests some addit.onr in the area of access varlables. XX3.8 XX4.7
LIR.477 .

E Syntax Summary

E.A There are too many 'indeterminisms’ in the current syntax.
LIR.293

E.B Syntax summiry is incomplete.
LIR. 295

Index

Index.A The index is inadequate.
.LIR.1158

Index.B The {ndex omits Program Units (1.7) and Declare (6.7) and Indexes
Initial value incorrectly. e
LIR.464

Index.C Some grammar non-terminals are not in the index. The standard
identifters (First, Environment, Integer) should certainly be included also.
LIR.537

Z General questions of syntactic style

Z.A The syntax has too many noise words and too much redundancy in
general. On the other hand, some keywords are overloaded with quite
distinct meanings in different contexts, e.g. else, exception, for, new
others, restricted, range, is....

LIR.841 LIR.S597 LIR.641 LIR.6@3 LIR.687
LTR.A29

Z.B Syntax is too verbose and keywords are too long.
LIR.947 LIR.878

z.C The permissible nesting of subprograms, generics, and modules s vagu.
LIR. 852 .

- 81 -

zZ.D Every type of "end® should be qualified by the block name or type. A
least, the meaning and optionality of i{dentifiers after End‘'s should be
uniform. Currently they are not: End name for task bodies, but Znd Case for
cases, and just End for Begins. XX5.6 XX6.4 XX7.1
LIR. 094 LIR.217 LIR. 583

zZ.E The syntax is far too permissive: semantic distinctions are blurred a:
ambiguities often engendered. XX7.1 XXS5.5 XX2.6.2 xxa 5.5 XX3.6 XX18.2 XX5.2
XX6.2
LIR.162 . LIR.A28

Z.F Semicolons should be used for statement termination only; commas
should be used to separate items in a series (eg parameters).
LIR.28S - LIR.250

Z.G Semicolon should be a statement separator, not a terminator: consider
especially, the semicolons after end's of different kinds. :
LIR. 443 .

Z.H In several places, the syntax fname.ldesignator is used wheto it seem:

new nonterminal, subprogram_designation, defined as name |
(name.}character_string, would Le more appropriate. cf. renaming declaration
genecic_parametet, and generic_association. XX4.1 XXB.5 XX12.1 xXlz 2
LIR.618™

Z.1 The "upper-level® syntax (unit headers) is ad hoc and poorly structur-
For instance, generic names appear at the wrong place. The whole upper level
should be redesigned starting from the abstract syntax. XX12.1 XX8.3
LIR.633

z.J Empty fields (not "null;") are allowed in some surprising places.
Usually, the metasyntax (...} is used where “one or more” would seem more
aprropriate. XX3.7 XXS5.8 XXS.5 XX6.7 XX9.7
LIR.202 LIR.218 .

APPENDIX C: Documents

A e SN R LA S T S MR i 2 2 S X A oo WM CNPEWRE 50 =S8 NP AR ooy 471 i M ko e
10 R TN S i

A significant numbesr of “"questions. of interpretation® about
Ada arose (primarily from implementors). These were questions about
unclear points in Preliminary Ada, and were not irntended to bring up
questions of design. The objective was to answer questions of
immediate importance to implementors and users in general.

These questions were submitted to the language design team
and were answered in November 1979. It was planned that the asking
and answering of questions would be an ongoing process, but few
questions came up later.

- 82 -

It should be recalled that these quastions and answers refer
to Preliminary Ada only and may be (irrelevant or {ncorrect with
respect to Pinal Ada.) :

The questfons and their respective answers are found {n the
file Questions.Answered. Both question and answer are preceded by a
. ssction number.

APPENDIX D: Documents Maintained By Intermetrics Por Ada

Test and tvaluatlon

Nine types of documents have been archived' during the Test
and Evaluation process. Each has its own 1log and set of files
containing the text of those individual documents which have been
received in machine form. Logging conventions and file naming
conventions are consistent over types. ELach log file is named XXX.LOG
where *"XXX* is a1 3. letter code for the type. The text of documents is
stored In files nam.sd XXX.001, XXX,082, XXX.0803, etc. Again, *XXX" is
the 3 letter code corresponding to a particular type; the saquence
number provides a uniform and unique reference to such documents.

Log files contain one line of summary information about each
document of the type they log: a sequence numbder, length, source, and
subject. All log files contain at least a sequence number and sourcs.
Most log files also record the length of the documents, 'An entry of @
in this field indicates that the document {s not available on-line.

The source is the person(s) or organization submitting the
document. If an institutional affiliation is known it !s put in
parentheses after the author's name. Some documents have bean
submitted without an indication of source; others hL-:ve only an
institution's name. Note that should a document have as its saource
the name of an institution, {ts contents does not necessarily reflect
the official position of that organization.

The subject field is an attempt to encapsulate in a very
small space the most informative title or summary for a given comment.
If a subject reaches a conclusion, that conclusion {is briefly
indicated; {f a comment indicates a problem in a certain area, that
problem is made as explicit as possible in the small field avallable.

An entry, then, looks like this:

Doc # Length : Source Subject
¥l 32 pgs. J. Jones (X Corp.) Parameterized
Types Needed

- 83 -

Text files are simply on-line copies of the original

documents., If the document was mailed to us via the Arpanet the block
header {s retained for reference.

DScunont Types Logged

1. Phase Two Reviews (P2R) :

These documents are not actually available on line, but are
nonetheless logged in order to establish sequence numbers by which
they may be uniquely identified.

Log file : P2R.LOG

Text files: P2R.@@1, P2R.262, P2R.293, ...

2. Bvaluation Reports (EVR)

Evaluation reports include extracts of selected Phase Two
Reviews as well as portions of documents previously designated as "All
Others.” Most documents of this type are available as on~line text.
The set of EVR'S was essentially closed rather early. Newer documents
are generally archived as one of the types describad below.

Log file : EVR.LOG

Text files: EVR.Ad1, EVR.@02, EVR.#63, ...

3. Languaga Issue Reports (LIR)

Language Issue Reports are received by Intermetrics from the
community at large.They must generally be in the format specified by
HOLWG {in order to be classified as LIR's. About 88% of thess were
submitted in machine form (either over the Arpanet or by transportable
media) and are therefore on-line.

Log file : LIR.LOG

Text files: LIR.901, LIR.062, LIR.VP3, ...

4. Comments (COM)

There are Comments of many types: comments on LIR's, short
points, questions, dialogs on certain issues etc. 1In general, whereas
LIRS are intended to address one topic each, comments may address a
range of topics within one document. This often leads to more general
comments, or to comments related to an overall analysis of suitability
of Ada to particular areas, The titles of comments are therefore less
specific than those of LIR's. Comments are heterogeneoty in form,
content, and topicality. MSG headers are retained for each comment in
order to preserve their history.

Log file : COM.LOG

Text files: COM.#81, COM.@02, COM.P83, ...

S. Position Papers (POS)

Various {ndividuals or groups were expected to submit
position papers., These were to be in-depth treatments of specific
problems or related issues, This has not proven to be a popular type
of submission. ’

Log file : POS.LOG

Text files: POS.@01, POS.902, POS.d63, ...

- 84 -

6. Draft Change Requests (DCR)

As described in section 2, a formal procedure was established

whereby drafts of proposals for language changes written by

Intermetrics and discussed by the Distinguished Reviewers would be

submitted for review and action by HOLWG.
Those documents, called Draft Change Requests, were generated
until the procedure was discontinued. They were and still are

considered drafts; their presence in the log does not indicate their

evolutionary disposition.

During the review process, certain Draft Change Requests
(DCR's) underwent revisions, reflecting the comments and opinfons
expressed during Reviewers' Meetings. A version number is thus
appended to the name of all such files. The log indicates the most
current version,

Log file : DCR.LOG

Text files: DCR.A81, DCR.G02, DCR.903, ...

7. Language Design Notes (LDN)

These are proposals from CII-HB for changes to the lanquage.
They should not be construed as a commitment by the language design
team to implement the changes.

Log file : LDN.LOG

Text files: LDN.@9l, LDN.9G2, LDN.203, ...

8. Official Problem Acknowledgments (OPA)

These are statements about language problems officially
recognized by the CII-HB Design Team.

Log File : OPA.LOG

Text Piles: OPA.001, OPA.0@2, OPA.003, ...

The full logs appear in Appendix P.

APPENDIX D: Accessing The Archive

The files described have been made available for public
inspection and use over the Arpanet at the University for Southern

California's Information Sciences Institute machine "E", Arpanet .

addiess USC-ISTYE.

The ISTIE machine is a Tops-20 system. It accepts PFile
Transfer Protocol (FTP) and Remote Login (Telnet) connections across
the Arpanet. Piles relating to Ada test and evaluation are found on
the disk directory <TNE-Archive>.All comments on the Ada languaqe
which were submitted via Arpanet mail are stored here, or archived on
the ISI magnetic tape backup. .

S b

¥

- 85 -~

During the Test and Evaluation period, all the files
"described have been made available on-line for public access by the
community. The files will continue to be accessible on-line
indefinitely, although requests may have to be entered to the ISI
system for retrieval of files from tertiary (magnetic tape) storage.

An anonymous account (s avallable for Pile Transfer Protocol
connections, '

The following dialogue is an example of a typical PTP User

program:
Ftp -=invoke Ptp.
«s.machine response

Conn ISIE - -=-connect to ISIE
«..machine response
Login Anonymous your name --login to ISIE
...machine response ~

Get <TNE-ARCHIVE>file_name -=do file tranafer
Disc ~--disconnect from ISIE
Quit --return from FTP

APPENDIX E: TER Code Breakdown

Many participants {n the T&E analysis submitted algorithms
written in a language normally used by the participanc, and often
included a version of that algorithm written in Ada; this offered not
only an - excellent means of comparison between the two languages, but
also helped illustrate Ada in an applications context.

The list bhelow indicates which of the 'sdbmi:ted contained
code samplings.

TER # Original Code Ada Code

1 - A

2 - A

3 - -

4 - A

5 - A

6 - A

7 - -

8 - A

9 - A

19 - A

11 - A

12 - A

13 E, D f C, B, A
14 - B, A
15 - A

16 A -

R i

e A

FUTHE— i i + e - o

- iR

At

- 86 =

-
w

.2, C, 8

»

A SRty . AU ,‘: AP Y

PP IDEIAIIR I IIIIE
rd

s

[%]
'
l:’l)l”llwtll)llﬂllll'l‘ln’

. -lv',‘g"e;»“"sfvvr"}-n,*r [y

, 8, D, E .

w

D, C

-

- ~
> >
X1 1 BPT IO I I>PDIODPOI>P LI LI BYD WD)

wn
-
L L 1O I 1212201000 8 068 0044

71
72
7
74
75

77
78
79
8sa
a1
82
83

8s
86

APPENDIX F:

LI I B B T 2 TR T N O I I N)

- 87 -

AN R N N 2

Document Logs

P2R #
291
82
a3
204
805
206
807
a8
209
gla
211
812
13
814
a1s

S1ZE

(.1
(1]
a0
a0
-1
1]
Qe
(4
aa
(1]
a0
(1]
1]
e
(4]

pgs.
pgs.
Pgs.
pgs.
pgs.

pgs.
pgs.

SOURCE
Levin/Jones/Bladen (USAF)
(Boeing)

(Lear Siegler)

(Grunman -~ JSAF)

'{Boeing - USAP)

(TRW ~ USAP)

(ESD/TOIT ~ USAP)
(APCCPC -~ USAP)

(HQ.SAC - USAP)
{Aerospace Corp. = USAP)
(RADC - USAF)

(TI - USAP)

(Sperry Univac)

(French MOD).

(Stanford AI lab)

816
817
[23]
19
029
221
822
#23
024
@25
826
927
g28
929
939
831
832
933
834
935
936
837
938
939
g40
2841
242

,'
[1]
[1)
[1]
(1]
[1]
99
[]
1)
e
°9
ae
-1}
1.1
]
(1]
a9
o9
a9
ae
-1
a0
-1}
1]
1)
1}
1]

pgs.
pgs.
pas.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pas.
pgs.
pgs.
pgs.
pgs.

- 88 -

(U. of Grenoble} -
windaur/Goodo(Naﬂp Ger)
Hlltlnqor/ﬂouconnor(CHU)
(TRW - USAP)

(BGS)

Lebling (PDL)
!vans/norqanllorsdlck(BBH)
rclrtag/nolllat-éu@th(SR!)
wul £ (CMU)

(DCA)

Wwirth (ETH Zurich)
(CORADCOM - ARMY)

(Brown U.)

{Swedish DRI)

glzer (Donier System Gmbh)
Habermann (CMU)

(Mitre Corp.)

(NASA)

(General Electric)

{System Consultants, Inc.)
(IABG ~ Ger MOD)
(Universitat Karlsruhe)
(UK Dept. of Industry)
(LPT~E)

(UK MOD)

Schuman/Abrial (French Navy)

(Computer Sciences Corp. - USAF)

g

043
oMY

04s -

046

EVR
001
002
003
004
005
206
007

008

LIR
001
002
003
00y
00s
006
007
008
009
010

00
00
00
00

pg3.
PEs.
pgs.
pgs.

size

17
09
02
02
os
ot
Q02

19

pgs.
p8s.
pEs.
pEs.
pgs.
pE3.
Pgs.

pgs.

SIZE

01
03
03
09
09
07
ok
19
LA

02

pss.
pEs.
PES.
pgs.
Pgs.
pEs.
ﬁlﬂ-
pgs.
pEs.

- 89 «
(U. Texas)

{(General Reasearch Corp.)

(HqQMC, Code CCA-50)

Gomputer Science Dept.(CMU)

SOURCE

(HOLWG)
Pisher/Wetherall
dulf
Good/London
(Navy)

(USAF)

(MOD)

Interaetrics

SOURCE

I.C. Pyle (York)
Andy Hisgen (CNMU)
Andy Hisgen (CMU)

Tichy/Hubdbard (cMu)’

Saxe (CMU)
Saxe/Smith (CMU)
Nassi (DEC)
Hilfinger (CMU)
Hilfinger (CMU)
Pirth (RMCS)

suBJECT

Washington Review Summary
Phase 2 Change Requests
Chnug; Requests

Change Requests

Language Issuc

Lanju.:c Issuaes

Language Issues

Language Issues

SUBJECT

Prograa COverlays

Timed Out Entry Calls
TASKING ERROR Exceptiona
Separate Compliation
iuneeionn and VRP's
Usaer-Defined Types
TEXT_IO Proposals
Disorimizant Constraints
Tasking Faoilities

MOD Ope=stor

011
02
013
018
018
016
037
018
019
020

022
023
028
025
026
027
028
029
030
031
032-
033-
034
c35-
036
037-

63
02
03
02
03
g2
05
02
02

11

pEs.
pes.
pEs.
PEs.
PEs.
pEs.
g .

PEs.

pgs.
pEs.
pes.
pga.
pus.
pgs.
pes.
pes.
pEs.
pgs.
pes.
pEs.
Pgs.
pEs.
pes.
pEs.
pss.
pgs.

pEs.

- 90 -
Firth (RNCS)
T. Sepan (Hughes)
Springer (IBM)
MacLsren (Boeing)
MacLzren (Boeing)
Pirch (AMCS)
Pirth (RMCS)
Firth (RMCS)
Firth (RNCS)
Pirth (RMCS)
Woodger (UK)
Piren (RMCS)
Firth (RNCS)
Pirth (RMCS)
Firth (RNCS)
Pirth (RMCS)
Pirth (RMCS)
Firth (RMCS)
Firth (RMCS)
Firth (RMCS)
Firth (RANCS)
T. Sepan (Hughes)
Taylor (loeing)
Goos (Karlsruhe)
Goos (Karlsruhe)
Gooa ‘Karlaruhe!

(Ger.MOD/IABG)

Explicit Conversions
Iteration Variabdle
I-0 Package

Fortran Iaterface

Entry Generic Parameters

" Bxception Handling

Parsaseter Biading
Yariant Records
Suppressing ASSERI_ERROR
Semantics of Numerics
LA Clartfications

Task Tersination
Comptlition Units

EXIT WHEN Extensions
Allocator Function
SELECT Guards

RANGE Attribute

Array Generic Parameters
Derived Types '
BOOLEAN Type

Procedures in Tasks
Recursive/Reentrant
Assertions

Diverse Points

Punctions and Order
Conditional Compilation

Absence of FREE

b

&

038-
039-
040-
08t~
0Nz
083-
T
YT
046~
0NT-
048~
049-
050-
081
052-
053~
054«
055
056-
057~
058
059-
060~
061-
062-
063~
064
091-

02
01
01
01
0t
01
01
[3]
02
02
ot
Q1
[R]
01
01
01
01
o1

01

‘01

Q1
01
01
01
01
02
01

03

pEs.
pgs.
pEs.
PEs.
pEs.
pgs.
pga.
pgs.
pEgs.
PEs. -
PES.
pPEs.
PES.
pe”

PEs.
pEs.

.pES.

»E8.
PEs.
pEs.
PEsS.
pEs.
pEs.
pEs.
PEs.
pEs.
Pgs.

pPEs.

- 91 -
(Ger.MOD/IABG)
(Ger.MOD/IABG)
(Ger.MOD/IABG)
(Ger.MOD/IABG)
(Ger.MOD/IABG)
(Ger.MOD/IABG)
(Ger.MOD/IABG)
(Ger.MOD/IABG)
(Ger .MOD/IABG)
(Ger.MOD/IARG)
(Ger.MOD/IABG)
(Ger.MOD/IABG)
(GQPVHODIIABG)
(GQP&&OD/IIBG)
(Ger.MOD/IABG)
(Gor.HOP/IAIG)
(Ger.MOD/IABG)
(Gcr.ﬂﬂb/!llﬂ)
(Ger.MOD/IABG)
(Ger.MOD/1IABG)
(Ger.MOD/IABG)
(Ger .MOD/IABG)
(Ger.MOD/1IABG)
(Ger.MOD/IABG)
(Ger.MOD/IABG)
(Ger.MOD/IABG)
(Ger .MOD/IABG)

l:glok!ord Asrospace)

AR T R AR RN PR
L 11 o A

Vlalbiiity Reatriotions
Recursive/Re-entrant
Numeric Literals
Keyword Overloading

MOD Operation

Array Bouads

Loqp Syntax

INLINE Pragma
Input/Output

Keyvwords

Unhandled Exceptions
Visibility-lulol
Conditional Evaluation
Declaration Syntax
Syntax Description
Usage of DELAY
Incomplete Type Declarstion
Dynamic Allocation
Scope Rules

Exceptions

Absence of SET Type
Pollution of Name-~space
Low-~Level Tasking
Aaynchron;us Comaunication
Storage Managesent

Type CHARACTER

Record Reapresentations

Integers

o R

265~
966-
967~
968~
969~
278~
971~
872~
873~
a74-
875~
076-
877~
278~
879-
980-
#81-
992-
83~
984-
285~
886~
287-
888~
0989~
290-
#91-

[)1
82
81
92
91
g3
22
82
21
82
21
a1
a1
81
21
g2
82
g1

- 81

21
21
a1
a1
281
292
92
83

pgs.
pgs.
pgs.
pgs.

pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.

pgs.

- 92 -

(Ger.MOD/IABG)

Pirth (RMCS)
Knut Ripkin
Knut Ripkin

Pisher/Devar

Fisher/Devar
Pisher/Devar
Fisher/Dewar
Fishor/Dewar
Fisher/Dewar
Pisher/Dewvar
Pisher/Dewar
Fisher/Dewar
Pisher/Devar
Pisher/Dewar
Fisher/Dewvar
Fisher/Dewar
Fisher/Devar
Pisher/Dewar
Pisher/Devar
Pisher/Dewar
Pisher/Dewar
Pisher/Devar
Pisher/Dewar
Pisher/Dewvar

Pisher/Dewar

Nagle(Ford Aerospace)

(NYU)
(NYU)
(NYU)
(NYU)
(NYU)
(NYU)
(NYU)
(NYU)
(NYU)
(NYU)
(NYU)

(NYU)

(NYU)

(NYU)

(NYU)
(NYU)

(NYUY

{NYU)
{NYU}
(NYU)
(NYU)
(NYU)

Loop Control

Named Block
One~Component Aggregates
Module Visibilfty
Suppress Pragmat
Generic Pacility

Assert_Error

‘Labels and Goto's

Boolean Operators
Overloaded Literals
Punctions and VRR'S
Overloading

IN parameters
Keywords .

MOD Opervator
Scheduling Semantics
Priorities

Aliasing

Definition of Semaphore

Character Strings

Character Strings

QUT parsmeters

Named Pacameters

No_Value BError

~Select Statement

Evaluation Order

Integers

- 93 -

092- 02 pgs. Pirth (RMCS) Overlapping Slice Asaignment
093- 0t pgs. (Ger.MOD/IABG) Alignment Clause

094 01 pgs. (Ger.MOD/IABG) END Statements

0985~ 02 pgs. Andy Hisgen (CQU) Package Elaboration

096~ 03 pgs. Hisgen/Tichy (CMU) Package Initialization
097~ 02 pgs. Andy Hisgen (CMU) Subprogras Result Values
098~ 08 pgs. Bruce Leverett (CMU) Control Characters in I/0
099« 02 pgs. ‘ Bruce Lov;rcct (cMu) formatting: Put and Rep
100- 02 pgs. Mary Shaw (CMU) . Derived Types

101« O pgs. Ws. A. Wulf (CHMU) Access Type Coustanis
102- 02 pgs. David R, Smith (CMU) Access Types

103- 02 pgs. David R. Smith (CMU) The Characters ", %, 4 and |
108 02 pgs. David R. Smith (CMU) Floating Point Values
105~ 02 pgs. David R, Saith (CMU) Reference Manual Frobleas
106- 01 pgs. David R, Smith (CMU) Array 170

107~ 02 pgs. ‘ David R. Saith (CMU) Binary Pilles/Mixed Types
108~ 03 pgs. David R. Ssith (CNU) Control Characters

109- 02 pgs. David R. Smith (CMU) I/0 Buffering

110~ 01 pgs. . David R, Ssith (CMU) Real Numbers

LR R 05 pgs. Ronald Brender (CMU) Qualified Expressions
112- 02 pgs; Ronald Brender (CMU) Scope of Labels

113- 0% pgs. David R. Smith (CMU) Range Constraints

116 02 pgs. Ws. A. Wulr (cMU) Properties of Operators
115« 01 pegs. Joseph NewcImer (CMU) Inadequacy of Index

116~ 02 pgs. Joseph Newcomer (CMU) Problems with ORD

117- 01 pgs. Nassi (DEC) String Length

118~ 01 pgs. I.C. Pyle (York) Ambiguous Studs

119-
120-
121-
122~
123-
128
125«
126
127-
128«
129-
130-
131
132
"133-
134
135~
136
137-
138-
139~
180-
141
14824
1493
144

145

02
02
93
03
13
03
01
01
01
ok
01
01
10
03
05
Q1
01
01
00
00
00
00
02
03
02
01
01

pEs.
pgs.
pgs.
pEs.
pEs.
pES.
pEs.
pgs.
PESs.
pEs.
pga.

pgs. .

pes.
pgs.
pgs.
pes.
pEs.
pEs.
pgs.
pes.
pEs.
pgs.
pes.
psa.
Fes.
pes.
pes.

- ¥ -
Goodenough (SofTech)
(Ger.MOD/IABG)

Bruce Leverett (CMU)
(Ger.MOD/IABG)

E. Van Horn

Firth (RMCS)

Pinseth (MIT)

Finseth (MIT)

Finseth (MIT)

Firth (RMCS)

Finseth (MIT)

Finseth (MIT)

Firth (RMCS)

Firth (RMCS)

fireh (RMCS)

Thompson (TRW/DSSG) .
I.C. Pyle (York)

I.C. Pyle (York)

T. Sepan (Hugher)

F. Cox (Georgia Tech)
P. Cox (Georgia Tech)
P. Cox (Georgia Tech)
Habersann (CMU)
Habermann (CMU)
Burkinshaw (IABG)
Michael Compton

Michael Compton

B 1 Ly

PAILURE Exoeption ambiguity
Separate Cospilation

Short Circuit Conditions
Scope of labels

Dynamic Storage Allocation
Task Rustime: Identity

Tab Stop Columns

Striﬁc Leagth

FREE Statement needed
Identification of stubs
Based Vartiables
Independeat Compilation
Overloading

Access Coanatant

Virtual Record Components
Arrsy Aggregates

Aggregste Notation

Syntax of Names

Need BLOCK DATA

Viaibility Control
Visibility Restrictions
Separate Subunits

Value Returning Procedures
Parsseterized Types
Default Values for Paramseters
Order of Compilation

ZXIT and other Loop Constructs

ik

o et a2

R MG o A i e e ne

146~
147-
148~
149~
150~
151~
152-
153~
154~
155-

156=~

157-
158~
159-
168-
161-
162-
163-
164~
165~
166~
167-
168~
169-

17¢-

171-
172~

97
T
02
o1
92
91
91
”n
92
01
01
04
'}
92
'
04
82

82
92
T
T
1]
T
o
0

" 99
”

pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.

pgs.
pgs.
pys.
pgs.
pgs.
pgs.
pgs.

pgs.
pgs.
Pgs.
pgs.
pas.
pgs.
pgs.

- 95 -

MacLaren (Boeing)

MacLaren (Boeing)

Levine (Into;-otrics)

Levine (Intermetrics)

Levine (Intermetrics)

Levine (Intermetrics)

Levine (Irtnrlitrics)

Levine (Intermetrics)

Levine (Intermetrics)

Levine (Intermetrics)

Levine (Intermetrics)

T.
R.
R.

Je

Jones

Schwartz

Schwartz

Keeton (MITRE)

Pirth (RMCS)

D.

D.

Perry (CMU)

‘Perry (CMU)

Perry (CMU)

T.
T.
A.
A.

A.

Galkowski (1BM)
Galkowski (IBM)
Edwards
tdwards

Edwards

Joe Parley

Je
Je

A.
A‘

Edwards

Zdwards

Interrupt Handlers

Shared Data

Numeric Literals

Variant Records

RANGE notation

Loop and Block Label Scope
Array Bounds Specification
Enumeration Literals

Integer Type Definition Porm
T'PRED and T'SUCC

Co-pﬁnont Selection

Diverse Points

Aliasing ﬁo:trict!ona
RENAMES Statement

Pragma Semantics

Models of Access Types
Permissive Syntax

Partial Aggregate Initialization
Consistent Initialization
Pield Names in Variants

Recursion is Efficient

'Obsolnto

Obsolete
Obsolete
Obsolete
Obsolete

Obsolete

173-
118
175
176-
1717
178~
179~
180~
181~
182-
183-
184
185
186~
187-
188-
189~
190-
191-
192~
193~
194
195-
196-
197-
198-
199~

00
00
00
00
01
Q1
01

01

o1

01
01
02
02
01
at
01
o1
01
01
01
o1
02
63
03
02
02
02

pgs.
PEs .
pes.
PEs.
PEs.
pss.
PSS,
pEs.
pEs.
PRS.
pes.
pas.
pEs-
pes.
pEs-
pEs.
pEs.
pEs.
pss.
pES.
pas.
pgs.
pRS.
pgs.
vEs.
pPES.

PEs.

J.
J.
J.
D.
T.

T.

v 36 = -
4. Sdwards
A. Bdwards
A. Bdwards
Jones
Hastings (DEC)
Rastings (DEC)

John Sauter (DEC)

Dennis Noble
Michael King
Hichuolnlint
Michasl King
Michael King
Michasl King

Michael King

(WWC)
(] [+
(N¥C)
(W¥C)
(NWC)
(W¥C)

R.
r.

R.

R.
R.

Rrutar
Krutar
Krutar
Krutar
Xrutar
Krutar
Rrutar

Krutar

(¥RL)
(MRL)
(NRL)
{NRL)
(NRL)
(NRL)
{(NAL)
(WRL)

Mare Hubbard {NWC)
H. Guber (NVWC)
H. Wsttstatn (IABG)
4. Hubee (WWC)

Levine (Intermstrics)

Obaclete

Qbsolete

Obsolie-

MOD Punction

Yarying Strings

Functional Argusents
Floating EBxponents
Intervrupt Handling

TAB8 Character

Haed for Simulated 13
GET_LINE and PUT_LINK Needed
gxception Handler

Nesd Mors Loop Constructs
Lack of Usar Defined Literuls
PACKAGE ansd TASK' ~ }
PROCEDURE and BUTAY

Entry Calls

Subérogrl- Calling
subprogrss Calling

AND THEN and OR gLse
Comment Conventlonm

EXIT Statement

fixed Point Rounding
Generic Facility Inadequatd

tasking Fsailities

_ Scope Rules Asbiguous

short Cir-ult Conditions

200-

201-

202~ .

203-

208~

205-
206-
207-
208-
209-
210-
211-
212-
213-
218-
215
216-
217-
218-
219-
220-

221+

222-
223-
228

225~

226~

01 p;a.
01 pgs.
03 pes.
02 pgs.
ozlpcs.
02 pgs.
G2 pgs.
00 pgs.

‘00 pgs.

00 pegs.
00 pgs.
00 pgs.
00 pgs.
00 pgs.
00 pgs.
00 pgs.
00 pgas.
03 pge.
01 pgs.
02 pgs.
02 pgs.
02 pgs.
02 pgs.
02 pgs.
01 pgs.
03 pes.
02 pgs.

"E11is Thomas (SDV.)
" . Notkia (cMD)
"D. Notkin (CMU)

" D. Motkin (CMO)

";q1ohaol Compton
"L J. Gallaher

_ K. Johnson (Boeing)

Goos (Karlsrube)

‘Goos (Karlsruhe)

UK DOI RTL/2 Team

UK DOI RTL/Z Teas

TSI AT A L KR QU 105 SR e

e S B et O T et e

et

ST

‘Levine 1i§§i§lttrioo) Lccess Constaats too Restriated:

‘Levine (Intermetrics) Anonywous Access Types

sLeviae (Intersetrics) Ada Graamar Allows !l?cy Flelds

ldentificution of Seuél
boriv?d Types in Ada
Ada syntax

Ada .1/0

Michael Compton noiax Generic Parm Constraints
Michael Compton Range Checking

Assortion Faoilities

Variant Records of Type Access
Macro Facility

R. Johnson (Boeing) PREE Statement is Needed
J. T. Galkowski (IBM) Field Names in Variants
Goos (Karlsruhe) Subprogram Calls
Genaric Clauses

Access Type Objects

Ellis Thomas (SPL) . Inconsistenales in the LRM

UK DOI RTL/2 Teams Hull Statement

UK DOI RTL/2 Team Use Clause
UK.DOI RTL/2 Team Empty Subranges
UK DOI RTL/2 Team Types of Array Bounds
UK DOI ATL/2 Team Named Blocks
UK DOIXI RTL/2 Toqu R;ncc.location
Loop Indices

UK DOI RTL/2 Team Syntax of Names

Visidility Rules

ks 2o e v+ e

:
-
=3

o e i L e o

227~
228-
229~
230~
231
232-

233

234-
235-
236-
237-
238-
239-
240-
201-
242
283
FIT
285.
206-
287-
208
249-
250-
2%1-
2%2-

253-

03
02

o0

00
00
00
00
00
00
00
20
00
00
90

00

00
00
Q0
00
00
00
00
00
Q0
00
00
00

pEs.
pEs.
PES.
pEse.
pEs.
PES.
pEs.
pPEI.
PEs.
pEs.
pEs.
pgs.
pEs.
pEs.
pEs.
pEs.

pga.

pEs.
pEs.
pEs.
pgs.
PEs.
pEs.
pgs.
pEs.

UK DOX

- 98 -
RTL/2 Team

UK DOI RTL/2 Team

Miohsel Compton

Michael Compton

Michael Compton

Michael Compton

Michael Compton

Michael Compton

Michael Compton

Michael Compton

Michael Conp&on

Michael Compton

Michsel Compton

Michael Compton

Michael Compton

J.

d.

A.

A.

Sdwards

Bdwards

J. A. Edvards

Joe Farlsy

J.
J.
J.
J.
J.
J.
3.

J.

A.
A.
A.
A.
A.
T.
T.
T.

Rdwards
Edwards
Edvards
Edwards
Edvards
Galkowski (IBM)
Galkowaki (IBM)
Galkowski (IBM)

Arrays and Strings

Syataz Rules for Types

USE Clause Redundant

Short Cireuit; Boolean Syntax
SELECT Statement

Pixed Point Yariables

Garbage Collecotion

READONLY EXPORT Desired

RANGE Attridute

Private Parts of Specifications
Restricted Types

Pormacted I/0

Interrupts; Context Switching
txception Declaration
Compilation Unit Genealogy
EXIT and ABORT

Short Circuit Coaditions
Exception Overhead; Assert

Bitatring Literszls

© Storage Management

Package Declarations
Task Scheduling; Selest
POR/USE Overloading
Selector etc. Syntax
WHILE...LOOPF Superfluocus
Position of USE ‘

Functions and VAP's

- 99 .

254, 00 pgs. ’J. T. Galkowski (IBM) Pordid Intertask Data Sharing
255~ 00 pgs J. T. Galkowski (IBM) Current Tasking Best

256~ 00 pgs. J. T. Galkowski (IBM) Current Binding Semantics Best
257 00 pgs. J. T. Galkowski (IBM) Overlapping Slice Assignment
258 00 pgs. A. G. B, Cooper ' Generio Type Pnr:ﬁccoru

259« 00 pgs. A. G. B, Cooper ‘3¢loetlv. Isporting

260~ 00 pgs. A. G. B. Cooper Bit Position Attributes

261- 00 pga. A. G. B, Cooper Incrementing eto., (self)

262- 00 pgs. 4. G. B, Cooper OUT Parameters in Calls

263- 00 pgs. A. G. B. Cooper 'Size of Program Units

264~ 00 pgs. A. G. B. Coopoé loneoutl;utty'lnd Addresses
265~ 00 pgs. KA. G. B, Cooper Better Strings Deaired

266~ 00 pgs. A. G. B, Cooper Subtypes or Anonyloua.rypoa
267- 00 pgs. A. G. B. Cooper Keyvord Parameters Liked

268~ 00 pgs. K. G. B. Cooper Operstion Inheritance

269~ 00 pgs. $. G. B, Cooper Overloaded Relational Operators
270- 00 pgs. A. J. M. Van Gils Syntasx of Accuracy-Constraint
271= 00 pea. A. J. M. Van Gils Procedure Call on LHS

272- 00 pgs. - A, J. M. Van Gils Syntax of Prisary

273- . 00 pgs. A. J. M. Van Gils Subprogras Atiributo

274« 00 pgs. A. J. M. Van GQils Short Circutt Conditions

275- 00 pgs. A. J. M. Van Gils WHILE Redundant

276- 00 pgs. A. J. M. Van Gils Private Representation Secificat:
277- 00 pgs. A. J. M. Van Gils Overloading Disambiguation
278~ 00 pgs. 4. J. M. VYan Gtls Give Initiate Parameters

279 00 pgs. A. J. M, Van Gils Consistency for tnaks,inoduloa
280- 00 pgs. A. J. M, Van Gtls ACCEPT Parameters Scope

————— B SN B - g S A AL st i s

281
282-
283-
288

" 208-
© 286

87~
288~
289
290~
291-
292-
293~
294
295~
296-
297~
298-
299~
300~

2f1.

302-

303-
308
305~

306

307~

00
00
Qo0
00
00
00
1]
00
00
0o
00
g0
00
02
N

oo

02

01
21
[}
03
01
01
01
01
02
02

pes.
pes.
pEs.
pEs.
pss.
pgs.
pss.
pes.
pga.
pas.
pea.
pes.
pas.
pgs.
pes.
pss.
pEs.
Pes.
pes.
pca.
pss.
pEs.
pes.
pes.
pEs.
pes.

pEs.

- 100 -
A. J. M. Van Gils
A. J. M. Van Gils
A. J. M, Van 611:».
A. J. M. Van Gils
A. J. M. Yan Gilas
A. J. M. Van Gils
A. J. M. Van Gils
A. J. M. Van Gils
A, J. M.»Van Gils
A. J. M. Van Gils
A, J. M. Van Qlla
A. J. M. Van Gils
A. J. M. Van Gils
William A. Whitaker
William A. Whitaker
J. T. Galkowaki (IBM)
Pirth (RMCS)
#ililam A. Whitaker
William A. Whitaker
William A. Whitaker
Uiillll A. Whitaker
oK DOI Coralbb Teas
UK DOI Zoralb6 Team
£11is Thomas (SDL)
UK DOI Coral6é Team
Goodenough (Softech)

Willism A. Whitaker

Vistbility Lists

Task Variables

Pistributed Systems

Task Termination |

Except Propagstion frowm Readezucu
Representaties of fnumerals
Syntax of Geserio Parameter
Generis lnastsantiation Semantics
Generic Parameters

'Size of Generic Type Parameters
Allow Entries as Generic Paramete
Syntactioc Position of Pragaas
Synsax Ambiguaous

Radix Syntax

Completeness of Formal Syntax
Interface Coavention

Character Literals

Priorities sand Hardware

1/0 Formatting

OPTIMIZE 3SPACE or TIME

Better TIME and INTERVAL

RENAMES Allowed Only as Dsclarati
Use and Restricted

Separate Compilation and Overload
Use and Nase Space

Pixed Point Representations

Use Fortran-like Relational Opera

N

- 141 -
388- @3 pgs. William A. Whitaker Banish vertical Bar (!)
309- 91 pgs. wililam A. Whitaker Rename "Unsafe_Prograsming®
316- 71 pas. l11is Thomas (SDL) Modules Without Bodies
311~ 92 pgs. Thomas & Gilbert (SDL) Local Tasks
v12- 99 pgs. M. Davlin (APSCP/BJB) Banish Subtypes
313- 92 pas. Willism A. Whitaker Right Arrow Symbol
314~ 21 pgs. william A. Whitaker Quote Character
318~ 92 pgs. William A. Whitaker Use *"=* for Assignment
316~ 82 pgs. william A. Whitaker Range Endpoints
317- 82 pgs. - william A. Whitaker MOD and REM
318~ 81 pgs. william A. Whitaker LRM Erratum
319- 22 pgs. Mactaren (Boeing) Timed Out Entry Calls
328~ 1 pos. gllis Thomas (SDL) Number Syntax
321~ 31 pgs. Thomas & Gilbert (SDL) Separate Compilation & Linking
322- 81 pgs. Lieberman & Kiernan Parameter Syntax
323- 1 pgs. Lieberman & Kiernan Meaning of “Module”
324- 01 pgs. Lieberman & Kiernan Eliminate Goto
325- o1 pgs. tieberman & Kiernan Package Elaboration/Initializatic
326~ 21 pgs. v tieberman & Kiernan Lozal Static variables
327~ 92 pgs. T. Conrad {NUSC) Device I/0 |
328~ a1 pgs. T. Conrad (NUSC) !duca:ionai Materials Nceded
329~ 01 pgs. Wwilliam A, Whitaker Parameter Syntax
338~ 83 pgs. william A, Whitaker Ploating Precision not Digits
331- 22 pgs. william A. Whitaker Non-Binary Machines
332~ 91 pgs. William A, Whitaker *po® in Accept
333~ 92 pgs. william A. Whitaker Predefine Operators for All Typet

134- 02 pgs. wWilliam A. Whitaker Selection by Parentheses

[P ———
.

335

| 336~

- 337~
338~
©339-

11 L

341-
42

343-
77}44-
345
346~
347-
348~

349~

. 358-

351~
352~
383~
354~
385~
356~
357~
358~
359~
360~
361~

‘82

92

31

-l

(2
a1
01
[}

82

pas.

pys..

pgs.

pgs.

pgs.
pgs.
pgs.
pas.
pgs.
pgs.
pas.
pgs.
Pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.

pgsi

pgs.
pgs.
pas.
pgs.

Arthur Sorkin (SEL)

-~ 192 ~
Montgomery
Montgomery

Montgomery

‘Montgomery

Montgomery
Montqomery
Montgomery
Montgomery
Montgomery
Mantgomery
Montgomery
Montgomery

Montgomery

Jinet Loule (IBM)

Janet Louie (IBM)

Janet Loule (IBM)

Janet Louia (IBMY

MacLaren (Boeing)

UK DOI Coralff Team

UK.

UK
[} 3
UK
UK
uK
UK

DOI
DOI

‘DOI

Dor
Dot
DOI
por

RTL/2 Team
RTL/2 “ram
RTL/2 Team
RTL/2 Tean
RTL/2 Team

Coral66 Team
Coral66 Team

Proéodurul Variables and Argument
Arrays of Arraye

Locatives

Slicing Clumay

Locli Declarations Verbose
conditional Expcessions Desired
Allow Statements {n Conditions
Bit Vector 6poratott

Null valve ,

VRP's Overly Cpunttatnod
Embedded Comments Dogltcd

Make "_" Mot Significant
parameter Association Symbols
Dangling Rng-roncoo

Word-tevel Raferencing.

Pixed Point Representation
Where is Bit 87

Address Specification Vague
Preemptive Pricrity Scheduling
SUSPEND and RESUME of Tasks
Default Initia) Values for All Ty
The notation .all is strange
precedencs of Unary Operators
MOD Operators

Entry Calls with Timeout
Timeouts

Incomplete Record Assignmant Des!

362~
363~
364~

365~-
366~
367~
268~
369~
379-
371~
372-
373-
374~
378~
376~

377~

378~
379-
380~
8l-
382~
383-
384-
385~
386~
387-
388~

81
2
(3}
el
21

02

82
91
1
o1
(1
a9
o8
(1]
a9
[]]

n

81
[}
[}
a1
ae
o9
[1)
(1]
a0
L

pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.
pgs.

pgs.
pgs.
pas.

pgs.

pgs.
pPgs.
pas.

pgs.
pgs.
pas.
p9s.
Pgs.
pgs.
pgs.
pgs.
pas.

-

- 1083 -

DOI Corsl66 Team
UK DOI Coralé Team
UK DOI Coral66 Team
UK DOI Portran Team
UK DOI Portran Team
UK DOI Portran Team
UK DOI Portran Team
UK DOI Portran Team
UK DOI Portran Team
UK DOI RTL/2 Team
Nils Jorgen Olsson
Nils Jorgen Olsson
Sven Tafvelin

Sven Tafvelin

Sven Tafvelin

L. J. Gallaher.
Burkinshaw (IABG)

I. C. Pyle (York)
I. C. Pyle (York)

1. C. Pyle (York)

I. C. Pyls (York)

J. T. Galkowski (IBM)
Arthur Sorkin (SEL)
Bureau of the Census
Bureau of the Census
Bureau of the Census

Bureau of the Census

Quoted Literal Ambiguity
Task Variables

Arrays of Arrays - Strings
Large Attributes

Underflow

Exceptions

Aliasing

Procedure Parameters

Array Layout and paging

1/0 is Inadequate

Text_IC Procedure Names
Built-in Queues

Initiate with Argquments
Waiting tér Resources

1/0 Timeouts

*gxchange® Operator

Leng Identifiers

Real Type Attr: 'LARGE, 'BITS, ef
'SIZE of Access Types

*SI2E of Records with Variants,
When Clause Irregular
Integers as Pure Ranges
Restricted Private Ty.e Init.
Unsafe Discriminant Setting
Need Variable Length Strings
Access to Laternal PForwmats

Type Attrlbuti. in Generics

c..b Syntax Awkvard

Pointgr- to Statts Objeccs
Binary Point Position
Predefine Common Math Punctions

Hake Time an Integer

" Character Set

r)o Puhécton Hames
Sinclo-no-orf Orientation

Allow Entries in Selects
Visibility and Gerartcs
Identifyirng "other® Exceptions
Provide Sets '
Delta B;d Leyvword

Allow Embedded Coaments
Accursoy=Constrsint Syntax
Strings Inadequate

Aggregate ¥otation

Buffer Taska: Rendezvous Delegat:
Task FPamily Attridutes

Garbage Collection

Require Specified Optimizations
Run Tise Envircnment

Many Bodiee with One Name

Braudavay & Loute (IBM) Pixed-point ncpfnaontation.

- 108 -
389- 00 pgs. ¥. 8. Carson
390~ 00 pgs. dayne Johnson (IBNM)
391~ 00 pgs. Wayne Johason (IBM)
392- 00 pgs. _Weyne Johnson <1§n)
393~ 00 pgs. Wayne Johnaon (IBM)
394 00 pgs. Jot as Agerbderg
398« 00 pgs. Jonas Agerbderg
396- 00 pgs. Jonss Agerberg
397- 00 pgs. Arthur Sorkin (SEL)
398- 00 pgs. Villiam Bventof?
399- 00 pgs. ¥illiam Bventof?
400~ 00 ogs. Cventoff & n‘biucvliz
401- 00 pgs. Eventoff & Rabinowits
402- oolpgs. Eventoff & Radinowits
403 00 pgs. Eventoff & Rabinowits
L1+ [2 00 pgs. Eventoff & Rabinowits
205~ 00 pgs. Chrtstopher Henrtch
406~ 00 pgs. Greg Burns (ITT)
207~ 00 pgs. Greg Burns (ITT)
508. 00 pg-.. Harry Carl (Honeywell)
809- 00 pgs. Harry Carl (Honeywell)
410 0~ pgs. Harry Carl (Honeywell)
B11- 00 pgs. Harry Carl (Honeywell)
412« 00 pgs.
13- 20 pgs. Wayne Johnson (IBM)
Nika 00 pgs. Wayne Johnson (IBM)
A5 00 pgs. Srasudavay & Johnson

Fixed~point Representation
Pointing to Static QbJjects

Tise

R -

%16.
M7
518.
819
420-
321.
422-
»23-
B28-
¥25-
826~
827-
828
829«
430-
8314
532-
#33-
334-
838
836-
837.
838-
839-
Bio-
s41a
§82.

02
01
02
01
01

01

9
01
or
01
o1
01
01
01
01
01
01
01
01
01
01
01
02
02
02
01
00

pes.
pEs.
pEs.
pEs.
pes.
pes.
pes.
pEs.
pes.
pes.
PE3.
pes.
pEs.
pgs.
pEs.
pes.
pgs.
pes.
pEs.
pes.

pEs.

pEs.
pgs.
pEs.
ﬂ’l.
pEs.
pgs.

- 105 -

A. J. Scarpelli (APAL) Access Type Initialization

A. J. Socarpelli (APAL) Access Types for Small ODJoota.'

Richard Wolff (MWC)
¥. Roos & J. Cross
D. Holdsworth

K. Hopper

Charles EBckert
Charles Rakert
Charles Bckert
Charles Zckert

K. Hopper

K. Hopper

John Hutchison
John Hutchison
Bill Robinson

Bill Robinson

‘P. Burkinshaw (IABG)

P. Burkinshaw (IABG)
P. Burkinshaw (IABG)
Ellis Thomas (SDL)
8111 Robinson

Bill Robdinson
William A. Whitaker
William A. Whitaker
Firth (RMCS)

Brian Hichlpnn

Thomas J. Wheeler

Coaversion of User«Defined Types
Component Names as Generic Pars

Fixed-Length-Result 'Rep Desired

Exist Predicate for Files Desirec

Time ahould be Pixed or Integer

‘Fized-Point Scale Factors Desirec

Machine Code Insertions Clumsy.

.Allow .#, #., and ¢ for Float Le:

Require Init. (given no IO_VAL_!I
Priority on Eatry Queues
Anonywous Types Lack iitributes
Dynamtc Length Speo for Access T;
Erd of File ss Predicate

VRP = Function + Pragma

Multiple A-iicu-onts

Por Variable Scope (Exceptions)

Collapsed Else's; Multiple Ead If

Subprogras Names in Visidility L:

Multiple Subunits ~ Same Name

Logical Operators' Precedence Ru:

Expression Bvaluation Order
HOD

Remove Exit When

Entries Deolared on Task Bodies

Accept Syntax

.

-) L £
- 166 ~
443~ 06 pgs. ravid Gries And then vs. Cand
444~ 91 pgs. T. C. Pyle Entries as Subprograms
445- 21 pgs. Maureen E. Gordon Restricted Clause and Enclosure
446~ 1 pgs. Maureen E. Gordon Use Clause Redundant
447- #1 pgs. Maureen E. Gordon Order of Declaration Elaboration
448~ #1 pgs. Maureen E. Gordon Logical Operators' Precedence
449~ 91 pgs. Maureen E. Gordon Allow Body Separation Everywhere
4590~ 91 pgs. H;ure;; E. Gordon Allow Refesrence/Copy Choice
451~ 91 pgs. Maureen 2. Gordon Clarify Unsafe Conversion
452~ 21 pgs. Maureen E. Gordon Entry Call Time~Cut
453~ 91 pgs. Maureen E. Gordon Data Locking
454~ 93 pgs. Ronald Brender (DEC) Eliminate/Clarify Environment Pr:
455~ 49 pgs. Dan W. Scott Array Slicing; Array Syntax
456~ g¢ pgs. Dan W. Scott Strings
457~ 40 pgs. Dan W, Scott Constant Record Components' Namet
458~ 0 pgs. Dan W, Scott Discriminants
459~ 08 pgs. Dan W. Scott Generic Parameter Permutation
468~ 90 pga. Dan W. Scott . Reentrancy; Own
461~ 98 pgs. Dan W, Scott Humorous Comment
462- 9% pgs. Dan W, Scott Representation
463~ 88 pgs. Dan W, Scott Representation of Arrays
464~ §0 pgs. Dan W, Scott LRM Index Shartcomings
465~ 968 pgs. ‘nav!d T. Moore Resumptive Excertions
466~ 98 pgs. David T. Moore Identifying Instances of Exceptic
467~ 90 pgs. . David T, Moore Loop Indices' UDeclarvatiosn
468~ 99 pgs. Ray Van Tassle Ubsolete
469~ 98 pgs. 1. C. Pyle 'Mdress of an Overloaded Subproc

- 107 -
470- oo'pgs. I. C. Pyrle Type of ‘'Delts and 'Ssall?
!71- 00 pgs. I. C. Pyle What are 'System' and 'Option'?
412 00 pgs. I. C. Pyle . Priority as Type Nase
473~ 00 »gs. I. C, Pyle Generic Subpqog as Generic Pars
L34 2 00 pgs. I. C. Pyle - Pield Names, etc. as Generic Par
UTS; 00 pgs. I. C. Pyle Cxceptions in Generic Packages
476~ 00 pgs. 1. C. Pyle Types as Array Bounds
477- 00 pgs. . Dan W. Soott . Access Types: Allocation, Init.
478- 00 pgs. Dan W, Scott Access Typo Initialization
879~ 00 pgs. Dan W, Scott ‘Pree’ Operation
480~ 00 pgs. Dan ¥W. Scott Dereferencing Considered Clumsy
a1 00 pgs. Dan W. Scott .all of Arrays
882 00 pgs. Dan W. Scott) 4% and *_" in Identifiers
he3- 00 pgs. Dan W. Scott Qualification Syntax Disliked
483 00 pgs. Dan W. Saott 'Restricted’; Bloocks® Visibdility
48s. 00 pgs. Dan ¥. Saott Constants
486~ - 00 pgs. Dan W. Saott Types Derived fros Private Types
487- 00 pgs. Dan W, Saott Multideseusional Arrayp
488 00 pgs. Dan W. Saott Scope names
889~ 00 pgs. Dan ¥W. Socott - {...]1 tn Meta-Syntax
490 00 pgs. Dan ¥W. Sgott Selected Component Syntax
491. 00 pgs. Dan H.>Seott Corrigendus 4.1.3
492- 00 pgs. ‘ Ada Group Tokyo ¥hat i3 Systea?
493« 00 pgs. Ada Group Tokyo 'aering'ﬁ' and “"string 3 string"®
U9k 00 pgs. Ads Group Tokyo Strings of Length One
495 00 pgs. Ada Group Tokyo Non-Access Incomplete Type Decl.
396~ 00 pgs. ldlAGPOH’ Tokyo Is a Subty Cospatible w/its Base
; |
B e AL, %, om0 1 e Al 3 LBAP e g Ny V3 o e, S

,
B

- 108 -
897 00 pgs. Ada Group Tokyo Allow Iait. for Non-Record Type
498 00 pgs. Ada Group Tokyo Inheritance of Subprg by Derive
499 00 pgs. Ads Group Tokyo Syatax of cnnrnoﬁcr_Litornl?
500~ 00 pgs. ' Ada Group Tokyo " Allow Short_lInteger +» Integer
501~ 00 pgs. Ads Group Tokyo Co-puczbzltef among Int, Short .
502~ 00 pgs. Ada Group Tokyo What are Ploating & Fixed point
503~ 00 pgs. ‘ Ada Group Tokyo Clarify ‘'saall and ‘large
508 00 pga. Ada Group Tokyo ‘small and 'large orkttxnd Poin
505- 00 pgs. Ada Group Tokyo Make I ia ‘Length (1) Statie
‘ 506~ 00 pgs. Ada Group Tokyo What is the fyue of Subarraya?
507~ 00 pgs. Ada Group Tokyo Type of Range Componeats in Por
508~ 00 pgs. Ada sroup Tokyo Sounds of Dynamic Arrays
509~ 00 pgs. Ada Group Tokyo I3 *2 | Others s> 0° Ln(li?
510~ 00 pgit. Adas Group fokyo Allow Only One Dynamic Arr per '
511- 00 pgs. Ada Group Tokyo ¥hat is complete Reqord Assignm.
i 512« 00 pgs. . Ads Group Tokyo Arrays vith Index Type Integer
513« 00 pgs. Ads Group Tokyo Multi-dims Arr as Arrays of Arra;
18 00 pgs.] Ada Group Tokyo What 1s a Simple Mame?
515- . 00 pgs. Adas Group Tokyo Ambiguity of Sudprg as Type itt
516~ 00 pgs. Ads Group Tokyo - Dofiuo.?ypo Compatibility for O *
517« 09 pgs. . Ada Group Tokyo Logical Gper Arrays of Diff Bou
518 00 pgs. Ada Group Tokyo Define Result Accuracy Precisel
519« 00 pgs. Ada Group Tokyo Is Integer®®] Allowed?
520~ 00 pgs. Ads Group Tokyo Ilbrovo Type Qualification Exan
521~ 00 pgs. Ada Group Tokyo Define Int (Real) Unambiguously
S22~ 00 pgs. Ads Group Tokyo' Clarify Static Expressions

523~ 00 pga. Ada Group Tokyo Compatibility of Multi-Oim Arra

4

2=
525-
526~
5?7-
528~
529-
530~
531~
532~
$33-
538~
535~
5§36~
537~
£38a-
539
540«
541-
542«
543.
548
545.
546«
547
548+
509
550-

00
Q2
00
00
00

00

. 00

Q0
00
00
0o
34
00
g9

.00

00
Q0
00
Q0
00
00
00
00
Q0
00
00

00

pBY.
6.

PES.

PES.

PES.
pEs.
pES.
2 £8
PES.

12 £

pEs. -

pEs .
1
pEs -
PES.
TR
P83,
TR
PES.
ogs.
pEs.
12 £
pESs.

PEI -

pes.

PEs.

P‘!.‘

Ada

Maureen E. Gordon

Ada
Ada

Ada

Ada

A&l
Ada
Ads
Ada
Ads

Ads

‘Ads

Ada
Ada
Ada
Ada
Ada
Ada
Ada
Ads
Aca
Ada
Ada

Ada

Ads

Ada

109 -

group Tokyo

Group Tokyo
Group Tokyo
Group Tokyo
Group Tokyo
Group Tokyo
Group Tokye

Group Tokyo

Group Tokyo

Group Tokyo
Group Tokyo
Group Tokye
Grodp Tokyo
Group Tokyo
group Tokyo
Group Tokyo
Group Tokye
6roup Tokyo
Group Tokyo
Group Tokyo

group Tokyo

group Tokye’

Group Tokyo

group Tokyo

¢roup Tokyo

Group Tokyo

What Ls a Qualified Variable?
Iaterleave Reps. with peclarstio
txception Propsgation
Dtsnllow-Ovorlo.din; of Generica
Inter-Qverload of Generic & 3Subp
Generic Overloading
Iaprove Rep/Aggregate Syntax
ciartry eInteger®™ in Appesndix A
Prag Envir., Include Change Sem.
Clarify Optimize Pragsa
¢Clarify Page Pragsa
Clartfy List Pragss
Clarify Include Pragms
taprove LAM Index

’ iraessed Objcoti Passed "1
Define Label after Eﬁd Loop
Sync;x'at Modules Ambiguous
Are Defsults Allowed ftor CutklnC
Can an Out Formsl be Read in Bod
Do Cnatr on Actusl Apply to Form
Can Recursive Subprograms be Inl
Define Identity of Signatures
Check Func. No_Val_Err Staticall
Are Defaults Part of Signatures?
Label Scope
Naae Spsce of Labels

Clarify OQverlosding vs. Hiding

551,
552
553~
554~
555«
556
557-
558«
559~
560
561~
562-
563
564-
565-
566
567~
568-
569-
570-
571-
572-
573~
STl
575-
576~
577-

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
a0
00

00

00
1}
00

00

0o

00
00

PEs.
pEs.
pPEs.
PEs.
pEs.
pEs.
F89.
pPgs.
ogs.
pPEs.
pgs.
PEs.
pES.
PE3.
PEs.
pEs.
pPES.
pgs.
pEs.
PES.
PEY.
PES.
pgs.
pEs.
pEs.
PES.
PES.

- 110

Ada Group Tokyo

Ada Group To

Ada Group To

Ada Group To

Ada Group To

Ada Group To

Ada Group To

Ada Group To

Ads Group To

Japan

Japan

"Japan

Japan
Japan
Japarn
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan

Japan

Joint
Joint
Joint
Joint
Joint
Jotnt-
Joint
Joint
Joint
Joint
Joint
Jaoint
Joint
Joint
Joint
Joint

Joint

kyo
kyo
kyo
kyo
kyo
kyo
kyo

kyo'

‘Japan Joint Systems;

Systems
Systens
Syséo-s
Systems
Systems
Systoiu
Sysio-

Systems
Systess
Systeas
Sys:oli
Systeas
Systems
Systems
Systems
Systess

Systess

Clarify Scope and Visibilicy
Contents of ¥Yisibility Lists

Cse® Conflict Rule

What is tre End Ident. in Accept?
Explain Tasking Except. fn Task ¢
What .s a Program Library?

Define Predefined Except. Precise
Cross-Reference Tasking Errcr

Let "Other® Includ Qut of Scope £
ilboddod Commenty Desired
Parttal‘lttr Inheritance by Subty
Derived Access Types

Subtypirg and Recursive Types
Expr. Evaluation Order QOver-Restr
Corrigendum X.5.2 ‘

Free Operation Desired
Huletdln..lrrtys as Arrays of Arr
Default Positional Parms. Desirec
Label Scope

Selective Import Desired

Define Label after End

Clarify Initiation

Corrigendus '0.Y

Specifying Encleosing Unit of Sube
Opts Discussions Belong in Ratior
Disignator II'GCHOPLC Paraseter

Type of Length Expression

PPN

e

578

579-

580-
581~
582-

- 583-

584«

588

586-
587-
588-
589-
590-
591
592-
593-
598
595-
596~
597
598-
599-
600«

601-.
- 602~

603-
604~

00
00
00
00
00
00
00
00
00
00
00

00

00
00
Q0
00
00
Q0
00
00
00
00
00
00
00
00
00

pEs.
pEs.
PEs.
pgs.
pgs.
Pgs.
pEs.
pEs.

pEs.

PES.
pEs.
pgs.

pE.

pEs. .

pgs.
pEs.
pPgs.
pEs.
PE3.
pEs.
pPEs.
pEs.
pgs.

pEs.

PEs.
pEs.

Japan
Japan
Japan
Japan
Japan
Japan
Japan
Akira
Akxf.
Akirs
Akira

Akirs

Bjarne Dacker (Sweden)

Bjarne Dacker (Sweden)

Thomas
Thomas
Thomss
Thomas
Thomas
Thomas
Thomas
Thomas
Thomas
Thomas
Thomas

Thomas

|

N

- 111 -

Joint
Joint
Joint
Joint
Joint

Systens
Systems
Systems
Systeas

Systens

inprovc 1/0:

Joint Systess

Joint Systeas

Nagashima (CMU)

Nagashima (CHU)

Magashima (CMU)

Nagashina (CMU)

Nagashinma (CMU)

J.
J.
J.
J.
i
J.
J.
J.
J.
J.
J.
J.

‘8jarne Dacker (Sweden)

Peanello
Pennello
Pennello
Pennello
Pennello
,Ponuollq
Pennello
Pennellio
Pennello
Pennello
Pennello

Pennello

Improve Other-Language Interface
Tersinals, Records
Corrigendum 14.,3.2

c;lrity Definition of Aliasing
Overloading Disasbiguation

Syntax Irregularities

Pragmas etc. Are Not Language Iss
Make Fixed-Point Delta BExact
User-Defined Assignment; VRP3 on
Allow Entry Overloading

Allow Dororr;d Const as Discrims C
Provide Discrim Canstr in Allocato
Defining Aécopt/Call,lolationl at
No-Wait Message Passing Desired
Dynamic Task Identification Desir

Subtypes as Ranges

Add User-Defined Operators

Condlttﬁnal Expressions Valuable
Iterators Desired

"Restricted”™ Overloaded

"Wev® GOverloaded

Base-Type PFunction

Unordered Enumerations Desired
“Range" Overloaded

Distinguish Loop from Goto Labels
"Is" O;crloldod '

Separate Visibility froas Importat

605~
606«
607~
€08«
609-
610~
611«
612«
6§13~
618
615~
616«
617«
618-
6§19«
620~
621-
622-
623~
624~
625~
626
627-
628~
629~
630~
631~

00
00
Q0
00
00
00
00
00
00
00
0¢
00
00
o0
00
00
00
00
00
00
00
00
00
00
90
00
00

pEs.
Pgs.
pEs.
pes.
PEs.
pgs.
pes.
pes.
pes.
pESs.
pea.
pes.
pgs.
pEs.
pgs.
PES.
pes.
Pgs.
pes.
pEs.
pes.
pEs.
pes.
pgs.
pEs.
pes.

pgs.

- 112 -
J.FP.R. VWinkler
Richard J. Meyers
Richard J. Meyers
Richard J. n-i.rs
Richard J. Meyers
Richard J. Meyers
Richard J. Meyers
Richard J. Meyers
Ray Van Tassle
Ray Van Tassle
(Unlv, of Copenhagen)
(Univ. of Copenhagen)
(Univ. of Copenhagen)

(Uniy. of Copenhagen)

‘(Univ. of Copenhagen)

(Univ., of Copenhagan)
(Univ, of Copenhagen)
(Uﬁiv. of Copenhagen)
(Univ. of Copenhagen)
(Univ, of Copenhagen)
(Univ. of Copenhagen)
Frank bLe Remer
Frank De lc;cr
Frank De Remer
Frank De Remer
Frank De Remer

frank De ‘smer

Syntax Comments

Loop & Goto Labels

Overlosding "New"

AND THEN and OR ELSE Anywhere
State Subunit's Identity
Asynchronous Entries

Restricted Overloadel

Types as Discrete Rndgos

Unsigned Integer Type
Incrementing ete (":es")
Distirguishk Types from Subcyp;s
Define Label after End Statement
Label Scope

Syntax of Subprogras Attributes
Isprove Identification of Subprgse
Semantics of Task Failure
Semantics of Abort

Separate Compilation

Allow PFunctional Arguments

Syntax Incomplete and Ambiguous
Regularize Declarstion Syntax
Allow Static Expressions in Prage
Oper Designators; User-Colned Ope
Tighten Up Syntax

Overloading of Keywcrds
Regularize Declaration Syntax (LA

Freer Placement of Rep. Specs.

632~
633~
634~
635-
636-
637
. 638«
639~

- 640~

641
642~
643
64l
645~
646~
647w
648~
649-
650~
651

652

CoM #
001-
002
003

Q90
00
00
00
00
00
00
00
00
06
o4
02
02
o4
a7
01
01
01
v
o
00

pPEs.
PEs.
PEs.
pgs.
pgs.
PEs.
PEs.
PEs.
pgs.
pEs.
PES.
pEs.
PES.
PEs.
PE9.
pES.
PES.
pES.
PEs.
Pgs.

PES.

SIZE

ot
01

01

pEs.
pPEs.
PEs.

Frank
Prank
Prank
Frank
Prank
Prank
Frln?
frank

Frank

Goodenough (SofTech)

De
De
De
De
De
De
De
De

De

13 -
Remer
Remer
Remer
Remer

Remer

Remer

Remer
Reaer

Remer

Firth (RMCS)

Goodencugh (3ofTech)
Benjamin M. Brosgol
Goodenough (SofTech)
Goodenough (SofTech)
Belmont (Intermetrics)

William A.

Villiam

A.

" W. Paul Sherer

Whitaker

Whitaker

Distinguish Loop from Go£o Labels
Restructure Unit Header Syntax
Union Types; Iterators
Condtitonnl Expressions Valuable
Subtypes as Ranges

Cap. Non-Terminals; “..." Metasyn
Restrictive Clauses: "That"
Lexical Grasmar

Remove Redeclaration Restrictions
Optimization and Exceptions

AND THEN and OR BELSE

Omitted Exceptiona?

Semantic Checking of Generic Bodi
References to Unelaborated Object
Efficient Machine Code Insertions
Type in Range Constraints

Order of Evaluation

Allow Overlapping Slice Assignmen

Nesd for a FREQUENCY Pragma

Poldesson (SAAB-SCANIA) Delay and Cyclic Prograss

Douglas W. Jones

SOURCE

Nagle (Ford Aero.)

Goodencugh

Goodenough

Parameters and Tasking

SUBJECT
Integer Semantics
LIR.00)
EVR.002

-

00N~
005-
006~
007-
008-
009-
010-
o11-
012-
013-
018-
015-
016~
017-
018
019-
020-
021-
022-
023-
024~
025-
026-
027-
028-
029-
030~

f R et R RS VR R R ol eas R A ISR SO NP

08
01
01
01
1}
01
0%
02
01
01

pes.
pgs.
pss:
pgs.
pes.
pes.
pEs.
pEs.
pes.
pEs.

i68pgs.

05
02
01
03
Q1
16
03
13
03
11
01
01
02
00
00
00

pEs.
pEs.
pEs.
pEs.
pEs.

pES.

pgs.
pEs.
pgs.
pas.

PEs.

pgs.
pEs.
prs.

pgs.

Pgs.

- 118 -
Firth
Holdvorth
Belmont
lulloni
Goodenough

Gillmann

.Compton

Belz

Gillmann
German MOD
iaborlann et al.
Firth

M. Ben-aAri

8. Ljungkuist
t. M. Greene
D. T. Moors
Robert Milne
MaclLaren
Hilfinger
Firth

Firth

Firth
Brownllie
Firth

C. Yandow

D. T. Moore

J. D. Cox

Comments oa DCR 1-6 (V1)
Standard Portabie Language
Structure of NODULES
Separate Coaptilation

Notes, Aug.® Review Meeting

Ada Syntax
16 Diverse Potnts

Revised DCR.003

Constant arrays and records

Lcr.003

Liverse Points, GANDALPF

Paraseter Passing

Blocks, Short Circuits

Set Type

General Cosments

"ADDRESS ittridute/Registers

General Commeunts

Physical Isterfaces

Comments o= DCR.QG03

Side-Effects

Minutes of Sept. Meeting

Draft on Stde-Effeec:s

Tasking

Though's on Ads TLE
Task/Module Distinction
Indexing iate Records

Proposcd Enhancements

Lo T e o B N R

~

.

L e y
TR ey e i e

00
00
00
00

01

o7’

02
01
01
08
03
03
02

o7

00
00
00
02
00
00
00
00
00
00
00
00
00

pPE*.
pEs.
pgs.
pEs.

I £ 0

pEs. -

pE.
pPEs.
PES.
pEs.
pgSs.

PES.

pPgs.
ﬁ!’-
pEs.
pEs.

pEs.-

pEs.
vEs.
Pes.
pEs.
pES.
ITE R
PEs.
pEs.

- 115 o
J. Byrd
R. D. Johnson

R. D. Johnson

‘M. T. Devlin

Firth -
Goodenough
MacLaren
Goodenough
Davis

Evans
Hilfinger
MacLaren
Hilfinger
MacLaren
Shulsan
Cooper
Archer

Paul Hilfinger
Mark Hapner
Mark Hapner
Mark Hapner
Mark Hapner
Mark Hapner

Mark Hapner

Kenneth Dickoy'

J. K. Reld

Rudolf Marty

Negative MNumbers
Macro Pacility Needed
FREE Nseded
Siaplifications
Comments on v3 DCR's
Comments on v3 DCR's
Coulonﬁs en v3 DCR's
Comments on v#é DCR's
Response to COM.029
Ada Tasking
Comments on COM.0X40
interface Concepts
Comments on COM.042
Inc.rf‘co Casts
Comments on Reference
Binary File IO In Ada
ADA Subset Definition

Cosments on Interface

Manual

Cosats

Paragetsr Binding Semantics

targe Applications

Comment on DCR.002v3

‘Reentrancy

Compound Type Constraints

Tasking

Square Brackets for Subscripta

Intrinsic Punctions for Floats

Psdding on String Assignaent

058«
059~
060~
061~
062~
063~
068
065-

066~

067~
068-
069-
070-
071-
072-
073~
07%-
075-
076-
077-
078-
079~
080-
081-
082-
083
084.

01
09
00
01
02
02
01
01
01
07
02
o1
00
90
(1]
00
00
00
a0
00
00
[]]
00
00
00
00
10

pgs.
PEs.
PEs.
pEs.
pEa.
pEs.
pEs.
pes.
pgs.
pEs.
pEs.
Pgs.
pEs.
pEs.
pEs.
PEs.
pea.
pES.
pEs.
PEs.
pEs.
PES.
PES.
Pes.
PEs.
pE3.

PEs.

- 116 =

Jean E. Sammet

Richard L. Schwartz

Serafino Amoroso
Rodert Firth
WADC-ADA
Robert Firth

Les Maclaren

Lee MacLaren
Paul Hilfinger
Robert PFirth
Mark Davis

Mark Davis

. A. D. H11ll

M. K. Shen
Francisco Oyarszun
James A. Harle
Lloxnnd;p Goodall
D. G. Eiliott
Neil Parker
Thomas R. Amoth
A. 2ilberschats
C. H. Lindsey

W. X, Lalonde

(IABG)

Lavrence J. Gallaher

Raymond T. Boute

Lee MacLaren (Boeing)

I

Need for Resl rx-g,ctécu L

. Aliasing and Ada

BCL's review of Ads

Comment os LIR.203 .-

Statie Vartahlo(¥v »

Ada Cc;':ruettaﬁkrgc'f

Tixed Point chrcioui?ﬁtan”v
Dynamic Priorities

Foreign ProcoduréquralbttEs

Ada ‘Blackboard® Issies

Named Parasetsrs and 6v.rlondzng
Side-effects and Punctionality

1/0; EBxceptions; etc.

‘Suspeasion; SQhoduLLn({ Gato

Priv. part; Derefer; Incomplete t
Listings; Pragmas '
Seleat Statewent .
uunbora}‘lxconiibiliﬁy: ete.

Fors of Manual; Syntuiﬁ“&nc. :
Repeat Until and vnzxa'hd

Accepts ve. “Parts” ' ‘
Neologises; Yartous Polnta
Strings o

Systems Programsing: 'arioﬁa Poin
Sc*eduling; Iterstion '
Arbvitrary Restric: Variocus Points

Object-Oriented Synchronization:

i g Ay B At

. .‘ - e . - A . ‘ N I ,’

085

086~

087-

© 088«

089-
090-
091
0924
0913-
098
095-
096-
097-
098-
099-
100~

101-

102-
103
104
105
106
107
108
109
110

03
01
0t
00
oN
00
00
00
00
00
1]
oo
00
00
00
03
02
0
00
00
00
00
0o
02
11

00

PEs.
pEs.
begs.
PEs.
pgI.
pEs.
pgs.
pEs.
Pes.
pPES3.
PES.
pEs.
pEs.
pgs.
pgs.
pEs.
pgs.
PEa.
pEs.
pgs.
pEs.
pEs.
PESs.
pEs.
pEs.

PEs.

e e it b gy =)

- 117 <
Hillias Whitaker
MacLaren
MacLaren
(Univ. of Tokyo)
MacLaren
Dr. Neumana (Germany)
Dr. Neumann (Germany)
Teodor Rus (Rumania)
(Finland)

Andrew Arblaster

Peter Wallia

(Germany)

¥. R. LaLondo
Thomas A. Maroiniak
A. K. Chandler
rirth (RMCS)

Firth (RMCS)

Firth (RMCS)

R. Schwartz (SRI)

G. Bage (L M Ertcsson)

Polkesson (SAAB~SCANIA) Cycles: Delay and 'Clock

J. Welsh & &A. Lister
(88K Inc.)

Davis Stevenson
(Intel Corp.)

(Univ. of Copenhagen)

Lok ——

Pascal Standarda Meeting
Waiting st Scope Exit

Ko Tasking Errors in Servers
Give Examples or.P:zhologlou
Eatry Pamilies vs. Task QbJects
Extended Rendezvous

Telegram Communication

Semantic Formalization

Various Points

Ruman Faators Repo.t

Literals of User-Defined Type
Else Syntax Error-Prone

Strings .

Permanent Data 3t-uctures ete.
Constant Graphs

Recursion 13 Efficient ;
Overloading

Low Level Taaking

Artificial Intelligence Applicatt

Gene~alization of Tasking

Tasking: CCSP and DPS

Task Efficiency ind Multiprocessi
Fairness and the H-N Technique
Extensions

Comments on Prelisinary Ada

-

POS #
el
892
3

DCR #
d01vd
802v4
983v4
984v3
#0Sv3
996v3
297v3
6d8v4

OPA §
2001
082
283
804
(] 1]
LI
087

size

1 pgs.
3 pgs.
81 pg.

SIZE

a1 pgs.
31 pgs.
82 pgs.
91 pgs.
#1 pgs.
d1 pgs.

92 pgs.

82 pgs.

SOURCE
UK MOD
UK MOD

- 118

Plr;h (MOD)

SUBJECT

e e s ey S BT IR R T T e

SUBJECT
Intecrupt Handling
Modern Architectures

Side Effects and Optimization

parameter Binding Semantics

parametsr Passing Conventions

physical Interfaces

Array Slice Assignment

gxceptions In Declarations

Real Time Clock

Side-Effects and Punctionality

Type Compostion

SOURCE
Design
Design
Design
Design
Design
Design
Design
Design

Team
Teanm
Tean
Team
Team
Team
Tean

Teamn

SUBJECT
Transfer Statements
Garbage Collection
Composite Type Equality
Restricted Types
Access Varfable Initlalization
Access Types, Allocators
Spin Locks, etc.

Punctions, VRP's

S A (T T F Lt

299
e
1l
812
913
914
215
216
17
918
a19
220

N S I e Y

Design
Design
ncqlgn
Design

_ Design

Design
Design
Design
Design
Design
Design
Design

- 119 -
Team
Tean
Tean
Team
Teasm
Team -
Team
Team
Tean
Team
Team

Tean

Cumulative Processing Time
Type TIME

Parameter Passing
Exception Handler

Array Aggregates

Null String

NO_VALUE_ERROR

Compilation Unit Naming
Constant Record Components
Syntax: (name.ldesignator
Task Initiation

Task Procedures

- e

APPENDIX G

TER TOPICS, SUMMARIES, AND EXTRACTS

!

Add:

Chagter 1

Language subsets: 5

Change: Make declaration syntax more unifors: 30 .

Ada:

Recuna

Crange
wike:

isprove syntax: & .
‘Require blocks rsther than sequence of statements: 30

Ghaotec 2

Abbreviations for keywords: 3, 30

lzbeaded comsents: 30, 2

Alternats character set supporet: 13

Sit string constants: 13, 41, 44, S1, 5§
: Eases other than 2, 5, 10, ang 16: 1§

ldentiiiers
: Make "_* rcnesignificant: 30, <8
* " in ‘gentifiers: 19
Leng icencifiers: 19, 37, 5

Recuna: Significance of “_* in tokens: 7

Aad:

YT H

RERve ST

a <

Strings: 9. 35, 38, o8, 55, 81, 63, iz
Bit handling: 6, 71, 77
Function as aats: 7
Multieievel structures: 3
Reference varisdles: 7, 19, 30
Sisula classes: 7
Static allocaticn of access aobjects: 15
Unsafe pointers: 14
VYariable declaraticns after local jregram bocies: Sk
Static variables: 34
: "z>" has tuo meanings: 1§, 30
Ranges should 70t nave %0 bSe centiguous: 30
Delta s poor keyword: 19 .
Zxgressions in range constraints(i):
Require specificaticn of aaximum size 3f strings: ¢
Store satrices by column: 's
T7pes oo restrictive: 1% :
ALLow anonyscus types in reccrs fielas: &b
“Se structure egquivaience for arrays: G
Jusranteed cne-step conversicn tetween aerived ypes: :G
Aggregate syrtax: 7
Aggregates: <&, «0
Arrays: 13
inumerstion types: &, 3, 8, 37, ib, %8, on, 15, co
Derives types: 3%
Machire-1independent sita sefiniticn: =z
Cverlosaing: <, i, 35, 31, <&, oI

e e Nk, b

P

Reduna:

Add:
Changse:
Like:

Record syntax: 1§ "

Record variant semsntics: &§

Initialization in declarations: 26

Strong typing: &, 3, 10, 16, 18, 26, <5, 31, 46, b, SO, %2, Se, 58, 61, 62, 63,
71, 72, 13, 17, 80, 86 .

Variant arrsys in records: 86

Arrays with nspecified index range: b6

Type constraints: 1V, 20, 4§ .

User-defined types: 5, 17, &b

Scope for access types: &§

Subtypes: o7

Either subtypes or cerived types: 15

Derived types: :%

Named componsnts in aggregates: <5

. Nusbers
Iaplicit conversion of numeric types (ubea no loss of precision): 30
Fixed-point aelta should be exact: &7, &b
Precision specification: 13

Sbagtac 4

Add:

Change:

Like:

Redund:

Conditional expressions: 7, &8, 30

Multiple assignments: :0 :

Method of expressing paralieliss in expression evaluation: g1
'free' cperstion: <%, 46 .
Standard built-in sach library: 1§

Standara builtin array operations: 16, 15

Accurate fixed joint a-ithastic (specification, coerzion,: o, o5, 8
Cefine machematical properties of user-aefineda operators: }

More control over allocatioa: 13, 1%

Qualified expression syntax: 13

1ime should not de floacting point: 15, vd

User type names snoula be overlosdadle as conversion functioas: 23
Attributes: 20, ¢1, &9

Expression structurs: 19

Array siicing: <%, o8

NG automatic type conversicn: 14
Allocators for access types: !
Array slicing: 1o

Shagger S

Compound statements: 7 .

Sleex exits: 83

Exit from nasea block: 30

femcve aancatcry semicolon before end, elsif, etc.: =0
Allcw mixing of “ana then® ana “:sr else": o

Aliow YRP's as conaitions: :0

Gverlocading rules =00 ccaplicates w.r.:. Darameters: :9

Redund:

Agd:
Change:
Like: -

Add:

Like:

Xeauna:

JR— / t

e w Ly, Y

F.lsu.ts 9 e o : .

Function call syntax: 0, 86 - : B
Keyvord parsmeter-association syntax (:m:, ete.): 7, 19, &1 N
Assert: 30, 54, &4 . -

Label3s and gotos: 1, &, 30, ok o a {
Short circuit comuxona: 18, 54, ob :

L . Loops
aon -oep constructs: 13, 16, &7, 87
Use "ac* not- *100p" as keyword: 19

-Structured prugramming constructs: &, $: 10, 3 .
‘Exit wnea: 3, S, 35 o

Exit: & : . :

Gbaotar §

Functionsl srgumerts: 5, &0, 21, &8, 40, T4, of
Intersixea declarstions: 7

Generalize initialization in type daeclarstions: 30
Not recursive/reentrant declaration: &

Variable rumber of parameters: <9

Guaranteed dy-valus cails: S

lefine parsmeter pDassing: 15

Reference sassing preferred: 14

Functionality should not be zcmpller-verified: v6
lnitialization in declarstions: &9

Cefauil jarsmeters: 7, <9, 35

Recursion: <0, 21, «2

Functions ana VRP's: gV, 22

Parameter mcadés: 36

oJeclarations ‘n blocks: 7

Cefault parsseters: iS5

lnitial values in declaraticns: &5

- Cptionality of bloek doelarluou:- 1

Recursion support: 13
Tasks and Procedures should be serged: S
YRP's: 26, &5

Chagrer 7

umv ropfesonnuom in private art: ¢5

Information hiding/cats abstraccion in nnonl' 10, 14, &0, e
Packages: 4, o, '0, 16, ¢9 o, b0, 0 52, 56, 56, o1, ad, ©
rivate .ypn parts: &, :

Separate specifications: 1. & 13, 19, 38, &7, %0, 36, o9
Nested pacxages: 'S5 ' :

Sceping nisrarchy: '3

Separate specifications: ‘2

£y
s

- i -
Chaguer &

Change: Ciarification of separate compilation ama visibilivy: 1@
Loop index should be vaiid beyonc ena of loop: &i '
Restrictes is poor keyword: 19
Visibility rules disliked: 13, 46, 4¢

Like: Logical scope rules: 1€, 16)

Restricted visidbility: &, 2z, 23, 55, @7

Private types: o7

Use clauss: &5

Redund:

Shantar 9

Add: - Eackground tasks: 13
initiate jarsmeters: 11
Mutusl exclusion to Gata sccess: <<, <3
Timed-cut emtry calls: 30, &6, o7
Suspenc and resuse of tasKs: 52
Easier ¢yciic scheduling: 88
Change: Lisallow cita sharea betueen taaks: <0, <!
forbid aborting or changing priority of parent tasks: o, ¢5
Interrupt semantics: 13, 26, bz
Mors contrsl over scheduiing: 13, &b, 82
Preesptive priorities: 27
Rendezvous too restrictive: 1§
Static pricrity: 1 .)
Like: Tasking: &, 1C, 0, 21, 27, €%, 33, 1V, %, 17, 83, bsl a6, [
Task families: &b .
Rendezvous arguments: z5, 36

" Redund: Tasking too complex: 15

Signals and semaphores: 30

Chacrer 10

Change: Allowing aeferred constants to bs 3et in a separate compilation umit: 3
Have different visibility rules for ssparate compilation: 3G
Separate units should have full upward visidbility: o7

Like: Program structurs: 16
Separate cogpilatiom: 10, 19, <6, 54, 66, 72, 73, ®7

Shaoter 1l

Like: Exception hanaling: 7, 16, z0, 29, 33, 3b, 96, ob
Crangs: Exceptions in aeclarative parts shoula propagate up: b6

Chaster 1z

hac:

Change :
Like:
Recuna:

Add!

Add:

Changs:

Like:
Redund :

Change:
Like:

-8 e

1lype restrictions for generic parameters: &, o5
Component names ag generic parameters: 25
Generics: 20

Generics: z, b, 3b, 56, 68, b4, 87, 56
Generics: 3, 69

Lhapter 13

Overlays: 1, 26

Representation of integers as bit fields: 16.

Records uith overlapping fields: &% -
Representation specification of fixea point binary point: 18, 19
hetier Fortrsn interface: &7

improve alignment specifications: 13

Machine coce inserts clumsy: 15, 41, 47

Incorporats representations intc type aefinitions: &7
Recora reprasentation: 15, 38, 4

Representation specifications: 15, 27, 56, bb
Machine-coce insertions: &7

Gnsafe comversion: 88

Chantar 14

iimeocut ca 1/0: 1

Fortran-iike Formats: G

Mixed-mode files: o5&

A zigh=level real-tizme 1/0 mechanism: 52

ECF not sxception: 14, 62

1/C incomplete: 13

Operating systesm assumed too big: 13

Extena lexg_10: O

1/0 as package: 1, 7

Senc_control, hecsive_control (in Low_level_10}: 1 .

Chagtar 2

Keyworas are ovérloaced: 67
Matching keyworas (eg if -= endif): d7

.

’

T T R 0 Y 15, SR B L) st

You Toaed

24 March 1980

Eormat

Number. Iastitutica {couatryl: author
Geaeral Jescriptioca -~ (R) meaas program was redesigaed.
Original laaguage(s). :
Host computer(s) ~> Target computer(s) (4f givea).
Nusber of Ada statements and ideatifers used (if givea}.

"." !indicates that the laformstioa was aot givea ia the TER

1. Uaiversity of York (Esglaad): I. C. Pyle
Noa-~ext I1/0 of coded <ime signals {a real time
Modula
DEC PDP-11 «> DEC PDP~11
28 statements:; 32 ldentifiers

2. Hughes Alrecraft: Toay Sepaa
Peal time, multiprogrammiang system
Hiftraa (Struntured Tortraa)
DEC PDP-11/70 -> DEC PDP=11/70
276 statemeats: 151 ideatifiers

2, « [Javaal: -
PL/1 syatax checier
CPL-B (PL/I subset) :
- «> Fujitsu M, Hitachi M, NEC ACOS, Mitsubishi Cosmo
478 statements: 10 ideatiflers

4, Aerospace Corp,: Charles A. Crummer

IBM 360/75 => IBM ASP 202
200 statements: 70 identifiers

5, =: Lt. Robert C. Seigrist
. Student text processing exercise
Cobol
Burroughs 6700 -> Burroughs 6700
37 statemen®s: 10 ideatiflers

-2 -

6. lastitute for Defense Ana'yses: V. Schasider
PAS Resl-time executive
SPL (Jovial)

CDC 7600 «> RCA SCP-234
104 stateseats

7. Ilateraatioaal Computers Ltd. (England]l: T. A. Moatgomery, I. Marshall
Formatted listiag of compiler output (CREF, Map, ete.)
S$3 (Algol 68)

ICL 2900 -> ICL 2900
611 statemeats: 230 identifiers

8. Naval Surface Weapoas Ceater: Marce Hubbard
Real time fire coatrol
Assembler
IBM 270, UYK-20 <> UKK-20 ’
191 statemeats: 39 ideatifiers
9.

AMr Force Armament Divisfoa: Lt. Col. Willlam A. whitaker

Iaertial guidance-~computational kernel (R)
Fortraa, Jovial

0 statements: O ideatifiers
10. Computer Scieances Corporation: Dale D. Hur<tig

Real time digital autopilot
Assembdler, Fortraa Subset

HP -> Spectial purvose sicro
148 statements: 118 ideatiffers

11. Chalmers Uaiversity of Techaology [Swedeal: Sven Tafvelis
Data bufferiag and spot Drocessiag ia a radar systes (R)
Pascal

12. RADC/ISIS: Capt. Clair Rolla
Data manipulation, word packiag and uapackiag
Jovial

Honeywell 6080 -> Honeywell 6080
550 statemeats

13. General Dynamics: -

Real«time, multiprogramming, data bases, aetwork support
4
DEC PDP 11/34 <> DEC PDP 11/34

14, IBM Corporation: =

Character handling, video display formatting, coatrol block forwmatilag
Assemblar .
IBM 360 -> IBM 360

689 statements: 336 ideatifiers

15, IBM Corporation: «
Telops: Satellite data capture, storage, and retrieval
Assembler :
IBM 370 -> IBM 370

16, IBM Corporatioca: = |
VEPC: Sigaal processiag simulatioa: bits, arrays, aumbers
~ Fortraa ’
IBM 370 -> IBM 370

17. IBM Corporation: -
Terminal commuaications package: character string traaslatioa
For<raa
Iaterdata 8/32 <> laterdata 8/32
256 statemeats: 35 ideatifiers

18. IBM Corporatioa: - (R) :
Fixed point, 1/0, represeatation
CMS-2Y
AN/UYKST <> AN/UYZL-7
339 stateseats: 99 ldentiflers

19, IEM Corporatioa: -
Signal processing: real-time, low-level 1/0
SPL (Assembler)
CDC 6600 <> AN/UYS-1
625 statemeats: 210 ideatifiers

20. IBM Corporation: -
Bit masipulation, message ‘ranslation, resl time communicatioans (R}
Faortraa, Asseabler
IBM 370 <> IBM 4PL/ML-1

21. IEM Corporation: «
Mathematical computation, real time processiag (R)
Assembler, Fortran
IBM 370 <> IBM UPL/ASP

22. IBM Corporation: -
Real-tine Processing
hssembler
IBM 370 > Zilog 280

23. IBM Corporation: -
Character Handllag, Striag haadliag (M)
Assembler
IBM 370 -> IBM 370

B I e NI el

.-

a4,

25.

26.

27,

28.

29.

30.

32.

IBM Corporatioca: - : .
Striag & character handling, —laor mathematical computatioas
PL/Y .
IBM 370 <> IRM 370
155 statemeats: 31 ideatiffers

IBM Corporatioa: -
Solo: Siangle-user operatiag system
Pascal
CEC PDP~11/85 <> DEC PDP-'1/45
1288 statemeats: U462 ideatifiers

Crumman Aerospace Corporatioa: Charles Mooaey
Real time tralaer: equatioas of motioa (R)
Fortraa
Iaterdata 8/32 «> Interdata 8/32
155 statemeats: 197 ideatiflers

E.Systems Iac.: T. W. Joaes
Hardware driver: 1/0, bits, real-time
Assesbler
UYK-20 -> UYK-20
83 statements: 31 identifiers

System Developmeant Corporatioa: Erwia Book
Simulatioa of "21" table (R}
Modula, ALGOL, Sue, Jovial
Burroughs 7700, [BM 370, ANPSQ-32 => Burroughs 7700, IBM 370, ANFSQ-32
350 statemeats: 143 identifiers

Sperry Uaivae, Defense Systems Divisioa: - .
Display fault table: characters, data-base, reeatraacy (R)
DSPL (Pascal: . . :
Uativae 1100, Uaivae 1600, AN/UYK-20, Univac 1600, AN/UYK-20 -> N

SPL Iaternational [Eaglaad): Briaa Dobbilag
Process coatrol: real-time, operator 1/0
RTL/2
DEC PDP-11/34 <> DEC PDP-11/04
588 statemeats: 580 icdentifiers

Hollandse Signasl Apperatca B.V. {Netherlaada]: Phillip van Liere
Iastrument servo control (R)
RTL/2, Assembdler
Hollanase Siganaal SMR-MU <> Hollaadse Signaal SMR-MU

Raytheoa Company: ™. Nedzynski
Iateractive coordiaate traasformations: matrix operatioas (R)
Fortran
Uaivac 1108 -> Uuivac 1108
691 statemeats: 96 ldentifiers

3.

34,

35.

36.

37

39.

40.

41,

-5 a

Martia Marietta Aerospace: W, B, Carsoa
Eveat-drives automatic recoafiguratioa (R)
Fortraa, Asseabler
DEC PDP-11/70 => DEC PDP-11/7C

UK Coral 66 Team (Zagland]: D. M. Shorter & X. Resaader
Process coatrol: graphics (R)
Coral 66

DEC PDP-11/45 ~> DEC PDP-11/45

Bureau of the Ceasus: -
Geaeralized mass storage sort: heavy 1/0 (R)
Assembler) .

Luad Iastitute of Techaclogy [Sweden]: -
Process coatrol with operator (model progras)
Pascal, Coacurreat Pascal
DEC L37=-11 <> DEC LSI-11

MeDoaaell Douglas Astmonautics: -
Real-time processiag, Array processiang, Fixed poist arithmetic
Assembler
CDC Cyber <> RCA SCP 214 .
200 statemeats: 350 ideatifiers

Alr Force Commuaicatioans Computer Programming Ceater: James E. fmmert
Real-tize commuaications o

The Mitre Corporation: Maureea H. Cheheyl
ACCA? Guard
Gypsy
DEC TOPS+20 «> -
37 statemeats: 16 ideatifiers

DNACS, Nationa! Physical Laboratory [Eaglaad): Maurice Cox, Svea Hammarliag
Numerical sorftwvare lidbrary (R)
Algol 60, Fortraa
portable -> portable

TR¥ Corp.: H. Hart, J. Thompson
Beachmark flight algorithms: mathematical
Jovial J73/13
DEC PDP-10 ~> DEC PDP~10
1000 statemeats: 39t identifiers

RN

s et e % T

42. Geaeral Dyaamics: -
Avioaics: aumbers, bits (R}
Jovial J3b
IBM 3033 -> M362-F2

43, General Dyaamics: -
Display geaeration
Assenbler
Tatel 8080 -> latel 8080

4, General Dysamics: -
Real time processiag (R)
PL/M
MDS-80 -> latel 8080. microprocessor
19 statemeats: B identiflers

45, General Dyaamics: -
- (R}

Jovial J2B
IBM 370 -> Delco M362F

87, Grumman Aerospace, Software Systems Dept.: J.A. Garry
Trajectory computatioa
Fortraa
I8M 360 -> Hoaeywell 6060
§7 statemeats: 52 ldeatifiers

47. Grumman Aerospace, Softwars Systess Dept.: J. Kmelelk

Special-purpose data base sanager
Asseabler .

Iaterdata 8/32 > Iaterdata 8/32
291 statements: 2§ ideatifiers

48, Crusmaa Aerospace, Software Systems Dept.: R, Wellaer
Real-time flight enatrol
Assesbler
.= =y Hoaeywell 5301
27 statemeats: 39 ldentiflers

49, GTE Sylvaala lac.: Charlene Hayden
Real time procestiag
M8-2
IBM 370 -> AN/UYK=20
62 identillers

50. The Foxboro Co.: M. E, Gordoa
' Model coatroller operatisg system (R}

A . s %48

x

51.

s2.

53.

LN

55

57.

58,

-59.

60.

et A o« G g

o7

The Foxboro Co.: N. B. Robiasoca
Iadustrial controller (R)
Assembler

Alr Porce AFAL/AAT: Alfred J. Scarpelll
Avioaics local executive
Jovial J7T3/1
DEC PDP-10 => AN/AYK-1S
533 statemeats: 285 ideatifiers

Texas lastrumeats: -
Beachmarks: GPS, image processiag
Assembler, Pascal (MinroTIP)
= => 71 9900
2000 statements

Burroughs Corp.: Jaae Powanda
Real-time operatiag systes (R)
Asasembler (CAL)

Burroughs 778 > .
200 statemeats

Army SACEEIA: Leoa 2. Dixoa
Message aanotator
Assembler
AS/S (IBM 370} -> AS/S
300 statemeats: 200 ‘deatiflers

AAI Corporatioa: R.A. Durf, N.L. MeGarvey
Disk I/0 (M)
Pascal
Perkia Elmer 7/32 <> Perkia Elmer 7/32
300 statemeats: 0% (deatifiers

Techaology Service Corp.: D. Holllagworth, J. Lloyd
Array processor Laterface (R)
= «> Goodyear Staraa
166 statemeats

Rockwell Iaternational: Johs L. Whited
Commuaications operatiag system
Assesdler
Data Geaeral Eclipse -> NOLM 1602

Georgia lasti{tute of Technology: Fred Cox
Fire coatrol (R)

" Assembler, Portraa (Flees)
Data Geaeral Eclipse $/130 > ANLM 16024

(Obsolete)

62.

63.

64,

65.

66.

67,

68.

69,

Georgia lastitute of Techaology: Lawreace J. Gallaher
Trackiag radar
Fortras (Flecs)
Data Geaeral Nova 3 -> Data Ceaneral Nova 3
2035 statemeats: 280 {deantifiers

Honeywell: P.D. Stachour, F.G. Christlansen
Character processiag
95 stateseats

Hoaeywell: P.D. Stachour, F.G. Christiaasen
User command (R)
PL/T
Hoaeywell level 68 -> Hoseywell level 68
38 statemeats: 23 ideatifiers

Systems Coasultaats lac.: -
Command processor
CMS-2Y
AN/UYK=T <> AN/UYE-?

Systems Coasultaats lac.: «
Document ladexer
Fortraa
HP-31000 ~> HP-3000

Hoaeywell Avioaics: J. M, Kamrad
Qa-board real-time coatrul systes (R)
Assesdler
latel 8085 -> atel 8085
16% statemeats

Hoaeywell Avioaies: C. Yaadow
Flight executive (R)
Assembler

Hoaeywell Avioales: J. M. Holschbach
Resl-time radar detection
Assembler
Iatel 8085 -> Iatel 8085
190 statemeats: 89 ideatiflers

IABG (Cermaay]: Peter Burkiashaw
Gruph theory: Hamiltoalan path flading
Pascsl

- CDC Cyber <> CDC Cyber
93 statements: 21 {deatifiers

R TA a R hb

-

70. HQ SAC/ADSW: Lt. Thomas J. Croak
Mathematical calculatioas (R)
Assemdier
Uaivac 1100/82 -> Uaivae 11007482
16 statements: 6 ldeatifiers

Tl =2 = ’ :
Coanditlonal testing, bit manipulatioa (R)
CMS-2Y

AB/UYK-T => AN/UYK-T

159 statemeats: 37 ideatifiers

72. Perkia<Elmer Data Systeas Group: -
lateractive traassactlioca processing systea (R)
Assesbler
Perkia-Elaer 7/32 <> Perkia-Elmer 7/32

73. Hughes Aircraft Company: J. Whita o
Real-time fire coatrol systes
CMS-.2Y
AN/UYK=7 ‘o> AN/UYK-7

T4, British Alrways {Eaglaad]: -
Record 1/J package
Neliac, Assembler
DEC PDP-10 «> DEC PDP-10
29 statements: 66 {deatifiers

75. HO SAC/ADOS: Lt. Stevea C. Bush
Database manager (R)
Fortran, Assesbler
IBM 160/8% <> IBM 360/8%
80 statemeats: 9 identifiers

76. Alr Porce ASD/ADSD: Lt. Steven K. Rogers
Real-time IMG Analyzer: Cross-assembler (R)
fortraa, Asseambler
- «> latel 8088

77. Pacific Missile Teat Ceater:
iverse flight software
Metaplaa
Xerox 560 -> CDC S400B
28 statements

78, Naval Avioanics Center: -
Navigatioan Computation (R)
Assembler
Honeywell 635 > AYK-1¥

8o.

81.

82,

83.

gu,

8s.

86.

87.

79

« 10 -

Naval Avioaics Center: -
Dual processor laterface test
Assembler
Honeywell 635 «> AYK~14

Naval Electroaic Systems Command: -
Commuaications module (R)
Assembler
UYK=7 <> UYK=-20

Dept. of the Navy: -
Mathematical computatioa, comparisoa and iaterpolatioa (R)
Fortraa IV '
SEL 32/85 -> SEL /55
383 statemeats: ‘49 f{deatifiers

Dept. of <he Navy: Rovert lile
Real time sathematical computatioa (R)
Fortraa .
AN/UYK«? o> AN/UYK.T
925 statements: 50 ideatifiers

Dept. of the Navy: «
Mathematical computatica (R)
Fortraa, (MS=2, Assembler
- «> IBM uPL
200 statemeats: 90 ideatiflers

Dept. of the Navy: -
Mathesatical computatioas (R) -
P W, SPL/I
¢ 500 <> CDC 6600, ASP
5%, stateseats: 158 ideatifiers

Naval Surface Weapoas Ceater: Marc Hubbard
Real time processiag, fixed poiat arithsetic
Asgsembler
IBM 370 -> UKK-20
191 statements: 39 ideatifiers

.
! -

Geaeric meau package (R)

Sanders Associates: Robert E. Rice
FFT, search, sort (R)
Fortraa, Pascal, Mortrsa (Portrsa), Ratfor
DEC Vax 11/780 -> = .
76 statemeats; 26 ideatifiers

e ‘/. - - -~ g P
T RS 7 -
. -~ ~ -~ - .

P K o -1 -
88. MeDoaaell Douglas: J.J. Cobble

Autopilot, data base, message handler
Assesbler

89. Naval Research Laboratory: M. Croaia, J. Ganaon, D. Weiss
Software eaglaeering tests (R)

[P T

T RN T BET - Lo sl

da B e

THEH I & ing 4 0.0 15 i

Mm.m ! “mm | mm..m :m m mm m“ nww.

i gl o Hi

" mmzm 154 PR 1 R Tl ?t Nm.m
THUE T S TH L HITHR

1 L T

RTH bl ity U abds ik

. mwwummm mm:muﬂMmmmwmm mmm mmum d.mmum

oMUl g AnfRD o G g Sl

M, .

indenti No language can guarantee Guality poqx—.mg there aust
bttninrq sessions and a stricc methodology agreseu upon by the
ogrming tesm mambers.

4.2 I fesl that strong typing is izgortant and even facilitatas

coding.

4.3 As I mentioned above, I think that Ada could be consicerably
sore readable. The syntax is many times obecure.

4.5 The main problem that would arise is that the personmel woula
have to be #91d on the advantages of Ada over e.g. NiRTRAk.
4.9 PCKNGE, RESTRICTED, and TASK sce particularly brill.me.

TER 45

2.7 Yes. The Ada constructs proved much more adaptable than Cabol.

3.5 Since the Ads design was 30 much Bore COBpACt ad simple than
the Cobol ogram 1 decided ©o jmplesant a more sequential mechod.

3.6 The trogram seems very clear and efficient.

ain executavle portions of the new design ace mch esasier

than the original because they are much shorter, with portions

original code reiegated to subesutines.

3.6 Recoding in Ada resul*=l in a msall mmmmm
efficiency %= ii. exsmple.

4.3 Mr.;nmtxon with conditional statements umroved the
ceadaibility.

4.4 Uring Ma probably would have the same effect as my othas
modem languege, like Pascal oc FL/).

R

0 I believe that our eaxperience is particularly important because
we are CoRparing Ada with & powertul, modern language bases an
Algol=68. ue love Ma types which are mxh sperior o our own,
but we find that Ada's rigid statement structure prevents us trom
. weiting natural solutions to our problems.

o With this one exteption we are on the whole pleased with Aoa.

3.3.2.2 Little scope was foud for derived types or subtypes..

3.3.2.3 Extensive redesign of some existing incerfaces was :.quuu.
to circumvent the lack of rowe of procedures, which, though
tn the case of UG, would have fresented an unacceixable overnssa 1n
the case of a jrogram sch as the 53 campiler
We fear that (MSAFEZ PROGRNMDG will by a pr .nent featwre in
frograms which must”interface with non-ADA . e, Or whiCh must be .
very coampact or effictent.

3.3.2.4 Generic packages are a powearful facility and wve uses them

it e, e

TN 74 g UL O o 4 e

i o

1 3N A MRS AW et ke

to xovide procedire parametars to a tree waiking package. however,
t a run time parameterisation is necessary (Llk 53/1).
3.3.3.1 ADA compares well with 53 in terms of remability of source
. It scores heavily by the introduction of enumeration types,
which are a asjor aid in self docuwncation. Similarly, the
exception handling facilities encourage readability by separating
ecror handling fram the main path. The use of default pacametacs
is a further aseet....
Some of the syntactic features of ADA hinder readability, however.
These are, notably the lack of conditional expressions anc the
abeence of StAteNENTS. ... ‘The verbosity of ADA further
hinders readability, in particular the -omplexity of acray slicing.
The syntax of a block...discourages the declaration of cata near
to the point where it is used. The syntax of aggregates... is
referred to the S3 equivalent.
3.3.3.2 AMda, on the whole, is a more verbose language than Si,
although in same aress it wmproves on it. ...some features of Aca
nay actively encourage xograming errors ac $0 reguce programmer
roductivity:
(1). The significance of bresk characters in identifiers;
(2), dNead to introduce blocks to introduce new local cata items;
(3). conditional exgressions not being permitted;
(4). respecifying type declacrations in order =0 aod a represent-.c:”
spacification.
3.3.3.3 Ada code may wll pxove © be more maintainable than
eqivalent S3 Code as a result of it being more ssif documenting.
3.3.3.4 Ada permits more ealaborate run tie checking than coes
S3.... Aa training courses shauld emphasize cocrect use of types.
3.3.3.4 ...ox experience with S3 is that (reference variables;
are a valumble tool in the hands of the experiencel [xogrammer.
3.3.3.5 m; ssparate campilation system is moce verratile than
thet of Sl.... ’
3.3.3.6 A2 looks to be excellent in engendering portable programs.

-3.3.3.7 The exception handling facility of Ada providws a

convenient, high level way of hardling ecrocrs detectad within nestea
fxocedire calls. '

3.3.3.10 Ada's provision of this facilicy [Input-Outpuc] is a

. considerable advance on S3,

3.3.3.11 Both Ada and 5] are suitable languages for programming in
the large, with the modular aspects of Ma being further enhancea
by nesting packages and having visible and private parts. ...the
proposed compilation system lends itself to large scale noftware
construction systems, rather than one-one-off, small scale programing.
Ma is not very easy, either to leatn ot wite, particularly in
that it intraduces several features foreign to Algol-be-lixe
languages.... M S3 style of programming based on nesting ot
constructs has avolved, and an Ada style does not grow easily out
of this. The emphasis "n stataments rather than expressions
seans retrograde, and the very strong typing will prove irksme
to systams [xojrammets. Genecics in particulas are atfticult

0 Grasp....
3.1 ¥We were smeshat confused since strings are messy camparea uth

references to acrays as used in S3.

4.1 Ada code will probably take longer to weite than eguivalent 5.:
code beacauss of the verbosity of the language. We axpact that the
time taken ™ debug a rxogram will be less as a result of the
a«tensive run time checking, and because (many] pmt.mnn:i-
bugs are fouxd during compilation....

4.6 Ma is likely to appear in a better lth:mactunumt-
is designed with the inoviadge that Ada will be used as the
" implementation language.

4.10 Ada has derived many useful fsatures fraom ity PASCAL
background, particularly its excellent typing. It seems a pity that
many of the useful features of Algol 68, particularly its expreasion
structure and use of reference types, have not bDesn similarly
incorporared in Ada.

TER 48

2.3 Use of packages helpad tremendously to define the incerfaces
and Data Base Types. Enumerated types weare Also beneticial. 1ype
definitions wete snamonic and readable.

3.1 ...1 kept cmitting BNDIF for IF scatements of foou: if comsition
then seatwment (single) probably a cammon mistaka.

3.6 The constructs allowad for propsr expression of my program.

No certain constructs are disturbing to me.

4.1 Development time would usually be about the same, if moer
ghorter, than most langusges. Compiler will catch manty BISCakes.
learning Ada may be longer than usual.

4.) Source code in Ada is as rexdable as othar languages.

4.4 production would increase since most programing is dune in
assambly lamyusge. Program maintenance would bDe moce easily
performed and transition to another person/agency woula be suootnec.
Because of compiler, many mistakes will ba caught at coapile wime
and ot during executions.

4.9 (Tasking] is sasy to understand and use. Privats types ama
package structures are also well designes and should be unchangea.

TER 89

0 The working part of the proyram was ennrmoualy m.
for the first time unuudanhinntont-uu:uom

versed in the science.

TR 810)
J.i Q: Were there any interactions... that caused you difficulties?

B e SR

e

A: Yo

4.1 o
...[t¥p checking) will facilitate debugging ana increase the

zolhbu ty of the frogram.

4.3 Yes! The block and statement structure facilitate reagadility.

4.6 PExpect to encounter the same [xoblems one always encounters
with new tools.

4.7 Mo redundant features vhich should be deleted wece detectec...

4.8 ...not mxe that changes are required. .

TR 411

3.1 Ihad mdi&icultiamudcmmdummt features in
the language.

4.1 It willnhdnrwtj.wm:-mmmminom
langunges.

4.3 The code written in Ada is generally more resdable than programs
written in most other laguages.

TER $12

4.4 The cxrrent [xoject uses a mixtwre of sweral languages. Using
only Adda mesans that a maintenance grogrammer only has to learn one
langusge.

4.6 I would strongly recommend it because of .Jn steructures
[Tograming tachniques that Ada NCOUL ages.

TER 413

0 Our major conclusions are that Ads is suitable for both
enbedded computer software and mgport software. Wwe are concernea,
however , that the high camplexity of the language ana its
restrictive type checking may result in inconsistent and inetficient
use of the langusge ard higher than anticipated life cycle costs.

2.3.1.2 Por mmerical processing Ada deserves xaime as in its
ability to define precision by specifying the numbet of digits, the
rage, or the delta. In comparison with other languages, Aaa is
rated satisfactory to sperior...
Por realtime executive mypport AMda is inadequats. It must be mooities
to recognize that interrupts must be processed premaptively.

2.3.2.1.1 ...xda would be quite sufficient in these areas, |separate
campilation etc.]) and offers decided advantages over the corresponaing
PL/M constructs.

2.3.2.2 In many respects AMa would be a more suitable language...

LM, even r.hongh PL/M seems 0 be specially orientec to thus

ldm of wl.

2.3.2.3 ... otzon excallent facilities in the area of pxogram

variable declarations.
2.3.3.3 Mda does have good data constructs with p\-:tul l.l oni
CASE statements.
2.3.5.3 The Ma lauage ray be e for the
"~ of {oper uimmt-ldmwmnumuiwotmlmm
2.3.6.3 The visibility rules only sake the

difficult. Usually, ..en data only confuses ni.nm pog:-n

without stopping anyons intent on violating the systam securicy.

2.3.7.2 ...Mda as it stands now would not be suitable... dus to
the way in which it secvices interrupes. If the requestes change
were made... then the detetmining factor
be Ma's sfficiency....
++oufiile the current version of m is not usatul for tms king. ot
wxication, future versions could be changed % be suitable.)

2.4 ... is apparently suitable for the mation ot umn
-atmn of software tools.

2.5.2.1 T™he cixrent Ma pinters aze unuseable for: u:i.c asta
structures.

2.5.1.2 One of the features lacking mmummm
of dynamic storage allocation.

0 In genecal, Ma is suitable for toth embadded computer programs
gamtt oftware. However, the design appeacrs to favar the

ter .

m

2.6 ...Ididn't know enough about Ada when I stacted. Hea 1 know
then what I know now, I would have never tried to fit inco an
cis:gqlm.tm.zmndhmtmummt:u
cra

2.7 The problems were all with pointers and meﬂu

3.2 none in particula

4.1 mmmwmwmumcwmmymm

sbout equal” compaiison. It.hmknhnuvmxtunm:.m
mwxunm;:ogt- (a8 1 am not certain that it doss), the
costs and times fog maintenance will be lower. Cactatnly the

:w&uxwmarmmmmmwm
axrent languages

4.4.A mrquuab-tnt plmina intecface qncutu:mn ann
documcrtation.

4.4.0 The use of a totally new langusge is an excalient vehicle tor
hlmm:.wooldmtnm.nlmmumnmm
thinking, use of non=structixed [rogramuing, etc.

mpsv

2.2 Ma would provide better ol- the use
hence better unit level design in quite atw

factor for Ada's usefulness...woulo

. [N

[TCENCINE

e RN

Lt

-
o r— e i]

$.1 ication logic should be shorter.... Longet implementation
tozpwq:t- design and system interfaces.

4.2 Strom) data typing agpears to be highly ovecraten as a
tachnique significancly avoiding programming ecrors.

4.3 Ma can be used to create highly readable code and doss much
to discouxage poor practices.

3 The ada develoment is 1n genecal much enhanced by clear ano
fprecise use of technical terminology. Howsver some unusual usages
soem 0 have crept in. -

TER $16

2.2 ™hough no redesign was done the code was better than before
because :: was easier to read.
© 2.9 Bverything necessary for array handling is available in iaa,
but sme additional capabilities would be helpful.

2.6 by puttirg the procedurss and data in packages thare was a
better feel for the relationship between variables in the Lsogram.
Saving a feature like packages encoucages one to ¢o this.

3.1.1 FProblems arise trying w figure out where the variadle
should be declared. .

J.1.4 ...in discussions with people working on other Ada programs 1
found access types very confusing.

3.5 Mote extarience in the use of overloading operators is
necessary before a decision as to shethes of NnOt tO Uuse it Can be
In general the code was clean and a good campdiler would probably
gqenscate afficient ctject code frem it.

* 4.1 It would seem that programming/debugging in Ada woula taxe a
little less time.

4.2.2 ...it wuld appear that type checking is a vecy helpful
aid in detecting ecrors.

4.3.1 The Ada code is moce readable....

4.3.2 The syntax of caxwnts aade the code less rexiable.

4.4.]1 Better data organization and interaction through the use ot

packages.
4.4.2 Better _rogram ccganization through the use of structucen
consrructs

4.4.3 less orecution time errors because of Ada's type checking.

4,4.4 Cleansr exception handling because of Ma's axception
mchanism.

4.5.4 Por a project that could be written all in Ada and did not
nead mch low level mgport... Ma would be a good choice.... For
signal precessing applications, I am not carwinced that any hign-levat
language is suitable.

TER 917

o .

= e e e i

PRI

3.l - 3.6 The only difficulty (of other than a minor natice;
encontered in this Ada implementation was in detstmining the acray
[limit in recocds)....

Although the Ada data structire is definitely supsrioc to tin
KRIRAN isplensntation, thete is concern about... rege

4.2 (I] believe that many errors not rormally detectable wmntil
execution will be caught by the language tramslacor.

4.3 The Ma cxde rwummnmmuwymt
well-written programs should require fewar camments than in.
non~stzuctured languages.

4.6 Asmming... {a goad] compiler... I would welome the we
of Ma on my nemt... project.

4.9 The vextual structre and data typing facilities of \ga are:
featuwres that should definitely remain in the langusge.

TER 318

2.2 THe redesign is far better than the original. The progeas is
shortar in length..., sadular in structucre, ano easisc t reas. 1ln
adition, there zre fewsr control flags....

e
=
o

Ma code will be better structured. FRalated mcu ae
ogether in packages. Readability is enhancea.

lieve that clear exjxession of the xogram was poesible..

xomote readable code....

think developing a new program will take longer in Ada than

language with less typing. The difference would be in the

ous definition and spacification of types, imitializing pacxen

jects by aggregates instead of hax, and the spacification of
NLYTOGram pacameter iists. However, I balieve that the type
chroking, ste, performed by an Ada campiler will cacch mamy ot
the routine errors customarily made in grogramming.

4.3 I believe an Ada [xogram can be self documenting....

‘.‘ih:zdmlim hda to be a very uscable language, unlike some
o cone

e-'ﬂ »
1

gegsE”
g e
i

TER ¢ 20

2.2 New Sesign (s better than the original in that ft is for more
robust ad maintainable. The new design is not wocse than tne
original in any significant way.

4.1 It will definitaly take lonjer to develop a pXogram....
However , the resulting Ada programs will be far bettac....

..the exterded amount of time required to program in Aas (is] &
mmmwa“mummmhp oay Wis ue

used o develop DoD software....

4.4 M smplication rograe would stand moge of a chm:o of
being cocrect, maintainable, and madifiable.

4.7 The features of Ma are very interdependent and excisions
cannot be aade without a great deal of cace. I woula like to see
smeching done about excessive language camplexity... (bu:] it is
not Mhmg decided by taxing a vots.

TER $21

4.1 Por this particular pxoblem, developing a debuggen program
would robably be easier and fastar....

4.3 Assusptions of problem solution are moce explicit. however,
meﬁ-ulmrmlotmm:muwm pose campiler;

4.4 ...the main dvmmo Aa provices is a set of wall-thought-out
Ms like "task.‘, “rerdezvous”, and "entries® for cesling witn
concwrrency. Thesa nn dub;mng -ﬂ inplementing a correct prooiea
solution far easier than with ad hoc multitasking facilities.

4.7 The features of)dn are very interdepardent and excisions
or changes cannot lr.\o t.hou:nqxutdulotwc. ««sthese
changes [detailed list precedes] might camgromise language usapility.

=R 22

4.1 Given the lee side of the Ma learning cuxve, 1 balieve Aaa
jrograms will not be significantly more difficult ¢ cesign, cone
or dabug. Ada is 3 very concise language, which shoula allow a
programmer with experience in it to implesent a progras i it with
no more . difficulty then before.

23

2.2 ‘e new design is definitely more rexiable
Zach data structire and operation is clear as

:

TER $24

2.6 In Ma it was easier to “"think Structured® limites numbec of
reasonable constraints - vs My/1 this assisted me in coaing &
structured frogram.

4.1 After a lictle familiscizavion -\i fractice Ma cuding aia not
cake an long....

4.4 Ma xpears to be an excellent language to teach basic
rogramming fundamentals in. It is readable, fairly eaay to use,
and -txu-.dy easy to transform algocitims from a Design Language
(eg.,) into

o

™R 425

4.% X believe that developing a debugged program in Ada will caxe
orw....
(1) Ma is larger)

(2) Ma is not considerably more powerful;
I would expect Ada would be in a much moce favorable footing
mainst oldec languuges sch as Poctran of PL/L.

(3) ™he ability to use processes. clum-ummuuuum
types in Concurrent Fascal is not quite metched in Ada.

4.3 I believe my Ma regxogramming of :
less readable than the original. ‘The key reason for this is the
inability o use package names as pacameters of other RACKAQeS.
Othecwise, it would have been roughly as readable as the ALiginai.

TER 426
4.1 Developing a debuyoued progras may very well taxe longes in
Ma than in Mfrtran. The Mda requiremants for esplicitly typung

very variable will lead to bettaz fxograms that are moce reiliabie
ad probably easier to maintain owar the total life cycle. bowever,
the detailed wpecification of each variable type ooes ilean t©
aditinnal lines of cade that have 0 Ds asvelopes, asbigQoen ano
intagraced.

4.2 z-‘:mdnckimdvuwlnumqmamtmc

4.3 mdumnmmu?mn:muuymrwum
m. if this was coded initially in Mda..., it is conceivabie
that highly readable progruw would result.

4.4 A universal (real time] language... has very cbvious benstits.
and this would agply to all ax oiects.

2.2 It s fac woce undecstandable than the AL, SUR, of JOVIAL

gy

versions.
a1 wm m\nu-ntdwmnmucﬁonlhnm
aig ty in the use of Ma....)
3.6 1 do feel that the wogz is expressed clearly and yet will
it & good campiler © generate afficient coe.
g a

1 4 ’

tm e wnimmiliac to the world. This is for two principal ceasons.

. A-xo understandable program can be witten

. A sxcessful caspilation means testing is much further along.
4.3 My Ma progras is mote readable than the 4 . wious versions
nf chis xogram. ...the Ma implessntation mors nearly ceflects ay
design concege.
4.4 The moce paople that work on a project the more the valus of
Ma beccaes apparent.
4.5 1If Ma wre eclusively used in my application acea, no special
froblems would result.
4.6 1 look forwazd vith pleasure t© the use of Ada foc my next
abedded cmpueer systam. There vill be asny fewsr xabiems.
4.9 I like the overall character and consistancy of the languige
-ﬂoxuo\ndmubtomit'ch-qdinnyu‘qmtiun:uy.
4.10 Bven before cqucn are available, the language can
bt\.dnnd-uqn tool. It is a far supecior venicle than the
current crop of FOL‘w/peeudo codes.

-TER 429

2.2 (T™wo] redesigns... were judged to be majoe imgrovemants... tor
all the right reasons - greatsr clacity, eass of mocification ang
teeting, top~down design, etc.

The wlutions o the other thres areas... were !1ws satistying.

4.1 Laarning to use Ma properly seess to take considerable time,
bt it is a mbstantizl iaprovemant over other languages.

4.2 The tass bDelieves that in genacal strong typing promotes gooo
design and facilitates testing.

4.3 Toms mmmbacs had smevhat conflicting opinions to just how
much more readable Ada code is.... All agreed that Ana was at least
bettar, and that gxograms weitten in Ma would be easier to osbug
and tast,

4.4 Ma.. increams the probability of witing correct proprmms.

4.6 Bveryons but participant pé definitely agreed that if a gooo aca

campller were avatlable, they would program their nest pxoject in Asa.

4.10 Ada sewms t2 be generally spacior, and sbesquent aesigns
should require less effort.

R 030

e

4.1.2 RL/2 and Algol 60:
These languages are significantly more restricten and secure than
Algol 68 and consequently, I think that Ada development tise will

4.2 ...Ms ctively encoxager the production of “correct® coaing.
3 Ma progzams do not sex to D9 any moce readable than Mive
ard Algol 68 programs. There are swveral problewm areas:

Separste campilation: an {over-) sbundance of block jeclasations [£0r;
local data: guneral verbosity.

Ma wvould e.save no troempatibilities in inwerfaces....
SYSCamS are "OTODiougly norepoctable, ever if written
u:l;lmm.mmuc-mucaclmtwcm

s trend.

of references (5] static (objectsi is a funoamental,
;eious, problem.

&=
. .
&> o
-

[M2 g

55
Bz

T
3

-
'
e

2.6 ...the ability to pecform information hiding... greatly
facilitates the resding of the trogram taxt.

4.1 ...programs will take less time to praduce in detwggen LOON...
{because of the] complets control over intecfaces....

4.3 The cade is more resdable mainly dus to the ability of
defining types with well defined logical propecties.

4.5 Thwe diversity of featxes offered by the language mase it
difficult © make s choice in certain cases.

4.6 Stromgly in favor. ...the features of Ada... seam to fit the
direct needs of the esbedded computer SOftware GEOUp.

2.2 Vocse. Interfacing between wunits was cqxu. hore complex

- a3 ertor prons....

3.1 ¥o real ditticu.u:y miu; or agplying features cocractly once
they were understoad.

3.4 ...the restrictions and qualifications, ana the lack of
. & pattecn ot uitive paralleliss for them creates a buzoen tor

the programmec....

' ".nghmocqldthmnyo&lquwim\m’cnla

4.2 e greater specification of data and the nead for esplicat
corwersion of types is a nuisance. [It] addea unexpectea corvecsion
‘ezrors; Zized point arithmetic was a mxjoc problem.

4.3 W .

4.4 Dlone

0.:‘ zrt Quality. of softwace development due © camplexity

4.6 ...Ada is complex, aviomrd and imgoses unnecessary buxoens
Won the programe .

4.7 The deletion of redundant featuzes would pw&ly impaLr
the usability of the language for many programmecs.

4.10 It is difficult to identify a mmall bagic sudbset within
Aa t use as a starting point for learning the language ama for
beginning © program in it. Ada seems TO De maoe Up of a set Ot
abh~ilsmpuages that are partially disjoint, rather than being
concentric, as is the [case with other rograming languages.

vgps

2.2 It is better because it more clescly expresses my intent.
2.5 arwx.-m it was a relief to be able t |[translate
to
0. ...Md2 was found to provide the basis for much greater eass am
claricy of formulation and cammmication of concepes....
..Ada's expressivensss will contribute mtmly to software
lunntnnuity....

o2 934
4.1 ... doubt that debuy time will be significantly different....

4.4 an increass in reliability; possibility of re-using cooe;
decreass in daperdence on roprietary softwace.

' 4.6 Mpmehansive at the commeccial risks of depanding on as yet

unproven tachnical features.

T e S R A S A

PRS-

I < e e BN e L e

i e

i
1
i

933
0 Overall, our imgression of the langusge was & very positive one.
3.3 There were two mrjor anissions for us, vaciable length strings

™ o096

2.1 What can be done [currently] zam be done in Aoa with only
ninor sedificacion. .

2.2 It is possible to describe the same structixe in a shorter,
nicer and wore resdable way in Ada.

TER 437

2.2 e Ma is moce readable than the assamiily or the flow charts.

4.1 Dsvelopment of a debugoed program would be fasver than in
meambly language, and given that the intecrupt priocity probiem
is solved, faster than in Poctran.)

4.2 ...Mda semms %> discriminate by requiring the fixes point
fxogrammer to live with stronger typing than the floating point
Or exact integer programmec must erdure.

4.3 ...the rest of the language is almost otwious without
explanation, and regxesents a viable presentation langusge as is.

4.4 ...it would probably be easiec to teach how to reaa Ada than
to teach the structre and format of a sizable spplicacion program.

4.1 ...what Ma forces you to do is to spend sace time in the
analyses and design phases.

4.4 The corcepes of information binding, abstract data type, wouln
be used extensively — thus allowing better defines partitioning
of woek.

TER 939

A —————— . ——— -

3.§um1im a existing concurrency mechanimm {nto Ada is-

t.

4.1 Given a decent Ixogramming eswiromment, 1 woulan't expect
peogram development to take any longec in Ada than in andther
high order langusge. ‘

4.2 The Ma code, particularly if formatted propecly, is vary
readable compared v that of other languages.

4.4 The use of Ads would benefit our project in twd major ways.
Pirst, Ma has several [ussful] features. Secom, Ada is expecten
t> be amilitary standard. Our experimental work in camputer
security will thus be more easily applied to real programs.

4.5 Verifiability say tuen out to bs a froblea for security work
although it may be possible to genecats a verifiable supset....

o

M

4.3 More readadble than Fortran!! Mot necessarily more ceicanie
than Algol 60, but this may be a familiarization probles. n the
whole Ma gives a good algocitimic deecription.

4.4 Portability of numerical softwace across machine ranges.
Debugging and eczor detection should be much easier 1n Aa.

TER M1

1 ...no significant difference is expscted.

2 strong type checking is umportant not only fr detecting

- programaing errors but for enhancing program resapility.

4.3 However, Ada code is wdecstandable by anyons w0 has
knowledge (limited) of Ads constructs oc goud imowleoge of any
other HOL. .

6 Other than questioning compiler availability,, bullish

.9 As a genacal rule, the grogram and control structures of hAaa

i
|
%
|

i
H
¥
¥

i
J

4.1 Ma is mmcaanly canplex and restrictive. dor mmy
 micrnprocessor agplications 1 feel that Assmmblec or Portran wouls
be batter.

4.3 ™he multitude of program types seems artificial.

- 4.6 I would not like it at all because I feel that Ads in its

gresent form, is not suitable for [(my] micropencessar applicacions.

- 2

3.. Many constructs seem tO also have a lot of extra keyworas.

4.3 ...program rexisbility seems to be significantly imgroven over
other languages.... Subgrogram specificucicns are moce easily
understood in Ada in some cases than in othar languages.

4.6 As long as the project did not require a great aeal of bit
pattern manipulation... doing a project in Ada would be favorea.

TER #45

1.4 The number of statemants (and types) shoula be mxch the
same. The area in which the Ade will require sore is in the
declarations and the meount of visibility allowsa. lLittle
experience exists with the camplex Ada scoping anxt visidility
rules. This 13 an area which may add ™ the mmntenance efrort

for large pxrgrams.

g

46

2.2 'he new code is more readable at the executabls level ama
doss ot require a long intraductory prologus primarily because
of the Ma declarative reguirements.

4.4 language is relatively easy to learn for the type ot
langumge featuwres required; large common data blocks will be
sizpler and less error-prone with control/facility of packages
and "use” statements.

4.6 ...l would welcame the opportunity to use Ada in an embsacen
software froject.

4.9 Typing and packaging features: the ressability uns traceability
cthat resilts is worth the sdditional efforts. .

= M7

2.2 The Ma version would be sasiet to maintain since the cooe
is more descriptive.

4.9 Ma fthrces 2 more structixed software design, £irst on an
werall rogram level by means of the specification ssction am
cthen in & more detailed body section.

T oAb A1 e 13 1

TER §48
4.1 ...I feel that the time to a program will be less.
4.3 The code is definitely more ¢ e¢. The pxogram logic

was much esasier to follow when it came to concurrent tasks cue to
statements which facilitate such....

4.6 Ivauwlook!om:dmdomg-y_:-bdadm
project in Ma. Although it requires moce writing, 1 feel in
the long run I'd get the job done soOner .

4.9 Although somewhat tedious, I would not like to see the f ping
of data changed.

49 o
.6 The design was not significantly better; ! primarily followeo
original design which was structired and mappec easily into Maa.
2.7 Planned t follow original design; in using Ada 1 fouo
simpler mechanism and constructs in some cases, ¢.g. lnitialization.
4.1 ...the numerous programming techniques zvailadle with Aga couls
Rake program management difficult.
4.3 The Ma jxogram was definitely more readable. Aca is cefinitely
the most readable language I have ever encounteredi.

=R 50
3.6 I have great reservations about the ability to optimiae Ada
code s “he language is currently defined.

1 In general, I think that Mda facilitates the program
development process. It is difficult to make presictions....
4.3 Genstally, & Ma program in not very reacable: declazations

Sust be fresen . bottam-up; begin-loop-select aemanos too much
nesting. Separ.ting logical declacations fram physical
tepresentation specification is awkward. A heavy language (no
abbreviations) . .

=R 1
2.2 The new design offers better [rotection of the cata abjects

bacause of the strong typing used.
2.5 Two major sreas of difficulry had ©w do with hamling

axceptional conditions and with cnoosing the best data refcesencations.

3.1 Surprisingly, text layout was a pxoblem. Ada ooes not ailow
xesentation in top~down fashion [of structures), but in fact
recuires Rogrammer’. to perfors a topological sort so that no
forward references accux. Not only is this a nuisarce to the

T ——

weiter, but I don't see it as useful for the readet.

3.3 Thecritical feature missing in Ada for our application
was a well-defined scheduling policy and the lack of facilities
for intraducing one. :

4.3 In some ways it is less readable. The jxocedural code
is frobably as good in Ada as in other high level languages.
Non~grocedural code, such as typs declacations, has a very ssvere
restriction placed on its gresentation. The no-forward-teference
rule enforces the bottam-up order.

4.4 The possibility of designing all interfaces and campiling
then independently of implementations will be a plus.

4.6 1 would not be relucctant to use Ada on production programs.
I think it is, in the lacge, a well-constructad language.

=R 452

3.2.1 Access types could have been used %™ greatly imgrove
acess parformance but they are not capable of denoting stactic
variables. ’

4.4 The Ma source code would be salf documenting ang much easier
to read ad follow. A maintenance programmer would have a greaver
understanding of the xogram with less effort.

Ma reomotes top~down SLIUCLIEE: Progtamming.

The job of transporting prograns fram e Jachine to anothet would
be easier.

Strong typing would prevent swbtle type errors.... packages will
frevent frocedures from accessing and mocifying data thac they
should not have access ta.

4.6 Ma is & very capable language. It parmits good structureo
code and the strong typing helps maintain daca incegrity. AFAL
would like to use Ma in furixe projects. lowver, inefficiencies
in the lanjusge may force the continued use of JOVIAL for real
time applicatinng unless the froblems are resclves.

The greatast concern is with access types. The hasic
is excellent but the associated problems make them of limites
value for AFAL applications.

TER 53

4.0 Overall imgressions of the Ada language are very favocable.
The mac concept i perhaps the cleansst solution to aace
for the development of al parpose library routines.
There was no major difficulty in learning to use a corwenient
mbeat 5f Ma. The only significant pxoblams encounteres ware
in the tasking facilities. i
Ma is n extrently verboss language,

P

e 1 sy 7 s e ot

TER §54

2.2 Poccing the use of Ma and thateby the interfaces supportec
by the Ma runtise systam, contributes to making an applications
[rogram more asnageable.

2.7 Originally some of the data was represented by emumeration
types, but dus to the limited nuabec of operctions tha. coulo
be pecformed with enumeration type data, recoro and array structures
were chosen instead.

4.1 AMa may have an advantage in the debugging area because of 1its
readability and because most [xograms written in it tena to be
structired 0 that it is not difficult to follow the path of cata
through a program.

4.4 The greatest advantage accrusd from use of Ada on a project
would probably be program maintainability.

4.9 The data strictures, (xogram structure and separate campilation
facility in Ada are its [xime assets as prograsming tools.

455

4.9 I particularly like the ability to restrict visibility in Acs
xograms, because ! have worxed on frojects where this fsatixe
- would have prevented problems caused by multiple ;xogrammecs
naking multiple uses of a particular data field.

=R 456

2.2 The new design is more portable because the Fescal version
had to use non scandacd 10 procedures. The new aesign is moce
efficient thanks to exceprtion handling for erzors ang exits in
the niddle of loops. The new design is easier to UNDECStaMC
and uses shared packages.

4.1 Although ada is slightly more verbose then Pascal, anoc woula
therefore require more original coding wotk, it would take less
time © develop a debugged Mda program. This is be because Aaa
is essier ™ understand, and it has moce safety featuzes.

4

. 4.3 Ma iv mxh sore readable than other languages.

=57
4.0 Our imgression of Ada was that it was an excesdingly

conplex language. e now feel that although it is complex, Aaa
is nor. significantly sore so than several other Hils.

TER ¢58

0 ...with the approgriate change {interrupets] to meet redl-time
roquirements, we given Aa an "A%....
One can hardly imagine a better conceprual modeling tool than
Ma tasking, but the magping into implessntation seeas latent
with difficulties.

4.) Mother ephatic yes, primarily because it reads moce
1ike hglx.d: taxt than a program Imuno

4.10 We like AMai

IR s61

4.4 Ib-lmmtmmmvxuqndwwa;mm
.dudmm

TER #62

4.1 1 would say that a debugged Ada would taxe less tine to
develop because type-checking would ensure clesn intecfaces ang
woid type mixing (producing gacbage) .

TER 963

2.2 New design considered conceptunlly clearer bacause of fewer
interfaces (subroutines) whate sctions taxe placs resocely.

4.3 the mandard package with names for all character makes
fzograms »f this type more portable....

4.4 Dimension analysis problems caght at campile-tise.

TER 964

2.5 In general the Aesign magped essily. The aress of trouble
wete machine dependent.

3.1 Finding the best way to divide a frogram up between pacxages,

ures, and tasks was the rrobles. This will requize a oizterent
design outlook than we've used in the past.

4.1 Ma would simplify the implementation of debuggea cooe w0
spacification, Ada would allow testing becter.

4.4 The parallel tasks of AMda would sisplify the design of complex
machine simulitions. ‘This was a groblem in the current system....
The corwolurions which were nacessary for this ware unbalievable.

The recursive nature of Ada would allow easier mplementation of some
algoritims. We can cbviously do the calculations non-recursively
but ot as neatly.

4.5 Ma should (help] by allowing us to design standaro Conventions
at a high level in packages and then cequiring the use of chase
definitions,

PURSsSE

4.6 Ma would make life easier
and pxocessing interfaces in
implement the details within these constraints. Also the review
of xogras design and style would be essiet in Ad2 because of is
structuce and readability.

TER 466

3.3 There is o quasticn that the redesign is better than tre
original in many weys - conceptual simplicity, readsability,
saintainability, medulagity, machine indepandence, etc.

2.3 The task facility is a natixal for this agplication despite
the [priority] flaw. The use of packages ard tasxs provides an
effective means ~f decoupling the different parts of the system.
Abstract types, espeacially enumacated types, wers useful in making
the design more resdsble. Regresentation specifications wece
offectively eamployad o eliminate obecure bit manipulation anc to
sake the whole design less machine dependent)

2.4 The reresentation specifications enable the recesign tw
mest the storage requiremants Sf the appl ication.

3.1 T inability of the task facility to suspent anc resuse
background (of lower priotity] tasks to Setvice higher pLiocity
cagks is vinwd as a severe limitat. m....

3.6 My only carcern for the optikization of any construct in my
PEogram is tn optimization of tasks. ‘The Massi and baberman
[tachnique} ¥owe promise....

4.1 My incregeed time mpent in coding an Ada pxogram is moce than
nffset by reducing roolems dus to type BLSMALCNES anO procecure
interface mimmatches, camson sowxces of problems. In asdition,
programs in Ada age definitely more resdadle....

4.3 The Ma grogram is more readable than the ariginal program in
every possible way! By using abetract types, OSpAcially enumacacea
types, the [rogrammer can praduce a program that is BOCe QeECcrliptive
ad xoblam oriented.

4.4 The mivantages of Ma are many and wall known: m

independent; more readable and maintainable; more reliable; suructuren
program design.

4.9 1 - enthusiastic m the whole langusge. In particular:

of the logical and physical proparties of a program are
Wby:h-l uage syntax; despits the flaw discoveres in tw
task facility (see Responss 3.1), the task facility provioes an
acellent conceptual approach....

TER 067

2.2 The mew design is better than the original design Decause tne
Ma design is structuwred.... The use of Ada reduces the volume of
ouwce code.

TG S TN N i i A, R e e

3 The Ada tasking concept so raturally fitted the prchlem

tha' it was impossible to conceive of any other agproach; genecics

appeaced natixal.

4.1 language 5 naturally supports tasking (logical), that
camplaint is chat there is a bit of conceptual overicaaing

task.

on

2.

only
to detecting type errocs at campile time, Aca

ea. ly focus on daca as a general thing to be cesignen.
Ada mt“lcmmmmutumuly
nto jroblens
Mvmkumimmxcgwqummmxu'
readability initially, and portability in the longrum. Ochet areas
where M2 appears valuable are more subtle. It seams reasonabie to
expect the quality of Ada code be better than other languages, the
use of Assmmbly code to be reduced axl to see mOCe attantion td

e
ny

otd\l
4.2 In additi
forces an
4.3 is
into praob.
4

4

data design.
4.5 ‘nndvmn;nnyboottatbym'smlm A progcammer
sust understand concurrent processing 0 unnecstand tasking, MACrosS
to use generics and “type® to cade at all.

TER %68

2.6 Using the Ada lguage resultad in a better design. 1be typing
of each object gave more information about the Gats being useo
Enumerated typing encouraged mocte descriptive assigrmencs. ine
samancics of the language added to its readapility.

4.4 Ma could be usad very sffectively as a design lanjusge.

The langusge requizes a strong, cluac specification of all the
objects being used. The resdability sucpasees most (all?) otner

languages.

TER $69

2.2 Wcrse, one NILL statement hnl w be intcduced . frer a lavel
in order to woid amsigning the label to the following Mk ... Lud
etatepent and then having to sprisusly repeat the label in the
LD OOP statement, shich would have madn the frogram moce aifticult
©) maintain.; but bettar in swe respects, such as thare are no
aonysous D statements, there ac i
because Ma provides the DD IF which i
3.6 Not as clearly or as concisely as in Pascal.
4.4 At present Ada is incajable of mgporting the applications
we age interested in....

:
z
:
E
E

IR 970

hor.,, e

2.2 The naw design is more straight forward and far more reacadble,
possibly at the cost of mmmory space. It is hopss that the Aaa
version nay be able to execute slightly faster.

2.3 The general goal »f the Steelman requirements for moce
readable, more sasily maintainable code. It is significant tnac
in rying to uderstand the assembler version in oroer to reocesign
it, two relatively major flaws in the logic ware discoverea wnich
enuld return erronecus data in some circumstances. 1t is felt that
this would not have happened in Ma.

2.6 The [xoblem in the past has been twisting the Program
Development language aroud to match the HOL.

4.0 ANY good structured Gesign could be very easily implementea)
in Mda. On the other hand, a non-stIucCtured GESIGN WOULG De haroer
to implesent. The prograx evolves sasily from the fresh cesign,
trwever, it is not at all eagy to transliterate fIoB an WNSTIUCtuCes
existing HOL.

TER #71

1.0 It is felt that Ada should receive additional time for recesign
and develupmnt wiiich concentrates on (xaerly Deveiomment of meiialie
Software £0: Systems with embsdded camputers; Ennancing am
clarifying Ada smmancics: Simplifying Ada's syntax; Incorporating
xiditional real-time capabilitiss.

3.0 Ada syntax is extensivaly verboss and in many cases
grammatically incorrect.

3.1 Access types and allocators are very difficylt to understana
and use.

3.2 The IF-etatemnt nested with itsel! and/or Loop-stataments
created nexpacted difficult upon application. hany levels of
nesting were virtually unintelligible. With each level, contusion
increased. In following the logic of the program, one is never
Quite mre where e serias of stataments orxis and another Degins.
Mditional commenting was necessary to help alieviate these
problems. Debugging is difficult at best.

4.1 Dwveloping a debugged program with standard 1/0 requirements
would take no longer nor shorter in Ada.

4.3 Ma xoduces less readable cade than other high-level
langusges. Verbosity seems to De the keyword. Ada, in its attasgt
o xovide Bore reaiable code, has gons o the Cther extreme.
Mditional keywords are attached to basic program constructs which
are unnecessary. They convey no additional significant meaning
that could not be picked wp by the use of delimiters.

TER 472

4.1 1 do mot believe that using Ada instead of Con::utrmc Fascal
will increass develogment time.

4.2 A mumbec of programming cmumomwmm
Dest Translator

4.1 The Ma source code is excepticnally clear. I hava felt
this way sbout every program ! have written in Ada. lowever, (this;
deperds on the idencifiers ard constructs used....

4.4 Ma could be used t develop an entire system, elimiating
the need £9¢ excessive machine code or assembly language
insertims, and would cherefore increase productivity an3 recuce
the Costs associatad with program maintenance.

$73

2.6 I do not feel that knowledge 22 Ma helpea me arcive at a
better design but the lLanguage aiioved me O Cepresent the cesign
better in roagra:'s implessntation. the XOGram structiute becase
more Closely tied to the functiomgl requirements of the probiak.

2.5 The franslstion of che Bathoantics 1t thls example from a
specification into the Ada langusge was extremely stragnt '
forward; However, using wae ada fixed point representation
wiuid jrobably de much zoce difficule.

2.1 ...packages, acCess types, and private types... Shoulo ease
[} programing job required....

2.6 A mowledge of Ma did not produce a better aesign a8 we hao
wped. Perhaps if we could cbtain a better understancing of how to
use access types, we might find a way to successfully use them to
U wve the Jurrent design.

4. ...writ1ng xograms will take longer. There 1is more error
checking, but the language CONSeGUently LOQULIIes & Jreat Seal nocs
witing affort....)

TER 7%

i.2 The nev design i such easiet © read. It has a more logical
downsard flow, .)

] Just as Jean Ichbiah mentioned at the Ada Cxientation, you
can actuslly reat an Ma program.

s

4.0 After allowing for familiarization with Ada, I believe
dovelwing a debugged program similar to mine woulc taxe less tine
in Ada. This would be a result of the ability to detect Prograsming
errors and sbroutine ‘mterface inconsistencies at compile time.
The strong type checking nf Ada that require greater specification
of data and its usage is nesded for embadded systems.

AR

: Wwf.wv“wqgrgw,u_ P

bt e = e e v ot homy e e s

TR 477

4.3 The Ma cding is witten in more of an englisth manner wnico
nakes it easier to undec

4.4 wWith Ma's detailed data typo definitions and ics run time

chacking and structured programming arcnictecture more proclems
will be eliminated in the design and osbug phasss of progras
development. This should reduce the [xoblems in tln veritication
and validation phases.

4.5 It will be very difficult to convert the existing MEIAPLAk cxoe
withhut a major redesign..... It is NOt structuced in the £90MAL
sense and does not flow from tOp tO DOCLOM a8 AGA: [XOGLaRS BUST.
ool MAJOT redesign... i almost mandatory....

4.10 The Ma language is certainly a language of the l%wu's.

Its seructwred and highly readable construces will provice comapes
ad wore reliable software in the futwe.

TER 478

¢ My axperience with Ada has been disagpointing. 1t is a well
thought out lanjuage useful 1n 3 teaching ewizomment but of
lim:ted valus £or use in mmall reai-time compuxers. ‘lhe two major
flaws in the Ada design are its wnusual celta of fixea type
variable notatinon and its complex interface with assembly language.

2.5 In general, Mda is a sladiGe hammar where only & tack hasmer
is medad. It seemed o take more tiBe O M D & XOCEAULE A
ode its doiler plate sgmcification than ©o actually ceveliop ama
inplement the real “peration,

4.6 The mtra time .tmuldmm\culdmnbnmmuc.

TER 079

4.1 ...coding would certainly be dome qQuicxer in Ma. The
dcbmmq frocess would probably be quicker for an assemtly
language versinn,

4.3 1f extensive nesting of different types of modules is aone,
the progras Can be very confusing.

TER 880

2.1 e appxopriateness of the Ma record, aggregate, M
pacxage construces £o¢ this application sade thep corvenient
cardidates and therefnrs these concepts influsnces the reaesign
significantly.

2.5 much of the redesign was accamplishea with cectain Ada

{
]
]
. gt

T —

featires in mind. Howgver, after che FDL was written, {t was very
easy to translave the POL directly into Ada code.

2.6 In many cases, the Ada CONSIructy wWALe Very appropriate:

i.0. &ggregates, racords.

4.1 The specific probles could have been resolves in a shorter
time by using languages with construsts similar to the SIKSCulPL
aceribes, entitias and sees, although this language woula lack
same of the highly desirable features of Ma.

. in .
. : desagn ideas ouring the ot coaing
4 umarily to taxe mdvantage of the adverced festures of Ada o
only. once ¢ escape a serious difficulty. The spacific featuxe
that had the scrongest influsnce on tmqnuu;ncm.n;
and visibility rules.
4.5 ...1/0 in Ma semms 0 bs eitner sadly lacking or at least
tadly axplained, especially for input ASCIl string varwersion.

TER $82

2.6 Having imowladge of Ada doss help tO arrive at a bettar
design. TMis was illustraced by the history Of By IeDeSIGNS. A8 By
undecstanding of Ada increassd, %o did "he quality of my cesagn.

4.4 It is lirely that che consequences 5% chaiges to Ada PXOOL NS
wiil be sore quickly amt accuwrataly understoca than (90 XOGrams
weitten 1n other languaces.

SRS R P

