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Chapter One

INTRODUCTION

1.1 MOTIVATION

The software crisis of the sixties saw the accepténce of structured programming,
modularity, and top down design methodologies in building and maintaining software
systems. The underlying philosophy behind these methodologies was that the software
systems are complex; that they are hard to understand and difficult to manage,; and to keep
them within manageable limits, the discipline of structured programming should be imposed
on the programmers. It reflected and still reflects the state o.f software technology. The
requirements for systems are specified informally or semi-formally to the programming team,
which then implements a system satislying the requirements. There is a large gap between
the specification language (generally, English for informal specifications) and the
implementation language (Fortran, Cobol etc.), thus causing the implementation to address a
lot of detail. This leads to increased complexity of software which makes the debugging and
maintenence difficult. The structured programming and top down approach accepts this
complexity as unavoidable, and tries to keep it under control by requiring the programmer to

use simple program structures.

Continued growth in the size of the software systems, the demands of reliablility and
programmer productivity requires new solutions. It has led to activity in the field of, what are

called, very high level languages (VHLL). These languages reduce the gap between the

informal specifications and programs. Sometimes, these languages are of sufticiently high
1




1.1 MOTIVATION 2

level that the proyram itself is the specification satisfying the (intuitive or mental)
requirements. Some of these languages. in which order of statements in programs is
immaterial, are called non procedural languages. In fact, a program in these languages is so
unlike a program in procedural languages that we call it a spem!u:unon,' Many of the issues
of structured programming (e.g. disciplined used of the control structure) no longer have any
meaning in the context of non-procedural languages. since the specifications do not have any
control structure. The details relating to the control are no longer the concern of the user, but

rather, are handled by the compiler for the language.

Modularity still remains a useful and important issue for large specifications. Alodulirity
may be defined as independence in compiling and composing of different parts of a larger
specification. Itis desirable because it simplifies the specification. Tlus simplification results
not only because of reduced size, but also because, with proper sub division, the smaller
specifications represent logical sub-units of the larger specification.  Modularity allows
incremental development of a large specification. It also lends itself to easier modific.ation. [n
most cases. only a few of the simaller specitications need to be changed when the needs of

the specified system evolve or change.

1.2 BACKGROUND:MODEL AND NOPAL SYSTEMS

Model and Nopal are non-procedural languages developed at the University of
Pennsylvania in an attempt towards a simple yet powerful very high level language. These

languages have no control structure, and are based on the familiar notions of mathematics.

Specification” has also been used in the hterature to express the “requuements”™ of a syslem, or the set of
algebraic axioms defiiing an abstract data type etc. (Jsage of the term here should not be confused with it other
meanings.
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The Model system [42] has been designed to automate the generation of software for data
processing applications. The first step is to provide a data processing requirements. It
consists of three main parts. The first part is the header, which consists of the name of the
specification and names of the data bases. The second part, the data description, consists of
descriptions of the structure of the source and target data in the specification. The source
data corresponds to the input data, generaily on sequential and indexed sequential files; the
target data refers to the desired output files. The third part, a set of assertions. specifies the
relations between the source and target variables. There are no control statements typical of

procedural high level languages, e.g. those that deal with input/output, loop control etc.

The Model processor analyzes many aspects ol the specification. It checks for
ambiguities, incompleteness and inconsistencies and issues appropriate messages to the
user. [t also generates a number of reports which serve as the documentation for the
specification. The processor then produces a sequence of execution for the assertions. with

appropriate loop control statements. Finally, it produces a PL/1 (or Cobol) program.

The Nopal system [46] has been designed to automate the generation of proyrams for
automatic testing of electronic circuits. A specification in Nopal has three major parts. The
first part gives the test specification, the second part the unit under test (UUT) specification,
and the third part the automatic test equipment (ATE) specification. These parts can occur in
any order in the specification. The test specification consists of a number of tests each of
which is used to specify the stimuli to be applied. measurements to be made, computations to
be performed, and diagnosis to be selected. The specification of the individuva! tests is
non-procedural, and similarly, there is no sequence specified between the tests. The
diagnoses are normally selected based on the outcome of tests. They are used to isolate

faulty components and print appropriale message to that effect. The UUT and ATE
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1.2 BACKGROUND: MODEL AND NOPAL SYSTEMS 4

specifications are used to specify the characteristics of UUT and ATE.

The Nopal processor, similar 1o the Model processor, analyzes the specilication for
ambiguity, incompleteness and inconsistency. It too generates reports which serve as the
documentation for the specification. The processor produces a sequence of execution for
the tests. in the phase called inter-test sequencing. It then analyzes each of the tests
individually and generates a sequence for the assertions. conjunctions. and diagnoses in the

test. Finally, when all the problems are resolved it generates a program in Equate Atlas.

The issue of modularity is an important one for both the systems. At present the
specification must be submitted as one unit. It leads to many of the problems mentioned in
the previous section, and to some very practical problems when the processors for the

language run out of address space during execution.

1.3 CONTRIBUTIONS

This dissertation examines and proposes the approach of abstract data types for
modularity in these languages, and describes the implementation for the Nopal language.

The following are the contributions of this work:

It has led to:

1. the definition of a scheme for modularity in non-procedural languages,

2.a novel way to deline the abstract data types. namely. by means of the
non-procedural specification, and

3. automatic generation of program modules that correspond to respective
specification of the abstract data types.

Abstract data types provide a non-procedural way to introduce modularity. Variables in the
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specification can be declared to be of abstract type, in which case they may be operated upon
by a restricted set of functions. The definition of an abstract data type along with the set of
functions is given separately by means of a "module”. The specification of a module is given

non-procedurally, leading to the dual contributions (1) and (2).

Finally, the above ideas on modularity are used in the Nopal system The Nopal language
has been developed to generate programs for testing of electronic circuits. The abstract data
type facility is used to define the devices for testing. My work on the above system has been
on the development and completion of the original Nopal system [7], and implementation of

the idea of abstract data types.

1.4 ORGANIZATION OF TE DISSERTATION

This dissertation is divided into six chapters. Introduction is given in this chapter, followed
in Chapter 2 by a survey of past work in the fields of non-procedural languages and abstract

data types.

Chapter 3 contains the use and spec.lication of the abstract data types in a non-procedural
languages independent of either Mod or Mopal. The use and specification of "modules” is
described. Formal semantics of the modules is given and similarity of the module

specification with algebraic axioms is shown.

in Chapter 4 the language Nopal inc rporating the above ideas is described. Features of
Nopal for specification of automa ¢ testing of electronic circuits are presented.
Implementation of Nopal is given in Chojiter 5, and the various phases of the Nopal processor

are described. Examples of Nopal specifications and the reports generated by the Nopal

processor are given in the Appendix.
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Conclusions and deas for future work are suggested in Chapter 6.




Chapter Two

SURVEY OF RELATED LITERATURE

2.1 SURVEY OF NON-PROCEDURAL LANGUAGES

Looking back at the development of computers we find a hierarchy of computer
prograinming languages. The assembly level languages form the lowest level and the higher
level languages such as Fortran, PL/|, Algol etc. form the next higher level. Both classes of
languages are characterized as (a) procedural, and (b) domain independent. They are
procedural because the individual statements are prescriptive and a program in the language
consists of a sequence of such statements. These languages rhay be used in widely varied

application areas and hence are called domain independent.

The next higher level languages are referred to as very high level languages (VHLL) and
they may be sub divided into two groups. The first group consists of languages which are
domain dependent e.g. Business Definition Language (BDL) [21]; the second group consists
ot domain independent languages with facilities to describe higher level concepts which allow
the omission of many details. Examples of this group are: SETL [29] which allows
manipulation of sets and relations, APL [27] which has many convenient operators for
matrices, LISP [57] which works on lists etc. In the second group there are many languages
that are descriptive and are devoid of any control facilities. This class of languages is referred
to as non-procedural, because a "program” in these languages does not give a prescriptive

sequence to be followed, but rather defines variables and their values in a sequence free

manner. A "program” in these languages is so unlike that in procedural languages that we
7




2.1 SURVEY OF NON-PROCEDURAL LANGUAGES 8

callitby a different name: "specilication”. as mentioned earlier in Chapter 1.

The goal of the VHLLs is to allow the user to express his or her problem directly in these
languages. thus leading to automatic programming systems which accept the specification

and generate a program corresponding toit. [42]

“The ultimate erpectation for automatic programming may be visualized as a
user (no tonger a ‘programmer’) making a few simple statements, to which the
automahic programming system responds by spewing out a program of several
hundred statements, already correct and satisfying the user’s intentions.”

Non-procedural languages have been around for more than a decade ([6]. [26]. [47]. [52].

etc ) and they continue to he of current interest ([1]. [4]. [25]. [42] etc.).

One of the early attempts by Tesler [52] defined lists and operations on hsts  An important
operation was PRECEDING. which was used 1o express the retatiunship of the current item in
the list to the preceding item in the same list or some other lisl. The language was restrictive
because recurrence rclations between items in lists could be specified using only
PRECEDING. Som:: of the other early languages were interpretad and hence slow i time and

inefficient in memory space.

More recently, LUCID has been designed as a formal system in which programs can be
written and their proofs carried out. "“The proofs are easy to lollow and straught forward to
produce because the statements in a LUCID program are simply axioms from which proof
preceeds by conventional reasoning [1]."  Variables and ther history of values can be
detined. The history is defined as a sequence of values using the primitives FIRST and NEXT.
They essentially allow the specification of one level loops. To allow nested loops. a function
called LATEST is introduced. However, it clulters up the progtam; consequently. BEGIN-END

blocks to nest iterations are included in the language.

PR PR Py il B sl i
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The limitations of the LUCID language are the absence of arrays or any compund
structures and the use of NEXT to define relationships between sequences of vatues. The
latter implies that the relationships be known in advance at program writing time, and cannot
be computed at run time. For example. it is not possible to specify that the current element

depends on the k" previous element. where k is computed at execution time.

Non-procedural languages Model [42] (48] [50][39]) and Nopal [7][41]]56][46] allow
relationships between array variables to be defined explicitly by means of indices. This makes
the languages richer than LUCID. At the same time, they are compiled rather than

interpreted. A brief introduction to them has been given in Chapter 1.

A recent proposal by Kessels [30] is to mix procedural and non-procedural approaches. In
his approach. "block" is the basic struc which indicates the scopes of names, as well as
the mode (non-procedural or sequential). A "valued-block” has a set of values. Besides
these, ther are multi-state blocks which retain information after the exit from the block. Many
of these features serve to increase the complexity of the language, and make it difficult to

learn and use.

A number of domain dependent systems have been proposed. Some of them are

described below.

Business Definition Language [21] is a very high level domam dependent language. It is
aimed at the problems of business data processing. It assumes a model of the processes
involved in the manual methods used in businesses and tries to mimic those. There are three
components: one for defining the business forms. one for describing the business
organization, and one for writing calculations. Using a graphics screen the forms may be

defined. They serve both as input and output, as well as internal representation of
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information. These documents can be routed to different parts of the organization or stored
in files. Computations can be defined on the elements in the forms. Essentially. it is a tabular

language with special constructs to represent the domain of business.

PSI system developed at Stanford [ 16] uses a model based appoach like BDL. However, it
has provision for incorporation of an independent domain expert module  Information about
objects and their retationships in the domain s included in the module. thus freeing the user
from defining commonly used terminotogy. The modules may be changed depending on the

domain.

PROTOSYSTEM | has been developed by the Automatic Program Generation Group at
MA T [45) It consists of two parts: The top part consists of a man machine interface, a
knowledge base on business management etc.  The biattom part obtains a data processing
specification from the top part. performs system design, and generates PL/} code. The

specification language used is SSL. which s non-procedural and resembles Model.

There are other examples of domain dependent systems, most notably, APS developed at

University of Southern California at .S, {3]. SBA [62] etc.

2.2 SURVEY OF ABSTRACT DATA TYPE SPECIFICATION
TECHNIQUES

Data abstraction has been identified as a widely useful program unit by recent work in
programming methodology. It has also been identified to be a unit for which formal

specitications can be written easily. It can serve as a basis for modularity. Consequently,

work relaled to data abstraction or abstract data types is reviewed here.

aecaililion,




2.2 SURVEY OF ABSTRACT DATA TYPE SPECIFICATION TECHNIQUES 1

There are two approaches for giving the formal specification of abstract data types. The
specification can be given either by means of an abstract model, or implicitly via descriptions
of operations on the data types [35] In tollowing the first approach, the behaviour is actually
defined by giving an abstract implementation in terms of another data abstraction or
mathematical discipline. In the second approach, the class of objects is determined

inductively from the operations. Usually. it is the smallest set closed under the operations.

Liskov and Zilles [35] have further classified the approaches for specification of abstract
data types into five categories. The classification is based on the method used for
specification, e.g.

1. use of a fixed domain of formal objects, such as sets. graphs or arrays;
2. use of an appropriate known formal domain;

3. use of a state machine model;

4. use of an implicit definition in terms of axioms; and

5. use of an implicit definition in terms of algebraic relations;
to specify abstract data types. The first two categories use the first, i.e. abstract model
approach. while the remaining use the second, ie. implicit definition approach. Some

examples belonging to each of the categories are given below.

In the first category, a fixed domain of formal objects is used to provide a high level
implementation of the desired abstract data type. For example, V-graphs were used by Earley
[11] to represent instances of data structures. Operations on the data structure are specified
either by expressions written in terms of primitive V-graph operations, or by means of pictures

of V-graph transformations.

An appropriate known formal domain can be chosen to give the high level representation

e e g e o oy ey e
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2.2 SURVEY OF ABSTRACT DATA TYPE SPECIFICATION TECHNIQUES 12

for the abstraction  Generally. this 15 some established mathematical domain. Hoare has
used this approach to specify sets and subsets of integers [24]. The advantage of this
approach is that a body of knowledge 1s available about the formal domain: on the other hand,

it may not be suitabie for representing the abatraction.

Parnas |38] has developd a techmque and notation for viewing the abstraction as states

of an abstract state machine.

Use of axiomatic descriptions to specify the abstractions falls under the fourth category.
The axioms define equivalence classes over the set of all expressions  If the set ot axioms are
well chosen. the equivalence classes are unique. The axiomatic specifications are minimal

and widely applicable. however, they are delicient with respect to comprehensibility.

Recently. an algebraic specitication technique based on the algebraic construction, known
as "presentation”. has emerged as a popular one. The algebraic axioms are easicr to
understand than the general axiomatic specifications, and they too are representation
independent. An alyebraic specification has two components: syntactic and semantic. The
syntactic component gives the domains and ranges of the operations on the abstract data
type. The semantic component consists of set of algebraic axioms in the form of equations,
which retate the operations to each other. An implementation may also be given for the data
types. "An implementation of an abstract data type is an assignment of meaning to the values
and operations in terms of the values and operations of another data type or set of data
types [18]." A correct implamentation must salisty the algebraic axioms. The data types used
in the implementation are also specified _hy means of axioms; and their implementation may
again be specified if they are abstract types. The proof of the correctness of the

implementation requires showing that each of the algebraic axioms for the data type is




caprRnr s Nl
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satisfied when the implementations are substituted in the axioms. The definition of equality
interpretation for the implementation is needed for the proof. A general principle used in the
proof is that of data type induction. It means proving some invariant property of the data type,

and involves establishing the base step and the induction step.

Goguen, Thatcher and Wagner have described an initial alyebra approach to the
specification, correctness, and implementation of the abstract data types [14]. They describe
a lirst order language (or X-algebra) using sorts and signature over sorts. They then define a
category C of 2-algebras to consist of Z-algebras together with all the ¥ homomorphisms.

Alg - is defined as a [53]

"universe of discourse where the process of axiomatizing on the data types is
going on. In particular, the free algebra in Alg. provides a language in which to
write down the axioms. and their homomorphisms tell us how to interpret the
axioms."

Given the above algebra, the concepts of presentation and initial alyebra are introduced; it
is proved that the initial algebras are isomorphic leading to the main result: "An abstract data
type is the isomorphic class of an initial algebra in a category of X-algebras.” It provides a

rigorous mathematical basis for the specification techniques using axioms.

2.3 LANGUAGES SUPPORTING ABSTRACT DATA TYPES

The use of axiomatic specifications is still far from practicable. It involves fair degree of
mathematical expertise to formulate the axioms and to check their consistency and
completeness. Consequently, the practical languages which allow the definition of abstract
data types are still based on the abstract model approach (which includes categories (1),(2),

and (3)) described in the previous section.
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ClLuianguage was developed at ML T [3:4] to support the use of abotractions in program
construction. it supports thiree types of abstractions: procedural contiot, and data. Ithas a
mechamsin. called “cluster” to detine the data abstraction A cluster 1 used to define the
coprenc atahion of aoanta type and the set of cperations whach can b poerformad on it The
represcntabion aay be given using vanables whose data types are aoun detined in other
clostors. insuch cases, references are associated vath these variablas. and the actual datais
stored i the clusters. The only way to access or modify this data is by mieans of oparations

de-fiedin the cluster for the appropniate abstract data type.

i the implementation, the vaniables which are defined to be of abstract data type actually
stora references to data. while the data and ats representationdl details are given m the
cluster !t does awa; with explict manipulation of pointers. yet allows an efficient
implemomianon  However, it causes a change m semantics of the taditional assignment
statement  In the example:

B - NibW:

Ao B

MODLEY(B)
the vanables A tuvd B3 are of cuee stret type which has operations HEW and MODIFY
defined i a chieer The fu o dement o wees B to be defined but cmce the data type is
dehined i a cluster B3 osiply tooes arebrence to the data In the second statement the

same reference s storod in A The problenis caused by the thid ctatement NModification of

the structure pointed to by B causes the modification of AL as aside eftect,

The sbove suggests two allernatives: either the notion that A and B are of abstract data
type should be chandoned and they should simply be declared to be of poimnter type: or the
semantics of the assignment stiatement bo redetined. In CLU. the latter approach is chosen

and the asaonment statement s defined to mean "renaming”. In the examplo, the second
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statement will be taken to mean that A is the name of the same object as denoted by B.In a

language which is side-elfect free the above problem, of course, does not arise.

Concurrent Pascal has been developed by Brinch-Hansen [5] for the writing of concurrent
programs. It allows the definition of monitors. A monitor delines a type whose instances may
be created. The data associated with an instance can be accessed using that particular
instance of the monitor. This restriction disallows recursive definition of monitors. Moreover,
operations defined in the monitor can operate on variables only in one particular instance of
the monitor. These restiictions may he justified for concurrent programming. however. the

language is not discussed any further here, due to these severe limitations.




Chapter Three

ABSTRACTDATATYPESINA

NONPROCEDURAL LANGUAGE

3.1 INTRODUCTION

This chapter describes modularity in a simple non-procedural programming language
based on mathematical equations, through the use of abstract data types. The presentation is

independent of the Model or Nopal systems, referred to previously. The objective in this

Chapter is to keep the language simple so as to convey the concepts without being

encumbered by details.

Section 3.2 introduces the non-procedural language. Alternative aproaches to modularity :
are discussed in section 3.3. Use of abstract data types is described in section 3.4; and their
specification using modules is given in sections 3.5, 3.6 and 3.7. Finally, the semantics of

modules is given in Section 3.8, followed by a summary in Section 3.9.

In short, this chapter describes the design rationale of abstract data types for '

non-procedural languages based on mathematical equations.

3.2 ASIMPLE NON-PROCEDURAL LANGUAGE BASED ON
EQUATIONS

e el L

A specification in a non-procedural language basically consists of two kinds of statments:
16
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1 declaration of variables {including arrays and structures) and their data types,
and

2. mathematical relations (also catled assertions) between the variables.

A variable can take a value belonging to the set specified by its data type. The data type of
a vanable can enther b declared explicitly or be determined from its use. It is immaterial to
the specification whee the variables are stored, f.e. in main memory or secondary memory.
The bacie data staacture o the languages the array. Variables or structures may be declared

to be arrays A sequential ileis considered to be an array of records

Assartions, are essentially equattons which define relationships between variables. A
canable can have only one value as in mathiematics. Each assertion, in fact, defines the value
of a varable. The assertions can he compased By the user in any order because they specify

ri-fations, which do not have any temporal meaning associated with them.

By the use of free subscripts, a single assertion can define the value of an entire array.
Identfiers correspanding to the free subscripts can be declared. Tha2 notion and use of free
subscripts s similar to that in mathematics. For example, let "1 be an array variable, and "1"

a free subscnpt, then the assertion:

F(I) = IF I=1 THEN 1
ELSE I*F(I-1)

defines the value of the entire array . Lach element of the array F is delined in terms ot the

previous one, except for the first element which is defined to be 1.

In the above example. the size of the array F is not specified, and hence is possibily infinite.
The size can be specified in essentially two ways:

1. An upper bound can be declared for the subscript |; or

2. A special array of the same dimensions and sizes as F can be defined, which
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identifies the size for the rightmost dimension of F. This special array is called the
end array. F is defined upto the largest index such that the corresponding
element in the special array is true, and all elements of lower index are false. Its
use is illustrated by means of an example:

END.F(I) = 1IF I=4 THEN TRUE
ELSE FALSE;

The above causes an array F to be of size 4. In other words. an array variable F is
defined for as many elements untit and including the first true element of END.F.

Certain rules govern the usage of subscripts. These have been designed so that the
specification can be compiled rather than interpreted. A subscript can occur in one of three
forms:

1. a subscript term e.g. | in F(l);
2. an expression of the form (1-k) where k is a positive integer, e.g. (I-1)in F(I-1); and

3. another variable or subscripted variable, e.g. G(!) in F(G{l)).
For a subscripted variable which occurs on the left hand side of the equation, its subcripts

must be in the first form. This makes the consistency analysis simpler.

The above is the essence of a non-procedural language using mathematical equations.
There are many additional features in the Model language to handle file organization, and in
the Nopal language for fault isolation in testing of physical systems. A processor for such a
language analyzes the specifications for consistency, completeness and non-ambiguity; and
if successlul, generates a program in a high level language. By consistency we mean that the
variables are detined only once, and by completeness that the variables are defined at least
once. Inthe generated program, the variables should be defined before they are referenced.
This analysis, which is non trivial when f(ee subscripts are used. is described with respect to

the Nopal system in Chapter 5.
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3.3 APPROACHESTO MODULARITY

Need for modularity has been discussed in Chapter 1. As discussed earlier. it means
sub-dividing a probtem into smaller specifications. and compiiing each of the specifications
sepetately. A number ol alternative approaches are possible to achieve modularity in

non-procedural languages. Some of them are described below.

The simplest approach is to divide a large specification into smatter specifications which
communicate through commonly namer variables. The aggregate of sub parts is exactly
equivilent to the total, obtained by simply putting the sub) parts together and torming one

large specification.

In a different approach, each sub part represants a specification of a function, and these
tunctions muy be used in other sub-parts. In this approach. the tunctions may be specilied
once and used many tim.s resulling in a more compact overall specification. A judicious
choice of functions may also correspond to a decomposition of the specification at the logical

or "conceptual” level.

Still another approach utilizes the idea of data abstaction. In this approach a sub-part
snecifies an abstract data type and the functions which are allowed to operate on variables of
the data type. The data type can now be used in other sub-parts. In other words, variables in
other sub-parts can be declared to be of the defined data type and he operated upon by the
specified functions This approach has the advantage similar to the functional approach,
namely, that a data type specified once in a sub part may be used many times in other

sub-parts.

A procedure in a programming language accomplishes an action (or performs a sequence

of steps). A procedure 1s used knowing "what” it accomphshes without knowing "how" it
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accomplishes it, and similarly it is defined knowing "what" it is supposed to accomplish
without knowing "how” it will be used. Thus the abstraction separates use from delinition
and introduces modularity. In a similar fashion, a data type is specitied independent of its use.
It represents a set of objects which satisly certain properties, and frequently. these objects
correspond to the user's problem domain, e.g. stacks, tokens. sets etc. A variable of the said
data type represents one of these objects and allows us to express relationships directly
among these objects in a non-procedural specification. Thus it also makes the specification

closer to the terminology of the problem.

Another advantage of this approach is that the representation for the variables belonging
to abstract types need not be known while writing the specification. This allows the
representation of a data type to be modified without affecting its use. The representation of a
data type is specified by means of a sub-part defining the data type, and can be changed by

changing that sub part alone.

In light of the above advantages. this latter approach to modularity is adopted in this
dissertation. (Another motivation for chosing the latter approach is that it provides a
convenient way to represent devices for testing in the Nopal system.) it should be recognized
that the sub-part specifying the data type allows the funtions which can operate on the data
type to be clustered together. The use of this abstraction serves as the guiding principle for
clustering of the functions. We hope to illustrate below that this is, indeed, a natural way to

modularize non-procedural languages.
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3.4 USEOF ABSTRACT DATA TYPES

Each vaniable in a non-procedural spectficaion has a data type. which gives the set of its
pessible valuves  The data type of a vanable can be elementary (e one defined by the

languaye e g real. integer. character etc.) or can be one of the abstract types.

An abstract data type must be specihied nen procedurally by means of a specification
calfed the modute for that data type  Just as a vanable of the clementary data type can be
operated upon by the functions for the date type. e.g. functions + . . *. / tor the integers, a
variable of tho abstract data type can only be operated upon by the: set of funchons defined in

the corresponding imodule.

Vanables can occur in assertions as defined below. Assertions define the relationships
betwean the vaniables. An assertion is of the form:
Ayl Ty =l Ly A A
where A, A are names of array variables. |,y are subscripts for d1 dimensional array

variable: A, and 1 denotes the expression formed using function symbols. subscripts and

array variables.

Expressions are formed using notatian familiar in mathematics. Informally:

1. An array varinbte followed by a hist of subscript expressions is an expression, and
the data type of the variable gives the set to which the value of the expression
betongs.

2. A function symbol followed by expressions in parenthesis is an expressicn. The
data types ol the expressions should match the domains of the function symbol.
The data type of the new expression formed is the range (as in mathematics) of
the funchion. The expression defines a mapping from the domains to the range of
the function '

3. Symbhols +. . * 7/ denote the functions for addition, subtraction, multiplication
and division: and they may be used as infix operators.  Similarly, the function
if then else (cond. x, y) with three arguments can be written in its familiar form: if
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cond then x else y.
Data types place restrictions on the ways in which expression can be combined to form new
expressions. In particular, the data types of the arguments of a function must match the

domains of the function.

There is no distinction in the use of elementary and abstract data types. The user of the
language once provided with a set of data types and the functions which can be perforined on
them may use the given set of data types without ever knowing which are elementary and
which abstract. The use of the abstract data types, therefore. does not require any new

meaning o be given to variables or assertions in the non-procedural language.

3.5 SPECIFICATIONOF ABSTRACT DATA TYPES

This section introduces the concept of a module for the specification of the abstract data
types. The specification of an abstract data type is independent of its use. It is specitied
non-procedurally within the framework of the language intrduced in section 3.2. The module
specification can be analysed for inconsistency, incompleteness. and ambiguity, independent
of other module specifications. In particular, the variables in the module are single valued,
subscripts are consistently used, and are independent of the subscripts and dimensions in
other module specifications. Finally, as will be shown later, the generated program supports

the use of variables of the defined abstract type in other modules.

A module consists of. (1) a header - which gives the name of the abstract data type, (2)
data declarations - which give the representation for the abstract data type, and (3)

module-functions (modfuns for short) - which specify the functions which can operate on the

abstract data type being specified by the mod.ule. The function specification consists of
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assertions. including formai paramaters and return value.

A module named. say ADT, specifies a representation for an abstract data type ADT. By
representatiun is meant the components of a data type. The word "representation”, rather
than the word "data structure” | is used because the components themselves can be abstract,
in which case they are specified by means of other modules. A modfun may return a value of
type ADT. in which case the value is defmmed by defining the value of variables in the
representation. This s done by means of assertions in the body nf the modtun. If the value is
specihed using the formal parameters of the modfun. then the modfun specifies the
relabonship between the formal parameters and the value returned. If one of the parameters
15 of type ADT ts ropresentatinn is accessible in the module ADT and can be used in defining

the return value.

In general. the return value of a modiun may be of any arbitrary data type. Appropriate

functicn must be used to define the return value.

3.6 ANEXAMPLE - STACK

The ideas presented in the previous section are illustrated by means of an example in this
section. The syntax of assertions has already been explained; the syntax of the declarations
is somewhat like Pascal and PL/1. The subscripts are declared by means of a statement of the
form:

<subs> IS A SUBSCRIPT;

where <subs> is the name of the subscript.

The example chosen is stack of integers. It has four modfuns. Their domains and range

are.
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Emptystack: — stack

Push: stack * integer — stack
Pop: stack — stack

Top: stack — integer

The emptystack maps from null domain to an empty stack; Push maps a stack S and integer X
to a stack whose top element is X and the remaining part is the same as stack S. £op maps a
stack S to another stack which is the same as S except with the top element removed; and

Top maps a stack S to an integer X such that X is the same as the top element of S.

The above is an informal description of stack in English. The module STACK gives the
formal specification of stack and its functions. The specification captures the concept
expressed informatty above and makes it precise. (The formal semantics of the module is

discussed in Section 3.8.)

Consider the following example having an array A of stacks. Each of the elements of the

array A is a stack onto which integers from arrays P and Q are pushed.

MAIN EX1;
DCL A:STACK ARRAY(10),
P,Q:INTEGER ARRAY (10);
R:BOOLEAN ARRAY (10);

I IS A SUBSCRIPT;
A(I) = IF I=1 THEN EMPTYSTACK
ELSE TF R(I) THEN PUSH(A(I-1),P(I-1));
ELSE PUSH(A(I-1),Q(I-1));
/* ARRAYS P,Q,R ARE ASSUMED TO BE DEFINED ALREADY. */
END EX1;

The STACK module is:
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MODULE STACK;
DCL 1 STACK: RECORD,
2 TOPZ: INTEGER,
2 Z: INTEGER ARRAY(100);
J IS A SUBSCRIPT;

MODFUN PUSH(S:STACK, X:INTEGER) RETURNS (S1:STACK);
S1.70PZ = S.TOPZ + 1;
S1.Z2(J)=IF J<(=S.TOPZ THEN S.Z(J)

ELSE X;

END.S1.2(J) = (J=S1.T0PZ)

END;

MODIUN POP(S:STACK) RETURNS (S1:STACK);
S1.T0PZ = S.TOPZ-1;
S1.2(J) = S.1(J):
END.S1.2(J) = (J=S1.T0PZ);

LND

MODFUN TOP(S:STACK) RLTURNS {X:INTEGER);
X=S.Z(S.TOPZ);

END;

PMODEUN EMPTYSTACK RLTURNS (S1:STACK);
S1.T0PZ=0;

END

END STACK;

In the above example, representation for a stack consists of two components: a 100
element integer array called 2, and an integer TOPZ. The familiar notation of record (as in
PL/1, Pascal etc ) is used to show the components of stack. Vanables 51 and S which occur
in the modfuns are of data type stack. Owutside the STACK module the two components of
stack are not visible, however. inside the module the vanables S and S1 are seen to consist of
two components. To refer to their components qualified names are used, e.g. S1.TOPZ relers

to a component of stack S1, while S TOPZ refers to that of stack S.

The STACK module can be analysed for consistency independent of the use of stack data
type. The modluns PUSH and POP define a stack by defining the vatue of its components
which satisfy certain relationship with components of another stack. For example, the

modfun PUSH defines the value of a stack S1 in terms of stack S and integer X, which are the
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format parameters of PUSH. The two components, Z and TOPZ, of the stack S1 are defined in
terms of the components of the stack S and integer X. EMPTYSTACK defines a stack which
satisties certain properties independent of any other stack, TOP defines an integer with

respect to the stack S, which is a again a formal parameter.

The definition of the array of stacks, A. in the main module does not require knowledge of
the representation of stack. It can be analysed for consisteticy independent of the module

STACK.

3.7 RECURSIVEDEFINITIONS

Modules can be used to define data types whose representation s specihied recursively.
For an abstract data type. say ADT. its regresentation can be specified in terms of vanables
which themselves can be of type ADT. Modfuns can now be appled to these vanables

recursively to define their values.

The recursive data types are illustrated below by means of an example. Stack-of-stacks
data types (SOS for short) is chosen to show the similarity with the previous stack example.

The specification of SOS is same as that for STACK except that the data type of the array Z in

the representation of SOS is of type SOS instead of INTEGER.
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MAIN EX2;
DCL S,T: SOS ARRAY( 100);

S{I) = IF I=1 THEN PUSHS (EMPTYSOS, EMPTYS0S)
ELSE PUSHS(S(I-1), EMPTYSOS);
T(I) = IF I=1 THEN PUSHS(EMPTYSQS, (1)),
ELSE PUSHS(T(I-1),S(1));
END EX2:

|- s

tﬂ lz---sm
lu

- S(1)

(1) T(2) Q)

U = stack symbol

c
"

stack containing "-"

Figure 3-1: EXAMPLE EX2: USING STACK OF STACKS
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MODULE SOS;
DCL 1 SOS: RECORD,
2 TOPZ: INTEGER,
2 Z: SOS ARRAY(100);
J IS A SUBSCRIPT;
MODFUN PUSHS(3:S0S,X:S0S) RETURNS (S1:508);

S1.TOPZ = S.TOPZ + 1;

$1.2(J) = IF (J <= S.TOPZ) THEN S.Z(J)
ELSE X;

END.S1.2(J) = (J = S1.TOPZ);

END;
MODFUN POPS(S:S0S) RETURNS (S1:S0S);
S1.T0PZ = S.TOP - 1;
$1.2(J) = S.2(3);
END.S1.Z(J) = (J = S1.TOPZ);
END;
MODFUN TOPS(S:S0S) RETURNS (X:S0S);
X = S.2(S.T0PZ);

END;

MODFUN EMPTYSOS RETURNS (S1:S0S);
S1.7T0PZ = 0;

END;

END S0S;

Stack of stacks (SOS). as defined above, is not very useful because it cannot handle a
stack of integers. A SOS can only contain other SOS's. The difficulty arises because the data
type of Z, a compaonen: of SOS, is restricted to be of data type SOS; hence it does not allow a
stack of integers to be part of SOS. There are a number of ways of dealing with the problem,
e.g. parameterized modules. disjoint union of data types etc. expliined below. A particularly

elegant method is by using parameterized modules.

A generic or parameterized module defines a class of data types. Different values of the
parameter of the module result in different members of the class of data types. The SOS
example is rewritten using generic module. A single module defines stack of integers, stack

of characters, stack of stacks etc. depending on the value of the parameter.

STK specifies a parameterized stack. Its parameter is a data type which determines the
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components which a given STK can have. For example, S is declared to be an array of stacks
of integers i.e. each of the element of the array S is a stack and can contain integers.
Similarly, T is an array of stack of stacks. At the time of declaration of variables of data type

STK, the parameter of STK must be specified.

MAIN EX3;
DCL S: STK[INTEGER] ARRAY(100),
T: STK[STK] ARRAY(100);
S(1) = PUSHSTK(EMPTYSTK(INTEGER), I);
T(I) = IF I=1 THEN PUSHSTK(EMPTYSTK(STK), S(1)),

ELSE PUSHSTK(T(I-1),S8(1)}):
END EX3;

-~ S(@

lj" ﬂ_..sm)
| L] L L~ s

() T(2) T(3)

Figure 3-2: EXAMPLE EX3: USING PARAMETERIZED STACK

Figure 3-2 illustrates the various stacks in EX3, by means of a picture.
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MODULE STK[U: TYPE];
DCL 1 STK: RECORD,
2 TOPZ: INTEGER,
2 Z: U ARRAY(100);
J IS A SUBSCRIPT;
MODFUN PUSHSTK(S:STK[V], X:V) RETURNS (S1:STK[V]):
S1.70P2 S.TOPZ + 1;
S1.2(3J) IF (J <= S.TOPZ) THEN S.Z(J)
ELSE X;
END.S1.Z(J) = (J = S1.TOPZ);

END;

MODFUN POPSTK(S:STK[V]) RETURNS (S1:STK[V]):
S1.70PZ2 = S.T0P - 1;
$1.2(J) = S.2(J);:
END.S1.2(J) = (J = S1.T70PZ);

END;

MODFUN TOPSTK(S:STK[V]) RETURNS (X:V),
X = §.2(S.T0PZ);

END;

MODFUN EMPTYSTK(V:TYPE) RETURNS (S1:STK[V]):
S1.70PZ = 0;

END;

END STK;

The construct ot disjoint union alsu allows a single module to detine a class of data types.

A variable is said to be of disjoint union of data types X and VY, if the viriable can take a value
denated by either of the data types, and there is a way to distinguish whether its value is of
data type X or data type Y. Part of SOS example is rewntten below to ilustrate the idea. In the
example, a tag field is associated with the SOS record, which mdicates one of two possible
choices in the variant part of the record. Thus depending on the tag field, it represents a
stack of integers or stack of stacks. (it is assumed that TYPE OF .5TACK is a data type
defined to be a set consisting of two keywords INTEGER and SO5. CASL has similar meaning
as in Pascal.) Accordingly, the data type of the parameter X in the function PUSHSTK is of

type SOS or INTEGER.
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MODULE STK;
DCL 1 STK: RECORD,
CASE TAG: TYPE-OF-STACK OF
INT: 2 TOPZI: INTEGER,
2 21: INTEGER ARRAY(100),
SOS: 2 TOPZS: INTEGER,
2 1IS: STK ARRAY(100);
J IS A SUBSCRIPT;

MODFUN PUSHSTK(S:STK, X:CASE(STK,INTEGER)) RLIUNRNS(S1:STK);
CASE S.TAG OF
INT: S1.TOPZI

$1.21(J)

S.TOPZI + 1;
IF (J <= S.TOPZI) THEN S.ZI(J)
ELSE X;
END.S1.ZI(J) = (J = S1.TOPZI);
SOS: S1.TOPIS = S.TOPZS + 1;
$1.2S(J) = IF (J <= S.TOPZS) THEN S.ZS(J)
ELSE X;
END.S1.2S(J) = (J = S1.TOPZS);

#on

END;

END STK;
Unlike the parameterized module, the class of stacks that STK specifies is limited to those
explicitly detined in the module, e.g. in the above example it is limited to two' INTEGER and
STK. In case of the parameterized module, the class of stacks specified by STK is left open in

the specification.

Disjoint union and parameterization are not included while dofining the semantics of
modules to keep the treatment simple. Parameterized modules (or disjoint union) can always
be replaced by a number of different modules, each corresponding to a different value of the

parameter (or a different data type in the union).




3.8 SEMANTICS OF MODULES 32

3.8 SEMANTICS OF MODULES

This section defines the denotational semantics or the fix point semantics of the modules.

The denotational approach has been chosen because the semantics so defined is

—_

independent of the computation rules (or the interpreter) used to evaluate the modules. This
may be contrasted with the operational or axiomatic approach. in which the semantics is
defined in terms of the interpreter. The denotational approach is particularly suited for
non-procedural languages, because these languages are independent of the sequence of
control of the statements. The denotational semantics of modules shows two things: (1) the

module defines a set of functions, and (2) the functions can be computed.

The equations and arrays in the specification are considered as partially defined recursive
functions. This allows us to translate our notation into the standard recursive function

3 equations, and use the results regarding least fix point already known in that domain.

Some of the important definitions used in denotational semantics are described here.
Partial ordering "—<" on every extended domain D* = D U {L}. where L stands for the
undefined value, corresponds to the notion of less defined than or equal to. Itis defined as:

1 <d, and d <d ¥deD"
A function f is said to be monotonic if:
x <y => f(x) <fly)VxyeD"
Starting with these basic definitions semantics for recursive equations is defined (Chap. 5 in

[37)).

% First, the semantics of equational specification (Section 3.2) is presented. It is based on

{40]. Later, it is extended to give semantics to modules. It is also shown that a module

‘f specification defines a set of algebraic axioms satisfied by the abstract data type.




3.8 SEMANTICS Off MODULES 33

An equational specification. introduced intormally in Section 3.2. for the array symbols A,
... A, of dimensionalities d,, ... d,. and data types T,. ... T, respectively, is a system of
equations:

Al g = 1yl lg Ay Ag)

Al ) = Tolly g A Ag)

The terms r,(1,, ... Id|.A‘| .. A fori = 1to nare defined recursively as follows:

Letters f,.f,.... are used to denote functions over array values: and g,.4,.... are used to
denote integer valued functions used as subscripts. A subscript is defined as follows:

1.l is a subscript. Its appearance in 7, satisfiesk < d;.
2.1,-c is a subscript. where c is an interpreled integer constant.

3.11J,, ... J,, are subscripts, then so is g,(J;. ... J,}.
Atermis defined as:

1. Hd,. . J, are subscripts, then A(J,. ... J,) isaterm of data type T,

2.1Ft,, ..t are terms of data types S;. ... S,,, respectively, then fi(t,, ... ) is a term
of data type S, (where occurrance of the symbol t; is always followed by terms of
the data types S;;. ... §;,,)).

An interpretation for a specification corsists of
1. domains D,. ... D, over which the elements of array vary, and letD = {D,,... D, };

2. aone to-one onto mapping M such that: M(x) = D,. where x is a data lype, and D,
e D;

3. an assignment of concrete functions to the symbols {f;}. i.e. l[f]: D, "X Diz’ X..
DIm ' .o D" where mis the anty of f,. S, the data type for the i"™ argument of the
function satishies the relation M(S,) = D, and similarly the data type for the range

of the tunction satishes M(S)) = D, where D,l ¢eDtor1 <j<m, D, eD;and




3.8 SEMANTICS OF MODULES 34

4. an assignment of concrete natural number functions to the symbols {g,} i.e. i[g,}:
(Z*)% - 2", where d, is the arity of g,

where D;" is the extended domain, D;* = D, U {Ll}; and Z* is the extended domain of
natural numbers, Z* = ZU {.L}, where L stands for undefined value. Moreover. f and g, are

restricted to be monotonic in the sense of partial ordering. )

Least fix point semantics is adopted to give a meaning to the specification. Thus, the
solution to a given set of equations is taken to be the least tix point solution. Each of the A, is
specified as a partial function, A;: z4 - D;. Monotonicity of functions f,, f,. ... g,. gq, ...
assures that the 7, are continuous. Therefore, the least tix point solution exists and is unique

(Thms. 5-1,5-2in [37]).

The semantics of module specification is presented next. A module specification consists
of the declaration of the representation for the abstract data type specified by the module, and
the operations which may be performed on variables of the type. Let an abstract data type
called ADT be specified by a module of the same name. The modfuns specified by the module
may be divided into two classes:

1. those which return a variable of data type ADT, and

2. those which return a variable of data type other than ADT.

Semantics of modfuns for each of the classes will be presented.

Representation of the abstract data type ADT, in its most general form, is given by a
structure of the form:

dcl 1 ADT: record,
2A.: T,

2A

T

n'




e
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where A/'s are the variables and T,'s are theu data types respectively. Each of the A's may be
arrays or simple variables. A structure declaration is given the semantics of a tuple. and
therefore. the structure for ADT denotes the tuple:

<ALA,, L AD.
Note that since any of the T's may in turn be of type ADT. the abstract data type. ADT. may be

defined recursively.

A modfun in the module ADT which returns a variable of datia type ADT is of the form:

MODFUN OPC(C,:ADT, ... C:ADT.B,:u,. ... Byiug) RETURNS(C:ADT);
CA(,, .. 'u1) = 7yl ... 'd,-Av .-A,,C.B.op)

CAIy g ) = Tollys by Ay, AnCBiop)
END

where OPC is the name of the modfun; C's are the formal parameaters of data type ADT: B's
are formal parameters of dala types u's respectively where none of the u's is ADT; and 1;'s
represent expressions. C is used to denote C,.C,. .. C /B to denote B,. B,. .. B, and op to
denote the modfuns in the module. A's are array symbols and are components of the tuple of
ADT. defined earlier. The d,'s give the arities of the corresponding A's. and |'s are the

subscripts of the respective A’'s, where t <j < d,.

The expressions 1,'s can now be defined as below. Letters f.f,. . are used to denote

functions over array values: and 1,.g,.... are used to denote intuger valued functions used as
subscripts. A subscniptis defined as follows:

1.1, is a subscript. Its appearance in 7, satistiesk < d,.
2.1,-cis asubscript. where c is an interpreted integer constant.
|

3.1y, . J,, are subscripts, sois g,(J,y, ... J,).
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A term is defined as:

1.4 dy, . Jdi are subscripts. then C;.AJ,, ... Jdi) is a term of data type T,; where |
satisfies 1 <j < p, and i satisfies 1 <i < n.

2.8, ... 'd,) is a term of data type u,, where 1 <i < q.

3.1ft,, ...t are terms of data types §,;. ... §;, respectively, then f(t,, ... t_ )} is aterm
of data type S, where occurrance of {, is always followed by terms of data types
S .. S

im*
4. Same as (3) with the symbol f replaced by op, where op ¢ op. and S;'s replaced
appropriately.
The following interpretation is given to the above set of equations.

1. a set of basic domains D,, ... D, including domain Z of the set of positive integers,
and let D, = {D,. ... D,. D}, where set D is defined by the module;

2. for each of the data types T;'s, u;'s and ADT define a one-to-one onto mapping M
such that:

M(ADT) = D
M(x) = d wherexe {T,... T,u; ... u}
andd € {D,,, - D}

3. for each sy'nbol f; of arity d; assign a concrete function:
f:D X .. X Didi —+ D,
where D, e Dy,
and Vk, D, & Dy,

where S”. the data type for the jth argument of the function f, satisfies M(Si,) = D,
and S;, the data type for the range of the function satisties M(S,} = D;:

4. for each symbol g, of arity d, assign a concrete number theoretic function:
g (Z*)iz*,

5. a set of projection functions P,'s such that

AL ADA = PKKALLLAD)
and with subscripts and symbol C‘ for the tuple
Ci.A‘(l,....ld') = P,(C,)(l,,...ldi)
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fort <j<p
and1 <i<n;

6. a set of functions OPC,, ... OPC, (instead of the multi-valued function OPC)
defined as follows:

OPC,(C Bl lg) = CAlly,-lg)

OPC(C By ) = CAQ,...g )

where C and B are the formal narameters of OPC.

With the interpretations (5) and (6) the equational specification of a module can be written
in the familiar form of recursive equations:

OPC|(Q,_B_.|1, Id‘) = T](It‘ '(j'vE~Qv.B_vQQ)

OPC,‘(_C_,_B_J‘, Idn) = Tn(||~ Idn-E‘Q-BvQQ)
where op is the set of operations with proper substitutions. (For example. OPC ¢ op is written

as the tuple <OPC,. ... OPC,>.) P represents P, ... P,

For each of the modfuns of class 1, i.e. those which return a value of data type ADT, a

similar set of recursive equations can be written.

For each of the modfuns of class 2, i.e. those which return a value of data type other than
ADT, a similar but simpler set of recursive equations can be written. A modfun belonging to
the second class is of the form:

MODF UN OPD(C,:ADT. ... Cp:ADT.B1:n,. Bq:uq) RETURNS(E:u)
E(ly. 1)) = 7ylly. o Iy Ay AyC.B.0D)
END

which reduces to the recursive equation:
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OPD(C.BIy. ... Ig) = (). ... 15,P.C.B.op)
All the recursive equations are now put together, by renaming the variables which occur as

formal parameters of modfuns, to avoid clash of names.

The functions f,.f,, ... g;,9,, ... are constrained to be manotonic in the sense of partial

ordering. The projection functions are monotonic because:

Let P, be the i'" projection function. Now
let x = <xy, ... %, ... x>
andy = <y, .. Y ... ¥y

x <y = x;, =y, foralli (where "< stands for less defined than or equal to)
Pi(x) = X;
Pily) =y,
x =Xy = Pi(x) <P(y)
therefore, P, is monotonic.
Hence, 7;'s are continuous and the least fix point solution of the recursive equations exists

(Thms. 5-1,5-2in [37)).

The set D, which corresponds to the data type ADT, is defined inductively as follows:

1. Base step. For a modiun OP which returns a value of data type ADT, and none of
whose formal parameters is of type ADT. the tuple defined by OP: <OP,, ...
OP,>(B) is a member of set D. B are the formal parameters of function OP, and
OP represents a tuple of tunctions.

2. Inductive step: For a modfun OPC which returns a value of data type ADT, the
tuple defined by the modfun: <OPC,, ... OPC, »(C.B) 1s a member of set D; where C
are the members of set D, and B are members of other domains {D,,, - D).

The existence of the least fix point solution assures the existence of the set D.

With the semantics of the modules defined. algebraic axioms about the abstract data types
can now be proved. The proof involves substituting non-procedural equations for the
occurrances of the module functions, and reducing the equations until the desired equality is

obtained. This is illustrated by means of the STACK example. Note that since it does not
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involve recursive definition of the data type the derivation is straight forward.
To prove. POP(PUSH(S.X)) = S. where S is a stack. and X is an integer.

Proof:

LHS
= POP(S') where S’ is a stack and
S .TOPZ = S TOPZ + 1

S.2(J) it < S.TOPZ

S.Z(J) = X ifd = S.TOPZ
1 otherwise

= 8" where S" is a stack and
S".TOPZ =S'.TOPZ - 1 3
S"Z2(J) = S.Z2(J)ity < S.TOPZ

L otherwise

= S” where S". TOPZ = S.TOPZ
S"Z2() = S.2(J) itd <S8 TOPZ
1 otherwise

= S" where S" . TOPZ = S.TOPZ
S".Z(J) = S.Z(J) VJ (from Lemma 1))

QED.
Ltemma 1: VS ¢ STACK, S.2(J) = L ford>S.TOPZ

Proof: Since the stacks can only be dehned by the modfuns in the module STACK, the
proof follows from induction:

Base step. Follows from the definition of the EMPTYSTACK.
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Induction step: Let S be a stack satistying the proposition of the Lemma.

Ciaim: The stacks POP(S,X) and PUSH(S,X) also satisfy the lemma.

Proof:
1.
LetS' = POP(S,X)
S Z(4) = Lford>(S.TOPZ - 1)
= L forj>S.TOPZ
2.

LetS' = PUSH(S,X)
S'.Z(J) = L ford>S . TOPZ

Q.ED.

3.9 SUMMARY

This chapter introduces a non-procedural language based on equations. Use of abstract
data types has been proposed as a means to introduce modularity in the non-procedural
language. it has been argued that the use of abstract data types is consistent with the

philosophy of non-proceduralness, and leads to modular specifications.

The notion of "module” has been introduced to allow specification of the abstract data
types. It allows the definition of the representation of the abstract data types, and the
specification of the functions whish can operate on it. These functions are specified

non-procedurally by means of equations.

Finally. the denotational semantics of the modules is defined. It is shown that an abstract

data type defined by a module is a well defined set. it is also illustrated that the axioms

satisfied by the abstract data types can be derived from the equational specification.
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Chapter Four s:

THE NOPAL LANGUAGE

el L o

4.1 OVERVIEWOF THE NOPAL LANGUAGE

Nopa!l is a descriptive language used to write specifications for the programming of

automotic test systems. it can be used for testing of electronic circuits, mechanical systems,
chemical processes etc. It aiso has the capablity to perform general purpose computationat

tasks.

Basic statements in Nopal are assertions and data declarations simitar to those described
in Chapter 3. However, Nopal has additional constructs which are superimposed on the
assertions and data declarations. These additional features facilitate the specification of
testing. The most important construct is that of a test. A test section consists of a
specification of a physical test. Outcome of the test, i.e. passing or failing the test, determines
fault isolation. There are also sections to describe the UUT (Unit Under Test) and the ATE
{Automatic Test Equipment). These sections are needed to check consistency of interfaces

with the UUT and ATE.

Several features of Nopal are extremly important in providing ease of use. First, the
language is non-procedural. The user saves effort because the execution order of events or
control logic need not be specified. Second, the specification can be divided into sub-parts,
the modules. Each of the madules can be specified and processed by the language processor
indepéndenlly. This is the essence ol modulanty of a specfication. Third, each of the

modutes may be further divided into data declaration. and functions. The functlions are
41
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divided into tests, diagnoses and messages. Each test has sub-parts: stimulus, measurement
and logic Al these carrespond to notions which occur in testing. Fourth, the language
allows incremental development of specification. Tests can be added to a specification

without changing the tests already specified.

The Nopal system produces a number of 1eports which serve as the documentation for the
specification. It also enhances the user-system interaction, and helps the user in locating

errors in the specilication.

In this chapter. the Nopal language is described intormally with examples. A more detailed

explanation including the formal syntax is given in [46).

A Nopal spucification gives a complete description of the desired tesis specific to a given
UUT and ATE. In general, a Nopal specification consists of a collection of moduies. One of the
modules is called the - 1n module and it consists of the tests on a given UUT with an ATE.
Communication between the modules is by means of abstract data types. A module (except

the main module) represents an abstract data type which can be used by other modules.

A module specification includes the data representation for an abstract data type together
with the functions (called module functions or modfuns tor short) which can operate on the
vanables of the abstract type (also called abstract vanables for short). An abstract data type
that has been specified by means of a module can be used in any of the modules. The
abstract variables are dehined and operated upon by means of the modfuns specified in the

module.

The modules are speciied non-procedurally. For organizational purposes each module

can be dvided into four major sections, which can be given in any order. They are:

1. Data declaration specitication,




4.1 OVERVIEW OF THE NOPAL LANGUAGE 43

2. Modfun specification,
3. UUT specification, and
4. ATE specification.

Each of the four sections are - xplained briefly below, tollowed by a more detailed description

later.

The data declaration specification provides the data types of the variables and the data

structure used in the specification.

The modfun specification describes the mapping between the input and the output
parameters of the modfun. The main module has only one (implicit) modfun, while the other
modules may have mare than one. Each modiun consists of fests. diiaanuses and messages.
The tests may be further sub-divided into stimuli. measurements and logic. A test
corresponds to the notion of a physical test on the UUT, i.e. apphcation of stimufi. 1aking of
measurements and selection of diagnoses, based on the results of the test as expressed in the
jogic part. The diagnoses report of the test consists of messages that typically identity the

faults in the UUT,

The UUT specification gives the description of failure modes, connection points etc. of the
UUT. This description is cross-checked by the tanguage processor for consistency within the

module.

The ATE specitication provides the description of the funclions used in the modute. These
functions can be used for application of stimuli, taking of measurements, or for computations.
These functions must be specified outside the module. They can be either part of a library ot
functions, or they can be specitied as modtuns by other modules. The ATE specification gives
the function parameters and their data types. In other words, it gives the specification of the

interface with the rest of the modules and with ATE.
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4.2 DATADECLARATION SPECIFICATION

The data declaration specification altows the user to declare the data types of vanables.
The data type of a variable specifies the set to which {the value of) the varabile must belong,

and the operations which can be performed on it .

Data types can be either elementary, e.g. real. integer. or character or they can be

abstract. in which case they must be specified by means of modules.

Data declarations include specification of the structure of the data. The two basic
structuring methods are: (1) arrays. and (2) structures  An wiray is a homogeneous structure
of elements. all of which are of the same data type. A structure. on the: other hand may consist
of components of different types which are grouped together. The compoenents themselves

can be arrays or structures. thus pormiting structures of arbhirary complexity 1o be declared.

A structure may be viewed as a tree. The root of a tree represents the entire structure, and
its descendents correspond to the components of the structura Finally. the leaves of the tree
correspond to the individual variables in the structure. Below are some examples of

declarations of variables:

OCL A,B,X : INTEGER;
DCL Y,Z : STACK ARRAY (10);
DCL 1 P : GROUP ARRAY (5),
2 Q : GROUP ARRAY (*),
3 R : INTEGER,
3S : REAL;

In the first statement. variables A, B and X are declared to bo of type mtager: i the second, Y
and Z are declared to be one dimensional arrays of size 10, and data type stack, and in the
third, a three level tree stiucture is declared. In the tree structure the root is the variable P

having the descende:nt Q which has variables [Tand S Pis an array of five eloments and Q an

array of size which is to be specified elsewhere,

R TR Y SRS R oF: 1L SR TS L PO e S
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A declared structure is implied to be on secondary storage il the data type of the root node
is FILE. Name of the root node, in that case, gives the name of a file and the structure
declaration gives the structure of the file. In other words, the declared structure represents a

fite, and is called a file structure. For example:

DCL 1 F: FILE,
2 P: GROUP ARRAY (*),

3 Q: RECORD ARRAY (10),
4 R: INTEGER,
4 S: REAL,

3 Q1: RECORD ARRAY (5),
4 Ri: CHAR;

Afile F is declared to contain an anay P of indefinite size. Each element of P contains 10 Q’s

and 5Q1's.

A file structure is considered by the system to be input it ail the helds (i.e. leaves) of the
structure are not defined in the specification. and output otherwise. The non-leaf nodes of a
file structure can be of type RECORD or GROUP. A non-leal node which corresponds to a
unit of input output on the secondary storage is declared as a RECORD. and GROUP

otherwise.

Varniables in an input file structure are defined in the generated program by means of a
special function called ACCESS. Calls on this function ae generaterd at appropiate places in
the generated program for the specification  SAVE function s the exact dual of above for an
output file structure  Use of ACCESS and SAVE tunction is imphcit and need not be specitied

by the user.

For IGAM files. a key is represented by a vanable name which s the name of the record
prefixed by "PTR ™ For example. aninstance ot a record named 27 in an ISAM file can be
defined by means of its key "PTR.Z"  The value of the key 1s passed as a parameter to the

ACCESS and SAVE function.
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The notion of file structure has been generalized to abstract structures in NOPAL. An
nput or output structure can be declared to be of abstract type by specitying the data type of
the root node as abstract (instead of the keywords RECORD. GROUP or FILE). An example of

an abstract structure is:

OCL 1 P: AT1 ARRAY (*),
2 Q: INTEGER,
2 R: REAL;

in which a structure Pis declared to be of abstract type ATt

An abstract structure is considered input if the value of all its ficlds 15 not defined in the
specitication, and output otherwise.  Value of input abstract structures s defined in the
generated program by means of function named: "ACCESS " suffixed by the name of the
absiract data type. i the previous example, if the structure P is input, its value would be
definad by ACCESS AT, The ACCESS function tor an abstiact cdata type must be specified in
its module. Calls to this function are generated at appropriate places in the generated

program. An exact dual of the above is the SAVE function for output abstract structures.

Abstract structures allow convenient renresentation of those files whose physical

organization is different from that specitied in the main module.

Parameters can be associated with ACCESS and SAVE functions associated with abstract
structures. The use of parameters provides a means of communication between the main
module and the module which defines the abstract structure. it allows the use of abstract
structures to represent teshing devices as well. For example. a device which ineasures ratio of

two voltages on two ports can simply be declared as:
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DCL 1 GD: GAIN_DEVICE ARRAY (*),
2 GAIN: REAL;

The function ACCESS GAIN DEVICE in the module GAIN DEVICE can give the specification
for the appropriate measurements. Thus, each value of the variable GAIN detined by means
of the ACCESS function represents a different measurement. Information relating to the ports

and ranges can be passed as parameters.

The parameters are specified by a syntax similar to that used for specitying key for ISAM
files. In the example above, the parameters of the abstract record GD are given by means of

variables named PTRt GD, PTR2.GD, etc.

4.3 MODFUNSPECIFICATION

This section describes the specification of the module functions (modtuns). Each modfun,
like a mathematical function. specifies a mapping from its domain to the ranges. A modfun
has zero or more parameters. Parameters are called source parameters if their value is
defined outside the modfun. and are called target parameters if they are defined in the body of
the modfun. A modfun can return a value by means of its target parameters ar explicitly as in
programming or mathematics. The data types of the source parameters are the domains, the
data types of the target parameters and explicitly returncd value are the ranges of the

mapping specified by a modfun.

The main module has only one implicit modfun; the ather madules normally contain more

than one modfun. A modfun has four parts:

1. header,

2. test specification,
3. diagnoses, and

4. messages.
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The header must be the first statement. after which the tests, diagnoses and messages may

occur in any order.

4.3.1 HEADER

Each modfun starts with a header consisting of the keyword MODFUN tollowed by the
name of the modfun, the list of tormal parameters and their data types. and the data type of
the value explicitly returned by the modfun. it also states which of the parameters are source
and which are target. In effect, the header defines the interface with the other modules which
use the modfun.

For example the following header:

MODFUN PUSH (S0:S STACK, X:S INTEGER)
RETURNS (S1:STACK);

defines a function called PUSH which has two source parameters 30 and X, and it returns a
value S1. explicitly. The data type of SO and St are STACK. and the data type of X 15
INTEGER. Consequently, PUSH specifies a mapping from its domains of STACK and

INTEGER to its range STACK.

4.3.2 TEST SPECIFICATION

The test specification consists of a collection of tests.  As mentioned catlier, tests
correspond to the idea of a physicat test on a UUT. A test consists of three parts: 1) stimuli
that are to be applied to the UUT at the test time. 2) measurement. that need to be taken and
conditions that must be met, and 3} logic to select the diagnoses based on the result of

passing or failing the test.

Stimuli and measurements both optionally contain two parts. a conunct:on and a set of

assertions (Generic word, wavefoim, is used to refer to either a conjunction or an assertion).
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A conjunction in stimuli specifies the simultaneous application of stimuli to the UUT, while in
the measurement it specifies the simultanecus measurement to be taken of the UUT. All the
functions specified in conjunctions must be pertormed in parallel. For example, the following

conjunction:
STIM;

CONJ: 31,32
3,348

PSUPPLY (30V) &
FSOURCE(1KHZ,10V});

specifies applying a power supply of 30 volts across the connecting pins J1 and J2, and

applying a frequency source of 1kHz and 10 volts between pins J3 and J4.

A conjunction can also be used with an if-statement, in which case it is called an
if-comunction. An if-conjunction consists of a boolean condition followed by a conjunction
after "THEN" and a conjunction after "ELSE". One of the conjunctions following the "THEN"

or "ELSE" part is performed depending on the boolean condition. For example,

STIM;
CONJ: IF VARC20 THEN <J1,J2>
ELSE <J3,J4>

PSUPPLY (30V)
FSOURCE (1KHZ,10V);

If a variable VAR is less than 20 then the power supply and otherwise a frequency source is

applied.

Conjunctions are used to specify some actions - stimuli or measurements - on the UUT.
Assertions, on the other hand. are used to specify relations that must be satistied by the
variables. An assertion specifies relations between variables It can be used in two roles: as
an explicit definition of variables or to specify a condition on the variables. Vanables defined
in an assertion are said to be target variables of the assertion. All others variables in the

assertion are called source vanables of the assertion.

If an assertion does not have any target variable then it specifies a relation which is tested

for truth value. An assertion evaluates to (rue if the specitied relation i1s satisfied, otherwise it

- - PR T—— — M
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evaluates to false. Assertions which have target vanable(s). are always taken to evaluate to

true.

The syntax of assertions is:

ASRT: <EXPRESSION1> <RELATIONAL OPERATOR> <EXPRESSION2>
SOURCE: <LIST OF VARS>
TARGET: <LIST OF VARS>;

{expression1> and <expression2> are arithinetic or boolean expressions. <tekitional operator>
isoneof (= {><C=>=. =) distof vars> is a list of variables with their subscript expressions,

if any.

Target variables in an assertion must occur as <expression1> or as the target parameters
of the function in <expression2>. Moreover. the relational operator mustbe ™ = . Examples of

assertions are:

ASRT:

> B*SIN(30) SOURCE:A,B;
ASRT: -

B*SIN(30) TARGET:A
SOURCE:B;

> >

The first assertion tests for the inequality and evaluates to true or talse: the second assertion,
on the other hand. defines variable A and always evaluates to true.
In addition to anthimatic operators, the + - operator is used in an assertion:
ASRT: o1 = 62 + - @3;
where el, e2, and e3 are expressions. The assertion iz un abbreviation for the following
relationship:
e2-e3<(=e1<{(=¢e2 + €3

and evaluates to true provided the above relations are satistiad.

Assertions may also be used to specify a relation that must be satisfied by a target

parameter of a function in a conjunction. f or example, an assertion written as:
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CONJ: <J1,J2> = VOLTMETER (<V1)
SOURCE :V1;

specifies that the value of the target parameter of the function VOLTMETER must be less than
V1.

If-clause can be used with assertions just as in if-conjunctions. Syntax of if assertion is:
ASRT: IF <BOOLEAN CONDITION> THEN <ASSERTION>
ELSE (ASSERTION>
SOURCE:<LIST OF VARS>
TARGET:<LIST OF VARS>;
The keywords THEN and ELSE may be followed by another assertion which may again have
an if-clause. This allows the if-assertion to be nested to indefinite depth. (In the present

implementation, the assertion following THEN cannot have an if clause. Thus only a right

recursive tree is permitted.)

The if-assertion is taken to evaluate to the same boolean value as the selected assertion
following THEN and ELSE. In other words. if the boolean condition in an if-assertion
evaluates to true then the assertion is said to evaluate to the same value as the assertion
following the keyword THEN. and if the boolean condition evaluates to false, then the
assertion is said to evaluate to the same value as the assertion following the keyword ELSE. If
an if-assertion (or if-conjunction) defines some vanables in its then-part. it must also define

exactly the same variables in its else-part.

The concept of free-subscript is introduced next Its use allows entire arrays to be defined
by means of one conjunction or assertion. It also allows relations to be specified between
arrays. The notion and use of free subscripts 1s similar to that in mathematics. For example,

the assertion with free-subscript I:

—_

it avitrih
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ASRT : IF I=1 THEN F(I) =1
ELSE F(I) = I*F(I-1)
TARGET:F(I)
SOURCE:F(I-1);
defines the values of F(l) for all values of free subscript | In other words. it defines the entire

array F. Similarly, the assertion with free-subscript |

ASRT: A(I) = B(I)
SOURCE: A(I),B(I):

specilies relation between two array variables A and B. This assertion is taken to evaluate to

true if the relation holds for all values of the subscript 1.

Syntax for declaration of a free subscript is similar to that of an assertion. Statement

containing the keywoid SUBSCRIPT in the following example: 3
ASRT: I = SUBSCRIPT ('A,B:2',10) TARGET: I; :

is used to declare a free subscript 1" for the first dimension of array variable A, and the
second dimension of array variable B. The size of the respective dimensions of the vanables is
ten. Even though the declaration looks like an assertion it should not be confused with an
assertion. It declares a subscript which takes values from 1 to 10. The list of variables and

their dimensions. i.e. "A.B:2", is called parent list.

Subscripts are a powerful way to define arrays. However. certain restrictions have been 3
placed on their use so that the specification may be analysed and an etficient program
generated. Let | be a free subscript. A subscript must be in one of the following forms:

1. asubscriptterm. e.g. I in A(l);
2. an expression of the form (I-K), where K is a positive integer; and

3. another variable or subscripted variable e.g. B(1) in A(B(D). X in A(X).

For variables which are targets in a conjunction or in an assertion, only the first of the above

three forms is permitted.
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In the declaration of a subscript the upperbound may be omitted, if it is not known, and

replaced by "*". For example, in the assertion:
I = SUBS ('F',*) TARGET:I;

upper bound of a variable F is unknown. For such variables, the program generator tries to
optimize memory. In particular, the program generator allocates memory for 2 elements:
current and the previous. Eiements corresponding to only the current (i.e. 1) and the previous

(i.e. I-1) value of subscript may be referenced.

The size of an array variables with subscript I, whose upper bound has been declared to be
indefinite. is specified by means of a special array called END-I. Such special arrays are called

end arrays. The meaning of end-arrays is introduced by means of an example below:
T = SUBS ('F',*) TARGET:I;

1
1*(F-1)

IF I=1 THEN F(I)
ELSE  F(I)

TARGET:F (1)
SOURCE:F(I-1);

TRUE
FALSE

IF I=6 THEN END_I(I)
ELSE END_I(I)
TARGET:END_I(I);

First statement, in the example above, is declaration for a subscript I. It is followed by an
assertion which defines an array F in terms of itself. The second assertion defines an
end _array END | whose first four elements are false and the fifth element is true. This specifies
that the size of array F is equal to five. In other words, the size of F is specified to be equal to N
such that for index N the value of END I is true and for alt indices less than N the value of

END |is false.

More generally, it "1" is a free subscript then END_ is a multi-dimensiona! array, its
dimensionality being equal to the maximum dimension in the parent list in the declaration of

. END defines the size of those dimensions of the array variables which are in the parent
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list. For example,
I = SUBS ('G:1,F',*) TARGET:I;

J

SUBS ('G:2',*) TARGET:J;
the dimensionality of END | is one and that of END_ J is two. END I defines the size of the one
dimensional array F and the first dimension of two dimensional array G Similarly. END J

defines the size of the second dimension of array G.

Use of tree subscripts allows an array to be defined by means of a single assertion or single
conjunction. It is important. however, for the variables (be they arrays or scaler) to be single
valued. Consequently, a conjunction or assertion which defines multiple values for arrays is

invalid. For example, the assertion:

ASRT: A(I) = B(I,J) TARGET:A(I)
SOURCE:B(I,J);

1s invalid because it deluies an element of array A to be equal to an entire row (second
dimension) of array B. In general. whenever the set of free subscripts associated with a target
variable is a subset of the number of free subscripts of the source vaniables. it defines multiple
values for the target variable. There are two exceptions to the above rule:

1. when a source variable contaimng an extra free-subscript occurs as an argument
of a reduction function, and the extra free subscript is reduced: or

2. when a boolcan condition precedes the asscition. A warning isissued in this case
and it is the responuibility of the user to ensure that the 1arget variable is single
valued.

Example of an assertion containing a reduction function is:
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ASRT : F(I) = SUM(G(I,J),J)
TARGET:F(1I)
SOURCE:G(I,J);
Reduction function SUM takes two dimensional array G and sums the elements of the same |
index value. thus producing a one dimensional array F. The array vanable F is single valued

even though the source vanable G has an extra subscript J. Example of the second exception

18!
ASRT: IF END_I(I) THEN OUT = F(I)
TARGET:QUT
SOURCE:F(I),END_I(T);
OUT is defined by the last element of the array F. However, it is the responsibility of the user to

make sure that OUT is not defined by more than one element of F Nopal program generator

does no further analysis to check that it is indeed so.

The Logic companent ot a test specilies the selection of diagnoses. The diagnoses are
selected depending on whether the test evaluates to true or false. The test evaluates to true if
all the assertions in the test evaluate to true, and false otherwise. The operators given in Table

4.1 may be specified with each of the diagnoses for their selection,

The logic compasnent is specified by a list. each of whose elements consists of an operator

followed by a diagnosis name. For example:
LOGIC : *D1, |D2, -~D6;

4.3.3 DIAGNOSES
The diagnoses are used to report the result of the test, to isofate failure modes or to elicit a
response from the user. it has five parts which can be specified in any order.

1. List of affected components and their failures modes which are isolated by this
diagnosis. They may be in conjunctive or disjunctive form where the former
means that all the components in the list have failed, while the latter that at teast
one has failed.
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Table 4-1: LOGIC OPERATORS IN A TEST

OPERATOR

MEANING

Select the diagnoses uncouniditionally i.e. irrespective of the

outcotne of the test.

Select the diagnoses if the test evaluates to true.

Select the diagnoses if the test evaluates to false.

Mark the diagnoses as selected it the test evaluates to true.
The diagnoses should be executed only if all other tests which
use this diagnoses (with operators: & or & ~) also mark it as

selected.

Mark the diagnoses as sefected if the test evaluates to false.
The diagnoses is executed only if all other tests which use this

diagnoses (with operators: & or & ~) also mark it as selected.

2. Name of the message to be printed The message itself is specified separately.

3. Parameters: This specifies the vaniabibes whose values nwst be substituted in the
message at the appropriate places.

4. Operator response: It specilies the response from the operator when the
generated program is executed. The program waits for a response. Response

can be of three types:

a. press PROCEED key;

b. press Y(yes) or N(no); or

c. enter a number,

Pressing the PROCEED key simply causes the program to continue exccution. It
1s typically used to turn knobs and set switches manually, i.e  those which cannot
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be controlted by ATE. Y or N response 1s typicaily used for asking the operator to
make a binary choice. The response {(c} is usually used to enter reading of meters
etc. manually. i.e. those which cannot be taken by ATE.

5. Time: Specilies the real time which must elapse from the start of a test, before the
message is issued.
Except for the name of the message and the parameters it takes. if any. all the other parts
of the diagnosis are optional.

A diagnosis specification is illustrated below:

DIAG D1:
l AFFECTED COMPONENTS = OPEN(RESISTOR1)|OPEN(RESISTOR2),

PRINT = MSG1,
PARAMETERS = V,
TIME = 0;
It specifies that at least one of two resistors - RESISTOR1 or RESISTOR2 - has failed due to

open circuit, and that message MSG 1 with parameter V must be printed. Time 0 specifies that

no time delay is necessary in issuing the message.

4.3.4 MESSAGE SPECIFICATION
This specification consists of the 1ext of g message. and parameters and affected
components. if any It implies the printing of the message including the alfected components

and parameters.

For example, the message MSG1 of Section 4.3.3 can be specified as follows:
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MESSAGE MSG1:

' ONE OF THE FOLLOWING FAILURES HAS OCCURED: (C). THE
MEASURED VOLTAGE IS (P).' ;

When the above message 15 prnnted  “(C)"  1s substtuted by  "OPEN

(RESISTORNDOPENIRESISTOR2) " and "(P)" 1s substituted by the value of vanable V.

4.4 UUTSPECIFICATION

Information refating to the UUT s specitied in this section. This allows vanious consistency
checks to be performed wathin the module 1t is orgamzed in two parts: (1) interconnecting f
points. which are used for identification of the connection pomts of the UUT to the ATE, (&) |
component failures which identify all possible faulty components with the failure modes (i1.e.

types of failures).

A UUT connection point dehines a symbolic name for a connection poimt on UUT. the type

of connector used. and the maximum and minmum value of the stimul which may be apphed

onit Forexample:
UUPT 40 : J1, CONNECTOR:(A), LIMIT=(VOLT,70,0,GND);

J11s the name by which this connection pomt is referred to its type of connectoris A, and the

mavimum and nunimunm value of stimul that may be applied with reapect to the ground (GND)

is 70 volts and 0 volts respectively. 5

In HUT component failure section. all possible faulty companants and thew falure modes
are bsted. Each component specification includes the fiutare mode, hkelihood ol the failure,
and protection. Protechon consists of a list of other components whose faillure probatt

testing of this component. For example:

e o v

-
¥
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|
f COMPONENT FAILURE 2:
i’ RESISTOR1, FAIL=0PEN, INDEX=1, PROT=(1,11);
specifies that the component RESISTOR1 has a failure mode called OPEN, the frequency of
f fature is 1 (the lower the number the larger the likefihood). and that should the components 1
: or 11 tail. tests for failure of this component must not be conducted.

4.5 ATESPECIFICATION

Information relating to the Automatic Test Equipment and the functions used in a module

4

(computational. stimuli or measuremaent) is stated here. it has two parts: (1) ATE connection
‘ powt specification. and (2) functions. ATE connection point specification consists of the

names of the ATE connections points. Optionally. the specification inciudes identitying ATE

points of the respective UUT points. In the example below:

ATEPOINT 1: ATEPT#30, UUPTS=(J1,32);
“ATEPT # 30" may be connected to UUT points J1.J2. The checking tor the UUT points has

not been implemented. Itis used purely as a documentation device.

Functions used for (1) stimuli. (2) measurement or (3) computational purposes, and (1) for
denoting failures are declared in the ATE function specification. Functions in the first three
categories are assumed to be doefined either by means of other modules or by means of a
library of functions. The failure functions (category (4)) are for the purpose of denoting kinds

of lailure. They are not functions w the sense of the earher three categories.

Function specthcation has anatem called TYRE which specaifies which of the above 4 types
does the function bielong to, and ems PARK and VARNE RETURNED to specify the data
types of the parameters and the vidoe to be returned  The namber of pins used may also be

specihied if the funchion s of type stimule ar m-asorement
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For example a function PUSH

FUNCTION PUSH, TYPE=E, PARM=(INSTACK,S:STACK),
PARM=(ELEM,S,INTEGER) ,VALUE RETURNED=({STACK);

is of type evaluation. It has two parameters. both source. with the data types STACK and

INTEGER. and it returns a value of type STACK. The names INSTACK and ELEM have no

significance for the specification. Their use is only for providing mnemonics.




Chapter Five

THENOPAL PROGRAM GENERATOR

5.1 OVERVIEWOF THE PROGRAM GENERATOR

The Nopal program generator is designed to automate the program design, coding and
debugging phases of program development based on a specification in the Nopal language.
The program generator analyzes a Nopal module specification, issues a number of reports for
the user and, if the module is error free, generates a program in the Equate-Atlas test

programming language.

There are three phases in the program generation process. Phase 1 consists of syntax
analysis and construction of internal data structures. Phase 2 consists of analysis of the
specification for completeness, consistency and non-ambiguity; and of sequencing. In phase
3 Equate- Atlas code is generated. A number of user reports are issued by each of the phases.
The three phases are described individually in Sections 5.2, 5.3 and 5.4. More detailed

documentation is provided in [46].

The Nopal processor has evolved through numerous revisions over the past several years.
The research reported here includes extending the original system [7] with the following
capabilities:

1. Modules to provide modularity and abstract data type definition facility.

2. Recursive assertions to allow the arrays to be defined recursively.

3. Declaration of data types and data structures as well as virtual subscripts.
61
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4. input output from secondary storage.

5. Virtual subscripts for effictent utilization of memory.

These extensions entailed modifying some parts of the original system and completely
rewnting other parts In particular. the scheduling algorithm was completely rewritten to
handle recursive assertions and input output from secondary storage It s described in

Section 5.3.2.

The code generator was not implemented in the original system [7] but completed later

[55] The Mopal systen was demonstrated on an actual Equate Atlas machine [ 15].

5.2 SYNTAXANALYSIS AND THE ASSOCIATIVE MEMORY

5.2.1 OVERVIEW

The first phase of the Nopal processor petforms syntax and focal semantic analysis of
specification statements. At the end of the analysis. each Nopal statement is encoded and
stored in a simulated associative memory for ease of turther processing.  The first phase
includes a Syntax Analysts Progrim (SAP).  SAP itself is gencrated automatically by a
meta-processor called Syntax Analysis Program Generator (SAPG). by mputting the formal
specification of the Nopal language v a meta language. calied Extended Backus Normal

Form with Subroutine Calls (EBNFF/WSC). SAPG and SAP are described in Section 5.2.2.

SAP incorporates six types of supporting routines. which are composed manually: Lexical
Analyzer, Error Stacking. Recognizer, Encoding/Saving/Stonng. Semantic Checking and

Service Routines. These are described in Section 5.2.2.

At the end of each Nopal statement, a storing routine is invoked to store the statement in
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the simulated associative memeory using the Store/Retrieve package. The Store/Retrieve

package and the associative memaory is described in 5.2.4.

Finally. the set of reports generated by this phase are described in 52.5.

5.2.2SYNTAX ANALYSIS PROGRAM - SAP

SAP i1s generated by the Syntax Analysis Program Generator (SAPG)  The input to SAPG s
the specification of the Nopal language in the meta-language EBNF/WSC  SAPG and
EBNF/WSC were originally developed at the University of Pennsylvania Data Detinition

Language Project [43] [44]. A brief review of EBNF/WSC and SAPG is given below.

EBNF /WSC extends the standard EBNF to provide semantics  The semantics is specified
by means of subroutine names which are included in the productions, along with the
terminals and non terminals. These subroutine names indicate the need to call the respective
subroutine upon successtul recognition of the preceding syntactic unit by the parser. For
example, the production

CA> -+ B> /aas <C>
indicates that a subroutineg named "aa” needs to be called on successtul recognition of the
non-terminal <B> in the process of recognizing the non-terminal <A>.  The subroutines

themselves are written manually.

SAPG accepts the specification in EBNF/WSC and generales a recursive descent parser
to recognize the syntax defined by the EBNF. Calls are inserted to the subroutines on
recognition of non-terminals as specified by EBNF/WSC specification. SAPG requires that
the EBNF grammer must be in LL(1) form. The grammer should be free of left recursion, and
the first termunal symbot should distinguish between the optional groups at any point in the

grammer.
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5.2.3 SUPPORTING SUBROUTINES
The EBNF/WSC specification contains names of subroutines which are called from SAP.
They can be categorized into six types:

V. texical analyzer scans the Nopal input string and returns tokens of syntactic units
to SAP or the recognizer routines.

2. Frror messaye stacking routines help compose and stack error messages before
every syntactic unit in the specification. In casa of incorrect or nussing syntactic
units, SAP generates the error message from the error stack.

3. Recogmizer routines recognize a class of input tokens. Luch as names and
aitegers. These occur in productions of the form:

<A> -+ /RR/

where BRRis the name of a recognizer routine.

4. Encoding ‘saving/storing routines save the tokens in appropiate data structures
and finally in associative memary for purposes of later analysis.

5 Semantic check ng routines check the local semantics of a Mopal statement.

6 Service routines are used by SAP to perform some internal services e.g. popping
the error stack.

At the end of ea:h Nopal statement a storing routine 1s called by SAP, which in turn calls

STORE to enter the mformation relating to the present statement into the associative memory.

5.2.4 ASSOCIATIVE MEMORY AND STORE/RETRIEVE SUB-SYSTEM
The Store/Retriecve Subsystem is a generalized means of storing the Nopal source
statements and later retrieving them. It consists of two types of routines:

t STORE for storing the source language strings, including tokens and entities,
gathered during the syntax analysis, and

2. RETRIEVE for retrieving the sonurce strings, and for accessing the “directory
entnes”, the former s through RETREVS and the latter through RETREVD.

The STORE routine 15 called to create or add to the associative memory, and RETRIEVE to
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access or modify it.

There are eighteen classes of statements and names in Nopal A hist of classes. ther
mnemonics, and the enlittes they represent 1s given in Table 51 For example, class 15
represents the vanables, and class 2 represents the tests.  An identifier occurning m two
different classes denotes two dilferent entities. In oither words. a name: together wath its class

uniquely identifies an entity.

A directory is used to store all the names and their classes. it organized as a binary tree
according to the leacographic arder of eotnes  Each node of the tree corresponds to a name
and its class. There are c1oss hinks i this tree which connect all nodes with the same name
together. and all nodes of the same class together. Each node has an additional ink (called

REFLIST in Figure 5 4) to a storage entry containing this name and type.

There s a storaue entry for each Nopal source statement. 1t containg the names (KEY) of
all the symbols (rather pomnters to the names in the directory) which occur in a the
corresponding statement . With each symbol name it has a pointer (called NEXT) which points
to another storage entry which uses it. Thus, it provides a very «fficient means to find
occurrences of symbols in different statements Associated with each storage entry theore s
also a pointer (DATA) which pomts to the entire parsed source string. stored in a separate

data area.

The storage entries together wath the directory and the data wea s called the associative

memory.

As mentioned in the previous section, STORE is called at the end of pach Nopal statement,
Its arguments are (1) a hat of names and their classes encountered in the statement, and (2)

pointer to the dala area contauming the parsed source statement It enters the names and their
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Table 5-1: CLASSES OF NAMES AND THEIR TYPES

| CLASSES  MVMONIC CLASS OF ENTIVITS PEPRICINTED
| 1 SétC# NOPAL spccifi;sticn Icbel/staterent
2 TEST® Test medule label/statement or modfun header
3 STINM% Stimulus label/statemer:
4 MEASH Measurement label/statemznt
‘S DIAGH Diagnosis label/statemcnt .
6 MSG# Message label/statenent
| 7 LOGIC# ‘ Logic label/statement
! 8 QONJ# Conjunction label/staterent
9 ASRT# Assertion label/statemant
10 Cop# UUT comnenent identifier (id)
F 11 CMPFL* Component-failure (i.e. affected coimponent)
id/statement
J 12 UUTPT# UUT connectien point id/statement
3 13 ATEPT# ATE inter-connection point/id statement
14 FUNC# Function id
15 VAR# Variable id
16 g End statement
17 dtyp# data type name
18 rec# data declaration statement
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(2) DIRECTORY FENTRY

reontrTy c-1ink s-1ink
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Figure 5-4: STRUCTURL OF THE DIRECTORY AND STORAGE ENTRIES
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classes into the directory, and creates a storage entry corresponding to the statement. The
storage entry contains the names (rather pointers to the names in directory) which occur in
this statement. STORE then proceeds to create all the association links corresponding to

each of the names. and also to store the pointer to the data area in the storage entry.

The two procedures RETREVD and RETREVS allow the information to be retrieved from
the associative memory. The former retrieves pointers to directory entries. and the latter
retrieves storage entries. Entiies can be retrieved by togical expressions of their names and
classes. For example. all entries belonging to a certain class which do not occur i some

statement class can be retrieved by constructing an appropriate logical expression.

5.2.5 REPORTS

Listings of the specification and errors encountered. it any. in the specifications arc
reported at the end of the Syntax Analysis Phase. The programs XREF 1 and XREF2 generate
a cross-reference listing. and the program SOURCE2 generates 1 formatted listing of the user

specification. Samples of these reports are shown i examples. in the Appendix.

XREF1 also determines the scopes of vanables 1.e. whether the vanables are global or

local, and enters it in the data areas of the associative memory.

5.3 SPECIFICATION ANALYSIS AND SEQUENCE
DETERMINATION

5.3.1 OVERVIEW

Phase 2 of the Nopal processor analyzes a Nopat specification and determines the

sequence of execution of the statements  The analysis s based on a graph representation of
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the specification. This section prescits the bacrground and tenmmotogy usad m this phase

Phase 2 is divided into two sub phases. I sub-phase 1 zach of the tests s analyzed, and
i sub phase 2 the relations between tests vatlun 2 modfun are analyzed The: sub phases are
calted intra test anaiyas and inter tes! ana'y s tespectively I the intea bt iwdd  ais a graph
is constructed for each of the tests  Nodes of the graph represcnt vanables, asaertions,

ntoprecedence reintionships between

conjunctions and diagnoses: and the edges repres
them o the inter test analysis on the other hand the nodas of the praph repressent tests.
diagnoses and globad vanables. and the edyes represent proecedence c-lationships between
them Edges in both the sub-phases are labelled to denot the different types of precedence

refattonships.

The Nopal processor stores the graph in aomatoy forine The cows ancl cotoumns represent

the nodes. and the entnes o the matrix represent edges A non zeto entry, say noan the
position (1) i the matrx represents an edge of type o hom node clo tode o wlile a zero cotry

denotes the abuence of an edge

Alter the goaph s conatructed, it L checkodt for consistoncy andd conplotness 1tis then
b coked tor cydles. and an attempt s made 1o elmundate them Do, b soccesatul the
nodes are otderod inan crecotion sequence Cororaction of the Groagdes Conasteno, and
completeness analysia, cyale elimmation, and soquencing are desceref far the antra {ost
sth phase in Section 5.3 2 and for the inter st sub phase m ecton 5 0 0 Pigure 5 H shows

aflowchart of the processes mvolvedan graph analysis and coquenc nng

5.3.2INTRA-TEST ANALYSIS AND SEQUENCING

tach of the testsin a specification s analyzedan this sob phane To pedonm analysis and

<oquencing.a graph s consteactod for each of the tosts Nades of aograph are conjunctions,

ool e e




5.3.2INTRA-TEST ANALYSIS AND SEQUENCING 73

STATEMENTS
IN
ASSOCLATIVI

MEMORY

. Y
PRECEDENCE ['INTER-TEST
MATRIX {4 PRECEDENCE
ERRORS/ MATRIX
WARNINGS«&—~ CREATION

|
|
|
|
J |
|
|
}
|

INTRA-TEST
PRECEDENCE jp—> PRECEDENCE MATRIX
‘MATRIX

CREATION i > ERRORS /WARNINGS
v k Ly

: INTER-TEST
ERRORS/ | GRAPH
WARNINGS ANALYSIS

INTRA-TEST
GRAPH >~ ERRORS /WARNINGS
ANALYSIS

1 3
INTRA-TEST
CYCLE ‘
DETECTION & | 7
ELIMINATION

v
INTER-TEST
CYCLE Fow
ERRORS <4 DETECTION &| =
ELIMINATION| &

ERRORS

INTER-TEST

FLOWCHART | SEQUENCE

TABLE | DETER- DETER- ITERATION TABLE
MINATION \l MINATION | )

|

| INTRA-TEST
|

I

}

SEQUENCE | o FLOWCHART &

REPORT ONCLE FOR EACH TEST

t R

CODE INTER-TEST ' INTRA-TEST CODE GENERATION

CODE CODE REPORT
INERATION ™
GENERAT O‘%-GENERATION GENERATION >

REPORT N .
wv
-::
o ] ATE
T L FUNCTIONS
{ 3 LIBRARY

DECTN= /“""“KTE ]
RATIONS PROCEDURLES
AND MAIN [ TEST ,
PROCEDUKE\ PROCEDURE SOTAGNOSTS
pROSﬂRE&LﬁX

-~ —

TEST PROGRAM:

Figure 5-5: FLOWCHAR] FOR PHASES 2 AND 3 OF NOPAL PROCESSOR




5.3 2INTRA-TEST ANALYSIS AND SEQUENCING 74

assettions, varisbles and their ancestors. and dagnoses associated with the test. There are
six types of 1 ecedence relationships between nodes. which are represented by edges in the
graph. Table 5-2 shows the edge types and the relationships that they represent. A priority is
associated with each edge: 1 denotes the highest prionty and 6 denates the lowest. Edges
with priority 1 are considered mandatory and cannot be deleted Edges with lower prionty are
not essential and can be deleted during the cycle elimination stage: they represent preferred

relationships rather than mandatory ones.

Relationship of data deternunacy exists between varnables on one hand and conjunctions,
asserttons and dignoses on the other. A variabile node is the pred-zcessor of congunctions and
assertions if it occurs as a source, and is successor if it occurs as a targetin them. Sinulatly,
a variable 1s predecessor of a diagnosis if it occurs as a paramater. and s successor if it
occurs in the operator responsa. The relationship of data delermnacy expresses the idea

that a variable must be defined before it is referenced.

Relationship  of  waveform setup  exists  between  the  stimulus  conunction  and
measurement conjunction. It is not mandatory and is of prionity 2. It expresses the notion that

stimulus is usually applied before the measurements are made.

Relationship  of  diagnosis waveform  exists  between  diagnosis on one hand  and
conjunctions and assertions on the other. This relattonsinp 1s enteaed as type 16 or 17, A
diagnosis which is selected uncondihonally on the outcome of a test precedes each of the
conjunctions and assertions in the test by an edge of type 16 A diagnosis which, on the other
hand. 1s selected by the logic |, |~. & and &+ succeeds cach of the conjunctions and

assertions by an edge of type 17.

All the unconditionally selected diagnoses precedn all othor diagnoses by edges of type
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TABLE 5.2

INTRA-TEST PRECLEDENCHE KLilLATIOUSHIPS
EDGES SELLCTION RULE
PRIOR-
TYPE ITY RELATIONSHIP PREDECLSSCOR SUCCESSOR
1l 1 Data- Source variable in The assertion
determinacy an assertion
An assertion having The target
a target variable variable
A variable in a The diagnosis
parameter of
diagnosis
A diagnosis Variable in
operator
response of
the diagnosis
2 2 Waveform-~ Stimuluc~ Measurement -
setup conjunction conjunction
16 5 Waveform- Diagnosis selected All waveforms
o diagnosis by * logic
17 5 All waveforms All diagnoses
not sclected
by * logic
18 5 Diagnoses selected All other
by * logic diagnoses
19 1 Hierarchical Node in an input All its direct
structure descendent
declaration nodes
Node in an output Its parent
structure node in the
structurec
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TAVLE 5.2 (continucd)

s O ) T - |
20 i1 Pointer Pointer vartiable Structure
(i.¢. variable with  for which the
prefix PTR_ or [ pointor
PTRy , where y is a fvartable is
digiz 1l to 5) a key or

parametoer
(given by the
suffix of the
poitnter
variable)

21 6 Recursive* A source variable The assortion
in an assecrtion
with subscript of
the form I-k,

where k is positive

L { integer

Table 5-2: INTR/ TEST PRECEDENCE RELATIONSHIPS

% This relationship is originally entered as type %, but is
changed later to type 21 in the subscript analysis phase.
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18.

Relationship between nodes in a data structure is called hierarchichal, and is entered as
edge of type 19. A node in a structure precedes each of its direct descendents in an input

structure, and succeeds each of its direct descendents in an output structure.

Pointer relationship exists between a variable which is a key of an ISAM file and the record

node of the ISAM file. It is entered as type 20 edge.

Certain data determinacy relations are identified as recursive and are entered as type 21
edges. They are mentioned here for the sake of completeness and are described later after a

discussion of array graph. .

An array is represented by a single node in the graph: An array variable is represented as a
single node independent of its dimensions, similarly an assertion is represented by a single
node irrespective of the free subscripts which occur in the assertion. Edges in the graph
represent relations between the nodes. An edge between two nodes. when at least one of the
nodes represents an array variable. denotes an array of relations (array relations) between the
two nodes. A graph whose nodes represent array variables and whose edges represent array

relations is called an array graph.

The intuitive notion of array graph. introduced above, can be made more precise in terms
of. what is called. the underlying graph {UG) of a specification. A variable node of a UG
represents a simple variable, conjunction, assertion, or diagnouis. In other words if B is an
array variable of two dimensions of size 5 and 10 each respectively. then a separate node is
needed in the UG to represent each of the 50 elements of B simlarly, for conjunctions,
assertions and diagnoses which have free subscripts and express array of relations between

array variables, a node represents an element of the array of relations, e.g. it B is an array as
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before and it occurs in a conjunction. asscition or Jiagnosis. thon there will be 50 nodes,
each representing a conjunction. assertion or diagnosis mvolving one element of B. Edges in
a UG represent relationship between nodes as outlined betore. and das the nodes represent

simple entities the edges also represent simple relations.

Array graph (AG) can be formed by taking the umon of nodes and edges in an underlying
graph as follows: represent the nodes. say M Vioin UG representing different elements of an
array variable (or conjunction. asserhion or diagnosis) by a single node. say M.in the
corresponding array graph: and for an edge from any of the nodss M to any other node. say
P.in UG form an edge from N to Pin AG. The resulting smaller graph s an AG of the given
UG. Thus. AG is a compact way to represent UG The UG may e an enormouns griaph wiich

is impractical to analyze.

An array graph 13 shown in Figure 5 6. 1t is for the Fumbar PUSH function of stack data
type Nodes S.Z. a2 and S1.Z are array nodes in the example. The: rest of the nodes represent

simple variables and assertions.

The array graph is constructed by means of the piocedure INTSEQ. 1t is first analyzed for
two types of consistency checks.

1. Single assignment rule: Variable nodes should have exactly one predecessor
assertion or diagnosis, i.e. a vanable should be dehned by exactly one assartion
or chagnosis etc. (In case the variable is part of an input structure or s a source
parameter ol the modfun, then it necd not have any predecessor in the graph. In
the first case. the input file is taken to be the imphcit predecossor  In the second
case, the value of the tormal parameter is defined when the modiun is called and
hence it does not have a predecessor in the present graph.)

2. Target variables in an assertion should occur either on the left hand side of the
relational operator, or as target parameters of tunction.  Target vanables of a
conjuniction should occur only as parameters of functions.
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1 NOPAL PODULE STACK;
2 $CL 1 STACK: RECORD,
2 2 TOPZ: INIEGER,
2 2 1: INTEGER ARRAY(100);
3 MODFUN PUSH(S:S STACK, X:S INTEGER) RETUANS(S1: STACK);
4 STIAm;
5 ASRT: 4 = SUBS(°Sel, ST.Z,END_J",100) TARGET :J;
¢ al ASRT: ST.TOPI = ;.T0PZ ¢ 1  TAKGET:S1.70P2
8 SOURCE: S.T0PI;
7 @2 ASRY: IF J3S.T0PI THEN S1.2(J) = X
? ELSE S1.20J) = S.2€4)  TARGET:s1.7(J)
7 SOURCE: S.TOPZ,S+2(4);
8 a3  ASRT: IF J3S.T0PZ THEN END_J(J) = TRUE
8 ELSE END_J(J) = FALSE
8 TARGETZEND_J (J)
8 SOURCE :5.TOP1;
9 106 1€z loun;
10 OIAG DUMZ PRINT = MSG;
X
WD
~
Legend

oassertion node

ovatinble or diagnosis node
H hierarchichal edge

D data determinacy edge
WD waveform-diagnosis edge

Figure 5-6: SPECIFICATION OF PUSH AND ITS ARRAY GRAPH
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Subscript analysis 1s performed by the procedure SUBANAL  Fast ol the declarations

free subscripts are checked for correctness 1. that no subscnpt s declarsd teace: and {

[ the same vanable dimension 1s not used i two subconpt declaration:. Finall, o table of

the free subscnpts s constructed containing thew names and upper bounds

Further choecks of the free subscripts dare conducted by the proc dur: SHEDTAG

follows:

1

%]

All oceurrences of a target vanable i an assertion ot conan on must have the
same froc subsenpt For evample o the asserbon (from PUSH counple)
IF J=S.TOPZ THEN S1.2(J) = X
ELSE S1.Z2(J) = S.T0PZ
TARGET:S1.72(J):

variable S1T.Z00) s the target vanabli: occurming mn both thee THE T ind T SE parts

The free subscrnipts of the source vanables miust appear as sutvonpts with the
target vanables.  There are, however, bwo exceptions Fast a free sabscript
which is reduced by a reducton function, need not appear as a cubscnpt of the
target vanable  Second. i an b assertion or  conjunction the free subscnpt of
source vanables need not appear waith the target vanablos.  In that case. a
warning s isued to the uscr that the target variable should be Checived that it does
not have multiple delinttions. A warning will beissuedain the follo sing case:
IF END_J(J) = TRUE THEN OUT = A(J)
TARGET:0UT;

- Subscripts must bhe i one of the following forms:

a. asubscriptterme.g lin A(l);

b. a subscript expression of the form (k) where Tis afree ubrcemtand ks a
positive intener;

¢. anothervanable e g B(1) m A1) or X in A(X).

CIba posttive integer or a subsonpt terny appears as anaindes of anarry vanablo 'V,

and the range tor the corresponding dimension of Vs declared to be ) then in
case ot the integernits value, and i case of thie subscnpt worm s upper bound,
should be less than d_ o other words, a subscnpt expression s checked to see

that it hes within the range for the above two cases.
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The array graph is analyzed. next, for cycles by the CYCLES procedure. f a cycle i
detected in the graph then the procedure atiempts to eliminate it. Edges in a cycle havin
priority value greater than 1 may be removed. These edges correspond to two cases:

1. The edges are consilered as preference edges and are not essential ey a type
2 edge between stinude conjunction and medsurement conjnction denotes the
usual stuation that the stimulus is appled before the measurement. However,
there may be situations in which a stimuli depends on the measured value, and
can only be applied after the measurement is performed.

2. The edges do not impily a cycle in the underlying graph. This occurs with
recursive edges. For exainple, the array graph for an assertion of the form:

«a: IF I=1 THEN A(I) 1
ELSE A(I) I*A(I-1)
TARGET:A(I);

1"

"

is given by Figure 5-7.In the underlying graph recursive edges give rise to acyclic
spiral like structures.

In the event that deletion of edges fails to resolve all the cycles. an error is reported to the
user that the specification contains a circular definition and that it is not passible to sequence

it. A warning is issued for each edge deleted in the cycle elimination process.

Procedure PROPAGT determines the relation between the nodes and the free subscripts
in order to find the proper scopes for each possible iteration. This procedure constructs fo
each node a list of subscripts on which it depends. and hence the list of iterations in which i
should participate. In the Nopal language, iterations result from explicit appearance o

subscripted variables and subscripts themselves.

The final stage i5 to sort the nodes into a possible execution sequence. f there were nc
subscripts, and hence no terations, then a sunple topological sort would be sufficient. The

presence of subscripts introduces an additionat factor. A brute force approach to handle

subscripts is to enclose each node in the teration scopes of its subiscripts, with the exception
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data determinacy edge recursive edge

Figure 5-7: RECURSIVE EDGE

that the nodes belonging to a recursive cycle (which was opened durning cycle elimii

stage) must be enclosed in the scope of a common subscript tteration. The algorithm u

the Nopal processor does better than the brute force approach and tries to maximi.

scopes of iterations. Itis performed by the procedure SCHEDL R The scheduling proc

described below. At the end of this process an order vector is generated along with s

and subscripts of iteratons.

: v There are three inputs to the scheduling process:

W 1. an array graph,

, . 2. a list of free subscripts for each of the nodes and a list of nodes for each free
FE subscript, and

1

3. a list of recursive cycles, where for each recursive cycle there is a list of nodes
which occurin it.

The scheduling process consists of two procedures: SCHEDLR and ORDERER. SCH

calls on ORDERER requesting trial orderning of nodes depending on a subscript. Bas

8
I3
!,_
i
?
:
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the results of the tnal ordering, SCHEDLR calls ORDERER a second time to pe

actual scheduling of nodes.

SCHEDLR makes use of a stack called NEST, which contains free subscripts.
stack contains free subscrnipts corresponding to which iterations have begur
iterations are nested within each other. with the free subscript on top of the Nt
representing the innermost iteration. Nodes currently being ordered by ORDERER ¢
within all these iterations. In addition to the NEST stack. SCHIEDI R also has a s
subscripts called TBNEST. It contains those free subscripts which are candidates
nested at the innermost level in the iterations corresponding to the frec subscripts

stack.

SCHEDLR has three phases. (n Phase [ it picks up all thase nodes in the gr
have no predecessors, and finds the union of the free subscripts associated with the
subscripts form the set CANDLIST. If one of the nodes does not depend on any
then it is treated as belonging to subscript free set. and a speciai entry (-oro) is i
CANDLIST. From the set CANDLIST. another set called BESTCANDUIST 15 fon
foltowing cases are performed progressively in succession untib 1 nan empty BESTC
results:

1. all the subscripts i set CANDLIST which also helong ta 't ST are place
6-STCANDLIST;

2. a subscript in the CANDLIST set which also belongs to NEST stack s place
BESTCANDLIST,;

3.if entry zero. corresponding to subscript free nodes. belongs to CANDUST
placed in BESTCANDLIST: otherwise

4. all entnes belonging to CANDLIST are placed in BESTCANDLIST.

BESTCANDLIST now contains those free subscripts which are posaible candidat
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ordering process.

In Phase 2. SCHEDLR calls ORDERER with ecach of the entnies wn BEGTC
perform a tnal schedule. The results of the tnal schedule are cealunted Geco

priority table given in Table 5.3.

Let the ORDERER be called to perform a tnial ardenng ath o Luhoropt 1C Hedo

set BESTCANDLIST. it performs a tral sche-dule and ootarne thefe o pmformn

1 whether all the nodes depending on Doget ootetad o o whether B
cuompletely sc heduled.

o}

a set of other subscnpts, TOC, which got. repfeicdy o hed g,

3 a set of other subscripts, 1OP. some of whoss nodes got ohedude
subsonpts winch got partiaily o heduded: and

-

whether there s a recursive cycle sone but not all of whose node
scheduled.

A pnonty value is evaluated based on the abova resuits as por Table ©3 ¢ the

true if condition (1) s satished, and CY is equal to Ot condition (1) 15 satisfied )

t the prionty value is 1 then the SCHEDLR proceeds to Phase 3 to cali fhee o
second time with 1C, this ime to do the actoal scheduling Ifthe priaety, aloe vogrne
then trial schedule for a new subscript in BESTCAMNDLUIST e donme Dinadl, o
subscripts in BESTCANDLIST have been trial scheduled, the subsconpt. say [Ho et
value of prionty. say Pis chosen. [If Pas equal to 5 an error message wsassued that
cycle needs to be broken. If P is equal to 4 a0 warnmg s ssued mdicating to tr
some files must be entirely located in the mam memory. For other values of 10t

Phase 3 of SCHE DI 12 to do the actual schedutingg with sabscript IH

'hase 3 corresponds to the second call on ORDERER to do the actual scl
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IOP = NULL{ 0P has no I/C10OP has /O
IC
has CY =0 CYy =0 CY =0
cp ¥ ¢
170 1 2 4
CcpP
E no /0 1 2 3
170 4 4 4
~CP
no /70 2 3 3

170 stands for input-ouput. Meaning ot IC 102, CP, CY etc. s explained in th

# Table 5-3: PRIORITIES OF THE TRIAL SCHEDULE
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nodes. Following this. the nodes which got scheduled are removed from the graph. Finally, if

some nodes stifl remain in the graph, Phase 1 is started all over again.

Procedure ORDERER is described next. it has two modes: (1) to perform trial scheduling,
and (2) to perform actual scheduling of nodes. It has a parameter. [C, which gives the name

of a free subscript.

In mode (1) it does a topological sort of the nodes which depend on the subscript IC. it
then evaluates the result of the trial ordering and returns the result in CP.10C, IOP and CY as

described earlier.

In mode (2) it performs a topological sort of the nodes which depend on the subscript IC,
on all of the subscripts in the stack NEST and on no other subscripts. The resulting ordered

set of nodes is added to the ORDER vector and removed from the graph.

The scope of iterations is determined from the NEST stack. Each time an entry is pushed
on the NEST stack it defines the beginning of a new iteration; and each time the NEST stack is
popped it defines the termination of an iteration. The NEST stack is updated as follows:

1. Each time the ORDERER is called to do the actual scheduling with a subscript IC,
an entry is made on NEST provided IC was not selected by case (2) in Phase 2 of
SCHEDLR.

2. The NEST stack is popped (in case(2) in Phase 2 of SCHEDLR) until the selected
subscript IC is on top of the NEST stack.

The final result of scheduling process is an order vector and an iteralion table giving the
scopes of iterations. They are used by the code generation phase (by procedure CDETEST

described in Section 5.4) to generate Equate-Atlas code.

i i b
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5.3.3 INTER-TEST ANALYSIS AND SEQUENCING

In this sub-phase a graph is constructed for the entire modfun specification. The nodes of
the graph are tests, diagnoses and global variables. There are seven types of precedence
relationships between nodes. They are described in Table 5.4. The table gives the name,
type, and priority associated with a precedence relationship. It is followed by a description of
the predecessor and successor nodes which satisty the relationship. The meaning of the
terms: type, priority etc. is the same as discussed in Section 5.3.2. The seven relationships

are described below.

Data determinacy relationship exists between tests, diagnoses and global variables. A test
or a diagnosis is the predecessor of a variable if the variable is defined by one of them, and

successor if the variable is used as a source by them.

Interactiveness relationship exists between a diagnosis and the test which selects the
diagnosis by "after” and "after not" logic operator (A and A~). It means that the test is

selected based on the operator response to the diagnosis.

Component protection relationship exists between a diagnosis and a test, if the test has an
affected component which is protected by the diagnosis. Its purpose is to inhibit testing of a

component if another component which protects it has failed.

Fault isolation relationship exists between a diagnosis and a test, if the set of affected
components of the diagnosis contains the set of affected components of lhe test. It expresses
the idea that those tests which isolate smaller number of failures should be performed later

compared to the tests which isolate larger number of failures.

Stimuli-application relationship exists between two tests if one of the tests has stimulus

funcions which are applied more frequently than those in the other test. It leads to performing
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of as many tests as possible once an ATE device is connected.

Two tests are related by means of failure liklihood relationship if the predecessor test
isolates those failures which are more likely to occur. The liklihood of a failure is supplied by

the user in the specification.

Finally, a test is the predecessor of a diagnosis selected by one of the logic operators: |, |~,
& and &~ in the test. The selection of a diagnosis by means of one of the above lagic
operators is dependent on the outcome of the test. This is expressed by the logic-operator

relationship.

Several of the relationships described above are not mandatory. They represemt desirable
but not necessary relationships; in other words, such relationships are good for efficiency but
not necessary for correctness. A priorily value greater than 1 is associated with them in Table

54.

Procedure EXTSEQ constructs a graph for the modfun specification. The nodes of the
graph represent simple entities, unlike the graph for a test. This is so because there are no
free subscriptsfree subscript associated with the entities which are represented by the nodes.
The graph is analyzed to check:

1. that every variable node has a predecessor, i.e. every variable is defined,

2. that every variable node has only one predecessor, i.e. every variable is defined
by only one test or diagnosis;

3. that a diagnosis does not precede two or more tests with type 2 or 3 edges, i.e. a
diagnosis does not select more than one test by the logical operatoirs A and A~.

The next step is to detect cycles and, if possible, eliminate them by removing edges with

priority value greater than 1. They correspond to preference edges and are not essential e.g.
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a failure liklihood edge (type 10 priority 4) between two tests expresses that the liklihood of
detecting a failure by the predecessor test is higher. It reflects knowledge which may be

useful tor quicker fault isolation, but is not mandatory for correct fault isolation.

The final step is to sort the nodes into a possible execution sequence. A simple
topologicaf sort is sufficient because there are no free subscripts or iterations. Finally, an
order vector is generated. The order vector 1s used by Phase 3 to generate Equate-Atias

code.

5.4 CODEGENERATION

This is the third and final phase which generates Equate-Atlas code corresponding to the
Nopal specification. Code is generated for each of the entities: tests, diagnosis, assertions,
conjunctions, variables, structures etc. The order of execution of these entities is determined
in Phase 2 in the form of an order vactor. This is used in the present phase in generating the

sequential program in Equate- Atlas.

Egate-Atlas is a test programming language and is a subset of ICEE standard Atlas. It has
a number of features to support the programming of ATE. However, it does not support many
of the widely accepted programming constructs. Mostly notably,

1. The procedures in Equate-Atlas do not have parameters. The procedure simply
represents a body of sequential code which is executed when called.

2. There is no provision for local variables in procedures. All variables are
considered global.

3. The if-then-else construct is absent. It can be simulated using "compare" and
"goto" statements, reminiscent of the assembly language instructions.

4. It does not have a do-while costruct. It' has for-loop similar to the Do-loop in
Fortran.
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5. It does not have a linking facility. Consequently, all the procedures should be
included in one program at compile time. The procedures communicate by
means of global variables.

6. The only data structuring method in the language is array. Declarations for
records and structures are not allowed.

7. The language has only two data types: decimal and digital. Decimal is used for
floating point numbers and digital for bit strings. There are no other data types
. e.g. character strings, integers etc.

8. It does not allow dynamic memory allocation.

Certain conventions were established, in view of the rather severe limitation given above.
For example, to pass parameters to a procedure, named say P, the following convention was
adopted: The parameters were passed in the special variable names P.PRMO1, P.PRMO2, ...
and so on. At the time of the procedure call these parameter variables are given values. The
body of the procedure uses these names to receive source parameters and defines values of

the target parameters to return values.

Lack of a linking facility forces that the Equate-Atlas statements generated separately for
each of the modules be put together and the resulting total program be complied at ane time.
This raises a problem, however. The language has no local variables, and hence, two
variables of the same name occurring in the two different modules would be treated as one.
The clash of the variable names is avoided by generating unique names for the module. All

variables in a module are suffixed by "." followed by the module name.

The absence of if-then-else and do-while is handled using the primitives "compare"” and
"goto”. The absence of structure declaration is handled by simple variables and arrays.

Although, these make the generated code messy, they pose no conceptual problem,

The code generalion phase consists of three sub-phases. Sub-phase 1 consists of

PEPIFRPY IS QRN |
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generation of program header, declaration for the global variables and system variables, and
a procedure definition for each of the diagnosis. Sub-phase 2 consists of generation of a
procedure for each test. The third and final sub-phase 3 consists of generation of logic and
sequence of calls on procedures for tests within a modfun. The procedures for each of the
sub-phases are CDEMAIN, CDETEST and TRMNATE respectively. The highlights of the

sub-phases are presented below.

In sub-phase 1 the declarations for global variables are issued. For a simple variable in the
Nopal module, a simple variable by the same name (suffixed by the module name as described
earlier) is declared in Equate-Atlas. Similarly, for an n-dimensional array variable in Nopal, an
array with the same upper bounds for each of the dimensions is declared in Equate-Atlas.
There is an exception, however. For array dimensions whose upper bound has been declared
as "*"in Nopal, and for which only two elements - current and the previous need to be kept in
memory, size of 2 is declared in Equate-Atlas. The two elements in Equate-Atlas are used to
store the current and the previous value of the elements of memory and is part of the space

optimization done by the Nopal processor.

Equate-Atlas does not have any facility for declaration of structures. Consequently, a
transiation is made: the fields in the structures are declared as variables. The dimensionality
of the variables is the same as the dimensionality of the tields. (The dimensionality of a field is
obtained by propagating the dimensionality of its ancestor nodes in the structure, to the field.

This is done by the procedure XREF1.)

In case of a module M (not the main module) an additional dimension is added to the fields
of the record which gives the representation for the abstract data type M. For example, in the

declaration of representation of a stack

e -__.._»..-—.L'
aee Y e & e
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NOPAL MODULE STACK;
DCL 1 STACK: RECORD,

2 TOPZ: INTEGER,

2 Z: INTEGER ARRAY(100);
the fields TOPZ is declared to be a one dimensional array, and Z a two dimensional array.
This extra dimension is added to allow storage of all the variables of type stack. Similarly, in
the usage of the fields of stack, 5.TOPZ. the qualifier S becomes an index which provides the
reference into the array TOPZ. Al this became necessary because the object language does
not have facili’ - for dynamic memory allocation. In PL/| for example, the above could have
been implemented by means ol based variables and pointers. Record STACK with
components. i.e. variable TOPZ and one dimensional array Z, would have been declared as a

based structure. The qualifiers would simply have been pointers. There would be no need to

add an additional dimension.

It follows from the above discussion that. in the current implementation, the variables of
abstract data types are indices to arrays in the Equate-Atlas program and store decimal

numbers.

Pracedure CDETEST which performs sub-phase 2 is called at the end of sequencing of
each test in the intra-test analysis and sequencing. CDETEST yenerates a procedure for the
test. The body of the procedure contains sequential code corresponding to the conjunctions,
assertions, and logic for selecting diagnoses. Statements for conjunctions and assertions are
generated one at a time in the order deteremined from the earlier intra-test sequencing phase.
lteration statements are also generated based on information about the name of the iteration
variable, its upper bound and its scope. In cases. where the upper bound is not specified an

arbitrarily large upper bound is used. However, the appropriate termination condition is

generated to exit the loop.
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In the case of input {or output) structure, calls are generated on the ACCESS (or SAVE)
functions to read (or write) the structure from (or to) the appropriate file. Similarly, in case of
abstract structures of abstract data type, say DT, calls are issued on ACCESS DT or SAVE DT

as the case may be.

Finally, sub-phase 3 generates calls on the procedures for the test, and the logic which
precedes these calls. The order in which these calls are generated depends on the ORDER
vector produced by the inter-test analysis and sequencing phase. This sub-phase is not
needed for modules (except the main module) because only one test per modfun is permitted

in the present implemenation.

At the end of the three sub-phases. Equate-Atlas code is generated for a module
specification. This can be put together with the code for other modules, thus yielding a

complete Equate-Atlas program. One of the modules must be a main module. This program

can now be run on an Equate-Atlas machine.




Chapter Six

CONCLUSIONS AND FUTURE WURK

6.1 SUMMARY

This dissertation presents the approach of abstract data types to introduce modularity in

non-procedural languages. It introduces the notion of module for the specification of an

abstract data type in a non-procedural language based on equational specification. A module

specification can be analyzed for consistency, completeness and non-ambiguity independent
of other modules. It allows abstract data types to be specified independent of their use. The

concept of module is general enough to allow the specification of recursive data types.

A simple equational language is introduced, and the least fix point semantics of modules is
presented. It is shown by means of an example how a data type specified by a module

satislies certain algebraic axioms.

Nopal, a non-procedural language designed for automatic tes ing of physical systems is
used as an example to show the feasibility of the use of abstract data types. Nopal language
allows abstract data types to be specified by means of modules. The data types once

specified can be used in other modules.

A complete implementation of the Nopal program generator is described in brief. A
number of examples and their sample runs are given in the Appendix. The program generator

analyzes the specification and generates an efficient program in Equate-Atlas satistying the

specification. Optimization for memory and execution time is done in the generated program.
96
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The use of abstract data types allows relations to be specified between variables which are
not just of elementary type, but are of arbitrary type. It allows a data type to have an arbitrary
degree of complexity hidden away in the module and shielded from its use. This is of
particular advantage in decomposition of the problem. It allows operations on larger units of
data, ignoring lot of detail, in the process. When these large: units of data correspond to
some concept naturally occurring in the probtem domai {e.g. stacks and tokens while
parsing a string in a formal language) the specification is written in terms of these concepts. It

also allows devices in automatic testing to be treated as data types.

Procedures or subroutines are procedural abstraction in the conventional programming
languages. They represent a form of abstract action which fits well with the prescriptive style
of programming. In non-procedural languages. on the other hand. the relationships between
variables is the building block. Use of abstract data types allowé the variables to be used and
their values defined free of the details of the arbitrarily complex data structure that they might
represent. It is felt that just as the procedures are a natural way to introduce modularity in
procedural language, the abstract data types are a natural way to introduce modularity in

non-procedural languages.

A most important feature of the introduction of the abstract data types in the
non-procedural language has been that it does not lead to a change in semantics of the
non-procedural fanguage. This is in contrast to procedural languages where an abstract data
type facility has led to an object oriented semantics e.g. CLU (Section 2.2), vhich is different

from conventional and generally accepted value oriented semantics.

e Al e b e s e




6.2 FUTURE WORK 98

6.2 FUTUREWORK

Work needs to be done in two areas to make the absiract data types easy to use in
non-procedural languages:

1. Efficiency of the generated program should be improved upon, and

2. Additional extensions should be made to the language.

Some of the problems are outlined below.

6.2.1 EFFICIENCY CONSIDERATIONS

in the current implementation. Nopal processor does the following memory optinization: If
an array variable is declared to be of dimension '*' and is used such that only the current and
the previous element of the array is needed, then the memory allocated for the array is equal
to two elements. This is of great value when the array is an input/output structure a..d
represents a big file on secondary storage. The above should be extended to not just 2 but &
elements of an array variable (where k is an integer). It should be determined when a
constant storage, k, may be used in the generated program automatically without having the
user to declare it. This is part of ongoing research by Mr. K.S. Lu [36] to generate efficient

programs from a non-procedural specification (and is independent of the use of abstract data

types).

Modularity makes some of the optimizations impossible at program generation time. For
example, in the generated program for the specifiaton of an abstract data type storage is
atlocated for the representation of each of the variables of abstract data type. Even when
some of the variables are not needed at the same time, memory optimization cannot be done
at the program generation time, since the use of the abstract data type is independent from its

specification, and the corresponding information is not avatable at the time the program is

o ——p -~ 4
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generated from the specification.

A possible way to reuse the memory which is no longer needed is to do garbage collection.
Any one of the well known techniques can be used [31] to provide better utilization of

memory.

6.2.2 LANGUAGE EXTENSIONS

The data typing facility described here can be extended in many ways to improve
compactness. clarity etc. To give an example: The language should permit {and the
implementation should support) the specification of "parameterized" data types. By this it is
meant that the specification of the abstract data types contains a data type as a parameter.
For instance, it should permit the specification of a stack of type T. where T can be integer,
character, stack etc.; and is specified with the use of the generic stack. This would allow a
single stack specification to represent the various types of stack and lead to compactness as

well as economy of names of data types and their modfuns.

Non-procedural specification should be investigated in the light of distributed processing.
The applicative nature of the language is ideally suited for detection of parallelism within a
module. The array graph can be directly translated into a parallel program. Research needs
to be conducted to allow ditferent modules to execute on different processors and

communicate with each other.




Appendix A

EXAMPLES OF NOPAL SPECIFICATIONS

Some example specifications are given here. Sample runs for specification of stack
together with a complete set of reports generated by the Nopal processor are given in the first
section. The sections which follow, contain other example specifications with sequencing

report for each of the specifications.
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A.1 STACK

Nopal specification for stack is given in this section. Nopal module STACK defines a
representation consisting of TOPZ and Z. 1t is followed by a specification of the functions
PUSH, POP, TOP, and EMPTYSTACK which can operate on stacks. Each function implicitly
has a test and is specified by means of assertions. The assertions specify relationships
between the input and output parameters of the function. For example, in statement number
6 (which is an assertion in modfun PUSH) value of TOPZ component of stack St is specilied
in terms of the value of TOPZ component of stack S (where S1 is the output parameter, and S
the input parameter of PUSH). The stack has been discussed quite extensively in Chapter 3
and the various assertions are not discussed any further here. Since a logic component must
be associated with a test in Nopal, a dummy diagnosis is specified. Similarly, since the
assertions must be part of stimuli or measurements, the asserlions have been arbitrarily

placed under stimuli in each of the modfuns.

A sequencing report is generated for each of the functions by the Nopal processor. It
consists of weighted adjacency matrix representing the array graph; followed by an order
vector which represents an ordering of the nodes of the graph. The order vector determines
the sequence in which Equate-atlas code is generated for the module. Equate-Atlas code is

given after the sequencing report. Itis followed by a cross-reference and attribute report, and

warning mescages.
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A.2 ACKERMANN'S FUNCTION

Nopal specification which specifies Ackermann's function is given in this section.

Ackermann’s function as expressed by recursive equations is:

A(On) = n+1 (A-1)
A(m,0) = A(m-1,1) : (A-2)
A(m,n) = A(m-1,A{m,n-1)) (A-3)

Nopal specification is based on the simulation of function calls by means of a stack. itis
convenient to imagine that there is an array V of stacks, which is represented in the
specification by arrays TOP, LBO, and S. An element V(l) of the array of stacks is represented
by LAST(l) which gives the top of the stack V(l), LBO(l} which gives the second element of the

stack, and S(I) which gives the rest of the stack.

COMPUTE specifies the computation of the value of Ackermann’s function with arguments
M, N. To begin, values of M and N are placed on the stack with N being on the top; this is done
by defining the value of LAST(1) to be equal to N, the value of LBO(1) equal to M, and the
value of S(1) to be a stack with a special symbol -1 signifying the bottom of the stack V(1).
Top two elements of the stack V, alwuys contain the arguments for which Ackermann's
function needs to be computed at any point in execution. Finally, a single value is left on the
stack, and that gives the value of Ackermann's function for arguments M, N. The assertions

given by statements 15, 16, and 17 can now be explained as follows:

If the top element of stack V(I-1), i.e. LAST(l-1), is equal zero then it corresponds to
Equation A-2. The top two elements (p,0) of stack V(I-1) should be replaced by (p-1,1). Thisis
accomplished in the specification by defining LAST(l) to be 1, LBO(I) to be (LBO(l-1) - 1), and

S(!) to be S(I-1).

Similarly, if the second element (from the top) of the stack V(I-1) is zero, it corresponds to
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Equation A-1, and the Ackermann’s function for the top two elements of the stack evaluates to
one plus the top element of the stack. This means popping the stack twice, and pushing the
new value on the stack. Thus in the specification, if LBO(]-1) is zero then LAST(l) is equal to

(LAST(l) + 1), LBO(l) is equal to TOP(S(I-1)), and S(l) is equal to POP(S(l-1)).

Finally, if it is none of the above two cases, action corresponding to the RHS of Equation

A-3is carried out.

After the specification, sequencing reports are included; they are: inter-test and intra-test
sequencing reports. Inter-test sequencing report shows that the test INIT should be

performed before the test COMPUTE. Intra-test reports contain sequencing of tests INIT and

COMPUTE.
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A.3 BAND-WIDTHMETER

The main module BWM specifies the application of a voltage source with frequencies in a
range with a given step size to a UUT. For each application of a frequency, the gain of
voitages (ratio of output voltage tb input voltage) across the UUT is measured. A table
corresponding to the applied frequencies and the measured gains is printed out. The devices
are represented by means of abstract structures: gain measurement device is represented by
the structure GD, and frequency source by the structure FS. A call is issued to
ACCESS GAIN DEVICE whenever the value of GAIN, a field in the structure GD, is accessed
(before statement 24); and similarly, a call is issued to SAVE FREQ SOURCE in the case of

structure FS (after statements 16, 17, and 18). The assertions in the specification are self

explanatory.

AT At
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The specification for GAINDEVICE, given below, has only one modfun called
ACCESS GAIN.DEVICE. The modfun takes voltage measurements across pins (I1,12) and
(13.14). The ration of the two measurements delines the value of GAIN. It depends on two

funtions: VOLTMETER and MICROVOLTMETER to take the actual measurements.
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The specification for FREQ SOURCE defines a function SAVE_FREQ SOURCE which
specifies the application of a frequency source by means of the function FREQ GEN. The
voltage and frequency to be applied are specified by the input parameters. An error is issued

if the parameters specify a frequency which falls out of range of the instrument.

"y .
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A.4 FILEINPUT-OUTPUT

This example illustrates the updating of an inventory file, named INV, based on
transactions contained in a sequential file, called TRANS. A record in TRANS has two fields:
KEY and an array A. A record in INV is found corresponding to the KEY in each of the records
in TRANS and is updated based on the sum of the corresponding array A. General functions
ACCESS and IACCESS are used to read, and SAVE and ISAVE to store, records from SAM

and ISAM files respectively.

Corresponding sequence reports and Equate-atlas code are given after the specification.
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