” .AD=A095 586

UNCLASSIFIED

MOORE SCHOOL OF ELECTRICAL ENGINEERING PHILADELPHIA P—<ETC F/6 9/2
MODULARITY IN NON=PROCEDURAL LANGUAGES THROUGH ABSTRACT DATA TY=~ETC(U)
AUG 80 R SANGAL N00014~76=C~0816

NL

| 2
A sae

UNIVERSITY of PENNSYLVANIA

The Moore School of Electrical Engineering

PHILADELPHIA, PENNSYLVANIA 19104

(DISTRIBUTION ' ‘5

Aporoved for public selecsel
Dighibution Unlimita?

ptoton Untnist | ‘

81 1 16 044

R

UNIVERSITY of PENNSYLVANIA

PHILADELPHIA 19104

The Moore School of Electrical Engineering D2

DEePARTMENT OF COMPUTER AND INFORMATION SCIENCE

(Y el A A

MONDULARITY
IN NON-PROCEDURAL LANGUAGES
THROUCH ABSTRACT DATA TYPLS

By
Rajeev Sangal

Prepared with Support:

Under Contract NOOQO14-76-C-0416 -
Information Systems Program
Office Of Naval Research
Arlington, VA

BISTRIBUTION STATIANT &
e T
Rporovad for pabliy relacs
e . i e R ‘.1\
e :

Ca e et e s el

PP

oy

|
3
t
|
X

UNCLASSITIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO.J 3. RECIPIENT’'S CATALOG NUMBER

AD AT 56| 7

&_TITLE (and Subsitle) s.’.tm OF REPORT & PERIODCOVERED
' MODULARITY IN NON-PROCEDURAL LANGUAGES iFinal Répo?t‘~q

" THROUGH ABSTRACT DATA TYPES . ~ . St

6. PERFORMING ORG. REPORT NUMBER
T " | Moore School

.}- AUTHOR(e) s r CONTRACT OR GRANT NUMBER(s)

XBAJEEV SANGAL " |'nooo1u-76-c-0u16 |-

——— e

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

UNIVERSITY OF PENNSYLVANIA
The Moore School of Electrical Engineering
Dept of Comnuter Information Sciences -

11. CONTROLLING OFFICE NAME AND ADDRESS 12, “MEPORT DATE
Informaticn Systems Programs -

UNCLASS.
[182, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

Office of Naval Research B °"““’;‘“Y”J . /
WfAnlinixon. YA .~ .
. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 18. SECURITY CLASS. (of this teport)- —— .

16. DISTRIBUTION STATEMENT (of this Report)

17. DISTRISUTION STATEMENT (of the abstract entered in Block 20, il different from Report)

10. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side I y and | ity by block number)
Abstract data types
programmer productivity
modularity
Nopal

20. ABSTRACY (Continue on reverse alde if y and Identify by block mumber)

“This dissertation presents abstract data types as a means of
introducing modularity in non-procedural languages. MNon-
procedural languages based on equational specifications have
beeq proposed in recent years to improve programmer productivity
reliability. Issues of structured programming (i.e. disciplined
use of the control structure) have no meaning in the context of.

FoRM
oD 'V 3AN 79 1473 coition oF 1 NOV 68 13 OBSOLETE UNCLASSIFIED
S/N 0102-014- 6601 | .
SECURITY CLASSIFICATION OF THIS PAGHE (When Dats Bnteres)
—r
/ gt

Abcahs oML

B et P

UNCLASSIFIED

' LLLURITY CLASSIFICATION OF THIS PAGE(Whaen Date Entered)

KEYWORDS cont.
Nopal processor

Equate-Atlas
Equational specifications

ABSTRACT cont.

| these languages because these are devoid of any control structure
Statements in a specification can be given in any order; the
sequence of execution is determined after an analysis of the
specification. Modularity, however, still remains an important
issue in the context of these languages, as it allows
specifications to be written and processed independently.
Abstract data types are proposed as a means of introducing
modularity. Notion of module for the specification of abstract
data types is introduced and its denotational semantics is

given. Nopal, a non-procedural language for the specification
of testing of electrical circuits, has been chosen in which
abstract data types are introduced for modularity. The abstract
data types also allow specification of virtual devices in
testing. o, An implementation of the Nopal processor is given.

The Nopal ‘processor analyzes a Nopal specification for complete-
ness, consigtency, and non-ambiguity; and generates a sequential
program in uate-Atlas corresponding to the specification. ;
The various phases of the Nopal processor for the analysis of
a specification are described. Finally, some example
speolflcatlons together with their generated Equate-Atlas programT
are given.

SECURITY CLABSIFICATION OF THIS PAGE(When Deta Entered) J

boaas - e

MODULARITY IN
NON-PROCEDURAL LANGUAGES
THROUGH ABSTRACT DATA TYPES

Rajeev Sangal

A DISSERTATION
in

Computer and Information Science.

Presented to the Graduate Faculties of the University ot Pennsylvania in Partial Fuitillment of
the Requirement for the degree of Doctor of Philosophy.

31 August 1980

M accescien Tor
RTTE
pTTAD &
y | LEIREERTTIN v 3
Supervisor of Dissertation boa
i/(/ -
i F
! ; .

Graduate Group Chairperson . o

|
v

To Amma and Papa

-

X

1
'

Acknowledgment

| am thankful to my advisor Dr. Prywes for his guidance and encouragement during this
research, to Dr. Amir Pnueli for his penetrating comments, to Dr. Peter Buneman for his J
encouragement especially during the early stages of the work, and to other members of my

committee Drs. A.K. Joshi, HL. Morgan, and T. Finin for reading the dissertation and raising
interesting questions.

Her daw Che and Kang-Sen Lu, who were my officemates during the early and later stages of

my woik respectively, contributed in many ways. They were always ready to lend me their
ears. Thanks are also due to Dr. C. Tinaztepe for his help during the early stages of my work.

Study in America has been a rich and rewarding experience for me. | have learnt a great deal
both in academics and otherwise. It has given me a better understanding of India, my
country. and its culture; and of my own self. Towards the promotion of this understanding, |
wish to thank Balaram, Jasenka, John, Mladen, Neeraj, Nikhil, Poonam, Pradeep, Pradip,
Prasad Rao, Raj, Ramarao, Samar-da, Swapan, and Venky.

e e T —— T = S

i E—

Ciid

w
e

Table of Contents

Chapter One: INTRODUCTION

1.1 MOTIVATION

1.2 BACKGROUND: MODEL AND NOPAL SYSTEMS
1.3 CONTRIBUTIONS

1.4 ORGANIZATION OF THE DISSERTATION

Chapter Two: SURVEY OF RELATED LITERATURE

2.1 SURVEY OF NON-PROCEDURAL LANGUAGES
2.2 SURVEY OF ABSTRACT DATA TYPE SPECIFICATION TECHNIQUES
2.3 LANGUAGES SUPPORTING ABSTRACT DATA TYPES

Chapter Three: ABSTRACTDATA TYPES IN A NONPROCEDURAL LANGUAGE

3.1 INTRODUCTION

3.2 A SIMPLE NON-PROCEDURAL LANGUAGE BASED ON EQUATIONS
3.3 APPROACHES TO MODULARITY

3.4 USE OF ABSTRACT DATA TYPES

3.5 SPECIFICATION OF ABSTRACT DATA TYPES

3.6 AN EXAMPLE - STACK

3.7 RECURSIVE DEFINITIONS

3.8 SEMANTICS OF MODULES

3.9 SUMMARY

Chapter Four: THENOPAL LANGUAGE

4.1 OVERVIEW OF THE NOPAL LANGUAGE
4.2 DATA DECLARATION SPECIFICATION
4.3 MODFUN SPECIFICATION

4.3.1 HEADER

-4.3.2 TEST SPECIFICATION

4.3.3 DIAGNOSES

4.3.4 MESSAGE SPECIFICATION
4.4 UUT SPECIFICATION
4.5 ATE SPECIFICATION

Chapler Five: THE NOPAL PROGRAM GENERATOR

5.1 OVERVIEW OF THE PROGRAM GENERATOR
5.2 SYNTAX ANALYSIS AND THE ASSOCIATIVE MEMORY
iv

[5 0N0 - \LI

-y

10
13

16

16
16
19
21
22
23

32
39

41

BELHEEIRD

61

61

5.2.1 OVERVIEW
5.2.2 SYNTAX ANALYSIS PROGRAM - SAP
5.2.3 SUPPORTING SUBROUTINES
5.2.4 ASSOCIATIVE MEMORY AND STORE/RETRIEVE SUB-SYSTEM
5.2.5 REPORTS

5.3 SPECIFICATION ANALYSIS AND SEQUENCE DETERMINATION
5.3.1 OVERVIEW
5.3.2 INTRA-TEST ANALYSIS AND SEQUENCING

. 5.3.3 INTER-TEST ANALYSIS AND SEQUENCING
5.4 CODE GENERATION

Chapter Six: CONCLUSIONS AND FUTURE WORK

6.1 SUMMARY

6.2 FUTURE WORK
6.2.1 EFFICIENCY CONSIDERATIONS
6.2.2 LANGUAGE EXTENSIONS

Appendix A: EXAMPLES OF NOPAL SPECIFICATIONS

A.1 STACK

A.2 ACKERMANN'S FUNCTION
A.3 BAND-WIDTH METER

A4 FILE INPUT-OUTPUT

Index

References

96

8888

101
113
122
136

146

150

Loag®

Table of Tables

Table 4-1: LOGIC OPERATORS IN A TEST

. Table 5-1: CLASSES OF NAMES AND THEIR TYPES
Table 5-2: INTRA-TEST PRECEDENCE RELATIONSHIPS
Table 5-3: PRIORITIES OF THE TRIAL SCHEDULE
Table 5-4: INTER-TEST PRECEDENCE RELATIONSHIP

vi

BRIBH

Figure 3-1:
Figure 3-2:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:

Table of Figures

EXAMPLE EX2: USING STACK OF STACKS

EXAMPLE EX3: USING PARAMETERIZED STACK

OVERVIEW OF NOPAL PROCESSOR

MAJOR PHASES OF NOPAL PROCESSOR

FLOWCHART OF SAPG AND SAP WITH SUBROUTINES
STRUCTURE OF THE DIRECTORY AND STORAGE ENTRIES
FLOWCHART FOR PHASES 2 AND 3 OF NOPAL PROCESSOR
SPECIFICATION OF PUSH AND ITS ARRAY GRAPH
RECURSIVE EDGE

vii

27

62

67
70
73
79

Py YL

Enaad A At e e i

Chapter One

INTRODUCTION

1.1 MOTIVATION

The software crisis of the sixties saw the accepténce of structured programming,
modularity, and top down design methodologies in building and maintaining software
systems. The underlying philosophy behind these methodologies was that the software
systems are complex; that they are hard to understand and difficult to manage,; and to keep
them within manageable limits, the discipline of structured programming should be imposed
on the programmers. It reflected and still reflects the state o.f software technology. The
requirements for systems are specified informally or semi-formally to the programming team,
which then implements a system satislying the requirements. There is a large gap between
the specification language (generally, English for informal specifications) and the
implementation language (Fortran, Cobol etc.), thus causing the implementation to address a
lot of detail. This leads to increased complexity of software which makes the debugging and
maintenence difficult. The structured programming and top down approach accepts this
complexity as unavoidable, and tries to keep it under control by requiring the programmer to

use simple program structures.

Continued growth in the size of the software systems, the demands of reliablility and
programmer productivity requires new solutions. It has led to activity in the field of, what are

called, very high level languages (VHLL). These languages reduce the gap between the

informal specifications and programs. Sometimes, these languages are of sufticiently high
1

1.1 MOTIVATION 2

level that the proyram itself is the specification satisfying the (intuitive or mental)
requirements. Some of these languages. in which order of statements in programs is
immaterial, are called non procedural languages. In fact, a program in these languages is so
unlike a program in procedural languages that we call it a spem!u:unon,' Many of the issues
of structured programming (e.g. disciplined used of the control structure) no longer have any
meaning in the context of non-procedural languages. since the specifications do not have any
control structure. The details relating to the control are no longer the concern of the user, but

rather, are handled by the compiler for the language.

Modularity still remains a useful and important issue for large specifications. Alodulirity
may be defined as independence in compiling and composing of different parts of a larger
specification. Itis desirable because it simplifies the specification. Tlus simplification results
not only because of reduced size, but also because, with proper sub division, the smaller
specifications represent logical sub-units of the larger specification. Modularity allows
incremental development of a large specification. It also lends itself to easier modific.ation. [n
most cases. only a few of the simaller specitications need to be changed when the needs of

the specified system evolve or change.

1.2 BACKGROUND:MODEL AND NOPAL SYSTEMS

Model and Nopal are non-procedural languages developed at the University of
Pennsylvania in an attempt towards a simple yet powerful very high level language. These

languages have no control structure, and are based on the familiar notions of mathematics.

Specification” has also been used in the hterature to express the “requuements”™ of a syslem, or the set of
algebraic axioms defiiing an abstract data type etc. (Jsage of the term here should not be confused with it other
meanings.

1.2 BACKGROUND: MODEL AND NOPAL SYSTEMS 3

The Model system [42] has been designed to automate the generation of software for data
processing applications. The first step is to provide a data processing requirements. It
consists of three main parts. The first part is the header, which consists of the name of the
specification and names of the data bases. The second part, the data description, consists of
descriptions of the structure of the source and target data in the specification. The source
data corresponds to the input data, generaily on sequential and indexed sequential files; the
target data refers to the desired output files. The third part, a set of assertions. specifies the
relations between the source and target variables. There are no control statements typical of

procedural high level languages, e.g. those that deal with input/output, loop control etc.

The Model processor analyzes many aspects ol the specification. It checks for
ambiguities, incompleteness and inconsistencies and issues appropriate messages to the
user. [t also generates a number of reports which serve as the documentation for the
specification. The processor then produces a sequence of execution for the assertions. with

appropriate loop control statements. Finally, it produces a PL/1 (or Cobol) program.

The Nopal system [46] has been designed to automate the generation of proyrams for
automatic testing of electronic circuits. A specification in Nopal has three major parts. The
first part gives the test specification, the second part the unit under test (UUT) specification,
and the third part the automatic test equipment (ATE) specification. These parts can occur in
any order in the specification. The test specification consists of a number of tests each of
which is used to specify the stimuli to be applied. measurements to be made, computations to
be performed, and diagnosis to be selected. The specification of the individuva! tests is
non-procedural, and similarly, there is no sequence specified between the tests. The
diagnoses are normally selected based on the outcome of tests. They are used to isolate

faulty components and print appropriale message to that effect. The UUT and ATE

e e M L 2 L st AL o Bers | . et o MmO oo o1 A e st m _J

e e

s

U B b an

Yo AL 15 A kSRR K T 0

N

ey

1.2 BACKGROUND: MODEL AND NOPAL SYSTEMS 4

specifications are used to specify the characteristics of UUT and ATE.

The Nopal processor, similar 1o the Model processor, analyzes the specilication for
ambiguity, incompleteness and inconsistency. It too generates reports which serve as the
documentation for the specification. The processor produces a sequence of execution for
the tests. in the phase called inter-test sequencing. It then analyzes each of the tests
individually and generates a sequence for the assertions. conjunctions. and diagnoses in the

test. Finally, when all the problems are resolved it generates a program in Equate Atlas.

The issue of modularity is an important one for both the systems. At present the
specification must be submitted as one unit. It leads to many of the problems mentioned in
the previous section, and to some very practical problems when the processors for the

language run out of address space during execution.

1.3 CONTRIBUTIONS

This dissertation examines and proposes the approach of abstract data types for
modularity in these languages, and describes the implementation for the Nopal language.

The following are the contributions of this work:

It has led to:

1. the definition of a scheme for modularity in non-procedural languages,

2.a novel way to deline the abstract data types. namely. by means of the
non-procedural specification, and

3. automatic generation of program modules that correspond to respective
specification of the abstract data types.

Abstract data types provide a non-procedural way to introduce modularity. Variables in the

1.3 CONTRIBUTIONS 5

specification can be declared to be of abstract type, in which case they may be operated upon
by a restricted set of functions. The definition of an abstract data type along with the set of
functions is given separately by means of a "module”. The specification of a module is given

non-procedurally, leading to the dual contributions (1) and (2).

Finally, the above ideas on modularity are used in the Nopal system The Nopal language
has been developed to generate programs for testing of electronic circuits. The abstract data
type facility is used to define the devices for testing. My work on the above system has been
on the development and completion of the original Nopal system [7], and implementation of

the idea of abstract data types.

1.4 ORGANIZATION OF TE DISSERTATION

This dissertation is divided into six chapters. Introduction is given in this chapter, followed
in Chapter 2 by a survey of past work in the fields of non-procedural languages and abstract

data types.

Chapter 3 contains the use and spec.lication of the abstract data types in a non-procedural
languages independent of either Mod or Mopal. The use and specification of "modules” is
described. Formal semantics of the modules is given and similarity of the module

specification with algebraic axioms is shown.

in Chapter 4 the language Nopal inc rporating the above ideas is described. Features of
Nopal for specification of automa ¢ testing of electronic circuits are presented.
Implementation of Nopal is given in Chojiter 5, and the various phases of the Nopal processor

are described. Examples of Nopal specifications and the reports generated by the Nopal

processor are given in the Appendix.

2 SURVEY OF RELATED LITERATURE 6

Conclusions and deas for future work are suggested in Chapter 6.

Chapter Two

SURVEY OF RELATED LITERATURE

2.1 SURVEY OF NON-PROCEDURAL LANGUAGES

Looking back at the development of computers we find a hierarchy of computer
prograinming languages. The assembly level languages form the lowest level and the higher
level languages such as Fortran, PL/|, Algol etc. form the next higher level. Both classes of
languages are characterized as (a) procedural, and (b) domain independent. They are
procedural because the individual statements are prescriptive and a program in the language
consists of a sequence of such statements. These languages rhay be used in widely varied

application areas and hence are called domain independent.

The next higher level languages are referred to as very high level languages (VHLL) and
they may be sub divided into two groups. The first group consists of languages which are
domain dependent e.g. Business Definition Language (BDL) [21]; the second group consists
ot domain independent languages with facilities to describe higher level concepts which allow
the omission of many details. Examples of this group are: SETL [29] which allows
manipulation of sets and relations, APL [27] which has many convenient operators for
matrices, LISP [57] which works on lists etc. In the second group there are many languages
that are descriptive and are devoid of any control facilities. This class of languages is referred
to as non-procedural, because a "program” in these languages does not give a prescriptive

sequence to be followed, but rather defines variables and their values in a sequence free

manner. A "program” in these languages is so unlike that in procedural languages that we
7

2.1 SURVEY OF NON-PROCEDURAL LANGUAGES 8

callitby a different name: "specilication”. as mentioned earlier in Chapter 1.

The goal of the VHLLs is to allow the user to express his or her problem directly in these
languages. thus leading to automatic programming systems which accept the specification

and generate a program corresponding toit. [42]

“The ultimate erpectation for automatic programming may be visualized as a
user (no tonger a ‘programmer’) making a few simple statements, to which the
automahic programming system responds by spewing out a program of several
hundred statements, already correct and satisfying the user’s intentions.”

Non-procedural languages have been around for more than a decade ([6]. [26]. [47]. [52].

etc) and they continue to he of current interest ([1]. [4]. [25]. [42] etc.).

One of the early attempts by Tesler [52] defined lists and operations on hsts An important
operation was PRECEDING. which was used 1o express the retatiunship of the current item in
the list to the preceding item in the same list or some other lisl. The language was restrictive
because recurrence rclations between items in lists could be specified using only
PRECEDING. Som:: of the other early languages were interpretad and hence slow i time and

inefficient in memory space.

More recently, LUCID has been designed as a formal system in which programs can be
written and their proofs carried out. "“The proofs are easy to lollow and straught forward to
produce because the statements in a LUCID program are simply axioms from which proof
preceeds by conventional reasoning [1]." Variables and ther history of values can be
detined. The history is defined as a sequence of values using the primitives FIRST and NEXT.
They essentially allow the specification of one level loops. To allow nested loops. a function
called LATEST is introduced. However, it clulters up the progtam; consequently. BEGIN-END

blocks to nest iterations are included in the language.

PR PR Py il B sl i

2.1 SURVEY OF NON-PROCEDURAL LANGUAGES

o

The limitations of the LUCID language are the absence of arrays or any compund
structures and the use of NEXT to define relationships between sequences of vatues. The
latter implies that the relationships be known in advance at program writing time, and cannot
be computed at run time. For example. it is not possible to specify that the current element

depends on the k" previous element. where k is computed at execution time.

Non-procedural languages Model [42] (48] [50][39]) and Nopal [7][41]]56][46] allow
relationships between array variables to be defined explicitly by means of indices. This makes
the languages richer than LUCID. At the same time, they are compiled rather than

interpreted. A brief introduction to them has been given in Chapter 1.

A recent proposal by Kessels [30] is to mix procedural and non-procedural approaches. In
his approach. "block" is the basic struc which indicates the scopes of names, as well as
the mode (non-procedural or sequential). A "valued-block” has a set of values. Besides
these, ther are multi-state blocks which retain information after the exit from the block. Many
of these features serve to increase the complexity of the language, and make it difficult to

learn and use.

A number of domain dependent systems have been proposed. Some of them are

described below.

Business Definition Language [21] is a very high level domam dependent language. It is
aimed at the problems of business data processing. It assumes a model of the processes
involved in the manual methods used in businesses and tries to mimic those. There are three
components: one for defining the business forms. one for describing the business
organization, and one for writing calculations. Using a graphics screen the forms may be

defined. They serve both as input and output, as well as internal representation of

2.1 SURVEY OF NON PROCEDURAL L. ANGUAGES 19

information. These documents can be routed to different parts of the organization or stored
in files. Computations can be defined on the elements in the forms. Essentially. it is a tabular

language with special constructs to represent the domain of business.

PSI system developed at Stanford [16] uses a model based appoach like BDL. However, it
has provision for incorporation of an independent domain expert module Information about
objects and their retationships in the domain s included in the module. thus freeing the user
from defining commonly used terminotogy. The modules may be changed depending on the

domain.

PROTOSYSTEM | has been developed by the Automatic Program Generation Group at
MA T [45) It consists of two parts: The top part consists of a man machine interface, a
knowledge base on business management etc. The biattom part obtains a data processing
specification from the top part. performs system design, and generates PL/} code. The

specification language used is SSL. which s non-procedural and resembles Model.

There are other examples of domain dependent systems, most notably, APS developed at

University of Southern California at .S, {3]. SBA [62] etc.

2.2 SURVEY OF ABSTRACT DATA TYPE SPECIFICATION
TECHNIQUES

Data abstraction has been identified as a widely useful program unit by recent work in
programming methodology. It has also been identified to be a unit for which formal

specitications can be written easily. It can serve as a basis for modularity. Consequently,

work relaled to data abstraction or abstract data types is reviewed here.

aecaililion,

2.2 SURVEY OF ABSTRACT DATA TYPE SPECIFICATION TECHNIQUES 1

There are two approaches for giving the formal specification of abstract data types. The
specification can be given either by means of an abstract model, or implicitly via descriptions
of operations on the data types [35] In tollowing the first approach, the behaviour is actually
defined by giving an abstract implementation in terms of another data abstraction or
mathematical discipline. In the second approach, the class of objects is determined

inductively from the operations. Usually. it is the smallest set closed under the operations.

Liskov and Zilles [35] have further classified the approaches for specification of abstract
data types into five categories. The classification is based on the method used for
specification, e.g.

1. use of a fixed domain of formal objects, such as sets. graphs or arrays;
2. use of an appropriate known formal domain;

3. use of a state machine model;

4. use of an implicit definition in terms of axioms; and

5. use of an implicit definition in terms of algebraic relations;
to specify abstract data types. The first two categories use the first, i.e. abstract model
approach. while the remaining use the second, ie. implicit definition approach. Some

examples belonging to each of the categories are given below.

In the first category, a fixed domain of formal objects is used to provide a high level
implementation of the desired abstract data type. For example, V-graphs were used by Earley
[11] to represent instances of data structures. Operations on the data structure are specified
either by expressions written in terms of primitive V-graph operations, or by means of pictures

of V-graph transformations.

An appropriate known formal domain can be chosen to give the high level representation

e e g e o oy ey e

e ar e B Ay a) A SR WO S
.

2.2 SURVEY OF ABSTRACT DATA TYPE SPECIFICATION TECHNIQUES 12

for the abstraction Generally. this 15 some established mathematical domain. Hoare has
used this approach to specify sets and subsets of integers [24]. The advantage of this
approach is that a body of knowledge 1s available about the formal domain: on the other hand,

it may not be suitabie for representing the abatraction.

Parnas |38] has developd a techmque and notation for viewing the abstraction as states

of an abstract state machine.

Use of axiomatic descriptions to specify the abstractions falls under the fourth category.
The axioms define equivalence classes over the set of all expressions If the set ot axioms are
well chosen. the equivalence classes are unique. The axiomatic specifications are minimal

and widely applicable. however, they are delicient with respect to comprehensibility.

Recently. an algebraic specitication technique based on the algebraic construction, known
as "presentation”. has emerged as a popular one. The algebraic axioms are easicr to
understand than the general axiomatic specifications, and they too are representation
independent. An alyebraic specification has two components: syntactic and semantic. The
syntactic component gives the domains and ranges of the operations on the abstract data
type. The semantic component consists of set of algebraic axioms in the form of equations,
which retate the operations to each other. An implementation may also be given for the data
types. "An implementation of an abstract data type is an assignment of meaning to the values
and operations in terms of the values and operations of another data type or set of data
types [18]." A correct implamentation must salisty the algebraic axioms. The data types used
in the implementation are also specified _hy means of axioms; and their implementation may
again be specified if they are abstract types. The proof of the correctness of the

implementation requires showing that each of the algebraic axioms for the data type is

caprRnr s Nl

2.2 SURVEY OF ABSTRACT DATA TYPE SPECIFICATION TECHNIQUES 13

satisfied when the implementations are substituted in the axioms. The definition of equality
interpretation for the implementation is needed for the proof. A general principle used in the
proof is that of data type induction. It means proving some invariant property of the data type,

and involves establishing the base step and the induction step.

Goguen, Thatcher and Wagner have described an initial alyebra approach to the
specification, correctness, and implementation of the abstract data types [14]. They describe
a lirst order language (or X-algebra) using sorts and signature over sorts. They then define a
category C of 2-algebras to consist of Z-algebras together with all the ¥ homomorphisms.

Alg - is defined as a [53]

"universe of discourse where the process of axiomatizing on the data types is
going on. In particular, the free algebra in Alg. provides a language in which to
write down the axioms. and their homomorphisms tell us how to interpret the
axioms."

Given the above algebra, the concepts of presentation and initial alyebra are introduced; it
is proved that the initial algebras are isomorphic leading to the main result: "An abstract data
type is the isomorphic class of an initial algebra in a category of X-algebras.” It provides a

rigorous mathematical basis for the specification techniques using axioms.

2.3 LANGUAGES SUPPORTING ABSTRACT DATA TYPES

The use of axiomatic specifications is still far from practicable. It involves fair degree of
mathematical expertise to formulate the axioms and to check their consistency and
completeness. Consequently, the practical languages which allow the definition of abstract
data types are still based on the abstract model approach (which includes categories (1),(2),

and (3)) described in the previous section.

2 LANGUAGES SUPPORTING ABSTRACT DATA TYPES 14

ClLuianguage was developed at ML T [3:4] to support the use of abotractions in program
construction. it supports thiree types of abstractions: procedural contiot, and data. Ithas a
mechamsin. called “cluster” to detine the data abstraction A cluster 1 used to define the
coprenc atahion of aoanta type and the set of cperations whach can b poerformad on it The
represcntabion aay be given using vanables whose data types are aoun detined in other
clostors. insuch cases, references are associated vath these variablas. and the actual datais
stored i the clusters. The only way to access or modify this data is by mieans of oparations

de-fiedin the cluster for the appropniate abstract data type.

i the implementation, the vaniables which are defined to be of abstract data type actually
stora references to data. while the data and ats representationdl details are given m the
cluster !t does awa; with explict manipulation of pointers. yet allows an efficient
implemomianon However, it causes a change m semantics of the taditional assignment
statement In the example:

B - NibW:

Ao B

MODLEY(B)
the vanables A tuvd B3 are of cuee stret type which has operations HEW and MODIFY
defined i a chieer The fu o dement o wees B to be defined but cmce the data type is
dehined i a cluster B3 osiply tooes arebrence to the data In the second statement the

same reference s storod in A The problenis caused by the thid ctatement NModification of

the structure pointed to by B causes the modification of AL as aside eftect,

The sbove suggests two allernatives: either the notion that A and B are of abstract data
type should be chandoned and they should simply be declared to be of poimnter type: or the
semantics of the assignment stiatement bo redetined. In CLU. the latter approach is chosen

and the asaonment statement s defined to mean "renaming”. In the examplo, the second

2.3 LANGUAGES SUPPORTING ABSTRACT DATA TYPES 15

statement will be taken to mean that A is the name of the same object as denoted by B.In a

language which is side-elfect free the above problem, of course, does not arise.

Concurrent Pascal has been developed by Brinch-Hansen [5] for the writing of concurrent
programs. It allows the definition of monitors. A monitor delines a type whose instances may
be created. The data associated with an instance can be accessed using that particular
instance of the monitor. This restriction disallows recursive definition of monitors. Moreover,
operations defined in the monitor can operate on variables only in one particular instance of
the monitor. These restiictions may he justified for concurrent programming. however. the

language is not discussed any further here, due to these severe limitations.

Chapter Three

ABSTRACTDATATYPESINA

NONPROCEDURAL LANGUAGE

3.1 INTRODUCTION

This chapter describes modularity in a simple non-procedural programming language
based on mathematical equations, through the use of abstract data types. The presentation is

independent of the Model or Nopal systems, referred to previously. The objective in this

Chapter is to keep the language simple so as to convey the concepts without being

encumbered by details.

Section 3.2 introduces the non-procedural language. Alternative aproaches to modularity :
are discussed in section 3.3. Use of abstract data types is described in section 3.4; and their
specification using modules is given in sections 3.5, 3.6 and 3.7. Finally, the semantics of

modules is given in Section 3.8, followed by a summary in Section 3.9.

In short, this chapter describes the design rationale of abstract data types for '

non-procedural languages based on mathematical equations.

3.2 ASIMPLE NON-PROCEDURAL LANGUAGE BASED ON
EQUATIONS

e el L

A specification in a non-procedural language basically consists of two kinds of statments:
16

3.2 ASIMPLE NON-PROCEDURAL LANGUAGE BASED ON EQUATIONS 17

1 declaration of variables {including arrays and structures) and their data types,
and

2. mathematical relations (also catled assertions) between the variables.

A variable can take a value belonging to the set specified by its data type. The data type of
a vanable can enther b declared explicitly or be determined from its use. It is immaterial to
the specification whee the variables are stored, f.e. in main memory or secondary memory.
The bacie data staacture o the languages the array. Variables or structures may be declared

to be arrays A sequential ileis considered to be an array of records

Assartions, are essentially equattons which define relationships between variables. A
canable can have only one value as in mathiematics. Each assertion, in fact, defines the value
of a varable. The assertions can he compased By the user in any order because they specify

ri-fations, which do not have any temporal meaning associated with them.

By the use of free subscripts, a single assertion can define the value of an entire array.
Identfiers correspanding to the free subscripts can be declared. Tha2 notion and use of free
subscripts s similar to that in mathematics. For example, let "1 be an array variable, and "1"

a free subscnpt, then the assertion:

F(I) = IF I=1 THEN 1
ELSE I*F(I-1)

defines the value of the entire array . Lach element of the array F is delined in terms ot the

previous one, except for the first element which is defined to be 1.

In the above example. the size of the array F is not specified, and hence is possibily infinite.
The size can be specified in essentially two ways:

1. An upper bound can be declared for the subscript |; or

2. A special array of the same dimensions and sizes as F can be defined, which

3.2 A SIMPLE NON-PROCEDURAL LANGUAGE BASED ON EQUATIONS 18

identifies the size for the rightmost dimension of F. This special array is called the
end array. F is defined upto the largest index such that the corresponding
element in the special array is true, and all elements of lower index are false. Its
use is illustrated by means of an example:

END.F(I) = 1IF I=4 THEN TRUE
ELSE FALSE;

The above causes an array F to be of size 4. In other words. an array variable F is
defined for as many elements untit and including the first true element of END.F.

Certain rules govern the usage of subscripts. These have been designed so that the
specification can be compiled rather than interpreted. A subscript can occur in one of three
forms:

1. a subscript term e.g. | in F(l);
2. an expression of the form (1-k) where k is a positive integer, e.g. (I-1)in F(I-1); and

3. another variable or subscripted variable, e.g. G(!) in F(G{l)).
For a subscripted variable which occurs on the left hand side of the equation, its subcripts

must be in the first form. This makes the consistency analysis simpler.

The above is the essence of a non-procedural language using mathematical equations.
There are many additional features in the Model language to handle file organization, and in
the Nopal language for fault isolation in testing of physical systems. A processor for such a
language analyzes the specifications for consistency, completeness and non-ambiguity; and
if successlul, generates a program in a high level language. By consistency we mean that the
variables are detined only once, and by completeness that the variables are defined at least
once. Inthe generated program, the variables should be defined before they are referenced.
This analysis, which is non trivial when f(ee subscripts are used. is described with respect to

the Nopal system in Chapter 5.

3.3 APPROACHES 10 MODULARITY 19

3.3 APPROACHESTO MODULARITY

Need for modularity has been discussed in Chapter 1. As discussed earlier. it means
sub-dividing a probtem into smaller specifications. and compiiing each of the specifications
sepetately. A number ol alternative approaches are possible to achieve modularity in

non-procedural languages. Some of them are described below.

The simplest approach is to divide a large specification into smatter specifications which
communicate through commonly namer variables. The aggregate of sub parts is exactly
equivilent to the total, obtained by simply putting the sub) parts together and torming one

large specification.

In a different approach, each sub part represants a specification of a function, and these
tunctions muy be used in other sub-parts. In this approach. the tunctions may be specilied
once and used many tim.s resulling in a more compact overall specification. A judicious
choice of functions may also correspond to a decomposition of the specification at the logical

or "conceptual” level.

Still another approach utilizes the idea of data abstaction. In this approach a sub-part
snecifies an abstract data type and the functions which are allowed to operate on variables of
the data type. The data type can now be used in other sub-parts. In other words, variables in
other sub-parts can be declared to be of the defined data type and he operated upon by the
specified functions This approach has the advantage similar to the functional approach,
namely, that a data type specified once in a sub part may be used many times in other

sub-parts.

A procedure in a programming language accomplishes an action (or performs a sequence

of steps). A procedure 1s used knowing "what” it accomphshes without knowing "how" it

3.3 APPROACHES TO MODULARITY 20

accomplishes it, and similarly it is defined knowing "what" it is supposed to accomplish
without knowing "how” it will be used. Thus the abstraction separates use from delinition
and introduces modularity. In a similar fashion, a data type is specitied independent of its use.
It represents a set of objects which satisly certain properties, and frequently. these objects
correspond to the user's problem domain, e.g. stacks, tokens. sets etc. A variable of the said
data type represents one of these objects and allows us to express relationships directly
among these objects in a non-procedural specification. Thus it also makes the specification

closer to the terminology of the problem.

Another advantage of this approach is that the representation for the variables belonging
to abstract types need not be known while writing the specification. This allows the
representation of a data type to be modified without affecting its use. The representation of a
data type is specified by means of a sub-part defining the data type, and can be changed by

changing that sub part alone.

In light of the above advantages. this latter approach to modularity is adopted in this
dissertation. (Another motivation for chosing the latter approach is that it provides a
convenient way to represent devices for testing in the Nopal system.) it should be recognized
that the sub-part specifying the data type allows the funtions which can operate on the data
type to be clustered together. The use of this abstraction serves as the guiding principle for
clustering of the functions. We hope to illustrate below that this is, indeed, a natural way to

modularize non-procedural languages.

JHUSE OF ABSTRACT DATATYPES 21

3.4 USEOF ABSTRACT DATA TYPES

Each vaniable in a non-procedural spectficaion has a data type. which gives the set of its
pessible valuves The data type of a vanable can be elementary (e one defined by the

languaye e g real. integer. character etc.) or can be one of the abstract types.

An abstract data type must be specihied nen procedurally by means of a specification
calfed the modute for that data type Just as a vanable of the clementary data type can be
operated upon by the functions for the date type. e.g. functions + . . *. / tor the integers, a
variable of tho abstract data type can only be operated upon by the: set of funchons defined in

the corresponding imodule.

Vanables can occur in assertions as defined below. Assertions define the relationships
betwean the vaniables. An assertion is of the form:
Ayl Ty =l Ly A A
where A, A are names of array variables. |,y are subscripts for d1 dimensional array

variable: A, and 1 denotes the expression formed using function symbols. subscripts and

array variables.

Expressions are formed using notatian familiar in mathematics. Informally:

1. An array varinbte followed by a hist of subscript expressions is an expression, and
the data type of the variable gives the set to which the value of the expression
betongs.

2. A function symbol followed by expressions in parenthesis is an expressicn. The
data types ol the expressions should match the domains of the function symbol.
The data type of the new expression formed is the range (as in mathematics) of
the funchion. The expression defines a mapping from the domains to the range of
the function '

3. Symbhols +. . * 7/ denote the functions for addition, subtraction, multiplication
and division: and they may be used as infix operators. Similarly, the function
if then else (cond. x, y) with three arguments can be written in its familiar form: if

3.4 USE OF ABSTRACT DATA TYPES 22

cond then x else y.
Data types place restrictions on the ways in which expression can be combined to form new
expressions. In particular, the data types of the arguments of a function must match the

domains of the function.

There is no distinction in the use of elementary and abstract data types. The user of the
language once provided with a set of data types and the functions which can be perforined on
them may use the given set of data types without ever knowing which are elementary and
which abstract. The use of the abstract data types, therefore. does not require any new

meaning o be given to variables or assertions in the non-procedural language.

3.5 SPECIFICATIONOF ABSTRACT DATA TYPES

This section introduces the concept of a module for the specification of the abstract data
types. The specification of an abstract data type is independent of its use. It is specitied
non-procedurally within the framework of the language intrduced in section 3.2. The module
specification can be analysed for inconsistency, incompleteness. and ambiguity, independent
of other module specifications. In particular, the variables in the module are single valued,
subscripts are consistently used, and are independent of the subscripts and dimensions in
other module specifications. Finally, as will be shown later, the generated program supports

the use of variables of the defined abstract type in other modules.

A module consists of. (1) a header - which gives the name of the abstract data type, (2)
data declarations - which give the representation for the abstract data type, and (3)

module-functions (modfuns for short) - which specify the functions which can operate on the

abstract data type being specified by the mod.ule. The function specification consists of

3.5 SPECIFICATION OF ABSTRACT DATA TYPES 23

assertions. including formai paramaters and return value.

A module named. say ADT, specifies a representation for an abstract data type ADT. By
representatiun is meant the components of a data type. The word "representation”, rather
than the word "data structure” | is used because the components themselves can be abstract,
in which case they are specified by means of other modules. A modfun may return a value of
type ADT. in which case the value is defmmed by defining the value of variables in the
representation. This s done by means of assertions in the body nf the modtun. If the value is
specihed using the formal parameters of the modfun. then the modfun specifies the
relabonship between the formal parameters and the value returned. If one of the parameters
15 of type ADT ts ropresentatinn is accessible in the module ADT and can be used in defining

the return value.

In general. the return value of a modiun may be of any arbitrary data type. Appropriate

functicn must be used to define the return value.

3.6 ANEXAMPLE - STACK

The ideas presented in the previous section are illustrated by means of an example in this
section. The syntax of assertions has already been explained; the syntax of the declarations
is somewhat like Pascal and PL/1. The subscripts are declared by means of a statement of the
form:

<subs> IS A SUBSCRIPT;

where <subs> is the name of the subscript.

The example chosen is stack of integers. It has four modfuns. Their domains and range

are.

3.6 AN EXAMPLE - STACK 24

Emptystack: — stack

Push: stack * integer — stack
Pop: stack — stack

Top: stack — integer

The emptystack maps from null domain to an empty stack; Push maps a stack S and integer X
to a stack whose top element is X and the remaining part is the same as stack S. £op maps a
stack S to another stack which is the same as S except with the top element removed; and

Top maps a stack S to an integer X such that X is the same as the top element of S.

The above is an informal description of stack in English. The module STACK gives the
formal specification of stack and its functions. The specification captures the concept
expressed informatty above and makes it precise. (The formal semantics of the module is

discussed in Section 3.8.)

Consider the following example having an array A of stacks. Each of the elements of the

array A is a stack onto which integers from arrays P and Q are pushed.

MAIN EX1;
DCL A:STACK ARRAY(10),
P,Q:INTEGER ARRAY (10);
R:BOOLEAN ARRAY (10);

I IS A SUBSCRIPT;
A(I) = IF I=1 THEN EMPTYSTACK
ELSE TF R(I) THEN PUSH(A(I-1),P(I-1));
ELSE PUSH(A(I-1),Q(I-1));
/* ARRAYS P,Q,R ARE ASSUMED TO BE DEFINED ALREADY. */
END EX1;

The STACK module is:

3.6 AN EXAMPLE - STACK 25

MODULE STACK;
DCL 1 STACK: RECORD,
2 TOPZ: INTEGER,
2 Z: INTEGER ARRAY(100);
J IS A SUBSCRIPT;

MODFUN PUSH(S:STACK, X:INTEGER) RETURNS (S1:STACK);
S1.70PZ = S.TOPZ + 1;
S1.Z2(J)=IF J<(=S.TOPZ THEN S.Z(J)

ELSE X;

END.S1.2(J) = (J=S1.T0PZ)

END;

MODIUN POP(S:STACK) RETURNS (S1:STACK);
S1.T0PZ = S.TOPZ-1;
S1.2(J) = S.1(J):
END.S1.2(J) = (J=S1.T0PZ);

LND

MODFUN TOP(S:STACK) RLTURNS {X:INTEGER);
X=S.Z(S.TOPZ);

END;

PMODEUN EMPTYSTACK RLTURNS (S1:STACK);
S1.T0PZ=0;

END

END STACK;

In the above example, representation for a stack consists of two components: a 100
element integer array called 2, and an integer TOPZ. The familiar notation of record (as in
PL/1, Pascal etc) is used to show the components of stack. Vanables 51 and S which occur
in the modfuns are of data type stack. Owutside the STACK module the two components of
stack are not visible, however. inside the module the vanables S and S1 are seen to consist of
two components. To refer to their components qualified names are used, e.g. S1.TOPZ relers

to a component of stack S1, while S TOPZ refers to that of stack S.

The STACK module can be analysed for consistency independent of the use of stack data
type. The modluns PUSH and POP define a stack by defining the vatue of its components
which satisfy certain relationship with components of another stack. For example, the

modfun PUSH defines the value of a stack S1 in terms of stack S and integer X, which are the

3.6 AN EXAMPLE - STACK 26

format parameters of PUSH. The two components, Z and TOPZ, of the stack S1 are defined in
terms of the components of the stack S and integer X. EMPTYSTACK defines a stack which
satisties certain properties independent of any other stack, TOP defines an integer with

respect to the stack S, which is a again a formal parameter.

The definition of the array of stacks, A. in the main module does not require knowledge of
the representation of stack. It can be analysed for consisteticy independent of the module

STACK.

3.7 RECURSIVEDEFINITIONS

Modules can be used to define data types whose representation s specihied recursively.
For an abstract data type. say ADT. its regresentation can be specified in terms of vanables
which themselves can be of type ADT. Modfuns can now be appled to these vanables

recursively to define their values.

The recursive data types are illustrated below by means of an example. Stack-of-stacks
data types (SOS for short) is chosen to show the similarity with the previous stack example.

The specification of SOS is same as that for STACK except that the data type of the array Z in

the representation of SOS is of type SOS instead of INTEGER.

3.7 RECURSIVE DEFINITIONS

MAIN EX2;
DCL S,T: SOS ARRAY(100);

S{I) = IF I=1 THEN PUSHS (EMPTYSOS, EMPTYS0S)
ELSE PUSHS(S(I-1), EMPTYSOS);
T(I) = IF I=1 THEN PUSHS(EMPTYSQS, (1)),
ELSE PUSHS(T(I-1),S(1));
END EX2:

|- s

tﬂ lz---sm
lu

- S(1)

(1) T(2) Q)

U = stack symbol

c
"

stack containing "-"

Figure 3-1: EXAMPLE EX2: USING STACK OF STACKS

27

C e el At

3.7 RECURSIVE DEFINITIONS 28

MODULE SOS;
DCL 1 SOS: RECORD,
2 TOPZ: INTEGER,
2 Z: SOS ARRAY(100);
J IS A SUBSCRIPT;
MODFUN PUSHS(3:S0S,X:S0S) RETURNS (S1:508);

S1.TOPZ = S.TOPZ + 1;

$1.2(J) = IF (J <= S.TOPZ) THEN S.Z(J)
ELSE X;

END.S1.2(J) = (J = S1.TOPZ);

END;
MODFUN POPS(S:S0S) RETURNS (S1:S0S);
S1.T0PZ = S.TOP - 1;
$1.2(J) = S.2(3);
END.S1.Z(J) = (J = S1.TOPZ);
END;
MODFUN TOPS(S:S0S) RETURNS (X:S0S);
X = S.2(S.T0PZ);

END;

MODFUN EMPTYSOS RETURNS (S1:S0S);
S1.7T0PZ = 0;

END;

END S0S;

Stack of stacks (SOS). as defined above, is not very useful because it cannot handle a
stack of integers. A SOS can only contain other SOS's. The difficulty arises because the data
type of Z, a compaonen: of SOS, is restricted to be of data type SOS; hence it does not allow a
stack of integers to be part of SOS. There are a number of ways of dealing with the problem,
e.g. parameterized modules. disjoint union of data types etc. expliined below. A particularly

elegant method is by using parameterized modules.

A generic or parameterized module defines a class of data types. Different values of the
parameter of the module result in different members of the class of data types. The SOS
example is rewritten using generic module. A single module defines stack of integers, stack

of characters, stack of stacks etc. depending on the value of the parameter.

STK specifies a parameterized stack. Its parameter is a data type which determines the

3.7 RECURSIVE DEFINITIONS 29

components which a given STK can have. For example, S is declared to be an array of stacks
of integers i.e. each of the element of the array S is a stack and can contain integers.
Similarly, T is an array of stack of stacks. At the time of declaration of variables of data type

STK, the parameter of STK must be specified.

MAIN EX3;
DCL S: STK[INTEGER] ARRAY(100),
T: STK[STK] ARRAY(100);
S(1) = PUSHSTK(EMPTYSTK(INTEGER), I);
T(I) = IF I=1 THEN PUSHSTK(EMPTYSTK(STK), S(1)),

ELSE PUSHSTK(T(I-1),S8(1)}):
END EX3;

-~ S(@

lj" ﬂ_..sm)
| L] L L~ s

() T(2) T(3)

Figure 3-2: EXAMPLE EX3: USING PARAMETERIZED STACK

Figure 3-2 illustrates the various stacks in EX3, by means of a picture.

3.7 RECURSIVE DEFINITIONS 30

MODULE STK[U: TYPE];
DCL 1 STK: RECORD,
2 TOPZ: INTEGER,
2 Z: U ARRAY(100);
J IS A SUBSCRIPT;
MODFUN PUSHSTK(S:STK[V], X:V) RETURNS (S1:STK[V]):
S1.70P2 S.TOPZ + 1;
S1.2(3J) IF (J <= S.TOPZ) THEN S.Z(J)
ELSE X;
END.S1.Z(J) = (J = S1.TOPZ);

END;

MODFUN POPSTK(S:STK[V]) RETURNS (S1:STK[V]):
S1.70PZ2 = S.T0P - 1;
$1.2(J) = S.2(J);:
END.S1.2(J) = (J = S1.T70PZ);

END;

MODFUN TOPSTK(S:STK[V]) RETURNS (X:V),
X = §.2(S.T0PZ);

END;

MODFUN EMPTYSTK(V:TYPE) RETURNS (S1:STK[V]):
S1.70PZ = 0;

END;

END STK;

The construct ot disjoint union alsu allows a single module to detine a class of data types.

A variable is said to be of disjoint union of data types X and VY, if the viriable can take a value
denated by either of the data types, and there is a way to distinguish whether its value is of
data type X or data type Y. Part of SOS example is rewntten below to ilustrate the idea. In the
example, a tag field is associated with the SOS record, which mdicates one of two possible
choices in the variant part of the record. Thus depending on the tag field, it represents a
stack of integers or stack of stacks. (it is assumed that TYPE OF .5TACK is a data type
defined to be a set consisting of two keywords INTEGER and SO5. CASL has similar meaning
as in Pascal.) Accordingly, the data type of the parameter X in the function PUSHSTK is of

type SOS or INTEGER.

3.7 RECURSIVE DEFINITIONS 31

MODULE STK;
DCL 1 STK: RECORD,
CASE TAG: TYPE-OF-STACK OF
INT: 2 TOPZI: INTEGER,
2 21: INTEGER ARRAY(100),
SOS: 2 TOPZS: INTEGER,
2 1IS: STK ARRAY(100);
J IS A SUBSCRIPT;

MODFUN PUSHSTK(S:STK, X:CASE(STK,INTEGER)) RLIUNRNS(S1:STK);
CASE S.TAG OF
INT: S1.TOPZI

$1.21(J)

S.TOPZI + 1;
IF (J <= S.TOPZI) THEN S.ZI(J)
ELSE X;
END.S1.ZI(J) = (J = S1.TOPZI);
SOS: S1.TOPIS = S.TOPZS + 1;
$1.2S(J) = IF (J <= S.TOPZS) THEN S.ZS(J)
ELSE X;
END.S1.2S(J) = (J = S1.TOPZS);

#on

END;

END STK;
Unlike the parameterized module, the class of stacks that STK specifies is limited to those
explicitly detined in the module, e.g. in the above example it is limited to two' INTEGER and
STK. In case of the parameterized module, the class of stacks specified by STK is left open in

the specification.

Disjoint union and parameterization are not included while dofining the semantics of
modules to keep the treatment simple. Parameterized modules (or disjoint union) can always
be replaced by a number of different modules, each corresponding to a different value of the

parameter (or a different data type in the union).

3.8 SEMANTICS OF MODULES 32

3.8 SEMANTICS OF MODULES

This section defines the denotational semantics or the fix point semantics of the modules.

The denotational approach has been chosen because the semantics so defined is

—_

independent of the computation rules (or the interpreter) used to evaluate the modules. This
may be contrasted with the operational or axiomatic approach. in which the semantics is
defined in terms of the interpreter. The denotational approach is particularly suited for
non-procedural languages, because these languages are independent of the sequence of
control of the statements. The denotational semantics of modules shows two things: (1) the

module defines a set of functions, and (2) the functions can be computed.

The equations and arrays in the specification are considered as partially defined recursive
functions. This allows us to translate our notation into the standard recursive function

3 equations, and use the results regarding least fix point already known in that domain.

Some of the important definitions used in denotational semantics are described here.
Partial ordering "—<" on every extended domain D* = D U {L}. where L stands for the
undefined value, corresponds to the notion of less defined than or equal to. Itis defined as:

1 <d, and d <d ¥deD"
A function f is said to be monotonic if:
x <y => f(x) <fly)VxyeD"
Starting with these basic definitions semantics for recursive equations is defined (Chap. 5 in

[37)).

% First, the semantics of equational specification (Section 3.2) is presented. It is based on

{40]. Later, it is extended to give semantics to modules. It is also shown that a module

‘f specification defines a set of algebraic axioms satisfied by the abstract data type.

3.8 SEMANTICS Off MODULES 33

An equational specification. introduced intormally in Section 3.2. for the array symbols A,
... A, of dimensionalities d,, ... d,. and data types T,. ... T, respectively, is a system of
equations:

Al g = 1yl lg Ay Ag)

Al) = Tolly g A Ag)

The terms r,(1,, ... Id|.A‘| .. A fori = 1to nare defined recursively as follows:

Letters f,.f,.... are used to denote functions over array values: and g,.4,.... are used to
denote integer valued functions used as subscripts. A subscript is defined as follows:

1.l is a subscript. Its appearance in 7, satisfiesk < d;.
2.1,-c is a subscript. where c is an interpreled integer constant.

3.11J,, ... J,, are subscripts, then so is g,(J;. ... J,}.
Atermis defined as:

1. Hd,. . J, are subscripts, then A(J,. ... J,) isaterm of data type T,

2.1Ft,, ..t are terms of data types S;. ... S,,, respectively, then fi(t,, ...) is a term
of data type S, (where occurrance of the symbol t; is always followed by terms of
the data types S;;. ... §;,,)).

An interpretation for a specification corsists of
1. domains D,. ... D, over which the elements of array vary, and letD = {D,,... D, };

2. aone to-one onto mapping M such that: M(x) = D,. where x is a data lype, and D,
e D;

3. an assignment of concrete functions to the symbols {f;}. i.e. l[f]: D, "X Diz’ X..
DIm ' .o D" where mis the anty of f,. S, the data type for the i"™ argument of the
function satishies the relation M(S,) = D, and similarly the data type for the range

of the tunction satishes M(S)) = D, where D,l ¢eDtor1 <j<m, D, eD;and

3.8 SEMANTICS OF MODULES 34

4. an assignment of concrete natural number functions to the symbols {g,} i.e. i[g,}:
(Z*)% - 2", where d, is the arity of g,

where D;" is the extended domain, D;* = D, U {Ll}; and Z* is the extended domain of
natural numbers, Z* = ZU {.L}, where L stands for undefined value. Moreover. f and g, are

restricted to be monotonic in the sense of partial ordering.)

Least fix point semantics is adopted to give a meaning to the specification. Thus, the
solution to a given set of equations is taken to be the least tix point solution. Each of the A, is
specified as a partial function, A;: z4 - D;. Monotonicity of functions f,, f,. ... g,. gq, ...
assures that the 7, are continuous. Therefore, the least tix point solution exists and is unique

(Thms. 5-1,5-2in [37]).

The semantics of module specification is presented next. A module specification consists
of the declaration of the representation for the abstract data type specified by the module, and
the operations which may be performed on variables of the type. Let an abstract data type
called ADT be specified by a module of the same name. The modfuns specified by the module
may be divided into two classes:

1. those which return a variable of data type ADT, and

2. those which return a variable of data type other than ADT.

Semantics of modfuns for each of the classes will be presented.

Representation of the abstract data type ADT, in its most general form, is given by a
structure of the form:

dcl 1 ADT: record,
2A.: T,

2A

T

n'

e

3.8 SEMANTICS OF MODULES 35

where A/'s are the variables and T,'s are theu data types respectively. Each of the A's may be
arrays or simple variables. A structure declaration is given the semantics of a tuple. and
therefore. the structure for ADT denotes the tuple:

<ALA,, L AD.
Note that since any of the T's may in turn be of type ADT. the abstract data type. ADT. may be

defined recursively.

A modfun in the module ADT which returns a variable of datia type ADT is of the form:

MODFUN OPC(C,:ADT, ... C:ADT.B,:u,. ... Byiug) RETURNS(C:ADT);
CA(,, .. 'u1) = 7yl ... 'd,-Av .-A,,C.B.op)

CAIy g) = Tollys by Ay, AnCBiop)
END

where OPC is the name of the modfun; C's are the formal parameaters of data type ADT: B's
are formal parameters of dala types u's respectively where none of the u's is ADT; and 1;'s
represent expressions. C is used to denote C,.C,. .. C /B to denote B,. B,. .. B, and op to
denote the modfuns in the module. A's are array symbols and are components of the tuple of
ADT. defined earlier. The d,'s give the arities of the corresponding A's. and |'s are the

subscripts of the respective A’'s, where t <j < d,.

The expressions 1,'s can now be defined as below. Letters f.f,. . are used to denote

functions over array values: and 1,.g,.... are used to denote intuger valued functions used as
subscripts. A subscniptis defined as follows:

1.1, is a subscript. Its appearance in 7, satistiesk < d,.
2.1,-cis asubscript. where c is an interpreted integer constant.
|

3.1y, . J,, are subscripts, sois g,(J,y, ... J,).

3.8 SEMANTICS OF MODULES

A term is defined as:

1.4 dy, . Jdi are subscripts. then C;.AJ,, ... Jdi) is a term of data type T,; where |
satisfies 1 <j < p, and i satisfies 1 <i < n.

2.8, ... 'd,) is a term of data type u,, where 1 <i < q.

3.1ft,, ...t are terms of data types §,;. ... §;, respectively, then f(t,, ... t_)} is aterm
of data type S, where occurrance of {, is always followed by terms of data types
S .. S

im*
4. Same as (3) with the symbol f replaced by op, where op ¢ op. and S;'s replaced
appropriately.
The following interpretation is given to the above set of equations.

1. a set of basic domains D,, ... D, including domain Z of the set of positive integers,
and let D, = {D,. ... D,. D}, where set D is defined by the module;

2. for each of the data types T;'s, u;'s and ADT define a one-to-one onto mapping M
such that:

M(ADT) = D
M(x) = d wherexe {T,... T,u; ... u}
andd € {D,,, - D}

3. for each sy'nbol f; of arity d; assign a concrete function:
f:D X .. X Didi —+ D,
where D, e Dy,
and Vk, D, & Dy,

where S”. the data type for the jth argument of the function f, satisfies M(Si,) = D,
and S;, the data type for the range of the function satisties M(S,} = D;:

4. for each symbol g, of arity d, assign a concrete number theoretic function:
g (Z*)iz*,

5. a set of projection functions P,'s such that

AL ADA = PKKALLLAD)
and with subscripts and symbol C‘ for the tuple
Ci.A‘(l,....ld') = P,(C,)(l,,...ldi)

3.8 SEMANTICS OF MODULES 37

fort <j<p
and1 <i<n;

6. a set of functions OPC,, ... OPC, (instead of the multi-valued function OPC)
defined as follows:

OPC,(C Bl lg) = CAlly,-lg)

OPC(C By) = CAQ,...g)

where C and B are the formal narameters of OPC.

With the interpretations (5) and (6) the equational specification of a module can be written
in the familiar form of recursive equations:

OPC|(Q,_B_.|1, Id‘) = T](It‘ '(j'vE~Qv.B_vQQ)

OPC,‘(_C_,_B_J‘, Idn) = Tn(||~ Idn-E‘Q-BvQQ)
where op is the set of operations with proper substitutions. (For example. OPC ¢ op is written

as the tuple <OPC,. ... OPC,>.) P represents P, ... P,

For each of the modfuns of class 1, i.e. those which return a value of data type ADT, a

similar set of recursive equations can be written.

For each of the modfuns of class 2, i.e. those which return a value of data type other than
ADT, a similar but simpler set of recursive equations can be written. A modfun belonging to
the second class is of the form:

MODF UN OPD(C,:ADT. ... Cp:ADT.B1:n,. Bq:uq) RETURNS(E:u)
E(ly. 1)) = 7ylly. o Iy Ay AyC.B.0D)
END

which reduces to the recursive equation:

3.8 SEMANTICS OF MODULES 38

OPD(C.BIy. ... Ig) = (). ... 15,P.C.B.op)
All the recursive equations are now put together, by renaming the variables which occur as

formal parameters of modfuns, to avoid clash of names.

The functions f,.f,, ... g;,9,, ... are constrained to be manotonic in the sense of partial

ordering. The projection functions are monotonic because:

Let P, be the i'" projection function. Now
let x = <xy, ... %, ... x>
andy = <y, .. Y ... ¥y

x <y = x;, =y, foralli (where "< stands for less defined than or equal to)
Pi(x) = X;
Pily) =y,
x =Xy = Pi(x) <P(y)
therefore, P, is monotonic.
Hence, 7;'s are continuous and the least fix point solution of the recursive equations exists

(Thms. 5-1,5-2in [37)).

The set D, which corresponds to the data type ADT, is defined inductively as follows:

1. Base step. For a modiun OP which returns a value of data type ADT, and none of
whose formal parameters is of type ADT. the tuple defined by OP: <OP,, ...
OP,>(B) is a member of set D. B are the formal parameters of function OP, and
OP represents a tuple of tunctions.

2. Inductive step: For a modfun OPC which returns a value of data type ADT, the
tuple defined by the modfun: <OPC,, ... OPC, »(C.B) 1s a member of set D; where C
are the members of set D, and B are members of other domains {D,,, - D).

The existence of the least fix point solution assures the existence of the set D.

With the semantics of the modules defined. algebraic axioms about the abstract data types
can now be proved. The proof involves substituting non-procedural equations for the
occurrances of the module functions, and reducing the equations until the desired equality is

obtained. This is illustrated by means of the STACK example. Note that since it does not

3.8 SEMANTICS OF MODULES 39

involve recursive definition of the data type the derivation is straight forward.
To prove. POP(PUSH(S.X)) = S. where S is a stack. and X is an integer.

Proof:

LHS
= POP(S') where S’ is a stack and
S .TOPZ = S TOPZ + 1

S.2(J) it < S.TOPZ

S.Z(J) = X ifd = S.TOPZ
1 otherwise

= 8" where S" is a stack and
S".TOPZ =S'.TOPZ - 1 3
S"Z2(J) = S.Z2(J)ity < S.TOPZ

L otherwise

= S” where S". TOPZ = S.TOPZ
S"Z2() = S.2(J) itd <S8 TOPZ
1 otherwise

= S" where S" . TOPZ = S.TOPZ
S".Z(J) = S.Z(J) VJ (from Lemma 1))

QED.
Ltemma 1: VS ¢ STACK, S.2(J) = L ford>S.TOPZ

Proof: Since the stacks can only be dehned by the modfuns in the module STACK, the
proof follows from induction:

Base step. Follows from the definition of the EMPTYSTACK.

3.8 SEMANTICS OF MODULES 40

Induction step: Let S be a stack satistying the proposition of the Lemma.

Ciaim: The stacks POP(S,X) and PUSH(S,X) also satisfy the lemma.

Proof:
1.
LetS' = POP(S,X)
S Z(4) = Lford>(S.TOPZ - 1)
= L forj>S.TOPZ
2.

LetS' = PUSH(S,X)
S'.Z(J) = L ford>S . TOPZ

Q.ED.

3.9 SUMMARY

This chapter introduces a non-procedural language based on equations. Use of abstract
data types has been proposed as a means to introduce modularity in the non-procedural
language. it has been argued that the use of abstract data types is consistent with the

philosophy of non-proceduralness, and leads to modular specifications.

The notion of "module” has been introduced to allow specification of the abstract data
types. It allows the definition of the representation of the abstract data types, and the
specification of the functions whish can operate on it. These functions are specified

non-procedurally by means of equations.

Finally. the denotational semantics of the modules is defined. It is shown that an abstract

data type defined by a module is a well defined set. it is also illustrated that the axioms

satisfied by the abstract data types can be derived from the equational specification.

>

Chapter Four s:

THE NOPAL LANGUAGE

el L o

4.1 OVERVIEWOF THE NOPAL LANGUAGE

Nopa!l is a descriptive language used to write specifications for the programming of

automotic test systems. it can be used for testing of electronic circuits, mechanical systems,
chemical processes etc. It aiso has the capablity to perform general purpose computationat

tasks.

Basic statements in Nopal are assertions and data declarations simitar to those described
in Chapter 3. However, Nopal has additional constructs which are superimposed on the
assertions and data declarations. These additional features facilitate the specification of
testing. The most important construct is that of a test. A test section consists of a
specification of a physical test. Outcome of the test, i.e. passing or failing the test, determines
fault isolation. There are also sections to describe the UUT (Unit Under Test) and the ATE
{Automatic Test Equipment). These sections are needed to check consistency of interfaces

with the UUT and ATE.

Several features of Nopal are extremly important in providing ease of use. First, the
language is non-procedural. The user saves effort because the execution order of events or
control logic need not be specified. Second, the specification can be divided into sub-parts,
the modules. Each of the madules can be specified and processed by the language processor
indepéndenlly. This is the essence ol modulanty of a specfication. Third, each of the

modutes may be further divided into data declaration. and functions. The functlions are
41

h-————-—-——-—__;_—____“

4.1 OVERVIEW OF THE NOPAL LANGUAGE 42

divided into tests, diagnoses and messages. Each test has sub-parts: stimulus, measurement
and logic Al these carrespond to notions which occur in testing. Fourth, the language
allows incremental development of specification. Tests can be added to a specification

without changing the tests already specified.

The Nopal system produces a number of 1eports which serve as the documentation for the
specification. It also enhances the user-system interaction, and helps the user in locating

errors in the specilication.

In this chapter. the Nopal language is described intormally with examples. A more detailed

explanation including the formal syntax is given in [46).

A Nopal spucification gives a complete description of the desired tesis specific to a given
UUT and ATE. In general, a Nopal specification consists of a collection of moduies. One of the
modules is called the - 1n module and it consists of the tests on a given UUT with an ATE.
Communication between the modules is by means of abstract data types. A module (except

the main module) represents an abstract data type which can be used by other modules.

A module specification includes the data representation for an abstract data type together
with the functions (called module functions or modfuns tor short) which can operate on the
vanables of the abstract type (also called abstract vanables for short). An abstract data type
that has been specified by means of a module can be used in any of the modules. The
abstract variables are dehined and operated upon by means of the modfuns specified in the

module.

The modules are speciied non-procedurally. For organizational purposes each module

can be dvided into four major sections, which can be given in any order. They are:

1. Data declaration specitication,

4.1 OVERVIEW OF THE NOPAL LANGUAGE 43

2. Modfun specification,
3. UUT specification, and
4. ATE specification.

Each of the four sections are - xplained briefly below, tollowed by a more detailed description

later.

The data declaration specification provides the data types of the variables and the data

structure used in the specification.

The modfun specification describes the mapping between the input and the output
parameters of the modfun. The main module has only one (implicit) modfun, while the other
modules may have mare than one. Each modiun consists of fests. diiaanuses and messages.
The tests may be further sub-divided into stimuli. measurements and logic. A test
corresponds to the notion of a physical test on the UUT, i.e. apphcation of stimufi. 1aking of
measurements and selection of diagnoses, based on the results of the test as expressed in the
jogic part. The diagnoses report of the test consists of messages that typically identity the

faults in the UUT,

The UUT specification gives the description of failure modes, connection points etc. of the
UUT. This description is cross-checked by the tanguage processor for consistency within the

module.

The ATE specitication provides the description of the funclions used in the modute. These
functions can be used for application of stimuli, taking of measurements, or for computations.
These functions must be specified outside the module. They can be either part of a library ot
functions, or they can be specitied as modtuns by other modules. The ATE specification gives
the function parameters and their data types. In other words, it gives the specification of the

interface with the rest of the modules and with ATE.

ST T RS T e TS T e

S .. I

4.2 DATA DECLARATION SPECIFICATION 44

4.2 DATADECLARATION SPECIFICATION

The data declaration specification altows the user to declare the data types of vanables.
The data type of a variable specifies the set to which {the value of) the varabile must belong,

and the operations which can be performed on it .

Data types can be either elementary, e.g. real. integer. or character or they can be

abstract. in which case they must be specified by means of modules.

Data declarations include specification of the structure of the data. The two basic
structuring methods are: (1) arrays. and (2) structures An wiray is a homogeneous structure
of elements. all of which are of the same data type. A structure. on the: other hand may consist
of components of different types which are grouped together. The compoenents themselves

can be arrays or structures. thus pormiting structures of arbhirary complexity 1o be declared.

A structure may be viewed as a tree. The root of a tree represents the entire structure, and
its descendents correspond to the components of the structura Finally. the leaves of the tree
correspond to the individual variables in the structure. Below are some examples of

declarations of variables:

OCL A,B,X : INTEGER;
DCL Y,Z : STACK ARRAY (10);
DCL 1 P : GROUP ARRAY (5),
2 Q : GROUP ARRAY (*),
3 R : INTEGER,
3S : REAL;

In the first statement. variables A, B and X are declared to bo of type mtager: i the second, Y
and Z are declared to be one dimensional arrays of size 10, and data type stack, and in the
third, a three level tree stiucture is declared. In the tree structure the root is the variable P

having the descende:nt Q which has variables [Tand S Pis an array of five eloments and Q an

array of size which is to be specified elsewhere,

R TR Y SRS R oF: 1L SR TS L PO e S

4.2 DATA DECLARATION SPECIFICATION 45

A declared structure is implied to be on secondary storage il the data type of the root node
is FILE. Name of the root node, in that case, gives the name of a file and the structure
declaration gives the structure of the file. In other words, the declared structure represents a

fite, and is called a file structure. For example:

DCL 1 F: FILE,
2 P: GROUP ARRAY (*),

3 Q: RECORD ARRAY (10),
4 R: INTEGER,
4 S: REAL,

3 Q1: RECORD ARRAY (5),
4 Ri: CHAR;

Afile F is declared to contain an anay P of indefinite size. Each element of P contains 10 Q’s

and 5Q1's.

A file structure is considered by the system to be input it ail the helds (i.e. leaves) of the
structure are not defined in the specification. and output otherwise. The non-leaf nodes of a
file structure can be of type RECORD or GROUP. A non-leal node which corresponds to a
unit of input output on the secondary storage is declared as a RECORD. and GROUP

otherwise.

Varniables in an input file structure are defined in the generated program by means of a
special function called ACCESS. Calls on this function ae generaterd at appropiate places in
the generated program for the specification SAVE function s the exact dual of above for an
output file structure Use of ACCESS and SAVE tunction is imphcit and need not be specitied

by the user.

For IGAM files. a key is represented by a vanable name which s the name of the record
prefixed by "PTR ™ For example. aninstance ot a record named 27 in an ISAM file can be
defined by means of its key "PTR.Z" The value of the key 1s passed as a parameter to the

ACCESS and SAVE function.

”

[
3
@

42 DATADECLARATION SPECIFICATION 46

The notion of file structure has been generalized to abstract structures in NOPAL. An
nput or output structure can be declared to be of abstract type by specitying the data type of
the root node as abstract (instead of the keywords RECORD. GROUP or FILE). An example of

an abstract structure is:

OCL 1 P: AT1 ARRAY (*),
2 Q: INTEGER,
2 R: REAL;

in which a structure Pis declared to be of abstract type ATt

An abstract structure is considered input if the value of all its ficlds 15 not defined in the
specitication, and output otherwise. Value of input abstract structures s defined in the
generated program by means of function named: "ACCESS " suffixed by the name of the
absiract data type. i the previous example, if the structure P is input, its value would be
definad by ACCESS AT, The ACCESS function tor an abstiact cdata type must be specified in
its module. Calls to this function are generated at appropriate places in the generated

program. An exact dual of the above is the SAVE function for output abstract structures.

Abstract structures allow convenient renresentation of those files whose physical

organization is different from that specitied in the main module.

Parameters can be associated with ACCESS and SAVE functions associated with abstract
structures. The use of parameters provides a means of communication between the main
module and the module which defines the abstract structure. it allows the use of abstract
structures to represent teshing devices as well. For example. a device which ineasures ratio of

two voltages on two ports can simply be declared as:

4.2 DATA DECLARATION SPECIFICATION 47

DCL 1 GD: GAIN_DEVICE ARRAY (*),
2 GAIN: REAL;

The function ACCESS GAIN DEVICE in the module GAIN DEVICE can give the specification
for the appropriate measurements. Thus, each value of the variable GAIN detined by means
of the ACCESS function represents a different measurement. Information relating to the ports

and ranges can be passed as parameters.

The parameters are specified by a syntax similar to that used for specitying key for ISAM
files. In the example above, the parameters of the abstract record GD are given by means of

variables named PTRt GD, PTR2.GD, etc.

4.3 MODFUNSPECIFICATION

This section describes the specification of the module functions (modtuns). Each modfun,
like a mathematical function. specifies a mapping from its domain to the ranges. A modfun
has zero or more parameters. Parameters are called source parameters if their value is
defined outside the modfun. and are called target parameters if they are defined in the body of
the modfun. A modfun can return a value by means of its target parameters ar explicitly as in
programming or mathematics. The data types of the source parameters are the domains, the
data types of the target parameters and explicitly returncd value are the ranges of the

mapping specified by a modfun.

The main module has only one implicit modfun; the ather madules normally contain more

than one modfun. A modfun has four parts:

1. header,

2. test specification,
3. diagnoses, and

4. messages.

4.3 MODFUN SPECIFICATION 48

The header must be the first statement. after which the tests, diagnoses and messages may

occur in any order.

4.3.1 HEADER

Each modfun starts with a header consisting of the keyword MODFUN tollowed by the
name of the modfun, the list of tormal parameters and their data types. and the data type of
the value explicitly returned by the modfun. it also states which of the parameters are source
and which are target. In effect, the header defines the interface with the other modules which
use the modfun.

For example the following header:

MODFUN PUSH (S0:S STACK, X:S INTEGER)
RETURNS (S1:STACK);

defines a function called PUSH which has two source parameters 30 and X, and it returns a
value S1. explicitly. The data type of SO and St are STACK. and the data type of X 15
INTEGER. Consequently, PUSH specifies a mapping from its domains of STACK and

INTEGER to its range STACK.

4.3.2 TEST SPECIFICATION

The test specification consists of a collection of tests. As mentioned catlier, tests
correspond to the idea of a physicat test on a UUT. A test consists of three parts: 1) stimuli
that are to be applied to the UUT at the test time. 2) measurement. that need to be taken and
conditions that must be met, and 3} logic to select the diagnoses based on the result of

passing or failing the test.

Stimuli and measurements both optionally contain two parts. a conunct:on and a set of

assertions (Generic word, wavefoim, is used to refer to either a conjunction or an assertion).

4.3.2 TEST SPECIFICATION 49

A conjunction in stimuli specifies the simultaneous application of stimuli to the UUT, while in
the measurement it specifies the simultanecus measurement to be taken of the UUT. All the
functions specified in conjunctions must be pertormed in parallel. For example, the following

conjunction:
STIM;

CONJ: 31,32
3,348

PSUPPLY (30V) &
FSOURCE(1KHZ,10V});

specifies applying a power supply of 30 volts across the connecting pins J1 and J2, and

applying a frequency source of 1kHz and 10 volts between pins J3 and J4.

A conjunction can also be used with an if-statement, in which case it is called an
if-comunction. An if-conjunction consists of a boolean condition followed by a conjunction
after "THEN" and a conjunction after "ELSE". One of the conjunctions following the "THEN"

or "ELSE" part is performed depending on the boolean condition. For example,

STIM;
CONJ: IF VARC20 THEN <J1,J2>
ELSE <J3,J4>

PSUPPLY (30V)
FSOURCE (1KHZ,10V);

If a variable VAR is less than 20 then the power supply and otherwise a frequency source is

applied.

Conjunctions are used to specify some actions - stimuli or measurements - on the UUT.
Assertions, on the other hand. are used to specify relations that must be satistied by the
variables. An assertion specifies relations between variables It can be used in two roles: as
an explicit definition of variables or to specify a condition on the variables. Vanables defined
in an assertion are said to be target variables of the assertion. All others variables in the

assertion are called source vanables of the assertion.

If an assertion does not have any target variable then it specifies a relation which is tested

for truth value. An assertion evaluates to (rue if the specitied relation i1s satisfied, otherwise it

- - PR T—— — M

432 TEST SPECIFICATION 50

evaluates to false. Assertions which have target vanable(s). are always taken to evaluate to

true.

The syntax of assertions is:

ASRT: <EXPRESSION1> <RELATIONAL OPERATOR> <EXPRESSION2>
SOURCE: <LIST OF VARS>
TARGET: <LIST OF VARS>;

{expression1> and <expression2> are arithinetic or boolean expressions. <tekitional operator>
isoneof (= {><C=>=. =) distof vars> is a list of variables with their subscript expressions,

if any.

Target variables in an assertion must occur as <expression1> or as the target parameters
of the function in <expression2>. Moreover. the relational operator mustbe ™ = . Examples of

assertions are:

ASRT:

> B*SIN(30) SOURCE:A,B;
ASRT: -

B*SIN(30) TARGET:A
SOURCE:B;

> >

The first assertion tests for the inequality and evaluates to true or talse: the second assertion,
on the other hand. defines variable A and always evaluates to true.
In addition to anthimatic operators, the + - operator is used in an assertion:
ASRT: o1 = 62 + - @3;
where el, e2, and e3 are expressions. The assertion iz un abbreviation for the following
relationship:
e2-e3<(=e1<{(=¢e2 + €3

and evaluates to true provided the above relations are satistiad.

Assertions may also be used to specify a relation that must be satisfied by a target

parameter of a function in a conjunction. f or example, an assertion written as:

4.3.2 TEST SPECIFICATION 51

CONJ: <J1,J2> = VOLTMETER (<V1)
SOURCE :V1;

specifies that the value of the target parameter of the function VOLTMETER must be less than
V1.

If-clause can be used with assertions just as in if-conjunctions. Syntax of if assertion is:
ASRT: IF <BOOLEAN CONDITION> THEN <ASSERTION>
ELSE (ASSERTION>
SOURCE:<LIST OF VARS>
TARGET:<LIST OF VARS>;
The keywords THEN and ELSE may be followed by another assertion which may again have
an if-clause. This allows the if-assertion to be nested to indefinite depth. (In the present

implementation, the assertion following THEN cannot have an if clause. Thus only a right

recursive tree is permitted.)

The if-assertion is taken to evaluate to the same boolean value as the selected assertion
following THEN and ELSE. In other words. if the boolean condition in an if-assertion
evaluates to true then the assertion is said to evaluate to the same value as the assertion
following the keyword THEN. and if the boolean condition evaluates to false, then the
assertion is said to evaluate to the same value as the assertion following the keyword ELSE. If
an if-assertion (or if-conjunction) defines some vanables in its then-part. it must also define

exactly the same variables in its else-part.

The concept of free-subscript is introduced next Its use allows entire arrays to be defined
by means of one conjunction or assertion. It also allows relations to be specified between
arrays. The notion and use of free subscripts 1s similar to that in mathematics. For example,

the assertion with free-subscript I:

—_

it avitrih

4.3.2 TEST SPECIFICATION 52

ASRT : IF I=1 THEN F(I) =1
ELSE F(I) = I*F(I-1)
TARGET:F(I)
SOURCE:F(I-1);
defines the values of F(l) for all values of free subscript | In other words. it defines the entire

array F. Similarly, the assertion with free-subscript |

ASRT: A(I) = B(I)
SOURCE: A(I),B(I):

specilies relation between two array variables A and B. This assertion is taken to evaluate to

true if the relation holds for all values of the subscript 1.

Syntax for declaration of a free subscript is similar to that of an assertion. Statement

containing the keywoid SUBSCRIPT in the following example: 3
ASRT: I = SUBSCRIPT ('A,B:2',10) TARGET: I; :

is used to declare a free subscript 1" for the first dimension of array variable A, and the
second dimension of array variable B. The size of the respective dimensions of the vanables is
ten. Even though the declaration looks like an assertion it should not be confused with an
assertion. It declares a subscript which takes values from 1 to 10. The list of variables and

their dimensions. i.e. "A.B:2", is called parent list.

Subscripts are a powerful way to define arrays. However. certain restrictions have been 3
placed on their use so that the specification may be analysed and an etficient program
generated. Let | be a free subscript. A subscript must be in one of the following forms:

1. asubscriptterm. e.g. I in A(l);
2. an expression of the form (I-K), where K is a positive integer; and

3. another variable or subscripted variable e.g. B(1) in A(B(D). X in A(X).

For variables which are targets in a conjunction or in an assertion, only the first of the above

three forms is permitted.

4.3.2 TEST SPECIFICATION 53

In the declaration of a subscript the upperbound may be omitted, if it is not known, and

replaced by "*". For example, in the assertion:
I = SUBS ('F',*) TARGET:I;

upper bound of a variable F is unknown. For such variables, the program generator tries to
optimize memory. In particular, the program generator allocates memory for 2 elements:
current and the previous. Eiements corresponding to only the current (i.e. 1) and the previous

(i.e. I-1) value of subscript may be referenced.

The size of an array variables with subscript I, whose upper bound has been declared to be
indefinite. is specified by means of a special array called END-I. Such special arrays are called

end arrays. The meaning of end-arrays is introduced by means of an example below:
T = SUBS ('F',*) TARGET:I;

1
1*(F-1)

IF I=1 THEN F(I)
ELSE F(I)

TARGET:F (1)
SOURCE:F(I-1);

TRUE
FALSE

IF I=6 THEN END_I(I)
ELSE END_I(I)
TARGET:END_I(I);

First statement, in the example above, is declaration for a subscript I. It is followed by an
assertion which defines an array F in terms of itself. The second assertion defines an
end _array END | whose first four elements are false and the fifth element is true. This specifies
that the size of array F is equal to five. In other words, the size of F is specified to be equal to N
such that for index N the value of END I is true and for alt indices less than N the value of

END |is false.

More generally, it "1" is a free subscript then END_ is a multi-dimensiona! array, its
dimensionality being equal to the maximum dimension in the parent list in the declaration of

. END defines the size of those dimensions of the array variables which are in the parent

Gk

4 3.2 TEST SPECIFICATION 54

list. For example,
I = SUBS ('G:1,F',*) TARGET:I;

J

SUBS ('G:2',*) TARGET:J;
the dimensionality of END | is one and that of END_ J is two. END I defines the size of the one
dimensional array F and the first dimension of two dimensional array G Similarly. END J

defines the size of the second dimension of array G.

Use of tree subscripts allows an array to be defined by means of a single assertion or single
conjunction. It is important. however, for the variables (be they arrays or scaler) to be single
valued. Consequently, a conjunction or assertion which defines multiple values for arrays is

invalid. For example, the assertion:

ASRT: A(I) = B(I,J) TARGET:A(I)
SOURCE:B(I,J);

1s invalid because it deluies an element of array A to be equal to an entire row (second
dimension) of array B. In general. whenever the set of free subscripts associated with a target
variable is a subset of the number of free subscripts of the source vaniables. it defines multiple
values for the target variable. There are two exceptions to the above rule:

1. when a source variable contaimng an extra free-subscript occurs as an argument
of a reduction function, and the extra free subscript is reduced: or

2. when a boolcan condition precedes the asscition. A warning isissued in this case
and it is the responuibility of the user to ensure that the 1arget variable is single
valued.

Example of an assertion containing a reduction function is:

43.2 TEST SPECIFICATION 55

ASRT : F(I) = SUM(G(I,J),J)
TARGET:F(1I)
SOURCE:G(I,J);
Reduction function SUM takes two dimensional array G and sums the elements of the same |
index value. thus producing a one dimensional array F. The array vanable F is single valued

even though the source vanable G has an extra subscript J. Example of the second exception

18!
ASRT: IF END_I(I) THEN OUT = F(I)
TARGET:QUT
SOURCE:F(I),END_I(T);
OUT is defined by the last element of the array F. However, it is the responsibility of the user to

make sure that OUT is not defined by more than one element of F Nopal program generator

does no further analysis to check that it is indeed so.

The Logic companent ot a test specilies the selection of diagnoses. The diagnoses are
selected depending on whether the test evaluates to true or false. The test evaluates to true if
all the assertions in the test evaluate to true, and false otherwise. The operators given in Table

4.1 may be specified with each of the diagnoses for their selection,

The logic compasnent is specified by a list. each of whose elements consists of an operator

followed by a diagnosis name. For example:
LOGIC : *D1, |D2, -~D6;

4.3.3 DIAGNOSES
The diagnoses are used to report the result of the test, to isofate failure modes or to elicit a
response from the user. it has five parts which can be specified in any order.

1. List of affected components and their failures modes which are isolated by this
diagnosis. They may be in conjunctive or disjunctive form where the former
means that all the components in the list have failed, while the latter that at teast
one has failed.

4.3.3 DIAGNOSES

Table 4-1: LOGIC OPERATORS IN A TEST

OPERATOR

MEANING

Select the diagnoses uncouniditionally i.e. irrespective of the

outcotne of the test.

Select the diagnoses if the test evaluates to true.

Select the diagnoses if the test evaluates to false.

Mark the diagnoses as selected it the test evaluates to true.
The diagnoses should be executed only if all other tests which
use this diagnoses (with operators: & or & ~) also mark it as

selected.

Mark the diagnoses as sefected if the test evaluates to false.
The diagnoses is executed only if all other tests which use this

diagnoses (with operators: & or & ~) also mark it as selected.

2. Name of the message to be printed The message itself is specified separately.

3. Parameters: This specifies the vaniabibes whose values nwst be substituted in the
message at the appropriate places.

4. Operator response: It specilies the response from the operator when the
generated program is executed. The program waits for a response. Response

can be of three types:

a. press PROCEED key;

b. press Y(yes) or N(no); or

c. enter a number,

Pressing the PROCEED key simply causes the program to continue exccution. It
1s typically used to turn knobs and set switches manually, i.e those which cannot

——r . . - A ey o ——— vy

4.3.3 DIAGNOSES 57

be controlted by ATE. Y or N response 1s typicaily used for asking the operator to
make a binary choice. The response {(c} is usually used to enter reading of meters
etc. manually. i.e. those which cannot be taken by ATE.

5. Time: Specilies the real time which must elapse from the start of a test, before the
message is issued.
Except for the name of the message and the parameters it takes. if any. all the other parts
of the diagnosis are optional.

A diagnosis specification is illustrated below:

DIAG D1:
l AFFECTED COMPONENTS = OPEN(RESISTOR1)|OPEN(RESISTOR2),

PRINT = MSG1,
PARAMETERS = V,
TIME = 0;
It specifies that at least one of two resistors - RESISTOR1 or RESISTOR2 - has failed due to

open circuit, and that message MSG 1 with parameter V must be printed. Time 0 specifies that

no time delay is necessary in issuing the message.

4.3.4 MESSAGE SPECIFICATION
This specification consists of the 1ext of g message. and parameters and affected
components. if any It implies the printing of the message including the alfected components

and parameters.

For example, the message MSG1 of Section 4.3.3 can be specified as follows:

4 3.4 MESSAGE SPECIFICATION 58

MESSAGE MSG1:

' ONE OF THE FOLLOWING FAILURES HAS OCCURED: (C). THE
MEASURED VOLTAGE IS (P).' ;

When the above message 15 prnnted “(C)" 1s substtuted by "OPEN

(RESISTORNDOPENIRESISTOR2) " and "(P)" 1s substituted by the value of vanable V.

4.4 UUTSPECIFICATION

Information refating to the UUT s specitied in this section. This allows vanious consistency
checks to be performed wathin the module 1t is orgamzed in two parts: (1) interconnecting f
points. which are used for identification of the connection pomts of the UUT to the ATE, (&) |
component failures which identify all possible faulty components with the failure modes (i1.e.

types of failures).

A UUT connection point dehines a symbolic name for a connection poimt on UUT. the type

of connector used. and the maximum and minmum value of the stimul which may be apphed

onit Forexample:
UUPT 40 : J1, CONNECTOR:(A), LIMIT=(VOLT,70,0,GND);

J11s the name by which this connection pomt is referred to its type of connectoris A, and the

mavimum and nunimunm value of stimul that may be applied with reapect to the ground (GND)

is 70 volts and 0 volts respectively. 5

In HUT component failure section. all possible faulty companants and thew falure modes
are bsted. Each component specification includes the fiutare mode, hkelihood ol the failure,
and protection. Protechon consists of a list of other components whose faillure probatt

testing of this component. For example:

e o v

-
¥

| 4.4 UUT SPECIFICATION 59
|
f COMPONENT FAILURE 2:
i’ RESISTOR1, FAIL=0PEN, INDEX=1, PROT=(1,11);
specifies that the component RESISTOR1 has a failure mode called OPEN, the frequency of
f fature is 1 (the lower the number the larger the likefihood). and that should the components 1
: or 11 tail. tests for failure of this component must not be conducted.

4.5 ATESPECIFICATION

Information relating to the Automatic Test Equipment and the functions used in a module

4

(computational. stimuli or measuremaent) is stated here. it has two parts: (1) ATE connection
‘ powt specification. and (2) functions. ATE connection point specification consists of the

names of the ATE connections points. Optionally. the specification inciudes identitying ATE

points of the respective UUT points. In the example below:

ATEPOINT 1: ATEPT#30, UUPTS=(J1,32);
“ATEPT # 30" may be connected to UUT points J1.J2. The checking tor the UUT points has

not been implemented. Itis used purely as a documentation device.

Functions used for (1) stimuli. (2) measurement or (3) computational purposes, and (1) for
denoting failures are declared in the ATE function specification. Functions in the first three
categories are assumed to be doefined either by means of other modules or by means of a
library of functions. The failure functions (category (4)) are for the purpose of denoting kinds

of lailure. They are not functions w the sense of the earher three categories.

Function specthcation has anatem called TYRE which specaifies which of the above 4 types
does the function bielong to, and ems PARK and VARNE RETURNED to specify the data
types of the parameters and the vidoe to be returned The namber of pins used may also be

specihied if the funchion s of type stimule ar m-asorement

4.5 ATE SPECIFICATION 60

For example a function PUSH

FUNCTION PUSH, TYPE=E, PARM=(INSTACK,S:STACK),
PARM=(ELEM,S,INTEGER) ,VALUE RETURNED=({STACK);

is of type evaluation. It has two parameters. both source. with the data types STACK and

INTEGER. and it returns a value of type STACK. The names INSTACK and ELEM have no

significance for the specification. Their use is only for providing mnemonics.

Chapter Five

THENOPAL PROGRAM GENERATOR

5.1 OVERVIEWOF THE PROGRAM GENERATOR

The Nopal program generator is designed to automate the program design, coding and
debugging phases of program development based on a specification in the Nopal language.
The program generator analyzes a Nopal module specification, issues a number of reports for
the user and, if the module is error free, generates a program in the Equate-Atlas test

programming language.

There are three phases in the program generation process. Phase 1 consists of syntax
analysis and construction of internal data structures. Phase 2 consists of analysis of the
specification for completeness, consistency and non-ambiguity; and of sequencing. In phase
3 Equate- Atlas code is generated. A number of user reports are issued by each of the phases.
The three phases are described individually in Sections 5.2, 5.3 and 5.4. More detailed

documentation is provided in [46].

The Nopal processor has evolved through numerous revisions over the past several years.
The research reported here includes extending the original system [7] with the following
capabilities:

1. Modules to provide modularity and abstract data type definition facility.

2. Recursive assertions to allow the arrays to be defined recursively.

3. Declaration of data types and data structures as well as virtual subscripts.
61

62

5.1 OVERVIEW OF THE PROGRAM GENERATOR

HOSS3004Hd TVdAON 40 M3IAHIAO i1 -G 8inbiy

wei801g SYILY ST

3LvNoO3

s3aoday mﬂmmamcﬁAMllll

UOT3IBIDUDYH DPOD
wotlevziwyidp 9 Sujduanbog
sTsATruy XTt3iudg

$M0S5I00¥d 1TVdON

§3U2wWI3ITIG

<———— 39NQON - —

iVdON’

5.1 OVERVIEW OF THE PROGRAM GENERATOR

f
NOPAL Spe-
cification

/

Syntax &
Statement

PHASE 1:
: Analysis

Specification reports
Errors/wvarnings
Cross references

—>

/

Spvecifica-

Errors/warnings
"E>Prccedence Matrix
Flowchart report

Code genaeration report

%

rogram listing

Figure 5-2: MAJOR PHASES OF NOPAL PROCESSOR

PHASE 2 tion Analy-
: sis & Sequ-
Lencine
Code
PHASE 3
Gencration
/
Program
i

5.1 OVERVIEW OF THE PROGRAM GENERATOR 64

4. input output from secondary storage.

5. Virtual subscripts for effictent utilization of memory.

These extensions entailed modifying some parts of the original system and completely
rewnting other parts In particular. the scheduling algorithm was completely rewritten to
handle recursive assertions and input output from secondary storage It s described in

Section 5.3.2.

The code generator was not implemented in the original system [7] but completed later

[55] The Mopal systen was demonstrated on an actual Equate Atlas machine [15].

5.2 SYNTAXANALYSIS AND THE ASSOCIATIVE MEMORY

5.2.1 OVERVIEW

The first phase of the Nopal processor petforms syntax and focal semantic analysis of
specification statements. At the end of the analysis. each Nopal statement is encoded and
stored in a simulated associative memory for ease of turther processing. The first phase
includes a Syntax Analysts Progrim (SAP). SAP itself is gencrated automatically by a
meta-processor called Syntax Analysis Program Generator (SAPG). by mputting the formal
specification of the Nopal language v a meta language. calied Extended Backus Normal

Form with Subroutine Calls (EBNFF/WSC). SAPG and SAP are described in Section 5.2.2.

SAP incorporates six types of supporting routines. which are composed manually: Lexical
Analyzer, Error Stacking. Recognizer, Encoding/Saving/Stonng. Semantic Checking and

Service Routines. These are described in Section 5.2.2.

At the end of each Nopal statement, a storing routine is invoked to store the statement in

521 OVERVIEW 65

the simulated associative memeory using the Store/Retrieve package. The Store/Retrieve

package and the associative memaory is described in 5.2.4.

Finally. the set of reports generated by this phase are described in 52.5.

5.2.2SYNTAX ANALYSIS PROGRAM - SAP

SAP i1s generated by the Syntax Analysis Program Generator (SAPG) The input to SAPG s
the specification of the Nopal language in the meta-language EBNF/WSC SAPG and
EBNF/WSC were originally developed at the University of Pennsylvania Data Detinition

Language Project [43] [44]. A brief review of EBNF/WSC and SAPG is given below.

EBNF /WSC extends the standard EBNF to provide semantics The semantics is specified
by means of subroutine names which are included in the productions, along with the
terminals and non terminals. These subroutine names indicate the need to call the respective
subroutine upon successtul recognition of the preceding syntactic unit by the parser. For
example, the production

CA> -+ B> /aas <C>
indicates that a subroutineg named "aa” needs to be called on successtul recognition of the
non-terminal in the process of recognizing the non-terminal <A>. The subroutines

themselves are written manually.

SAPG accepts the specification in EBNF/WSC and generales a recursive descent parser
to recognize the syntax defined by the EBNF. Calls are inserted to the subroutines on
recognition of non-terminals as specified by EBNF/WSC specification. SAPG requires that
the EBNF grammer must be in LL(1) form. The grammer should be free of left recursion, and
the first termunal symbot should distinguish between the optional groups at any point in the

grammer.

5.2.3 SUPPORTING SUBROUTINES 66

5.2.3 SUPPORTING SUBROUTINES
The EBNF/WSC specification contains names of subroutines which are called from SAP.
They can be categorized into six types:

V. texical analyzer scans the Nopal input string and returns tokens of syntactic units
to SAP or the recognizer routines.

2. Frror messaye stacking routines help compose and stack error messages before
every syntactic unit in the specification. In casa of incorrect or nussing syntactic
units, SAP generates the error message from the error stack.

3. Recogmizer routines recognize a class of input tokens. Luch as names and
aitegers. These occur in productions of the form:

<A> -+ /RR/

where BRRis the name of a recognizer routine.

4. Encoding ‘saving/storing routines save the tokens in appropiate data structures
and finally in associative memary for purposes of later analysis.

5 Semantic check ng routines check the local semantics of a Mopal statement.

6 Service routines are used by SAP to perform some internal services e.g. popping
the error stack.

At the end of ea:h Nopal statement a storing routine 1s called by SAP, which in turn calls

STORE to enter the mformation relating to the present statement into the associative memory.

5.2.4 ASSOCIATIVE MEMORY AND STORE/RETRIEVE SUB-SYSTEM
The Store/Retriecve Subsystem is a generalized means of storing the Nopal source
statements and later retrieving them. It consists of two types of routines:

t STORE for storing the source language strings, including tokens and entities,
gathered during the syntax analysis, and

2. RETRIEVE for retrieving the sonurce strings, and for accessing the “directory
entnes”, the former s through RETREVS and the latter through RETREVD.

The STORE routine 15 called to create or add to the associative memory, and RETRIEVE to

S3NLLNOYENS HLIM dVS ANV DdVYS 40 LHVYHOMO 14 :€-6 8inbBiy

67

Luvdd NOILL
h. VO1:11233dSie 2324nog
u i

™

TLLVINOdTY SHOVLS LXHN
A
R SINHIEILYLS _
SLUOdNY TOLS .

JONIUdd3Y dAUX e Y U4UVINT
SSOU3 "

lal.l.l|‘l..(|lll.ll\l‘ll!l'll.l.lllll'lll.llllll"

[MEE
¢0Lya
XVINAS

s

&

<

>

« | !

2 | ‘ |

7] | I9HVYNIVd ,

g _ AL TULHY /HYOLS m

o

z _ *)

¢ ! SINTInOYTT] [TSINIINOY] [SINTIMO ONIY SINTINOU Rt

NI ONIdIaN ONINDUIID -0LS/ONIAVS| | SaIN11NOY gUVSSIN AZATVRY |

& ~ -3snoH SDILNVWIS JONIQOONE W2 INDODHY youud TWOIXAT | |

e | .

w L d A 9

S [. ,.

N L " g0un0s | g
_ . ;e 38105]

S dvs TVdON :

3 : |

w

>

2 , 9dVS

o (i

< TVdON

< 40

P JSM/4ANgd

5.2.4 ASGOCIATIVE MEMORY AND STORE/RETRIEVE SUB-SYSTEM 68

access or modify it.

There are eighteen classes of statements and names in Nopal A hist of classes. ther
mnemonics, and the enlittes they represent 1s given in Table 51 For example, class 15
represents the vanables, and class 2 represents the tests. An identifier occurning m two
different classes denotes two dilferent entities. In oither words. a name: together wath its class

uniquely identifies an entity.

A directory is used to store all the names and their classes. it organized as a binary tree
according to the leacographic arder of eotnes Each node of the tree corresponds to a name
and its class. There are c1oss hinks i this tree which connect all nodes with the same name
together. and all nodes of the same class together. Each node has an additional ink (called

REFLIST in Figure 5 4) to a storage entry containing this name and type.

There s a storaue entry for each Nopal source statement. 1t containg the names (KEY) of
all the symbols (rather pomnters to the names in the directory) which occur in a the
corresponding statement . With each symbol name it has a pointer (called NEXT) which points
to another storage entry which uses it. Thus, it provides a very «fficient means to find
occurrences of symbols in different statements Associated with each storage entry theore s
also a pointer (DATA) which pomts to the entire parsed source string. stored in a separate

data area.

The storage entries together wath the directory and the data wea s called the associative

memory.

As mentioned in the previous section, STORE is called at the end of pach Nopal statement,
Its arguments are (1) a hat of names and their classes encountered in the statement, and (2)

pointer to the dala area contauming the parsed source statement It enters the names and their

5.2.4 ASSOCIATIVE MEMORY AND STORE/RETRIEVE SUB-SYSTEM 69

Table 5-1: CLASSES OF NAMES AND THEIR TYPES

| CLASSES MVMONIC CLASS OF ENTIVITS PEPRICINTED
| 1 SétC# NOPAL spccifi;sticn Icbel/staterent
2 TEST® Test medule label/statement or modfun header
3 STINM% Stimulus label/statemer:
4 MEASH Measurement label/statemznt
‘S DIAGH Diagnosis label/statemcnt .
6 MSG# Message label/statenent
| 7 LOGIC# ‘ Logic label/statement
! 8 QONJ# Conjunction label/staterent
9 ASRT# Assertion label/statemant
10 Cop# UUT comnenent identifier (id)
F 11 CMPFL* Component-failure (i.e. affected coimponent)
id/statement
J 12 UUTPT# UUT connectien point id/statement
3 13 ATEPT# ATE inter-connection point/id statement
14 FUNC# Function id
15 VAR# Variable id
16 g End statement
17 dtyp# data type name
18 rec# data declaration statement

5.2.4 ASSOCIATIVE MEMORY AND STORE/RETRIEVE SUB-SYSTEM 70

(2) DIRECTORY FENTRY

reontrTy c-1ink s-1ink

o Yo POLTY Treg 11Vr\7.7 , Creoss-1link
Kcyname | Key class-| Reflist] Up Down | Next- Mext-
name tynpe

(b) STORAGE ENTRY

Keyentry (1) Keyentry (*kevs)
—_— r._____/%
I ' i
(|
Data | #kevs | Key | Next Key |Next
] | :]

Other data

Figure 5-4: STRUCTURL OF THE DIRECTORY AND STORAGE ENTRIES

5.2.4 ASSOCIATIVE MEMORY AND STORE/RETRIEVE SUB-SYSTEM 7

classes into the directory, and creates a storage entry corresponding to the statement. The
storage entry contains the names (rather pointers to the names in directory) which occur in
this statement. STORE then proceeds to create all the association links corresponding to

each of the names. and also to store the pointer to the data area in the storage entry.

The two procedures RETREVD and RETREVS allow the information to be retrieved from
the associative memory. The former retrieves pointers to directory entries. and the latter
retrieves storage entries. Entiies can be retrieved by togical expressions of their names and
classes. For example. all entries belonging to a certain class which do not occur i some

statement class can be retrieved by constructing an appropriate logical expression.

5.2.5 REPORTS

Listings of the specification and errors encountered. it any. in the specifications arc
reported at the end of the Syntax Analysis Phase. The programs XREF 1 and XREF2 generate
a cross-reference listing. and the program SOURCE2 generates 1 formatted listing of the user

specification. Samples of these reports are shown i examples. in the Appendix.

XREF1 also determines the scopes of vanables 1.e. whether the vanables are global or

local, and enters it in the data areas of the associative memory.

5.3 SPECIFICATION ANALYSIS AND SEQUENCE
DETERMINATION

5.3.1 OVERVIEW

Phase 2 of the Nopal processor analyzes a Nopat specification and determines the

sequence of execution of the statements The analysis s based on a graph representation of

Y

53 1OVERVIEW 72

the specification. This section prescits the bacrground and tenmmotogy usad m this phase

Phase 2 is divided into two sub phases. I sub-phase 1 zach of the tests s analyzed, and
i sub phase 2 the relations between tests vatlun 2 modfun are analyzed The: sub phases are
calted intra test anaiyas and inter tes! ana'y s tespectively I the intea bt iwdd ais a graph
is constructed for each of the tests Nodes of the graph represcnt vanables, asaertions,

ntoprecedence reintionships between

conjunctions and diagnoses: and the edges repres
them o the inter test analysis on the other hand the nodas of the praph repressent tests.
diagnoses and globad vanables. and the edyes represent proecedence c-lationships between
them Edges in both the sub-phases are labelled to denot the different types of precedence

refattonships.

The Nopal processor stores the graph in aomatoy forine The cows ancl cotoumns represent

the nodes. and the entnes o the matrix represent edges A non zeto entry, say noan the
position (1) i the matrx represents an edge of type o hom node clo tode o wlile a zero cotry

denotes the abuence of an edge

Alter the goaph s conatructed, it L checkodt for consistoncy andd conplotness 1tis then
b coked tor cydles. and an attempt s made 1o elmundate them Do, b soccesatul the
nodes are otderod inan crecotion sequence Cororaction of the Groagdes Conasteno, and
completeness analysia, cyale elimmation, and soquencing are desceref far the antra {ost
sth phase in Section 5.3 2 and for the inter st sub phase m ecton 5 0 0 Pigure 5 H shows

aflowchart of the processes mvolvedan graph analysis and coquenc nng

5.3.2INTRA-TEST ANALYSIS AND SEQUENCING

tach of the testsin a specification s analyzedan this sob phane To pedonm analysis and

<oquencing.a graph s consteactod for each of the tosts Nades of aograph are conjunctions,

ool e e

5.3.2INTRA-TEST ANALYSIS AND SEQUENCING 73

STATEMENTS
IN
ASSOCLATIVI

MEMORY

. Y
PRECEDENCE ['INTER-TEST
MATRIX {4 PRECEDENCE
ERRORS/ MATRIX
WARNINGS«&—~ CREATION

|
|
|
|
J |
|
|
}
|

INTRA-TEST
PRECEDENCE jp—> PRECEDENCE MATRIX
‘MATRIX

CREATION i > ERRORS /WARNINGS
v k Ly

: INTER-TEST
ERRORS/ | GRAPH
WARNINGS ANALYSIS

INTRA-TEST
GRAPH >~ ERRORS /WARNINGS
ANALYSIS

1 3
INTRA-TEST
CYCLE ‘
DETECTION & | 7
ELIMINATION

v
INTER-TEST
CYCLE Fow
ERRORS <4 DETECTION &| =
ELIMINATION| &

ERRORS

INTER-TEST

FLOWCHART | SEQUENCE

TABLE | DETER- DETER- ITERATION TABLE
MINATION \l MINATION |)

|

| INTRA-TEST
|

I

}

SEQUENCE | o FLOWCHART &

REPORT ONCLE FOR EACH TEST

t R

CODE INTER-TEST ' INTRA-TEST CODE GENERATION

CODE CODE REPORT
INERATION ™
GENERAT O‘%-GENERATION GENERATION >

REPORT N .
wv
-::
o] ATE
T L FUNCTIONS
{ 3 LIBRARY

DECTN= /“""“KTE]
RATIONS PROCEDURLES
AND MAIN [TEST ,
PROCEDUKE\ PROCEDURE SOTAGNOSTS
pROSﬂRE&LﬁX

-~ —

TEST PROGRAM:

Figure 5-5: FLOWCHAR] FOR PHASES 2 AND 3 OF NOPAL PROCESSOR

5.3 2INTRA-TEST ANALYSIS AND SEQUENCING 74

assettions, varisbles and their ancestors. and dagnoses associated with the test. There are
six types of 1 ecedence relationships between nodes. which are represented by edges in the
graph. Table 5-2 shows the edge types and the relationships that they represent. A priority is
associated with each edge: 1 denotes the highest prionty and 6 denates the lowest. Edges
with priority 1 are considered mandatory and cannot be deleted Edges with lower prionty are
not essential and can be deleted during the cycle elimination stage: they represent preferred

relationships rather than mandatory ones.

Relationship of data deternunacy exists between varnables on one hand and conjunctions,
asserttons and dignoses on the other. A variabile node is the pred-zcessor of congunctions and
assertions if it occurs as a source, and is successor if it occurs as a targetin them. Sinulatly,
a variable 1s predecessor of a diagnosis if it occurs as a paramater. and s successor if it
occurs in the operator responsa. The relationship of data delermnacy expresses the idea

that a variable must be defined before it is referenced.

Relationship of waveform setup exists between the stimulus conunction and
measurement conjunction. It is not mandatory and is of prionity 2. It expresses the notion that

stimulus is usually applied before the measurements are made.

Relationship of diagnosis waveform exists between diagnosis on one hand and
conjunctions and assertions on the other. This relattonsinp 1s enteaed as type 16 or 17, A
diagnosis which is selected uncondihonally on the outcome of a test precedes each of the
conjunctions and assertions in the test by an edge of type 16 A diagnosis which, on the other
hand. 1s selected by the logic |, |~. & and &+ succeeds cach of the conjunctions and

assertions by an edge of type 17.

All the unconditionally selected diagnoses precedn all othor diagnoses by edges of type

5.3.2 INTRA-TEST ANALYSIS AND SEQUENCING 75

TABLE 5.2

INTRA-TEST PRECLEDENCHE KLilLATIOUSHIPS
EDGES SELLCTION RULE
PRIOR-
TYPE ITY RELATIONSHIP PREDECLSSCOR SUCCESSOR
1l 1 Data- Source variable in The assertion
determinacy an assertion
An assertion having The target
a target variable variable
A variable in a The diagnosis
parameter of
diagnosis
A diagnosis Variable in
operator
response of
the diagnosis
2 2 Waveform-~ Stimuluc~ Measurement -
setup conjunction conjunction
16 5 Waveform- Diagnosis selected All waveforms
o diagnosis by * logic
17 5 All waveforms All diagnoses
not sclected
by * logic
18 5 Diagnoses selected All other
by * logic diagnoses
19 1 Hierarchical Node in an input All its direct
structure descendent
declaration nodes
Node in an output Its parent
structure node in the
structurec

m e - Y T—— —

5.3.2 INTRA-TEST ANALYSIS AND SEQUENCING 76

TAVLE 5.2 (continucd)

s O) T - |
20 i1 Pointer Pointer vartiable Structure
(i.¢. variable with for which the
prefix PTR_ or [pointor
PTRy , where y is a fvartable is
digiz 1l to 5) a key or

parametoer
(given by the
suffix of the
poitnter
variable)

21 6 Recursive* A source variable The assortion
in an assecrtion
with subscript of
the form I-k,

where k is positive

L { integer

Table 5-2: INTR/ TEST PRECEDENCE RELATIONSHIPS

% This relationship is originally entered as type %, but is
changed later to type 21 in the subscript analysis phase.

5.3.2 INTRA-TEST ANALYSIS AND SEQUENCING 77

18.

Relationship between nodes in a data structure is called hierarchichal, and is entered as
edge of type 19. A node in a structure precedes each of its direct descendents in an input

structure, and succeeds each of its direct descendents in an output structure.

Pointer relationship exists between a variable which is a key of an ISAM file and the record

node of the ISAM file. It is entered as type 20 edge.

Certain data determinacy relations are identified as recursive and are entered as type 21
edges. They are mentioned here for the sake of completeness and are described later after a

discussion of array graph. .

An array is represented by a single node in the graph: An array variable is represented as a
single node independent of its dimensions, similarly an assertion is represented by a single
node irrespective of the free subscripts which occur in the assertion. Edges in the graph
represent relations between the nodes. An edge between two nodes. when at least one of the
nodes represents an array variable. denotes an array of relations (array relations) between the
two nodes. A graph whose nodes represent array variables and whose edges represent array

relations is called an array graph.

The intuitive notion of array graph. introduced above, can be made more precise in terms
of. what is called. the underlying graph {UG) of a specification. A variable node of a UG
represents a simple variable, conjunction, assertion, or diagnouis. In other words if B is an
array variable of two dimensions of size 5 and 10 each respectively. then a separate node is
needed in the UG to represent each of the 50 elements of B simlarly, for conjunctions,
assertions and diagnoses which have free subscripts and express array of relations between

array variables, a node represents an element of the array of relations, e.g. it B is an array as

5.3.2INTRA-TEST ANALYSIS AND SEQUENCING 78

before and it occurs in a conjunction. asscition or Jiagnosis. thon there will be 50 nodes,
each representing a conjunction. assertion or diagnosis mvolving one element of B. Edges in
a UG represent relationship between nodes as outlined betore. and das the nodes represent

simple entities the edges also represent simple relations.

Array graph (AG) can be formed by taking the umon of nodes and edges in an underlying
graph as follows: represent the nodes. say M Vioin UG representing different elements of an
array variable (or conjunction. asserhion or diagnosis) by a single node. say M.in the
corresponding array graph: and for an edge from any of the nodss M to any other node. say
P.in UG form an edge from N to Pin AG. The resulting smaller graph s an AG of the given
UG. Thus. AG is a compact way to represent UG The UG may e an enormouns griaph wiich

is impractical to analyze.

An array graph 13 shown in Figure 5 6. 1t is for the Fumbar PUSH function of stack data
type Nodes S.Z. a2 and S1.Z are array nodes in the example. The: rest of the nodes represent

simple variables and assertions.

The array graph is constructed by means of the piocedure INTSEQ. 1t is first analyzed for
two types of consistency checks.

1. Single assignment rule: Variable nodes should have exactly one predecessor
assertion or diagnosis, i.e. a vanable should be dehned by exactly one assartion
or chagnosis etc. (In case the variable is part of an input structure or s a source
parameter ol the modfun, then it necd not have any predecessor in the graph. In
the first case. the input file is taken to be the imphcit predecossor In the second
case, the value of the tormal parameter is defined when the modiun is called and
hence it does not have a predecessor in the present graph.)

2. Target variables in an assertion should occur either on the left hand side of the
relational operator, or as target parameters of tunction. Target vanables of a
conjuniction should occur only as parameters of functions.

5.3.2 INTRA-TEST ANALYSIS AND SEQUENCING

1 NOPAL PODULE STACK;
2 $CL 1 STACK: RECORD,
2 2 TOPZ: INIEGER,
2 2 1: INTEGER ARRAY(100);
3 MODFUN PUSH(S:S STACK, X:S INTEGER) RETUANS(S1: STACK);
4 STIAm;
5 ASRT: 4 = SUBS(°Sel, ST.Z,END_J",100) TARGET :J;
¢ al ASRT: ST.TOPI = ;.T0PZ ¢ 1 TAKGET:S1.70P2
8 SOURCE: S.T0PI;
7 @2 ASRY: IF J3S.T0PI THEN S1.2(J) = X
? ELSE S1.20J) = S.2€4) TARGET:s1.7(J)
7 SOURCE: S.TOPZ,S+2(4);
8 a3 ASRT: IF J3S.T0PZ THEN END_J(J) = TRUE
8 ELSE END_J(J) = FALSE
8 TARGETZEND_J (J)
8 SOURCE :5.TOP1;
9 106 1€z loun;
10 OIAG DUMZ PRINT = MSG;
X
WD
~
Legend

oassertion node

ovatinble or diagnosis node
H hierarchichal edge

D data determinacy edge
WD waveform-diagnosis edge

Figure 5-6: SPECIFICATION OF PUSH AND ITS ARRAY GRAPH

79

532 INTRA-TLST AHNALYSIS AND SEQUENCING

Subscript analysis 1s performed by the procedure SUBANAL Fast ol the declarations

free subscripts are checked for correctness 1. that no subscnpt s declarsd teace: and {

[the same vanable dimension 1s not used i two subconpt declaration:. Finall, o table of

the free subscnpts s constructed containing thew names and upper bounds

Further choecks of the free subscripts dare conducted by the proc dur: SHEDTAG

follows:

1

%]

All oceurrences of a target vanable i an assertion ot conan on must have the
same froc subsenpt For evample o the asserbon (from PUSH counple)
IF J=S.TOPZ THEN S1.2(J) = X
ELSE S1.Z2(J) = S.T0PZ
TARGET:S1.72(J):

variable S1T.Z00) s the target vanabli: occurming mn both thee THE T ind T SE parts

The free subscrnipts of the source vanables miust appear as sutvonpts with the
target vanables. There are, however, bwo exceptions Fast a free sabscript
which is reduced by a reducton function, need not appear as a cubscnpt of the
target vanable Second. i an b assertion or conjunction the free subscnpt of
source vanables need not appear waith the target vanablos. In that case. a
warning s isued to the uscr that the target variable should be Checived that it does
not have multiple delinttions. A warning will beissuedain the follo sing case:
IF END_J(J) = TRUE THEN OUT = A(J)
TARGET:0UT;

- Subscripts must bhe i one of the following forms:

a. asubscriptterme.g lin A(l);

b. a subscript expression of the form (k) where Tis afree ubrcemtand ks a
positive intener;

¢. anothervanable e g B(1) m A1) or X in A(X).

CIba posttive integer or a subsonpt terny appears as anaindes of anarry vanablo 'V,

and the range tor the corresponding dimension of Vs declared to be) then in
case ot the integernits value, and i case of thie subscnpt worm s upper bound,
should be less than d_ o other words, a subscnpt expression s checked to see

that it hes within the range for the above two cases.

5 3.2 INTRA-TEST ANALYSIS AND SEQUENCING g

The array graph is analyzed. next, for cycles by the CYCLES procedure. f a cycle i
detected in the graph then the procedure atiempts to eliminate it. Edges in a cycle havin
priority value greater than 1 may be removed. These edges correspond to two cases:

1. The edges are consilered as preference edges and are not essential ey a type
2 edge between stinude conjunction and medsurement conjnction denotes the
usual stuation that the stimulus is appled before the measurement. However,
there may be situations in which a stimuli depends on the measured value, and
can only be applied after the measurement is performed.

2. The edges do not impily a cycle in the underlying graph. This occurs with
recursive edges. For exainple, the array graph for an assertion of the form:

«a: IF I=1 THEN A(I) 1
ELSE A(I) I*A(I-1)
TARGET:A(I);

1"

"

is given by Figure 5-7.In the underlying graph recursive edges give rise to acyclic
spiral like structures.

In the event that deletion of edges fails to resolve all the cycles. an error is reported to the
user that the specification contains a circular definition and that it is not passible to sequence

it. A warning is issued for each edge deleted in the cycle elimination process.

Procedure PROPAGT determines the relation between the nodes and the free subscripts
in order to find the proper scopes for each possible iteration. This procedure constructs fo
each node a list of subscripts on which it depends. and hence the list of iterations in which i
should participate. In the Nopal language, iterations result from explicit appearance o

subscripted variables and subscripts themselves.

The final stage i5 to sort the nodes into a possible execution sequence. f there were nc
subscripts, and hence no terations, then a sunple topological sort would be sufficient. The

presence of subscripts introduces an additionat factor. A brute force approach to handle

subscripts is to enclose each node in the teration scopes of its subiscripts, with the exception

5.3.2 INTRA-TEST ANALYSIS AND SEQUENCING

data determinacy edge recursive edge

Figure 5-7: RECURSIVE EDGE

that the nodes belonging to a recursive cycle (which was opened durning cycle elimii

stage) must be enclosed in the scope of a common subscript tteration. The algorithm u

the Nopal processor does better than the brute force approach and tries to maximi.

scopes of iterations. Itis performed by the procedure SCHEDL R The scheduling proc

described below. At the end of this process an order vector is generated along with s

and subscripts of iteratons.

: v There are three inputs to the scheduling process:

W 1. an array graph,

, . 2. a list of free subscripts for each of the nodes and a list of nodes for each free
FE subscript, and

1

3. a list of recursive cycles, where for each recursive cycle there is a list of nodes
which occurin it.

The scheduling process consists of two procedures: SCHEDLR and ORDERER. SCH

calls on ORDERER requesting trial orderning of nodes depending on a subscript. Bas

8
I3
!,_
i
?
:

5.3.2 INTRA-TEST ANALYSIS AND SEQUNCING

the results of the tnal ordering, SCHEDLR calls ORDERER a second time to pe

actual scheduling of nodes.

SCHEDLR makes use of a stack called NEST, which contains free subscripts.
stack contains free subscrnipts corresponding to which iterations have begur
iterations are nested within each other. with the free subscript on top of the Nt
representing the innermost iteration. Nodes currently being ordered by ORDERER ¢
within all these iterations. In addition to the NEST stack. SCHIEDI R also has a s
subscripts called TBNEST. It contains those free subscripts which are candidates
nested at the innermost level in the iterations corresponding to the frec subscripts

stack.

SCHEDLR has three phases. (n Phase [it picks up all thase nodes in the gr
have no predecessors, and finds the union of the free subscripts associated with the
subscripts form the set CANDLIST. If one of the nodes does not depend on any
then it is treated as belonging to subscript free set. and a speciai entry (-oro) is i
CANDLIST. From the set CANDLIST. another set called BESTCANDUIST 15 fon
foltowing cases are performed progressively in succession untib 1 nan empty BESTC
results:

1. all the subscripts i set CANDLIST which also helong ta 't ST are place
6-STCANDLIST;

2. a subscript in the CANDLIST set which also belongs to NEST stack s place
BESTCANDLIST,;

3.if entry zero. corresponding to subscript free nodes. belongs to CANDUST
placed in BESTCANDLIST: otherwise

4. all entnes belonging to CANDLIST are placed in BESTCANDLIST.

BESTCANDLIST now contains those free subscripts which are posaible candidat

5.3.2 INTRA-TEST ANALYSIS AND SEQUENCING

ordering process.

In Phase 2. SCHEDLR calls ORDERER with ecach of the entnies wn BEGTC
perform a tnal schedule. The results of the tnal schedule are cealunted Geco

priority table given in Table 5.3.

Let the ORDERER be called to perform a tnial ardenng ath o Luhoropt 1C Hedo

set BESTCANDLIST. it performs a tral sche-dule and ootarne thefe o pmformn

1 whether all the nodes depending on Doget ootetad o o whether B
cuompletely sc heduled.

o}

a set of other subscnpts, TOC, which got. repfeicdy o hed g,

3 a set of other subscripts, 1OP. some of whoss nodes got ohedude
subsonpts winch got partiaily o heduded: and

-

whether there s a recursive cycle sone but not all of whose node
scheduled.

A pnonty value is evaluated based on the abova resuits as por Table ©3 ¢ the

true if condition (1) s satished, and CY is equal to Ot condition (1) 15 satisfied)

t the prionty value is 1 then the SCHEDLR proceeds to Phase 3 to cali fhee o
second time with 1C, this ime to do the actoal scheduling Ifthe priaety, aloe vogrne
then trial schedule for a new subscript in BESTCAMNDLUIST e donme Dinadl, o
subscripts in BESTCANDLIST have been trial scheduled, the subsconpt. say [Ho et
value of prionty. say Pis chosen. [If Pas equal to 5 an error message wsassued that
cycle needs to be broken. If P is equal to 4 a0 warnmg s ssued mdicating to tr
some files must be entirely located in the mam memory. For other values of 10t

Phase 3 of SCHE DI 12 to do the actual schedutingg with sabscript IH

'hase 3 corresponds to the second call on ORDERER to do the actual scl

5.32 INTRA-TEST ANALYSIS AND SEQUENCING

IOP = NULL{ 0P has no I/C10OP has /O
IC
has CY =0 CYy =0 CY =0
cp ¥ ¢
170 1 2 4
CcpP
E no /0 1 2 3
170 4 4 4
~CP
no /70 2 3 3

170 stands for input-ouput. Meaning ot IC 102, CP, CY etc. s explained in th

Table 5-3: PRIORITIES OF THE TRIAL SCHEDULE

‘AD=A095 546

UNCLASSIFIED

MOORE SCHOOL OF ELECTRICAL ENGINEERING PHILADELPHIA P==ETC F/6 9/2
MODULARITY IN NON-PROCEDURAL LANGUAGES THROUGH ABSTRACT DATA TY==ETC(U)
AUG B0 R SANGAL NOOO14=T76=~C=0816
NL

5 ..-.........
pa
RECTEL

5.3.2INTRA-TEST ANALYSIS AND SEQUENCING 86

nodes. Following this. the nodes which got scheduled are removed from the graph. Finally, if

some nodes stifl remain in the graph, Phase 1 is started all over again.

Procedure ORDERER is described next. it has two modes: (1) to perform trial scheduling,
and (2) to perform actual scheduling of nodes. It has a parameter. [C, which gives the name

of a free subscript.

In mode (1) it does a topological sort of the nodes which depend on the subscript IC. it
then evaluates the result of the trial ordering and returns the result in CP.10C, IOP and CY as

described earlier.

In mode (2) it performs a topological sort of the nodes which depend on the subscript IC,
on all of the subscripts in the stack NEST and on no other subscripts. The resulting ordered

set of nodes is added to the ORDER vector and removed from the graph.

The scope of iterations is determined from the NEST stack. Each time an entry is pushed
on the NEST stack it defines the beginning of a new iteration; and each time the NEST stack is
popped it defines the termination of an iteration. The NEST stack is updated as follows:

1. Each time the ORDERER is called to do the actual scheduling with a subscript IC,
an entry is made on NEST provided IC was not selected by case (2) in Phase 2 of
SCHEDLR.

2. The NEST stack is popped (in case(2) in Phase 2 of SCHEDLR) until the selected
subscript IC is on top of the NEST stack.

The final result of scheduling process is an order vector and an iteralion table giving the
scopes of iterations. They are used by the code generation phase (by procedure CDETEST

described in Section 5.4) to generate Equate-Atlas code.

i i b

5.3.3 INTER-TEST ANALYSIS AND SEQUENCING 87

5.3.3 INTER-TEST ANALYSIS AND SEQUENCING

In this sub-phase a graph is constructed for the entire modfun specification. The nodes of
the graph are tests, diagnoses and global variables. There are seven types of precedence
relationships between nodes. They are described in Table 5.4. The table gives the name,
type, and priority associated with a precedence relationship. It is followed by a description of
the predecessor and successor nodes which satisty the relationship. The meaning of the
terms: type, priority etc. is the same as discussed in Section 5.3.2. The seven relationships

are described below.

Data determinacy relationship exists between tests, diagnoses and global variables. A test
or a diagnosis is the predecessor of a variable if the variable is defined by one of them, and

successor if the variable is used as a source by them.

Interactiveness relationship exists between a diagnosis and the test which selects the
diagnosis by "after” and "after not" logic operator (A and A~). It means that the test is

selected based on the operator response to the diagnosis.

Component protection relationship exists between a diagnosis and a test, if the test has an
affected component which is protected by the diagnosis. Its purpose is to inhibit testing of a

component if another component which protects it has failed.

Fault isolation relationship exists between a diagnosis and a test, if the set of affected
components of the diagnosis contains the set of affected components of lhe test. It expresses
the idea that those tests which isolate smaller number of failures should be performed later

compared to the tests which isolate larger number of failures.

Stimuli-application relationship exists between two tests if one of the tests has stimulus

funcions which are applied more frequently than those in the other test. It leads to performing

5.3.3 INTER-TEST ANALYSIS AND SEQUENCING

- powio 3J13d 21F

- 27 Qrssod s® S3S21

“Juano
-223 ss3] AITeqo1%
ST Yi1jm w paounf

jJuanbai3y saouw
ATTeqoT 3 T ydpys

uo 31

Avvre se ‘pejrddy 100 SN NWTIIS ® sey 397d7x3 snTnuyils e ~“worT ddP
ST TIMWIIS ®? 3duQ yYoTys d[npow 3Isay |sey yorys aynpouw 3say F1oer3s! €1 6
siInej aues a2yl jJjo *s,Q 40 198sqns
Ja2sqns 103 S31S?31 T ST 39S S1UdU uotionfuoed uy o2av
© dIys uoyi*sitney| poiIdITOS -odwod po3dd)jv ‘s3uouoduod p2130233¢©
ouLSsS SOILIOST @ JII 30U ST (f asoym oHInpow 1say, osoya q sisouSexq 21l 9
po s.da
~-1D5NPUO D BXE S3IS31 36 39sqns 1adoad |
S131oeds 220w uWoYI e ST 395 S3udu uojiIdunfsyp ul 2arv
‘snanyiej Of[aouad pazoards -odwod paldajJE s§jusuodwod pP33033Jjel UOFIBIOST
d10uW 5313S8SsC (q J1 ST (] osoym aInpow 1s3ay, asoym q stsoulderQ agneg| z1 ¢
siuauodwod aayo s,d 3o duo
Sutiso1 Sui3rqry Aq p@231d9310ad 3udu
-0ad 3uouodwod TeY padilvafes ﬁoaeou pa23129J3iv ue fowuuuuoua
-T3Ta2 10 danytreql 3ou st (g YIIM oInpow 3Isaj, Q@ sisoulderqg| jJusduoduon| 1/ %
11 9suodsou N osuod (~v),3vu=aa3ju}
a931jU palaersl -sax aoavl £q (¢ yaim paidou
sY aynpot 1531l -29do s,q| -u0d oTnpow 3Isay a sysoudeyg T €
A 9suodsaax L osuod (v), 12338, i
1233e poa3aes! -sax 103el £Lq g YITM FI3Id3U SSauaaiide
SY 2[npow 3s3j -1d9do s,g| ~uod aynpow 1S3y g sisou8riq -a23uyrl 1) ¢
. ﬂOZDOm X STIGUTaeA dsuousod
10SS929NS U] padus se ¥ Juisn 10 3 vaado Hmnoﬂw Yyaza
-12321 10 10Ss9D9p 2Tnpou umuHAnviﬂuMmeMM%meMW.m MHpM £
-23d uy pajenteas ~TiPA 199uVI ﬁmprwan:«Euoumv
ST @1qeraeAa [TqoTH X ®1qerLEAp(®) yais oa:wop 15971 (®) eIeg; 1) 1
- <<
40SS3I00NS 40553030344 <]
uoy3oueydxg | UOFIFPUOD i a_:mco_ﬁ.wh.hm. 5=
1] o
Quwjl~uny 9[NI UOFIVDTdS drysuorlelay 22udpIIDI,
: . SAIHSNOIIVIE

JONIAIOUd FTNAOA-LSAI-YIIRI »S JTUAVL

) il ™ g gt - I - remn
z1o03lerado £Lq 31 uy
] pa329719s sisoudriq 1l aInpouw 3s3a]
(3) ., puc,
aojeaado Lq J urt
*3ut pPoIdatos sysoudrnrq } o[npow 13S0y
-ssd20ad 293el dn (—])y30u-10,
poods o3 pajexedas l1ozeaodo £Lq | ur
;218 Aay3 3ng ‘ad43 pPa3o01ds sysoudrig 1l @Inpow 1say
" ' 03Ul pPAUTQUWOD (Y w0,
aq Lvw ¢ uySnoays xozeaado £q 1 ury
II sadLAy ‘*sopnio poidoatos sysoufeyq] a1npouw 1say

~-U0D> aynpow 131s2a3
2yl a133je paisod

(x),21vd-a3 uop,,
i1o3rvaado £Lq 3} ut

loarvaddo

5.3.3 INTER-TEST ANALYSIS AND SEQUENCING

oxv sasouleiqg pa239931as stsoudur(J arnpouw 1say Tedydor{ 1 {11
23daey A3TTeUWS
ljsaty powxojaad sT s3juasuodwo> st sauauoduwod
bae Tie3d 03 A19Il pa31o933je jJO Xapuy pP212933® 3JO0 Xapuy pooy
2I0w DIT SJuau 2anyie} aIsoyreuUs 2INTTICI ISaTICWS] =TIINIT
odwod 9s50UyM §3SI] 9soyM dTnpow IS0, asoym atnpom 31sd3 odanyIrng | 4 o.J
¥0§$3000S 40553030344 o v,
UOTIFPUOD diysuoneas Dol -
uorjrueTdxy ,]
sWIl-uny 91N uotr3idores drysuof3viay @duspavaay

(panuyuod) p-¢ 378AVL

W

5.3.3INTER-TEST ANALYSIS AND SEQUENCING 90

of as many tests as possible once an ATE device is connected.

Two tests are related by means of failure liklihood relationship if the predecessor test
isolates those failures which are more likely to occur. The liklihood of a failure is supplied by

the user in the specification.

Finally, a test is the predecessor of a diagnosis selected by one of the logic operators: |, |~,
& and &~ in the test. The selection of a diagnosis by means of one of the above lagic
operators is dependent on the outcome of the test. This is expressed by the logic-operator

relationship.

Several of the relationships described above are not mandatory. They represemt desirable
but not necessary relationships; in other words, such relationships are good for efficiency but
not necessary for correctness. A priorily value greater than 1 is associated with them in Table

54.

Procedure EXTSEQ constructs a graph for the modfun specification. The nodes of the
graph represent simple entities, unlike the graph for a test. This is so because there are no
free subscriptsfree subscript associated with the entities which are represented by the nodes.
The graph is analyzed to check:

1. that every variable node has a predecessor, i.e. every variable is defined,

2. that every variable node has only one predecessor, i.e. every variable is defined
by only one test or diagnosis;

3. that a diagnosis does not precede two or more tests with type 2 or 3 edges, i.e. a
diagnosis does not select more than one test by the logical operatoirs A and A~.

The next step is to detect cycles and, if possible, eliminate them by removing edges with

priority value greater than 1. They correspond to preference edges and are not essential e.g.

L

5.3.3INTER-TEST ANALYSIS AND SEQUENCING 9N

a failure liklihood edge (type 10 priority 4) between two tests expresses that the liklihood of
detecting a failure by the predecessor test is higher. It reflects knowledge which may be

useful tor quicker fault isolation, but is not mandatory for correct fault isolation.

The final step is to sort the nodes into a possible execution sequence. A simple
topologicaf sort is sufficient because there are no free subscripts or iterations. Finally, an
order vector is generated. The order vector 1s used by Phase 3 to generate Equate-Atias

code.

5.4 CODEGENERATION

This is the third and final phase which generates Equate-Atlas code corresponding to the
Nopal specification. Code is generated for each of the entities: tests, diagnosis, assertions,
conjunctions, variables, structures etc. The order of execution of these entities is determined
in Phase 2 in the form of an order vactor. This is used in the present phase in generating the

sequential program in Equate- Atlas.

Egate-Atlas is a test programming language and is a subset of ICEE standard Atlas. It has
a number of features to support the programming of ATE. However, it does not support many
of the widely accepted programming constructs. Mostly notably,

1. The procedures in Equate-Atlas do not have parameters. The procedure simply
represents a body of sequential code which is executed when called.

2. There is no provision for local variables in procedures. All variables are
considered global.

3. The if-then-else construct is absent. It can be simulated using "compare" and
"goto" statements, reminiscent of the assembly language instructions.

4. It does not have a do-while costruct. It' has for-loop similar to the Do-loop in
Fortran.

5.4 CODE GENERATION 92

5. It does not have a linking facility. Consequently, all the procedures should be
included in one program at compile time. The procedures communicate by
means of global variables.

6. The only data structuring method in the language is array. Declarations for
records and structures are not allowed.

7. The language has only two data types: decimal and digital. Decimal is used for
floating point numbers and digital for bit strings. There are no other data types
. e.g. character strings, integers etc.

8. It does not allow dynamic memory allocation.

Certain conventions were established, in view of the rather severe limitation given above.
For example, to pass parameters to a procedure, named say P, the following convention was
adopted: The parameters were passed in the special variable names P.PRMO1, P.PRMO2, ...
and so on. At the time of the procedure call these parameter variables are given values. The
body of the procedure uses these names to receive source parameters and defines values of

the target parameters to return values.

Lack of a linking facility forces that the Equate-Atlas statements generated separately for
each of the modules be put together and the resulting total program be complied at ane time.
This raises a problem, however. The language has no local variables, and hence, two
variables of the same name occurring in the two different modules would be treated as one.
The clash of the variable names is avoided by generating unique names for the module. All

variables in a module are suffixed by "." followed by the module name.

The absence of if-then-else and do-while is handled using the primitives "compare"” and
"goto”. The absence of structure declaration is handled by simple variables and arrays.

Although, these make the generated code messy, they pose no conceptual problem,

The code generalion phase consists of three sub-phases. Sub-phase 1 consists of

PEPIFRPY IS QRN |

5.4 CODE GENERATION 93

generation of program header, declaration for the global variables and system variables, and
a procedure definition for each of the diagnosis. Sub-phase 2 consists of generation of a
procedure for each test. The third and final sub-phase 3 consists of generation of logic and
sequence of calls on procedures for tests within a modfun. The procedures for each of the
sub-phases are CDEMAIN, CDETEST and TRMNATE respectively. The highlights of the

sub-phases are presented below.

In sub-phase 1 the declarations for global variables are issued. For a simple variable in the
Nopal module, a simple variable by the same name (suffixed by the module name as described
earlier) is declared in Equate-Atlas. Similarly, for an n-dimensional array variable in Nopal, an
array with the same upper bounds for each of the dimensions is declared in Equate-Atlas.
There is an exception, however. For array dimensions whose upper bound has been declared
as "*"in Nopal, and for which only two elements - current and the previous need to be kept in
memory, size of 2 is declared in Equate-Atlas. The two elements in Equate-Atlas are used to
store the current and the previous value of the elements of memory and is part of the space

optimization done by the Nopal processor.

Equate-Atlas does not have any facility for declaration of structures. Consequently, a
transiation is made: the fields in the structures are declared as variables. The dimensionality
of the variables is the same as the dimensionality of the tields. (The dimensionality of a field is
obtained by propagating the dimensionality of its ancestor nodes in the structure, to the field.

This is done by the procedure XREF1.)

In case of a module M (not the main module) an additional dimension is added to the fields
of the record which gives the representation for the abstract data type M. For example, in the

declaration of representation of a stack

e -__.._»..-—.L'
aee Y e & e

5.4 CODE GENERATION 94

NOPAL MODULE STACK;
DCL 1 STACK: RECORD,

2 TOPZ: INTEGER,

2 Z: INTEGER ARRAY(100);
the fields TOPZ is declared to be a one dimensional array, and Z a two dimensional array.
This extra dimension is added to allow storage of all the variables of type stack. Similarly, in
the usage of the fields of stack, 5.TOPZ. the qualifier S becomes an index which provides the
reference into the array TOPZ. Al this became necessary because the object language does
not have facili’ - for dynamic memory allocation. In PL/| for example, the above could have
been implemented by means ol based variables and pointers. Record STACK with
components. i.e. variable TOPZ and one dimensional array Z, would have been declared as a

based structure. The qualifiers would simply have been pointers. There would be no need to

add an additional dimension.

It follows from the above discussion that. in the current implementation, the variables of
abstract data types are indices to arrays in the Equate-Atlas program and store decimal

numbers.

Pracedure CDETEST which performs sub-phase 2 is called at the end of sequencing of
each test in the intra-test analysis and sequencing. CDETEST yenerates a procedure for the
test. The body of the procedure contains sequential code corresponding to the conjunctions,
assertions, and logic for selecting diagnoses. Statements for conjunctions and assertions are
generated one at a time in the order deteremined from the earlier intra-test sequencing phase.
lteration statements are also generated based on information about the name of the iteration
variable, its upper bound and its scope. In cases. where the upper bound is not specified an

arbitrarily large upper bound is used. However, the appropriate termination condition is

generated to exit the loop.

5.4 CODE GENERATION 95

In the case of input {or output) structure, calls are generated on the ACCESS (or SAVE)
functions to read (or write) the structure from (or to) the appropriate file. Similarly, in case of
abstract structures of abstract data type, say DT, calls are issued on ACCESS DT or SAVE DT

as the case may be.

Finally, sub-phase 3 generates calls on the procedures for the test, and the logic which
precedes these calls. The order in which these calls are generated depends on the ORDER
vector produced by the inter-test analysis and sequencing phase. This sub-phase is not
needed for modules (except the main module) because only one test per modfun is permitted

in the present implemenation.

At the end of the three sub-phases. Equate-Atlas code is generated for a module
specification. This can be put together with the code for other modules, thus yielding a

complete Equate-Atlas program. One of the modules must be a main module. This program

can now be run on an Equate-Atlas machine.

Chapter Six

CONCLUSIONS AND FUTURE WURK

6.1 SUMMARY

This dissertation presents the approach of abstract data types to introduce modularity in

non-procedural languages. It introduces the notion of module for the specification of an

abstract data type in a non-procedural language based on equational specification. A module

specification can be analyzed for consistency, completeness and non-ambiguity independent
of other modules. It allows abstract data types to be specified independent of their use. The

concept of module is general enough to allow the specification of recursive data types.

A simple equational language is introduced, and the least fix point semantics of modules is
presented. It is shown by means of an example how a data type specified by a module

satislies certain algebraic axioms.

Nopal, a non-procedural language designed for automatic tes ing of physical systems is
used as an example to show the feasibility of the use of abstract data types. Nopal language
allows abstract data types to be specified by means of modules. The data types once

specified can be used in other modules.

A complete implementation of the Nopal program generator is described in brief. A
number of examples and their sample runs are given in the Appendix. The program generator

analyzes the specification and generates an efficient program in Equate-Atlas satistying the

specification. Optimization for memory and execution time is done in the generated program.
96

Lz ek

6.1 SUMMARY 97

The use of abstract data types allows relations to be specified between variables which are
not just of elementary type, but are of arbitrary type. It allows a data type to have an arbitrary
degree of complexity hidden away in the module and shielded from its use. This is of
particular advantage in decomposition of the problem. It allows operations on larger units of
data, ignoring lot of detail, in the process. When these large: units of data correspond to
some concept naturally occurring in the probtem domai {e.g. stacks and tokens while
parsing a string in a formal language) the specification is written in terms of these concepts. It

also allows devices in automatic testing to be treated as data types.

Procedures or subroutines are procedural abstraction in the conventional programming
languages. They represent a form of abstract action which fits well with the prescriptive style
of programming. In non-procedural languages. on the other hand. the relationships between
variables is the building block. Use of abstract data types allowé the variables to be used and
their values defined free of the details of the arbitrarily complex data structure that they might
represent. It is felt that just as the procedures are a natural way to introduce modularity in
procedural language, the abstract data types are a natural way to introduce modularity in

non-procedural languages.

A most important feature of the introduction of the abstract data types in the
non-procedural language has been that it does not lead to a change in semantics of the
non-procedural fanguage. This is in contrast to procedural languages where an abstract data
type facility has led to an object oriented semantics e.g. CLU (Section 2.2), vhich is different

from conventional and generally accepted value oriented semantics.

e Al e b e s e

6.2 FUTURE WORK 98

6.2 FUTUREWORK

Work needs to be done in two areas to make the absiract data types easy to use in
non-procedural languages:

1. Efficiency of the generated program should be improved upon, and

2. Additional extensions should be made to the language.

Some of the problems are outlined below.

6.2.1 EFFICIENCY CONSIDERATIONS

in the current implementation. Nopal processor does the following memory optinization: If
an array variable is declared to be of dimension '*' and is used such that only the current and
the previous element of the array is needed, then the memory allocated for the array is equal
to two elements. This is of great value when the array is an input/output structure a..d
represents a big file on secondary storage. The above should be extended to not just 2 but &
elements of an array variable (where k is an integer). It should be determined when a
constant storage, k, may be used in the generated program automatically without having the
user to declare it. This is part of ongoing research by Mr. K.S. Lu [36] to generate efficient

programs from a non-procedural specification (and is independent of the use of abstract data

types).

Modularity makes some of the optimizations impossible at program generation time. For
example, in the generated program for the specifiaton of an abstract data type storage is
atlocated for the representation of each of the variables of abstract data type. Even when
some of the variables are not needed at the same time, memory optimization cannot be done
at the program generation time, since the use of the abstract data type is independent from its

specification, and the corresponding information is not avatable at the time the program is

o ——p -~ 4

6.2.1 EFFICIENCY CONSIDERATIONS 99

generated from the specification.

A possible way to reuse the memory which is no longer needed is to do garbage collection.
Any one of the well known techniques can be used [31] to provide better utilization of

memory.

6.2.2 LANGUAGE EXTENSIONS

The data typing facility described here can be extended in many ways to improve
compactness. clarity etc. To give an example: The language should permit {and the
implementation should support) the specification of "parameterized" data types. By this it is
meant that the specification of the abstract data types contains a data type as a parameter.
For instance, it should permit the specification of a stack of type T. where T can be integer,
character, stack etc.; and is specified with the use of the generic stack. This would allow a
single stack specification to represent the various types of stack and lead to compactness as

well as economy of names of data types and their modfuns.

Non-procedural specification should be investigated in the light of distributed processing.
The applicative nature of the language is ideally suited for detection of parallelism within a
module. The array graph can be directly translated into a parallel program. Research needs
to be conducted to allow ditferent modules to execute on different processors and

communicate with each other.

Appendix A

EXAMPLES OF NOPAL SPECIFICATIONS

Some example specifications are given here. Sample runs for specification of stack
together with a complete set of reports generated by the Nopal processor are given in the first
section. The sections which follow, contain other example specifications with sequencing

report for each of the specifications.

A.1 STACK 101

A.1 STACK

Nopal specification for stack is given in this section. Nopal module STACK defines a
representation consisting of TOPZ and Z. 1t is followed by a specification of the functions
PUSH, POP, TOP, and EMPTYSTACK which can operate on stacks. Each function implicitly
has a test and is specified by means of assertions. The assertions specify relationships
between the input and output parameters of the function. For example, in statement number
6 (which is an assertion in modfun PUSH) value of TOPZ component of stack St is specilied
in terms of the value of TOPZ component of stack S (where S1 is the output parameter, and S
the input parameter of PUSH). The stack has been discussed quite extensively in Chapter 3
and the various assertions are not discussed any further here. Since a logic component must
be associated with a test in Nopal, a dummy diagnosis is specified. Similarly, since the
assertions must be part of stimuli or measurements, the asserlions have been arbitrarily

placed under stimuli in each of the modfuns.

A sequencing report is generated for each of the functions by the Nopal processor. It
consists of weighted adjacency matrix representing the array graph; followed by an order
vector which represents an ordering of the nodes of the graph. The order vector determines
the sequence in which Equate-atlas code is generated for the module. Equate-Atlas code is

given after the sequencing report. Itis followed by a cross-reference and attribute report, and

warning mescages.

102

A.1 STACK

29313

LS NE L]

(2vl

T8)e1 S aNj

PCI)11923NTwA *3edal IS NOTLINNY
£0L)41823N WA *3=34aL *30NWL NOTRIWAY

e ———————

2323441 *SENS NOILINNG
!, SMIWLON oS ITvSS 3N
‘95w = IMIN4 uNO 9VIO

whg) :21%0)

22401° 1531390V T s 1401°1LS LUSY

1
e 2y

‘tn

2(Mvys

b

‘wiis
S)SNUNL3Y HIVLISAL I3 NNIOOW

s gl 319010

T(2401*S)II*S*T401*S 23JuNDS
139Wy)

398wl

3% NT

(

Td04°S) I°S = & :lusy

€301°,2°S,1880S « 7 :lusYy

‘Wbts

SA)SNUNEIY (XIviS SESHd0L NNFA0N

3SIVY = (PP aN)
INWL = (FIPTONI NIHL T40L°Ssf 41 :jusy

(PIre1s313% vl
‘l401°S

1401°1 5713

t

Juvi

WIVLS

[

‘unal 21803
2401°5%3)9n0S

(f)Yr an3c13%uvie
sy

f¢r)2*s 3324008

(PHT°S = (F)I°LS :LMSY

I)MNO0S

1 1401°S = 1400°1S *LUSY
1101 10754, 2 ON3ZI°LS *T°S.0SENS = P :LUSY

‘ulls

SLS)SNUNLIY (NIVLS S3S5) 404 NNJAO0W

o

7404° 82334008
(NN LERNEL] 1))

3SIvy = (FIFP @an3 3SV3

INUL = CPIPTONI NINL T4OL°S=P 41 :iUSY
3338008

(F)2*s = (FYI°1S 3813

K o« (PYT°LS NIM 2401°S=f 31 :LMSY
$3)3n08

1401°S = I40L°LS LSV
wi (001 P ONI*Z°LS *2°S.)80NS = [:1USY

S(rYT S T40L°S
CPYZoLSz1I%uvy

1401°18213

21401°S

Jevi

[

‘wity

LSISMENLIY ($IOIUINT S3K 2HIVLS S:S)NENd NNJOOW

2CQ0LdAVENY ¥IOIANI 3P 2
CuWI9IUNE :240% 2
‘av0I3% VLS | Ve
93745 3INE04 IWEON

og
62
82
(X4
1 24
1 %4

v
€2
22
[¥4

0z
(X}
6t
LR
i
"

-
-

NN g e
- - - -

-
-

[A N T I]
-

-~

*Om iM1S

0006eINT1°3007°0359N830°2=33vy1 2 I)UN0S 24 IURON DS*2007° 1 239T°151V4YS S6IT41DI¢S SNOTL40 0SS IIOEL V40N

s 181748

2318 SLNdNT IDNNOS NOTLVIESNIIAS LSIL TvdOw o/

103

rsans 2 3)¥n0S

. r 13% 1 -
. (004, P ANI* T LS fI°s,)88ns = F NOT H3ISSY $300% S8 § '
IvIo 3181 wvA H 3 1Y)
¢ 33en0S 7 w80 3vavisva 1Sy b] £
7/ 33¥n0S ¢ Va0 3vavinvA ELET L] 21
19301 1taviava [7)
¢ 338008 ¢ w801 3I8VINvA sens " 9
[TTSEL
1331 EF1NS NN evy #3080
WSNa 1S3 WO4 INTSS3II0N4 40 3FIWNINBIS
00009%020920003022373 INaviwvA [SN
00 G000 64006103 0172200 3R vIavA I T 1)
0000072700000 0600200 ERLIIN R L) FanNl Yy N
0000700000001 123230 38vigvaA IS
pD0ODODOO000000ILD01DJD0 ITRvIEVA nwy 2
5,0 00D 0CO0O0DODO0DDODDJD ERLAIR 1] A% SN Y)
0000200000072 01 00 ERLEIN R L} 1°S Ot
. 0000702000000 1 20301 ERLTAR T | Y
640 0 DI 0000000000 " IWYI VA 2401°3S W ’
000030602 00GC23 1L 1L 4" ERLEIR L) 1401°8 ¢
00O0DD0DY0DJ0D00D0C 1L DD ERLIIRE L) r 3
oooocooooocuoou— ERLEAN L] sens ¢ N
g0 L00000QO00CG000020 NOTisdISSY LI R LI 1 SR
0000000000303 320 NNILUISSY $030%7ss €
000090001 00001300 wotiLuissy ~ouo:mn~ »
[000000000V 000000 wOTLuISSY 1000%"SS 4
O e e e e m e me ... =
< 9sYE 21068235 YE2L ®
| nd [S S S
2 Tlulve AIN3IIVPOY 3L 40 SISATvny
M WENG INLININGIS 1SIL vEing ®
® -1
'.‘
- ok -

9§ YSE ZLODG6RBLELISYEZD
[O GO O W § .
XINLVM AINIIVPOY 3IMQ 40 SESAYwNy
d0d INIININGIS 1531 V¥INI
)
’
r SI 14T ¥IS8NS 9L S1 340w 1SV 9% SI J00N LSWD4 1-4001
3 31991 AYYHNNS 4071
)
7SGNY 1 -d00Y)
1301 ERTTASTL LS I} 1 7
)
1 L3%W¥L 7 Wwgols vATLd1u3S8OS EATE ° 1 111
7 13I%VL 7 1v80YS vAT 1418358NS [TF | 4 " "
f2°s *x %1401°S °‘r :3d)4N0S
1°LS ci3eavi
(r)I2°s = (r)2°1s 3513 -
I e (PYZ°LS NIHL 2404°Sxr 31 NOTANISSY €200%7s s 3 £ 1
7 33un08 /7 WEoYd AT LéTuISONS s y ot 20
.) »
£357ve ‘3anwy *7d04°s_ *F Z3dwN0S
rTen3_ 13suvi)
3sIv4 = (FIPTEOND 35V)
INWL = (PIPTEONI NIHL 24OL°S=t 41 NOTLN3ISSY 200"7SS y ’ 1
0OL Ot § wOMS SILVE3ILT F LJTUISBNS SLuvLS |=-d001 ’
t 13%vL 7 Tya01s ERL T T 1401°1S ¢ (] ot ’
x 4 13%YL 7 e 21evIuvA t) 9 .
O .
<
[
n 27401°S 3122¥Nn0S P
- 240118 :13%V) _
< 102402°S = 2401°1S8 NOTLIWISSY 2200n"s s t4 2]
* .
7 338008 ¢ veos 37aviven 1401°s 1 ¢ ¢

INYL = (F)F ONI NIWL ZdOL°Sef 4] NOTLINISSY LLLI LIS » v [}
004 0L 4 wOWJ SILvu3Ll f LJIHISANS 2S18VLES | -d00

)
7 L398v1 4 w8018 318vIiva 140L°15 £ 6 6
’
¢ 139%¥1 7 IvE019 37eviNen r ? Il F
’
£21401°S :3IJWN0OS
1401°1LS t13%vi)
1-1401°S = 2401°1S NOTLMISSY 210087ss 2 2 ¢
f 3)8n0S / vE01d ERLTARETL 1401°$ i [? _
Y)
f£gaNS :328N0S
r :13%vL _
(00LS, PTONICZ*LS *2°S,)58ns = P NOTLW3SSY 1000075 L 3 3)
Va0 318vI8vA H] 13 v
7 33un0S 7 vE01S 3reviava ISy b] L 4
7 33¥n08 ¢ vEO0YY 316VINVA ELEN n 24 2 ;
[
7 334N0S ¢ yBOYS 3raviNva sens bl ? 1 ,
. WOID3A Y3IONT
1%X31 3ddL ELLL] ANVY B3040 173
'ELIL))
d0¢ 1S3L ¥OJ ONISSIIONd 40 3IN3INBIS
. 00007200000000020090 38y EvA s N)
0000)JO0G6I0 6000002 IVGVINVA _ s s
000020000009%20200 I8V YVA L Lk I 1Y
000000000000 000Q I8YINVA Iswi (1 »
000000000000 L0O00O IIAVIYVA Nl 2t
60 00J2000000D0O0NO0DO I1BVINVA 1S
b4 0000300200000O0C1L OO 3T0VINVA 1°s 0l P
(8] 440 00D 000000 D000DN ERCEINTT) 2401°1S & 5
= 0000720000000 1L010 318V EvA 1401°s ® w
) 0000YOO0OO0O0DD0ODODOULLODO ERLTIN AT r ¢ ®
- 000000000000 O0CO00DO0 3N8VINVA sens 3
< 00000O0DO0O0ODOCOOODDDO SISONIVIG wne ¢
001L07%2000000D020000 NOILNISSY *000n_SSs Y ®
000001 00000¢1022D00 NOTLUISSY €070 88 ¢
00002001 00C02I0000 NOJL¥ISSY 2000% S8 ? , A»
0000000001 0100009 NOTLNISSY L000R"Ss & e

106

A.1 STACK

¢ 3X¥NO0S 7 VRO

FRET)

401 1531

QOUOoOQVwooow

6 8¢ 95 vy 21

ERIADE TR

1441

sensg 9 Y 3
8401338 TINT
INvN aNvy Y3640 1334
LELET)

¥0#: INISSIIONY 40 3ININDIS

-

Or-r0000D0O
cooooocoooce
cocoocoooa
~oogouooago
ooocoooooo
AR ODOVUO 00O
V-
o000V~ ~oo0o
(R B N N Y- -

XIWAvM AINIIVPAY 3IML 40 SISATVNZ
d01 SNIDJNINDIS 1S3IL VHINI

¢ SI 141 4386NS

s 139%vL / Weg1s
HIERNULY
AN ELTTTONARIT (3T

2¥°s ‘e 33dWn0S
I1°48 :13%mw)
(r)t°s e (P2°1s

¢ 3dunos 7 Iveeyy

f38Iv4 *3INwL *r401°S °r :3dWNOS
rtTen3_ 113%wy
ISIVY = (P)PTOND 383

91

$1 300N 1SV

370viuvA

vAT 1dTu3Is8As

SISONSY]e

vAT1dlu3sens

Nolaw3ssy

VA L4lu3sens

INBYINVA S [}
3IVaVINVA [}]
3BT YVA rdoLcs ¢
3vaviyva 1*s 9
310vieva ros
310vINvA sans
SISONIVIQ wnao ¢
NOTL¥ISSY 2000%"ss 2
NOTLUISSY 12%0%7ss ¢

oL ST 300N 1Sul4 1-4007

318Vl Luveens 40M

‘sen3 | -400"

IS ¢ " 9

r°¢s 9 t (1)

wne 9 < 119
rrew3 S L 1Y]
£000n"sS 3 £ 21
s ’ ot "

107

A1 STACK

IvI0
7 13%vl 7 vA0YY
f9SM = ININd

21404°1LS :l3%uvL
0 = 2401°1S

1xil

XIVLISALduI

3avi

3l8vl

S3ISONY

LIARY K]

3di L

'TL s
BYA 1d401°1LS
vig ung
(31 1000"7S S
ELE L]

1S31 ¥04 9INISS3I0¥d 40 IININOIS

0000 I VIUVA

640 0 0 3J0vi VA

goo00 SISONIVIG

01t 219 NOYLY3ISSY
Yy

NIYLVM AINIIVPOY 3HL 40 SISAYNY
¥IVLSAL14MI SNIINIQBIS LS vagnl

0
2asu = LNINd

27401°S *2°S :3)UNOS
b G13swvi
(1doL*$)T°S = &

4 33un0S / 18079

¢ 1394¥L 7 WEOYS

7 358n0S 7 vB0YY
f£5ANS 32uN0S

r :13%VL

0oL, 1°5,358ns = €

IvIo

ERIT28TL) A
SISONBVIC 'LY]
NOTANISSY z000n7s s
vATLdTHISONS s
ERITAELL) r
3raviavh 1401° S
NOTL¥ISSY (300"7ss
3TavINvA $

¥01J3A
ANVY ¥30¥80

s
1401°1S
Who
L0207 SS

'

L ELLA
133N
¥30N0

-~ g

108

A.1STACK

$ (. ¥18S°1°5,),v1S"1401, B3 *_viS*f, IBVY4ND)
$ 3NYL*SES, = VIS OV~ IHSw Sk,

$ NIHL L A8 00 NUNWL | = _viS°{*r, %04

S LINWL°SAS, = _visS*r-aN3,

$ (L e(YAS*1*S,), vL1S°2d01,) = (. ¥15°1L°8S.) _ViS°2dN),

$,INVLOSAS, = _ VLS OVII-LuSY SIS,

$ LINBL*SAS, = _VIS°*9914°SaS,

$ NIITNIVLS, = LS,

$ L ¢ _NIS"WIVES, = _NID*MIVLS,

$ L2IMEd MSId, = Lel15°1°S.

S .S0WNd HSNd, = 1S N,

$ _HSNd, *3¥N03I0Wd INIJIE 0019

ENUIIIIIF OGP VT IR NP B ITIIVENINI PPN I SIS ETS [EXANYNTNN Y Y1 (XXX ese)
CSEICEIIII SIS IIIV ISP IITINIBIBINIISISI IS ISETS seBIOVIIISSRIOIIRIGLS se3)

t SJ0ud 3
Cssssvsovsssvrsassr s PV VS VIV IVIISIIISIVIOISISTS ssoveevs [N (XX D]

SvsseVVOUIITIISIIIIILIISIVISIOILS

svssEsIvINL S Sssvvsverssvvresvnones)
$.viscune, ON3
$ o INIHION o ONODI N
$.VLS"MNO, *IENGIIONL INT43Q 00n9
I IR L T Y T N Y N N Y I Y Y Y Y R N Y Y YRR]
R L L T Yy Yy Y Y Y YN Y FR TR TS |

$ SIIu4 S3ISONIVID b

[XS
Soes

ﬂ... LE R CCCCC.CCCICI!CCI'CII‘C'ICIIC.C'C'.IICIic‘cCCC.CICCOCCCC-Jaccltcccccu
ﬂ." C..CIC.C'CCC.'.Ill.."!'..'..!.'l"llIl.CCllIcCCICC-I'.ICGCOQOCC".CCICU
$ 2817440, 30NTINI
L]
$ SNOTLINNS 34V QINI23¢ B3ISN b]
s
$ LviS-¥"LlS, *vwnI1d3¢ 3¥vidde
$.v1S*E"S, *Ivwiddo 3¥vIIde
s Lvis°€°1, *Ivwid3a 3MviIde
$ 0 .viS°2°LS, *vuWIlde 3wvyidde
$,vis°2°s, ‘TvyNId34 INv1II0
$,viS°20°910°SAS, *IviIST0 IWvIIIG
$.¥iS°10°970°$4S, *IviIOT0 3uvld3e
: S ,viS*1°1S, *IvaId3a 3Hv1IIG
S LVLISCL*S. *TVNIDJIQ 3WvIIIe
$.viS°*i°x, *VNIDJIO 3wV
$ (004) ,ViS°F-GNI, *LSTY *viI910 3¥v1d3e
$ (001°004) ,viS°Z, *1SIV *vuId30 3WvII30
$ (00L*0048) .veS°I, *1SIVY *TvulJ3¢ 34v1330
$ (00L) .viS°2d404, *1SIT *TvwIdl0 38vIIIQ
$ (00L) ,ViS°T7d0k, *LSIT *TvNIDI0 3MVIIIC
$. viser, ‘1lvwId3o 3IWy1IQ
s $378YINVA TvE0T9 GINTSI0 MISNH WOS SNODILVEVIIIG h]
H SNOTLINIJ3@Q@ ANIOd LNN b]
$ LVLIS°W3LI1uTIA®SLS, *vIISIa 3IwvIIIC
Lt -- LHN0, b]
sse SISONIVIC vese 3
b]
y -- IviShLdNY, bl
€ .d01, b]
2 == ,d40d, H
Lt =~ LMSNd, 3
sse $3I1NIOW LSIL wes b
[$ X LE S INYN 3
DC'..Q'....I [XX] 208 (22N NI R A R NN NI NI NN CCCU
Sovevvvsnso e FUSU SO RUP I INGEITRIIUNIITIPIPITES sevssesrevece)
$,AJV1S, uWvyUS0Nd JAVAGI NIS3E b

[£ (XX
[I T IY)

GO SPIIISISIITE IS
(AL X R AN NN

9 ssOREN SOV SVIROIBOTRNS

109

A1 STACK

$,d0d, UN3
t 1S5, = _,538°40d,
$ 404 aN3I
$ 090N 41 $§27 d31S 0109
s .dnuLesas, B3 P _viscr-dv3, 3y4v4N0)
$ _viS°WnO, wy04N3d
$ 090N 31 0£29 d31S 0109
$,INYL°SAS, B3 *_vIS*IVII~1ySY SLS, IEVIWO)D
$ (LVESTP,* wIS°2°S), vIS I, = (,¥L1S°F % viS°2°LS,), vis*1,
$ LISIVISAS, = (VIS P), VIS F-aN],

< 0227 4315 0109
$,INYL°"SAS, = (VLIS°F) _vLS*r-aN3,
$ DY0N 41 Si2y d3ts 0109

$.3INEL SAS, B3 *_VvIS*I0°*9T10°S2S, JyvdwO)d
$,3ISTVICSAS, « _VISCLO°S1Q°SkS,

s 0L2? 4315 0L09
$ LINWLSAS, = _visS*LD°910°54S,
$ 090N 31 €0Z9 d31S 0109

$ (,¥15°2°S,),vLS8°2d01, B3 °_VIS*f, 3I¥VIWO)
$,INUL*SAS, = VLIS OV VM-LESY*S1S,
£ N3IHL | A8 00L NBHL L = _viS®"2°Ff, ¥D4
$.3NYL*SLS, = _viScf-aN3,
$ (4 ~(,vL8°2°S,)_ V1IS°240L,) = (,VLS*2°LS,), VLIS°2d0),
$.INVL*SAS, = VLS OVII-L1ySvSAS,
$.3NBA*SAS, = ,viS*9v14°Sas,
$.N39°WIVLS, = _tS,
S b ov .N3I9CWIVLS, = _NIITNIVLS,
$.20u¥d°d0d, = _¥1S°2°S.
$.d0d, *3¥NA3I0¥4 3INIIIO
SYSCFIPICFFINRBE SIS CIEV ISR OIS svsvERIDES
$. M§Nd, aN3
$.15, = _S3¥°HSN4,
S ¥04 ON3
$ D9ON 21 S99 4315 0109
$,INYLSAS, B3 *_viS°f-Gv3, Ipvewo)
$ (LYAS P, wisS LS,) visSel, = (VLIS°T ' vIS*L LS,) VIS L,

§r%sssvsvevovny

$ 0Ly 4315 0105
$ VLIS L K, = (ViSSP ' WiS*i°1S,) vis°2,
$ 050N 41 SSL9 4315 DLOY

$,3NUL°SLS, B3 *,_VIS°20°9T0°SAS, I¥VINOD
$ LISTIVITSAS, « _VLS°20°974Q°SHS,

s 0gL9 4318 0109
$ _INUL®SAS, = _VIS°20°310°S4S,
$ 09SON 11} S 4318 0109

$ (LVYIS*1°S,). VLIS Td04, B3I *_visS°f, JNveu0)
$,ISTVI SAS, = (viS°P,), Vi5°P-aN],

s 0219 4315 0109
$,INUL"SAS, = (,vIS°T,) viS°P-ON3,
$ 09%N 31 SLL9 43185 0109

$,INUL°SAS, B3 *_VIS®LD*SIO0°SLS, JUV4NO)
$,ISIVI*SAS, = _VIS®LD°91@°SAS,

s OtL? <355 0109

S LINULI*SAS, = _ViS°LO*S1€°S4S,

s 090N i1 SOL? 4318 0109

$€29

agz?

273
02?77
s$173

029
0?3

0079

svssesvsIsIIRLIL)

solo

ovtd
SELy

oEL?
[X4 %4

0219
Sit?

oLLe
SOy

A.1STACK

Ssvsssr s eIV IS
SVBPERIEIBEIVIINIVIIBIOICS ves e

S CWY¥ODYI SYILVY F1vn0I IL¥NKN¥L)
sesyssvevOVIRIITI VIV IS sessvsrISRIIIITEIIRLS

S PR P IV NI IV IV ISP NV IVIISI IS EIILTY
$ MIVISALENI, ON3

[EE XX NSRS RIS R RAN SR Y AR 22 A4 204
CIUGUETIC ORI ITI I LIRS FVERIINNSTS

soBOSY
LR 2

sSessvsovsIl
Suvossrvee veunes

$ 1S, = 53U NIVISALAWI, oLw?
$ VIS WNng, Wy04¥u3d
$ 090N 41 JL9y d43lS GLO9
$,3NUL°SAS, D3 C_ VIS OVII-LUSV SiS, I8v4u0) $0%?

$ 0= (,V1S°9°1S.) V1S°2401,
$ LINHL*SAS, = _ViS°OV-1uSVY SAS,
$,INYLCSAS, = _VIS*OrNyTSLS,
$ NI NIVLS, = IS,
$ 4 ¢ . N3IVTNIVLIS, = NIV NIVLS,
$ _N3IVLISALdNI, *3¥N03I0¥4 3N1430 ogn? ,
tevsss s
$,d0¢, QN3

PIUVPO ST IS UI SIS IISGUSUII VI RIPRITUEBEIUIIITIIRIT ISITNDY

$.4, = ,53u°401, oLg9 ,
$,viS°wnd, wy04¥3d
$ 090N 41 L€y d3ts 0109
S ,INMI*SAS, 83 *_ VIS IVH-LUSV SAS, T¥V4ND) S0 9 P

$ ((LVLS°C®S,), VL8°2d01,°, VIS E°S,), VIS 2, = _¥lS°C°4,
S LINUL*SRS, = WIS 9¥II-1aSVY°SAS,
$.INMLSAS, = _ VIS OvV4 SIS, ™)
t ,20u¥4° 401, = _VIS°E°S,
t 401, *3uNne3lr0d¥4 3INISIC 00¢9

SEPEEEBRIPY SRS sse ey *vene

s

PESPOITISESNSS

fusevvsesns

——
¥A019 ‘ivhuv TYNOISNINWIG-L ‘a1 2 t
[} 61 i
1
- a1 9 4
-
-—
0! JIAVIHWA 1 x
] LA
3 401 NOTLINMN4-3lY 42 Inyy
IVADTIY ‘0T 319VIYVA 2 7dny
0e &t
1399 1531 1 dani
T¥9079 ‘svyyy IYNDISN3IWIO-1 ‘0T 3IIAVIAVA 4 1°1s
IYA0T1S ‘av¥uv IYNOISNIWIO-| *0I 3I1AVIBVA 13 Tts
IVE0T9 0T FIAVIHYA £2 1dag°1s
Av8019 'ol 3I1AvIdvA 2L 1401°1S
AYA0I9 ‘Ql I1AVIHVA ? 1401°1%
T¥YR019 ‘01 3719vIyVA 12 i5
1VE019 ‘T IIAVIEVA 6 83
IvE0T9 ‘ol 3I1AVINVA 4 1S
S L9
3 001 MOTLINNg-31V 22 sans
IvB019 ‘eI 318vINVA 2 $Iv)s
12 9 6 f
3dag viva -- $IvLs
og ¢ €L 6l
138YY NOILYIIHIDIdS t NIVLS
Iv¥8019 *al 3IT8vVINVA ¢ s
IVE019 ‘Al ITRVINVA 6 S
Y8019 ‘Al 3I1avIyve € H
4
344l vive [CLERE]
y
738v7 1531 £ Hsnd
138vY IS [404
S %L f4L 0§]
138vT 39vSSIN 92 9S W
YL tL 8 4
IVBOI9 QT 3I18vINVA 84 r
YL €L 8B L
IVEDTI9 ‘01 319vVIBVA 1t r
vyt £L 8 I
IvE019 'aT IVAVINVA [3 r
¢ 4
3dAl VLVO -- ¥3931N]
8 vl
3 *qr NOTLINN4-I4v 62 FEREZ]
IvA0TY ‘avuyv TYNOISNIWIO-L *al 3I19viuva LT} B LE]
VA0S CAvy¥Y TYNOTISNINIO-L ‘0T 3II8VINVA 8 rTav)
2 22
T38vY 1S3 12 AWIVESL1dWI
b 4 Y2 %2 S
O 138v1 SISONSvVIQ 52 ung
< 82 92
—
7 3datl vive - 118
-
< SIINIVIIIN ONY SILNBTIWLLY “ON 430 IWYN

L¥0d 2y SILABIVLALY ANV 3ININI SN SSONI !

12

A.1 STACK

=SY0NYI INIONINDIS 0 “ON «SITLSILviSe

9 *SININYYR £0 *ON

3 =SININYVYA J0 *ON °D c SHOHYI NOILw¥IN3IY 300D "ON eSIILSItvLISe
e
WHO4¥Id LON ST L1S31 IONVE ‘LdINISANS 3II¥4-NON v HO IVOVINVA QI14I¥ISONS v ST Z°S 3FIAVINVA 40 LdIudS@NS W=
61 WIOWNN ANIWILYLS NI SCLINTLSISNOINI 578ISSOd)ININYY®S
“3INIL 3TVI4WO0D SYILVY LY G3GNTINI 38 0INOHS 1STX3 LON S300 BIVIdN «ININUVAe
NOTAVY3INID 300) ONINNO 0ILVEINID SIDVSSIW ONINNVS

. “NOTLTONO3 IATSNIIXI A17vNLNW ¥IANN 39 |
SNM AIWNL d0d 1531 °*HSNQG 1$31 SNI JIIND NVHL IWOW L1398vL SY G3INTI3Q 7 ON3I ¥VA IVE8OD :CALINSIBNY 3TBISSDd) e SNINUYA e

*NOTLITONGD 3AISNTIXI AIIVNLNG HIAND 38 LSNW 43
Wl d01 1531 *d0d 1S3IL *HWSNd 1S3IL SNT 3INO NVHL 3HOM LIO¥VL SY QINIJIQ r WVA TvB0I3 (ALINITBMY 378ISS0d) se ININMYA »e

©g3ISN WIAIN LN@ 2401 L1534 NI L3IO%¥VLI SY QINIS30 T WyA w809 :S(SSINILIITVAWOINT 3TBISS0d) e» ININNYA &»
*a3sn wIAIN INE 240d LS4 NI L3IOMVL SY 03INI230 F WYA Y8079 2(SSINILITJIWOINT 3TBISSO0d) sv OININYVYA e»
©Q3ISN ¥IAIN LNO ‘HSNd 1S3L NI 139BVL SY Q3INI430 P ¥VYA TvBOID :(SSINILITVJIWOINT ITBISSOd) we ININNVR oo

SNOT LV HINID 300D ONY INTININDIS ININNG 0ILVYHIN3IY S3IIVSSIN ININNVAZHONNI

1] = SONINBYAR 40 °ON 0 = SHOYY¥I LITYX 30 °*ON eSOTLSIAVISe

2IINIYIAIN-SSOHI ONTYNO O0FLVHINIO SIOVSSIW ININNYA/HONES

ot =SAINIWILVLS 40 *ON * O = SONINYVYA 40 °*ON L ¢ e« SHOUYT dvS 40 “ON oSITLSIIVISe
SSISATYNY XVAINAS TV4ON 3NTENO QILVYYINIY SI9rSSIW ININUVAINONND

g

A.2 ACKERMANN'S FUNCTION 13

A.2 ACKERMANN'S FUNCTION

Nopal specification which specifies Ackermann's function is given in this section.

Ackermann’s function as expressed by recursive equations is:

A(On) = n+1 (A-1)
A(m,0) = A(m-1,1) : (A-2)
A(m,n) = A(m-1,A{m,n-1)) (A-3)

Nopal specification is based on the simulation of function calls by means of a stack. itis
convenient to imagine that there is an array V of stacks, which is represented in the
specification by arrays TOP, LBO, and S. An element V(l) of the array of stacks is represented
by LAST(l) which gives the top of the stack V(l), LBO(l} which gives the second element of the

stack, and S(I) which gives the rest of the stack.

COMPUTE specifies the computation of the value of Ackermann’s function with arguments
M, N. To begin, values of M and N are placed on the stack with N being on the top; this is done
by defining the value of LAST(1) to be equal to N, the value of LBO(1) equal to M, and the
value of S(1) to be a stack with a special symbol -1 signifying the bottom of the stack V(1).
Top two elements of the stack V, alwuys contain the arguments for which Ackermann's
function needs to be computed at any point in execution. Finally, a single value is left on the
stack, and that gives the value of Ackermann's function for arguments M, N. The assertions

given by statements 15, 16, and 17 can now be explained as follows:

If the top element of stack V(I-1), i.e. LAST(l-1), is equal zero then it corresponds to
Equation A-2. The top two elements (p,0) of stack V(I-1) should be replaced by (p-1,1). Thisis
accomplished in the specification by defining LAST(l) to be 1, LBO(I) to be (LBO(l-1) - 1), and

S(!) to be S(I-1).

Similarly, if the second element (from the top) of the stack V(I-1) is zero, it corresponds to

A.2 ACKERMANN'S FUNCTION 114

Equation A-1, and the Ackermann’s function for the top two elements of the stack evaluates to
one plus the top element of the stack. This means popping the stack twice, and pushing the
new value on the stack. Thus in the specification, if LBO(]-1) is zero then LAST(l) is equal to

(LAST(l) + 1), LBO(l) is equal to TOP(S(I-1)), and S(l) is equal to POP(S(l-1)).

Finally, if it is none of the above two cases, action corresponding to the RHS of Equation

A-3is carried out.

After the specification, sequencing reports are included; they are: inter-test and intra-test
sequencing reports. Inter-test sequencing report shows that the test INIT should be

performed before the test COMPUTE. Intra-test reports contain sequencing of tests INIT and

COMPUTE.

115

A.2 ACKERMANN'S FUNCTION

(I)S s 13%4v1 Ll
Ci=(1-1)08Y%()~1)S)uSNS = (I)S 3513 2
CE=1)S = (I)S N3HL 0 = (L=-T)1S¥Y 41 3813 1
((L-1)$)d0d = C1)$S NIHL O = (L-1)081 41 3573 i
L= *MINIHSNG = (T)S NIHL §=] 41 SLMSY I
SCL=-I)ASWI*CL~1)0M*(L-1)S :3)N¥NOS 2l
(1)0871 :13% v} T
(L-1)087 = (13097 3513 ETY
b= (4=0)087 = (13081 N3IHL 0 = (L=1)1S¥vY 41 3513 L
(CL=1)S)d0Ll = (12087 NIWL O = (4L-1)081 47 35V3 E1
Woe (I)08Y N3ML (=@ 41 :LusVY 7
f(4~1)081°CL-1)4SVT 23)8N0S St
CI)LSYY 3 13%uv) 1}
b= (4=1)1SVY = (I)LSYY 3813 St
L o= CIDESYY NIWL O = (L-T)LSVY 41 3513 St

Loe (1=-T)LS¥Y = (I)LSVYY N3INL 0 = (L=-1)D8Y 47 3513 st
N o« (1)1S¥Y N3NL §=T 41 :L¥SY B 1%
21 1394V Cv®,_ S*ITONI*0EYLSYT_)SENS = T :(ysy "
MY £t
23LNdu0d LS 2

‘unas 31901 1

AIN I139WY NIVISAIN = MIN S LNSY at

VR LT 2=w T1ESY 6

N 139MVL el Z1HSY]

‘ulLs [

TLINT 1S3 9

23

(e)lvNUV ¥3IOIINY ZiSy?Y 120
(el AVUNY WIBIANT :p0@Y V3¢ y
fv (IND 1NG L1SYY *3°T) 0B ONY ASY) SININIII 401 OM) s/
fIvLS A3IN Ve

SC¢e) AVNNY BIVESES 130
SNNYMNINIY NIVE TWHON 3

w

~ "

cesctcee

CON LMLS

3002°03S=9NGIA*CoIIVNL 23IIYNOS 24IUNONCDIS*I00I%12IUN LS TIVAYS 2GITJTI34S SNOILIO MOSSIIONM TV4ON

fo LSIN4YS 33714 *1NdNT IIUNOS NOTLVIIIII34S LS3L TVION o/

L e ———— . et

116

)

’ INNYWYINIY QN3 Y

THIVISEINIVA ‘323441 S¥Ivicaiw NOTLINAY w2

TUISIINTe INTWA P (u3yeg S*15)=Wvdvd “3A=2da1 %49y NOTLINNY 2

TAIVLSEINIVA ‘(WIyys S US)eMVyYd *Fe3dhl 934 NOTLINNg 9z

fMIVESEINTYN <?

S(4392IN1 S'x)ewvavy ¢ IVLS S°US)=uVUYd *Ic3dif ‘usng NOTLINNY [

21IAs3NTYA *3e34a1 35wy NOILINNY [24

=z ‘ATA=INIVA “3a3d4L S3nug NOTLINDY £2

o ?I=3d41 *$ens NOILINR 22

Mm S, ONIKLON _ :95w 39vSsau L2

> I9SM = INTN4 ZwnQ Svig 02
3
L
1%

M Zunge 31900 6l

nMn 2€I1)087 233800 L8

w _ (IVITaN3 2p3syvg 13

X 35y s (N1 o3 3513 L]}

mnu INEL = CIDETONT WINWL (- = (T1)08Y 41 :pusy 8t
o~
<

n-pl-uruqa-wlzoaa.-pnn-n $3dunos (33

1

PAGE

=
=
<
=
-
-
-
~
-
=
©
-
[
-
-
-
-
=)
“
w
-
)
)
<
-
o
=
L3
e
-
"
-

-
=
-
[d
=
u
-
<

CEIGHTED A

A.2 ACKERMANN'S FUNCTION

:OFDOGOOODO

[}
IMmOO0QO0Q000a
)

]
:OODOOOOOQO

)
I1ID0D2,00QO0O00000

:OOOOOOQOOO

L]
[I-N-N-JN-N-¥-JF=F-R- N
1

1}
:Q—OODOODOO

’
[([-X-N-N-N-N-F-X-N- N
]

)
:DFQOOOOQOO

1I000000Q00LOQ O
]

)
1m0 00DO0O0D0LO0 O
)

L
(K= N~ N R N=N- = K== N]
)

+
100000000 O

]

VARIABLE |

TEST

1817

1

000000 OO

-00OO

0
0
0
0

PIAGNOSLS
VARIABLE |
FUNCTION
VARJABLE
VAR lABLE
YARIAGLE

CORPUTE
[1]

(o s il 2.

DoOoO0Oo

Q= O e

-000O

NEwSTACK

sus s

®m e O
-

LAST
T10pP

FUNCTILION |
SEIGNTED ADJACENCY RATRIR FOR NOPAL SPECIFICATION ACKERMANN

PAGE

-~

-9

'oooooco
|
XXX
)
]
ivoocoo©
Itoococoo
'
]
loooooo
[
o000
]
b
lPpocaoo
]
vooovo
)
L]
Io0oocoo
'
]
- E-X-Y-¥-¥-]
)
[
wooocoo
]
1
INLVWOOWo o
:
1
looceocoo
)
o000
t
’
iooocooo
'

1
(1= Rl o = o g
[}

woocoo
]

'

- = am o -—
wxzwxzZ
—“00d400
@ =t et) et et
<< -
-l) D
EX T EZX
<«3D5<x3>
L

w

= w wn
S wvaa D 4
® 20 @ <
- AN
-NMmen o
LR

1z

118

.

A.2 ACKERMANN'S FUNCTION

'

3

v

0

0

!/ 328n0S / TvB01S

1x31

NNVHEI NIV NOTLAVIIII)IAS TVAON ¥O4 INTSSI
]

L1]
o 0o 0 0 0 O

I9Su = INING

1IN

N NOTLM3SSY

3NavigvA

S3sonovie

Jdil

1100=7ss

VISAIN

o

EL L]

I 1S3L 404 ONISS3IION4 30 3IININBIS

[= = e N = o SR
CO0O0OQOOO
(= K = N=ga o No]
L= RS RS RS N =Nl
[=NoNsNoloNeloR=]
[=N- RSN AR
QOU:UQUU
JJU; = Tpe I I)
-

[2 2 N A 8

Jlaviuva
3I18vigvA
ERLAAR R LY
I18YTyYA
SISONIVIG
NOT) 83SSY
NOTLu3SSY
NOTLHISSY

XI¥1vM AINIIVPAY 3INL 40 SISATVNY
LINI OSN1IJNINB3IS 1S3L VEINI

17an3 ERITIETA IR T AL y

s IT1AVIAVA Tvao s y

081 378vINvA 1vE01]

tsvl 31QYT¥VA 1¥E0T9 y

wne SISONSVIO y

31ndN0> s £

AN 319vINVA TvEO0TD 2
INYN 1d4aL vy

3084 40 3ININGIS

31GvT¥VA 1ve0Ts 2

N 38vIdvA 1¥E01Y 2

LINT 1531]

I3SIVY NOILINAY TOBLINOD ¥O VA3 0

nul NOTLINNG T0WLNOI ¥O TYAI 0

d0d NOIJINN4 TOWINOD ¥O TVAI 0

Hsnd NOTLINNJ T0MLINOD) M0 VA3 0

01 NOILINNZ TC¥INOI ¥O TVA) 0

sans 1Y INYA NOTLVNILT 0

NIVASAIN NOILINNJ TOWANOI ¥O TVA) 0
YN 3dt1 anvy

0 0

b

0 0 0 0 0 1 3vavie

A

¥INIVY NOTAVILIII34S TV4AON ¥0¢ ONISS3IIONd 40 3IINING3IS

1 3 1
n ¢ ?
b Y 4
401338 x30N1
ANVY ¥43Q80 133A
¥3ono
LE L 2|
AIVLSAIN ¢
u ?
NS
ang 9
£030%78ss ¢
2000%7ss 2
L000%"Ss ¢t
a3 133
’" "W
i st
[L2
g fi
2 2
¢ Lt
401J3A X3IANT
¥3I0HO0 ¥OL1)IA
43080
$ o
Y 6
t ®
2 ¢
st ?
] <
2t ’
ot £
3 2
? '
¥OL33A x3IQNI
82080 ¥0133A
wyieno
17oN) 20

A.2 ACKERMANN'S FUNCTION

00O 00000000 QCOOVO O

/ 3J4n0S ¢ vBOIS 3T8VINVA sans

29%uW = ININd s$3sSoNSvVIO une
1x314 3dk L EL L L]

FLNdu0I LS3IL YO4 9INISS3IIONd 40 3IININDIS

0D0O0D00DOQ0020000000010200 3Ngviuva
0000O0O0O0OYODOODOCO0OO0Ss OQO0D0O 31aviHVA
D0O0DODODDDIDDONOODOVLDODDN Jlavidva
0000000720000 0001000 318VIHVA
0000000200000001200 3TIBVINVYA
00)20000)200000001¢220 IVAVINYA
0000000200000 00D0 4200 3V8VIYVA
000000O0CDOOODOOO0OCDODLL 0O 318vINYA
000DO00OD0DO0YDO0O00000O0L 00O 36vINVA
pDOOOOODO0200000000000 JlaviNvA
0000000D200000D0D1 00 {20 ITavVINVA
000000000000000O001L0 ERLIIR 3)
00J0000D00000014 L4 40O EREEINT]Y
0000000)DO0ODO0ODO0O00CO0O0O0O0L INavIdVA
0000000D00 00 00 PL94%t19104 SISONIVIG
000D000C00O0DDODOODODDOD0D NOILEISSY
00000LO0Y0OO0D0000000200 NOIL¥3SSY
0000000)YYO0L 000000021009 NOTLUISSY
00000000L000000000D00D NOTLYISSY
0000000000 O0CLOOOCOO0DODO NOTL¥ISSY
060 29SYE21068B29CSYE21
T2 S S S S S S S N Y §

XIWAVM AIN3DIVFOY 3IHL 40 SISATVNY

JLN4N0I SNIININDIS L1S3IL VU¥LINT

¢/ 1338VL ¢ vBO1Y 378viuvA AIN
/ 13%0VL ¢ B0 3TevIuvA]
7 13%VLI ¢ B0 378vINVA [

AIVLSAIN 33IWN0S
LELEERNEL])Y -
YLSAIN = MIN NOTLBISSY £300n S8

fw z13%wvi -
2 = u NOTLUISSY 000N S8

N l3suvi

9
¥0L334

aNvy ¥3040

17aN3
ERRL K]

ELT R

AN

d0d

HSNd

H

|]

401

1sv1

081

N

1

sans

wno
$0N0%" S8
¥370n"S8
€0%0n"ss
2000A"SS
Lo00N"SS

i
X3ont

133
LELD 14

Q2
61
[}
11
12}
113
L1
1)
t4%
(X}
4] %

- NN N O DO

120

A.2 ACKERMANN'S FUNCTION

1vI01

‘S W ‘401l ‘T 3)8Nn0S

087 :13%v1

(¢=-1)0687 = ()08 3573

1=(1=-1)087 « (1)08Y NIWL O=CL-01)ASVY 4T 3513
C(L-1)$)d01l = (1)0@7 NINL Oe(Ll-1)081 41 313
W o= (1)087 NIWL =1 41

Ivi01

TRIN 404 *HSAd ‘I 13)uNOS

$ 1399wy

Ce=-CL-1)08V (L-1)SINSNJd « (I)S 3873

(L-1)s e (1)S NINL O=CL-1DLSVY 41 35873
((L=-1)8)d0d = (T)S NIHL Os=s(l-1)087 31 EIRF]
(L~*QIN)HSNE = (I)S NINL (=1 {1

viI01

’s8ns :30wNDS
- I :1398v)
(e, S*17ON3*0081°1SYT_)S80S = |

¢ 3)4n0S / vBDYS
7 32408 7 Tve0IS
¢/ 3I8N0S / vEO1d
7 304008 7 IvB0IS
/7 3X¥n0S /7 IvE01)
/ 34N0S 7 Tve0
{ 3Jun0s / ve01d

/ 33¥N0S 7/ IVEOVS

W TP ILLH

NOTLu3SSY

va“1dTH8358N0S

NOIu3SSY

e 01 | WOW4 S3IAVY3ILI T L4THISANS

378vIdvA

NOTL¥3ISSY

378vIYVYA

37avIisvA

3vavIiyvA

378YIHYA

ITBYINVA

378YI¥VA

31avINvA

3vevivwn

£300A7s S

»000"7S S

1200"7ss

IsWwi

ELLLRY

A3N

d0d

LALE]

401

cl

i

’

6t

13

7l

1)

i

4

"

st

r

£

SSLuvis 1-d00N

zt

13

ot

121

A.2 ACKERMANN'S FUNCTION

I §1 1dludsens

f LI%¥v¥L 7 veoYd

w301

f3sIvs ‘3IneL ‘o@)_ ‘1 :3dunos
173 z13%v)

3SIVY = (I)17aN3 3513

INML e CIVITONI NINL L-=(1)0@Y 41

7081 *m *p :33un0$

1SYY 13%mv.

L=CL=T)08¥YY e« CI)iS¥T 3513

L = (1)LSYY N3IWE O=(i-1)180Y 41 33YV3

bO(L-T)LSYY = C(I)LSYY NINL O=(l-1)08Y 41 sy
N os CIDLSYY MINL bel 41

02

$1 340N 15vO

vATLdTuIsans

vA 14l¥35ans

NOTL¥ISSY

NOTLWISSY

1Y) SI 300N 1S3l 1-d007
P 314AvVL L¥VMNNS 4001

L LENEY T}]

170N3] 02 0?
1svl (] i 61
$J00% s L [i
2000n7SS [b {n

1

el

A.3BAND-WIDTH METER 122

A.3 BAND-WIDTHMETER

The main module BWM specifies the application of a voltage source with frequencies in a
range with a given step size to a UUT. For each application of a frequency, the gain of
voitages (ratio of output voltage tb input voltage) across the UUT is measured. A table
corresponding to the applied frequencies and the measured gains is printed out. The devices
are represented by means of abstract structures: gain measurement device is represented by
the structure GD, and frequency source by the structure FS. A call is issued to
ACCESS GAIN DEVICE whenever the value of GAIN, a field in the structure GD, is accessed
(before statement 24); and similarly, a call is issued to SAVE FREQ SOURCE in the case of

structure FS (after statements 16, 17, and 18). The assertions in the specification are self

explanatory.

AT At

A.3BAND-WIDTH METER

fCI)03Nd 13sNVy OL/7Ie(

LUBICNIVO A XS G Y uid® 097 CNLd% QY 2Y

; — : c v " —
‘W% aN3 2¢
73341 CLUVH) NOLLDWnY 81
323441 *3N¥L NOILINAY of
353441 *SAIS NOILIWNS 82
f, SNIHLON , :9Sw 39VSS3Iu R?
TOSW = LNIUd Zuna 9vIe 2
‘wnaol 21901 92
(I)atclyx z3dEnos §2
CI)NHD 203%ve C{T)A*CIDN) LUVHI = (T)MuI tLMSY 52
® *378Y1 ¥ IND SLINING WIIMA NOILINNJ S1NWH] o
SCIINLYY 333¥n0s ¥?
(T)a 139y (I)NIVS = (1)L :pusSV v?
fe "0Q3W¥0INI4 38 OL SINIWINNSYIW NIVY SISOV of
7Cr)oIny :334n0s f2
(1Y 4393wl (I)03IN4 = (1)X :1HSV €2
fe *0317ddY 38 0L C(I1)D3I¥I AININBINS SISNV)I +/
(I)a9 Yu1d 13%VL 1 = (1)09 " 9yyid4 1SV 22
2(1)497CH1d $1394VL €1 = (11637CuLd t1uSY %
2¢1)697281d 313948VL 21 = (1)09°2u1d :1HSY 02
£¢1)09 L uLd 1398Vl LT = (1)09 4¥id 1uSY 61
79 33IA30 NIVO %04 SHILIWVHVE »f
TCI)ZNT 2139wl 21 = (T)2NT :LuSY 2
TCI)UNT =139¥yL LI = C(I)LND 2188V L
NIWd ~ XVHd) o NIWE = (I)D3H4 :LuSY "
1 21394Vl g st
14097 1914 NI INI*D3¥ 4, 9SANS = T Zgysy St
INILS 17}
IBIVILVVHD 1S3 tt
tWna| 31901 21
139V} Yy = 91 SLysy i
1394 ve € = €1 ttusvy ot
t139MvL 2 = 21 ilusy [3
21394V} L = 11 2g¥sy]
L {T'T] 00001 = XvMWjy :LUSY ¢
NTW4 31358W) 001 = NTwd :1¥SY 9
‘ulls <
ZLINT 1831 1)
: 2H3I9IINT I2NT 2 e
S¥3IDIANT NI 2 €
“Iviy :v3¥4 2 £
‘(e)AvBuY IDUNOSTBINS 5S4 L VIO n
IIv3N NIV 2
SCe)AVUNY IIINIONIVS 209 ¢ 10 2
fe SIDIINIQ SV SIUNLINULS LIVNISOY o/
NG NIV WeON 3 ,
*ON LWLS ’
'’

03S=3N830°C*3IVUL*23I8N0S *243uXOND]

e 1S17d

$43002%143ux*sSTIV4dVS 31412345 SNOIL40 ¥OSS3IIOWd WJION

¥S 33704 *LNNT IINN0S NOTLVITIEIIdS 1S3IL TVJON o/

A.3BAND-WIDTH METER 124

- - -
- w w
- @ iy
- < <
& a o
NQ ID"000000QO NO 1000000 I2Q0Q
[} t
) '
-o :aoogoooooo me oGoocoocoo
. |]
- o ’DDDQQOQOQQ -0 10000000000
1)
']
-~ 1ID-~O0O0QOOCOOQ -~ 0000000 OQO0O
] 1
L}]
O AP0 0000 0 1,000V 000O
] 1
]]
- I0D-D000QO0O0O -wn IO0O0OOocODO0COGQOC
'
[M I
e IOr000000Q00QO - 100000000 O0a
' :
[}
-m 1000000000 -m IODO0O0CO0OO0OOCOOOQ
: :
[4 N IQE000O0OCO0CY -N 0D DOOOO OO0
= L] » []
-] 1 @« 1 =
e IDeO00000O0QO - I0O00O0CDOOCQOO2
x + z ' @
o t o '
- -0 I00CVO0O0O0ODO =~ -0 IDODODOCOOOOOQOZ
»- [] -] o
<] < | =
w e I"TOOO0ODOOOOOoOW > IDOCOCOOGO0O .
- [- t <
" [] - [-
-t 0 1FO00000O00Q = ™ 1ID0O0O0O0O0CODQOO w™
(¢)] ¥] -
w] w] -
& ~ IEm000000000A ~ IOCCOoODDOOOC W
“ 1) “w [} w
i : a -
- QO I"TUOLVOULOVV I ¢ I0LVUUOLLULIVONn W mnzxLn
< ' < t L3 D~ a
o [} o [} - < ZOXIEXT~rvem
g LN R -R~R-F-F=g-F-X- 3] sl :DDODDODOOO(x - D) e b Ry e
] = a
[} 3 o
L3 ¢ ITFOO00000000a + 100000 DO0Q0LOoOZxZ
o 1 o]
- | - 1 [
" INNODODODOODOO "m IDOO000D0D00O0DO0OO x
] 1= o Ed 1 - o
-] - t -
« N IDOOD=rer reremea N IDOWDO0O0OO0mrOy -
-] - + z (S}
< 1 <] = z
4 - 1000000 POLOX - 10000 CDOODOOWn w2
+ [} Led - -
-] » 1 w ©
I - - —— -——— o ———y, - W W W W
z " x o - ad O d d d i I
w R R R RV R W W W W W E W XX DDDDD
A N o d D d d k2 e d d WO L - - w W g
< OPDDODDID DDVIJDIDD DD B ora Tt et e e
- ZuaCe g FE R E R LR x o o@x x &
o I IR I R e R e -3 R I R I A R N =Y - Z %Dk«
< NMuaTcETTaxTEx< T XXX & & a O» > >»>» > '
L LN RSN « XA L DA - - a« H
o ~--a>»>»»®»>»>»>» >0 PEPEIIEIE > - - Qe ok
w w z « « < <<«
[d [od [XD JDODDD
z =z 3 VMwdOaDo020Q0
v w o W o o
- Ll et _——P WD WS D
- - w
) »
= QOO ™ ™~
x
-
3
>
w
o aoaooo [4
- wouw L N ST A A R VRN ¥
- LI B R T [V - - -
-« z = v @ - oo oo
e -«] Wty X XA - X a W - -~
ZXTOEE~-AMe D XEZXe- - aqaIax o » LT
-G O e -~ U O Y-S GV)
[
x O -
NN IR ONAD OO -Nn e O oo O w -
. - - a w o
2wz
O > =

125

A.3BAND-WIDTHMETER

3

39v4

21 =
4

LAY B
fxymd =
81001

INIW4 :
004

1x3t

1398v 1
=21

1398v1
=11

1394V}
= Xrdid

1399vi
= NIWj4

LINTD 1S§3¢

[=R=R-NoRo R N~ N=Nolol=goNa)
PQLLDO™= DT 0o wWwy
OCQO"~DODOO0O0O0OOOOoOO
OOrOLVO0OO0O0O00000O
OCrO000CO000O0O00D0

-t
~ s

'
-—-—0

-
=
- -

gLy

'TE]
[ERITY]
09 futd
a9 241d
e tuld

2Nt

iNT
8344
une

BIYALUYHI

INVN

WAE NOTLYIT41334S TVJON ¥DJ 9NISS3II0NWd 340 IININBIS

L2

NOTLHISSY ¥000=27S$ n y
NOT1¥3SSY £000""Ss L] 4
HOTLI¥ISSY 2300%7ss bl 2
NOTL¥ISSY 1600""Ss b '
80123
idii ELAL] ANVY LEL R
04 ONISS3IIONd 30 3FIN3NGBIS
DO0OO0OOOI3O0N INAVINVA vi
00000000 IIAVINVA $1
00O0CODODDDO 3718VI VA 21
0000DO0DO0O0CO JIAVIHVA i1
00000D0O0C0 ERERAS R A XVM4
0000GO0GO0COQ I1aviava NIWd4
00000000 $3ISONIYIQ wno
020000009 NOILBISSY 000" _Ss
041D O 0D DO NOTEBISSY $000% S
02000000 NOTLMISSY Y000™_S$
0¢l0D00DJ0 NOTLI ¥ISSY £070m_Ss
0000000 NOILBISSY 2000MR”Ss
L 210000230 NOTLM3SSY 1300™ S§s
6 8 ¢ 9§y 2L
W AINIIVFOv 3HL 40 SISATVYNY
LINI SNIONIN®3S L1S3L VHINI
379vTiyvA 1v809 £ Q02
I19vINVA 1v@01Y 4 L
I1AVINVA 1v8019 £ 21
318vT¥VA TvE0YY £ 4
318vINvA 1vE80T19 £ ’"
378YTEVA 1vE019 1 4}
3718YTNVA Tvaos £ b4}
318VINVA 1¥80Y £ 3
SISON9VID 1 £
1831 2 4
¥OLIIN
344l ANYY v3awo
118VINVA 1VE01Y [} [

3
A X3IONT
0 153
LELE 3

fl
2t
X3
ot

NN Qo

02
6l
8l
a3
L}
St
v
€1
zL

riowg

LI TSR]
wigno

ot

-

A 3BAND-WIDTH METER 126

OVO0DOVODVUOOIOLOOVOVOOIVOLD
" ~A
CQQOOVADIIHNIDDOIDIIGPO>ODD
Mo - e .
DOO0OODQ0OQOOO =~ OLD
moea
- 'OQODDOQOODODC’JOOODODOQODQ
-
0000000 JIrIVICLOVODOOOODQ
"o
O0O000000LODOODOVOLIICI IO
N)
~ .DQODOOOQPDODOOQCOOOQOCOO
<
VO0OOCO00QVUOIVIOUVLORIIDIODO I
LYR]
CUOOoOVVO0ITROLLUL20OLOOO DD
~N o b
~ ‘OOOCOQFOOC)OODODODDOQODOO
o
~ OO0ODO0O0OO0O00OD0CO00ODO0ODOODODOQ
-
[=N-N=N-N-RN N-N-N=F-N- NN No NoN- - Yo No Mo No - NS I~
N
~ 'OOQDFODOOOOOOODOOODQDOOO
~
00O *" 00000000 O00O000UOLLQLDOOD
N
0OO0OQOOO0O00O00ODODOO0ODO0O0OOOO0O
- -~ - -~ -~ - ~No
OCO0r 00000000 ODOO0OO0O0OOD0O
- - - - - - ~ o
woWw oW W oW ow CO000OVALOOLOVODOCDOVOOOL
Y T N T T -)
) . - = o L3 & = (3 DrO00000CO0DO0LROCOOOLLOROOTw
€4 U « « « =« « « -~
L] “w - (] - - - - [oRof=Yaelel-}ealofoNojaloNoleJojojofoNo NN leRol
= —-—w !
- -~ -~ - -~ -~ 0000000V OO0OULODUICITCUOIIIO
e @ o -
Lout - -t - - -l - b ~O00000Q0000OoOADOODDOOLOD O
w W o~ &« & « < -« Ll B |
N W L) z o @ @ - @ © COOUQLOO0OCQLDOOLDODOODOO0OOOO0OC O
a & ~ © © © © © o -mo
- o< - = - - - - - - - Po e PP e e e ™D I DG WD I U I D
- - 8 -* w v w w L] Ll "I B i ol ol ol ol oK o o o
- PO0O0OODO0OOU000O0Crg0OO0O0O0TIOOO
S - |
w o CO00OOOVOLOVYOrOoOROLLROIOD D
L~
- < 0000000 DOLArID~0VOLLO S
K o
[COO0O0CO0O0VOO0OVOrO00000LLOT O
< > w® f
z z " W 0000000000000 3Ier00VIOOOVOO ~
o © wow W W W W w wxE o~
- - [I R S e | I) wd DO0OoDVWOAOVLVODOVDIrDOIROrrDIDO O
- - L=3] @ -]] @ @ @ o o !
@ o« E3 < - - -« - - 2 =« COOOPUOODCOVA™ VOIEDDIOO UV
w w I e . =] R A
“ w « « & =« &« x = w o OO0V IO0O0LFOVOOVe TAO D
¢ »w « -~ - - « « - - Za« w1
- < a » > > > > > w OO0V IVOUVIUrIIIrTIV2ID
D w mot
¥ x CUODVDUOVIDUUTmrerrDO 00 VDO D O
[P VI
«» VDAPDVUYWVOIC2VICFIOWDIOVLD IIID
- -
-o
«
v e w o
=] o - -
(=] o w
o o - - ZrXZZzXTXTZZZTXZZITWV
» = x - ® J OO0 000 00 C WO W wWW.wwwHwWwww .~
1 3 4 - o« -« -t at v ettt b e v o od d d o d ol b o d ot
» v 3 [4 E - N o« zz e e~~~ ODILIDDDIDBD®D DD DD
L - o - - - - - — Lalk 3 EEXCEXXETEFTTXTEYN LS R SN A
YR I iwiviviv el S e I = Y g
VAN LNE T XTXTEERET T XE X
MBIV AN ANV N T €« X
LR R EREER NSRRI
[S) =) - e e e e e -
Lol BUANE BEVATNE T B o BN N I o
LOOLOD LWL e - Qe
DOIWVD IVU IV @ w0
OOUVODVLLOLOO (I
A3 33N BN EEIDS 0 Z = -~
sl © ~ @m0 = Nm [R R R T T B T Y Y - & W ™ NTX
- - - - MVTANABD WA BWNDD XX N m
VW ORI AN AR ROV e W e e e O
NN N O PO NN I N OO N
Lal - "~ L o (@) - ~ - T TN NN A
- - e e
L} - L) - ~ - - - - - - -~ - . ’ »

Txwwdg *NINJ ‘I :32MN0DS

034 FL3I%4VL

OL/Is(NIKI-XVKI) NIl = (1)0D3YJ
111

IvioN

fSANS :3IMN0S
R _ - 1 139wVl

s €O, BUICNIVO A X 09 yH1d a9 E Y14 0972014 09 L UL NI (NI*D3INJ,)SENS =
1

f 338008 7/ vBO0YY

/ 3)8N0S / vE019

/ 33yn0S /¢ vBOIS

/ 334n0S / ve0IS

¢/ 3I4n0S 7 vE0IH

{ 33¥n0S / VB0

/ 3)¥nos /7 Iv80ID

@

w

[

30 1 338005 ¢ BOVS

=

I 1x31

[

@] PIY4LUVYHI 1S3H

ww 000006i00000000000000003000O0

mw 0000000000000000000000) 000

b 00000000000000000000007000

Pes) 00000000000000D000D00000) 100

o 00000000000000000D0000D0YL 30

< 0000000000000000000000YD0 LG
00000000D000000D000000000800
02000000000000000000000J000
00600000006000000000000060000Q0
020000000000000000000007000

NOT1H3ISSY

3T8VINNA

NOT4¥3ISSY

404

Q00090000
[-X-N-N-N-J-N-NoNaRo)

3da 1

318YIHVA

38YINYA

37avinva

378vINvA

378YIHVA

3N8VINVA

378YIuvYA

Jraviyva

2300""ss
0L | WO¥34 S3ILV¥ILT I 1d4THISANS

1300275 g

132 L]

LA

€1

21

[

xXvid

LEL ¥

sens

EL AL

ONTSS3I08d 40 IININDIS

[=X-N-N-N-N-g-N- NN

0000000 OO

[~E-N-F-R-N=R-N-3-N=}

OQ0oOLUOOLOoO000

QOO0 CcOQ

OQO0OO0OO000 VOO

ERLAIE R]
318 VINVA
INAvIAVA
ERLRIS ALY
Javieva
378VIEVA
JIRVIYVYA
3G vINVYA
F18vr v
ERLANEE]

2

'

92

1 X4

02

L)

9L

st

£l

[3%

“sluvls L-d000

at

3

WOLI3A XIONT

LELR 1]

as
s34

CTE]
LUYK)
NIVSD
[LIRIIY]

09 guLd

IR EL
33080

' €
131
25
[3Y
0t
[X4
82
e
92
114

o v.u

128

A.3BAND-WIDTH METER

!

ELE IR |
X
(1)e3yvs

1398wy /

139wl ¢/

1399vL /

L139%uvl ¢/

1398v1 /

LIsuvL 7

3dunns
1394V
e (1)X

v8019

IvAaeId

Tva019

Tve019

Tya019

Tvaos

L3I%vL /7 vE0Y

fy1 %1
[ELTY)
¥t = (D

1
99 EuLd

23un0s
13981
9 yuid

33un0S
139%4vi

£ = (1)O87Culd

21 1
097 2¥14d
21 = (D)
LY B |
097 L¥id
11 = (D
21t
NI
21 =
(SO |
NS
[S

JJuNn0S
139v1
9 24ld

3l4n0S8
13%uviL
95 Luld

3lunos
1394vi
(1)2v1}

3dunos
139%uvi
(1)INI

NOTAMISSY

YA LdTHISANS

YA 1d1¥3s6NS

YAT1d4T¥IS8NS

vAT 1d1835808

VAT LdtH¥35ENS

vAT 141835803

vATL41¥dSENS

NOTLYISSY

NOTLH¥3ISSY

NOTL¥3SSY

NOT 3¥3ISSY

NOTLU3ISSY

NOTLHISSY

6000R7SS

09 y¥1 4

08 faLd

89 28Ld

99 ¥4

Nl

Nl

LELF]

8)00n"SS

L3100n7Ss

9)00n7ss

§I00m"Ss

y000"7SS

£300%7ss

(X4

[%4

€2

el

%4

(13

¢t

$?

L 24

[%4

2?

(%4

0?

6l

1}

I3}

"

st

"

fi

149

129

A.3 BAND-WIDTH METER

I §I Ldrudsens

¢ L3%VL 7 ve019

‘9SK « LINING

fLBYHI %3 ¢y ‘1 :334nps
LEEREERE 11T
(CIXLSCIIXR)LBYHI = (Q)Bu3

v

INIVS ‘T 33)unos
A f13%%vi
CIINIVY = (I3

/ 3dunos / Iveors

IR

/ 3IUN0S 7 VB0

7 334n0S 7 vBOY9

114

SI 300m tSv1

vAT1dI83sans

S3sQoM9vYIaQ

NOTLiN3SSY

VATL1dI¥dsens

NOTL¥3SSY

VAT 1d1¥3sAns

VAT 1dT¥I5ans

VYA 1dl¥3sens

VAT 1d4T¥lSans

it SI 300N iSyry t~dop?

uno

LLo0n"sg

0100n"s g

Nivs

319vL Luvuuns 4031

ISAN3 (-do0N

131 [41 113
N 43 £¢
6 (3 [y
] of¢ 133
3 ol 33
9 62 6?
9 82 82
S 11} ?

A.3BAND-WIDTHMETER 130

The specification for GAINDEVICE, given below, has only one modfun called
ACCESS GAIN.DEVICE. The modfun takes voltage measurements across pins (I1,12) and
(13.14). The ration of the two measurements delines the value of GAIN. It depends on two

funtions: VOLTMETER and MICROVOLTMETER to take the actual measurements.

131

A.3 BAND-WIDTH METER

 —— e

TIIIAIE NI VY N3 [T

323401 WIS NOLLIINNY I3

M=3dAl “¥WILIWLIOACUIIW NOTLIINNS 9t

Tus3dal “#3I1INLTOA NOILINNG 1

I=3441 ‘INNL NOILINNY LT

23s3441 *SHAS NOILINAY 4}

Syl=SVIT 41 4}

CIsSVYIW *C1 i

. 2T=SVYIW 421 14" 1N a
TLI=SYIW ‘LT id71mN 6

C_ONTHION, = gX31]
SL9SH 3I9VSSaN]
TL9SM=UNINg F]
SONIMION 9VIe]
CONIHLON] 331901 ?

SZAtLA 23N0S 13
NIV z13%uvL LA 7 2A = NIVY :pusy 3
T2A%LA 213%VL 3
€ (2A)BILIULTI0A = <cYIEl)) y
3 U (LAINIZINLIOAONITM = <21°LI>) :PNOD y
_ - ‘svIu '}
fOIVIE LINIVOCIND SIYICAND SICI®NND S22I°XND S:LI) I2TA3O NIVITSS3IZIV NN 400W 2
£33IA3GTNIVY 3TnqoN VéON 3
“ON iMLS

00002=3MI147I¥=90@30 n.uu<-p.~uu-=ou.~.u-.ox.-ua.u.ou.—.u...-a_4;<» SE3T41334S SNOLLJO ¥O0SSIIONd TVION

fo LSIT4VS 1304 *LAGNT IDUNOS MOTLYITSITI34S 2831 TvaON of

ek s &2 2t 30 T]

o
©
- -
w -
a0 378vidvA NIvY £ ? ot
L9 = (NIWd SISON9YVIC 9NIMHIDN 3 £ 6
LA 'zAa t3dEnos
NIVD 313%WVL _
LAZ2A s NIVY NOI L¥3ISSVY 2J00% s 2 4 3
IVI0T 378vIgvA LA L s 2
vi01 378vIiyeA A 1 y 9
W01, ERCIT 1L (¥ 0 ol 5
I 37avIiyva 21 p] [} b}
301 378vINvA £l 0 [€
WI01 31avIkYA T "] 2
LA 2R s139%V) -
(C2A) AL INLTIOA = <ol ‘CI>)9 (CIAILIWLITOAONIIN = @I *LI») MOILINNTNOD LJ00% ws 0 i [y
¥0133A XIANT
1%34 3di L IMYN ANVY 3040 1)33A
- 43990
NIV9~SS333v 1S3L ¥O4 SNISS3IIONd 340 3IN3NDIS
fod . D0O0O0OODOODDON ERCIAR LT 1o
W 0000000000 378vivvA - B
[DO00DODDDODOO 318VINYA €1 @
w D0D000DOODO 3BVINVA Yo
= 000000000QD 3VavIuva NIV 9
I 000O0O0O0ODODO L N 38VINVA (€ Y
= 00000DO0DB 11O 370¥Ty VA Ay
o DODDODODDD S3ISONIVIO svIntow §
= 0000t 0O02LDN NOLLUISSY 2000 ws 2
a 0000011 L 2100 NOTLINNTNQ) 1020”8 us |
mm 068e9¢sYyYTE2l
[ee) 3
= _ KIWAVM 4INIDVFQV 3HL 40 SISLIVMY
< NIVSTSS333v ONIININGIS LS32 VNINI

A.3 BAND-WIDTH METER 133

The specification for FREQ SOURCE defines a function SAVE_FREQ SOURCE which
specifies the application of a frequency source by means of the function FREQ GEN. The
voltage and frequency to be applied are specified by the input parameters. An error is issued

if the parameters specify a frequency which falls out of range of the instrument.

"y .

134

A.3BAND WIDTH METER

00051 =3NIT*

2 (IINVUEALDIBSINIITBINY

L(d) I9INVY 40 LNO KIN3IN

204 139wVl
2242439042

21421394vL

£309NyY 41390WVL
2 = JINVY NIWL E£4cDIVA

u.ou.-mm.uasw..n.wu<-.~uu=a=w.~.u.-oz.awn.uaau.—.wx.._m_ds.n

2334008 0304 ON3
f2NT id 1NN
ZINT L4 LN
fg=3di1 *N3ISTOINL NOILINNY
8¢y 3I9v¥SS M

o34, = LY
0384 =

L3uvivd

SoSw = ININd

.

‘10

oL = €4
004 « 24
0004 = L9
‘D¢ I9NVY

0 = I9INVE 3STV]

sLe svile

231301

LESY

LYySY

Lasy

148y

3 24>03¥3 41 3573
L = 39NVY NIHL 24=¢n3INg 3 L4>03¥4 41 T 1YSY

x €2NIYINI> NAIWNL Q<3IONVY I :FNOD

IM1LS

SEAND SETINICNNY STUNI®Tvay S3AtIvds s:p3843328008 0384 JAVS wnjoom

£3)¥N0S B3I W1 IINAD4 VAON

EAY
St
i
tl
2L
‘L
33
X

o1

*ON JWLS

2031413345 SNOTLIdO ¥OSS3II0N4 IvION

fo LSLIAYS 33704 *LNENT 32305 NOELVIES1D34S 4831 TYVJON o/

——— SSRGS T

r
&
¥
!
|
_.

-5

e

135

A.3BAND WIDTHMETER

‘39Nvy :3)uN0S
0 < 39Nt

o344 °*3IONVN ‘A :3)uNOS
Anuuz<x.;.:w¢‘—zwu;¢wx‘ L ¢ZNT *UINI>) NIHL O0CIONVY 41

V301

TL4 %29 €4 ‘e3u4 :32UNOS

3ONVY :139¥vL

0 = 3I9NVY 3513

2 = 39NYH NIML S4<DIBIIZI>DINS 41 3513
L= IINVY NIHL 24=coIuiBLi»didg 41
I

1v307

1va01

301

1301

v301

w01

164 :13%WVL
oL = €3

24 :i3%VL
004 = 24

19 :13%MvL
0ogoL = U4

1x31
“e3ws” IAVS

0000000000000
[~ X-R-X-A-N-F-F-J-N-N-X-N-N_N¥-}
OO0~ 00000D0O0DDO
QWWOJWWDWOOOoOLOLOo O

-t
- }
-]
-~

NOTiW3ISSY

NOTLINNENULY

378YI¥VA

NOTL1¥3ISSY
ERISE 2L
3aviyva
3aVINVA
3VavivvA
378YI8vVA
ERLIRE 1))

378VINvA

NOTLBISSY

NOTL¥3SSY

NOTLMISSY
3444

LS31 409 9INISSI)

000000000
000000000
000000000
000000000
000000000
000040000
000000001
000000000
000000000
L 000210000
000010300
000020000
00000000
0040120000
0000 210000

L0682 PSS Y
L
X1UAVE AINFIVPEY

Te3u4” IAVS INIINI

£I0CmTS S

1300n7Ss

39NV S

2)00"7Ss
(¥}

23

€4

INI

2Nl

LELF]

9000"7S S

S200n7SS

YOOOR“SS
NN
0%d 40 33N3Inpis

IBYIUVA
318YIHVA
318VYINVA
EREEIE RN
3TavIdvA
3T8VINVA
319VYIEYA
178YINVA
$3ISONIVIG
NOIi W3ISSY
NOLiWISSY
NOTLY¥ISSY
NOTL¥ISSY
NOIL¥ISSY
NOTLINAPNDD

P00V O D00 r~ro0O
QOO0 I0~,rr00D00

£21

INL 40 STSAUNY
noas LSIL vuyni

1 11}

0 *l

0 ’
401J3A
ANVY ¥3qu0

INT
N

L

29

€1

®a8s
ERLL]]

A

teQ
J000"SS
$000"_s$
Y000""s$
£000%75s
2000%_ss
1000n"ss

"

tt

21

it

at

3
xX3ong

£33
H3080

Si
"
£l

NPTV U~ND O

A4 FILE INPUT-QUTPUT 136

A.4 FILEINPUT-OUTPUT

This example illustrates the updating of an inventory file, named INV, based on
transactions contained in a sequential file, called TRANS. A record in TRANS has two fields:
KEY and an array A. A record in INV is found corresponding to the KEY in each of the records
in TRANS and is updated based on the sum of the corresponding array A. General functions
ACCESS and IACCESS are used to read, and SAVE and ISAVE to store, records from SAM

and ISAM files respectively.

Corresponding sequence reports and Equate-atlas code are given after the specification.

01 N3 12

‘3=3401°uNS INNJ 02

f3e3dat%58n0S INN4 61

?, ONIHION , 39Sw 38ysSan al

f9SM = ININ4 :wnQ 3VIQ L

‘Wnel 31901 2

‘(1)a3¥ 3d¥n08 St
CI)NITAINT wad 1398V (IDA34 = (I)NITAIN Wld ©Lusy 13
(1)07 070 33005 vt

()07 ®3IN 21398¥L (1)07070 =« (1)Q"MIN : jysy L
2¢1)327070 z338n0S S

(I)IA3N 21398¥1 (13270710 = (I)23 MIN :jusy £t
2¢1)870304CI) I¥ANNS 2328705 21

(1)87A3IN 2139%v1 (T)IVAWNS » (1)87070 = (1)8 AIN :jysy 21
- “(1)43% 23dunos 9
CI)UT 0107 ¥L431398YL (IDAIN = (I)NWITOV0 Wid :imsy L

f» 81 Q80D3¥ 31VY0dDY o7

HAYELIREFTTT oL

(I)% 21394y} (IYA3IN = (I)X :pasv i1

f¢r¢IyY $3)un08 [

(I)IVAWNS 139MV (PCPIIVINNS = (T)IVAWNS S iysy 6

f» W GHOI3Y QVIN ¢

fPIL3%UVL (D4 2T¥.)SBNS = £ :lysy
71 139wyl
Cof W*UI 010 MITAIN* %07 010%) " ¢0%A" 010
CIVAMNS VOAIN NI A0 MM HITAINT LA A RINSITATINGETRIN,)SENS = T I pysy
’Svin
1$31

v 3

3714 IANITmIN L Y20
v3y 2070710 ¢
*Iv3w 3700 ¢
“1v3N :87¢10 §
"CodAvulyY QU0DI3¥ Z¥IT0Y0 2
3714 ANITQID 1 0
(02) avyyv Iv3I¥ v ¢
“HIOIIND T 1dx ¢
(e)iviuy OQNOIIN 1w ?
3714 snvyl L Ve
01 3345 40N

ENNNNNMAM MM PPN O

"ON 1wiS

[
)
Q
5
Q
oo
2
a
P
w
=
.
<
<

TIV=9n830¢C=3IVUL ZIIUN0S 21 3uXON BIS*I0D° L IIUN LS IVAVS QI TITDIdS SNOTL14D 80SS 33084 Tvdom

fo L1SIT4VS 23714 *1NdNT IIUNOS NOTLVIIITI34S 4S3IL \VLON of

138

A4FILE INPUT-OUTPUT

N
b oo
L]
A Y
- 1
e A3N ERLTAR LR L LRE] 2 vl v
ITAIN JTavtyva Y3019 b4 21 £
CILELS I16vI¥YA 1V@019 2 gl 24)
¥17010 Wid ERCIZETANRL L RE] 2 M) te
¥0133A [ELLT
JuVN 3441 ¥I0Wo N¥DLIIA)
¥30%0
i 39vd 01 NOT1VII4133dS TVJON ¥OJ INISSIIOBI 40 3IININD3IS)
2 31AyT YA 1¥ADTY z ¢ 04
wng S1SON9VIO 2 b t
SNYULSS3II0NG 1531 ¢ [} q)
9" a0 37avI¥vA Tva0s 0 4 ¢
37 a0 318vIdvA 1vaols 0 it F]
8 010 319vTuYA Tvao19 o 6 S)
(%3] 3I78VINVA 1vE019 0 9 y
v 319¢THVA 1v@013 0 § £
Wns NOILINNJ TOBLINOY ¥0 VA3 0] ?)
. sans 38V INvA NOTLVHEILL 0 1 §
¥0133A x30N1
JuYN EPTYY ANVY ¥I0H0 HOL)IIA)
83080
i I9vd 01 NOTLVIIJ1)3d4S IVJDN ¥0J 9NISS3I0Bd 40 3ININDIS _ _)
0 0 0 0 0 0 0 9 0 3 O 3 3 0 O3 1 31Rviuva aY MIN_¥pd [
0 0 0 0 0 0 0 9% 0 71 0 0 3 0 J | 319viwvA IR
0 0 06 0 0 0 0 0 % 0 0 0 0 + | 379vTyvn ¢ ¢8I0 [
0 0 00 0O 0 0 O 0 " 0 O 0 0 O | 3NIVINVA PILEL] 21
Q00,0000 09 £ 2.0 .2 0.0 i) 3Avien tRCALIY
$ Y £ 2 L 0 6 8 2 9 ¢ v £ 2 4
| S S S S S §
i 39vd 01 NOTAVIIJII34S 1vdON HO4 KI1Nive AINIIVFQY OILWOT 30
0 00 0 O O O O ¢ 7 0 0 G 0D 3 1 319vinwvn a_m3n 1)
00 0 0 0 0 0 0 0 2 0 0 0 0 & [I1Aviavs _ aTet0 s
0 0 0 0 0 0 0 0 0 3 0 23 0 0 0 1 31avtuvs ¥l 010 ¥id]
¢ 0 0 0 86 0 G 0 0 2 0 0 0 0 O) 3VPVIBVA]])
QO 0 00D 0 0 0O O O 2 0 O 0 0 & 1 37°viuva A3 9
¢ 0 00O O O O O 0 92 0 0 0 0 L 1t 31RVINVA v s
0 0 00 0 O 0 O 0 2 0O O 0 0 & [wmortIwny uns ’ P
0 00 0O 0O 0O 0 O0 0 3 0 0 0 0 & 1 378vIuvA sang 1
0 6 0 0 0 6 G G 0 0 0 0 0 0 2 Is1sowdvis wna ?
rnum-cm-ow--m--m--ma-m--m--u'-m-m--m-,mw.u--_ 1831 SNYB1S53300d i P
S ¥ ¢ 2 + 0 & # 2 9 ¢ Y £ 2 |\
. P

3 %vd OY NOILYIII1I34S TvdON HOJ XI¥LAVW AINIJIVFIOY 0I1N9T IV b ‘1|

{

AAFILE INPUT-OQUTPUT 139

t [-F-F-R-N-J-N-F-Y-N-N-N-N-R-J-N-Foy- RN~ ¥ NN N~ F- NN N NN]
¥ "o -
t QO0O0QOOO0DO0O-rO00O0000DCOPIPOODILDOO
"o - - -
‘ ; 00QCO0000000000RLORO0O0TIO0OTNOLOCOOO W
Mmoot
| [-N~E~-N~Roi-N-Nogo X Nol Noi=NoNoN=lale oo leNag-N=No R Nal- e Nl
~ o ~N -
{ [~X-R=-R=N-N-No-loN-F-NoN-_JoRoloRoleR-g-NoYoNololoNeNoNoReNoNaNag=)
~ o
t 00000000000V OLOLOO0TVOOOTO0TOQ
| ~No~ -
'QQDOQQODF‘OQOQDQQOQGDOOQQOODOOOOD
~N o
! NW.QQQQQODFOQQDOOQOODQOODQQOOOOOQOQ
: 0000000000 ELLO00O0OLUO0LOLODLODDODTOOR
~ -
QOO0 0OCO="0O0000O0OO0LOOOOOD0O0ON0LOOOOOO
~on
'ODOCDDDOQDDOOOOOOQOOOQOQOOOOOOOO
~ o~ -
d QOO0OQCOYrOO0O000OLOOLORODOLOIDOLO0OCOCOO
~ -
O00O0C0ODO000O0CO00COOLOO00LOOLULDOLOOD>O00Q
~N O - - - -
[-¥-R-X-R _N-F-Y-N-J=N-N-F-N-NoNoN-N-RoRoYol=N NolaleNeNoloNeNola] - .
. -o L "] w w
+ OO0, 000000000V ODOOCODODO w (%4 e (4
- o - = 3 «
. QUQOOO000O0UO0O00OOTCO0ULOLLCOLRULULUAEODLVLOO L] 2 2 2
-~ - z o o o
1 ! [~N-R N-N=N-JoR~N-R-j.N-J-N-J-Nol=l-N=olo-F.¥-R-NrNoRoNoNo o)) - (] ©w 4]
. ~-wo «
i a OOO0COOoOO00O00O00000LODO0OLOYDO00DOOOO [d -~ - -
L] Lol o - L]

) COO00O0OVDODO0O00ODO0T0OOCODO0DDO0VNTIRTOOOO » s - -
> - - w - - -
wt Or0O00C0D00O0O00O000DO00O0DOYADBO0O0ODODOOO (%3 @ o @
z -, o = o =]

' v FOVULULVOLUVDOULUOULUUOWWYWLULUODWIDWWRUWYDOILY « - - -
-« zZ "N a w [w
- < w 0000000000000 O00O00DOCOODOO00DOO0
a o -) -

-a AR AR AR OOCODOOVO00ORO0DADULVIDIO wn
B O e - w
" < CO000COODRCOLO»OOUOC~CDOOOOODDBIOOO
WK o
o [~ X-R-N-N-N-N-N-Y-Y-F- RN N-N- o NN NN Yo -l N o Yo W= N = I N - W I~ B
o » -1 L=}
@ W OO0 O0O0AO0Drr000000O0O~00DOOO0O0O0 -
a8 x ~] w - L)
™ 00000000000~ ~LO0DeEOoOO0RNO0DODIOO0d W W 4 - -
$w oI z . o @ ©
& < (= YaNololeNolloNo o ool Ji-Nejw}eol joRrleoleloR-Yol =R le o NolieNs) L - - < -
N] “w - - - -
g QOOOC0COOO000OLrErO0DO0O0~00000DODOO0DO0OOOOO " = ac ac
X =« -) "] - - -
w w VOOVOUOO00OO0rrr r0QO0ROVO0OVWROIIVIID w » > >
-4 = W Lall} o
@ X 0000000 QCO«~0O00OOCO0OOLOLVOORODOVLVITOO x
< we N Y
-] JVOIOO0OODOOO0D = DDO0TOOO0IDOV0UUOTIODTIIAD
3 w e -
< - o
> "
w v w
-d - (&)
< “ z
£ < - xxTx2zTZTZTZXZZITWN w w ©
o @® J OO0 OO0 DO W W §WwwWww W wwh ww i ww o owh W ow w o = w x
o -« e ettt) d D d d D d o d ddwd b A d b d D b2 d D - @ 4 -
@ z z e e e = = -t DD DI DX OIDDDORND B DD OTD DD DI W z 2 =] =
- o & X O & & X & t« T o€ K &« A of &« & f & of A & f o X of & X o & « o w v w -
W ar LA e bl s ke M MM WB e SN et e g et ot Y Ry ey e % Pt N e g ¢ T4 e e
MBI AN ATV E KX X E XXX XX XEET XEEXEEXT XX XTI X
BVNNBITNVINN S CELELCL T LR T YL LT
~ T C R ACOIIIEIIPIIIIP TIPS RDIPTDIID D
-
= -« z o (=} 2
- - - -
- N TN L]) o
w Coco0oo) » » >
- Dol Ja -~ - w = X o X
1 : CLoo0o - OCnpodwwoaux Ve e L3
! ®» a8 =2 w > L I U S R R R S I N B | x o
1 « 4 £ cosrOoIOoda < oo w - - ©
I E X% 51 2 2 3w Ll I I BT ROV Y PER o W oo - - ~
R R M= T VNE XU LOZOZOZAGT~OOX X o w
o »
w NI URSDOCODENM AN UNRR O NP N O RO~ « ind
| - e e e e T e NN RN N N N A e - e ~ L)
- -
- o
o» =~

Qo
- 4 ~
-
1Y
f 338N0S 7 w8019 VYA 1dT¥ISANS ¥1- 010 1] 62 L
/7 1393vl ¢ 1v8019 A 14T ¥dsANs NI aIN WL d 9 32 Y
- - -)
7 1398vL 7 v8019 YA 1dINISANS 817070 u1d ? 6l 1
-)
¢ 1394yl ¢ 1v8019 YA T E4TH8356NS x ? Bl L3t

13 ‘I 3)8N0S
WITAINTHLD S1398VL

(1)431 = (I)¥I mINT L4 NOTLW3SSY 6300 WS 1 6 1
fa3w_ *1 :33yn0Ss)
HITOTI07WLd _I139uVL _
(1)L3% = (E)¥ITQV0 L4 NOTLN3SSY €200” ws S 9 2t
)
Ta3n 1 :3)unos
¥ I13%yvL
(I)L3x% = (I NOTLHISSY %100 wg 4 L] 9%
¢ 374n0$ 7 w6019 YA 14T¥3SANS 132 y Ll a1
7 338¥n0S 7 ¥E8019 vAT1d4THMI58NS ¥ 1 L2 6
s 0L L WOM4 SILVHILY T 14IMISANS 3SL¥VLS L -d00) !
307 378vIdy r ? £t ?
|-
>
Q. IvI01 378YIHvA i ? 2t L
[
2
O £sAns I3)uN0S
—_ [BEEFELTLN)
W (OL*,2:v,)880S = NOTLHISSY 230087ws 1 2 s
P4
wi 258N :3)¥AOS ’
~ - . _ . . I 31393vyL
U e IVAMNS Y AT R HT T A0 Hid I RINTHEA ETRIN' I RMINCEBTAIN,)SBNS w ’
< 1 NOT1M3SSY 1000 WS ' 1 s
<
- r 4
? 3)4n0S 7 IvBO1Y ERCIZRT] ani"evo0 0 of y

141

A4 FILE INPUT-OQUTPUT

r SI 14183500%
I ST tdradsang

/ 3)8100S / Iya0Yr9

/ 3)8n0S 1 ygo19

f L39%%¥vL 7 yg019

79SW = | NIN4

‘a” 910 *Ivamns ‘T :3junos
_ B%IN Q398w

(I)IVAWNSe (138 @10 = (13g mIN
IvIN

£y ‘uns *r ‘1 :33uno0s
IVAKNS S p3eyyy
(PP) vINNS = (1) Iynwns

/ 334005 / yao19

7 L3%VL 7 a0

/ L394VL ¢ ve019

“nuoao- LR § 3x8n0s

_ OTMIN Ii3oyvy

€I1)0 810 = (1)da"miN

uuuadau ‘T :33un0s

IR JLEL 139uvy

(1)3747% = (1)3 7 n1N

7/ 338N0S 7 ygo19

/ 33800S 7/ Ivgo1d

¢ 33UN0S 7 veol

92
'4)

ai

S1 3a0N 18v¥O
SI 3d0n 15¥

318YINwA

YA 1dT¥Is0ns

vA T LdIadsens

S3ISONIVYIQ

NOTLiH3SSY

LW PPILLT

NOTL1%3ISSY

D1 I WO¥4 S3IUYHILT r 1d18IS8NS

vATLdI¥Isans

YA 1dT¥ISans

YA Ldlgdsans

NOTLu3sSSY

NOTAYISSY

YAT LdTyIsans

vAT1d4T¥Isans

VAT 1dTudsSEns

92 st
[s1

ANEITRIN

W1 mIN

RCETY

L LR

900" ws

RLLY LEY

LT

a mIN

I mIN

B3I00""ws

23007 ws

[AT

R RY)

8" e10

3

n

0

300N (Suly 2-4031
JAO0N 1Sl L~d001
319v1 LavywwNS 4000

TS0%3 | -400

2¢ 2%
[R1 ‘f
12 2f
ot 6>
9 k4
2t l?

YSAN3 Z2-d001

1Y 32
S1¥vLs 2-d400)

i St 5?
t s2 92
i [%4 £€?
] 2?
I3 (%4
v2 0?
22 61
02 [1}

142

$ (2) ,8-m3IN, *USIT *IvwIDdI0 3¥¥TIIQ
$ (2) .8-070, “1SIY *ywlId¢ 35vid30
s$ (2) _Hi-010-¥Ld, 15TV *Ivywidlc 3INVII3a)
$ (2 .31, *1STY *vwld32 34¥1330
$ (2) .A39, *1SIT *vwldIa 38VvI)IC
$ (0L'2) v, “1STY *vWId3a 3M¥1)30)
s S3T8vIEYA TvAOTY GINIS$TO BISN WO4 SNOTLVYNYIIIQ 3
% wsfe CLTI MOV SAS, *L3ea, *(2), 0I0713°SkS,
SalBf w (L), NI0TI°SAS, ¢ _IWIici¥d, INIJ30)
1 $ SNOTLINIZIC0 ONIVM b]
[SNOTLIINIJI0 LINIOd LNN b
. $.0.8 ¢ ,357va°Sas, 3INIL30)
t .1.8 % _Inypeses, 3INT430
$ 1 ' .S1S31p°SkS, INT430
$ 1 % _sOYlagesis, 3INT43Q
$.10.9 * ,034d47u8°S45, 3INIII0
$ 01,8 * ,031S3L°S45, 3INT43Q
$,00.8 * _a31S31 LON"SAS, 3NTJ30
$.10.8 * _@3123713S LON"SAS, 3INT4#30
$.0L.8 ¢ _0313373§°SAS5, 3INTJ30
S evs SINVLISNOD) ees]
IVLIOIG 3wvId3g
TviI9T0 Invidle
IVLII9TE 3yvrde
TvWidlo 3sviIde
MR ETTARET

$,13313g°sus,
s .31viseSAs, ¢
$ _NFACSAS, *
s ,I*S4s, ¢
$ (9),.23071)°81s, *1SIV ¢
$ L3MELTSAS, _wIL*SAS, ‘TwvwlJ30 3INviIdIC
S _9vV4-LUSY SAS, *TviI910 3avIII0
$.9Y14°SES, v I9T0 3IMvII I
E (U, 9YI~1STLoSaS, “USITV *TviI910 3wvid3ag)
$ (L), FNOY NI S1S342°SaS,_ *4STY *TvwId3a0 awvidde
$ LINUNTSAS, YTwuldI9 3Jyvidae
§ . (WWNG°SES, *TvuIdIn Iuvidae)
$. IMTL~0°SkS,. *TvNId3a IgvII3G
$ LINTL-S°SAS, *Tvwld3g 3I¥vIdIQ
£ (L), OV Va-9vI0°SasS, “LSIY * vy I9Ta 3uviIdda »
$ SIVOVINVA WILSAS 40 SNOILVEVIIIQ
H

| S LuN0,
*ss SISONOIVIQ oo

L SNYNLSSIIONA,
sse SIANAON 1531 wsve
LE L1} [¥LIL
3 $ 01, WVN9)¥d J1VIN] NIBIG

A4 FILE INPUT-OUTPUT

143

$ 2= ,1°1, SOt
1 otlL 4318 D109
$ L= L,
$ 050N 41 SOoLL d43L1S dto09

§ L3NWL"SAS, 03 _83ILILYTA®SAS, I¥V4w0)
$ (LHILTLYIACSAS YLON = _MILTLINIASHS,
$ N3HL | &8 10098 N¥HL L = _L°1°°S, ¥o4
$ L3ISAvycsSasS, = _MILTMMIACSAS,
$,INVWL°SAS, = _L"J-aON3,
$ *130¢ INIHVYd ¥ S1dIv3ISaNS w04 3G0) ON 3
Sevevvrvavsravsrenvens SSAOVID) 2000%-w/S wHOS3IAYRess)
$ *138 iINIY¥vd ¥ S1dINISENS ¥04 300D ON)
Sevesssssssssve svses SSMOVI04 LO0OM-N/S wHOIIAVAeee)
$,INIL*18d,%. LY _SNVY¥1SSII0ud, ",
w JUNG3J0¥d 1531 O0IHILNS see 0OOLL 4315 B3ILIY weew, ONDIINM
$.IWIL°SAS, = _IWIL-S°S4S,
$., JWIL®139, Wy04%3é
g ,INML*SAsS, = ,9Y¥1i-LlusSvy sSis,
. S 3INMLI*SAS, = _9vT4°SAS,
5 .SNYNLSSII0Nd, *3UNAII0OUs INLJIQ aoti

R L R N R YT R Ty Yy Y N Y YY) se)
Sesvesssrvronsrvvsse SIS EVI IV EIS SN IO NI IITINI VI IS SISIIRNIIOINS)
$ SJ)oud LS b]

Srsous IV USSTERIIINISIIOTTE
CINRIISIIIVISIUIIEIIIIR Y

s e
*n s

VIS SIBPEIOIIPIPIIVSIIERIIFINSRS
[EI RIS N NS NI NIRRT N R NY] se S
$.WNa, oN3
$.03023713S°SAS, = (1), 9VV14-9VIO*SLS,
$ o INIHLON . QuD)3W
$. WNO, *IWNE3IIONd INT43IC 00"y
ﬂ"'l.'.'.'...'.l.lCCCIICII.II....‘I..ICCI‘C.IICC-I.1."..I.I..CIICII.’C‘CICU
ﬂ.".l.l‘.’.l".."'C..'.‘.C'C"I.I..IQ..'..III.C.CCI.C.III'.II.'I‘CI.CCI‘CIU
$ SII¥d SISONIVIC b)
PO PG IBIIIBEN RISV IS ..FI"".'C..CC'..“I.'.CI..'CI."'.’.."C'.C‘.'CIU
P PIPVPGF VTIPS TIPSV IDINCITITIOOIITII ST OITIRV LTSSV IN IS IBIEINGRIRIGNIIS)
$ «8I14dN, 30ANTINI

sssvsssssvey)

ssseesve)

Sese
Sewe

13
$ SNOILINA4 31V GINIH3Q BISN

-
“w oo

€ _1°1-0N3, *TviIS81Q 3¥V¥III0
s ,10°230°Sas, *TvuNld30 3Iwvid3a
$ (2) L4 AVANNS, *LSTT *vwId3e JuvIdIN
$.btr. *vMIdI0 3¥vIIIC
$ _1°I. *vMId30 38vid34
s ,3WIl*239, N3
$ (£).00M2°84S,
¢ (2),NI0T13°SAS, 509 ¢ (L) NI0VISAS o000V = _3IWIL"SAS,
$ MI0VI-SAS *(1IV (1) WIONI°SAS, 3wil)ovIy
$,3INIL® 139, *I¥NAEIIONS 3ND430
$ SINILNOW RLTTILA u3lsSas)
$ (2) WI-MIN-ULE, ‘1STY *vMID3I0 38vIIIC
(2 ,0-m3IN, *1STY *Ivuld3de 38vIING
(2) ,8-970, 1517 *vN1d30 3¥vIIG
€2) .I-RIN, 1817 *vuId30 33vIII0
(2) ,3-010, *1SIV *1VHII3IC 3Jwvid3e

-OUTPUT

A.4FILE INPUT

L X N 4

s L0 mIN, RILITIRIYIE
$ LITNIN, LEIMNdT IS,

S LB MIN, = ,2)Mud" INgST, \
$ YI-RIN-¥1d, = ,()M¥4" 3AgSI, e24 Y]
s 1g *ONVW40D 3AVS v 3INSST I
$ w10, WEO4M3d »
$ 090N 141 0fi4 4315 2109
§ ,3IN¥LSES, B3 '_9¢vV4-L8SVY°51S, InvswD) s211
S (L1, Lo TvAuns, ¢ (1°1,),.8-810,) = (,i°1,).8-R1N,)
S 7000M-W/S NOTLIN3ISSY NI9I38 GLLL dILS YILIY eee, NI 3IY ozt
fossossrsspvnvsnrvnser 1SA0TT)4 FOONN-W/S WHOIIAYMNees)
$ =»3S1v4, }

‘o 0L QILYNTIVAI C0NQN-W/S NOTLNISSY SPLL dILS HILJY even. GNIIIY
$ L35W4°SAS, = _9vV4-(NSYeSLS,
$,ISIVICSAS, = _9vT4d°seS, '

$ D9 41 0214 d31S 2109
Su SO000M-M/S NOTLWISSY ONI SLLL dIL15 8314V eve, QHOI IV
$ L10°330°85aS, B3 (.1°1.).LTTVANIS, J¥V4NO))

$ _NDS, NO IVY3 NDTLINNG S0 ON3 3
$,S3¥*wWnsS, = _10°330°5sS,
$., WNS, WHOj¥id St :
$,4°f, = ,20u¥d*uns,
$ PR 0T,y v, = LOWNd NS,
$ d0NS, NO TI¥) NOTLINNS J
$e SOO0A-M/S NOTL¥3ISSY NIS3O OLL) dILS ¥ILjV ves, A¥DIIN
Ssevorsrrvnsrvevvvsese SSROVIDE EO00N-N/S MWNOIIAYALr»)
$ C1°1,),_0-670, = (,4°1,),0-93N,
Su GO00R-W/S NOTLYISSY NIBIB DL d315 HILJIY see, Q¥DIIY
Svvvsssvssvusrsscrsgsesr ISMOTI0S BOONA-N/S WHOSIAVYARSe)
$ (L1°1,),.3-070, = (,14°1,),3-23N,
Sw L000A-R/S NOTLWISSY NIB3B DL 4315 ¥ILJY evs, QUDI 3N
Svsssovressvesvsnngver SSADTITI0DA LDODN-NIS WHOJIIAVASGe)
: $.90Wdd SSIIIVI, = 07 a0, .
$ ENW¥d*$S3IIVI, = 2710,
$.20uHd"$S5333¥1, = 87010,

- $.SS330vI, Wy04¥3Id ,
= $ 90 = _65494°5S32)VI,
o $,¥I-070-¥ld. = .LIWYd*SS3INIVI, ,
m s 62 “ONYWNO) $S3IIV N¥ INSST I)
o) $ (LI*1.0.420, = (L1°T) 8I-A3IN-y1d,
g tu 6000M-N/S NOILNISSY NI93A 0Ll 4315 ¥I1JY sve, 0y)I3N
| g Ssvvsvsvvsssrvrveseenes 2SAQTTI0J 40000-W/S WHOdIAYNess) »
2 $ A1), 434, x (LL°T,),41-070-u0d,
nNr SODOM-W/S NOTAWISSY NIOIA GLit dILS M4V even TN3IIN
= Ssevvverrvovenoerrgonr 3SN0T1104 SOQON-W/S MHOJ IAVRSes) ’
w $ (301,083, = (31) 0
= $» Y000M-W/S NOILWISSY NISIB OLLL 434S ¥3ILJV even Q¥OIIN
(TR Sosssvvavussasevesnsss SSROVINE YOQNR-W/IS WUOJIAYASe) M
< S . 20%¥d°SSIIIV,, = V¥,
< $. 10W¥a°SSIIIV.. & LaldM,
$.SS30¥, wWy0sN3d ™
$2) = ,664Hd°S53)9YV, ;
s L2 SENVNNDO) $SI2IF N¥ 3INSST 3 —
. S LINMLSSAS, = _OvU-LUSV SAS, ottt ®
.=
DEq O3 AXISTWRRS XD ROEL

ITTSOIROVESL TIITYOR 1579 ST OVd STl

$.01, WVy90¥d ILVYNO3 L UNTWN3L

5 NSINDS4 (SR 29 .
$ wdi LO0I, WYNIONd 3Le¢NDI JLeNIW¥IL, OBOIIW oL
s 30281 d431S 0109
$.d 00l)
$ 0%0M 31 0191 4315 0G0
§ 0O90N-09-Viva-TVNNYW 0 d-LTVS
$ L(NZL) iWYMS0Ud SIHL NNHIY¥ 0L MSIA NOs 0O, 0¥OI3¥ 1.1
S Vly 3a0M3%
$,3Mll1°1¥d, * o NITLv¥nd, du0d3N
8 (2).92072°S45,909 - ,NI1°S4S. = (§), #30V3°SAS,
$ (DI MILSSAS, JANY = (2),43073°54S, -
$ (3)_ %3073°545,.°009f - w1 SiS, ¢ _u0L"SAS,
. 8 (009C/.wli°SaS,) INI € (1), %3073°81S, m
T O MILYSAS, - _IWMTLSAS, = _uwli°Sas, mW
$ L INILcING, ‘wlV ONILS3IL QGINSINDIS. €¥0330
. $.3Inl1°439, wyd4u34 00v4 mw
(3} a8
$,SNY¥ISSIOONY., WEOLN3d Wu
$ INWICSAS, = ,9wVg°SAS, 0353 b

$ SNYULSS3I08d, 3INGOW L£S3L 3IML NO TIVI 3HL ON103T38d T10WLINO)D

w oW

s
s INTLSIL 40 9NINKINID

S 804 an)
S L931S31 1ON°SaAS, = (_I°SAS_) ¥V M-1531°51L8,

8 NIHL ,S1S340°SAS, OMHL | © _1°SAS, %03}
8 ¥O03 aN3

$ 0 « ¢, I°SAS_)_FNOY NI SISILe"SaS,

$ 03133735 LON*SAS, =¢,U*S4S,) ,9%14-9¥108 32,
$ NINL _SSYIQU°SAS, N¥HL { = _I°SiS, w04
$.INILCSAS, = _4Tg°SaS,

$ LINTL LNd, ‘L3ulL T¥, Y(3),_%30N°SAS,

wl@Fa SCSI NI0VICSES, /a8 3EV0L '(Y),.030012°S8S, QK03
$ WOl 21NN ONI1SIL Kia QNOIIN

S L1, wHOINId oozt 3 .
(IR R T L Yy Y N R R P Y Y R N YYD

L A

LS

3

SwTS PAGR I8 BES

[T N Y N Y R R R Y A N Y YR AN LN D]
s INEQd REENY ES¥L4 OWY NOTLVITIWWILINDI 3VIVINVA w3LSAS b)

Sov "ss v IS sIRISY vesyssessevssy sssvssss I

$svesevvense [YEXY) SISV EINBIIITITRIISITIIVSIIINS

sovesn
seV ey
$,SNYMLSS3IIDUd, ON3 ,
S .IMTL LNd, % LY _SNYULSSIIONE. u'nn
‘e JUNA3IIONd 1SIL WONJ ONTWUNLIW SELL dILS NILEV vee, Q¥OI3N
§$. IN1°139, WNOINI4 P
$ L3181 °SHS, « (L), 9V N4-8531°525, 11883
$ ¥0) AN)
s 090N {1 SELt o315 0109 -
g ,3NNL°SAS, B3 S _1°I-Qv), JuveNDd -
$.INVSI, WuDiNid .
$ 90 = _65HN4"IANST,

ssssse
(A XT XY

A4 FILE INPUT-OUTPUT

Index

Abstract data types 4, 5,10, 11, 13, 16, 22, 38, 42, 94, 96
Ackermann 113 '

Adjacency matrix 101

Atfected components 55, 57

Algebraic 11,12

Algebraic axioms 12, 32,38

APL 7

APS 10

Array graph 77, 101

Assertion specification 48, 49, 51, 52, 54
Associative memory 65

ATE specification 41,43, 56, 58, 59

BOL 7,10

CDEMAIN procedure 93

CDETEST procedure 86, 93, 94
CLU 13,14,97

Cluster 14

Code generation 91

Conjunction specification 48, 50, 54
Connection points 43

Connection points specification 58
CYCLES procedure 80

Data declaration specification 43, 44
Data declarations specification 41
Denotational semantics 32

Diagnoses specification 41,43, 47, 48, 55
Directory 66, 68

Disjoint union 28

EBNF 85

EBNF/WSC 64,65
Efficiency 98
Elementary data type 44
End array 18

Equation, mathematical 16
Exlensions 99

EXTSEQ procedure 90

Failure 43,55, 58, 90

File structure 45

Flowchart 72

Free subscript 52, 53, 77, €0, 82, 90

GROUP 45, 46

146

R ST Y TRy T S

Header specification 47,48

1Sl 10

Incremental 2, 42
Induction 13,39
Input 43,45
Inter-test 72,87, 95
Intra-test 72,94
INTSEQ procedure 78
Invariant 13

Language extensions 99
Least fix point 33, 37, 38
Lise 7

Logic 48, 55

Logic specification 43,55
LUCID 8

MIT. 10, 13

Mandatory edges 90
Mathematical equations 16
Matrix 72, 101

Measurements 43, 48

Message specification 41,56, 57
Model 2,3, 4,5, 10,16

Modfun specification 42, 43, 47
Modularity 1,2, 4, 10, 16, 19, 39,41, 61,96, 97,98
Modules 42,43

Modules specification 41

Non-procedural 2,3,4,5,7,9, 10, 16, 19, 22, 39, 41,96, 97,98
Nopal 2,3,5,16,41,55,61,96

Optimization 98
ORDERER procedure 82
Qutput 43,45

Parameters 43, 46, 47, 50, 57, 59
Parent list 53

Pennsylvania 2

Precedence 72,87

Priority 74,84, 87,90
Procedure, COEMAIN 93
Procedure, COETEST 86,93, 94
Procedure, CYCLES 80
Procedure, EXTSEQ 90
Procedure, INTSEQ 78
Procedure, ORDERER 82
Procedure, PROPAGT 81
Procedure, RETREVD 68, 71
Procedure, RETREVS 66,71
Procedure, SAP 64, 65, 68
Procedure, SAPG 64, 65
Procedure, SCHEDLR 82

o

Procedure, SOURCE2 71
Procedure, STORE 66, 68
Procedure, SUBANAL 78
Procedure, SUBUSAG 80
Procedure, TRMNATE 83
Procedure, XREF1 71,93
Procedure, XREF2 71
PROPAGT procedure 81
Protection 58
PROTOSYSTEM 10

PSI 10

RECORD 45, 46

Recursive edges 81

Reduction tunctlion 80

Relationships 72, 74, 87

Reports 61, 71

Representation 22, 26, 33, 40, 42, 93, 101
RETREVD procedure 66, 71 :
RETREVS procedure 66, 71

SAP procedure 64, 65, 66

SAPG procedure 64, 65

SBA 10

SCHEDLR procedure 82

Semantics of modules 32
Sequencing 61,72, 87,94

SETL 7

SOS 26

Source 47,48, 50, 52, 54, 60
SOURCE?2 procedure 71
Specification, assertion 48, 49, 51, 52, 54
Specitication, ATE 41, 43, 56, 58, 59
Specitication, conjunction 48, 50, 54
Specification, connection points 58
Specilication, data declaration 43, 44
Specification, data declarations 41
Specilication, diagnoses 41, 43, 47, 48,55
Specitication, header 47,48
Specitication, fogic 43, 55
Specification, message 41, 56, 57
Specification, Modfun 42, 43, 47
Specitication, modutles 41
Specitication, tesl 41, 43, 48
Specification, UUT 41, 43, 48, 49, 58, 59
SSL 10

Stack 23,25

Stanlord 10

Stimuli 43, 48, 58, 59

Storage entry 68, 71

STORE procedure 66,68

Structure 44, 45, 46

Structured programming 1§
SUBANAL procedure 78

SUBUSAG procedure 80

148

e

Index : 149

Syntax analysis 61

Target 47, 48, 49, 50, 51, 53, 54, 55
Test specitication 41, 43, 48
Topdown 1

Topological sort 86, 91

Tree structure 44

TRMNATE procedure 93

Tuple 34, 36, 37

Underlying graph 78, 81
. UUT specification 41, 43, 48, 49, 58, 59

V-graphs 11
VHLL 1,7

Waveform 48

XREF1 procedure 71,93
XREF2 procedure 71

References

1. Ashcroft, E.A. and W.W. Wadge. Lucid, A Non-procedural Language with lteration. CACM
20, 7 {July 1977).

2. Atkinson, R.R., B.H. Liskov and R.W. Scheifler. Aspects of Implementing CLU. ACM
Annual Conference, Washington, D.C., Dec., 1978, pp. 123-129.

3. Balzer, R. et.al. Domain Independent Automatic Programming. Tech. Rep. RR-77-14, 1S,
University of Southern California, Oct., 1974.

4. Biermann, A.W. Approaches to Automatic Programming. In Advances in Computers, Vol.
15, M. Rubinoff and M. Yovits, Eds., Academic Press, 1976.

5. Brinch-Hansen, P The Architecture of Concurrent Programs. Prentice-Hall, 1977.

6. Chamberlin, D.D. The 'Single-Assignment’ Approach to Parallel Processing. FJCC, 1971.°

7. Chang, Y. Automatic Test Program Generation. Ph.D. Th., The Moore School, University
of Pennsylvania, 1977.

8. Dahl, O.J., B. Myhrhaug and K. Nygaard. The SIMULA 67 Common Base Language.
Publication S-22, Norwegian Computing Center, Oslo, 1970.

9. Darringer, John A_and Mark S. Laventhal. A Study of the Use of Abstractions. Research
Report RC7184, IBM T.J. Watson Research Center, June, 1978.

10. Dewar, R K., A. Grand, S.C. Liu and J.T. Schwartz. Program by Refinement, as
Exemplified by the SETL Representational Sub-language. TOPLAS, ACM 1, 1 (July 1979).

11. Earley, J. Towards an Underatanding of Data Structures. Comm. ACM 14, 10 (Oct.
1973), 617-627.

12. Friedman, D.P. and D.S. Wise. CONS Should Not Evaluate Its Arguments. Tech. Rep. 44,
Computer Science Dept., Indiana University, Bloomington, 1975.

13. Gana, J.L. An Automatic Program Generator for Model Building in Social and
Engineering Science. Ph.D. Th., The Moore School, University of Pennsylvania, 1978.

14. Goguen, J.A., JW. Thatcher and E.G. Wright. An Initial Algebra Approach to the
Specification, Correctness, and implementation of Abstract Data Types. In Current Trends in
Programming Methodology, Vol. 4, R.T. Yeh, Ed., Prentice Hall, 1978.

150

151

15. Graubert, R. A Case Study of Using a Non-Procedural Language for Automatic Testing
of Electronic Equipment. Master Th., The Moore School, University of Pennsylvania, 1979.

16. Green, C. The Design of PSI Program Synthesis. Second International Conference on
Software Engineering, San Francisco, Oct., 1972.

17. Gries, D. and N. Gehani. Some ldeas on Data Types in High Level Languages. CACM 20,
6 (June 1977).

18. Guttag, J. V., E. Horowitz and D.R. Musser. The Design of Data Type Specifications. In
Current Trends in Programming Methodology, R.T. Yeh, Ed , Prentice-Hall, 1978

19. Guttag, J. V., E. Horowitz and D.R. Musser. Abstract Data Types and Soltware
Validation. CACM 21, 12 (Dec. 1979).

20. Guttag, John V. Abstract Data Types and the Development of Data Structures. CACM 2.
6 (June 1977).

21. Hammer, Michael, W. Gerry Howe, Vincent J. Kruskal and irving Wiadawsky. A Very High
Level Programming Language for Data Processing Applications. Comm. ACM 20, 11
(November 1977).

22. Heidorn, George E. Automatic Programming Through Natural Language Dialogue: A
Survey. Research Report RC6074, IBM T.J. Watson Research Center, December, 1975,

23. Hoare, C A.7. An Axiomatic Basis for Computer Programming. CACM 12, 10 (Oct. 1969),
576-583.

24. Hoare, C. A.R. Proof of Correctness of Data Representations. Acta Informatica 1(1972).

25. Hoffman, C.M. Design and Correctness of a Compiler for a Non-procedural Language.
Acta Informatica 9 (1978).

26. Homer, E.D. An Algorithm for Selecting and Sequencing Statements as a Basis for
Prablem Oriented Programming Languages. Proceedings of the ACM National Meeting,
1966.

27. lverson, K.E. A Programming Language. Wiley, New York, 1962.

28. Jensen, K. and N. Wirth. Pascal - User Manual and Report. Springer-Verlag, 1974.

29. Kennedy, K. and J.T. Schwartz. An Introduction to the Set Theoretic Language SETL.
Comp. & Math. with Appl. 1(1975).

152

30. Kessels, J.L.W. A Conceptual Framework for a Non-procedurat Programming Language.
CACM 20, 12 (Dec. 1977).

31. Knuth, D.E. The Art of Computer Programming. Vol. 1: Fundamental Algorithms.
Addison-Wesley, 1969.

32. Kowalski, R.A. Algorithms = Logic + Control. Comm. ACM 22,7 (h:ly 1979), 424-436.

33. Leavenworth, B.M. Non-procedural Data Processing. The Computer Journal 20, 1
(1977).

34. Liskov, B.H., A. Snyder, R. Atkinson and C. Schaltert. Abstraction Mechanisms in CLU.
CACM 20, 8 (Aug. 1977).

35. Liskov, B.H. and S. Zilles. Specification Techniques for Data Abstractions. /EEE Trans.
on Software Engineering 1, 1 (March 1975).

36. Lu, K.S. Program Optimization Based on a Non-procedural Specification. Proposal for
Ph.D. research. University of Pennsylvania, Aprii 1980.

37. Manna, Z. Mathematical Theory of Computation. McGraw Hill, 1974,

38. Parnas, D.L. A Technique for the Specification of Software Modules with Examples.
CACM 15,5 (May 1972).

39. Pnueli, A, K.S. Luand N.S. Prywes. Model Program Generator: System and
Programming Documentation. The Moore School, University of Pennsylvania, Fall, 1980.

40. Pnueli, A. Scheduling an Equational Specificaion. Unpublished memo. 1979

41. Prywes, N.S., C. Tinaztepe and Y .K. Chang. Automatic Test Program Generation.
Autotestcon, IEEE, Nov., 1977.

42. Prywes, N.S., A. Pnueli and S. Shastry. Use of a Non-procedural Specification Language
and Associated Program Generator in Software Development. TOPLAS 1, 2 (Oct. 1979).

43. Ramirez, J.A. Automatic Generation of Data Conversion Programs Using a Dala
Description Language. Ph.D. Th,, The Moore School, University of Pennsylvania, 1973.

44, Rin, N.A. Automatic Generation of Business Data Processing Programs from a
Non-Procedural Language. Ph.D. Th., The Moore School, University of Pennsylvania, 1976.

45. Ruth, G.R. Protosystem |: An Automalic Programming System Prototype. Technical
Memo TM-72, MIT t aboratory for Computer Science, July, 1976.

153

46. Sangal, Rajeev. The Nopal Program Generator: System and Programming
Documentation, Vol. 1, 2 and 3. Tech. Rep. 80, The Moore School, University of
Pennsylvania, March, 1980.

47. Schlesinger, S. and L. Sashkin. POSE: a Language for Posing Problems to a Computer.
CACM 10, 5 (May 1967).

48. Shastry, S.K., A. Pnueli and N. Prywes. Non-Procedural Computer Programming with
Model. Proc. of First Int. Computer Software and Application Conf., 1977.

49. Shastry, S., A. Pnueliand N.S. Prywes. Basic Algorithms Used by the MODEL System for
Design of Programs. The Moore School, University of Pennsylvania, Feb., 1979.

50. Shastry, S.K. Verification and Correction of Non-procedural Specifications in Automatic
Generation of Programs. Ph.D. Th., The Moore Schoal, University of Pennsylvania, May 1978.

51. Shaw, Mary, W.A. Wulf and R.L. London. Abstraction and Verification in Alphard:
Defining and Specifying lteration and Generators. Comm. ACM 20, 8 (Aug. 1977), 553-564.

52. Tesler,L.G. and H.J. Enia. A Language Design for Concurrent Processes. SJCC, 1968.

53. Thatcher, J.W., E.G. Wagner and J.B. Wright. Specification of Abstract Data Types Using
Conditional Axioms. Research Report RC6214, IBM T1.J. Watson Research Center, Sept.,
1976.

54. Tinaztepe, C. and N.S. Prywes. Generation of Software for Computer Controlled Test
Equipment for Testing Analog Circuits. /EEE Trans. on Circuits and Systems (June 1979).
Special issue on automatic analog fault diagnosis.

55. Tinaztepe, C., R. Sangal, H. Che and N.S. Prywes. The Nopal Program Generator:
System and Programming Documeniation. The Moore School, University of Pennsylvania,
1979.

56. Tinaztepe, C, R. Sangal and N.S. Prywes. Automatic Generation of Atlas Programs for
Computer Controlied Test Equipment. Autotestcon, IEEE, Nov., 1978.

57. Weisman, C. LISP 1.5 Primer. Dickenson Publishing Company, Inc., Belmont, Calif., 1967.

58. Wirth, N. Algorithms + Data Structures = Programs. Prentice-Hall, Englewood, N.J.,
1976.

59. Wirth, N. Modula: a Language for Modular Multiprogramming. Software Practice and
Experience 7 (1977).

154

60. Wirth, N. The Use of Modula. Software Practice and Experience 7 (1977).

61. Zloof, M.M. Query-by-example. Proc. NCC, AFIPS, 1975.

62. Zloof, M.M. and S.P. de Jong. The System for Business Automation {SBA): Programming
Language. Comm. ACM 20, 6 (June 1977).

D
L |
.
[
3 k]
¢

i

N

SOEL-SPFIPR T. 9

e

[RPSRUPPRETIEN RN THASTE- SV

