
AD-A095 546 MOORE SCHOOL OF ELECTRICAL ENGINEERING PHILADELPHIA P-ETC F/B 9/2
MODULARITY IN NON-PROCEDURAL LANGUAGES THROUGH ABSTRACT DATA TY--ETCCU)
AUG G0 R SANGAL NGOODN.7CGB416

UNCLASSIFIED ML

UNIVERSITr of PENNSYLVANIA

The Moore School of Electrical Engineering

PHILADELPHIA, PENNSYLVANIA 19104

C.,

I 1vor pui tc

81 1 '16 044

UN! VER S ITY of PENNS YLVA NIA '

PHILADELPHIA 191041

The Moore School of Electrical Engineering D2
DE.PARTMENT W~ CoNIpuFER AND INFORMATION SCIENCE.

MO DULARITY
IN N4ON-PROCEDUJRAL LANC4tJArES
THROUGH ABSTRACT DATA TYPES

By

Rajeev Sangal

Prepared with Support:

Under Contract NOO0l'4-76-C-O'416-
Information Systems Program
Office Of Naval Research

Arlington, VA

!App &U- f '

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whn Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. RIEPORT NUMBER GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

ODULARITY IN NON-P1ROCEDURAL LANGUAGES !Final 3epwt
I '~THROUGH ABSTRACT DATA TYPES,, -

TC. PERFORMING ORO. REPORT NUMBER

Moore School
j. AUTHOA(s). . I. CONTRACT OR GRANT NUMBER(g)

RAJEEV SANGAL lN00014-76-C-0416

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

UNIVERSITY OF PENNSYLVANIA
The Moore School of Electrical Engineerirg
ThD t oFl Cnmpte TnferTn~tinn .qnn___

II. CONTROLLING OFFICE NAME AND ADDRESS 12,4W4009 CATE

Information Systems Programs 31 AUGUST n80
Office of Naval Research -13tS. Mm - OF PAGES-~

Arlington. VA
14. MONITORING AJENCY NAME & ADDRESS(fdiffterent from Controfllng Office) IS. SECURITY CLASS. (of1 ,,.

UNCLASS.
IS.. DECL ASSI FICATION/ DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of thie Report)

17. DISTRIBUTION STATEMENT (of the abetact entered In Block 20, It dflferent from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WOROS (Continu, on revere elde If necemary and idmntiy by block nuaiber)

Abstract data types
programmer productivity
modularity
Nopal

20. ABSTRACT (Coftiue an reverse aide It necessary Wnd Idaitfy by WOek nursbr)

iThis dissertation presents abstract data tipes as a means of
introducing modularity in non-procedural languages. Non-
procedural languages based on equational specifications have
been proposed in recent years to improve programmer productivity
reliability. Issues of structured programming (i.e. disciplined
use of the control structure) have no meaning in the context of

DO J 1473 cotTIO O, ,NOvS So OBSOLETE UNCLASSIFIED
SIR 0C102S-0I4- F0 T -SECURITY CLASIFIIICATION OPr TWIS PAGE e m... Dee. lrd

UNCLASSIFIED

KEYWORDS cont.

Nopal processor
Equate-Atlas
Equational specifications

ABSTRACT cont.

these languages because these are devoid of any control structure
Statements in a specification can be given in any order; the
sequence of execution is determined after an analysis of the
specification. Modularity, however, still remains an important
issue in the context of these languages, as it allows
specifications to be written and processed independently.
Abstract data types are proposed as a means of introducing
modularity. Notion of module for the specification of abstract
data types is introduced and its denotational semantics is
given. Nopal, a non-procedural language for the specification
of testing of electrical circuits, has been chosen in which
abstract data types are introduced for modularity. The abstract
data types also allow specification of virtual devices in
testing. An implementation of the Nopal processor is given.
The Nopal rocessor analyzes a Nopal specification for complete-
ness, consi tency, and non-ambiguity; and generates a sequential
program in uate-Atlas corresponding to the specification.
The various p ases of the Nopal processor for the analysis of
a specification are described. Finally, some example
specifications together with their generated Equate-Atlas program
are given.

SECURITY CLASSIFICATION OF THIS PAGEfWhen Da Entered)

MODULARITY IN
NON-PROCEDURAL LANGUAGES

THROUGH ABSTRACT DATA TYPES

Rajeev Sangal

A DISSERTATION

in

Computer and Information Science.

Presented to the Graduate Faculties of the University of Pennsylvania in Partial Fulfillment of

the Requirement for the degree of Doctor of Philosophy.

31 August 1980

.' F -r ,,f -

Supervisor ofD t- t

Graduate Group Chairperson

L .. . r.... " _, "

OI-I

To Anuna and Papa

Acknowledgment

I am thankful to my advisor Dr. Prywes for his guidance and encouragement during this

research, to Dr. Amir Pnueli for his penetrating comments, to Dr. Peter Buneman for his

encouragement especially during the early stages of the work, and to other members of my

committee Drs. A.K. Joshi, H.L. Morgan, and T. Finin for reading the dissertation and raising

interesting questions.

Her daw Che and Kang-Sen Lu, who were my officemates during the early and later stages of

my woik respectively, contributed in many ways. They were always ready to lend me their

ears. Thanks are also due to Dr. C. Tinazlepe for his help during the early stages of my work.

Study in America has been a rich and rewarding experience for me. I have learnt a great deal

both ii, academics and otherwise. It has given me a better understanding of India, my

country. and its culture: and of my own self. Towards the promotion of this understanding, I

wish to thank Balaram, Jasenka, John, Mladen, Neeraj, Nikhil, Poonam, Pradeep, Pradip,

Prasad Rao, Rai, Ramarao, Samar-da, Swapan, and Venky.

iii

IJ

Ii

Table of Contents

Chapter One: INTRODUCTION 1

1.1 MOTIVATION 1
1.2 BACKGROUND: MODEL AND NOPAL SYSTEMS 2
1.3 CONTRIBUTIONS 4

1.4 ORGANIZATION OF THE DISSERTATION 5

Chapter Two: SURVEY OF RELATED LITERATURE 7

2.1 SURVEY OF NON-PROCEDURAL LANGUAGES 7
2.2 SURVEY OF ABSTRACT DATA TYPE SPECIFICATION TECHNIQUES 10
2.3 LANGUAGES SUPPORTING ABSTRACT DATA TYPES 13

Chapter Three: ABSTRACT DATA TYPES IN A NONPROCEDURAL LANGUAGE 16

3.1 INTRODUCTION 16

3.2 A SIMPLE NON.PROCEDURAL LANGUAGE BASED ON EQUATIONS 16
3.3 APPROACHES TO MODULARITY 19
3.4 USE OF ABSTRACT DATA TYPES 21
3.5 SPECIFICATION OF ABSTRACT DATA TYPES 22

3.6 AN EXAMPLE -STACK 23
3.7 RECURSIVE DEFINITIONS 26
3.8 SEMANTICS OF MODULES 32

3.9 SUMMARY 39

Chapter Four: THE NOPAL LANGUAGE 41

4.1 OVERVIEW OF THE NOPAL LANGUAGE 41
4.2 DATA DECLARATION SPECIFICATION 44

4.3 MODFUN SPECIFICATION 47

4.3.1 HEADER 48
.4.3.2 TEST SPECIFICATION 48

4.3.3 DIAGNOSES 55
4.3.4 MESSAGE SPECIFICATION 57

4.4 UUT SPECIFICATION 58
4.5 ATE SPECIFICATION 59

Chapler Five: THE NOPAL PROGRAM GENERATOR 61

5.1 OVERVIEW OF THE PROGRAM GENERATOR 61

5.2 SYNTAX ANALYSIS AND THE ASSOCIATIVE MEMORY 64

iv

g

5.2.1 OVERVIEW 64
5.2.2 SYNTAX ANALYSIS PROGRAM - SAP 65
5.2.3 SUPPORTING SUBROUTINES 66
5.2.4 ASSOCIATIVE MEMORY AND STORE/RETRIEVE SUB-SYSTEM 66
5.2.5 REPORTS 71

5.3 SPECIFICATION ANALYSIS AND SEQUENCE DETERMINATION 71
5.3.1 OVERVIEW 71
5.3.2 INTRA-TEST ANALYSIS AND SEQUENCING 72
5.3.3 INTER-TEST ANALYSIS AND SEQUENCING 87

5.4 CODE GENERATION 91

Chapter Six: CONCLUSIONS AND FUTURE WORK 96

6.1 siUMMARY 96
6.2 FUTURE WORK 98

6.2.1 EFFICIENCY CONSIDERATIONS 98
6.2.2 LANGUAGE EXTENSIONS 99

Appendix A: EXAMPLES OF NOPAL SPECIFICATIONS 100

A.1 STACK 101
A.2 ACKERMANN'S FUNCTION 113
A.3 BAND-WIDTH METER 122
A.4 FILE INPUT-OUTPUT 136

Index 146

References 150

V

Table of Tables

Table 4-1: LOGIC OPERATORS IN A TEST 56
Table 5-1: CLASSES OF NAMES AND THEIR TYPES 69

Table 5-2: INTRATEST PRECEDENCE RELATIONSHIPS 75

Table 5-3: PRIORITIES OF THE TRIAL SCHEDULE 85

Table 5-4: INTER-TEST PRECEDENCE RELATIONSHIP 88

vi

L-Aik

Table of Figures

Figu re 3-1: EXAMPLE EX2: USING STACK OF STACKS 27
Figure 3-2: EXAMPLE EX3: USING PARAMETERIZED STACK 29
Figure 5-1: OVERVIEW OF NOPAL PROCESSOR 62
Figure 5-2: MAJOR PHASES OF NOPAL PROCESSOR 63

Figure 5-3: FLOWCHART OF SAPG AND SAP WITH SUBROUTINES 67
Figure 5-4: STRUCTURE OF THE DIRECTORY AND STORAGE ENTRIES 70

Figure 5-5: FLOWCHART FOR PHASES 2 AND 3 OF NOPAL PROCESSOR 73

Figure 5-6: SPECIFICATION OF PUSH AND ITS ARRAY GRAPH 79
Figure 5-7: RECURSIVE EDGE 82

vii

--1 i I I 1
= '

. Ill : . . -- I l I II I I ' ' "

Chapter One

INTRODUCTION

1.1 MOTIVATION

The software crisis of the sixties saw the acceptance of structured programming,

modularity, and top down design methodologies in building and maintaining software

systems. The underlying philosophy behind these methodologies was that the software

systems are complex; that they are hard to understand and difficult to manage; and to keep

them within manageable limits, the discipline of structured programming should be imposed

on the programmers. It reflected and still reflects the state of software technology. The

requirements for systems are specified informally or semi-formally to the programming team,

which then implements a system satisfying the requirements. There is a large gap between

the specification language (generally, English for informal specifications) and the

implementation language (Fortran, Cobol etc.), thus causing the implementation to address a

lot of detail. This leads to increased complexity of software which makes the debugging and

maintenence difficult. The structured programming and top down approach accepts this

complexity as unavoidable, and tries to keep it under control by requiring the programmer to

use simple program structures.

Continued growth in the size of the software systems, the demands of reliablility and

programmer productivity requires new solutions. It has led to activity in the field of, what are

called, very high level languages (VHLL). These languages reduce the gap between the

informal specifications and programs. Sometimes, these languages are of sufficiently high

1.1 MOTIVATION 2

level that the program itself is the specification satisfying the (intuitive or mental)

requirements. Some of these languages, in which order of statements in programs is

immaterial, are called non procedural languages. In fact, a program in these languages is so

unlike a program in procedural languages that we call it a specifhd:tio. 1 Many of the issues

of structured programming (e.g. disciplined used of the control stlructue) no longer have any

meaning in the context of non-procedural languages. since the specifications do not have any

control structure. The details relating to the control are no longei the concern of the user, but

rather, are handled by the compiler for the language.

Modularity still remains a useful and important issue for large specifications. Aodu'trity

may be defined as independence in compiling and composing of different parts of a larger

specification. It is desirable because it simplifies the specification. This simplification results

not only because of reduced size, but also because, with proper sulb division, the smaller

specifications represcent logical subunits of the larger specification. Modilarity allows

incremental development of a large specification. It also lends itself to easier mnodifiction. In

most cases. only a few of the smaller specifications need to be changed whe.,n the needs of

the specified system evolve or change.

1.2 BACKGROUND:MODEL AND NOPAL SYSTEMS

Model and Nopal are non-procedural languages developed at the University of

Pennsylvania in an attempt towards a simple yet powerful very high level language. These

languages have no control strlcture, and are based on the familiar notions of mathematics.

"Specification" has also beer us ,d in the literafire to express the "w(iI II I'reIIrts" of ,1 syslem, or tlhe set of

algebraic axioms defrtnini an absiract data type etc. Usage of the term here shoultd 0 not hi' n: utused with ifs other

meanings.

1.2 BACKGROUND: MODEL AND NOPAL SYSTEMS 3

The Model system [42] has been designed to automate the generation of software for data

processing applications. The first step is to provide a data processing requirements. It

consists of three main parts. The first part is the header, which consists of the name of the

specification and names of the data bases. The second part, the data description, consists of

descriptions of the structure of the source and target data in the specification. The source

data corresponds to the input data, generally on sequential and indexed sequential files; the

target data refers to the desired output files. The third part, a set of assertions, specifies the

relations between the source and target variables. There are no control statements typical of

procedural high level languages, e.g. those that deal with input/output, loop control etc.

The Model processor analyzes many aspects of the specification. It checks for

ambiguities, incompleteness and inconsistencies and issues appropriate messages to the

user. It also generates a number of reports which serve as the documentation for the

specification. The processor then produces a sequence of execution for the assertions. with
.1

appropriate loop control statements. Finally, it produces a PL/I (or Cobol) program.

The Nopal system [461 has been designed to automate the generation of programs for

automatic testing of electronic circuits. A specification in Nopal has three major parts. The

first part gives the test specification, the second part the unit under test (UUT) specificalion,

and the third part the automatic test equipment (ATE) specification. These parts can occur in

any order in the specification. The test specification consists of a number of tests each of

which is used to specify the stimuli to be applied, measurements to be made, computations to

be performed, and diagnosis to be selected. The specification of the individual tests is

non-procedural, and similarly. there is no sequence specified between the tests. The

diagnoses are normally selected based on the outcome of tests. They are used to isolate

faulty components and print appropriate message to that effect. The UUT and ATE

1t

1.2 BACKGROUND: MODEL AND NOPAL SYSTEMS 4

specifications are used to specify the characteristics of UUIT and ATE.

The Nopal processor, similar to the Model processor, analyzes the specification for

ambiguity, incompleteness and inconsistency. It too generates reports which serve as the

documentation for the specification. The processor produces a sequence of execution for

tile tests, in the phase called inter-test sequencing. It then analyzes each of the tests

individually and generates a sequence for the assertions. conjunctions. and diagnoses in the

test. Finally, when all the problems are resolved it generates a piogram in Equate Atlas.

The issue of modularity is an important one for both the systems. At present the

specification must be submitted as one unit It leads to many of tile 1)tobleins renutioned in

the previous section, and to some very practical problems when the processors for the

language run out of address space during execution.

1.3 CONTRIBUTIONS

This dissertation examines and proposes the approach of abstract data types for

modularity in these languages, and describes the implementation for tile Nopal language.

The following are the contributions of this work:

It has led to:

1. the definition of a scheme for modularity in non-procedural languages,

2. a novel way to define the abstract data types. namely, by means of the
non-procedural specification, and

3. automatic generation of program modules that correspond to respective

specification of the abstract data types.

Abstract data types provide a non-procedural way to introduce modularity. Variables in the

1I

1.3 CONTRIBUTIONS 5

specification can be declared to be of abstract type, in which case they may be operated upon

by a restricted set of functions. The definition of an abstract data type along with the set of

functions is given separately by means of a "module". The specification of a module is given

non-procedurally, leading to the dual contributions (1) and (2).

Finally, the above ideas on modularity are used in the Nopal system The Nopal language

has been developed to generate programs for testing of electronic circuits. The abstract data

type facility is used to define the devices for testing. My work on the above system has been

on the development and completion of the original Nopal system [7]. and implementation of

the idea of abstract data types.

1.4 ORGANIZATION OF TJiE DISSERTATION

This dissertation is divided into six chapters. Introduction is given in this chapter, followed

in Chapter 2 by a survey of past work in the fields of non-procedural languages and abstract

data types.

Chapter 3 contains the use and spe(lication of the abstract data types in a non-procedural

languages independent of either Mod or Nopal. The use and specification of "modules" is

described. Formal semantics of the modules is given and similarity of the module

specification with algebraic axioms is shown.

In Chapter 4 the language Nopal in(rporating the above ideas is described. Features of

Nopal for specification of autuma (testing of electronic circuits are presented.

Implementation of Nopal is given in Ch, pter 5, and the various phases of the Nopal processor

are described. Examples of Nopal specifications and the reports generated by the Nopal

processor are given in the Appendix.

2 SLIRVEY OF RELA1 ED LITERATURE 6

Conclusions and ideas for future work are suggested in Chapter 6.

Chapter Two

SURVEY OF RELATED LITERATURE

2.1 SURVEY OF NON-PROCEDURAL LANGUAGES

Looking back at the development of computers we find a hierarchy of computer

programming languages. The assembly level languages form the lowest level and the higher

level languages such as Fortran, PL/l, Algol etc. form the next higher level. Both classes of

languages are characterized as (a) procedural, and (b) domain independent. They are

procedural because the individual statements are prescriptive and a program in the language

consists of a sequence of such statements. These languages may be used in widely varied

application areas and hence are called domain independent.

The next higher level languages are referred to as very high level languages (VHLL) and

they may be sub divided into two groups. The first group consists of languages which are

domain dependent e.g. Business Definition Language (BDL) 1211; the second group consists

of domain independent languages with facilities to describe higher level concepts which allow

the omission of many details. Examples of this group are: SETL [291 which allows

manipulation of sets and relations, APL (271 which has many convenient operators for

matrices, LISP [571 which works on lists etc. In the second group there are many languages

that are descriptive and are devoid of any control facilities. This class of languages is referred

to as non-procedural, because a "program" in these languages does not give a prescriptive

sequence to be followed, but rather defines variables and their values in a sequence free

manner. A "program" in these languages is so unlike that in procedural languages that we

.7

2.1 SURVEY OF NON-PROCEDURAL LANGUAGES 8

call it by a different name: "specification", as mentioned earlier in Chapter 1.

The goal of the VHLLs is to allow the user to express his or her problem directly in these

languages, thus leading to automatic programming systems which accept the specification

and generate a proia iam corresponding to it. [421

"The ultimate eypectation for automatic programming may be visualized as a

user (no longer a programmer*) making a few simple slatements. to which the
automatic programming system responds by spewing out a program of several
hundred stalements, already correct and satisfying the user's intentions."

Nonprocedural languages have been around for more than a decad, (161. 1261. 141. 1521,

etc) and they continue to be of current interest ([11. [4,. 125],1,121 etc.).

One of the early attempts by Teslei 152 defined lists and operations on lists An important

operation was PRECEDING, which was used to express the relationship of the current item in

the list to the preceding item in the same list or some other lisI. rhoe language was restrictive

because recurrence relations between items in lists could be specified usinlg only

PRECEDING. Somc. of the other early languages were interpreted and] hIence !;Iow in time and

inefficient in memory space.

More recently, LUCID has been designed as a formal system in which programs can be

written and their proofs carried out "The proofs are easy to follow and traight forward to

produce because the statements in a LUCID program are simply axioms frnm which proof

preceeds by conventional reasoning [11." Variables and their history of values can be

defined. The history is defined as a sequence of values using the primitives FIRST and NEXT.

They essentially allow the specification of one level loops. To allow nested loops. a function

called LATEST is introduced. flowever. it clutters up the program, consequently. BEGIN.END

blocks to nest iterations are included in the language.

2.1 SURVEY OF NON-PROCEDURAL LANGUAGES

The limitations of the LUCID language are the absence of arrays or any compund

structures and the use of NEXT to define relationships between sequences of values. The

latter implies that the relationships be known in advance at program writing time, and cannot

be computed at run time. For example. it is not possible to specify that the current element

depends on the k"h previous element. where k is computed at execution time.

Non.procedural languages Model [421 1481 [501[39] and Nopal 7][411156] [46] allow

relationships between array variables to be defined explicitly by means of indices. This makes

the languages richer than LUCID. At the same time, they are compiled rather than

interpreted. A biel introduction to them has been given in Chapter 1.

A recent proposal by Kessels [301 is to mix procedural and non procedural approaches. In

his approach. "block" is the basic stru(which indicates the scopes of names, as well as

the mode (non-procedural or sequential). A "valued-block" has a set of values. Besides

these, ther are multi-stale blocks which retain information after the exit from the block. Many

of these features serve to increase the complexity of the language, and make it difficult to

learn and use.

A number of domain dependent systems have been proposed. Some of them are

described below.

Business Definition Language [211 is a very high level domain dependent language. It is

aiined at the problems of business data processing. It assumes a model of the processes

involved in the manual methods used in businesses and tries to mimic those. There are three

components: one for defining the business forms, one for describing the business

organization, and one for writing calculations. Using a graphics screen the forms may be

defined. They serve both as input and output, as well as internal representatiot, of

. i S

I

2.1 SURVEY OF NON PROCEDURAL LANGUAGES 13

information. These documents can be routed to different parts of the organization or stored

in files. Compulations can be defined on the elements in the forms. Essentially, it is a tabular

langLage with special constructs to represent the domain of business.

PSI system developed at Stanford 1161 uses a model based appoach like [3DL. However, it

has provision for incorporation of an independent domain expert module Information about

objects and their relationships in the domain is included in the module, thus freeing the user

from defining commonly used terminology. The modules may be changed depen(ling on the

domain.

Pfi(-)1 JSYSIEM I has been developod by the Automatic Program Generation Group at

M. I T. [45J It cori!oists of two parts: The top part consists of a man machine interface, a

knowledge baso on hirsin-ss nianagenierit etc. The bottom part obtains a data processing

spe(ification from the top part. performs system design, and generates P[/I code. The

specification laMguage u;ed is SSL. which is non procedural and resembles Model.

There are other exam lples of domain dependent systems, most notably, APS developed at

University of Southern California at I.S.I 131 SBA 1621 etc.

2.2 SURVEY OF ABSTRACT DATA TYPE SPECIFICATION

TECHNIQUES

Data abstraction has been identified as a widely useful program unit by recent work in

programming methodology. It has also been identified to be a unit for which formal

sperificalions can ho.' written easily. It can serve as a basis for modularity. Consequently,

work relaled to data abstraction or abstract data types is reviewed here.

2.2 SURVEY OF ABSTRACT DATA TYPE SPECIFICATION TECHNIQUES 11

There are two approaches for giving the formal specification of abstract data types. The

specification can be given either by means of an abstract model, or implicitly via descriptions

of operations on the data types [351 In following the first approach, the behaviour is actually

defined by giving an abstract implementation in terms of another data abstraction or

mathematical discipline. In the second approach, the class of objects is determined

inductively from the operations. Usually, it is the smallest set closed under the operations.

Liskov and Zilles [351 have further classified the approaches for specification of abstract

data types into five categories. The classification is based on the method used 'or

specification, e.g.

1. use of a fixed domain of formal objects, such as sets, graphs or arrays;

2. use of an appropriate known formal domain;

3. use of a state machine model;

4. use of an implicit definition in terms of axioms; and

5. use of an implicit definition in terms of algebraic relations;

to specify abstract data types. The first two categories use the first, i.e. abstract model

approach, while the remaining use the second, i.e. implicit definition approach. Some

examples belonging to each of the categories are given below.

In the first category, a fixed domain of formal objects is used to provide a high level

implementation of the desired abstract data type. For example, V graphs were used by Earley

[111 to represent instances of data structures. Operations on the data structure are specified

either by expressions written in terms of primitive V-graph operations, or by means of pictures

of V-graph transformations.

An appropriate known formal domain can be chosen to give the high level representation

... • --.

S!

2 2 SURVEY OF ABSTRACT DATA TYPE SPECIFICATION TECHNIQUES 12

for the abstraction Generally. this is some established mathematical domain. Hoare has

used this approach to specify sets and subsets of integers [24]. The advantage of this

approach is that a body of knowledge is available about the formal domain: on the other hand,

it may not be sitahle tot riresenlting the at ,traction.

Parnas 1381 has develnpei I a t(2clhique ,and notation for viewing the abstraction as states

of an abstiact tate machine.

Use of axiomatir dtescriptions to spiecif, lhe abstractions falls Under the fo)urth category.

The axioni!; dtlfine eQqivaloice classes over the set of all expressions If the set of axioms are

well chosen. the equivalence classes are unique. The axiomatic specifications are minimal

and widely applicable. however, they are deficient with respect to comprehensibility.

Recently. an algebraic specification technique based on the algebraic construction, known

as "presentation". has emerged as a popular one. The algebraic axioms are easier to

understand than the general axiomatic specifications, and they too are representation

independent An algebraic specification has two components: syntactic and semantic. The

syntactic componerit gives the domains and ranges of the operations on the abstract data

type. The semantic component consists of set of aigebraic axioms in the form of equations,

which reltate the operaition.s to each other. An implementation may also be given for the data

types. "An implementation of an abstract data type is an assignment of meaning to the values

and operations in terms of the values and operations of another dala type or set of data

types [181." A correct imple mnentatioi must satisfy the algebraic axioms The data types used

in the implementation are also specified by means of axioms: and their implementation may

again be specified if they are abstract types. The proof of the correctness of the

implementation requires showing that each of the algebraic axioms for the data type is

2.2 SURVEY OF ABSTRACT DATA TYPE SPECIFICATION TECHNIQUES 13

satisfied when the implementations are substituted in the axioms. The definition of equality

interpretation for the implementation is needed for the proof. A general principle used in the

proof is that of data type induction. It means proving some invariant property of the data type,

and involves establishing the base step and the induction step.

Goguen, Thatcher and Wagner have described an initial algebra approach to the

specification, correctness, and implementation of the abstract data types 1141. [hey describe

a first order language (or !-algebra) using sorts and signature over sorts. They then define a

category C of 1:-algebras to consist of E-algebras together with all the > homomorphisms.

Alg,. is defined as a [531

"universe of discourse where the process of axiomatizing on the data types is
going on. In particular, the free algebra in AIg. provides a language in which to
write down the axioms. and their homomorphisms tell us how to interpret the
axioms."

Given the above algebra, the concepts of presentation and initial algebra are introduced; it

is proved that the initial algebras are isomorphic leading to the main result: "An abstract data

type is the isomorphic class of an initial algebra in a category of l-algebras." It provides a

rigorous mathematical basis for the specification techniques using axioms.

2.3 LANGUAGES SUPPORTING ABSTRACT DATA TYPES

The use of axiomatic specifications is still far from practicable. It involves fair degree of

mathematical expertise to formulate the axioms and to check their consistency and

completeness. Consequently, the practical languages which allow the definition of abstract

data types are still based on the abstract model approach (which includes categories (1),(2),

and (3)) described in the previous section.

2,',1 A~ S SUPP012 [ING ABS; I ACT DATrA TYPES 14

CLoIaliiguia(J was' developod at N41 T 131 to support the ur of itt aiosin programn

COIistfLoCtIOn. it supports thi ie types of abstractions. procedural I .1111 Jri 10 olai Ita. It has a

mechanisn.- ca "dCluoJt'' to define the data .,bstraction A loItste- us, d to define the

itI 1 ~ (; ivOta Ande toii , set cif operations vwInch (-to I) -r -torilet onl it Thle

reprrsek" tIu I I wLIo oig variables,- whdeata ty;p,;.i :ur- Iyu jAM 1iiied III other

"IIistols. In in It feferences are 05~ietwith thes-e vai ahies. :n I the actual data is

I~i~il10 luiIn tu heOliy wy t acessor modify tins data is hl, iian of ope-raions

Inr~ 0o1w c lwst ,fi h t atpropi tate ihltrac t data type.

Iii tIll- oiliiciao the variables ,Jii(t are defined to be- of abstAmct data type actuially

store referenices- to datal. wfiil thue data, :it its represenitational details, are givenl In the

cluster !t toes- aOn!. with explicit In:M1;nipoltioii Of p)ointers. Y(t allowJs an e fficient

iripleiw ,Ilta~iion liOVifi OJi 0 Clidil1lO Iii 11' (111tcs of the Iii itionat 'iIsinmeit

statemet lIn the example:

ft - INt I

A Hf
NO;)t I f' (It)

tjrevarale A iI ini irif'i'whtihsoporations HI IN aini MODIFY

rlefinv In ii i hlri (-r T ii !u t m-l nt a 1 Is , B to lhe t-iiw(hi mt !-1i fill-I data p is

define,(in a clu-'t- If ;iirply tic aif, !,111ce to thle dajta III tht: ,:oiiftOcrnt the

sarun r iereriice is; stored Ill A I),tipobum en raiiseil by tIh fluird tIattmen! Mtodification of

the li :rttve pointl>! to by 13 caus-es the imiodificationi of A. as I siJde effect

[im hove apst t%.,o alt-:rrifives: either tfre notion that A aind [H are of iihstract dlata

typet should hf ihi(Ii d (1 feySiohutI siinply be riecImied to be of pointer type: or the

scruantir.s of ttm. moouinnint staitement be redefined, In Cl U, the fatter appi oach is cfhosen

an(I the! as. om t tint Is define d to mean "renaming" In tfre ecaruple. the second

2.3 LANGUAGES SUPPORTING ABSTRACT DATA TYPES 15

statement will be taken to mean that A is the name of the same object as denoted by B. In a

language which is side-effect free the above problem, of course, does not arise.

Concurrent Pascal has been developed by Brinch-Hansen [51 for the writing of concurrent

programs. It allows the definition of monitors. A monitor defines a type whose instances may

be created. The data associated with an instance can be accessed using that particular

instance of the monitor. This restriction disallows recursive definition of monitors. Moreover,

operations defined in the monitor can operate on variables only in one particular instance of

the monitor. These reshictions may he justified for concurrent programming, however, the

language is not discussed ally further here, due to these severe limitations.

Chapter Three

ABSTRACT DATA TYPES IN A

NONPROCEDURAL LANGUAGE

3.1 INTRODUCTION

This chapter describes modularity in a simple non-procedural programming language

based on mathematical equations, through the use of abstract data types. The presentation is

independent of the Model or Nopal systems, referred to previously. The objective in this

Chapter is to keep the language simple so as to convey thE concepts without being

encumbered by details.

Section 3.2 introduces the non-procedural language. Alternative aproaches to modularity

are discussed in section 3.3. Use of abstract data types is described in section 3.4; and their

specification using modules is given in sections 3.5, 3.6 and 3.7. Finally, the semantics of

modules is given in Section 3.8, followed by a summary in Section 3.9.

In short, this chapter describes the design rationale of abstract data types for

non-procedural languages based on mathematical equations.

3.2 A SIMPLE NON-PROCEDURAL LANGUAGE BASED ON

EQUATIONS

A specification in a non-procedural language basically consists of two kinds of statments:

16

L "1

3 2 A SIMPLE NON PROCEDURAL LANGUAGE BASED ON EQUATIONS 17

1 declaration of variables (including an ays and structures) and their data types,

arid

2. mathematical relations (also called assertions) between the variables.

A *vaiable can tale a value belonging to the set specitied by its data type. The data type of

a vriiblp call -it I ir t, dclared explicitly or he determined from its use. it is Immaterial to

II >pe'icitcivhIe t ~le variables are stoied, i.e. in main mi eimor y or secondary memory.

I hc tnecJ-- lita SthP IiV lIII t ii tanguage is the array. Variables or structures may be declared

to b-, arrays A flr a ile is considtle d to he an array of records

Asse how aire es'senltially equations wh ich define relationships between variables. A

v-111thi ar ha1 only one vaIle as in TMleIMAtics. Each ass iiion. in fact, dlefines the value

of t var ;ihi, Itfie assertions (,an tie coniposedt by thie user in any order because they specify

riaionls.;v i it o nlot hiave any temporal ianing associated with themn.

thy thle ulse of free subscripts, a Singlei a'Ssertion can define the vatlue of ail entire array.

h k-nl tier, correJ'prnmiiiii to lire free Subscripts can) be declareid. T hi niotion and uIse of free

shcipsis similar to that in inathuematics. f or example, let F" he anl array variable, amid "I"

a lie sotism rilit, then the assertlin

F(I) = IF I=1 THEN 1
ELSE I*F(I-1)

(tilliles the value of thle emite array F. Each element of Ithe array F is oefined in terms of the

previous one. excefpt for thle fir st element which is dlefinerd to be 1.

III thre above? example. the size of the ar ray F is not specified, and hence is pussibily infinite.

Tfre size can be, specified in essentially two ways:

1, All uipper bound can tbe declared for the0 subscript 1; or

2. A special array of the same dimensions anid sizes as F can he defined, which

3.2 A SIMPLE NON. PROCEDURAL LANGUAGE BASED ON EQUATIONS 18

identifies the size for the rightmost dimension of F. This special array is called the
end array. F is defined upto the largest index such that the corresponding

element in the special array is true, and all elements of lower index are false. Its
use is illustrated by means of an example:

END.F(I) = IF 1=4 THEN TRUE

ELSE FALSE;

The above causes an array F to be of size 4. In other words, an array variable F is

defined for as many elements until and including the first true element of END.F.

Certain rules govern the usage of subscripts. These have been designed so that the

specification can be compiled rather than interpreted. A subscript can occur in one of three

forms:

1. a subscript term e.g. I in F(I);

2. an expression of the form (1-k) where k is a positive integer, e.g. (1-1) in F(I- 1); and

3. another variable or subscripted variable, e.g. GO) in F(G(l)).

For a subscripted variable which occurs on the left hand side of the equation, its subcripts

must be in the first form. This makes the consistency analysis simpler.

The above is the essence of a noi-procedural language using mathematical equations.

There are many additional features in the Model language to handle file organization, and in

the Nopal language for fault isolation in testing of physical systems. A processor for such a

language analyzes the specifications for consistency, completeness and non-ambiguity; and

if successful, generates a program in a high level language. By consistency we mean that the

variables are defined only once, and by completeness that the variables are defined at least

once. In the generated program, the variables should be defined before they are referenced.

This analysis, which is non trivial when free subscripts are used, is described with respect to

the Nopal system in Chapter 5.

| II S

3.3 APP-ROACHES 10 MODULARITY 19

3.3 APPROACHESTO MODULARITY

Need for modularity has been discussed in Chapter 1. As discussed earlier, it means

sub dividing a prohlem into smaller specifications, and compiling each of the specifications

sepeiately. A number ot alternative approaches are possible to achieve modularity in

non-procedural laigjuages. Some of them are described below.

The simplest approach is to divide a large specification into smaller specilications which

communicate through commonly named variables. The aggregate of ,;sub parts is exactly

equivalent to the total. obtaiired by simply putting the sub pails togelhi;r mird forming one

large specification.

In a diffeient approach, each sub part represents a specification of a function, and these

functions niry be used in other sub-parts. In this approach. the functions may be specified

once and used many timn,.s resulting in a more compact overall specification. A judicious

choice of functions may also correspond to a decomposition of the specification at the logical

or "conceptual" level.

Still another approach utilizes the idea of data abstaction. In this approach a sub-part

specifies ani atstract lata type and the functions which are allowed to operate on variables of

the data type. The data type can now be used in other sub parits. In othe words, variables in

other sub parts can be declared to be of the defined data type and be operated upon by the

specified functions [his approach has the advantage similar to the functional approach,

namely, that a data type specified once in a sub part may he used 11any times in other

sub-parts.

A procedure in a programming language accomplishes an action (or performs a sequence

of steps). A procelure is rised knowing "what" it accomptishes without knowing "how" it

3.3 APPROACHES TO MODULARITY 20

accomplishes it, and similarly it is defined knowing "what" it is supposed to accomplish

without knowing "how" it will be used. Thus the abstraction separates use from definition

and introduces modularity. In a similar fashion, a data type is specified independent of its use.

It represents a set of objects which satisfy certain properties, and frequently. these objects

correspond to the user's problem domain, e.g. stacks, tokens. sets etc. A variable of the said

data type represents one of these objects and allows us to express relationships directly

among these objects in a non-procedural specification. Thus it also makes the specification

closer to the terminology of the problem.

Another advantage of this approach is that the representation for the variables belonging

to abstract types need not be known while writing the specification. This allows the

representation of a data type to be modified without affecting its use. The representation of a

data type is specified by means of a sub-part defining tile data type, and can be changed by

changing that sub pat alone.

In light of the above advantages, this latter approach to modularity is adopted in this

dissertation. (Another motivation for chosing the latter approach is that it provides a

convenient way to represent devices for testing in the Nopal system.) It should be recognized

that the subpart specifying the data type allows the funtions which can operate on the data

type to be clustered together. The use of this abstraction serves as the guiding principle for

clustering of the functions. We hope to illustrate below that this is, indeed, a natural way to

modularize non- procedural languages.

,1 - US[- O[A[3S [FACT DATA TYPES 21

3.4 USE OF ABSTRACT DATA TYPES

Fach variable in a non-procedural specification has a data type, which gives the set of its

pec~sihl, valules The data type of a van able can he elemneritmry (i e one dtefined by the

Iatiagj e g real, initeger, chiaracter etc.) or can be one of tht_ alist: act types.

Aiabstract data type mu1Lst be_ ';pecJific, innI pi ace'tUralty hy mio~is of a specification

i.ailed the m-s, l for that data typto Jusqt,,; La varible of theo leIkcutary data type can be

uOWrlkt Ufffli hy the' funIctiiis for Olt, rlato t~pe. e.g. functions . ' / for the integers, a

kvwiah4f- of thc' it Ic~tt typt, can oiil be operalted tipori I n. et of functlions ifnedl in

thte comesp)oHilug nodule.11P

Variables can occur Inl asseitions as, define-,d below. Asse t huris define the relationships

between the variable~s. Ani assertion is of the formn:

where A,, A,, ark! nanmes of array variables. 1,** 1., are subscripts for (11 dimensional array

varialek A, and T i tenoteS the eJxpression fornied using funHction symbols, subscripts and

array variables.

Ex pioessionis are formed using notation familiar in mathematics. Informally:

I. Ani ar ray var iable followed by a list Of su~bscript expressions is ain expression, and
the data tlp ni the- variabite gives the set to which the value of tile expression
beonigs.

2 A function syriboin followedt by expressions in parenthesis is an expression. The
data typ~es of the expressinu, Should(rmitch the doinains of the function symbol.
The-_ dat; typo of the new expression formed is thle range las in mathemilatics) of
the fuinction Hire expression defines a mapping from thre domains to the range of
the function

3. Symbols + . d /renote the functions for addition, subtraction, multiplication
and division, and they mnay Ihe used as infix oiperators. Similarly, the' function
if then else, (cund., x, y) with three arg rueNts can be written in its familiar form: if

3.4 USE OF ABSTRACT DATA TYPES 22

cond then x else y.

Data types place restrictions on the ways in which expression can be combined to form new

expressions. In particular, the data types of the arguments of a function must match the

domains of the function.

There is no distinction in the use of elementary and abstract data types. The user of the

language once provided with a set of data types and the functions which can be performed on

them may use the given set of data types without ever knowing which are elementary and

which abstract. The use of the abstract data types, therefore. does not require any new

meaning to be given to variables or assertions in the non procedural language.

3.5 SPECIFICATIONOF ABSTRACT DATA TYPES

This section introduces the concept of a module for the specification of the abstract data

types. The specification of an abstract data type is independent of its use. It is specified

non-procedurally within the framework of the language intrduced in section 3.2. The module

specification can be analysed for inconsistency, incompleteness, and ambiguity, independent

of other module specifications. In particular, the variables in the module are single valued,

subscripts are consistently used, and are independent of the subscripts and dimensions in

other module specifications. Finally, as will be shown later, the generated program supports

the use of variables of the defined abstract type in other modules.

A module consists of: (1) a header - which gives the name of the abstract data type, (2)

data declarations which give the representation for the abstract data type, and (3)

module-functions (modfuns for short) - which specify the functions which can operate on the

abstract data type being specified by the module. The function specification consists of

3.5 SPECIFICA I ION OF ABSTRACT DA[A TYPES 23

assertions, including formal paramaters and return value.

A module named say ADT, specifies a representation for an abstract data type ADT. By

repesentat~in is meant the components of a data type. The word "representation", rather

than the word "data structure", is used because the components themselves can be abstract,

in which case they are specified by means of other modules. A modfun may return a value of

type AD F. in which case the value is defined by defining the value of variables in the

repiesentation. this is (lone by means of assertions in the body of the inodfun If the value is

specifled using the formal parameters of the niodfun. then the rnodfun .specifies the

r,,q'Aitiu: ship betwen the formal parameters arnd the valne retuirned. If one of tfie parameters

ii of tpue AD fr its rpres,;entation is accessible in the module AD] andI can be uL;sI in defining

the return value.

In goineral, tie rUtuirn value of a rnodfun may be of any arbitrary data type. Appropriate

furietoi Must be use d to define the return value.

3.6 ANEXAMPLE - STACK

The ideas presented in the previous section are illustrated by means of an example in this

section. The syntax of assertions has already been explained; the syntax of thr declarations

is somewhat like Pascal and PL/I. The subscripts are declared by means of a statement of the

form:

<subs> IS A SUBSCRIPT;

where (subs> is the name of the subscript.

The example chosen is stack of integers. It has four modfuns. Their domains and range

are:

3.6 AN EXAMPLE - STACK 24

Emptystack: - stack

Push: stack ' integer - stack
Pop: stack - stack
Top: stack - integer

The emplystack maps from null domain to an empty stack; Push maps a stack S and integer X

to a stack whose top element is X and the remaining part is the same as stack &; Pop maps a

stack S to another stack which is the same as S except with the top element removed; and

Top maps a stack S to an integer X such that X is the same as the top element of S.

The above is an informal description of stack in English. The module STACK gives the

formal specification of stack and its functions. The specification captures the concept

expressed informally above and makes it precise. (The formal semantics of the module is

discussed in Section 3.8.)

Consider the following example having an array A of stacks. Each of the elements of the

array A is a stack onto which integers from arrays P and 0 are pushed.

MAIN EXI;
DCL A:STACK ARRAY(10),

P,Q:INTEGER ARRAY (10);
R:BOOLEAN ARRAY (10);

I IS A SUBSCRIPT;
A(I) = IF I=1 THEN EMPTYSTACK

ELSE TF R(I) TIIEN PUSH(A(I-1),P(I-1));
ELSE PUSII(A(I-1),Q(I-1));

/* ARRAYS PQ,R ARE ASSUMED TO BE DEFINED ALREADY.

END EXI;

The STACK module is:

3.6 AN EXAMPLE -STACK 25

MDI)ULE STACK;
DCL 1 STACK: RECORD,

2 TOPZ: INTEGER,
2 Z: INTEGER ARRAY(100);

J IS A SUBSCRIPT;

MUDION PUSH(S:STACK, X:INTEGER) RETURNS (Sl:STACK);
S1.TQPZ = S.TOPZ + 1:
S1.Z(J)=IF J<=S.TOPZ THEN S.Z(J)

ELSE X;
END.Sl.Z(J) = (J=S1.TOPZ)

END;

MDIID/N POP(S:STACK) RI/UIPND (S1:STACK);
SI.TOPZ = S.TOPZ-1;
S1.Z(J) = 5.2(J);
END.S1.Z(J) = (J=S1.TOPZ);

I-ND);

PMUL)/UN TOP(S:STACK) Rt /URNS (X:INTEGER);
X=S.Z(S.TOPZ);

END;

V0U0i I N ENIPTYSTACK RtI IURNS (1: :STACK);
51. TOPZ=O;

END;
IND STACK;

In the above example, representation for a stack consists of two components: a 100

element inteqjer airay called Z. and] an integer TOPZ. The familiar notation of record (as in

PL/l, Pascal etc.) i5 IS(tI to shoaw the comp~onents of stack. Variables Si and S which occur

in the niodfiuns are of data type stack. COutside tile STJACK mo1dule the two components of

stack are not visible, however, inside the module the variables S and Si nre seen to consist of

two coniponents. To refer to their componeints qualified names are uIsOd, e g. Si. .OPZ refers

to a component of stack< S 1, while S. rO~z refers to that of stack S.

The STACK miodule can he analysed for consistency independent of thre use of stack dtata

type. The niodluns PIJSH arid POP define a stack by defining tire value of its conmponrents

which satisfy certain relationship with components of another stack. For example, the

modfun PUJSI defines the value of a stack Si in terms of stack S and inteqer X, which are the

3.6 AN EXAMPLE - STACK 26

formal parameters of PUSH. The two components, Z and TOPZ, of the stack S1 are defined in

terms of the components of the stack S and integer X. EMPTYSTACK defines a stack which

satisfies certain properties independent of any other stack; TOP defines an integer with

respect to the stack S, which is a again a formal parameter.

The definition of the array of stacks, A, in the main module does not require knowledge of

the representation of stack. It can be analysed for consistency independent of the module

STACK.

3.7 RECURSIVE DEFINITIONS

Modules can be used to define data types whose representWitin r, specified recursively.

For an abstract data type. say ADT. its representation can be .sptecified in terms of variables

which themselves can be of type ADT. Modfuns can now he ipplied to these variables

recursively to define their values.

The recursive data types are illustrated below by means of an example. Stack of stacks

data types (SOS for short) is chosen to show the similarity with the previous stack example.

The specification of SOS is same as that for STACK except that the data type of the array Z in

the representation of SOS is of type SOS instead of INTEGER.

3.7 RECURSIVE DEFINITIONS 27

MAIN EX2;
DCL S.T: SOS ARRAY(100);

S(I) =IF 1=1 THEN PUSHS(EMPTYSOS. EMPTYSOS)
ELSE PUSHS(S(I-1), Et4PTYSOS);

T(I) =IF 1=1 THEN PUSHS(EMPTYSOS, S(1)).
ELSE PUSHS(T(1-1),S(I));

END EX2;

m
(3)

[Uj U I -5 (1)

T(1) T(2) T(3)

U = stack symbol

U =stack containing "

Figure 3- 1: EXAMPLE EX2: USING STACK OF STACKS

3.7 RECURSIVE DEFINITIONS 28

MODULE SOS;
DCL 1 SOS: RECORD,

2 TOPZ: INTEGER,
2 Z: SOS ARRAY(100);

J IS A SUBSCRIPT;

MODFUN PUSHS(S:SOS,X:SOS) RFTURNS (S1:SOS);
S1.TOPZ = S.TOPZ + 1;
S1.Z(J) = IF (J <= S.TOPZ) THEN S.Z(J)

ELSE X;
END.S1.Z(J) - (J = S1.TOPZ);

END;
M()DFUN POPS(S:SOS) RETURNS (S1:SOS);

S1.TOPZ = S.TOP - 1;
S1.Z(J) = S.Z(J);

END.SI.Z(J) = (J = S1.TOPZ);
END;

MC)DFUN TOPS(S:SOS) RETURNS (X:SOS);
X = S.Z(S.TOPZ);

END;

MODFUN EMPTYSOS RETURNS (S1:SOS);
S1.TOPZ = 0;

END;

END SOS;

Stack of stacks (SOS), as defined above, is not very useful because it cannot handle a

stack of integers. A SOS can only contain other SOS's. The difficulty arises because the data

type of Z, a componer, of SOS, is restricted to be of data type SOS: hence it does not allow a

stack of integers to be part of SOS. There are a number of ways of dealing with the problem,

e.g. parameterized modules, disjoint union of data types etc. expl,Ined below. A particularly

elegant method is by using parameterized modules.

A generic or parameterized module defines a class of data types. Different values of the

parameter of the module result in different members of the class of dala types. The SOS

example is rewritten using generic module. A single module defines stack of integers, stack

of characters, stack of stacks etc. depending on the value of the parameter.

STK specifies a parameterized stack. Its parameter is a data type which determines the

I I..

3.7 RECURSIVE DEFINII iONS 29

components which a given STK can have. For example, S is declared to be an array of stacks

of integers i.e. each of the element of the array S is a stack and can contain integers.

Similarly, T is an array of stack of stacks. At the time of declaration of variables of data type

STK, the parameter of STK must be specified.

MAIN EX3;
DCL S: STK[INTEGER] ARRAY(100),

T: STK[STK] ARRAY(100);

S(I) = PUSHSTK(EMPTYSTK(INTEGER), I);

T(I) = IF 1=1 THEN PUSHSTK(EMPTYSTK(STK). S(1)),

ELSE PUSHSTK(T(I-1),S(I));

END EX3;

~S(3)

T(1) T(2) T((3)

Figure 3-2: EXAMPLE EX3: USING PARAMETERIZED STACK

Figure 32 illustrates the various stacks in EX3, by means of a picture.

-bmm

3.7 RECURSIVE DEFINITIONS 30

MODULE STK[U: TYPE];
DCL I STK: RECORD.

2 TOPZ: INTEGER,
2 Z: U ARRAY(100);

J IS A SUBSCRIPT;
MODFON PUSIISTK(S:STK[V], X:V) RETURNS (SI:STK[V]);

S1.TQPZ = S.TOPZ + 1;
S1.Z(J) = IF (J <= S.TOPZ) THEN S.Z(.J)

ELSE X;
END.Sl.Z(J) = (J3 S1.TOPZ);

END;

MOD/UN POPSTK(S:STK[V]) RETURNS (S1:STK[V]);
S1.TOPZ = S.TOP - 1;
SI.Z(J) =S.Z(J);
END.Sl.Z(J) = (J3 S1.TOPZ);

END;

MODEL/N TOPSTK(S:STK[V]) RE/URNS (X:V),
X = S.Z(S.TOPZ);

END;

MODEUN EMPTYSTK(V: TYPE) RETU11RNS (S1:STK[V]);
S1.TOPZ - 0;

END;

END STK;

Ihe construct Of disjoint union alsu allows a single moduile to dlefinle a class of data types.

A variable is said to be of disjoint union of data types X and Y, it the vaiiable can take a value

denoted by either of the data types, and there is a way to distinguish whether its valule is Of

data type X or dafa type Y. Part of SOS example is rewritten helow to illustrate the idlea. In the

example, a tag field is associated with the SOS record, whirti indicates one of two p~ossible

choices in the variant part of the record. Thus depondinij on tho tag field, it represents a

stack of integers or stack of stacks. (It is assumedl that TYPE (7)F "JACK is a dlata type

defined to be a set consisting of two keywords INTEGER and SO") CASE has simnilar meaning

as in Pascal.) Accordingly, the dlata type of the parameter X in the function PUSI ISTK is of

type SOS or INTEGER.

3.7 RECURSIVE DEFINITIONS 31

M0OULE SIK;

DCL 1 STK: RECORD,
CASE TAG: TYPE-OF-STACK OF
TNT: 2 TOPZI: INTEGER,

2 ZI: INTEGER ARRAY(100),
SOS: 2 TOPZS: INTEGER,

2 ZS: STK ARRAY(100);
J IS A SUBiSCRIPT;

McDFUN PISHSTK(S:STK, X: CASE (STK, INTEGER)) f?LIU1tJS(S1:STK);
CASE S.TAG OF
TNT: S1.TOPZI = S.TOPZI + 1;

S1.ZI(J) = IF (J <= S.TOPZI) THEN S.ZI(J)
ELSE X;

END.Sl.ZI(J) = (J3 S1.TOPZI);
SOS: S1.TOPZS = S.TOPZS + 1;

ST.ZS(J) = IF (J <= S.TOPZS) THEN S.ZS(J)
ELSE X;

END.S1.ZS(J) = (J = Sl.TOPZS);

END;

END STK;

Unlike the parameterized module, the class of stacks that SrK specifies is limited to those

explicitly defined in the module, e.g. in the above example it is limited to two- INTEGER and

SIX. In case of the parameterized module. the class of stacks specified by STK is left open in

the specification.

Disjoint union and] parameterization are not included while cl'fining the semantics of

modules to keep the tre.atment simple. Paraniolerized Mo(11lules- (Or iijoint uni11on) can always

be replaced by at iimher of different modules, each correspond ing to a different vaIle of the

parameter (or a different data type in the union).

38 SEMANTICS OF MODULES 32

3.8 SEMANTICSOF MODULES

This section defines the denotational senantics or the fix point semantics of the modules.

The denotational approach has been chosen because the semantics so defined is

independent of the computation rules (or the interpreter) used to evaluate the modules. This

may be contrasted with the operational or axiomatic approach, in which the semantics is

defined in terms of the interpreter. The denotational approach is particularly suited for

non-procedural languages, because these languages are independent of the sequence of

control of the statements. The denotational semantics of modules shows two things: (1) the

module defines a set of functions, and (2) the functions can be computed.

The equations and arrays in the specification are considered as partially defined recursive

functions. This allows us to translate our notation into the standard recursive function

equations, and use the results regarding least fix point already known in that domain.

Some of the important definitions used in denotational semantics are described here.

Partial ordering " -" on every extended domain D" = D U {_L}, where 1 stands for the

undefined value, corresponds to the notion of less defined than ot equal to. It is defined as:

_ -d, and d--<d VdeD

A function f is said to be monotonic if:

x -<y =:: f(x)__-<f(y) Vx,y eD +

Starting with these basic definitions semantics for recursive equations is defined (Chap. 5 in

[371).

First, the semantics of equational specification (Section 3.2) is presented. It is based on

[40]. Later, it is extended to give semantics to modules. It is also shown that a module

specification defines a set of algebraic axioms satisfied by the abstract data type.

3.B SEMANTICS OF MODULES 33

An equational specification. introduced informally in Section 3.2. for the array symbols A1 ,

. An of dimensionalities d1 ... d,. and data types T1 ... T,, respectively, is a system of

equations:

AI(1 1 ldl) rl(1 ,Al, ... Ad

An(I . Id) = n (Il IdnA 1 ... A)

The terms T(I.. d,,A 1, ... An) for i = 1 to n aredefined recursively as follows:

Letters fIf 2 are used to denote functions over array values: and g.g 2 are used to

denote integer valued functions used as subscripts. A subscript is defined as follows:

1 Ik is a subscript. Its appearance in r, satisfies k < di .

2. Ik-c is a subscript, where c is an interpreted integer constant.

3. If J1 J, are subscripts, then so is g,(J)

A term is defined as:

1. If J i ... J,, are subscripts, then A(J 1 J,,) is a term of data type T1.

2. If t, tm (ire terms of data types S,l ... S,, respectively, then f,(t ... t,,) is a term
of data type S, (where occurrance of the symbol tI is always followed by terms of

the data types S,,, ... Sim).

An interpretation for a specification coisists of

1. domains D1 D, over which the elements of array vary, and let D = {DI, ... Dr;

2. a one to-one onto mapping M such that: M(x) = D,. where x is a data type, and D,

c D;

3. an assignment of concrete functions to the symbols {f,}, i.e. I[fl: D ' X D 2 X ...

Dm - D, where m is the arity of f, S, the data type for the i' argument of the

function satisfies the relation M(S,) = D, and similarly the data type for the range

of the function satisfies M(S,) = D,, where D, I r D for 1 < i < m, D, r D; and

3.8 SEMANTICS OF MODULES 34

4. an assignment of concrete natural number functions to the symbols (g,} i.e. lI[g,:
(Z +)dI Z ', where d, is the arity of gi.

where D i is the extended domain, Di = D. U {IJ; and Z is the extended domain of

natural numbers, Z + = Z U {), where -L stands for undefined value, Moreover. f, and g, are

restricted to be monotonic in the sense of partial ordering.

Least fix point semantics is adopted to give a meaning to the specification. Thus, the

solution to a given set of equations is taken to be the least fix point solution. Each of the A, is

specified as a partial function, Ai: Zdi -0 Di . Monotonicity of functions f,, f2 . . g, g 2,

assures that the T, are continuous. Therefore, the least fix point solution exists and is unique

(Thms. 5-1, 5-2 in [37]).

The semantics of module specification is presented next. A module specification consists

of the declaration of the representation for the abstract data type specified by the module, and

the operations which may be performed on variables of the type. Let an abstract data type

called ADT be specified by a module of the same name. The nodfuns specified by the module

may be divided into two classes:

1. those which return a variable of data type ADT, and

2. those which return a variable of data type other than ADT.

Semantics of modfuns for each of the classes will be presented.

Representation of the abstract data type ADT, in its most general form, is given by a

structure of the form:

dcl 1 ADT: record,
2Al: T1,

2 An: Tn;

3.8 SEMANTICS OF MODULES 35

where A.'s are the variables and T,'s are their data types respectively. Each of the A,'s may be

arrays or simple variables. A structure declaration is given the semantics of a tupte. and

therefore, the structure for ADT denotes the tuple:

<A1,A 21 And.

Note that since any of the T,'s may in turn be 3f type ADT. the abstract data type. ADI. may be

defined recursively.

A modfun in the module ADT which returns a variable of data type AD- is of the form:

MODFUN OPC(C1 :ADT, ... Cp:ADTBI:u.... Bq:() RL TURNS(C:ADT);
C.A (I....d)= " 1(1 I dl, d A1 ... A,,C.Boo)

C.An .'dn) = TOP IdnA ... An,C,B,op)

END

where OPC is the name of the modfun; C,*s are the formal paramrieters of data type ADT: B,'s

are formal parameters of data types u,'s respectively where none of the u,'s is ADT; and -ri's

represent expressions. C is used to denote C,.C2 .. Cl: B to denote B,. B2 . .. BRq: and op to

denote the modfuns in the module. A,'s are array symbols and are components of the tuple of

ADT, defined earlier. The d,'s give the arities of the corresponding A,'s, and I*s are the

subscripts of the respective A,'s, where 1 < I < d,.

rhe expressions ,'s can now be defined as below. Letters f,.f 2 , are used to denote

functions over array values, and -i,,g 2,. are used to denote inlegor valued functions used as

subscripts. A subscript is defined as follows:

1. ',, is a subscript. Its appearance in T, satisfies k < d,.

2. 1,,-c is a subscript, where c is an interpreted integer constant.

3. fJ 1 ,... J,, are subscripts, so is g1(J 1, ... Jn)"

3.8 SEMANTICS OF MODULES 36

A term is defined as:

1. If Ji --- Jd, are subscripts, then Cj.Ai(J I, Jd.) is a term of data type T,; where j

satisfies 1 < j < p, and i satisfies 1 < i < n.

2. Bi(l, Id,) is a term of data type ui, where 1 < i < q.

3 Ift1 ... tm are terms of data types Sil ... Sim respectively, then fi(tl, ... t,,) is a term
of data type S, where occurrance of fI is always followed by terms of data types

Sit . . Sim,

4. Same as (3) with the symbol f replaced by op, where op c o., and Sii's replaced
appropriately.

The following interpretation is given to the above set of equations.

1. a set of basic domains D1, ... Dr including domain Z of the set of positive integers,
and let Dtot {D1, ... Dr, D}, where set D is defined by the module;

2. for each of the data types Ti's, u's and ADT define a one-to-one onto mapping M

such that:

M(ADT) = D
M(x) = d where x (T I ... T n ,u1 ... u q }

and d c {Dtol- D}

3. for each sy'nbol fi of arity di assign a concrete function:

fi: Dil X ...X Did i --, Di

where Di r Dto t

and Vk, Dik - DIto

where S,,. the data type for the Ith argument of the function I, satisfies M(Si,) =Di,

and S,, the data type for the range of the function satisfies M(S) = D,:

4. for each symbol g, of arity d, assign a concrete number theoretic function:

gi: (Z +)di _ z +;

5. a set of projection functions P,'s such that

<A ... AnA , = P,(<A ... l An>)
and with subscripts and symbol C, for the tuple

CrA,(IJ ... Id,) P,(C)(ll,...Idi)

3.8 SEMANTICS OF MODULES 37

for I <P

and I <i<n;

6. a set of functions OPC1, ... OPC n (instead of the multi-valued function OPC)
defined as follows:

OPCI(_,B,I,...Id) = C.A(Ij Id1)

OPCn(.B. i,...Idn) = C.A(I dn);

where C and B are the formal oarameters of OPC.

With the interpretations (5) and (6) the equational specification of a module can be written

in the familiar form of recursive equations:

OPCI(C__,B , 1 . d) = "lI .. IlP _BB ~~_

OPC,(C,B,1I, ldn) = T(l... Id,P,CB, p)

where gp is the set of operations with proper substitutions. (For example. OPC 1 o2 is written

as the tuple <OPC,, ... OPC X>) E represents PI, P,"

For each of the modfuns of class 1, i.e. those which return a value of data type ADT, a

similar set of recursive equations can be written.

For each of the modfuns of class 2, ie. those which return a value of data type other than

ADT, a similar but simpler set of recursive equations can be written. A modfun belonging to

the second class is of the form:

MODI ON OPD(CI:ADT. Cp:ADT,B 1:tl, B q:u(,) RETURNS(E:u)
E(IO.... Id) = TI(I I, A i Al, An,C,B_o R)N

END

which reduces to the recursive equation:

.t

I

3.8 SEMANTICS OF MODULES 38

OPD(C,B,I 1 d) = T(I1, ''' ldEC..,BQ)

All the recursive equations are now put together, by renaming the variables which occur as

formal parameters of modfuns, to avoid clash of names.

The functions f,f 2 g1,g2, ... are constrained to be monotonic in the sense of partial

ordering. The projection functions are monotonic because:

Let P, be the ith projection function. Now
let x = <x1i, ... xi,. x

and y = <Y1,... yi ... Yn>

x -< y x -< y, for all i, (where "-_' stands for less defined than or equal to)
Pi(x) = xi

P i(y) = Yi
x --< y =* Pi(x) --- P,(y)

therefore, Pi is monotonic.

Hence, "i's are continuous and the least fix point solution of the recursive equations exists

(Thms. 5-1, 5-2 in [37]).

The set D, which corresponds to the data type ADT, is defined inductively as follows:

1. Base step. For a modfun OP which returns a value of data type ADT, and none of
whose formal parameters is of type ADT. the tuple defined by OP: <OP 1 ...
OPn>(1) is a member of set D. B are the formal parameters of function OP, and
OP represents a tuple of functions.

2. hoductive step: For a modfun OPC which returns a value of data type ADT, the
tple defined by the modfun: <OPC t OPC1,,(CE3) is a member of set D; where C
are the members of set D, and B are members of other domains (Dto t - D).

The existence of the least fix point solution assures the existence of the set D.

With the semantics of the modules defined, algebraic axioms about the abstract data types

can now be proved. The proof involves substituting non-procedural equations for the

occurrances of the module functions, and reducing the equations until the desired equality is

obtained. This is illustrated by means of the STACK example. Note that since it does not

3.8 SEMANT ICS OF MODULES 39

involve recursive definition of the dfata type tile derivation is straight forward.

To pro ve. POP(PUSH(SX)) =S, where S is a stack. and1 X is an integer.

Proof:

LHS
=POP(S') where S' is a stack and

S'.TOPZ = S.TOPZ + 1

S.Z(J) if J < S.TOPZ
S'.Z(J) =X if J = S'.TOPZ

I otherwise

= S" where S" is a stack and
S".TOPZ =S'.TOPZ - 1

S' .Z(j) =S,.Z(J) if i < S'.TrOPZ
I otherwise

= S" whereS5' OPZ = S.TOPZ
S .ZfJ) = S.Z(J) if J < S.TOPZ

I otherwise

= 5" where S.TOPZ = S.TOPZ
5" .Z(J) = S.Z(J) VJ (from Lemma 1.)

Q.E.D.

ILemma 1: VS c STACK, S.Z(J) = I for J > S.TOPZ

Proof Since the stacks can only he defined by the modfuns in the module STACK, the

proof follows from induction:

Base step. Follows from the definition of the EMP TYSTACK.

I

3.8 SEMANTICS OF MODULES 40

Induction step: Let S be a stack satisfying the proposition of the Lemma.

Claim: The stacks POP(S,X) and PUSH(S,X) also satisfy the lemma.

Proof:

1.

Let S' = POP(S,X)
S'.Z(J) = -L forJ > (S.TOPZ- 1)

= -L for j > S'.TOPZ

2.

Let S' = PUSH(S,X)
S'.Z(J) = L for J > S'.TOPZ

Q.E.D.

3.9 SUMMARY

This chapter introduces a non-procedural language based on equations. Use of abstract

data types has been proposed as a means to introduce modularity in the non-procedural

language. It has been argued that the use of abstract data types is consistent with the

philosophy of non-proceduralness, and leads to modular specifications.

The notion of "module" has been introduced to allow specification of the abstract data

types. It allows the definition of the representation of the abstract data types, and the

specification of the functions whi, h can operate on it. These functions are specified

non-procedurally by means of equations.

Finally, the denotational semantics of the modules is defined. It is shown that an abstract

data type defined by a module is a well defined set. it is also illustrated that the axioms

satisfied by the abstract data types can be derived from the equational specification.

i V

Chapter Four

THE NOPAL LANGUAGE

4.1 OVERVIEWOF THE NOPAL LANGUAGE

Nopal is a descriptive language used to write specifications for the programming of

automotic test systems. It can be used for testing of electronic circuits, mechanical systems,

chemical processes etc. It also has the capablity to perform general purpose computational

tasks.

Basic statements in Nopal are assertions and data declarations similar to those described

in Chapter 3. However, Nopal has additional constructs which are superimposed on the

assertions and data declarations. These additional features facilitate the specification of

testing. The most important construct is that of a test. A test section consists of a

specification of a physical test. Outcome of the test i.e. passing or failing the test, determines

fault isolation. There are also sections to describe the UUT (Unit Under Test) and the ATE

(Automatic Test Equipment). These sections are needed to check consistency of interfaces

with the UUT and ATE.

Several features of Nopal are extremly important in providing ease of use. First, the

language is non-procedural. The user saves effort because the execution order of events or

control logic need not be specified. Second, the specification can be divided into sub. parts,

the modules. Each of the modules can be specified and processed by the language processor

independently. This is the essence of modularity of a specification Third, each of the

modules may be further divided into data decfwrrm, and functions The functions are

41

4.1 OVERVIEW OF THE NOPAL LANGUAGE 42

divided into tests, diagnoses and messages. Each test has sub parts: stirnulus, measurement

and logic All these correspond to notions which occur in testing. Fourth, the language

allows incremental development of specification. Tests can be added to a specification

without changing the tests already specified.

The Nopal system produces a number of reports which serve as the documentation for the

specification. It also enhances the user-system interaction, and helps the user in locating

errors in the specification.

In this chapter, the Nopal language is described informally with examples. A more detailed

explanation including the formal syntax is given in [461.

A Nopal specifcatlo gives a complete description of the desired tests specific to a given

IJUT and ATE. In generdl. a Nopal specification consists of a collection of modulos. One of the

modules is called the wi r iole and it consists of the tests on a given UUT with an ATE.

Communication between the modules is by means of abstract data types A module (except

the main module) represents an abstract data type which can be used by other modules.

A module specification includes the data representation for an abstract data type together

with the functions (called module functions or modcions for short) which can operate on the

variables of the abstract type (also called ,b: toct vatijhls for short). An abstract data type

that has been specified by means of a module can be used in an of the modules. The

abstract variables are definod and operated upon by means of the rModfuns specified in the

module.

The modules are specified non-procedtially. For organizational purposes each module

can be divided into four major ;ections, which can be given in any order. They are:

1. Data declaration specificalion,

4.1 OVERVIEW OF THE NOPAL LANGUAGE 43

2. Modfun specification,

3. UUT specification, and
4. ATE specification.

Each of the four sections are, xplained briefly below, followed by a more detailed description

later.

The data declaration specification provides the data types of the variables and the data

structure used in the specification.

The modlun specification describes the mapping between the input and the output

parameters of the modfun. The main module has only one (iiimplicit) inodfun. while the other

modules may have more than one. Each modfun consists of test:, d ,o'ues ,ril messages.

The tests may be further sub divided into stimuh. meastitmt, and logic. A test

corresponds to the notion of a physical test on the UUT, i.e. application ot stimuli, taking of

measurements and selection of diagnoses, based on the results of the test as expressed in the

logic part. The diagnoses report of the test consists of messages that typically identify the

faults in the UUT.

The UUT specification gives the description of failure modes, connection points etc. of the

UUT. This description is cross checked by the language processor for consistency within the

module.

The ATE specification provides the description of the functions uc ed in the module. These

functions can be used for application of stimuli, taking of measurements, or for computations.

These functions must be specified outside the module. They can be either part of a library of

functions, or they can be specified as inodfuns by other modules. hlie ATE specification gives

the function parameters and their data types. In other words, it gives the specification of the

interface with the rest of the modules and with ATE.

4. AADCAAIO PCFCTO

4.2 DATA DECLARAT ION SPECIFICATION 4

The data declaration specification allows tile user to declare the (dita types of variables.

The (data type of a variablu specifies the set to which (thle vlue Of) the(- variahle mu1Lst belong.

and the operations which can be performed onl it

Data types canl he either elementary, e.g. real, integer. or character or they can be

abstract, in which case they mus,1t he specified by means of modules.

Data declarations 1Cilude spOcification of the structure of the data. The two b~asic

struIcturing methods aLie: (1) arrays, and] (2) structures Ant air y is a homogeneoust!Ll' structUre

of elements. all of which are of the same((tal ly pt. A strulcture. on the nflther hand nay consist

of components of dlifferentI types which are r ouLped together I le con pcn(nt! tI icroselves

can be arrays or stroctures. thus perimiting $dructures of arbilrar' complexity to he dteclared

A st(rtur(mray lte viewed as a tree, I1 le root of at tree leprcns fmits lhw entire struIcture, and

it!; desceldenlts collrespond to ft(re coroponeuls; of the stintrire I roallx. the leaves of Ire(tree

correspond to the individual variables in the struIcture fBelow are s-orire e - iroples of

declarations of variables:

DCL A,B,X INTEGER;
DCL YZ STACK ARRAY (10);
DCL 1 P GROUP ARRAY (5),

2 Q :GROUP ARRAY ()
3 R INTEGER,

3 S REAL;

In thre first statement, variables A, R and X are declared to h)0 (if typil?(ler k the secoin I, Y

andl Z are declarert to be one dinmensional airrays, of siie 1W. aid Lia type stIack, and ill thle

thirdl, a three levefl tree structure is, rterlarer. fIr the tree sltuctrie the roof is thre variafrle P)

having the descenrt of 0 wich has variahles f? and S P is ain ;iry of five! elemnts ind 0 arn

array of size which is to he specified elsewhere.

4.2 DATA DECLARATION SPECIFICATION 45

A declared structure is implied to be on secondary storage if the data type of the root node

is FILE. Name of the root node, in that case, gives the name of a file and the structure

declaration gives the structure of the file In other words, the declared structure represents a

file, and is called a file structure. For example:

DCL 1 F: FILE,
2 P: GROUP ARRAY (),

3 Q: RECORD ARRAY (10),
4 R: INTEGER,

4 S: REAL,
3 Qi: RECORD ARRAY (6),

4 RI: CHAR;

A file F is declared to contain an ariay P of iidefinite size Each ehlmient of P contains 10 Q's

and 5 Qi 's.

A file structure is considered by the system to be input if all the fields (i.e leaves) of the

structure are not defined in the specification, and output otherwise the non leaf nodes of a

file structure can be of type RECORD or GROUP. A non-leaf node which corresponds to a

unit of input oulput on the secondary storage is declared as a RECORD, and GROUP

otherwise.

Variables in an input file structure aie defined in the generated program by means of a

special function called ACCESS. Calls on this function are gynimoratedI at appropiate places in

the generateI progi am for the specification SAVE lii1ctiO1 IS the "4a,t dual of above for an

output file structure Use of ACCESS anI SAVE funCtion IS inilihcit and need not be specified

by the user.

For ISAM files a key is rfipresented by a variahlc name which is the name of the record

prefixed by "P TR For ey.imple an instance of a record niani.d "Z" in an ISAM file can be

defined by means of its key "PTR-Z" The value of the k :y Is passed as a parameter to the

ACCESS and SAV function.

412 DATA DCLARA ION SPEGIF CATION 46

The notion of file structure has been generaliLed to abstract structures in NOPAL. An

input or output structure can be declared to be of abstract type by specifying the data type of

the root node as abstract (instead of the keywords RECORD. GROUP or FILE) An example of

an abstract structure is:

DCL I P: ATI ARRAY (i),

2 Q: INTEGER,
2 R: REAL;

in which a structure P is declared to be of abstract type AT1.

An abstract structure is considered input if the value of all its fel(dS Is rIot defille I in the

sp,;ihcation. and otilpti otherwise. Value of in)ut 'lhStr;c1t :JtrUctLrres is defined in the

generated program by mearls of function traied: "ACCESS" stiffixe I by th name of the

a)stract data type. Ih the previous example, if the structure P is input, its value would be

defined by ACCESS AT1. The ACCESS function for an abstract data type must be specified in

its module. Calls to this function are generated at appropriate places in the generated

program. An exact dluat of the above is the SAVE fUnCtiOl for output abstract structures.

Abstract structures allow convenient representation of those files whose physical

organization is differenrt from that specified in the main module.

Parameters can be associated with ACCESS and SAVE functions associath;ed with abstract

structures. Tire use of parameters provides a means of cormmrunication between the main

module and the modle which defines the abstract structure. It allows tle use of abstract

structures to represent testing devices as well For example. l dtv(ce which iireasures ratio of

two voltages on two ports can simply te declared as:

4.2 DATA DECLARATION SPECIFICATION 47

DCL 1 GD: GAINDEVICE ARRAY (0),

2 GAIN: REAL;

The function ACCESSGAIN.DE VICE in the module GAIN-DEVICE can give the specification

for the appropriate measurements. Thus, each value of the variable GAIN defined by means

of the ACCESS function represents a different measurement. Information relating to the ports

and ranges can be passed as parameters.

The parameters are specified by a syntax similar to that used for specifying key for ISAM

files. In the example above, the parameters of the abstract record GD are given by means of

variables named PIR I GD, PTR2.GD, etc.

4.3 MODFUN SPECIFICATION

This section describes the specification of the module functions (modlfuns). Each modfun,

like a mathematical function, specifies a mapping from its domain to the ranges. A modfun

has zero or more parameters. Parameters are called source parameters if their value is

defined outside the modfun, and are called target parameters if they are defined in the body of

the modfun. A modfun can return a value by means of its target parameters or explicitly as in

programming or mathematics. The data types of the source parameters are the domains, the

data types of the target parameters and explicitly returned value are the ranges of the

mapping specified by a modfun.

The main module has only one implicit mudfun; the other mo(dules normally contain more

than one modfun. A modfun has four parts:

1. header,
2. test specification,

3. diagnoses, and
4. messages.

1

4.3 MODFUN SPECIFICATION 48

The header must be the first statement, after which the tests, diagnoses and messages may

occur in any order.

4.3.1 HEADER

Each modfun starts with a header consisting of the keyword MODFUN followed by the

name of the modfun, the list of formal parameters and their data type3. and the tlita type of

the value explicitly returned by the mnodfun. It also states which of the parameters are source

and which are target. In effect, the header defines the interface with the other mod lues which

use the modfun.

For example the following header:

MODFUN PUSH (SO:S STACK, X:S INTEGER)
RETURNS (SI:STACK);

defines a function called PUSH which has two source parameteis 3O and Xr and it returns a

value S1, explicitly. The data type of SO and S1 are STACK, and tile data type of X is

INTFGER. Consequently, PUSH specifies a mapping from its domains of STACK and

IN VEGER to its range STACK.

4.3.2 TEST SPECIFICATION

The test specificalion consists of a collection of tests. As mentioned earlier, tests

correspond to the idea of a physical test on a UUT. A test cons,Its of three parts 1) sfmtui

that are to be applied to the UUT at the test lime. 2) m'asurmwin. that need to be taken and

conditions that must be met, and 3) logic to select the diaqnosos based on the result of

passing or failing the test.

Stimuli and measurements both optionally contain two parts a ,-ln/ctn and a set of

assertions (Generic word, wavvfoln, is used to refer to either a otijnction or an assertion).

4.3.2 TEST SPECIFICATION 49

A conjunction in stimuli specifies the simultaneous application of stimuli to the UUT, while in

the measurement it specifies the simultaneous measurement to be taken of the UUT. All the

functions specified in conjunclions must be performed in parallel. For example, the following

conjunction:

STIM;
CONJ: <J1,J2) = PSUPPLY (30V) &

<J3,J4> = FSOURCE(1KHZ,1OV);

specifies applying a power supply of 30 volts across the connecting pins Jl and J2, and

applying a frequency source of 1kHz and 10 volts between pins J3 and J4.

A conjunction can also be used with an if-statement, in which case it is called an

if-conjunction. An if-conjunction consists of a boolean condition followed by a conjunction

after "THEN" and a conjunction after "ELSE". One of the Conlunctions following the "THEN"

or "ELSE" part is performed depending on the boolean condition. For example,

STIM;
CONJ: IF VAR<20 THEN <J1,J2> = PSUPPLY (30V)

ELSE <J3,J4> = FSOURCE (IKHZ,IOV);

If a variable VAR is less than 20 then the power supply and otherwise a frequency source is

applied.

Conjunctions are used to specify some actions stimuli or measurements - on the UUT.

Assertions, on the other hand. are used to specify relations that must be satisfied by the

variables. An assertion specifies relations between variables It can be used in two roles: as

an explicit definition of variables or to specify a condition on tire variables. Variables defined

in an assertion ate said to be target variables of the asseilhon. All others variables in the

assertion are called source variables of the assertion.

If an assertion does not have any target variable then it specifies a relation which is tested

for truth value. An assertion evaluates to troe if the specified relation is satisfied, otherwise it

4.3 2 TEST SPECIFICATION 50

evaluates to false. Assertions which have target variable(s), are always taken to evaluiate to

true.

The syntax of assertions is:

ASRT: (EXPRESSIONi) (RELATIONAL OPERATOR) <EXI'RESSION2>
SOURCE: (LIST OF VARS>
TARGET: (LIST OF VARS);

(expressioni> and Kexpres sion2) are arithmnetic or boolcan exrpressions <relational operator>

is one of Q,=*((<>=. list of vars) is a list of variables with their sIubscript expressions,

if any.

Target variables in an assertion must occur as (expression 1 > or as- the target parameoters

of the (unction in (expression2> Moreover. thre r elatiorral operator miust be =E xdniples of

assertions are:

ASRT: A > BOSIN(30) SOURCE:A,B;
ASRT: A = B*SIN(30) TARGET:A

SOIJRCE:B;

The first assertion lests for the inequality aind evaluates to true or false, tire secornd as~loitron,

on the other hand, defines variable A and always evaluates to true.

In adtdition to arillinratic operators, the + - operator IS LIS(? I ini an assertion:

ASRI: el = e2 + - e3;

where el, e2. and e3 are expressions. The assertion is an aIhhreviahnin for the following

relationship:

e2 - e3 < = el <(= e2 + e3

and evaluates to true provided the above relations are satisfied.

Assertions may also be used to specify a relationl that1 musLt he- ,atisik I by a target

parameter of a function in a conjuinction I or example, an assertion written as:

1

4.3.2 TEST SPECIFICATION 51

CONJ: <JI,J2> = VOLTMETER ((Vi)
SOURCE :V1;

specifies that the value of the target parameier of the function VOLTMETER must be less than

V1.

If-clause can be used with assertions just as in if conjunctions Syntax of if assertion is:

ASRT: IF <BOOLEAN CONDITION> TIIEN <ASSERTION>
ELSE <ASSERTION>

SOURCE:<LIST OF VARS>
TARGET:<LIST OF VARS>;

The keywords THEN and ELSE may be followed by another assertion which may again have

an if-clause. This allows the if-assertion to be nested to indefinite depth (In the prcsent

implementation, the assertion following THEN cannot have an if clause. Thos only at right

recursive tree is permitted.)

The it-assertion is taken to evaluate to the same boolean value as the selected assertion

following THEN arid ELSE. In other words, if the boolean condition in an il assertion

evaluates to true then the assertion is said to evaluate to the same value as the assertion

following the keyword THEN, and if the boolean condition evaluates to false, then the

assertion is said to evaluate to the same value as the assertion following the keyword ELSE, If

an if-assertion (or if conjunction) defines some variables in its then-part, it must also define

exactly the same variables in its else- part.

The concept of free-subscript is introduced next Its use allows entire arrays to be defined

by means of one conjunction or assertion. It also allows relations to be specified between

arrays. The notion and use of free subscripts is similar to that in mathematics. For example,

the assertion with free-subscript I:

FrI

1

4.3 2 TEST SPECIFICATION 52

ASRT IF I=1 THEN F(I) = 1

ELSE F(I) = lPF(I-1)
TARGET:F(I)
SOURCE:F(I-1);

defines the values of F(I) for all values of free subscript I. In other words it deines the entire

array F. Similarly, the assertion with free-subscript I

ASRT: A(I) = B(I)

SOURCE: A(I),B(I);

specilies relation between two array variables A and B. This assertion is taken to evaluate to

true if the relation holds for all values of the subscript I.

Syntax for declaration of a free subscript is similar to that of an assertion. Statement

containing the keywoid SUBSCRIPT in the following example:

ASRT: I = SUBSCRIPT ('A,B:2',1O) TARGET: I;

is used to declare a free Subscript "I" for the first (limension of array variable A, and the

second dimension of array variable B. The size of the resl),.,tive diiniiisions of the variables is

ten. Even though the declaration looks like an assertion It shoul 1o be confused with an

assertion. It declares a suibscript which takes values froM 1 to 10. 1 he li ;t of variables and

their dimensions, i.e "*A,:2", is called paret list.

Subscripts are a powerful way to define arrays. However. ceitain retc'tions have been

placed on their use so that the specification may be analysed and an ,tficient program

generated. Let I be a free subscript. A subscript must be in one of the following forms:

1. a subscript term. e.g. I in A(I);

2. an expression of the form (IK). where K is a positive integer; and

3. another variable or subscripted variable e.g. B(I) in A(13(l)). X in A(X).

For variables which are targets in a conjunction or in an assertion, only the first of the above

three forms is permitted.

1

4.3.2 TEST SPECIFICATION 53

In the declaration of a subscript the upperbound may be omitted, if it is not known, and

replaced by .. For example, in the assertion:

I = SUBS ('F',*) TARGET:I;

upper bound of a variable F is unknown. For such variables, the program generator tries to

optimize memory. In particular, the program generator allocates memory for 2 elements:

current and the previous. Elements corresponding to only the current (i.e. I) and the previous

(i.e. V-1) value of subscript may be referenced.

The size of an array variables with subscript I, whose upper bound has been declared to be

indefinite, is specified by means of a special array called END-I. Such special arrays are called

end arrays. The meaning of end-arrays is introduced by means of an example below:

I = SUBS ('F',*) TARGET:I;

IF 1=1 THEN F(I) = 1
ELSE F(I) = I*(F-1)

TARGET:F(I)
SOURCE:F(I-1);

IF 1=8 THEN END_I(I) = TRUE
ELSE END_](I) = FALSE

TARGET:ENDI(I);

First statement, in the example above, is declaration for a subscript I. It is followed by an

assertion which defines an array F in terms of itself. The second assertion defines an

endarray END.I whose first four elements are false and the fifth element is true. This specifies

that the size of array F is equal to five. In other words, the size of F is specified to be equal to N

such that for index N the value of END I is true and for all indices less than N the value of

END.I is false.

More generally, if "I" is a free subscript then ENDI is a multi dimensional array, its

dimensionality being equal to the maximum dimension in the parent list in the declaration of

"I". END I defines the size of those dimensions of the array variables which are in the parent

1

4 3.2 TEST SPECIFICATION 54

list. For example,

I = SUBS ('G:1,F',*) TARGET:I;

J = SUBS ('G:2'.*) TARGET:J;

the dimensionality of END I is one and that of ENDJ is two. END I defines the size of the one

dimensional array F and the first dimension of two dimensional array G Similarly. ENDJ

defines the size of the second dimension of array G.

Use of free subscripts allows an array to be (efined by means of a single a;ssertion or single

conjunction. It is important, however, for the variables (be they arrays or scaler) to be single

valued. Consequently, a conjunction or assertion which defines mult)le values for arrays is

invalid For example, the assertion:

ASRr: A(I) = B(I,J) TARGET:A(I)

SOURCE: B(I,J);

is invalid because It deiMs an element of array A to be equal to an emiOe row Isecond

dimension) of array B. In general. whenever the set of free subscripts associatod with a target

variable is a subset of the noumber of free subscripts of the source variables. it defines multiple

values for the target variable. There are two exceptions to the above rule:

1. when a source variable containing an extrl free subscript occurs as an argument

of a reduction function, and the extra free subscript is reducedl: or

2. when a boolean condition precedes the assn f ion. A warning iS isued inI this case
and it is the responibility of the user to 11 sure that the target variable is single

valued.

Example of an assertion containing a reduction function is:

4.3.2 TEST SPECIFICAIlON 55

ASRT : F(I) = SUM(G(I,J),J)
TARGET: F(I)

SOURCE:G(IJ);

Reduction function SUM takes two dimensional array G and sums the elements of the same I

index value. thus producing a one dimensional array F. The array variable F is single valued

even though the source variable G has an extra subscript J, Example of the second exception

is:

ASRT: IF END_[(I) THEN OUT = F(I)

TARGET:OUT
SOURCE:F(I),ENDI(I);

OUT is defined by the last element of the array F. I lowever, it is the rosponsibility of the user to

make sure that OUT is not defined by more than one element of F Nopal progam generator

does no further analysis to check that it is indeed so.

The L-ogic component of a test speciies the selection of diagnoses The diagnoses are

selected depending on whether the test evaluates to true or false. The test evaluates to true if

all the assertions in tihe test evaluate to true, and false otherwise. The operators given in Table

4.1 may be specified with each of the diagnoses for their selection,

The logic component is specified by a list, each of whose elements consists of an operator

followed by a diagnosis name. For example:

LOGIC : 0D1, ID2. -D6;

4.3.3 DIAGNOSES

The diagnoses are used to report the result of the test, to isolate failure modes or to elicit a

response from the user. It has five parts which can be specified in any order.

1. List of affected components and their failures modes which are isolated by this
diagnosis. They may be in conjunctive or disjunctive form where the former
means that all the components in the list have failed, while the latter that at least
one has failed.

4.3.3 DIAGNOSES 56

Table 4- 1: LOGIC OPERATORS IN A TEST

OPERATOR MEANING

Select the diagnoses uncoi iditionatly i.e. irrespective of the

outcome of the test.

I Select the diagnoses if the test evaluates to true.

I~' Select the diagnoses if the test evaluates to false.

& Mark the diagnoses as selected if the test evaluates to true.

The diagnoses should be executed only if all other tests which

use this diagnoses (with operators: & or &-) also mark it as

selected.

& ~ Mark the diagnoses as selected if the test evaluates to false.

The diagnoses is executed only if all other tests which use this

diagnoses (with operators: & or & -) also mark it as selected.

2. Name of the message to b)e printed The mw;sayo itself is specified separately.

3. Parameters. This specifies the varwh-t); WhoSC vale:; must be substituted in the
message at the appropriate places.

4. Operator response: It specifies the response from the operator when the
generated program is executed The program waits for a response. Response

can be of three types:

a. press PROCEED key;

b. press Y(yes) or N(no); or

c. enter a number.

Pressing the PROCEED key simply causes the progrtim to continue execution. It
is typically used to turn knobs and set switches manuilly, i.e those which cannot

4.3.3 DIAGNOSES 57

be controlled by ATE. Y or N response is typically used for asking the operator to
make a binary choice. The response (C' is usually used to enter reading of meters
etc. manually, i.e. those which cannot be taken by ATE.

5. Time: Specifies the real time whicti must elapse from the start of a test, before the
message is issued.

Except for the name of the message and the parameters it takes, if any. all the other parts

of the diagnosis are optional.

A diagnosis specification is illustrated below:

DIAG D!:
AFFECTED COMPONENTS = OPEN(RESISTORI)IOPEN(RESISTOR2).
PRINT = MSG1.
PARAMETERS = V,

TIME = 0;

It specifies that at least one of two resistors RESISTOR I or RtSISIOR2 has failed due to

open circuit, and thlit message MSG I with pacrineter V ImIust Ie pri itfI . Timie 0 specifies that

no time delay is necessary in issiong the rne,-,sige.

4.3.4 MESSAGE SPECIFICATION

This specification consists of the itoxt of a miessage. and parameters and affected

components, if any It implies the printing of the message including thi! affected conrpoi0ients

and parameters.

For example, the message MSG 1 of Section 4.3.3 can be specified as follows:

4 3 4 MESSAGE SPEIFICATIO)N 58

MESSAGE 14561:

ONE OF THE FOLLOWING FAILURES HAS OCCURED: (C). THE

MEASURED VOLTAGE IS (P).

When the above mnessage is printed '(C)" Is ubtttd by 'UPEN

(R ESISIFoR 1)I)PpAI(RSIS1 OR2)'' aiid ''(1)"' IS subIstitted bY thle Value, Of varrable V

4.4 UUTSPECIFICATION

intoriii'ition relalitir to the UJU F is specifiedj I, this; sectioic This, atlows, var ious consistenicy

che(-ks to be performed vWIttiO the iirodLJ It is3 niy'anizet Inl two pat.() lint-I ('nflecting

polints. wfhICtr lr(2 u)sCd for id(tiI tIOIao Of the2 C0lrttIi~l points if tire I JRJ F to the, A FF 2

coriiponerrt taillires which identify Lt1 posSIhie tanty COnpiMIWiits, .'ti tr failure miodes (i.e.

types of failures).

A LF- F coinrectioii poii t defines a symnbolic name for a conneoction point oil Lt F. thle type

of connector u5(1(. and theO ilaxill11in1 and ir1IMIilril VLiIie Of ilf10 Wtrnii h lrriY he al iled

onl it For examrple:

UUPT 40 :31, CONNETOFtiA). LIM'IT=(VOLT,70,0,GND);

Ji 's the name(fry whil t1rv3 connrection poiirt is refrirt to, its typo of coninecturr is, A, and the

IiXIrnniir aald iiiriiinrnl valu1e of StIIriiIII ttrat miay bie atpitud with ietpr'ct to tlr' Lreuind (GNfOf

is 70 volts, and 0) volts respectively.

FIrl IJUF Coiirp)onen't faIire sefction, aft possible faltly corripnri'irh; in. F their failure modes

arc. elct. [7acfi cnmurnruit specification) IIICfides,! thfro tart onwrul. Iikitoeut ut thl(tautu1,re,

andt prote-ction. Prirtectiui consists of a list of ottier CCoillrtr~irir V'nrts wtos filure f)Irohihtt

testiny of this component I-or examnple:

4.4 UUT SPECIFICATION 59

COMPONENT FAILURE 2:
RESISTORI, FAIL=OPEN, INDEX=1, PROT=(1,11);

specifies that the component RESISTOR1 has a failure mode called OPEN, the frequency of

failure is 1 (the lower the number the larger the likelihood), and that should the components 1

or 11 fail, tests for failuie of this component must not be conducted.

4.5 ATESPECIFICATION

Information relating to the Automatic Test Equipment and tI, iutictions used in a module

(computational, stimuli oi measurement) is stated here. It has twn parts: (1) ATE connection

point specification, and (2) functions. ATE connection point specification consists of the

names of the ATE connections points. Optionally, the specification includes identifying ATE

points of the respective UIJT points. In the example below:

ATEPOINT 1: ATEPT#30, UUPTS=(J1,J2);

"ATEPT # 30" may be connected to UUT points J1 .J2. The checking for the LJU points has

not been implemented. It is used purely as a documentation device.

Functions used for (1) stimuli, (2) measurement or (3) computational purposes, and (4) for

denoting failures are declaredI in the A I-E function specification. Functions in the first three

categories are assurned to be flined either by means of othet nodules or hy means of a

library of functions. Ihe failure fmc lions (category (4)) are for the purpose of denoting kinds

ol failure. They are. nut functions in the sense of the earlier three categories.

F unction spec.miiion i am itm (alled IYPI which ;pecifies which of the above 4 types

does the function belong to aim Inii PAlM arid VALHIIF RI II UNED to specify the data

types of the paramter!; ard the va li to' i t himid rh,, riumher of pins used may also be

specified if the fur lion is of tF, pf' ',t;it j i mw i e ,vmreienit

4.5 ATE SPECIFICATION 60

For example a function PUSH

FUNCTION PUSH. TYPE=E, PARM=(INSTACK.S:STACK),
PARM=(ELEM,S,INTEGER),VAUE RETURNED=(STACK);

is of type evaluation. It has two parameters. both source, with the data types STACK and

INTEGER, and it returns a value of type STACK. The names INSTACK and EL EM have no

significance for the specification. Their use is only for providing mnemonics.

Chapter Five

THE NOPAL PROGRAM GENERATOR

5.1 OVERVIEWOF THE PROGRAM GENERATOR

The Nopal program generator is designed to automate the program design, coding and

debugging phases of program development based on a specification in the Nopal language.

The program generator analyzes a Nopal module specification, issues a number of reports for

the user and, if the module is error free, generates a program in the Equate-Atlas test

programming language.

There are three phases in the program generation process. Phase 1 consists of syntax

analysis and construction of internal data structures. Phase 2 consists of analysis of the

specification for completeness, consistency and non-ambiguity; and of sequencing. In phase

3 Equate-Atlas code is generated. A number of user reports are issued by each of the phases.

The three phases are described individually in Sections 5.2, 5.3 and 5.4. More detailed

documentation is provided in [461.

The Nopal processor has evolved through numerous revisions over the past several years.

The research reported here includes extending the original system [7] with the following

capabilities:

1. Modules to provide modularity and abstract data type definition facility.

2. Recursive assertions to allow the arrays to be defined recursively.

3. Declaration of data types and data structures as well as virtual subscripts.

61

5.1 OVERVIEW OF THE PROGRAM GENERATOR 62

4

0

+n1
o coe

> c c

CC

~~U)

5.1 OVERVIEW OF THE PROGRAM GENERATOR 63

NOPAL Spe-

cification

Syntax & Specification reports

Ph1ASE 1: Statement roErrors/wrarnings
Analysis I;Cross references

Soeci.fica- Errors/warnings
PHASE 2: tion AnaLy- Precedence 'Iatrix:

sis & Sequ- Flowchart report

Code Code generation report

PHASE 3 :>p
Generation rogram listing

Program

Figure 5-2: MAJOR PHASES OF NOPAL PROCESSOR

5.1 OVERVIEW OF THE PROGRAM GENERATOR 64

4. Inpu)Lt output from secondary storage.

5. VIrtuIal subscripts for efficient utilization of mnemory.

These exteusions entaile 101 1 if Iyiq scirne parts of the origuial system arnd comupletely

rewriting other parts In particular. the ;chtlin~hg algor tim was comple tely rewritten to

handle recursive assel tioliis and jupkt OLpujLt from secondary storage It is (tescribed in

Sectlion 5.3,2.

the code gener ator was not Implemented in thi original system [7 but comipletedt later

[551 [he Nopal system was demonstrated oil an actuial E(quatet At las 11nai hi no [151.

5.2 SYNTAX ANALYSIS AND THE'r_ ASSOCIATIVE MEMORY

5.2. 1 OVERVIEW

The first phaste of the Nopal piocessor per florms Syntax' and local seuiantic analysis of

specification statemren ts. At the end of the analysis, eacti Nopal stateimenit is- enc oded arnd

storedl in a sinliawft s it ivo mom for ease of further proce~ssing M le first phase

incIludes a Syntax AnIalysis Prog ram (SAl)). SAP itself is gjeiierated :ititom atically by a

meta processor called Syntax Analysis Pr ogrami Generator (SAPG), by inputtling the fornil

specification of the Nopal languiage inI a ruetat language. caled F x I uded [Back us Normal

Form Wifh Su~broutine Calls (EE3NF/WSC)SAPCS and SAP are described III St, tion 5.2.2.

SAP incorporates six types of supporting routines. which are comiposed jI rnually: Lexical

Analyzer. Error Stacking. Recognizer, Eiicodirig/Savirig/Stom ig Semantic Checkring and

Service Routines. These are described in Section 5.2.2.

At the end of each Nopal statement, a storing routine is invoktud to store the statement in

5.2 1 OVERVIEW 65

the simulated associative memeory using the Store/Retiieve package. The Store/Retrieve

package and the associative memory is described in 5.2.4.

Finally. the set of repoits generated by this phase are described in 5 2,5

5.2.2 SYNTAX ANAL YSIS PROGRAM - SAP

SAP is generated by the Syntax Analysis Program Generator (SAPG) The input to SAPG is

tile specification of the Nopal languagU in the meta :mguage F-RNF/WSC SAP(and

EB3NF/WSC were originally developed at the University of Pennsylvaiia Data Definition

Language Project [131 [44). A brief review of E[3NF/WSC and SAPG is given below.

EBNF/WSC extends the standard EBNF to provide semiantic- I lie .'mminatics is .specified

by means of subroutine names which are included in the pro0.ucthons, along with tihe

terminals and non terminals. These subroutine names indicate the neted to call the respective

subroutine upon successful recognition of the preceding syntactic unit by the parser. For

example, the production

<A> (B> /aa/ <C>

indicates that a subroutine named "aa" needs to be called on successful recognition of the

non terminal in the process of recognizing the non terminal <A>. The subroutines

themselves are written manually.

SAPG accepts the specification in E[ENF/WSC and generates a recursive descent parser

to recognize the syntax defined by the FBNF. Calls are inserted to the subroutines on

recognition of non-terminals as specified by EBNF/WSC specification. SAPG requires that

the EBNF grammer must be in LL(l) form The grammer should be free of left recursion, and

the first terminal symbol should distinguish between tile optional groups at any point in the

grammer.

5.2.3 SUPPORTING SUBROUTINES 66

5.2.3 SUPPORTING SUBROUTINES

The EBNF/WSC specification contains names of subroutines which are called from SAP.

They can be categorized into six types:

I excal ai /,'r scans the Nopal input string and returns tokens of syntactic units
to SAP or the recognizer routines.

2. 1-ttrr tm ssagv, ;ta(-lmg utit.'. help compose and stack error messages before
every syntactic Unit in the spe:ification In case of incoiredt or missing syntactic
units, SAP generates the error message from the error stack,

3. [' ogmnzer totnt , recognize a class of input token;. :tich is names and

itegers. These occur in produtiors of the form:

<A> -# /RR/

where RR is the name of a recognizer routine.

,1 ffnc hdnlq 'S1vur g/;t,'riflg tlt , ' sive the tokens in approii ate data structures
and finally in associative memory for purposes of later analysis,

5. Semantic cherck,trig routinies check the local semantics of a Nopal statement.

6 Serwce uommus are used by SAP to perform some interi al service3 e.g. pol)ping

the error stack.

At the end of e Iih Nopal statemnt a storing routine is called I y SAP, which in turn calls

STORE to enter the information relating to the present statement into the associative memory.

5.2.4 ASSOCIATIVE MEMORY AND STORE/RETRIEVE SUB-SYSTEM

The Store/Retriuve Subsystem is a generalized means of storing the Nopal source

statements and later retrieving them. It consists of two types of routines:

i ST[ORE for storing the source language strings, including tokens and entities,
gathered durng the syntax an:lysis, and

2 RETRIEVE for retrieving the snurce strings, aiid for accessing the "directory
entries", the former is through HETRLVS and the latter through RE TREVD.

The Si[ORE routine Is called to create or add to the associative memory, ind RE FRIEVE to

Mom

5.2.4 ASSOCIATIVE MEMORY AND STORE/RETRIEVE SUB-SYSTEM 67

ZCJ,

~j.. c-
L" 0

I C"

I U,

z .
u _

I7

5.2.4 ASSOCIATIVE MEMORY AND SrORE/RIETRIEVE SUB SYSTEM 68

access or modify it.

IThere are eighteen classes of statements and namnes in Nopal. A list of classes, their

innerrionics, and the entities they represent is given in Table E 1 Fur exzimple, class 15

represents the variables, and class 2 represents the tests. An idenitifier occurring in two

different classes denote,; two d(I trent entities. lII oiier words, a iimno together with its class

LiniqulC'y identifies aii entity.

A dlirectory is L]Sed to Atore all tlie names and their classes. It r, orgar rzed as a 1 iniary tree

according to the le eciigiipliic order of entries Fa It node of thIre te corresporids to a iiame

and Its class. There are (oss links in) this ti ee wich (onnect all fiode:; with the sameo name

together, and all nodes of the same class together. Each node hiis airI additioiial link (called

REF IST in Figure 5 4) to a storage entry containing this name and type.

ITier e is a .so re:j efr(1 v for eac.h Nepal source statoment, It contain:; the namnes (KEY) of

all the s'yrirols (rallier p~ointers to the names in the i irectrr) which occur in a the

correfspor; hug statemn it With each s~ inol name it has a pointer (calltd NEX X) which points

to another storage en Iiy which uses; it. ThuIS, it provides a vony , flicient means to find

occLurrences of s~ imiols) in i ffhrent statements Associated with i chI storage ciitry there is

also a pointer (DA TA) which points to thre entire parsert source ;0trirr. stoired in a separate

data area.

The storage entries togeother with the direc tory and thme data anca is, called the o,,"(1cia~tive

memorry.

As mentioned inI the previouIs sectine, S TORE is canlloi at the enri I of oacln Nepal statement

Its arguments are (1) a lIA, of namnes andI their clsss rcnUntemd IIIm tire' statement. and1 (2)

pointer to the data area containing the parsed souLrce staitement It entters, the names and their

5.2.4 ASSOCIATIVE MEMORY AND STORE/RETRIEVE SUB-SYSTEM 69

Table 5- 1: CLASSES OF NAMES AND THEIR TYPES

CLASSES r-ND-MJI\C ClACs OF EN T'rVTV FiP,1'fl \NThD

1SPE C T NOIPAL si;poci ficcaticil b/t,3t(r.y,,It

2 TET ~Test module la~/t~;.rtor modfun header

3 ST1IM"1F Stimlulu laboe /Statc'

4 ME.AS r Maasurepient label/statcmci-nt

5 DIAGru Diagnosis Ilbel/statej-,2nIt

6 MSG/o M~ssage labcl/statenei'.t

7 LOGIC# Log'ic: label/statem-enit

8 QDNJI Conjunction label/statement

9 ASRT IT Assertion label/statermont

10 CMP i UT cToinnnt identifier (id)

11 CMIPFLru Component-failure (i.e. affected colpclnt)

id/statement

12 UJT UUT coruiecticn poinit id/Statement

13 ATEPT ATE inter-connection point/id statem.ent

14 FIJNC'T Function id

15VAR#I Variable id

16 ET ~End statement

17 dtyp# data type name

18 rec# data declaration statement

5.2.4 ASSOCIATIVE MEMORY AND STORE/RETRIEVE SUB-SYSTEM 70

(,) DIRECTOPY T'NTRY

r. Crj-I ink

K c ynamc 1 Key class. Reflit Up P, ext-
e

name t ypT e

(b) STOR-GE ENTRY

Keyentry(1) Keyentry(c keys)

II - - -

Data #eys Key Next Key N ext

Other data

Figure 5-4: STRUCTURE OF THE DIRECTORY AND S ICRAGF ENTRIES

5.2.4 ASSOCIATIVE MEMORY AND STORE/RETRIEVE SUB-SYSTEM 71

classes into the directory, and creates a storage entry corresponding to the statement. The

storage entry contains the names (rather pointers to the names in directory) which occur in

this statement. STORE then proceeds to cieate all the association links corresponding to

each of the names. and also to store the pointtr to the data area in the storage entry.

The two procedures RETREVD and RE -REVS allow the infornation to be retrieved from

the associative memory, The former retrieves pointers to tir .,tory entries.. wind the latter

retrieves storage entries, Entries can be retrieved by logical expressions of their names and

classes. For example, all entries belonging to a certain class which do not occur in some

statement class can be retrieved by constructing an appropriate logical expression.

5.2.5 REPORTS

Listings of the specification and errors encountered. it any, in the specifications are

reported at the end of the Syntax Analysis Phase. 1 he progranis XREF1 and XREF2 generate

a cross reference listing, and the program SOURCI 2 generates i formatted listing of the user

specification. Samples of these reports are shown i, examples, in the Appendix.

XREF1 also determines the scopes of variables i.e whether lhe variables are global er

local, and enters it in the data areas of the associative memory.

5.3 SPECIFICATION ANALYSIS AND SEQUENCE

DETERMINATION

5.3.1 OVERVIEW

Phase 2 of tine Rihpal processor amralyzes a Nopal specifrit ition alnl(. determines the

sequence of execution of the statements The amnaly-l,.; is b d on i raph rpl pru'entalion of

53 1 OVEBVIL W 7 o elo rsostehr.mrd riVrnh: cJi;ti io 2

ttIeSpec It ICat Io n I e)pI f rw I IuI fiIIId tofII)II1 vW t I)IIII

Phase '2 is divided It wo sbphases IISb 1 of Ow t, J, s tag and

II SUb phase 2 the reiltiowi hbetween 1.tts v.III F a 1W)(ItUl Ift' frry~ 11 U~oi lf se are

Called mtrl toea ur'y,;is an~d intrOi ie, r' opectiv. y III th., iii,r i i. i, I; fjralpf

IS consUtructd tar e'ach Ot the tests Nodes (it the g~raph1rp~ei a rtlsl~rlos

COnJun~ctionS Uann (fiIaJ11seo, ;m1(thre ertv rdrcoi iej u' ,itlOiI))Fts

them~l If. the lfiter ht analyor onl the other rand(- the(flirt-s, (di III,- jpj rti rpr sit tts

11laqfloses; ant ijtotia vati~ihteoS. aunt Ire terij(;rpsn o.rc -~iii~ilStnw-i

thn-r Fdoje! in) totti thre snuhphase aire Lil (lied to rJiiot' tli- Yiltr-rt ty)f i proceib-o-e

re tation ships.

VIwi Nopal prn(c(!ror so in -o the qrn iti ini :I matri i > rm Ii h,, iov x>'; rira ! ii c iim ' I: S i

thfl u 00(05(11(the iitiu the nihtrix riiunorteW A frwi eni F rtry say ni in Hi~e

pmositioni (1) irr tlh(imirtrix I,-e rorrrtJ 0 t'yp491 in m rIi ii t o Ilod I *hii1r"a zteIF,,rrtry

(t-riiote0S the ah.r-n nec of ii er (gc

Alttnr fth jiij) Is (onfiu ttnh. it (finn:'k% Ii f ol is mw iii mur I a it n , It r, tOwn

(I _,cked (or (:,dn,u . irli t m l Ii tt llpt i r t o ii) -lirriat. tiu' f mn I;! if Sum (S lul ti"

nro s r, id(r id i III an t, fAntIMIi S 1,2 -(I fMfi i ri II (l rf 01i- (;f .1 , 1 i tnn id

u(nOnlpIhFtfInF.S ;i cl-5S y-: in, edluimtinii 'inn S n cmn j II I- d-, in) thn mririi -n t

onti p Ia'- n $IF-rtltil 5.3 ' mdi for fle uto '1J sui piir:; ini Imii 1: J I nie' stiw

ai fiuuwihirt of lhi: procri: ;s-o flllVd I~II ofiip ujn i ly-,i: ai1r0t Hoiij

5.3.2 INrRAr F .ST ANALYSIS AND SEOIJFICING

I a(th of tlif , III ;i ,,jw :ific.IIIofl Is ir'I y"' In ttw; "tn i h ;Iars 1 0 i fWti li 'Intsr; nd

rjFli wi iif i fvriih I-; (uo ,I mrvtlitd fttrr lai(Ii f tlhi t'fS, N~iri'. Ofi Z1' Iiil Mi ilj IlAOulS,

5.3.2 INTRA-TEST ANALYSIS AND SEQUENCING 73

STATEMENTS 7
IN

MEMNOR YV

PRECDENC *lNER-TST IINTRA-TES'r
MAR~PRECEDENCERES PRECEDENCE >.PRECEDENCE MATRIX
ERRS PARICDEC MATRIX
WARRS CATIO I v CREATION ERRORS /WARNINGS

INTER-TEST IINTRA-TEST
ERRORS!/ GRAPH IGRAPH ERRORS /WARNINGS
WARNINGS AI!ALYSIS. ANALYS IS

INTER-TEST INTRA-TEST
CYL C4 CYCLECYL (ERRORS

ERRORS -- DETECTION &'. DETECTION &
ELIMI41NATIO 10 N ELIMINATION

z

INTER-TEST E- H INTRA-TEST

LOCAT SEQUENCE 0 SEQUENCE FLOWCHART &
TABLE DETER- IDETER- ITERATION TABLE

MINATION MINATION

COI INER-TEST IINTRA-TEST CODE GENERATION
GOENRTO CODE c CODE RPR

REPORT GENERATION GENERATION ~ RPR

ATE
FUNCTInN LBRR

PRO SIBU

TEST PRONRAM:

Figure 5-5: FLOWCHARI FOR PHASES 2 AND 30F NOPAL PROCESSOR

5.3 2 INTRA TEST ANALYSIS AND SEQUENCING 74

asseitiins, vari~bles and their ancestors. and~ diagnosesi associated1 with the lest. There are

six types of r ecedence relationships between nodes, which are represented by edges in the

graiph Table 5-2 shows the edge types and the(, relationships that they reprt-sent. A priority is

associated with each edge. 1 denotes the hnghest priority aind 6 dlenotes thtj, lowest. Edges

with) priority 1 are considered mandatory aind cannot be deleted Edges witl lower priority are

not essential and can be deetedc during the cycle elimination stage. they represent preferred

relationships rather than mandatory ones.

Ht-latinnFiip of dlata detetnmfacy exists betwteen vaiiabl(,s on arij linit andI conjutnctiains,

ass eittons and ilignoses on the other A var able node i!, the tiwcsof ciiunctions arid

asset tions if it occurs ais a source, and is suJCGcess-or It It OC(. urs; as a ar iitn. Simnilar ly.

a variable is predece ssor of a (tiagnOSIS if it occUs as a par:imieter. and is successor if it

occurs in the operator response. I-le relationiship of! data ielriin: qe~lesses the idea

that a variable must~ be defined before it is referenced.

Relationship of " avefutm sett~f exists between the :;titiilnIS C.(!l1tution and

measurement conlunction. It is trot itatidatar y and is of lpriotiy It exrse the noI that

stimulu11s is usuially applied before the mneasurements are madte.

Relationship of cliagnraso is W)rfar i exists betwje m i agosi aii one hanid and

conjUnctions and assertions ont the other. Tin u relationsl ip is cnteiped as type 16 or 1 7. A

ii dwInosis which is selectfor IUnconditironailly Onl the LOOHItcr of a test precoer lo each of the

carriUntitons and ass ertions irt tile test by ant eilite! of type 16G A iignosis which, on the other

hand, is selected by the logic & and .. 8--succeedsI' e.,I 1i of the carlit i n(.tios and

assertions by an edge of type 17.

All tire uncondittionally selected diagnoses precede all nthbet rtiatjtroses by edges of type

5.3.2 INTRA-TEST ANALYSIS AND SEQUENCING 75

TABLE 5.2 INTRA-TEST PRECEuEN1CE IWA1, ATION:.'1; PS

EDGES SELECTION RULE

PRIOR-

TYPE ITY RELATIONSHIP PREDECESSOR SUCCESSOR

Data- Source variable in The assertion
determinacy an assertion

An assertion having The target
a target variable variable

A variable in a The diagnosis
parameter of
diagnosis

A diagnosis Variable in
operator
response of

the diagnosis

2 2 Waveform- Stimulus- Measurement-
setup conjunction conjunction

16 5 Waveform- Diagnosis selected All waveforms
diagnosis by * logic

17 5 All waveforms All diagnoses
not selected
by * logic

18 5 Diagnoses selected All other
by * logic diagnoses

19 1 Hierarchical Node in an innut All its direct
structure descendent
declaration nodes

Node in an output Its parent
structure node in the

structure

5.3.2 INTRATESf ANALYSIS AND SEQUENCING 76

TALE 5.2 (continuced)

20 1 Po in.to r Pointt'r varialei !;r u,-t 11
u . van a 1)1 I to si c

prefix PT.- or
PTRy _,where y is; a virliblu- i ;

digit 1 to 5) a koy or
psiran. tte

(JIvi y the
!-.f fix of thle

var i. 1I

21 6 Rec ursive* A source varlthlc 'I'ml !;,;(,rtion
in an assertijon
with subscript of

the form 1-k,

_____ ____-where k is po.'i~iVe

Table 5-2: INTRI. TESV PRECEDENCE RELATIONSHIPS

*This relationship is oriialenrdastp1,bts

changed later to type 21 in the subscr ipt analysis phase.

5.3.2 INTRATEST ANALYSIS AND SEQUENCING 77

18.

Relationship between nodes in a data structure is called hieratclhchal, and is entered as

edge of type 19. A node in a structure precedes each of its direct descenderits in an input

structure, and succeeds each of its direct descendents in art output structure.

Pointer relationship exists between a variable which is a key of an ISAM file and the record

node of the ISAM file. I is entered as type 20 edge.

Certain data determinacy relations are identified as tot Usio, and I are entered as type 21

edges. They are mentioned here for the sake of completeness and are described later after a

discussion of array graph.

An array is represented by a single node in the graph, An array variable is represented as a

single node independent of its dimensions, similarly an assertion is represented by a single

node irrespective of the free subscripts which occur in the assertion. Edges in the graph

represent relations between the nodes. An edge between two nodes. when at least one of the

nodes represents an array variable, denotes an array of relations (,irray lelathons) between the

two nodes. A graph whose nodes represent array variables and whose edges represent array

relations is called an array graph.

The intuitive notion of array graph, introduced above, can bc- made more precise in terms

of, what is called, the underlying graph (IJG) of a specification. A variable node of a tJG

represents a simple variable, conjunction, assertion, or diagno!,ls. I other words if B is an

array variable of two dimensions of size 5 and 10 each re.lpectimely. then a separate node is

needed in the UG to represent each of the 50 elements of H similarly, for conjunctions,

assertions and diagnoses which have free subscripts and expre:;s array of relations between

array variables, a node represents an element of the array of relations, e g. if (3 is an array as

5.3.2 INTRA-TEST ANALYSIS AND SEQUENCING 78

before andi it occurs in a conjunction. assc-rtion or liagiiosis, then there will be 50 nodes,

each representing a Conjunction. asseition or diagnosis involvingj one element of B. Edges in

a UG represent relationship between nodes as Outlineod before and ais the nodes represent

simple entities the edges also represent simplo relations.

Array graph (AG) can he! formed by takiirj lhU nion) Of 1iO(15 Mird edge's In air Uinderlying

graph as follows: represent the nocdes say N Vi. ii UG rep rese!n irg 'Iiffteert elements of anl

array variable (or Cr)Iljo nflinn asserton orm dagrnsis) by a smilu Icrode. say rl. in the

corresponding array graph. and for anI fedqt fromT anl, Of the nO.1; PI, to any other node, say

P. in UG form an eultjo fromt N to P inI AG ffti reaitiri smaller (Ir h i7 an Af.- of tire gjiven

UG Thus, AG is a compact way to rejlro-seill LA, Thf Ire I 3nay f-. an fenorinoir: (graph which

is Impractical to analyze.

An array graph is shiown in F igr re 3 &. It i,; for the faiia1r Mt JS1I I unction of slack dtata

type Nodes S.Z. in2 and S)I. Z are array niodes in the examplle. TlI:i rfat of the nodes represent

simple variables and assertions.

The array graph is. construclted by, nieans of the p: ocednre IN 1 SEQ. it f,, tIrs analyzed for

two types of consistency checks.

I. Single assirgiment Rite: Variable node1(s Should fhave OX i Iy ono predecessor
assertion or diagnosis, i~e. a variable shoa,~ti he (lmied I), ' i(tI oire? assertion
or diragnosis etc. (InI case the variable is pat ot an Inpurtit sroctine or I'; a Source
pararmeter of the modlfun. thren it need nlot have anry prue(e-m(r in the giapfi. In
time first case. thre inpuLt file' is taken tn me the Impicit predoni. sa!i In the second
case, the value of flre formral paramreter is defined when tIt rmiiodfn n is called arid
hence it does not have a predecessor in the present graph.)

2. Target variahhes in ain asse-rtion should nccur oither on tho loft hand side of the
relational operator, or as target pararreters Of function fatqr gi varlibles of a
conjuniction should Occur only as pairarnef crs of functions.

5.3.2 INTRA-TEST ANALYSIS AND SEQUENCING 79

I HOPAL PODULE STOCK;
2 0 1L I SAC(IK RECORD
2 2 TP: I IE R

2 22Z: INTEG ER ARRAV(100);

3 MODFUN PUSN(S:S STACK, X:*S INTEGER) RETUANS(Sl: STACK);

4 STIR;
5 ASRI: J - SIJS('S.Z, 31 .1,ENDJ,100) TARGET:J;

t al AST SR1.$1TOPI - i.7PZ + 1 IA.A&E I: S I OPl

6 SOURCE: S.EOPZ;

Ia
2

ASRT: IF J-S.IOPZ THEN 51.2(J) - 1
7 ELSE Sl.Z(J) S.Z(J) 7ARGET:Sl.Z(J)

7 SOURCE: S.EOPI.S.Z(J);

aa3 ASRT : IF J-S. 70PI THEN END- W(J) =TRUE

aELSE ENDJ(j) =FALSE

b TARGET:END-J U)

a SOURCE :S.TOPI;

9 OG IC., IDUM; *AK
10 DIAG OUR: PRINT -M6

s x

00

Sl vassertion node

ovai iable or dfaianis node

H- hierarchiclial edge

D datla determinacy edge
WD waveform-diaynosis edge

Figure 5-6: SPECIFICATION OF PUSH AND ITS ARRAY GRAPH

5.3.2 IN [A [LS[ArJALYSI AND SEQUENCING

Subscript analysis is performetd by thet rrnceilJjre M HNA F iit i H t le (,Litroml

tree subscripts are checked for correctneSS IUr that ne0 suWbSC.fI;t ic (,'I> f 1 ;111(twu n

the same variabie dtimiil IS nlot used in two SuLIJc, rlrt IerI0rr1rtrnr . f-IrraiJ1 ill Of

thfe free suibscripts i , coiistrricterl containinq theni narie', and LJ;peJr I ;rrrd6

Further cle(ks of tire free sutbscript:; are cjfoiri(6 red h, Ill~ proi(dut,,~ !m~

tolloiws:

I All ocuiriirtoir of to t,.ir(Itt vanr,ih li iii ors:~i r (milm tin)i iiwt fliivfe thlt

carrile firt: sLu(lipl I Or e(arriIi0I II III,,nirri (trainli HP,1I iripe

IF J=S.TOPZ THEN Sl.Z(J) X
ELSE S1.Z(J) S.TOPZ

TARGET:Si .Z(J);

variable, (-') Z7J) I he tarqt't variali nl;(uirig Ii haiti th-,I 111f I(I) I ")I- piarts

2 The tree stihn r ripts,- of the sour-cf variable, inn:. appiear an; :;Ii. rriptn; withf the

target variables; tlire are, fnaWtev, . tw x iil Is nr'.! Ir tree subs;cript
which i!; redujcer I by a rinliiiiil il lion i tin ii n o~ ht ppenif 'I'. aI ftiCpt (of the
targlet variable Secnd, ii fi nete ur if OfI ailinelie 11Htilt: freSnhi:;C.Iipf Of
source variatrie ncl rot arillar with Int(target valriles, Iii that caISe. a
War niriioj IF, Isuet t it LuS(-r tllat tire' Ian(' et va bl ,In eli It0 (Ili" 1,01 thalt It idoes
riet have nultiplin dtefinitions. A wamuling will bie isae Ill the. telloinqu case:

IF END-J(J) =TR~UE THEN OUT = A(J)
TARGET: OUT;

3. Subscripts imust be fitnt oe f the following forms:

a. a Subscript term e g Innl A(I).

b. a Subscript exIpiussiorr of the fori (I k) whimo I is aI tree, aiiI aunt arnd k is a
positive interer:

c. another variable e g B3(l) Ii A(l 1(l)) or X Ii A(X).

4. If a positive integer or aI :uti)Scrnit terii appears a; airii aofili it r~iy vii able V,
and the range for the corrnnsprnin liiiiiisieii of 1) rin:; I llid ln he it, then Inl
case of the integer its value, and Inl Case Ot tiet Sub:;rrtI It-fill ll:; ripp-r hound,
Should be Iles!; thanl (l. Ini other words,; a sibsicript oxfjrn;ssioii I,, (li(kC to see

that it lien) withn tihe range for the above two cases.

532 IN rRA TEST ANALYSIS AND SEQUENCING

The array graph is analyzed, next, for cycles by the CYCLES procedure. If a cycle i

detected in the graiph then the procedure attempts to eliminate it Edges in a cycle havin

pi ority value greatr than 1 may be removed. These edges correspond to two cases:

1. rhe edges are considered as preference edges and are not esseiitial e.g a type

2 edge between stiMuli conlunction and measurenient (dninction denotes the

usual situation that the stimulus is applied before the melsremerit. However,
there may be situations in which a stimuli depends on the nieasured value, and

can only be alpplied after the measurement is performed.

2. The edges do not imply a cycle in the underlying graph. This occurs with

recursive edges For exanple, the array graph for an assertion of the form:

a: IF 1=1 THEN A(1) = 1
ELSE A(I) = I*A(I-1)

TARGET:A(I);

is given by Figure 5-7.n the underlying graph recursive edges give rise to acclic
spiral like structures.

In the event that deletion of edges fails to resolve all the cycles. a i error is reported to th(

user that the specification contains a circular definition and that it is not possible to sequenc(

it. A warning is issued for each edge deleted in the cycle elimination process.

Procedure PROPAGT determines the relation between the nodes and the free sulbscripts

in order to find the proper scopes for each possible iteration, this proceldure constructs fo

each node a list of subscripts on which it depends, and hence the list of iterations in which i

should participate. In the Nopal language, iterations result ftrin explicit appearance o

subscripted variables and subscr ipts themselves.

The final stage is- to sort the nodes into a possible execution sequence. If there were n(

subscripts, and hence no iteratiim;, then a Simpleh topological of1t WOUld be sufficient. The

presence of subscntpls introduces an additional factor. A brute force approach to handlc

subscripts is to enclose each nodhe in the iteration scopes of its ,,uhscripts, with the exceptiov

5.3.2 INTRATEST ANALYSIS AND SEQUENCING

data determinacy edge recursive edge

A

Figure 5-7: RECURSIVE EDGE

that the nodes belonging to a recursive cycle (which was opened during cycle elimii

stage) must be enclosed in the scope of a common subcript tterahon The algorithm ui

the Nopal processor does better than the brute force approach it tries to rnaxinii,

scopes of iterations It is performed by the procedure SCHEDI R The scheduling proc

described below. At the end of this process an order vector is gcrneratud along with s

and subscripts of iteratons.

There are three inputs to the scheduling process:

1. an array graph,

2. a list of free subscripts for each of the nodes and a list of nodes for each free

subscript, and

3. a list of recursive cycles, where for each recursive cycle thetre is a list of nodes
which occur in it.

The scheduling process consists of two procedures: SCHEDLR and ORDERE. SCH

calls on ORDERER requesting trial orde ing of nodes depending on a subscript. Bas,

5.3.2 IN FRA-TEST ANALYSIS AND SEQUtINCING

the results of the trial ordering, SCHIEDLR calls ORDERER a second time to p(

actual scheduling of nodes.

SCHEDLR makes use of a stack called NEST1, which contains Ire subscripts.

stack contains free subscripts corresponding to vhich rteralimiis have begur

iterations are nested within each other, with the free suibscript oii lop of tile 1 1

representing the innermost iltation~ Nodes currently being ordered by ORDERER

within all these iterations. lIi addition to the NEST stack. SCII [Dl R ilso has a

subscripts called TBNESI. It contains those tree su~bscripts Which aIre candidates

nested at the innermost level inI the iterations coreC51)uing to the tree subscript!s

stack.

SCHEDLR has three phases. Inl PhIase I It Picks Up alt those node2s in the? gr

have rio predecessors, and finds the union01 Of thle tree Subscripts aissociated with the,,

subscripts form the set CANDL IST. If one ot the nodes does not rtependl on anly

then it is treated as belonging to subscript tree set. itrrd a sper iil entrv ('ere) is ii

CANDLIST. From the set CANDLIST. another set callted BE 5V(.AN'I)t IST Is tor I

following cases are performed progressrvely inl suc(Os'snir 1.1r0 ti r 1 spt 1) ST(

ress:s

1. all the subscripts in set (ANDL 1ST which also to longi t(, I" 'I 'r e place
SISTCANDLIST;

2. a subscript in the CANDLIST set which ilso belontsp to N1I St slick ro, place
BESTCANDLIST;

3. if entry zero. correspondinrg Iio subscrilit free mm(teS. I ie i"iis toi CANDL 1ST
placed in RESICANDIIST: otherwise

4. alt entries belornging In CANDLIS r are placed in [IFS CAN[)IIST.

BESTCANDLIST now contains those bree subscripts which are, pnssh ,te candidat

5.3.2 INTRA- TEST ANALYSIS AND SEQUENCING

ordering process.

In Phase 2, SCHEDLR calls ORDERER with tjach of the wrtv i[',)1(

perform a trial schedule. The results, Of tllti HIi ilshdl Klil(:CI

priority table given Ii Table 5.3.

Let thle ORDEBFR be called to perfoini I trlIiI ord~o-iirq .It' lq it IC h.

set RESICANDLIST It pertorim at triail cll-tluIk mid lrw.hh il h ,. ilr

I whether all the nodes (leperidhing(m Oi . (jet CI .i 1

comfi5'f/&t fo tin doled;

2a set Of other' subscript. 10C. will If (jot ''; 4~i . 1

.3 a set (if otlw rSnIIhscrip '. OF-P' Soiirh of wvlios rofst; tot K Irtilor.k
Orthr,criprts wh'iih go tt latrfmd/r:oa

4 Whletiler therO eci lvi r1 WCchV aiiiii ho: 10t All 0 vJ)ho';e' nde

scheduled.

A imoriy vaIlue is evaluated hasent ol thle ihov- results ats per I thik 1. Ii-,

true if coivhition (1) I,, satisfied,. and (Y is equal to U if condtitlir I,)) is st~

It the(. priority valuie is 1 their ire SKI LIDI. 1 proceeds to Ptmrn> l 1, 1!-i

second time with IC. tis time to do thle actnirl ."(hedirlirig If 1110 erll Okhi."q.

their trial schedule for a ne#w suhscript Iii iPT~ CAI D[iS I, !um, I i~i i,

suhocripts in FESTCAN[VIST IV(avebee triall t Iredoleil tr s iIrrt oryt, IIIll

value of pririty, Say P. is chosenf If P is tiaoh 5 an error iiieao no noon Ilihat

cycle needs tn be hroketn. If P is, equIii 4O1 .i WXiirr(I IS iotot ir111 JIrIniru tO If'

serie i lmrout hw rfitir y loca'ter(1I i l, tIIre I iii.)Of fn rOfne 0t~ VA(I or Pl ~i Iit

Phase 3 el SGe-1 [)1 H to (t0 the af tLil ;(11edu11inri With ousrijt Ili

r'Ir;e 3 corresponds to thre ;en r ('all eim () IDI H to d il , ictrial !Icl

5.3.2 INTRATEST ANALYSIS AND SEQUENCING

lOP : NULL IOP haS no 1/0 lOP has I/0

IC
has CY 0 CY 0 CY 0

I/O 1 2 4

CP
no 1/O 1 2 3

I/O 4 4 4
-CP

no 1/O 2 3 3

I/0 stands for input-ouput Meaning of IC IOR, CP, CY .etc. ,,,,pi mwtI in th,

Table 5-3: PRIORITIES OF T HE I IAI. SCIHF-JI F

r ADA095 546 MOORE SCHOOL OF ELECTRICAL ENGINEERING PHILADELPHIA P-ETC F/6 9/2
MODULARITY IN NON-PROCEDURAL LANGUAGES THROUGH ABSTRACT DATA TY-ETC(U)

AUG 80 R SANGAL N00014-76-C-016
NCLASSIFIED L

2 I//////I
illlllluuu
-- mm--i
!I///m___

5.3.2 INTRA-TEST ANALYSIS AND SEQUENCING 86

nodes Following this. the nodes which got scheduled are removed from the graph. Finally, if

some nodes still remain in the graph, Phase I is started all over again.

Procedure ORDERER is described next. It has two modes: (1) to perform trial scheduling,

and (2) to perform actual scheduling of nodes. It has a parameter. IC, which gives the name

of a free subscript.

In mode (1) it does a topological sort of the nodes which depend on the subscript IC. It

then evaluates the result of the trial ordering and returns the result in CP. IOC, lOP and CY as

described earlier.

In mode (2) it performs a topological sort of the nodes which depend on the subscript IC,

on all of the subscripts in the stack NEST and on no other subscripts. The resulting ordered

set of nodes is added to the ORDER vector and removed from the giaph.

The scope of iterations is determined from the NEST stack. Each time an entry is pushed

on the NEST stack it defines the beginning of a new iteration: and each time the NES r stack is

popped it defines the termination of an iteration. The NEST stack is updated as follows:

1. Each time the ORDERER is called to do the actual scheduling with a subscript IC,

an entry is made on NEST provided IC was not selected by case (2) in Phase 2 of
SCHEDLR.

2. The NEST stack is popped (in case(2) in Phase 2 of SCHEDLR) until the selected

subscript IC is on top of the NEST stack.

The final result of scheduling process is an order vector and an iteration table giving the

scopes of iterations. They are used by the code generation phase (by procedure CDETEST

described in Section 5.4) to generate Equate-Atlas code.

5.3.3 INTER-TEST ANALYSIS AND SEQUENCING 87

5.3.3 INTER-TEST ANALYSIS AND SEQUENCING

In this sub-phase a graph is constructed for the entire modfun specification. The nodes of

the graph are tests, diagnoses and global variables. There are seven types of precedence

relationships between nodes. They are described in Table 5.4. The table gives the name,

type, and priority associated with a precedence relationship. It is followed by a description of

the predecessor and successor nodes which satisfy the relationship. The meaning of the

terms: type, priority etc. is the same as discussed in Section 5.3.2. The seven relationships

are described below.

Data determinacy relationship exists between tests, diagnoses and global variables. A test

or a diagnosis is the predecessor of a variable if the variable is defined by one of them, and

successor if the variable is used as a source by them.

Interactiveness relationship exists between a diagnosis and the test which selects the

diagnosis by "after" and "after not" logic operator (A and A-). It means that the test is

selected based on the operator response to the diagnosis.

Component protection relationship exists between a diagnosis and a test, if the test has an

affected component which is protected by the diagnosis. Its purpose is to inhibit testing of a

component if another component which protects it has failed.

Fault isolation relationship exists between a diagnosis and a test, if the set of affected

components of the diagnosis contains the set of affected components of the test. It expresses

the idea that those tests which isolate smaller number of failures should be performed later

compared to the tests which isolate larger number of failures.

Stimuli-application relationship exists between two tests if one of the tests has stimulus

funcions which are applied more frequently than those in the olher test. It leads to performing

5.3.3 INTER-TEST ANALYSIS AND SEQUENCING 88

N-41 14 0 1 0 Ci *,4- ~ 10
eG E0n 4 0~ 144L - 4

.- 4 M 4)0 (nl (1 -4 r.~ ~ t

) o O) 0i LiC~ . 4 ~ J) ej 0Q F
0 (-444 -4h r-L J i 0 o - i ~ l w- r -

CU c:V 0u n 0 Z WC~~C - C co Li 0
* > 0 ci Ci 4 c-.flu to oU C U (j .,4o 0 cnc

co U0 C Z 0~ 1 0 tC 0 U4 C3OC3 fl) X)4

V-4 :3 (Alt2 9O &-0 zuJ 3- 41 .w(12U
... 4C V) $aC C1'4"0) -. ' W C)~- _,Z_4 j j a) j

0 u C 0) I.(3 ~cI .q 0 Z r 0 U)) 4 V

cn 0 $ 4 Lj$- 0.

00

0A 0 r.j- 0- (u l i .z
:3 V -. u < U -4. 4.5 :30

0 0 r _ o,-a ooci 0C3w 0

4 0U-(lU.'~ C) ~ C 12 ~ nC 0X
C) cC)i a u 0 '-~~.- 1

(-4 0)- -4 1 i l 1 4

cn C3 t~co 0" rC 0'-' D 6
0 '-4i uIT n

cn -1 4 9 _______ 0 u___ p (CCo ' o(
94 $o f .4: 0 WI 4- . "-

r- 0 C-4 0 En4

En i .'0> CU 03.:.UC r 0 U4C)W0 1 4 0 -
E- C: QJ0 C: 0 cl : (.

0) -- - __ _ _ __ _

Cl ~ -4 .-4 r4
Un - p _ __ _ _ _ _ _ - _ _ _ _

tv od..1 0- co

&j > 1 "

5.3.3 INTER-TEST ANALYSIS AND SEQUENCING 89.

0. c 44 (J.40 (0a

oj * g 0C0 I- .s

000 (fl-4 ri-4 -0 I

(U 5 cn) 0 .. = w .0 ejd

n. 0-4 0- c:O e UCj
0 .f"l t

A0 w 4 C Z " -0 mJ'-4. d

C-4 C_ ~ -U-U~l _ _

0 ~

0

0U __ U_ 0 _ __IuC
CI C 0 ") .9 a A 4 J 0) &J

-0 0.54 .5. 5.55.-A 4 ra .J5. 4 ccJ5.4

-) co.. c0i U w J UC 0 4

0 4 0 U~4 -,-4 u -14 .
4

r,. .-4 aI
.4 L.) 0 (a 0 C.) 4f >, 1 0f > .- i 5~~')~ 0

a) CJ.1,ci-4 C. -3 -. 0C!i C 5. - -, C C U

001

54 0 S
uz-u

_) CI CE

5. 0 .Z,:

wS 0i (a 0 a) 1 0 a 0 0) 0

(U ~ & a. -'-0) a .- 4 4 -4 '-4A-

o o..
:a5 a. 1cl 05~ 04 00

0- :3 u-4V3-
0 &,~-4 CC.- -J I . 55 U

!d 0)
__ __ 0. __ fi.

* 1.4 0 z

n T1 I_

;D f. n .

5.3.3 INTER-TEST ANALYSIS AND SEQUENCING 90

of as many tests as possible once an ATE device is connected.

Two tests are related by means of failure liklihood relationship if the predecessor test

isolates those failures which are more likely to occur. The liklihood of a failure is supplied by

the user in the specification.

Finally, a test is the predecessor of a diagnosis selected by one of the logic operators: I, I~,

& and &- in the test. The selection of a diagnosis by means of one of the above logic

operators is dependent on the outcome of the test. This is expressed by the logic operator

relationship.

Several of the relationships described above are not mandatory. They represent desirable

but not necessary relationships; in other words, such relationships are good for efficiency but

not necessary for correctness. A priority value greater than I is associated with them in Table

5.4.

Procedure EXTSEQ constructs a graph for the modfun specification. The nodes of the

graph represent simple entities, unlike the graph for a test. This is so because there are no

free subscriptsfree subscript associated wilh the entities which are represented by the nodes.

The graph is analyzed to check:

1. that every variable node has a predecessor, i.e. every variable is defined;

2. that every variable node has only one predecessor. i.e. every variable is defined
by only one test or diagnosis;

3. that a diagnosis does not precede two or more tests with type 2 or 3 edges, i.e. a
diagnosis does not select more Ihan one test by the logical operatois A and A-.

The next step is to detect cycles and, if possible, eliminate them by removing edges with

priority value greater than 1. They correspond to preference edges and are not essential e.g.

5.3.3 INTER-TEST ANALYSIS AND SEQUENCING 91

a failure liklihood edge (type 10 priority 4) between two tests expresses that the liklihood of

detecting a failure by the predecessor test is higher. It reflects knowledge which may be

useful for quicker fault isolation, but is not mandatory for correct fault isolation.

The final step is to sort the nodes into a possible execution sequence. A simple

topological sort is sufficient because there are no free subscripts or iterations. Finally, an

order vector is generated. The order vector is used by Phase 3 to generate Equate-Atlas

code.

5.4 CODEGENERATION

This is the third and final phase which generates Equate-Atlas code corresponding to the

Nopal specification. Code is generated for each of the entities: tests, diagnosis, assertions,

conjunctions, variables, structures etc. The order of execution of these entities is determined

in Phase 2 in the form of an order vactor. This is used in the present phase in generating the

sequential program in Equate-Atlas.

Eqate-Atlas is a test programming language and is a subset of IEEE standard Atlas. It has

a number of features to support the programming of ATE. However, it does not support many

of the widely accepted programming constructs. Mostly notably,

1. The procedures in Equate-Atlas do not have parameters. The procedure simply

represents a body of sequential code which is executed when called.

2. There is no provision for local variables in procedures. All variables are
considered global.

3. The if-then-else construct is absent. It can be simulated using "compare" and
"goto" statements, reminiscent of the assembly language instructions.

4. It does not have a do-while costruct. It has for-loop similar to the Do-loop in
Fortran.

5.4 CODE GENERATION 92

5. It does not have a linking facility. Consequently, all the procedures should be
included in one program at compile time. The procedures communicate by
means of global variables.

6. The only data structuring method in the language is array. Declarations for
records and structures are not allowed.

7. The language has only two data types: decimal and digital. Decimal is used for
floating point numbers and digital for bit strings. There are no other data types
e.g. character strings, integers etc.

8. It does not allow dynamic memory allocation.

Certain conventions were established, in view of the rather severe limitation given above.

For example, to pass parameters to a procedure, named say P, the following convention was

adopted: The parameters were passed in the special variable names P.PRMO1, P.PRMO2, ...

and so on. At the time of the procedure call these parameter variables are given values. The

body of the procedure uses these names to receive source parameters and defines values of

the target parameters to return values.

Lack of a linking facility forces that the Equate-Atlas statements generated separately for

each of the modules be put together and the resulting total program be complied at one time.

This raises a problem, however. The language has no local variables, and hence, two

variables of the same name occurring in the two different modules would be treated as one.

The clash of the variable names is avoided by generating unique names for the module. All

variables in a module are suffixed by "." followed by the module name.

The absence of if-then-else and do-while is handled using the ptimilives "compare" and

"goto". The absence of structure declaration is handled by simple variables and arrays.

Although, these make the generated code messy, they pose no conceptual problem.

The code generation phase consists of three sub-phases. Su~h-phase 1 consists of

S

5.4 CODE GENERATION 93

generation of program header, declaration for the global variables and system variables, and

a procedure definition for each of the diagnosis. Sub-phase 2 consists of generation of a

procedure for each test. The third and final sub-phase 3 consists of generation of logic and

sequence of calls on procedures for tests within a modfun. The procedures for each of the

sub-phases are CDEMAIN, CDETEST and TRMNATE respectively. The highlights of the

sub- phases are presented below.

In sub-phase 1 the declarations for global variables are issued. For a simple variable in the

Nopal module, a simple variable by the same name (suffixed by the module name as described

earlier) is declared in Equate-Atlas. Similarly, for an n-dimensional array variable in Nopal, an

array with the same upper bounds for each of the dimensions is declared in Equate-Atlas.

There is an exception, however. For array dimensions whose upper bound has been declared

as "0" in Nopal, and for which only two elements - current and the previous need to be kept in

memory, size of 2 is declared in Equate-Atlas. The two elements in Equate-Atlas are used to

store the current and the previous value of the elements of memory and is part of the space

optimization done by the Nopal processor.

Equate-Atlas does not have any facility for declaration of structures. Consequently, a

translation is made: the fields in the structures are declared as variables. The dimensionality

of the variables is the same as the dimensionality of the fields. (The dimensionality of a field is

obtained by propagating the dimensionality of its ancestor nodes in the structure, to the field.

This is done by the procedure XREF1.)

In case of a module M (not the main module) an additional dimension is added to the fields

of the record which gives the representation for the abstract data type M. For example, in the

declaration of representation of a stack

SI. . . .

5.4 CODE GENERATION 94

NOPAL MODULE STACK;
DCL 1 STACK: RECORD,

2 TOPZ: INTEGER,
2 Z: INTEGER ARRAY(100);

the fields TOPZ is declared to be a one dimensional array, and Z a two dimensional array.

This extra dimension is added to allow storage of all the variables of type stack. Similarly, in

the usage of the fields of stack, S.TOPZ, the qualifier S becomes at index which provides the

reference into the array TOPZ. All this became necessary because the object language does

not have facili' - for dynamic memory allocation. In PL/I for example, the above could have

been implemented by means of based variables and pointers. Record STACK with

components. i.e. variable TOPZ and one dimensional array Z, would have been declared as a

based structure. The qutalifiers would simply have been pointers. There would be no need to

add an additional dimension.

It follows from the above discussion that, in the current implementation, the variables of

abstract data types are indices to arrays in the Equate-Atlas program and store decimal

numbers.

Procedure CDETEST which performs sub phase 2 is called at the end of sequencing of

each test in the intra-test analysis and sequencing. CDETEST generates a procedure for the

test. The body of the procedure contains sequential code corresponding to the conjunctions,

assertions, and logic for selecting diagnoses. Statements for conjunctions and assertions are

generated one at a time in the order deteremined from the earlier intra test sequencing phase.

Iteration statements are also generated based on information about the name of the iteration

variable, its upper bound and its scope. In cases, where the upper bound is not specified an

arbitrarily large upper bound is used. However, the appropriate termination condition is

generated to exit the loop.

SL

5.4 CODE GENERATION 95

In the case of input (or output) structure, calls are generated on the ACCESS (or SAVE)

functions to read (or write) the structure from (or to) the appropriate file. Similarly, in case of

abstract structures of abstract data type, say DT, calls are issued on ACCESS.DT or SAVE.DT

as the case may be.

Finally, sub-phase 3 generates calls on the procedures for the test, and the logic which

precedes these calls. The order in which these calls are generated depends on the ORDER

vector produced by the inter-test analysis and sequencing phase. This sub-phase is not

needed for modules (except the main module) because only one test per modfun is permitted

in the present implemenation.

At the end of the three sub-phases, Equate-Atlas code is generated for a module

specification. This can be put together with the code for other modules, thus yielding a

complete Equate-Atlas program. One of the modules must be a main module. This program

can now be run on an Equate-Atlas machine.

__

Chapter Six

CONCLUSIONS AND FUTURE WuRK

6.1 SUMMARY

This dissertation presents the approach of abstract data types to introduce modularity in

non-procedural languages. It introduces the notion of module for the specification of an

abstract data type in a non-procedural language based on equational specification. A module

specification can be analyzed for consistency, completeness and non-ambiguity independent

of other modules. It allows abstract data types to be specified independent of their use. The

concept of module is general enough to allow the specification of recursive data types.

A simple equational language is introduced, and the least fix point semantics of modules is

presented. It is shown by means of an example how a data type specified by a module

satisfies certain algebraic axioms.

Nopal, a non-procedural language designed for automatic tes :ng of physical systems is

used as an example to show the feasibility of the use of abstract data types. Nopal language

allows abstract data types to be specified by means of modules. The data types once

specified can be used in other modules.

A complete implementation of the Nopal program generator is described in brief. A

number of examples and their sample runs are given in the Appendix. The program generator

analyzes the specification and generates an efficient program in Equate-Atlas satisfying the

specification. Optimization for memory and execution time is done in the generated program.

.9

:

6.1 SUMMARY 97

The usv of abstract data types allows relations to be specified between variables which are

not just of elementary type, but are of arbitrary type. It allows a data type to have an arbitrary

degree of complexity hidden away in the module and shielded from its use. This is of

particular advantage in decomposition of the problem. It allows operations on larger units of

data, ignoring lot of detail, in the process. When these largeP units of data correspond to

some concept naturally occurring in the problem domai.i (e.g. stacks and tokens while

parsing a string in a formal language) the specification is written in terms of these concepts. It

also allows devices in automatic testing to be treated as data types.

Procedures or subroutines are procedural abstraction in the conveinlional programming

languages. They represent a form of abstract action which fits well with the prescriptive style

of programming. In non-procedural languages. on the other hand, the relationships between

variables is the building block. Use of abstract data types allows the variables to be used and

their values defined free of the details of the arbitrarily complex data structure that they might

reprewefit. It is felt that just as the procedures are a natural way to introduce modularity in

procedural language, the abstract data types are a natural way to introduce modularity in

non procedural languages.

A most important feature of the introduction of the abstract data types in the

non procedural language has been that it does not lead to a change in semantics oh the

non- procedural language. This is in contrast to procedural languages where an abstract data

type facility has led to an object oriented semantics e.g. CLU (Section 2.2), vhich is different

from conventional and generally accepted value oriented semantics.

- llllminn . . . lit..

4

6.2 FUTURE WORK 98

6.2 FUTUREWORK

Work needs to be done in two areas to make the abstract data types easy to use in

non-procedural languages:

1. Efficiency of the generated program should be improved upon, and

2. Additional extensions should be made to the language.

Some of the problems are outlined below.

6.2.1 EFFICIENCY CONSIDERATIONS

In the current implementation. Nopal processor does the following memory optimization: If

an array variable is declared to be of dimension '*' and is used such that only the current and

the previous element of the array is needed, then the memory allocated for the array is equal

to two elements. This is of great value when the array is an input/output structure ad

represents a big file on secondary storage. The above should be extended to not just 2 but k

elements of an array variable (where k is an integer). It should be determined when a

constant storage, k, may be used in the generated program autom:tically without having the

user to declare it. This is part of ongoing research by Mr. K.S. Lu [361 to generate efficient

programs from a non-procedural specification (and is independent of the use of abstract data

types).

Modularity makes some of the optimizations impossible at program generation time. For

example, in the generated program for the specifiaton of an abstract data type storage is

allocated for the representation of each of the variables of abstract data type. Even when

some of the variables are not needed at the same time, memory optimization cannot be done

at the program generation time, since the use of the abstract data type is independent from its

specification, and the corresponding information is not avalable at the time the program is

6.2.1 EFFICIENCY CONSIDERATIONS 99

generated from the specification.

A possible way to reuse the memory which is no longer needed is to do garbage collection.

Any one of the well known techniques can be used f31] to provide better utilization of

memory.

6.2.2 LANGUAGE EXTENSIONS

The data typing facility described here can be extended in many ways to improve

compactness, clarity etc. To give an example: The language should permit (and the

implementation should support) the specification of "parameterized" data types. By this it is

meant that the specification of the abstract data types contains a data type as a parameter.

For instance, it should permit the specification of a stack of type T, where T can be integer.

character, stack etc.; and is specified with the use of the generic stack. This would allow a

single stack specification to represent the various types of stack and lead to compactness as

well as economy of names of data types and their modfuns.

Non-procedural specification should be investigated in the light of distributed processing.

The applicative nature of the language is ideally suited for detection of parallelism within a

module. The array graph can be directly translated into a parallel program. Research needs

to be conducted to allow different modules to execute on different processors and

communicate with each other.

S,

Appendix A

EXAMPLES OF NOPAL SPECIFICATIONS

Some example specifications are given here. Sample runs for specification of stack

together with a complete set of r, ports generated by the Nopal processor are given in the first

section. The sections which follow, contain other example specifications with sequencing

report for each of the specifications.

100

mo

A.I STACK 101

A.1 STACK

Nopal specification for stack is given in this section. Nopal module STACK defines a

representation consisting of TOPZ and Z. It is followed by a specification of the functions

PUSH, POP, TOP, and EMPTYSTACK which can operate on stacks. Each function implicitly

has a test and is specified by means of assertions. The assertions specify relationships

between the input and output parameters of the function. For example, in statement number

6 (which is an assertion in modfun PUSH) value of TOPZ component of stack S1 is specified

in terms of the value of TOPZ component of stack S (where S1 is the output parameter, and S

the input parameter of PUSH). The stack has been discussed quite extensively in Chapter 3

and the various assertions are not discussed any further here. Since a logic component must

be associated with a test in Nopal, a dummy diagnosis is specified. Similarly, since the

assertions must be part of stimuli or measurements, the assertions have been arbitrarily

placed under stimuli in each of the modfuns.

A sequencing report is generated for each of the functions by the Nopal processor. It

consists of weighted adjacency matrix representing the array graph; followed by an order

vector which represents an ordering of the nodes of the graph. The order vector determines

the sequence in which Equate-atlas code is generated for the module. Equate-Atlas code is

given after the sequencing report. It is followed by a cross-reference and attribute report, and

warning messages.

A.1 STACK 102

a

0

4

N

... - '" ...

-. ,,a a- - .,

* - -.-,a
- -* o Ii *

a. - .a*- 4 0.-
* 3 OS q- U L

......- N 4 - N- ... - . ." "

.1 ,I, ,- ,,,- I,, N- , - 4

o.... a+o. a - SN - : =
- a o-. a *. a @-I...

-'--

103
A.1 STACK

00

0N

4. 0

~7 a a

I t a S . 6

N~~V %00000000

A.1 STACK 104

3

VI -

- 3

- I- - =

I. --
ma -

- a. - ~n
* a 5. VI &

* - * e = ~ a s = VI

5.a. a - a -
eaa - WA - a . -

* aSS a a a - ZN VI a a -
U *I-@ 15 Ii ~a I U IS 15 5.
* - * * * . a - 4 -
* -. c a ..- a * a .a C C U

a, VIVI - - 5.aaa VI 5.~VI - -
* a a a- VI

S S s - 4 = - * * 5 0
a.... *Z~* *.. 3 VI I

a 5.a .a a .aa a VIVIhI a a
* O C = a u C N

5
e C C p.. 6

* awa S S WW U aa.S. a a C
o .~ C C VIin2 C VI03 C C
a -CO a a saCs a ~aCa a a C
* mae * * na~ 15 aw a U a .- flJI

a C .- os

- 4 4 4 K
a a S VI

- 5.b. CI

a a ,- a - -
a 0 a a CC 5. C 5. 5. a 5.C ~

a - a a -- - - - - a - a.
* - U U ~ S - S S U a 151.. 4)6

* U C 4 -a - S - - 4 5 *4

- IS - - 5. VI - VI VI - -~ S'*

* VI S S SW S VI - 0 4 -
* VI * 4 OW = VI = 2 C VI SC .6

* 4 P - SC VI C VI VI 4 4 SI
3wW5

VI a. ,,
a SI

- 5.
4 -o
S WI

a. -
C - L. 1.)

- 0 5. -o 0 -
& 0 C 0 0 . 4.

o 9 - a., 9 S ma
- I I - I 4 * VI -c

* VI - S - - St
VI VI VI 6.0 VI VI a VI VI

S a
-. C
VI a
S
2 -.

VI a 6)1

- 4 d~ - **t .* VI VI 4) - a-
VI Cs
- *1

* VI
* a -

a a
14 SI 4

C C 5 0 ff1 4 - 4) 5
- - - - - 56
* S 35.
5. 5. VIC
o 0 0
o C &a

N C VI 0 a- VI .5 N' 4) a C
- - - - - a

0 0 * ~ - - - - - - - - - - I 9

[-V
U

A. STACK 105

o~ca 00 0 00

00 - -2 X ,

0- a.* a~ CD2co 0 0o~
00 ai hicac~ hl hi 0a.0 m -

:i C3 040 0= 0 00 0L
hi *

oocaoc3 3DOO3 3 w 0 -*

o 00 C 0 c4 3,12 0 -3 C. CDf

- -j I
oo oo oo oo oo o - S - s

00 0 0 0 0 0 0 . 4 - h a h 4 - ?

C, 0 04 m

I0 of 00 0 oo00 0

00000 000(0000 .0 7

- - 0

A.1 STACK 106

a
4

3

a
a
4 a -
* a.

o = a ..- - ad -
* . - - - - a U-- U a a a a -a U a .a a U a a

d 3 -. - a 43* 0 -. 4 U 4 a 0,s, a a, - a - S U

- U - 5 - S
S 2SW a i-a. a a a a-- WheW 4 - C a CWUC S .~Wa U N S 4 0M3 0 *2 0 - 0 U a aa40 a aaa a a a a 0 aW U aS. U a a a - a

- a a
- he
C OOOOLA.30c,.a -4 4 C 501* 9 9 - 00000000 aS U - Spa, C

3 - a -. 0~ 000000000 -* . a - a. a - i-rise - U- - - a 0 he OOOOO000o U - a
U p. 5 0 a U C *hea~I * 3 a. UId U - N hi 4 3 34 000LA0000 - - 4a a a - - ~ri VI - -* a 6 4 4 a - hU 000000000 a a= a = - 2 a a ras hea 4 a VI 9 4 i.e OOooOoo a, 9

a fl~iVI C

*3 0000.3ii-30 a
a t00a.caoo.

3
0

0 api i.e

O a Na - a- rra i.e a,* U i4 aa OOe.Ja.,UJW..... 2 5 A- I a S a i-C iflaa.*aaa S C Ca 8 3 - - - at OCSCC a a 3a a U a a -a aaacc.cc a p

a aa..aaaa
o aa-c.cq.c
* 449999

* a a a, - i. 3 3 3
= - C
- r,. a

Vi ~JO
* - .~,i., ad
a - 00 a
he 4 53 - C Soa ., a a - - - S i5 -i- wi-a- - - - Si aa22 C
* 2t See a-na..u, awa. aO 04o ao aa ~NVI~piN.a a -- i.e ii a a C -4 C - U a

a a u aa a -a
09.

** S * a *

____ I. *i~

Al STACK
107

- a
a a
0
r * -

a - -- a .-

* S - - -
- - ~. - ~

- 0 SJ

* V. S ** - - - a
o a. -

.4 0 - ~ - - *
* a ~ 0 - ~a

Li Li

~M, MI - Li a.Li Li - S K

-
a

* = = - N
- IV.* S* S - a- a

.. s. a 4 4
- a... C a

a W~ C C a W- - 4 - 0 2 3 C

a am U U a am 2 a a - - a

- 5=2 0 0 0 55= - g -c fl 4

a ae a a a Co ~
a 'S-U. . ~ flLi N

~,- w a
U- -
Cm
I-.-

C 2

a .- a
NV 0

2 I- 2 MW -

s. 0 N 0 U - MX ~ U 'M IM

a - a a - - MW a ~ .. , - a a a

* , a a - - 0 U *W. 2 a .- 0 3 2

a a a c . u a a - - m z a C

- - - - IS Li Nfl Li - IS -

* Li C S S 'A * * use 0000 a Li C K K

* MW a a 2 Li -. C 2~ IS MI - - *

* * = a a C C 2 W NOCO US C C * *
0

02 ,-000 Sa

NO 0

N .5.1 IS
US 0

a 2 a a
o a 0 ma o'.s CV 2MW .a us 0 0

* 0 * a anaa a a

MW
*g cOrn

- a ., - a a C 2 ~a m~.C Li - C WA Mb

a a = -
a - CC

.2 - - N N 1 C C * 0 - N

.J a
O 0
a - ma

It N - 4

* - N MW CI N Mb pa C..
CUSMI US

NNUSC m =

'4 - * r, A. U) V UJ..D N - C

Oa'A

1
* 6 6 - - - -. - - - -

Jh*

S

A.1 STACK 108

* n a n a
44 4 4 4 4 4

44 44 44 44 44 44
** * 44 44• 44e

4*• 44 4•4 4
44 4444 4

$ * ** 44 44 44 4

4t 44 44 44 *4 44

4. 444 4 4 *4

... . ..** ..]i .4 a:

..4 44 4. ...4 4.
4. 40 44 44 44 *: . . .

44 .4 4...4 44 44.. 44

.. . 4 4.. . o 4.. ...
.. 4 4 44 44 44.4 4 44 44" -

S.a n.. .4 44 * - 4

A.1 STACK 109

a C -

* 9 a

- C a

- C -9
* C a *

* C S

Yb C S aa

a a
- a a C C - .us

t a C S *0=
* C t S 5 C 09 C I S S

- - ta C N 09 s a
a a. a a a a set..
- 5 - - * set C St N - - --
* S * se MIsS C I sea * . I Into us
t t usa a *= en a t .~, .S

a us as a = =m . * as * am us a a
5 09 .a~ a MS * t - C C usia- a a n as * -

t S a . I * C a Ins *5 a a us
at us as- ~cat us as Cease * a -scat us am aC a as

us aS us a. - . a S S -- W tow . . So .awoa anOn ~uson aao C uses - .aO .. 1009 sCSI C toO
* c sum - .egm C 555 St 55 C nt a *Wm a sum mS SW S 55

- sea asses- - SOc C 0 C - sea------*005 acme e
I. *S ES I aX. *t Es- - 2 s-,-. was.. * *.zt s-ar a

a usC e a Mq US aS - t *t to a toc 05* S
ms 5inin C 5------*I usaa------ii . *sum omsutanotia a * aaa.na..,a , C seat Zse out -. toa.,5gS- a -ec- -

* s . - - ts.tt. . S mast - S S 5 - -s a
- t t a N S St Ctt U. I...t us t - S * *. S

* *C C C~ 5 CC * S C C ONtO * ncus C CC C 55 5 5
* - - . C C *00* aNt ass- S - C~ S -

* t a a. t ts. - sen CLausas SinEws * C ItS a eAses
tc

0
cen *O *I SOC.swsaO.. *' a .t mba tot - *s- .5 acoq....n *C *gOs- 5U%

OmaOse -N-.CN.-sims, a *4 C act t C 5550-----*S.,to., a
-------- a-----------------5 C S C s-.secseNaNn.N.N S N N' S N
4s.4. *ac~4.-a4. *4. *ac 54. .04. 9 CusauslIaNa .dto4. *c .as,-sj- *a4.Zat~

- -- b S N Nt - -e to CCC,- b t -- Ut -
O On C CS C Ca a Usia S Sa *tse 5 ~ Ca a saM, Ous US

L *L 55 ttS * *t *t LI Ot I t COt S scSMI CI U.t a *o. *I aft.s.s S OS S a
SSWusw us---------us Ca. us b.S .jt Ca WWusW usnusa us us

----- C USSI cams s-a------*b W-Euss- Ca
aaaomse-.a-,aanaoaacacma S I 90 Es- *It cacmaoaoaa-sstcaasma

* 4 5 9* 5 C - -c sax. at ussssuc s.c 5 4 I sec OS at *
eaCaaCaCOacaOaaoacusa a us... Stat *aInNMSaCInCat OCOstom Omac Yea

------- *534 - JIn09 S-------a *a-zz-m~ae005'CCus OusOOInOaOOs.Os.OOO 555 us-----toCOaOaOOusCus,..OOusOOOma
We I5 U'S' 555 UWS tat taCt St UWX.....esit 5 baISt 55510555 WIt IJWO.U55b St

a * CNCt ato. c a
020Cm *~0Z5 000
* LZ. usUbaUstoOss- use LOX
St us. ott I Cs IS - usI J

toO no usC too en CC nO ~s0to c en
09 5?. NUt 4 * CO 0- CSNN St a

* Vs. 'iNs. N N
4.4. 050 4.4. 4.4. 4. 54. 4.4. OtIS 44 4.

* ' - = - , a
Sr

S

A.1 STACK

110

• a ma•

*,, 6 66, 66.
*, 6: 66 : *:

* 6 66! 66t

:.* 6..o . , 66.. : :
: 6 -.- 66 :-.

i,,6 66 66

*,. , -: . 66 6,6.,. :

... • .. .6--66

* 6 66 66

* %6 6 6
* 666 6

* S6 6 6

A. 1 STACK 111

a€ .a ..
0C to

s.J =0 i
-. 00 00c 0
a , ,a * , ,'a'ao ~ ,: , , a.,-g , ,

-0, . .o 0 .. o " . . ooo o o

a ',---.. oo -5 o " : : . .

Ca-"

. . .f,a t aII.

A.1 STACK 112

a - K
- . C

£ a
o - 0

- .a4 -
a

- 0. 0

- 0 3
a

a -
o -
0. a -

* a S
o *- ., a
a a - to
l a a - a *

. - 0 2 4
= WI - C

o a a = a a

a * - a
* ISa 0 -

a 0 a 0 0
* - 0 a
0 = - - IA
- 0 *. a 4
a 0 0 2 a
a *. - Z 0
K a 0
a ki a a a a

~ 0 a a a a
* a a - a 4 a

0 2 a
0 - - - -

0 0 Sal 2 a
a a a 4 .14 0
I- - - a o a

0 - 0
-. a a a . 4
00 - - - a a
42 4 - o.14 a - - - 0 a 0 .-

0 a a a K to -
a - to to a 0 a
4 - 0 4 0 - 4 a .4 0

O 0 4 4 4 4 a - .~ tO
4 a a 0 a - 0

SN Sal 0 0 4 4 K 0 to
a a * ~ 0 4 2 if
OW U to C a 4 - WI

0 0 0 t, a 2 0
0 C 0 a a . 2 oc0 a N

.140 a - a a a - 440 C -
42 N 0CaI~ a a

S a a a a a - 0. 0
at a a a a a ~ -an a 4 0 0 a a - * 0 a

* a 4 2 -, - a
to. a a c - - - a I 400 -a a a saw a 0
-= a a a a a a e a
me a 0 2 4 4 4 - a ago

- 4 4 a.. - 0
o. a * a 0 4 024 0 2

O 0 a -J ~S ~S 4 4
a a 4 4 4 4* 4 Sa.a~.*

o 0 0 0 0 Caa 0
0 0 0 0 0 .40 -J 0I..a
o UJ .4 ..J .4 40 4 a K~ A* a o to to tO 05- 0 200
a 0.. 0 aOl-A .15

o to.................jo ...I to 4 0
o to a - - -. or or a.-... o to

2 - 0 0 0 0 0 t.J.140..J 0 0
- o .11 WI IS a fl 0 0
0 0 a a a *I ** 0024 a 0
. a a a a a -a aaaw, 0

* C a W a 4 5-C 0 0 2 a
o WI----------a to 14 0
aM, C 0 a aaaw,0 0 2 44 - to
-a a 0 - ~J -4 00------- ~
40 - 0 4 a a a toa to nIna- 4 -
00 4 4 0 K K K -a .a fl-..40 a a
aS 0 a a 0 0 0 4* 44 COl- a Naa a a a a 0 Wa .. ao a a
a 2 a 2 2 N 4 *0 C -a a 0

* to a 0-4 0.4 cao a
00 0 WI a a a .14.4 0 caoa a 0
o 0 - a .14 .4 .4 04 mO 0 aw, 0
to. a to 0 0 0-wO aWI 30 o -
-- toa 4---ob- o raw,, a 0
0 4 0 0 WI 0 0 WI! Law, MO WI

* 0 .15 0 WA 0 C& 0-4 001W
aO WI a 0 0 0 a t 42 0 0
Er a 0 K a a a .a a* oowl-K a - - - 0, 0
to. to *0 05- 0.40 0 0
20 LB 2.......0 4.WI. WI WI

a - * 0 = K WIaC a a
- WI 2 to I oa - -

0W- 2 a 0 to to to Na as a - - I-
40 0 - 4 N 2 2 -n a Koto t ILl

4 - a - - - 2 20 02 --- 4 WI - 2 2 N 45- 40 02- - -
04 4 0 0 0 40 40 2.12 0 4
00 0 - 0 4 4 4 3! 3 20 - -
ow. 0 4 a a a a K a as. 0 0
00 0 - = 40 448
a 0 0 a.........Ca. C

a 0 a c . - 0. a

V

6 S ~ '-0,.~ - w W a a 0 9 2

A.2 ACKERMANN'S FUNCTION 113

A.2 ACKERMANN'S FUNCTION

Nopal specification which specifies Ackermann's function is given in this section.

Ackermann's function as expressed by recursive equations is:

A(O,n) = n + 1 (A- 1)
A(m,O) = A(m-1,1) (A-2)
A(m,n) = A(m.1,A(m,n-1)) (A-3)

Nopal specification is based on the simulation of function calls by means of a stack. It is

convenient to imagine that there is an array V of stacks, which is represented in the

specification by arrays TOP, LBO, and S. An element V(I) of the array of stacks is represented

by LAST(I) which gives the top of the stack V(I), LBO(l) which gives the second element of the

stack, and S(l) which gives the rest of the stack.

COMPUTE specifies the computation of the value of Ackermann's function with arguments

M, N. To begin, values of M and N are placed on the stack with N being on the top; this is done

by defining the value of LAST(1) to be equal to N, the value of LBO(1) equal to M, and the

value of S(1) to be a stack with a special symbol -1 signifying the bottom of the stack V(1).

Top two elements of the stack V, alwaqs contain the arguments for which Ackermann's

function needs to be computed at any point in execution. Finally, a single value is left on the

stack, and that gives the value of Ackermann's function for arguments M, N. The assertions

given by statements 15,16, and 17 can now be explained as follows:

If the top element of stack V(1.1), i.e. LAST(I.1), is equal zero then it corresponds to

Equation A.2. The top two elements (p,O) of stack V(I. 1) should be replaced by (p-1,1). This is

accomplished in the specification by defining LAST(I) to be 1, LBO(I) to be (LBO(I-1). 1), and

S(l) to be S(I-1).

Similarly, if the second element (from the top) of the stack V(I. 1) is zero, it corresponds to

, . b'l

A.2 ACKERMANN'S FUNCTION 114

Equation A-1, and the Ackermann's function for the top two elements of the stack evaluates to

one plus the top element of the stack. This means popping the stack twice, and pushing the

new value on the stack. Thus in the specification, if LBO(I-1) is zero then LAST(I) is equal to

(LAST(l) + 1), LBO(l) is equal to TOP(S(I-1)), and S(I) is equal to POP(S(I-1)).

Finally, if it is none of the above two cases, action corresponding to the RHS of Equation

A-3 is carried out.

After the specification, sequencing reports are included; they are: inter-test and intra-test

sequencing reports. Inter-test sequencing report shows that the test INIT should be

performed before the test COMPUTE. Intra-test reports contain sequencing of tests INIT and

COMPUTE.

I V . -~

A.2 ACKERMANN'S FUNCTION. 1

a7

2 2

aw

w z

a
a 0.i

a - - -o-I

A.2 ACKERMANN'S FUNCTION 116

WW

- 'JIM0

" "" ,z'
"

.., " -"., z

.. A=g . . AU .

!
"-

r!7A.2 ACKERMANN'S FUNCTION 117

:0 0 00 000o 0 P. :000000

- : 0.00 00 a0 0 00 a~ 000000

ft a00C a c a w 000c

-0 *:00 0 000 10 00 0 00

0,4 -0 a 0 : 0C

-- a00 0 o0o -0 I 000000

0 0- aOOO ooOO0a .- :000000

- - -------- O~ - - -----oo

a! Wa.-
a a a

S. t. 10 0000000.100000

-O a a
a ~ ~ ~ ~ ~ ~ ~ I 9 0.(0 00 3a C *0LJ

A.2 AGKERMANN'S FUNCTION 118

C

It0

g4 z

.j -9

03 Ic a z AL : !*42zz :, 1

ON .3z 0

0~0

- S - a a T

1 0 . 'o 0. Z

5z 4 0

0 40 W 0 0 .4 .1 40O~S

04~~~~~C 3 A000 K 3 3a~ A.

* a. ft

*A.2 ACKERMANNS FUNCTION 119

I~ ~ 00 01 0o- I 0a 00 00 00 a 00 0 a00 0

- ~000000000000000000 0

0 *0 - Q. S uf -w -If
EZ if if if 0000000000000 000000

Z 0 01 m. m 00 0000D2000:0 0 000000 a a

.j -j a 0 K3aco00C 00 ,o0

0 0 - o 00 0 0 0 0 0 0-00-C0 a

a- 0

if~~C Gz rf 0 0 0
*~~~~~~~ Af SDC a 0 0 J0.DJJ o i

-~ ~ ~ 9 0u 0 0 0 0:00 000&

S0 P

A.2 ACKERMANNS FUNCTION 120

a.,

a-
.4- 0

-- a- 0~

* , .4-- .* a-
* . -- 0

* RN-0 L.A NW
.4 *u.4.40 N -~

* RN -~ N
- -- N.

* N SM- * -S -
o **ON a. K0N
N ~a~S 0
SM - a. -.* -0~ a ~O- K
o a.4 S
0 a~ *

s~ssss*s a -- N N

* 5.0S .1* ~eSa a.
* - C - ,.S SM Sal - 50! 0 00 0
S.. - J - - S.. U - L aa. a. a -

* a a a C a S a C 54 U' - a -"
0 0 0 0 0 0 0 0 a C -- -. 4 0
o a 0 0 0 0 0 0 ' ZC.~ *
.4 *4 .4 .4 54 .4 .4 .4 --. 4 - -, .4~ -I a~a-

54 N N -

- = * - - = = = C - - - - ~0
055**L "S'

a .a a a a a a a .4.a C- V5uJ - aS-sd
* C C C C C C C SMS.a a a U,.., a N SaSj a

* a a a a a a a laSt C WSMWta C .. L.JIUJSMOO C
o a 0 0 0 0 0 0 N S ~ S.D .4mm 0 S.' MSMuC 0
a a a a a a a a Ca 0 maaaa.0 0a~,-A CO U
* C S 58 58 5 58 58 S.*S.4 .S SUWSJ~

N N N
SM * - - Us - SM SM 0 SM 00 a. C a.
a a a a a a a a - a

a 0 a a 0 a a a S- C a - a

SM - - .4 - Si,

a a a a a a a a i4 a ru, 0 *4 N
* C C C C C C fl - 054 0 * 0

S S S S S N S S C - aC 55' C .4

C0 -o S..'
o -o o-, 0 0 0

N 515 *4 N 3

a. .4 a. 3 0 a I I o
o a a a MS MS

r - a a. a. N a- - - a. -

0

a S .3 a *3 .3 .3 0 - N .4

C 5*4 a, .4 c -. U.' - ., a

0
.4 4 U, 4, 5*. a.' .4 0 - N an' S 5.4 0

S S S ~ - - - - - - w - - 9 U b

A.2 ACKERMANN'S FUNCTION
121

a -
a ,a- -nn °
• - S . =

Sa * S

ao -

..,,-,0
. a.

,.o * -
-o

S. I S.

.,aa -a aD.CC* 9 C 5S. aw-. S5
5

a
, a IL

A.3 BAND-WIDTH METER 122

A.3 BAND-WIDTH METER

The main module BWM specifies the application of a voltage source with frequencies in a

range with a given step size to a UUT. For each application of a frequency, the gain of

voltages (ratio of output voltage to input voltage) across the UUT is measured. A table

corresponding to the applied frequencies and the measured gains is printed out. The devices

are represented by means of abstract structures: gain measurement device is represented by

the structure GD, and frequency source by the structure FS. A call is issued to

ACCESS GAIN.DEVICE whenever the value of GAIN, a field in the structure GD, is accessed

(before statement 24); and similarly, a call is issued to SAVEFREQSOURCE in the case of

structure FS (after statements 16, 17, and 18). The assertions in the specification are self

explanatory.

i

A.3 BAND-WIDTH METER 123

. al

* a

a. =.

- - .M.

.a

a i- I,--. .s "== .

*.= ,

N p a -.i-j..a tlJ

i- .C4 r.i u+ i-I-I. Kl at

-, "- ... ow ,a .,, .4=
y i. Cl -1 *gI, .a.i.

m atS,- i.+ f.ii .,

- , - .. : - ...,= . * a a. :: -- a C- -p - -

-" .5.4 - - - - - - - -- .2
. =U,. I= 22 25 am M:. C -

- C - a t CC W t * . -

o- - '..a

I- hI- 2t i .a .

A.3 BAND-WIDTH METER 124

C) 5* 5*)a

a P. a. C D C

1 0-0 0 00C5,0 000 1 0. 0c c C> 0 0 00 0

10 0 00 0oo 0

jr Ia IV C7 00000 wO OO OO

-0 I~0 0000 -0 :0 O00 0 Q0

a~a I00 0 00 - C> 00 00 0 0 C;0 0

_C-'s a*00CDOOOON .5-I&oc o c

3I 3I
2 0 32 0 C30C

o I C

- O O 0 0 0 .0 * c c o o o

A.3 BAND-WIDTH METER 125

S.)

aZ.

KZ Z Z
03

-- --

- 04 V 'ow!.

a coca 04 -

04~~~~~~~1 v W3D0 0 0 0 0 0 W W ~ .

lowIIv m - .. K

A.3 BAND WIDTH METER 126

00 0 0 00000 o o 0 oo0 0 00

00O000000000000000000O000

000000 000000000000O 00

00000000000000000000000

000O0000 000O0000000000

00000 OOA-O00000000000000O

000O00000000000ooooooooo
N o

0 000o 0o0000000000000000

000000000000000000000000o

oooo oooo oooo oooNo 4

00o0o0ooo0 ooo0o0 0 o0000 oo000oo

0 00 0 oo 000 00 0 000 o0o00o0 o00

00 0 0 00 0 0 00 0 000 0 00 0 00

N o oo o oo oo o oo oo o

0000 0000 0000 0000 000

- 04
- MA hA 1 100 000 0000 0000 0000 000

A.3 BAND-WIDTH METER -,127

000000000:
0

00000 ~0000u
020000000300

0000000000 a

00000200000

000000000ao

00000300000 a

0000=000000 a

0000000000 0

00000000,00 a

000000 000a

000C0000000 a

0000000000 p
0 0 0 -0C

0 000 0 0 0- C3 0 0

00000000 0 F-
0i 0 0i CD 0 hi .D Co 0

00003000000 - h

0000000000 n a-

3000000 00 1u4Ss

0000000000 a

a ...

00 0 00 ~ n-

w a C 1ht -

A.3 BAND-WIDTH METER 128

- i 4 i is i i i is i

-- fJN N a a S - a a a

, - r * -* -a i - - -- - - - a-

- -Si. N - - - - S

A.3 BAND-WIDTH METER 129

- W hi '
LI i LI - 5

= = == -. , ' , S,. 'C" =F

K -= .- * . ==

a j a ..a
C 'C ' C M a . t ao'

* U C U 'C Z

*i SP S= = S.- ..LI LI U LI 5 LI S L

A.3 BAND-WIDTH METER 130

The specification for GAIN-DEVICE, given below, has only one modtun called

ACCESS.GAIN.DEVICE. The modfun takes voltage measurements across pins (11,12) and

(13,14). The ration of the two measurements defines the value of GAIN. It depends on two

funtions: VOLTMETER and MICROVOLTMETER to take the actual measurements.

2

A.3 BAND-WIDTH METER 131

F
a
o
o

am

Nz

a

oI t -

mu '" a .." "..

ax a

004
1

ma

. -'. . ,-a

= ,N. + ,.=.

•** o oo

Z.1

0

A.3 B3AND-WIDTH METER 132

KZ

ar 0 0

wo: 0 C C 0 u

0

c5 c

! ! I

A.3 BAND-WIDTH METER 133

The specification for FREQSOURCE defines a function SAVEFREQSOURCE which

specifies the application of a frequency source by means of the function FREQ.GEN. The

voltage and frequency to be applied are specified by the input parameters. An error is issued

if the parameters specify a frequency which falls out of range of the instrument.

A.3 BAND WIDTUH METER 134

0
o

0 i

am

* !i
-o ...

- - 0!

- Si, . - ,, .C,

"4 .. a

-. • o

S. 4 aa

- a Si * Si,

A.3 BAND -WIDTH METER 135

z

Za T

2 w

2 -
I C,

10 20

0~~ 0 - 0 0 200

;;-oc 0 o o ID w

0 0 N (3 0

a2 0 - - - Wa OS

U 0 0- A

000 oo o oo o - 31 0 0 V v

N'..,,z 0 .0.S C . U. A

.a a 000 4D I, . , , a i sst = 2

a-ma,

A.4 FILE INPUT-OUTPUT 136

A.4 FILE INPUT-OUTPUT

This example illustrates the updating of an inventory file, named INV, based on

transactions contained in a sequential file, called TRANS. A record in TRANS has two fields:

KEY and an array A. A record in INV is found corresponding to the KEY in each of the records

in TRANS and is updated based on the sum of the corresponding array A. General functions

ACCESS and IACCESS are used to read, and SAVE and ISAVE to store, records from SAM

and ISAM files respectively.

Corresponding sequence reports and Equate-atlas code are given after the specification.

L-A

A.4 FILE INPU r-OUTPUT 137

kw

* CC

A * w

0a0

0 - -

I %- an
-~ . - a,

a .

.j - a - - -- -s -S -
I - = ~ .

A.4 FILE INPUT-OUTPUT 138

m a 0 aaa00 ~

Co- C 000000 00 to 60000

:0 n 6 0o- fooooo o. 6 0 0

:C 6)C 0 C

:60000000000 60000

0 6 C~ 0

- - - - - - - - -

* 6 4.

6.6 ' 6 C10 000 000 to 000 01

- 6 - 4Mzm
* 6 - 0 4

- ~ ~ ~ ~ ~ .SZ 60 0 0 00 OO O

A.4 FILE INPUT-OUTPUT 139

0000000 000 00 000 c~C00 0 000 000 00 ~0

0 0 00000 o0000 0 00I n0I 0 0 0

0 0 0000000000 0 0 0 0 0 0 0

w O 0 00 00 000 0 0 0 0 0 0 0 n0

00000000000000000000000

- 000 0 00 0 0 0 0 0 00 n 000

00000000 0 00 00000000000

a0000000-000000000000000000000_

N u
II0000000000000000000000000000 . . -000

A.4 FILE INPUT-OUTPUT 140

K

3

C

2

3 .

kM 0MM I
- .

MI 0 4 03 3- i
* O P

a I ID I I

o , 3 0- - - - - - - -.. .a

WI s- .4 u,~- aS.- 00.- - - -i

.4 MI -
,.4.. 0,. I , , I . ,

0ii ~ ~ Cii' 3i**

A.4 FILE INPUT-OUTPUT
141

!a

- 4,,

I I a i i K

W .i t .4 a . - - ~ 2. . 0 2 - 3 A

- - - a~o j0 ml l L f .. bav o I o

a I a a m a . 0 I°a
2 2 2 Z a 2 5- 2

o u O 5 C 0

ii

: ,- - -.,+ 0 ''. . . t'+ : . . .

-,-I 5 ,---

- fl&a. 0" to:++ : : := + , , -., ..,sJ a =

,,,.J .. S 4 i S 2., --

A.4 FILE INPUT-OUTPUT 143

l me aa C

99oz 9999
99~~Z a999

A9 99 .9 Z_. ----

a.. .. .o .t .9 .

N ** *~ ** *

99 9 9 9

A.4 FILE INPUT-OUTPUT 144

r0

) C, -

C. a 3 0 Q 0

C- - - - - 0

ol 11 . 2 2 250

Q. 2 t Io. a 0 - MI ot f

1- - 1- ft C6 02 K

0 a. 0lb5- a- -- * .C

A.4 FILE INPUT-OUTPUT 145

an at

99 99

* 99 99
$ 9* 9.

a 1. 10 1. 1

W. IL a9 -. No .

- 9~ . - s i C3

Index

Abstract data types 4, 5, tO, 11. 13, 16, 22, 38, 42, 94, 96

Ackermann 113

Adjacency matrix 101

Affected components 55. 57
Algebraic 11, 12

Algebraic axioms 12, 32,38

AP. 7

APS 10
Arraygraph 77, 101
Assertion specification 48, 49. 51, 52, 54

Associative memory 65
ATE specification 41,43, 56, 58, 59

BOL 7,10

CDEMAIN procedure 93
COETEST procedure 86,93,94

CLU 13,14,97
Cluster 14

Code generation 91
Conjunction specification 48, 50. 54

Connection points 43
Connection points specification 58
CYCLES procedure 80

Data declaration specification 43, 44

Data declarations specification 41
Denotational semantics 32

Diagnoses specification 41,43, 47, 48, 55

Directory 66, 68

Disjoint union 28

EBNF 65

EBNF/WSC 64,65
Efficiency 98

Elementary data type 44
End array 18

Equation, mathematical 16

Extensions 99
EXTSEO procedure 90

Failure 43, 55, 58,90
File structure 45

Flowchart 72

Free subscript 52,53, 77, 80, 82,90

GROUP 45,46

146

Index 147

Header specification 47,48

I.S.I. 10
Incremental 2, 42
Induction 13, 39
Input 43, 45
Inter-test 72,87, 95
Intra-test 72,94
INTSEQ procedure 78
Invariant 13

Language extensions 99
Least fix point 33,37.38
LISP 7
Logic 48. 55
Logic specification 43. 55
LUCID 8

M.I.T. 10. 13
Mandatory edges 90
Mathematical equations 16
Matrix 72. 101
Measurements 43.48
Message specification 41.56,57
Model 2,3,4,5.10.16
Modtun specification 42.43,47
Modularity 1,2.4, 10. 16, 19.39,41,61,96.97.98
Modules 42,43
Modules specification 41

Non-procedural 2,3, 4,5, 7.9, 10. 16. 19, 22, 39.41,96, 97. 98
Nopal 2,3.5, 16,41.55,61.96

Optimization 98
ORDERER procedure 82
Output 43,45

Parameters 43. 46. 47, 50. 57, 59
Parent list 53
Pennsylvania 2
Precedence 72,87
Priority 74.84,87,90
Procedure, CDEMAIN 93
Procedure, CDETEST 86,93, 94
Procedure, CYCLES 80
Procedure. EXTSEQ 90
Procedure, INTSEQ 78
Procedure, ORDERER 82

Procedure. PROPAGT 81
Procedure, RETREVD 66, 71
Procedure, RETREVS 66,71
Procedure. SAP 64,65,66
Procedure. SAPG 64,65
Procedure, SCIIFDLR 82

it ll.

-- ! l I I i HI

Index 148

Procedure, SOURCE2 71
Procedure, STORE 66,68
Procedure, SUBANAL 78
Procedure, SUBUSAG 80
Procedure, TRMNATE 93
Procedure, XREFt 71,93
Procedure, XREF2 71
PROPAGT procedure 81
Protection 58
PROTOSYSTEM 10
PSI 10

RECORD 45,46
Recursive edges 81
Reduction function 80
Relationships 72, 74,87
Reports 61, 71
Representation 22, 26, 33, 40, 42, 93, 101
RETREVD procedure 66, 71
RETREVS procedure 66,71

SAP procedure 64,65,66
SAPG procedure 64,6
SBA 10

SCHEDLR procedure 82
Semantics of modules 32
Sequencing 61,72,87,94
SETL 7
SOS 26
Source 47, 48, 50, 52,54,60
SOURCE2 procedure 71
Specification, assertion 48,49,51,52,54
Specification, ATE 41,43,56,58,59
Specification, conjunction 48,50, 54
Specification, connection points 58
Specification, data declaration 43, 44
Specification, data declarations 41
Specification, diagnoses 41, 43, 47, 48, 55
Specification, header 47, 48
Specification, logic 43, 55
Specification, message 41, 56,57
Specification, Modfun 42, 43,47
Specification, modules 41
Specification, test 41,43, 48
Specification, UUT 41,43,48,49,58,59
SSL 10
Stack 23,25
Stanlord 10
Stimuli 43,48.58,59
Storage entry 68, 71
STORE procedure 66,68
Structure 44, 45, 46
Structured programming 1
SUBANAL procedure 78
SUBUSAG procedure 80

Index 149

Syntax analysis 61

Target 47. 48,49,50,51,53,54,55
Test specification 41.43,48
Top dawn I
Topological sort 86, 91
Tree structure 44
TRMNATE procedure 93
Tuple 34,36,37

Underlying griph 78,81
UUT specification 41,43,48.49.,58, 59

V. graphs I11
VHLL 1, 7

Waveform 48

XREFI procedure 71,93
XREF2 procedure 71

References

1. Ashcroft, E.A. and W.W. Wadge. Lucid, A Non-procedural Language with Iteration. CACM
20, 7 (July 1977).

2. Atkinson, R.R., BH. Lis, ov and R.W. Scheifler. Aspects of Implementing CLU. ACM
Annual Conference, Washington, D.C., Dec., 1978, pp. 123-129.

3. Balzer, R. et.al. Domain Independent Automatic Programming. Tech. Rep. RR-77-14, ISI,
University of Southern California, Oct., 1974.

4. Biermann, A.W. Approaches to Automatic Programming. In Advances in Computers, Vol.
15, M. Rubinoff and M. Yovits, Eds., Academic Press, 1976.

5. Brinch-Hansen, P The Architecture of Concurrent Programs Prentice-Hall, 1977.

6. Chamberlin, D.D. The 'Single-Assignment' Approach to Parallel Processing. FJCC, 1971. '

7. Chang, Y. Automatic Test Program Generation. Ph.D. Th., The Moore School, University
of Pennsylvania, 1977.

8. Dahl, O.J., B. Myhrhaug and K. Nygaard. The SIMULA 67 Common Base Language.
Publication S-22, Norwegian Computing Center, Oslo, 1970.

9. Darringer, John A. and Mark S. Laventhal. A Study of the Use of Abstractions. Research
Report RC7184, IBM T.J. Watson Research Center, June, 1978.

10. Dewar, R.K., A. Grand, S.C. Liu and J.T. Schwartz. Program by Refinement, as
Exemplified by the SETL Representational Sub- language. TOPLAS. ACM 1, 1 (July 1979).

11. Earley, J. Towards an Underatanding of Data Structures. Comm. ACM 14, 10 (Oct.
1973), 617-627.

12. Friedman, D.P. and D.S. Wise. CONS Should Not Evaluate Its Arguments. Tech. Rep. 44,
Computer Science Dept., Indiana University, Bloomington, 1975.

13. Gana, J.L. An Automatic Program Generator for Model Building in Social and
Engineering Science. Ph.D. Th., The Moore School, University of Pennsylvania, 1978.

14. Goguen, J.A., J.W. Thatcher and E.G. Wright. An Initial Algebra Approach to the
Specification, Correctness, and implementation of Abstract Data Types. In Current Trends in
Programming Methodology, Vol. 4, R.T. Yeh, Ed., Prentice Hall, 1978.

150

151

15. Graubert, R. A Case Study of Using a Non-Procedural Language for Automatic Testing
of Electronic Equipment. Master Th., The Moore School, University of Pennsylvania, 1979.

16. Green, C. The Design of PSI Program Synthesis. Second International Conference on

Software Engineering, San Francisco, Oct., 1972.

17. Gries, D. and N. Gehani. Some Ideas on Data Types in High Level Languages. CACM 20,

6 (June 1977).

18. Guttag, J. V., E. Horowitz and D.R. Musser. The Design of Data Type Specifications. In

Current rends in Programming Methodology, R.T. Yeh, Ed., Prentice-Hall, 1978

19. Guttag, J. V., E. Horowitz and D.R. Musser. Abstract Data Types and Software
Validation. CACM 21, 12 (Dec. 1979).

20. Guttag, John V. Abstract Data Types and the Development of Data Structures. CACM 2.

6 (June 1977).

21. Hammer, Michael, W. Gerry Howe, Vincent J. Kruskal and Irving Wladawsky. A Very High

Level Programming Language for Data Processing Applications. Comm ACM 20, 11
(November 1977).

22. Heidorn, George E. Automatic Programming Through Natural Language Dialogue: A
Survey. Research Report RC6074, IBM T.J. Watson Research Center, December, 1975.

23. Hoare, C A.R. An Axiomatic Basis for Computer Programming. CACM 12, 10 (Oct. 1969),
576-583.

24. Hoare, CA.R. Proof of Correctness of Data Representations. Acta Informatica 1 (1972).

25. Hoffman, C.M. Design and Correctness of a Compiler for a Non-procedural Language.
Acta Intormatica 9 (1978).

26. Homer, E.D. An Algorithm for Selecting and Sequencing Statements as a Basis for
Problem Oriented Programming Languages. Proceedings of the ACM National Meeting,

1966.

27. Iverson, K.E. A Programming Language. Wiley, New York, 1962.

28. Jensen, K. and N. Wirth. Pascal - User Manual and Report. Springer.Verlag, 1974.

29. Kennedy, K. and JT. Schwartz. An Introduction to the Set Theoretic Language SETL.

Comp. & Math. with Appl. 1 (1975).

152

30. Kessels, J.L.W. A Conceptual Framework for a Non-procedural Programming Language.
CACM 20, 12 (Dec. 1977).

31. Knuth, D.E. The Art of Computer Programming. Vol. 1: Fundamental Algorithms.
Addison.Wezley, 1969.

32. Kowalski, R.A. Algorithms = Logic + Control. Comm. ACM 22, 7 (h,fy 1979), 424-436.

33. Leavenworth, B.M. Non-procedural Data Processing. The Computer Journal 20, 1
(1977).

34. Liskov, B.H., A. Snyder, R. Atkinson and C. Schaffert. Abstraction Mechanisms in CLU.

CACM 20,8 (Aug. 1977).

35. Liskov, B.H. and S. Zilles. Specification Techniques for Data Abstractions. IEEE Trans.

on Software Engineering 1, 1 (March 1975).

36. Lu, K.S. Program Optimization Based on a Non-procedural Specification. Proposal for
Ph.D. research. University of Pennsylvania, April 1980.

37. Manna, Z. Mathematical Theory of Computation. McGraw Hitt, 1974.

38. Parnas, D.L. A Technique for the Specification of Software Modules with Examples.
CACM 15, 5 (May 1972).

39. Pnueli, A., K.S. Lu and N.S. Prywes. Model Program Generator: System and
Programming Documentation. The Moore School, University of Pennsylvania, Fall, 1980.

40. Pnueli, A. Scheduling an Equational Specificaion. Unpublished memo. 1979

41. Prywes, N.S., C. Tinaztepe and Y.K. Chang. Automatic Test Program Generation.
Autotestcon, IEEE, Nov., 1977.

42. Prywes, N.S., A. Pnueli and S. Shastry. Use of a Non- procedural Specification Language
and Associated Program Generator in Software Development. TOPLAS 1, 2 (Oct. 1979).

43. Ramirez, J.A. Automatic Generation of Data Conversion Programs Using a Data
Description Language. Ph.D. Th., The Moore School, University of Pennsylvania, 1973.

44. Rin, N.A. Automatic Generation ol Business Data Processing Programs from a
Non-Procedural Language. Ph.D. Th., The Moore School, University of Pennsylvania, 1976.

45. Ruth, G.R. Protosystem I: An Automatic Programming System Prototype. Technical
Memo TM-72, MIT Laboratory for Computer Science, July, 1976.

153

46. Sangal, Rajeev. The Nopal Program Generator: System and Programming
Documentation, Vol. 1, 2 and 3. Tech. Rep. 80, The Moore School, University of
Pennsylvania, March, 1980.

47. Schlesinger, S. and L. Sashkin. POSE: a Language for Posing Problems to a Computer.
CACM 10, 5 (May 1967).

48. Shastry, S.K., A. Pnueli and N. Prywes. Non-Procedural Computer Programming with
Model. Proc. of First Int. Computer Software and Application Con[., 1977.

49. Shastry, S., A. Pnueli and N.S. Prywes. Basic Algorithms Used by the MODEL System for
Design of Programs. The Moore School, University of Pennsylvania, Feb., 1979.

50. Shastry, S.K. Verification and Correction of Non-procedural Specifications in Automatic
Generation of Programs. Ph.D. Th., The Moore School, University of Pennsylvania, May 1978.

51. Shaw, Mary, W.A. Wulf and R.L. London. Abstraction and Verification in Alphard:
Defining and Specifying Iteration and Generators. Comm. ACM 20, 8 (Aug. 1977), 553-564.

52. Tesler, L.G. and H.J. Enia. A Language Design for Concurrent Processes. SJCC, 1968.

53. Thatcher, J.W., E.G. Wagner and J.B. Wright. Specification of Abstract Data Types Using
Conditional Axioms. Research Report RC6214, IBM T.J. Watson Research Center, Sept.,
1976.

54. Tinaztepe, C. and N.S. Prywes. Generation of Software for Computer Controlled Test

Equipment for Testing Analog Circuits. IEEE Trans. on Circuits and Syrtems (June 1979).
Special issue on automatic analog fault diagnosis.

55. Tinaztepe, C., P. Sangal, H. Che and N.S. Prywes. The Nopal Program Generator:
System and Programming Documeniation. The Moore School, University of Pennsylvania,
1979.

56. Tinaztepe, C., R. Sangal and N.S. Prywes. Automatic: Generation of Atlas Programs for

Computer Controlled Test Eacj'ipment. Autotestcon, IEEE, Nov., 1978.

57. Weisman, C. LISP 1.5 Primer. Dickenson Publishing Company, Inc., Belmont, Calif., 1967.

58. Wirth, N. Algorithms + Data Structures = Programs PrenticeHall, Englewood, N.J.,
1976.

59. Wirth, N. Modula: a Language for Modular Multiprogramming. Software Practice and
Experience 7 (1977).

154

60. Wirth, N. The Use of Modula. Software Practice and Experience 7 (1977).

61. Zloof, M.M. Query-by- example. Proc. NCC, AFIPS, 1975.

62. Zloof, M.M. and S.P. de Jong. The System for Business Automation (SBA): Programming
Language. Comm. ACM 20, 6 (June 1977).

Li

