January 13, 1981

Chief of Naval Research
Code 437
800 North Quincy Street
Arlington, VA 22217

Dear Sir:

Enclosed are the papers "Minimum S-T Cut of a Planar Undirected Network in O(n log^2(n)) Time", The Complexity of Provable Properties of First Order Theories", and "On Probabilistic and Symmetric Parallel Computations". This work was supported by ONR contract N00014-80-C-0647.

Sincerely,

John H. Reif
Assistant Professor
of Computer Science

JHR:bm
cc: ONR Branch Office; Eastern/Central Region
 M. Kelley, ONR Representative
 Naval Research Laboratory
 DDC, Alexandria, VA
MINIMUM S-T CUT OF A PLANAR UNDIRECTED NETWORK
IN O(n log^2(n)) TIME,

by
John H. Reif

TR-88-80

NSF-MCS79-21024

DISTRIBUTION STATEMENT A
Approved for public release; Unlimited
MINIMUM S-T CUT OF A PLANAR UNDIRECTED NETWORK
IN $O(n \log^2(n))$ TIME

by

John H. Reif

Aiken Computation Lab., Harvard University, Cambridge, MA 02138.
This work was supported in part by the National Science Foundation
grant NSF-MCS79-21024 and the Office of Naval Research grant
N00014-80-C-0647.
Minimum s-t Cut of a Planar Undirected Network in $O(n \log^2(n))$ Time

Summary. Let N be a planar undirected network with distinguished vertices s, t, a total of n vertices, and each edge labeled with a positive real (the edge's cost) from a set L. This paper presents an algorithm for computing a minimum (cost) s-t cut of N.

For general L, this algorithm runs in time $O(n \log^2(n))$ time on a (uniform cost criteria) RAM. For the case L contains only integers $\leq n^{O(1)}$, the algorithm runs in time $O(n \log(n) \log \log(n))$. Our algorithm also constructs a minimum s-t cut of a planar graph (i.e., for the case $L = \{1\}$ in time $O(n \log(n))$.

The fastest previous algorithm for computing a minimum s-t cut of a planar undirected network [Gomory and Hu, 1961] and [Itai and Shiloach, 1979] has time $O(n^2 \log(n))$ and the best previous time bound for minimum s-t cut of a planar graph (Cheston, Probert, and Saxton, 1977) was $O(n^2)$.
1. Introduction

The importance of computing a minimum s-t cut of a network is illustrated by Ford and Fulkerson's [1962] Theorem which states that the value of the minimum s-t flow of a network is precisely the minimum s-t cut.

The best known algorithms [Galil, Naamad 1979], [Shiloach, 1978] for computing the max flow or minimum s-t cut of a sparse directed or undirected network (with \(n \) vertices and \(O(n) \) edges) has time \(O(n^2 \log^2(n)) \).

This paper is concerned with a planar undirected network \(N \), which occurs in many practical applications.

Ford and Fulkerson [1956] have an elegant minimum s-t cut algorithm for the case \(N \) is \((s,t)\)-planar (both \(s \) and \(t \) are on the same face) which efficiently implemented by [Gomory and Hu, 1961] and [Itai and Shiloach, 1979] has time \(O(n \log(n)) \).

Moreover, \(O(n) \) executions of their algorithm suffices to compute the minimum s-t cut of an arbitrary planar network in total time \(O(n^2 \log(n)) \). Also, [Cheston, Probert, Saxton, 1977] have an \(O(n^2) \) algorithm for the minimum s-t cut of a planar graph.

A key element of the [Ford and Fulkerson, 1956] algorithm for \((s,t)\)-planar networks was an efficient reduction to finding a minimum cost path between two vertices in a sparse network. [Dijkstra, 1959] gives an algorithm for a generalization of this problem (to find a minimum cost path from a fixed "source" vertex \(s \) to each other vertex). Dijkstra's algorithm may be implemented (see [Aho, Hopcroft and Ullman, 1974]) in time \(O(Q_L(n)) \) for
a sparse network with \(n \) vertices, \(L \) is the set of non-negative reals labeling the edges, and \(Q_{L} (n) \) is an upper bound on the time to maintain a queue of \(O(n) \) elements with costs from \(L \), and with \(O(n) \) insertions and deletions. For the general case, \(Q_{L} (n) = O(n \log(n)) \) (see [Hopcroft and Ullman, 1974]). For the special case \(L \) is a set of positive integers \(\leq n^{ \Theta(1)} \) [Boas, Kaas and Zijlstra, 1977], \(Q_{L} (n) = O(n \log \log(n)) \). It is obvious that if \(L = \{1\}, Q_{L} (n) = O(n) \).

Our algorithm for computing the minimum s-t cut of a planar undirected network has time \(O(Q_{L} (n) \log(n)) \). This algorithm also utilizes an efficient reduction to minimum cost path problems. Our fundamental innovation is a divide and conquer approach for cuts on the plane.

The paper is organized as follows:

The next section gives preliminary definitions of graphs, networks, min cuts, and duals of planar networks. Section 3 gives the Ford-Fulkerson Algorithm for \((s,t)\)-planar graphs.

Section 4 gives an efficient algorithm for minimum cut graphs containing a given face. Our divide and conquer approach is described and proved in Section 5. Section 6 presents our algorithm for minimum s-t cuts of planar networks.

Finally, Section 7 concludes the paper.
2. Preliminary Definitions

2.1 Graphs

Let a graph $G = (V,E)$ consist of a vertex set V and a collection of edges E. Each edge $e \in E$ connects two vertices $u, v \in V$ (edge e is a loop if it connects identical vertices). We let $e = \{u,v\}$ denote edge e connects u and v. Edges e, e' are multiple if they have the same connections.

Let a path be a sequence of edges $p = e_1, \ldots, e_k$ such that $e_i = \{v_{i-1}, v_i\}$ for $i = 1, \ldots, k$ (we say p traverses vertices v_0, \ldots, v_k). Let p be a cycle if $v_0 = v_k$ (cycles containing the same edges are considered identical). A path p' is a subpath of p if p' is a subsequence of p.

Let G be a standard graph if G has no multiple edges nor loops. Generally we let n be the number of vertices of graph G. G is sparse if the number of edges is $O(n)$. If G is planar, then by Euler's Theorem G is sparse and contains at most $6n - 12$ edges.

2.2 Networks

Let an undirected network $N = (G,c)$ consists of a graph $G = (V,E)$ and a mapping c from E to the positive reals. For each edge $e \in E$, $c(e)$ is the cost of e. For any edge set $E' \subseteq E$, let $c(E') = \sum_{e \in E'} c(e)$. Let the cost of path $p = e_1, \ldots, e_k$ be $c(p) = \sum_{i=1}^k c(e_i)$. Let a path p from vertex u to vertex v be minimum if $c(p) \leq c(p')$ for all paths p' from u to v.

Let $N = (G,c,s,t)$ be a standard network if (G,c) is an undirected network, with $G = (V,E)$ a standard graph, and s, t are distinguished vertices of V (the source, sink respectively).
2.3 Min Cuts and Flows in Networks

Let \(N = (G,c,s,t) \) be a standard network with \(G = (V,E) \).

An edge set \(X \subseteq E \) is a s-t cut if \((V,E - X) \) has no paths from \(s \) to \(t \). Let \(s-t \) cut \(X \) be minimum if \(c(X) \leq c(X') \) for each \(s-t \) cut \(X \).

A function \(f \) mapping \(E \) to the nonnegative reals is a flow if

(i) \(\forall e \in E, f(e) \leq c(e) \).

(ii) \(\forall v \in V - \{s,t\}, \text{IN}(f,v) = \text{OUT}(f,v) \)

where

\[
\text{IN}(f,v) = \sum_{e \in E, \ v \in e} f(e),
\]

\[
\text{OUT}(f,v) = \sum_{e \in E, \ v \in e} f(e).
\]

The value of the flow \(f \) is

\[
\text{OUT}(f,s) - \text{IN}(f,t).
\]

The following motivates our work on minimum s-t cuts:

Theorem 1. [Ford and Fulkerson, 1962]. The maximum value of any flow is the cost of a minimum s-t cut.

2.4 Planar Networks and Duals

Let \(G = (V,E) \) be a planar standard graph, with a fixed embedding on the plane. Each connected region of \(G \) is a face and has a corresponding cycle of edges which it borders. For each edge \(e \in E \), let \(D(e) \) be the
corresponding dual edge connecting the two faces bordering e.

Let \(D(G) = (\mathcal{F}, D(E)) \) be the dual graph of G, with vertex set \(\mathcal{F} \) = the faces of G, and with edge set \(D(E) = \bigcup_{e \in E} D(e) \).

Note that the dual graph is not necessarily standard (i.e., it may contain multiple edges and loops), but is planar.

Let a cycle \(q \) of \(D(G) \) be a cut-cycle if the region bounded by \(q \) contains exactly one of s or t.

Proposition 1. \(D \) induces an isomorphism between the s-t cuts of G and the cut-cycles of \(D(G) \).

Let \(N = (G, c, s, t) \) be a planar standard network, with \(G = (V, E) \) planar.

Let the dual network \(D(N) = (D(G), D(c)) \) have edge costs \(D(c) \), where \(D(c)(D(e)) = c(e) \) for all edges \(e \in E \). (Generally we will use just \(c \) in place of \(D(c) \) where no confusion with result.) For each face \(F \in \mathcal{F} \), let a cut-cycle \(q \) in \(D(N) \) be \(F \)-minimum if \(q \) contains \(F \) and \(c(q) \leq c(q') \) for all cut-cycles \(q' \) containing \(F \).

Proposition 2. A minimum s-t cut has the same cost as a minimum cost cut-cycle of \(D(G) \).
3. Ford and Fulkerson's Min s-t Cut Algorithm for (s,t)-Planar Networks

Let \(N = (G,c,s,t) \) be a planar standard network. \(G \) (and also \(N \)) is \((s,t)\)-planar if there exists a face \(F_0 \) containing both \(s \) and \(t \). Let planar network \(N' \) be derived from \(N \) by adding an edge \(e_0 \) connecting \(s \) and \(t \) with cost \(\infty \). Let \(e_0 \) be embedded onto a line segment from \(s \) to \(t \) in \(F_0 \), which separates \(F_0 \) into two new faces \(F_1 \) and \(F_2 \).

[Ford and Fulkerson, 1956] have an elegant characterization of the minimum s-t cut of \((s,t)\)-planar network \(N \).

Theorem 2. There is an isomorphism between the s-t cuts of \(N \) and the paths of \(D(N') \) from \(F_2 \) to \(F_1 \) and avoiding \(D(e_0) \). Furthermore, this isomorphism preserves edge costs. Therefore, the minimum s-t cuts of \(N \) correspond to the minimum cost paths in \(D(N') \) from \(F_2 \) to \(F_1 \) (which avoid \(D(e_0) \)).

Corollary 2. A minimum cost cut of \((s,t)\)-planar \(N \) with \(n \) vertices may be computed in time \(O(Q_L(n)) \), where \(L = \text{range}(c) \).

Note that this implies the \(O(n \log(n)) \) time minimum s-t cut algorithm of [Gomory and Hu, 1961] and [Itai and Shiloach, 1979] for \((s,t)\)-planar undirected networks, and the \(O(n) \) time minimum s-t cut algorithm of [Cheston, Probert, and Saxton, 1977] for \((s,t)\)-planar graphs.
4. An $O(n \log(n))$ Algorithm for F-minimum Cut Cycles

Let $N = (G, c, s, t)$ be a planar standard network, with $G = (V, E)$ and $L = \text{range}(c)$. Our algorithm for minimum s-t cuts will require efficient construction of F-minimum cut cycles for certain given faces F.

Let \mathcal{F}_s be the set of faces bordering s and let \mathcal{F}_t be the faces bordering t. Let a $\mu(s, t)$ path be a minimum cost path in $D(N)$ from a face of \mathcal{F}_s to a face of \mathcal{F}_t.

Proposition 3. Let μ be a $\mu(s, t)$ path traversing faces F_1, \ldots, F_d. Let q_i be a F_i-minimum cut-cycle of $D(N)$ for $i = 1, \ldots, d$. Then $D^{-1}(q_{i_0})$ is a minimum s-t cut of N, where $c(q_{i_0}) = \min\{c(q_i)|i = 1, \ldots, d\}$.

(Note: It is easy to compute a $\mu(s, t)$ path in time $O(Q_L(n))$. Let M be the planar network derived from $D(N)$ by adding new vertices v_s, v_t and an edge connecting v_s to each face in \mathcal{F}_s and an edge connecting each face in \mathcal{F}_t to v_t. Let the cost of each of these edges be 1. Let p be a minimum cost path in M from v_s to v_t. Then p, less its first and last edges, is a $\mu(s, t)$ path.)

Let μ be a $\mu(s, t)$ path traversing faces F_1, \ldots, F_d.

By viewing μ as a horizontal line segment with s on the left and t on the right, each edge connected to a face F_i may be considered to be connected to F_i from the below or above (or both).

Let μ' be a copy of μ traversing new vertices x_1, \ldots, x_d. Let D' be the network derived from $D(N)$ by reconnecting to x_i each edge entering F_i from above.

If p is a path of D', then a corresponding path \hat{p} in $D(N)$ is constructed by replacing each edge and face appearing in μ' with the corresponding edge or face of μ. Clearly, $c(p) = c(\hat{p})$.
Theorem 3. If \(p \) is a minimum cost path connecting \(F_i \) and \(x_i \) in \(D' \), then \(\hat{p} \) is a \(F_i \)-minimum cut cycle of \(D(N) \).

Proof. Clearly, \(\hat{p} \) is a cut-cycle of \(D(N) \). Suppose \(\hat{p} \) is not \(F_i \)-minimum. Let \(q \) be a \(F_i \)-minimum cut-cycle of \(D(N) \), with \(c(q) < c(\hat{p}) \). Then there must be a subpath \(q_1 \) of \(q \) connecting faces \(F_j, F_k \) of \(\mu \) but otherwise disjoint from \(\mu \) and such that the edges of \(q_1 \) together with \(\mu \) form a cut-cycle of \(D(N) \) (else we can show \(q \) is not a cut-cycle).

Let \(\mu_1 \) be the minimal subpath of \(\mu \) containing faces \(F_i, F_j, \) and \(F_k \).

Observe that the edges of \(q_1 \) together with \(\mu_1 \) form a \(F_i \)-minimum cut-cycle, else \(\mu \) is not a \(\mu(s,t) \) path. Let \(q'_1 \) be derived from \(q_1 \) by reconnecting the last edge to \(x_k \) instead of \(F_k \). Let \(\mu_2 \) be the subpath of \(\mu_1 \) connecting \(F_i \) and \(F_j \) and let \(\mu_3 \) be the subpath of \(\mu_1 \) connecting \(F_i \) and \(F_k \). Also, let \(\mu'_2 \) be the subpath of \(\mu' \) in \(D' \) corresponding to \(\mu_3 \). Then the edges of \(\mu'_2, q'_1, \) and \(\mu'_3 \) form a path from \(F_i \) to \(x_i \) in \(D' \) and with cost \(c(q) \). But \(c(q) < c(\hat{p}) = c(p) \) is a contradiction with the assumption that \(p \) is a minimum cost path from \(F_i \) to \(x_i \). \(\square \)

Corollary 3. There is an \(O(q_L(n)) \) time algorithm to compute a \(F_i \)-minimum cut cycle for any face \(F_i \) of a \(\mu(s,t) \) path in \(D(N) \).
5. A Divide and Conquer Approach

Let \(\mu \) be a \(\mu(s,t) \) path of \(D(N) \) traversing faces \(F_1, \ldots, F_d \) as in Section 4. Note that any \(s-t \) cut of planar network \(N \) must contain an edge bounding on a face \(F_1, \ldots, \) or \(F_d \). Thus an obvious algorithm for computing a minimum \(s-t \) cut of \(N \) is to construct a \(F_i \)-minimum cut cycle \(q_i \) in \(D(N) \) for each \(i = 1, \ldots, d \). This may be done by \(d \) executions of the \(O(d^2) \) time algorithm of Corollary 3. Then by Proposition 3, \(D^{-1}(q_{i_0}) \) is a minimum \(s-t \) cut where \(c(q_{i_0}) = \min\{c(q_1), \ldots, c(q_d)\} \). In the worst case, this requires \(O(d^3) \) total time. This section presents a divide and conquer approach which requires only \(\log(d) \) executions of a \(F_i \)-minimum cut algorithm.

Lemma 1. Let \(F_i, F_j \) be distinct faces of \(\mu, i < j \). Let \(p \) be any \(F_i \)-minimum cut-cycle of \(D(N) \) such that the closed region \(R \) bounded by \(p \) contains \(s \). Then there exists an \(F_i \)-minimum cut-cycle \(q \) contained entirely in \(R \).

Proof. Let \(q \) be any \(F_i \)-minimum cut-cycle. Let \(q' \) be the cut-cycle derived from \(q \) by repeatedly replacing subpaths connecting faces traversed by \(\mu \) with the appropriate subpaths of \(\mu \) (only apply replacements for which the resulting \(q' \) is cut-cycle).

Observe \(c(q') \leq c(q) \) (else we can show \(\mu \) is not a \(\mu(s,t) \) path). Let \(R' \) be the closed region bounded by \(q \). Suppose \(R' \notin R \). Then there must be a subpath \(q_1 \) of \(q' \) connecting faces \(F^a, F^b \) of \(p \) such that \(q_1 \) only intersects \(R \) at \(F^a \) and \(F^b \). Let \(p_1 \) be the subpath of \(p \) connecting \(F^a \) and \(F^b \) in \(R' \). We claim \(c(p_1) \leq c(q_1) \). Suppose \(c(p_1) > c(q_1) \). By our construction of \(q' \), either \(q_1 \) avoids \(F_j \), \(F_j = F^a \) or \(F_j = F^b \). In any case, we may derive a cut-cycle \(p' \) from \(p \) by substituting \(q_1 \) for \(p_1 \).
But this implies \(c(p') < c(p) \), contradicting our assumption that \(p \) is a
\(F_i \)-minimum cut-cycle.

Now substitute \(p_1 \) for \(q_1 \) in \(q' \). The resulting cut-cycle is no more
costly than \(q' \), since \(c(p_1) \leq c(q_1) \).

The lemma follows by repeated application of this process. \(\square \)

The above lemma implies a method for dividing the planar standard network
\(N \), given an s-t cut \(X \). Let \(N_X \) be the network derived from \(N \) by deleting
all edges of \(X \). \(N_X \) can be partitioned into two networks \(N_s, N_t \), where
no vertex of \(N_s \) has a path to \(t \), and no vertex of \(N_t \) has a path to \(s \).
Also, each edge \(c \in X \) must have connections to a vertex of \(N_s \) and a vertex
of \(N_t \).

Let \(N'_s \) be the planar network consisting of \(N_s \), a new vertex \(t' \), and
for each \(e \in X \), add a new edge with cost \(c(e) \) connecting \(t' \) to the vertex
of \(e \) contained in \(N_s \). Similarly, let \(N'_t \) be the planar network consisting
of \(N_t \), a new vertex \(s' \), and adding a new edge of cost \(c(e) \) connecting \(s' \)
to the vertex of \(e \) contained in \(N_t \), for each \(e \in X \). (Note that \(N'_s \) and
\(N'_t \) are not necessarily standard since they may contain multiple edges con-
necting a given vertex to \(s \) or \(t \).) Let \(\text{DIVIDE}(N,X,s) \) and \(\text{DIVIDE}(N,X,t) \)
be the planar standard networks derived from \(N'_s, N'_t \) respectively by merging
multiple edges and setting the cost of each resulting edge to be the sum of
the costs of the multiple edges from which it was derived.

Let \(E \) be the edges of network \(N \).

Let \(Y \) be a set of edges of \(N_s \) (or \(N_t \)).

Let \(E(Y) \) be the set of edges of \(E \) derived from \(Y \) by substituting
for any edge \(e \) connecting \(t' \) (or \(s' \)) the corresponding edges of \(X \)
from which \(e \) was derived.
The following theorem follows immediately from the above lemma and Proposition 3.

Theorem 4. Let X be an s-t cut of planar standard network N such that $D(X)$ is a F-minimum cut-cycle, for some face F in a $\mu(s,t)$ path of $D(N)$. Let X_s be a minimum s-t' cut of $\text{DIVIDE}(N,X,s)$ and let X_t be a minimum s'-t cut of $\text{DIVIDE}(N,X,s)$. Then $E(X_s)$ or $E(X_t)$ is a minimum s-t cut of N.
6. The Min s-t Cut Algorithm for Planar Networks

Theorem 4 of the previous Section 4 yields a very simple, but efficient, "divide and conquer" algorithm for computing minimum s-t cut of a planar standard network.

We assume the [Ford and Fulkerson, 1956] Algorithm (given in Section 3).

(i) \((s,t)-\text{PLANAR-MIN-CUT}(N) \)
which computes a minimum s-t cut of \((s,t)\)-planar standard network \(N\) in time \(O(Q_L(n))\). We also assume algorithms (given in Section 4).

(ii) \(u(s,t) \text{-PATH}(D(N)) \)
computes a \(u(s,t)\) path of \(D(N)\) in time \(O(Q_L(n))\).

(iii) \(F\text{-MIN-CUT-CYCLE}(N,F_i,\mu) \)
computes a \(F_i\)-minimum cycle of \(N\) (for \(F_i\) in \(u(s,t)\) path \(\mu\)), in time \(O(Q_L(n))\).

Recursive Algorithm \(\text{PLANAR-MIN-CUT}(N,\mu) \)

input planar standard network \(N = (G,c,s,t)\), where \(G = (V,E)\), and \(\mu(s,t)\) path \(\mu\).

begin

Let \(F_1, \ldots, F_d\) be the faces traversed by \(\mu\).

if \(d = 1\) then return \((s,t)-\text{PLANAR-MIN-CUT}(N)\);

else begin

\[X \leftarrow D^{-1}(F\text{-MIN-CUT-CYCLE}(N,F_{\lceil d/2 \rceil},\mu)) \];

\[N_0 \leftarrow \text{DIVIDE}(N,X,s) \];

\[N_1 \leftarrow \text{DIVIDE}(N,X,t) \];

Let \(\mu_0\) (\(\mu_1\)) be the subpath of \(\mu\) contained in \(N_0\) (respectively, \(N_1\)):
\[X_0 \leftarrow \text{PLANAR-MIN-CUT}(N_0, \mu_0) \]
\[X_1 \leftarrow \text{PLANAR-MIN-CUT}(N_1, \mu_1) \]
\[\text{if } c(E(X_0)) \leq c(E(X_1)) \]
\[\quad \text{then return } E(X_0) \]
\[\quad \text{else return } E(X_1); \]
end;
end;

For any \(\omega \in \{0,1\}^r, r \geq 0, \) inductively let \(N_\omega = (G_\omega, c_\omega, s_\omega, t_\omega) \) be the planar standard network and let \(\mu_\omega \) be the \(\mu(s_\omega, t_\omega) \)-path in \(N_\omega \), defined by recursive calls to PLANAR-MIN-CUT. Suppose PLANAR-MIN-CUT\((N_\omega, \mu_\omega)\) is called. If \(\mu_\omega \) contains only one face, then let \(N_{\omega 0} \) and \(N_{\omega 1} \) be empty networks, and let \(\mu_{\omega 0} \) and \(\mu_{\omega 1} \) be empty paths. Else let \(X_\omega \) be the \(s_\omega \rightarrow t_\omega \) cut of \(N_\omega \) computed by the call to \(D_{\mu_\omega}^{-1}\)\((F-MIN-CUT-CYCLE(-1))\) and let \(N_{\omega 0}, N_{\omega 1} \) be the planar standard networks constructed by the calls to DIVIDE, and let \(\mu_{\omega 0}, \mu_{\omega 1} \) be the subpaths of \(\mu \) contained in \(N_{\omega 0}, N_{\omega 1} \). Then it is easy to verify that \(\mu_{\omega 0} \) is a \(\mu(s_{\omega 0}, t_{\omega 0}) \)-path in \(N_{\omega 0} \) and \(\mu_{\omega 1} \) is a \(\mu(s_{\omega 1}, t_{\omega 1}) \)-path in \(N_{\omega 1} \). Furthermore, if \(d \) is the length of \(\mu \) (the \(\mu(s,t) \) path of \(N \)), there can be no more than \(\log(d) = O(\log(n)) \) recursive calls (where \(n \) is the number of vertices of \(N \)).

Let \(n_\omega \) be the number of vertices of \(N_\omega \). Since \(N_\omega \) is planar, the number of edges of \(N_\omega \) is \(6n_\omega - 12 \) by Euler's Theorem.

Lemma 2. For any \(r \geq 0, \)
\[\sum_{\omega \in \{0,1\}^r} n_\omega = O(n). \]
Proof. Suppose for some fixed $r_0 > 0$, this holds for all r, $0 \leq r < r_0$. Consider some $\omega \in \{0,1\}^r$. Note that each edge of N_{ω_0} and N_{ω_1} constructed by DIVIDE corresponds to an edge of N_ω. Consider some fixed edge e of N_ω. Note that e appears only at most once in each of N_{ω_0} and N_{ω_1}. If $e \not\in X_\omega$ then e doesn't appear at all in one of N_{ω_0} or N_{ω_1}. However if $e \in X_\omega$ then e may appear in both N_{ω_0} and N_{ω_1}.

But (due to the merging of multiple edges in the definition of DIVIDE), for each $r_1 \geq r_0$, e appears in at most one $N_{\omega_0^a}$ for any $a \in \{0,1\}^{r_1}$ and not at all in $N_{\omega_0^a}$ for any $a' \in \{0,1\}^{r_1} - a$. Similarly, e appears in at most one $N_{\omega_1^a}$ for some $\beta \in \{0,1\}^{r_1}$. Thus by induction,

$$\sum_{\omega \in \{0,1\}^r} n_{\omega} = O(n).$$

We have shown:

Theorem 5. Given a planar standard network $N = (G,c,s,t)$ with $L = \text{range}(c)$, and μ is a $\mu(s,t)$ path of N then PLANAR-MIN-CUT(N,μ) computes a minimum s-t cut of N in time $O_{L}(n\log(n))$.

By known upper bounds on the cost of maintaining queues (as discussed in the Introduction), we also have:

Corollary 5. A minimum s-t cut of N is computed in time $O(n \log^2(n))$ for general L (i.e., a set of positive reals), in time $O(n \log(n)\log\log(n))$ for the case L is a set of positive integers bounded by a polynomial in n, and in time $O(n \log(n))$ for the case $L = \{1\}$ (in this case N is a graph with identically weighted edges).
7. Conclusion

We have presented an algorithm for computing a minimum s-t cut of a planar undirected network. Our algorithm runs in an order of magnitude less time than previous algorithms for this problem. An additional attractive feature of this algorithm is its simplicity, as compared to certain other algorithms for computing minimum s-t cuts for sparse networks, [Galil, Naamad, 1979] and [Shiloach, 1978].
BIBLIOGRAPHY

[Aho, Hopcroft, and Ullman, 1974]

[Berge and Ghoula-Honri, 1965]

[Boas, Kaas, and Zijlstra, 1977]

[Cheston, Probert, Saxton, 1977]

[Dijkstra, 1959]

[Even and Tarjan, 1975]

[Ford and Fulkerson, 1956]
[Ford and Fulkerson, 1962]

[Galil and Naamad, 1979]

[Gomory and Hu, 1961]

[Itai and Shiloach, 1979]

[Shiloach, 1978]

[Shiloach, 1980]