* AD-A095 523

UNCLASSIFIED

MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE~=ETC F/@ 9/2
FLAVORS: MESSAGE PASSING IN THE LISP MACHINE.(U)

NOV 80 D WEINREBs D MOON N00014=80-C=0505
AI=M=602 NL

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFOPE COMPLETING FORM
VOPERONT KUMGER 2. GOVY ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER

ATM-602 - D-KHe35 | 523

{ Memorandum

¥

7 " Flavors: Message Passing in the Lisp Machine,
s

L. .

4. {lTLE (and Sub!itle) @(OF REPORY & PERIOD COVERED
E 6 X - ’

7. AUTHOR(s) 9.--BONTRACT OR GRANT NUMBER(e)

o , - - (/5. . -
T Daniel Meinreb & Dave/Moon . N@QM-&Q—Q—OSQSJ
S A — -

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Artificial Intelligence Laboratory
545 Technology Square

Cambridge, Massachusetts 02139

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS i B8 "WEPORT DATE i
Advanced Research Projects Agency (:2?5 November -1980 }
1400 Wilson Blvd 13, NUMBER OF PAGES —J
Arlington, Virginia 22209 35
4. MONITORING AGENCY NAME & ADDRESS(1! dlll-rorl:_{ from Controliing Otlice) 18. SECURITY CLASS. {(of thia report,
Office of Naval Research ,:},1 Cot UNCLASSIFIED
Information Systems . 9;;1_1375 ;
Arlington, Virginia 22217 s e 1Sa. 2&:&.&5&”cnnou/’oowucnwmo
16. DISTRIBUTION STATEMENT (of this Report) T ¥ o,
t
Distribution of this document is unlimited. - ' \
5 198
Fe26 Y

A

17. DISTRIBUTION STATEMENT (of the abetract en

js7) 4 Py

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side il nocessary and ldentify by dblock numbder)

Message Passing Generic Functions
Actors

Flavor

Smalltalk

20. ABSTRACT (Continue on reverss side il necessary and tdentity by block number)

-The object oriented programming style used in the Smalltalk anq Actor -
languages is available in Lisp Machine Lisp, and used by the Lisp Machine
software system. It is used to perform generic operations on QbJects. Part
of its implementation is simply a convention in procedure ca]lTng style;
part is a powerful language feature, called Flavors, for.def1plng a@stract
objects. This chapter attempts to explain what programming wxgh obJects_
and with message passing means, the various means of implementing these in

Lisp Machine Lisp, and when you shoild use them. It assumes no prior

(3

DD ,"%%'s; 1473 eoition oF 1 Nov 68 1s OBsOLETE UNCLASSIFIED) /"/—*’

S/N 0202-014-6601 |

P el

s/g /'/ y@ SECURITY CLASHIPICATION OF THIS FAGE (When Dera Entersd)

e A e s S A A 1 4+ mn s i 5

20. cont'd.

-. knowledge of any other languages.

e
Arcenntan Tav
T ORI '

pIIC ThY o x
Unannnunaed |
Ju.‘-{i:if;.‘ﬂi(""'r‘ e

Py
‘Uiﬁtrit:““ d

A‘/".‘Llw‘ B

Flavors i
Table of Contents

1. Objects, Message Passing, and Flavors
1.1 Introduction
1.2 Objects .
1.3 Modularity
1.4 Generic Operations
1.5 Generic Opcerations in Lisp
1.6 Simple Usc of Flavors
1.7 Mixing Flavors
1.8 Flavor Functions
1.9 Defllavor Options
1.10 Flavor Familics
1.11 Vanilla flavor
1.12 Mcthod Combination
1.13 Implementation of Flavors
1.13.1 Order of Definition
1.13.2 Changing a Flavor
1.13.3 Restrictions
1.14 Entities
.15 Useful Editor Commands .

Index

Table of Contents

—
—

16-JAN-81

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.l. Memo No. 602 November, 19x0

Flavors: Message Passing in the Lisp Machine

Daniel Weinreb
David Moon

The object oriented programming style used in the Smalitalk and Actor languages is available in
Lisp Machine Lisp, and used by the Lisp Machine software system, It is used to perform generic
operations on objects. Part of its implementation is simply a convention in procedure calling
style; part is a powerful language feature, called Flavors, for defining abstract objects. Tius
chapter attempts to explain what programming with objects and with message passing means, the
various means of implementing these in Lisp Machine Lisp, and when you should use them. It A
assumes no prior knowledge of any other languages.

This report describes research done st the Artificial Intelligence Laboratory of the Masachusetts
Institute of Technology. Support for the laboratory's artificial intelligence research is provid.d
in part by the Advanced Research Projects Agency of the Department of Defense under Ofii e
of Naval Research Contract number N00O14-80-C-0505.

Keywords: Flavor, Message Passing, Actor, Smalitalk.

81 2 26 069

Preface

This memo is intended to become a chapter in the Lisp Machine manual the next time it 1
published. Since there is a pressing need for documentation on flavors, we are publishinj i
immediately as 8 memo. The authors therefore assume that the reader has encountered this 1
while reading the manual. We assume that the reader is familiar with the basics of Lisp and 1he
Lisp Machine's dialect in particular; we also make particular references to an example fiom
section 17.1 in the manual.

Any comments, suggestions, or criticisms will be welcomed. The authors can be reached hy
any of the following communication paths:

ARPA Network mail to BUG-LMMAN@MIT-AI

U.S. Mail to
Daniel L. Weinreb or David A. Moon
545 Technology Square
Cambridge, Mass. 02139

Note

This document was edited with the Zmacs and Emacs editors, and forma*ted by the Bolio tust
Justifier. It was printed on the M IT's Dover Printer,

Flavors 1 Objects, Message Passing, and Flanvors

1. Objects, Message Passing, and Flavors

1.1 Introduction

The object oriented programming style used i the Smalltalh and Actor fnhies of Linguages
is available in Lisp Machine Fisp. and used by the Fisp Machine software svstem. 1t s used to
perform generic operations on objects. Part of s implementition s simph 4 convention in
procedure calling style: part is a pov - ful inguage feature. called Flovors, tor defining abstract
objects. This chapter attempts to explain what programanng with objects and with message
passing means, the various means of implementing these in Pisp Macame Dispo and when you
should use them. 1t assumies no prior knowledge of any other languages.

1.2 Objects

When writing a program. it is often convenient to model what the program does in terms of
objects: conceptual entities that can be likened o real-world things. Choosing what objects to
provide in a program is very important to the proper organization of the program. In an object-
oriented design. specifying what objects exist is the first task in designing the system. In o text
cditor, the objects might be "pieces of text”, “pointers into text”. and “display windows™. In an
clectrical design system, the objects might be "resistors™, “capacitors”, "transistors™, "wires”, and
“display windows”. After specifying what objects there are. the next sk of the design is
figure out what operations can be performed on each object. In the text cditor cxample,
operations on “picces of text” might include inserting text and deleting text; operations on
"pointers into text” might include moving forward and backward: and opcerations on “display
windows" might include redisplaying the window and changing with which “picce of text” the
window is associated.

In this model, we think of the program as being built around a set of objects, cach of which
has a set of operations that can be perfurmed on it. More rigorously, the program defines several
npes of object (the editor above has three types), and it can create many instunces of cach type
(that is. there can be many picces of text, many pointers into text. and many windows). The
program defines a set of types of object, and the operations that can be performed on any of the
instances of cach type.

This should not be wholly unfamiliar to the reader. Earlier in this manual, we saw a few
examples of this kind of programming. A simple cxample is disembodied property lists, and the
functions get. putprop. and remprop. lhe disembodied property list 15 a4 type of object; you
can mstantate one with {cons nil ad) (that i, by cvaluating this form you can creale a new
disembodicd property list); there are thice operations on the object, namely get. putprop, and
remprop. Another example in the manual was the fisst example of the use of detstruct, which
wis called a ship. defstruct automatically defined some operations on this object: the operations
1o aceess its clements, We could define other functions that did uscful things with ships, such as
computing their speed. angle of travel, momentum, or welocity, stopping them, moving them
clsewhere, and so on.

DSK:IMMAN:IFLAVOR 55 l6-JAN-81

Flavors) Modulanty

In both cases, we represent our conceptual object by one Tasp object. The Tisp object we use
for the representation has stucture, and refers o other Tisp objedts. In the property list case,
the Lisp object is a hst with alternating indicators and vadaes; in the ship case. the Lisp object s
an array whose details are taken care of by defstruct. In both cases. we can say that the object
keeps track of an wmernal state. which can be exammed and aliered by the operations available
for that type of object. get examines the state of a propeits st and putprop alters it; ship -x
position and ship-get-momentum cxamine the state of 4 ship, and (setf (ship -mass) 5.0) and
(ship-move to 3.0 4.0) alter it.

We hine now seen the essence of object-oriented programmming. A conceptual object s
maodelled by o single Lisp object. which bundles up some state information. For every tpe ol
object, there is a set of operations that can be performed o cxamine or alter the state of the
object.

1.3 Modularity

An important benefit of the object-oriented style is that it lends itself to a particulatly simple
and lucid kind of modularity. If you have modular programming constructs and technigues
availabile, it helps and encourages you to write programs that arc casy to read and understand,
and so arc more reliable and maintainable, Object-oriented programming lets a programmer
implement a useful facility that presents the caller with a set of external interfaces, without
requiring the caller o understand how the internal details of the implementation work. In other
words, a program that calls this facility can treat the facility as a black box: the program khews
what the facility’s external interfaces guarantee o do. and that is all it knows.

For example, a program that uses disembodied property lists neves needs o know that the
property list s being maintained as a list of alternating indicators and values; the program simply
performis the operations, passing them puts and getting back outputs. The programe only
depends on the external definition of these operations: it knows that it it putprops o pioperty,
and docsn’t remprop it (or putprop over i), then 1t can do get and be sure of getiing back the
same thing it put in. ‘The important thing about this hiding of the detatls of the implementation
is that somcone reading a program that uses discmbodied property lists need not concern himsell
with how they we implemented; he need only understand what they undertake to do. Phis saves
the progranmumer a Jot of ume, and lets him concentrate his energies on understanding the
program he s working on. Another good ting about this hiding s that the jepresentation of
property Bists could be changed. and the program would continue o work, ot example, mstead
of a list of alternating clements, the property hst could be implemented as an association list or a
hash table. Nothing in the calling program would change at all.

The same s true of the ship example. The caller is presented with o collection of operations,
such as ship x positton, ship y position, ship speed. and ship direction; i simply calls
these and looks at thewr answers, without caring how they did what they dido Inooonr example
above, ship x-position and ship-y- position would be accessor functions, defined automatieally
by defstruct. while ship-speed and ship -direction would be functions defined by the
implementor of the ship type. Fhe code nmight look like this:

DSK TAMNAN T AVOR 55 16 TAN 81

—ry -t t v mmmes rmeis vy e - T r r—— r it e m
b oy r

-

e

Havors K| Modularity

(defstruct (ship)
ship-x-position
ship-y-position
ship-x-velocity
ship-y-velocity
ship-mass) P

(defun ship-speed (ship)
(sqrt (+ (~ (shin-x-velocity ship}) 2}
(~ (ship-y-velocity ship) 2))))

{defun ship-direction (ship)
(atan (ship-y-velocity ship)
(ship-x-velocity ship}))

The caller need not know that the first two functions were structire accessors and that the
second two were written by hand and do arithmetic. Those fucts would not be considered part of
the black box characteristics of the implementation of the ship type. The ship type does not
guarantce which functions will be implemented in which ways; such aspects are not part of the
contract between ship and its callers. In fact, ship could have been written this way instcad:

(defstruct (ship)
ship-x-position
ship-y-position
ship-speed
ship-direction
ship-mass)

{defun ship-x-velocity (ship)
(* (ship-speed ship) (cos (ship-direction ship))))

(defun ship-y-velocity (ship)
(» (ship-speed ship) (sin (ship-direction ship}}})

In this sccond implementation of the ship type, we have decided to store the velocity in polar
coordinates instead of rectangular coordinates. ‘This is purely an implementation decision; the
caller has no idea which of the two ways the implementation works, because he just performs the
operations on the object by calling the appropriate functions.

We have now created our own types of objects, whose implemientations are hidden from the
programs that usc them. Such types are usually referred to as abstract types. Ihe object-oriented
style of programming can be used to create abstract types by hiding the mplementation of the
operations, and simply documenting what the opcerations are defined to do.

Some more terminology: the quantitics being heid by the clements of the ship structure are
referred to as instance variables. Fach instance of a type has the same operations defined on it;
what distinguishes one instance from another (hesides identity (eqness)) is the vilues that reside in
its instance variables. ‘The cxample above ilustrates that a caller of operations docs not know
what the instance variables are; our two ways of writing the ship operations have different

NSK:I.MMAN:FL.AVOR 55 16-JAN-81

B e e . L

I'lavors 4 Muodularity

instance variables, but from the outside they Tave exacdy the sage aperations,

One might ask: "But what if the caller evaluates (aref ship 3) and notices that he gets back
the x-velocity rather than the speed? Then he can tell which of the two unplementations were
used.” This is true; it the caller were o do that, he could el However, when a faalin s
implemented in the object-oriented styvle, only cortain functions are documented and advertised:
the tunctions which are considered to be operations on the type of object. The contract trom
ship to its callers only speaks about what happens i the caller calls these tunctions. The contract
makes no guarantees at all about what would hapoen if the caller were o start poking awrovnd on
his own using aref. A caller who does so s i error; he is depending on something that s not
specified it e contract, No guarantees were over made about the resuts of such action, and so
anmything may happen: indeed. ship may get reimplemented overnmight. and the code that does the
aref will have a different effect entirely and probably stop working, This example shows why the
concept of a contract between a callee and o caller Is important: the contract is what speaies the
interface between the two modules,

Unlike some other languages that provide abstract types. Tisp Machine Tisp makes no attempt
to have the language automatically forbid constructs that circumvent the contract. Vhis s
intentional. One reason for this is that the Lisp Machine is an interactive system. and so it s
important to be able to examine and alter internal state interactively (usuatly from a debugyer),
Furthermore, there 1S no strong distinction between the "system” programs and the “user”
programs on the Lisp Machine; users are allowed 1o get into any part of the linguage system and
change what they want to change.

In swnmary: by defining a set of operations, and making only a sp-wific set of external
entrypoints available to the caller, the programmer can cicate his own abstract types. These types
can be uscful fucilities for other programs and programmers, Since wie implementation of the
type is dden from the callers, modularity is maintained. and the implementation can be changed
casily. e

We have hidden the implementation of an abstract tvpe by making its operations into
tunctions which the user may call, The mportant thing s not that they are functions - e Lisp
cvenvthing 1s done with functions, The anportant thing is that we have defined o new conceptual
operation and givciv it a name, rather than requiring amvone who wants o do the operation to
write it out step-by-step. ‘Thus we say (ship-x -velocity s) rather than (aref s 2).

It is just as true of such abstract-operation functions as of ordinary functions that sometmes
they are simple cnough that we want the compiler o compile special code for them rather than
really calling the function. (Compiling special code like this s olten called operrcodimg Y The
compiler is directed 0 do this through use of macros. defsubsts, o optimizers. defstiuct
arranges for thus kind of special compilation for the functions that get the instance vartables of 2
structure.

When we use this optimization, the implementation of the abstract type s only hidden m g
certain sense. 1t does not appear in the isp code wrtten by the user. but does appear o the
compiled code. The reason is that there may be some compiled functions that use the macios {ot
whatever); cven i you change the detinition of the macro, the easting compiled code wili
continue to use the old definivon. Thus, if the implementation of & module 18 changed programs
that use 1t may need to be recompiled. This s something we somctimes aceept for the sake of

DSK: T MMANFIAVOR 5SS To TAN-NY

e N e O e . R SO, s TR o SURPURT PSPPI Y [LI © PO W § - ~Uae- iy

Flavors 5 Cionere Operationy

cfficicncy.

(n the present implementaticn of Havars, which is discussed below, there s no such compiler
incorporation of nonmodular knowledge into o program, exeept when the “outside-aceessible
instance vartables™ feature is used. see page 220 where this problem is exphaned farther, 11 vou

don't use the "outside-accessible mstance variables” feature, yvou don’t have o worny about this,

1.4 Generic Operations

Suppose we think about the rest of the program that uses the ship abstraction, 1t may want
to deal with other objects that arc like ships in that they are muovable objects with mass, but
unlike ships in other ways. A nore advanced model of a ship might include the concept of the
ship's engine power, the number of passengers on board, and its name. An object representing a
meteor probably would not have any of these, but might have another attribute such as how
much iron is in it

However, all kinds of movable objeets have positions, velocities, and arasses, and the system
will contain some programs that deal with these quantities in a uniform way. repardless of what
kind of object the attributes apply to. For example, a piece of the system that calculates every
object’s orbit in space need not worry about the other, more peripheral attributes of various types
of objects; it works the same way for all objects. Unfortunately, a program that tries to calculate
the orbit of a ship will need to know the ship’s attributes, and will have to call ship-x-position
and ship-y-velocity and so on. The problem is that these functions won't work for metcors.
There would have to be a second program to calculate orbits for meteoss that would be exactly
the same, except that where the first one calls ship-x-position. the second one would call
meteor-x-position, and so on. This would be very bad: a great deal of code would have to
exist in multiple copies, all of it would have to be maintained in paraltel, and it would take up
space for no good reason.

What is needed is an operation that can be performed on objects of several diftferent types.
For cach type. it should do the thing appropriate for that type. Such operations are called
generic operations, The classic example of generic operations is the arithmetic functions in most
programming languages, including Lisp Machine Lisp. The + (or plus) function will accept
either fixnums or flonums, and perform cither fixnum addition or fonum addition, whichever is
appropriate, based on the data types of the objects being manipulated. In our example, we need
a generic x-position operation that can be performed on cither ships, meteors, or any other
kind of mobile object represented in the system. This way, we can write a single program to
calculate orbits. When it wants to know the x position of the object 1t is dealing with, it simply
invokes the generic x-position operation on the object, and whatever type of object it has, the
correct operation is performed, and the x position is returned.

A terminology for the use of such generic operations has cemerged from the Smalltalk and
Actor languages: performing a generic operation is called sendimg a message. ‘The objects in the
program arc thought of as little people. who get sent messages and respond with answers. In the
example above, the objects are sent x- position messages, o which they respond with their x
position. This message passing is how geaerie operations are performed.

DSK:EMMAN:FTAVOR 55 16-JAN-81

midfniany adas B Ty i e

Ilavors 0 Generie Operations in Lisp

Sending a message s a way of imvoking a function. Along with the name of the message. in
general, some arguments are passed: when the object is done with the message, some values are
returned. The sender of the message s simiply calling a function w'th some arguments, and
getting some values back. ‘The interesting thing is that the caller did not specify the name ol a
procedure to call. Instead, it specified a message name and an object: that is. it said what
operation o perform, and what object to perform it on. The function to invoke was found from
this information.

When a message is sent to an object, a function therefore must be found to huandle the
message. The two data used to tigure out which function to call are the npe of the object, and
the name of the message. The same set of functions are used for all insiances of a given ype, so
the type is the only attributc of the object used to figure vut which function to call. FThe rest of
the message besides the name arc data which are passed as arguments to the function, so the
name is the only part of the message used to find the tunction. Such a function is called a
method. For example, if we send an x-position message to an object of type ship. then the
function we find is "the ship typc’s x-position method”. A method is a tunction that handles a
specific kind of message to a specific kind of object: this method handles messages named x-
position to objects of type ship.

In our new terminology: the orbit-calculating program finds the x position of the object it is
working on by scnding that object a miessage named x-position (with no arguments). The
returned value of the message is the x position of the object. If the object was of type ship.,
then the ship type's x-position method was invoked:; if it was of type meteor, then the meteor
typc's x-position method was invoked. The orbit-calcufating program just scnds the message, and
the right funiction is invoked based on the type of the object. We now have true generic
functions, in the form of message passing: the same operaticn can mean different (hings
depending on the type of the object.

1.5 Generic Operations in Lisp

How do we unplement message passing in Lisp? By convention, objects that receive mnessages
arc always functional objects (that is, you can apply them to arguments), and a message is sent Lo
an object by caliing that object as a function, passing the name of the message as (he first
argument, and the arguments of the message as the rest of the arguments. Messige names aie
represented by symbols: normally these symbols are in the keyword package (sec chapter 19 of
the Lisp Machine Manual) since messages are a protocol for communication between different
programs, which may reside in difterent packages. So if we have a variable my-ship whose value
is an abject of type ship, and we want o know its x position, we send it a message as follows:

{funcall my-ship ':x-position)

This form returns the a position as its returned value. To set the ship's x position 16 30, we
send it a message like this:

(funcall my-ship ':set-x-position 3.0)

It should be stressed that no new features are added to Lisp for messape sending: we smply
define a convention on the way ohjects take arguments. The comvention says that an ohject
accepts messages by always interpreting s first argument as o message name The object minsg

DSK:I MMAN:FLAVOR 55 1o TAN K1

- - = S i i S, ! N .. T R T

Flavors 7 Simple Pac ot s ors

consider this message name, find the function which is the method for that message name, and
invoke that fuuction.

Chis rdises the question of how message receiving works. The object must somchow tind the
right method for the message it is sent. Fothermore, the object now has o e cadlable as
funcion: objects can't just be defstructs any more, cance those aren’c functions. Bot the stoucture
detined by defstruct was domg something uselvl it was holding the instanee arables (the
internal state) ot the object. We need a function with internal state: tat is. we need o coroutine.

Of the Yisp Machine Lisp features presented so far, the most appropriate is the closure (see
chapter 10 of the Tisp Machine Manual). A message-receiving object could be implemented as a
closure over a set of mstance variables. The function inside the closure would e o bip selectq
form to dispatch on its first argument. (Actually, rather than using dosures and o selectq. the
Lisp Machine provides entities and defselect: see page 20)

While using closures (or entities) does work, it has several serious problems. ‘The main
problem is that in order w add a new operation w o system. it s necessary o modily a lot of
code; vou have to fird all tie types that understand that operation, and add a new clause w the
selectq. The problem with this is that you comot extually separate the implementation of vour
new operation from the rest of the system: the methods must be interleaved with the other
operations for the type. Adding a new operation should only require wdding 1isp code: it should
not require modifying 1isp code.

I'he conventional way of making gencric operations is to have a procedure for each operation,
which has a big selectg for all the types; this means vou have to modify code to add a type.
The way described above is to have a procedure for cach type, which has a big selectq for all
the operations: this means you have 0 modify code to add an operation. Neither of these has
the desired property that extending the system should only require adding code, rather than
modifying code.

Closures (and entities) are also somewhat clumsy and crude. A far more streamlined,
convenient, and powerful system for creating message-receiving objects exists; it s called the
Flavor mechamsn, With flavors, you can add a new method simply by adding code, without
modifving anything. furthermore, many common and uscful things o do are very casy to do
with flavors. “The rest of this chapter describes flavors.

1.6 Simple Use of Flavors

A flavor, in its seimplest form, s a definition of an abstract ype. New flavors are created
with the defflavor speciat form, and methods of the flavor are created with the defmethod special
form. New instances of o flavor are created with the make instance function. This section

explinns simple uses of these forms.

For an example of a simple use of flavors, here is how the ship example above would be
implemented.

DSKAMMAN L AVOR SS 16-JAN-81

- . . . o] {@&m«a L

FFlavors 8 Simple tse of Flovors

(defflavor ship (x-position y-position
x-velocity y-velocity mass)

()

:gettable-instance-variables)

(defmethod (ship :speed) ()
(sqrt (+ (~ x-velocity 2)
(~ y-velocity 2})))

(defmethod (ship :direction) ()
(atan y-velocity x-velocity))

The code above creates a new flavor. The first subform of the defflavor is ship. which is the
name of the new flavor. Next is the list of instance variables; they are the five that sheuld be
familiar by now, The next subform is something we will get to later. The rest of the subforms
arc the body of the defflavor, and cach one specifics an option about this Havor. In our
exainple, there is only one option, namely :gettable-instance-variables. ‘This cans that for
cach instance variable, a mcethod should automatically be gencrated to return the value of thot
instance variable. ‘The name of the message is a symbol with the same name as the instance
variable, but interned on the keyword package. ‘Thus, methods are created o handle the
messages X -position, :y-position and 50 on.

Fach of the two defmethod forms adds a method to the flavor. The first one adds a handler
to the flavor ship for messages named :speed. the second sublorm is the lanbda-list. and tite
rest is the body of the function that handles the :speed message. The body can refer 0 or set
any instance variables of the flavor, the same as it can with local variables or special varables.
When any instance of the ship flavor is invoked with a first argument of :direction, the body of
the sccond defmethod will be evaluated in an environment in which the instance variables of
ship refer to the instance variables of this instance (the one to which the message was sent). So
when the arguments of atan arc cvaluated, the values of instance variables of the object to which
the message was sent will be used as the arguments. atan will be invoked. and the result it
returns will be returned by the instance itself.

Now we have seen how to create a new abstract type: a new flavor. Bvery instance of this
flavor will have the five instance variables named in the defflavor form, and the seven ncthods
we have seen (five that were antomatically generated because of the :gettable: instance - variables
option, and two that we wrote ourselies). ‘The way to create an instance of our new flavor is
with the make-instance function. Here is how it could be used:

{setq my-ship (make-instance 'ship}))
This will return an object whose printed representation is:
#<SHIP 13731210>
{Of course, the value of the magic number will vary: it is not interesting anyway) lhe
argument to make-instance is, as you can sce. the name of the flaver o be instantiated.

Additional arguments. not used here, are it options. that is. commands to the flivor of which
we are making an instance, sclecting eptional teatures. This will be discussed more ina moment,

DSK:ILMMAN:FTL.AVOR 55 16-JAN 81

Flavors 9 Sunple Eae ol T Linvors

Examination of the flivor we have defined shows that it is quite useless as 10 stads, sinee
there 18 no way to set any of the parameters. We can fix this up castly, by putting the
:settable-instance -variables option into the defflavor form. This opuon el defflavor o
generate methods tor messages named set- x-position. :set-y- position. and so on: cach such
method takes one argument, and sets the corresponding instance vanable o the given value.

Another option we can add o the defftavor v cinitable instance- variables. v allow us o
initialize the values of the instance variables when i instance s first created. cintable ingtance -
variables docs not create any methods: instead. it makes nnadization havwoerds named cx -
position. :y-position. ctc.. tha can be used as mitoption arguments (o make instance to
initialize the corresponding instance variables. The set of init opuons are sometinies called “he
init-plist becanse they are like a property list.

Here is the improved defftavor:
(defflavor ship (x-position y-position
x-velocity y-velocity mass)
()
:gettable-instance-variables
:settable-instance-variables
:initable-instance-variables)

All we have to do is evaluate this new defflavor, and the existing flavor definition will be
updated and now includc the new methods and initialization options. In fact, the instance we
generated a while ago will now be able to accept these new messages! We can set the mass of
the ship we created by evaluating

(funcall my-ship ':set-mass 3.0)
and the mass instance variable of my-ship will properly get set to 3.0. If you want to play
around with flavors, it is useful to know that describe of an instance tells you the flavor of the
instance and the values of its instance variables. 1€ we were to evaluate (describe my-ship) at
this point, the following would be printed:

#<SHIP 13731210>, an object of flavor SHIP,
has instance variable values:

X-POSITION: unbound
Y-POSITION: unbound
X-VELOCITY: unbound
Y-VELOCITY: unbound
MASS : 3.0

Now that the instance variables are "initable™, we can create another ship and initialize some
of the instance variables using the init-plist. F.et's do that and describe the result:

DSK:ILMMAN;FLLAVOR 55 16-JAN-81

Flavots 0 Sunple Use ot Fhavors

{setg her-ship (make-instance ‘ship ':x-position 0.0
"ry-position 2.0
"imass 3.0))
==> H#<SHIP 13756521>

(describe her-ship)
#<SHIP 137664521>, an object of flavor “HIP,
has instance variable values:

X-POSITION: 0.0
Y-POSITION: 2.0
X-VELOCITY: unbound
Y-VELOCITY: unbound
MASS : 3.5

A flivor can also establish detaudt mital values for instance variables, These detault values are
used when a new mstance 18 created i the values are not minahsed any other way, 1he syntax
tor specifying a detault imtial value is woreplace the name of the anstance vaviable by a hist,
whose first clement s thie name and whose sccond 15 a form o evaluate w0 produce the defanlt
initial valuc. For example:

(defvar »default -x-velocity> 2.0)
(defvar *default-y-velocity« 3.0)

(defflavor ship ({x-position 0.0)

(y-position 0.0)
(x-velocity *default-x veloc: y»)
(y-velocity *defauit-y-velocitys)
mass)
()

:gettable-instance-variables

:settable instance-variables

rinitable-instance-variables)

(satq another-ship (make-instance 'ship ':x-position 3.4))
(describe another ship)

#< SHIP 14563643>, an object of tlavor SHIP,
has instance variable values:

X POSTTION: 3.4
Y POSITION: 0.0
X VELOCITY: 2.0
Y VILLOCITY: 3.0
MASS : unbound

x- position was initialized explicitly, so the default was wnored y posttion was imtialized
from the detault value, which was 0.0, The two velocity instanee vatiables were nutabzed from
therr detault vafues, which came from two global viables. mass was not expliathv mraahzed
and did not have a defaale mtialization, so it was Ieft ‘mbound.

DSKEMNMANEFTAVOR 55 16 TAN 8

IFlavors I Muvimge D lavons

There are many other options that can be used m defflavor. and the i options can he used
more Hlexibly than just to initiddize instance variables: full detls are given Ler o thas Japter.
But even with the small set of features we have seen so far, 1t is casy o wiite ohyject onented
programs.

1.7 Mixing Flavors

Now we have a system for defining message-receiving objedts so that we e have genenie
operations. If we want to creac a new tpe called meteor that would sccept the same peneric
opcrations as ship. we could simply wnte another defflavor and tvo mae defmethods that
looked just like those of ship. and then meteors and ships would hoth accept the same
operations. ship would have seme more instance vartables tor holding auributes specthe o ships,
and some more methods for op crations that are not generic, but are only detined for sinps; the
same would be true of meteor.

However, this would be a a wasteful thing to do. The same code has to be repeated in
several places, and several instance variables have o be repeated. The code pow needs to be
maintained in many places, which is always undesirable. The power of flavors (and the name
"tlavors™) comes from the ability to mix several finors and get a new flinor. Since the
tunctionality of ship and meteor partially overlap, we can tike the common tunctionality and
move it into its own flavor. which might be called moving abject. We would detine moving -
object the same way as we defined ship in the previous section. Then, ship and metecr could
be defined like this:

(defflavor ship (engine-power number-of-passengers name)
(moving-object)
:gettable-instance-variablaes)

(defflavor meteor (percent-iron) (moving-object)
:initable-instance-variables)

These defflavor forms usc the second subform. which we ignored previously. The sccond
subform is a list of flavors to be combined to form the new flavor; such flavors are called
components. Concentrating on ship for a moment (analogous things are truc of meteor), we see
that it has exactly one component flavor; moving-objecl. 1t also has a list of instance variables,
which includes only the ship-specific instance variables and not the ones that it shares with
meteor. By incorporating moving -object. the ship fvor acquires all of its instance variables,
and so need not name them again, [0 also acquires all of moving -object’'s methods, oo, So
with the new definition, ship instances will <l accept the :x -velocity and :speed messages, and
they will do the same thing. However, the :engine -power message will also be understood (and
will return the value of the engine - power instance variable).

What we have done here is to take an abstract type, moving-object, and build two more
specialized and powerful abstract types on top of . Any ship or meteor can do anything a
moving ohject can do, and cach also has its own specitic abilities. This Mind of building can
continue: we could define a flavor called ship - with-passenger that was built on top of ship,
and it would inherit all of moving -object’s stance variables and methods as well as ship's
mstance variables and methods. FFurthermore. the second subtorm of defflavor can be a list of

DSK:AIMMAN:FTLAVOR 55 16-JAN-81

el - St R AL i S diinsitiinink it it i ik

Flavors I Mivi Flavors

several components. meaming that the new Havor hoabd combrne 0 e istance soedb
mcthods of all the flavors i the st oas well as the ones one thavois e bl one and <o on
Al the components tahen together torm a0 big oee of thnas v o s budt o s
compenents, 1ty components components and socon We soravames use e e aemipenents”
to mean the pnmedute components (e ones Bisted e the detbavon mdd sometimnes oo oo all
the components tncludime the components of the nnmedig s - ompeaa it and o on) o (Achotly i
1S not sticthy o trees simee soone avors nught be componars dicaeh mare dan one path 10w
really o directed graph, e cn even he avelic)

Fhe order ae which the comonents are combaned (o forme o asor s wnpeitant fhe oee of
flavons s turned mto an order=d st by pettonmmge o rop dowie et walk o ol ihe fee
mnchudimg nonstermmal vodes Tetore the subtrees they head. and elimatnie dophoaes Fos
example, b flavor Ts aninedute components e flavor 20 and Havor 4 and Havor 2
components are flavor 4 and flavor 50 and Hlavor 3y componont was favor 4 chos the
complete Iist ot components of flavor 1 wouid be:

flavor 1, flavor 2, tiavor 4, flavor &, t1lavor 3
The flavors carbier i this Ist are the mote specthie, Tess basie ones e our cumiple ship asth
passengers would be first i the st tolowed by ship tollowed by moving object. N 10
always the fast m the st of s own components. Notice that Bavor 4 docs il appea te e
this Iist. Onby the first occunence ot a Bavor appears. duphicates e remeved ¢ hhe o waon
of dupli - v s done duning the walk; 1f theie s o ovele mthe doeaed graph 0 will not aise

non-termgung computation.)

Mhe set of nstance varables for the new oo s the anoo of all the sets of i o

variables in all the component flasors. 11 both flavor 2 and Bavor 3 ' st e vanahles
named foo. then flavor-1 will have an imstance vartable named o nd oy mcthods tor ete
to foo will refer 1o this same nstance varabic. Thos ditterere e o b o ca
commuiicate with one another usig shared anstance voables ol vy ol cne comrponent

ever sets the varable, and the others anly Took) The detaub mata] viduc Tor an st
vartable comes trom the hiest component flasor (o specily one

the wav the methods of the components e combined s the e o the N o e
When o tlavor s detined. o smgle tuncuon, called o combued eraod . consbinc e Ao e
message supported by the fhnor. This funchon s conston tod var of b the niethds 1 g
message from all the components of the vor There e many dBilorent waes that metn de .oap
be combined: these can be sceiected by the naer when o vor s detined The uer o e
create new forms of combimation,

There are several kinds o methods, but so far, the oniy knds of tcthods we o secn e

pronary mcthods The detault way pranany methods e combaned s that 2 bar the el oy
provided are agnored. Inoother words, the comomed mcded scosinp!s oy ponia, o thod 11
fust Havor o provide o prosany method. What tus means s dut 10 cocae stacime waith ol

foo and burldmg o tlavor bar on top of b then voa can overinde foo - mynae for 4 mesaee by
providing your own method. Your method will be calted, and too’s will never be calley

Simple osernding s often useful: af you want 1o make @ new thnvor bar that s st ke foo
except that i reacts completely diterently o g fow messages, then this will work Howewr otten
you don't want to completely avernde the base flnor's (foo’s) method, ~ometmes von want
add some extra things o be done. This 18 where combination ot imethods s used.

DSK:TMMANEFLAVOR SS 16 1AN N

Favors } AN ERNTIRN RN

The usual way methaods are combimed s that ene flavor provides o pomans imethod and other
thovors prosade oo methods. The dea s that the pronary method s e chned™ of the o,
business of hardhing the message bat other tavors st want too beep itormiced et the messapy
was o osenl o st owant ke do e pot of the openiton esecrated wetie Lo own nea of

responstlabity

When metheds e comnbmed o sl provay ncthod s onnd 0 comes tean the tiet
component lavor that has one Ay promeoy mcteds beloronn o e component thnars e
pnored. Fhis s juse what we saw above bar conkd overnide foo's pronuany method by providing
s own prmany method.

However, vou o dehined other kinds of methods o pootcalar vou can detimed eemon
methods They come m two kinds. Sorore od atier There s o speaad svntay s defmethod for
detnong such methods Here soan cvample of the sontny Lo ene the shap tlvor ane atters
dacmon mcthod o the gspeed mesage e tollomang sontey would be used:

(defmethod (shap catter -speed) ()
hendy)

Now, when oranessage s sent s handled byoaonew tuncoon called the oedened imethod,
Lhe combmed method st calls alb of the betore daemons then the pomacy oo thod . then all the
atter dacmons, Fache method s passed the saane areonents that the combied micthod was given,
The returned values from the combimed method are the values retned by the promany inethod:
amy values returned fome the daemons are wnored. Betore-daemons are called e the oider that
flavors are combimed while attet-dacmons e called i the reverse order Inother words, if you
bwld bar on top of foo. tien bars betore-dacmons wdl tun betore any of those o foo, and
bars atter-dacmons will run aiter any of those 1 foo.

Phe reason Tor this order s o keep the modulanty order correet. If we create Havor 1 built
on flavor 2: then 1t should not matter what Havor 2 i built out of Our new betore-dacmons
po betore alb those of flavor 20 and our pew after daemons go after afl those of flavor -2, Note
that it vou have no daemons iy reduces (o the form of combimation described above. The most
reeenthy added component Havor s the haghest Jevel of abstraction: you buld o higher-level object
o op of 4 dower level object by adding new components to the front. The sontav tor defimng
dacmon inethods can be toand methe descnption o defimethod below,

Lo make this o it more dear, dets consider o aaple example that s casy o phs with: the
prant self method. The Tisp ponter (be the prnt tuncions see sections I8 and 184 im0 the
Fisp Machune Maniad) pomts instances of thavors by sending them print selt moesaves The fin
argument o the pont self messaee 16 4 st tae can pnote the others for now). and the
reconet of e messape s supposed o pont s promted representation on the stieam I the ship
cvample above. the geason that wetances ot the stap flvor ponted the way they did s because
the ship thivor was actually bt on top ot 0 oveny basie thvor called vanilia havor, thas
component s provided automatically by deftiavor 1o was vanifa flavor v print sell mcthod thi
was domg the primng Nowo af we pive ship s own prmany method tor the print - self
message, then that method will take over the iob ot pomtng completeh: vamilla flavor’s method
will nat be catled ot W However, af we pive ship o betore-dacmon method tor the print -self
mossage. then it will get nsoked betore the vandta flavor message and saowhatever it pongs will
appear betore what vamiia Havor pimts S0 we canuse bedore daemons o add prefixes o a
printed representatton. sumbarly, atter dacmons canadd suthives

DSKMMAN T AVORSS 16-JAN-8}

Flavors 14 Flavor b uncuons

there are other wavs to combine methods besides dacmons, but tns way s the most
common. Fhe more advanced wavs of combiing methods are expluned o later section; e
page 25. The vanilla-flavor and what it does tor you are alse explained later: see page 4.

1.8 Flavor Functions

defflavor AMacro
A flavor s defined by a form
(defflavor flvor-name (varl var?...) (fhil flv?. .)
optl opt2. . .)
favor-name s a symbol which serves 1o name this lavor, 10 will get an seflavor poperty
of the internal data-straciure containing the detnls of” the flavor,

(typep oby). whero obyis an instance of the flavor naned favormaome, wil actnn the
symbol favor-name. (typep oby flavor-nume) 15 t 8 oby s anainstance of a fivor one o
whose components (possibly itselt) s Hvor-name.

varl, wvarl, cie. are the names of the mstance-vanables containing the local state for this
flavor. A hst of the name of an istance-variable and a detaubt mtabizaton torme s also
acceptable: the mitalization ferm will be evaluated when an nstanee of the flvor s
created if no other mual value tor the vatwble s obtined. 16 no ambadizaton s
spectfied, the varable will remain unbound.

Slavl, flav2, ete. are the names of the component lavors out ot whics dus flavor i bt
The features of those lavors are mherited as descibed previcesly

optl. opr2. ctc. are options; cach opuen may be cither o havword ssmbol o a Ikt of a4
keyword sumbol and aiguments. The opuons o defflavor are desertbed on page 200

*all flavor names® !uruble
This s g bist of the names of alb the Hovors that have ever been defllavored.

defmethod Aluc.o
A method, that s a0 tuncton o haetie o particalar message sent fooan st e ot 4
particular havor, s detmed by a o such as
(defmethod (Havor noonc scinod ovpe mosage) fambda list
forml form))

Haver-mame s a o ssinbol which s the e ot the Bavor windh s o recense the micthod
method tope s kevword symbol tor the tope ot method ot s ennited when vou e
definme o pomany method, whion s the usad e messare v a0 kevword suimhal which
tames the messaye o be handled.

The meaming of the seethod npe depends on what bind o mcthod combmation s deddared
for this message. For stance, 1or dacmons before and alter are alfowed See page DS
tor a complete descnpoien ot method tpes and the way methods e combaned

lambda e describes the aguments and “aux vacables™ o the tanction the fist aiament
o the method, which i the messare kevword, s sutematicath: bandled. and sooat s not
ncluded m the Gondda Jive Note that methods mon not have "e arpuments, that s

DSKTMMANFLAVOR S5 16 IAN K1

Flavors 15 oo T uncons

they must be functions, aot spedial forms. formd | o) ete. are the tunction body - the
value of the last torm iy returned.

The varant torm

(defmethod (fvormame message) function)
where funcoon s a o ssibol, sy it Havor e 's methad tor ey oo s wndtion, a
ssmbob which names o finction, That fenctien st take apprepinde stemnents, the i
argament is the messagpe keyword,

It you redetine a method that is already defined. the old definitiom s replaced by the new
one. Ginen g flivor. o message name, and a miethod tvpe there can onhy be one
funcuon, so 1t vou define o cbefore dacmon mcethod tor the foo thoor o handle the bar
message. then vou replace the presvtens betore-dacmon: howeser vou do not alledt the
primany cthod or methods of any other type. message e or flavor,

defmethod actually defines a ssmbol, called the fovormethod-s-mibol . as o funcoon, and
the flivor systemn goes through that syimbol o call the method. Somctonies 1t s usetul 1o
deal with such o svimbol: tor examiple, vou can use ot to trice 4 method with trace {see
page 232 o the Lisp Machine Manual), The flivormethod-ssmbal s formed
concatendtmg (with lyphens) the thivor name. the method tope, the messave name. and
“method"” (fur cxample, ship-x-position- method, ship after y velocity method,
ship - combined - mass -method, ctc.).

make-instance flvorname mit-optionl valuel mi-option2 valuel...

Creates and returns an instance of the spectfied flavor. Arguments after the first are
alternating imit-option keywords and arguments o those kevwords, These options are used
o nitihze instance sariables and o select arbitrary options, as deseribed above, It the
flavor supports the cinit message, 108 sent to the newlhy-acated objeet with one argument,
the mitplist. Ihis s o disembodied property-hst contammg the imt-options speaified and
those defaulied from the flavor's dekiault init plist. make - instance 1s an casy-to-call
intertace to instantiate- flavor: for tull detals refer to hat function.

instantiate-flavor fluvorname mu-plist &optional send- o message-p
return-unthandled-kevwords area
This is an extended version of make instance. giving vou more features. Note that it
takes the int-phst as wv argument. rather thaan kg o &rest argwiment of it options
and values.

Vhe murplise areument must be a deembaodied property st doet of o &rest argument
will do. Beware! This property Iist can be modificd; the properties fiom the defaultamit
phist are putprop’ed on 1f not alicady present.

In the event that anit methods do remprop of properties alicady on the imtphst (as
opposed 1o siply domg get and putprop). then the it phist wilt get rplacd’'ed. This
means that the actual list of opnions will be modihed. 1 also mcans that loct of o &rest
argument will not work: the cllvr of instantiate Havor miast copy its 108t argument (¢ g.
with append). this s because rplacd s not alfowed on &rest arguments.

DSKTMMAN T AVOR SS Ih JAN 81

e

Ilavors 16 Ilvor Fanctions

barst, af the hvor's method-table and other mternal mtomanon have not been computed
ar are not up e dates they are camnpated Pus iy ke o substantial wmnount of tine
and mvoke the compaler, but will only happen once tor a particular flavor no natier how
IMany mstanees sou make, unless vou change something

Naats the mstance varables are amtalized, There are several ways dus micalization can
happen. 1 an anstance vanable s declaed mitable, and o kevword with the same spelling
AN name appears anoea-plng s set 1o the vilue speabed atter hat kesword. 16 an
instance vartable does not get annalized s way cod o nntialization fornm was speatfied
tor at g detflavor. that form s cvaluated and the vanable s set o the result. The
intedizaton torm nray not depend on any sostance vanables nor on selts 0 will nat be
evaluated e the “mside” enmvironment mowhich mcthods are catled. 1F an instance vanable
does not get maalized aither ot these wass 10 will be deft unbound: presumably an it
method shoald moabize 1t (e below). Note that a sonple cinpty desembaodied property
Istis (nit). which s what vou shoald give oF sou want ane anpty amt plist,. I vou use nil,
the property st of il waill be used, winch s probably not what you want.

Hoany kevword appears o the orr-plsr but s not osed o anitialize aninstance vantable
and n not declared moan amt-keywords option (see pape X0 0t s presumed 1o be g
misspelling. 1t the rcnen-unhandled-Aeyvwords argument s not supphlied. such kevwords are
complaned about by signalling an ciror. But i renern-wnhavidicd-Acywords 1s supphed non-
nil. a hist of such kevwords s returned as the second value ot instantiate flavor.

‘ Note that detault values i the m-phst can come from the default -init plist option to
! defflavor. Sce page 20.

If the send-m-message-poargument s supphed and non il oo it message 18 sent to the
newly created anstance. with one argument. the e pind get can bensed 1o exdract
options ftom this property-list. Fach favor that necds imoadization can contnibute an ot
method, by definmng o dacmon.

It the area argument v spectficd, 0w the dumber of an atca o whinh W cons the
instance, otherwise 10 s consed e the detault area.

defwrapper Vucro
Fhis s hainy and o vou don't andastast 0 vou shoald shap

Sometimes the way the Qv soaons anbenes the ncthods of different avors (the
dactnon st s et powettul enougls B tiat cae detweapper cn be used oo define a
macte which expaands into code which o weapped o the mvocation o the mvthods,
This s best ceplained by oan example suppose va needed o ook locked dunig the
processime ot the foo message 1o the bar cor e horde tao orpaments and vou
have w dock Bobboz speaaltonm whe b kbos how o ok the ok (presamahhy o
genctates cmounwind protect). lock trobbosz necds (o sec the st wgament 1o the
message. pethaps that tells e what sort of aperation s pomg (o be performed (read or
wiie).

IDSK EMMAN FTAVORSS 16 TAN K]

IFlavors

17 Flavor Functons

(defwrapper (bar :foo) ((argl arg2) . body)
“(lock-frobboz (self argtl)
.body ')
Fhe use of the body macro-arsument presents the defwrapper’ed macio from knowing
the exact miplementation and allows several defwrappers om ditferent flavois 1o be
combined properly.

Note well that the drgument variables, arg1 and arg2. are not referenced with commas
before them. [hese moy ook hke defmacro "arpument™ wvariables, but they are not,
Those variables are not Found at the nme the defwrapper-defined macro s expanded and
the back-quotung is done: rather the result of that macro-evpansion and back quoting 18
code which, when o message is sentc will bind those variables o the arpgnments in the
message as local variabler of the combined methad.

Consider another exampte. Suppose vou thought you wanted o before dacmon, but
found that if the argument was nil you needed to return from processing the message
immediately. without executing the primary method. You could write a wrapper such as
(defwrapper (bar :foo) ((argl) . body)
"(cond ((null argl)) :Do nothing if argl is nil
(t before-code
.body)))

Suppose you need a variable for communication among the dacmons for a particular
message: perhaps the cafter dacmons need o know what the pnmary method did. and it
is something that cannot be casily deduced from just the arguments. You might use an
instance variable for this, or you might create a special variable which is bound during
the processing of the message and used free by the methods.

(defvar *communications)

(defwrapper (bar :foo) (ignore . body)

“(let ((*communication* nil))
,body))

Similarly you might want a wrapper which puts a *cetch around the processing of a
message so that any one of the methods could throw out in the cvent of an unexpected
condition.

If vou change a wrapper, the change may not take effect automatically, You must use
recompile flavor with a third argament of nil to foree the effect o propagate into the
compiled code which the system generates o implement the flvor. The reason for this is
that the flinvor system cannot refeably tell the difference between reloading a file containing
a wrapper and really redetinmg the wrapper to be different, and propagating a change to
a wrapper s expensine. [This may be fined in the future.]

Like dacmon methads, wrappers work m outside-in order: when you add a defwrapper
to a flinor bt on other Navors, the new wrapper is placed outside any wrappers of the
companent lvors Howeser, @ weappers happen belore any dacmons happen. When
the combined method is bl the calls to the before-daemon methods, primary methods,
and after-dacmon methods are W1l placed together, and then the wrappers are wrapped
around thene Thus, af a component lavor defines a wrapper, methods added by new

DSKEMMANTTAVOR $S 16-JAN-81

Flavors 18 Flavor FFunctions

flavors will execute within that wrapper's context,

se1f luriable :
When a message is sent to an object, the variable self is automancally bound o that ;
object, for the benefit of methods which want to manipulate the object itself (as opposed i
to its instance variables). ‘

funcall -self message arguments...
When self is an instance or an cntity, (funcall-self args..) has the same clfect as
(funcall self urgs...) exceat that it is a httle faster since it doesnt have to re-establish the
context in which the instwce variables evaluate corvectly, It seif s not an instance (nor
an "entity”, sec page 30). funcall-self and tuncall self do the same thing,

When self is an instance, funcall-self will only work correctly if it s used in a method
or a function, wrapped in a declare-flavor-instance-variables, hat was calied from a
method. Otherwise the instance-variables will not be alrcady set np.

lexpr-funcall-self message arguments.. list-ofarguments

This function is a cross hetween lexpr-funcall and funcall self. When self 1s an instance 4
or an cntity. (lexpr-funcall-self args...) has the same cftect as (lexpr-funcall self args...) b
except that it is a little faster since it doesn’t have to re-establish the context in which the 1

instance variables evaluate correctly. If self is not an instance (nor an “entity”, sece page
30). lexpr-funcafi-self and lexpr-funcall do the samc thing.

declare-flavor-instance-variables Macro
Sometimes you will write a function which is not itself a method. but which is to be
called by methods and wants to be able teo access the instance . .ariables off the object self.
The form
(declare-flavor-instance-variables (flavor-name)
Junction-definition)

surrounds the finction-definition with a declaration of the instance variables for the
specified flavor, which will make them accessible by name. Currently this works by
declaring them as special variables, but this implementation may be changed in the future,
Note that i« is only Jegal to call a function defined this way while executing inside a
method for an object of the specified Ravor, or of some flavor built upon it

recompile-flavor fluvor-nume &optional swigle message (use-old-combined-methods t)
(do-dependents t)

Updates the internal data of the flavor and any flavors that depend on it IF single
message is supphied non-nil, only the methods for that message are c¢hanged. The system
does this when you define a new method that did not previoush existe 16 wse-old-
combmed-methods st then the existing combined method functions will be used if
possible, New ones will only be generated i the set of methods o be called has changed.
Fhis s the aefoulte I wse-old-combined-methods s nil, automatically -gencrated functions to
call multiple mcthods or to contain code generated by wrappers will be regenerated
unconditionally, It you change a wrapper, vou must do recompile Havor with third
argument nil inorder o make the new wrapper take cltect. 16 do-depondents s ml, only
the specific flavor you specified will be recompiled. Normally it and all lavors that
depend on it will be recompiled.

DSK:EMMAN T AVOR 55 10:-JAN-RI

Flavors 19 Flavor Functions

recompile-flavor only affects flavors that have alrcady been compiled. Pypically this
means it affects Navors that have been instantiated. but does not bother with mixins {see
page 23).

compile-flavor-methods AMacro

The torm (compile -flavor-methods fluvor-name-1 flavor-name-2...), placed i a file o be
compiled. will cause the compiler to include the automatically generated combined
methods for the named favors in the resulting gfasl file. provided all of the necessary
favor definitions have been made. Use of compile-Havor-methods for all flivors that
are going to be instantiated is recommended to climinate the need o call the compiler at
run time (the compiler will still be caled if incompatible chany.es have been made, such
as addition or deletion of methods that must be called by a combined method).

get-handler-for object message
Given an object and a message, will return that object’s method for that message, or nil
if it has none. When objecr is an instance of a flavor, this function can be uscful to find
which of that favor's components supplics the method. 1f you get back a combined
mcthod, you can use the lList Combined Methods editor command (page 31) to find out
what it does.

This function can be used with other things than flavors, and has an optional argument
which is not relevant here,

gymeval-in-instance instance symbol &optional no-error-p
This function is used to find the value of an instance variable inside a particular instance.
Instance 18 the instance to be examined, and symbol is the instance variable whose value
should be returned. 1t there is no such instance variable, an error is signalled, unless no-
error-p is non-nil in which case nil is returned.

set-in-1nstance instance symbol value
This function is used to alter the value of an instance variable inside a particular instance.
Instance is the instance to be altered. symbol is the instance variable whose value should
be set, and value is the new value. If there is no such instance variable, an crror is
signalled.

st:describe-flavor flavor-name
This function prints out descriptive information about a flavor; it is self-explanatory. An
important thing it tells you that can be hard to figure out yourself is the combined list of
component flavors; this list is what is printed after the phrase "and dircctly or indirectly
depends on”.

si:*flavor-compilations®
This variable contains a history of when the flavor mechanism invoked the compiler. It is
a list: clements toward the front of the list represent more recent compilations. Elements
arc typically of the form
(:method flavor-name type message-name)
and rype is typically :combined.

DSKEMMAN:FLAVOR 55 16-JAN-81

Flavors 20 Detiay or Options

You may setq this variable to nil at any ume; for instance betore loading some files that
you suspect may have missing or obsolete compile-tlavor-methods in them.

1.9 Defflavor Options

There are quite a few options to defflavor. They are all deseribed here, although some are
for very specio’zed purposes and not of interest o most users. Fach option can be written in two
forms; cither the keyword by dtsett, or a list of the keyword and "arguments” o that keyword.

Several of these options dectare things about instance variables. These options can be given
with arguments which are instance variables. or without any arguments i which case they refer
all of the instance variables listzd at the wop of the defflavor. This is nor necessarily all the
instance variables of the component flavors: just the ones mentioned in this flavor's defflavor.
When arguments are given, thev must be instance variables that were histed at the top of the
defflavor; otherwise they are aswnined to be misspelled and an error is signalled. 1t is legal to
declare things about instance vanables inherited from a component flavor, but o do so you must
list these instance variables explicitly in the instance variable list at the op of the defflavor.

:gettable-instance -variables j
Enables automatic generation of methods for getting the values of mstance variables. The
message name is the name of the variable, in the keyword package (i.e. put a colon in
front of it.)

:settable-instance -variables
Enables automatic generation of methods for setting the values of inswance variables. The
message name is "set-" followed by the name of the variabie. All scutable instance
variables are also automatically made gettable and mitable.

sinitable -instance - variables
The instance variables listed as arguments, or all instance vartables histed o tins defflavor
if the keyword is given alone, are madce initable. ‘This means that they can be initialized
through use of a keyword (a colon followed by the name of the vanahle) as an milt-option
argument to make-instance.

iinit-keywords
The arguments are declared to be kevwords in the imtalization property list which are
processed by this flavor's cinit methods s s just used My errar-checking which Jooks
for entries (presumably misspelicd) in the mittalization property-hist which are not handled
by any component flavor of the object bemg created. neither as initable-instance-variables
nor as init-keywords.

default -init - plist
[he arguments are alternating keywords and value tonos, Tike o property-Tist.. When the
favor iy instantiated. these properties and values e put mto the mieplist unless already
present. This allows one component flavor o detautt .ov option o cnother component
flavor. “The value forms are only evaluated when and ot they e used. For oxample,
(:default-init-plist :frob-array
(make-array nil ‘art q 100))

would provide a default "frob array” for any instance tor which the user did not provide
one explicitly.

DSK: I MMAN:IT AVOR 55 16 JAN-SI

?
;

P

Flavors M et or Options

required -instance - vaniables
Dieclares that any thivor incorporating this one which s instantiated mto an object must
contain the specilicd mstance variables. Ancerror occurs o there s oan attempt o
mstantitte 4 Nonvor that eorporates this one b e does not have these e s set of mstance y
vattibles, Note that this option v not one ot those which <hecks the spadling of s
argaments o the way described at the sttt of this section.

Reguired instance variables may be freely accessed by methods just ke normal imstance
varlables. The difference between hsting instance vartables heie and histing them at the
front of the defflavor is that the latter declares that this flavor "owns™ those vartables and
will take care of iitali;ing them. while the tormer dedares that this Ravor depends on
those vartables but that -ome other favor must be provided o manage them and whatever
features they imply.

rrequired - methods
I'he arguments are names of messages which any flivor incorporating this one must
handle. An crror occurs it there is an attempt o instantiate such a avor and i s lacking
a method for one of these messages. Pypically this opuon appears in the defftavor for a
base flavor (see page 23).

included-flavors

The argumcents are names of flavors to be included in tis flavor. The ditference between
declaring flavors here and decliring them at the top of the defflavor 15 that when
component {lavors are cembined, all the included flavors come atter all the regular llavors. ;
Fhus included Navors act like defaults. For an example of the use of included flavors,
consider the ship example given carlicr, and suppose we want to define o relativity - mixin
which increases the mass dependent on the speed. We mught write,

(defflavor relativity-mixin () (moving-object})

{defmethod (relativity-mixin :mass) ()

(// mass (sqrt (- 1 (~ (// (funcall-self ':speed)
sspeed-of-lightws)
2)))))

but this would lose because any flivor that had relativity-mixin as a component would get
moving-object right after it in its component list. As a bhasc flavor, moving-object
should be last in the list of compoenents so that other componeats mixed in can replace its
methods and so that dacmon methods combine in the vight order. So instead we write,

(defflavor relativity-mixin () ()

{(:included-flavors nioving-object))

which allows relativity- mixin's metheds to aceess moving object instance variables such as
mass (the rest mass). but does not specity a place lor moving object in the list of
components. {(Actually it puts it at the ond, where 1t will usually be climinated as a
duplicatc.)

no -vanilla- lavor
Unless this option is specified. sivanilla -flavor s induded (in the sense of the
ncluded -flavors option). vanilia flavor provides some defuult methods for the print-
self, describe, :which operations, .get-handler-for. :eval inside-yourself, and
funcall inside - yourself messages. Sece page 24,

default -handler
Ihe argument s the name of a function which 1s to be called when a message 18 received

DSK:TMMANITT AVOR 55 16-JAN-81

Flavors

22 Defavor Options

tor which there is no method. Tt will be called with whatever arguments the instance was
called with, including the message name; whatever values it returns will be returned. If
this option is not specified on any component flavor, it defaults to a function which will
sighal an crror.

:ordered -instance -variables

This option is mostly for csoteric internal system uses. ‘The arguments are names of
instance variables which must appear first (and in this order) in all instances of this thnvor,
or any flavor depending on this flavar. ‘This is used for instance variables which are
specially known about by microcode, and in connection with the :outside -accessible -
instance-variables option. [f the keyword is given alone, the arguments default to the
list of instance variables given at the top of dhis defflavor.

:outside -accessible-instance-variables

:select-

The arguments arc instance variables which arc w be accessible from "outside™ of this
object, that is from functions other than methods. A macro (actually a defsubst) is
defined which takes an object of this flavor as an argument and returns the value of the
instance variable: setf may be used to set the value of the instance variable, The name
of the macro is the name of the flavor concatenated with a hyphen and the name of the
instance variable. ‘T'hese macros are similar to the accessor muacrus created by defstruct
(sec chapter 17 of the Lisp Machine Manual.)

This feature works in two diffc.ent ways, depending on whether the instance variable has
been declared to have a fixed slot in all instances, via the :ordered-instance-variables
option.

If the variable is not ordered, the position of its value cell in the instance will have to be
computed at run time. This takes noticeable time, although lcss than actually sending a
message would take. An crror will be signalled if the argument to the accessor macro is
not an instance or is an instance which does not have an instance variable with the
appropriate namec. However, there is no error check that the flavor of the instance is the
flavor the accessor macro was defined for, or a flavor built upon that flavor. This error
check would be too expensive.

If the variabic is ordered, the compiler will compile a call to the accessor macro into a
subprimitive which simply accesses that variable’s assigned slot by number., This
subprimitive is only 3 or 4 times stower than car. The only crror-checking performed is
to make surc that the argument is really an instance and is really big enough 0 contain
that slot. There is no check that the accessed stot really belongs to an instance variable of
the appropriatc name. Any functions that use these accessor macros will have o be
recompiled if the number or order of instance variables in the favor is changed. The
system wifl not know automatically o do this recompilaton, If you aren’t wery careful,
you may forget to recompile something, and have o very hard-to-find bug. Because of
this problem, and becausc using these macros is less clegant than sending messages, the
use of this option is discouraged. In any case the use of these accessor macros should be
confined to the module which owns the flavor, and the "gencral public” should send
messages.

method -order
This is purcly an cfficiency hack due to the fact that currently the method-table is

DSK:AIMMANFLAVOR 55 16-JAN-81

e e ot

Flavors 23 Flavor Famihies

scarched lincarly when 3 message is sent. The arguments are names of messages which
are frequently used or for which speed is important. Their methods are moved to the
front of the method table so that they are accessed more quickly.

:method -combination
Declares the way that methods from different flavors will be combined. Fach "argument”
to this option is a ISt (fype order messugel messagel..). Messagel . message?. clc. are
names of messages whose methods are to be combined in the declared fashion. npe is a
keyword which is a defined type of combination; sce page 25, Order is o keyword whose
interpretation i1s up o f)e; typically it is cither :base-flavor-first or ;base-flavor-last.

Any component of a flavor may specify the type of method combination to be used for a
particular message. If no component specifies a type of method combination, then the
default type is used. namely :daemon. If more than one component of a flavor specifies ‘
it, then they must agree on the specification, or ¢lse an error is signalled.

:documentation
The list of arguments to this option is remembered on the flavor's property list as the
:‘documentation property. ‘The (loose) standard for what can be in this list is as follows;
this may be cxtended in the futurc. A string is documentation on what the flavor is for;
this may consist of a bricf overview in the first line, then several paragraphs of detailed i
documentation. A symbol is onc of the following keywords: o

mixin A flavor that you may want to mix with others o provide a uscful
feature.

:essential -mixin
A flavor that must be mixed in to all flavors of its class, or inappropriate
behavior will ensue.

:lowlevel - mixin
A mixin used only to build other mixins.

:combination A combination of flavors for a specific purpose.

:special-purpose
A favor used for some internal or kludgey purpose by a particular
program, which is not intended for general use.

This documentation can be viewed with the si:describe-flavor function (sce page 19) or
the cditor's Meta-X Describe Flavor command (sce page 30).

1.10 Flavor Families
The following organization conventions arc recommended for all programs that usc flavors.

A base flavor is a favor that defines a whole family of related flavors, all of which will have
that base flavor as onc of their components. Typically the base flavor includes things relevant to
the whole family, such as instance variables. :required-methods and :required-instance-
variables declarations, default methods tor certain messages, :method -combination dcclarations,
and documentation on the general protocols and conventions of the family. Some base flavors are
complete and can be instantiated, but most are not instantiatable and merely serve as a bas¢ upon

DSK:IMMAN:FLAVOR S5 16-JAN-81

I-Lavors 24 Vanilla favor

which to build other Havors. The base thvor Tor the oo tanily s often named husic- foo.

A mixin flavor s a flavor that defines one partcular feature of an abject. A mixin cannot be
nstantiated, because it is not a complete deseription. Fach modale or feature of a program is
defined as a separate mixin: a usable flinor can be constructed by choosing the mixins for the
destred characteristics and combiming them, dlong with the appropriate base flavor. By organizing
your flavors this way. vou keep scparate features in separate flavors, and vou can pick and choose
among them. Sometimes the order of combining mixiny does not matter, but often it docs,
because the order of flavor combination controls the arder in which daemons are invoked and
wrappers arc wrapped. Such order dependencies would be documenied as part of the conventions
of the appropriate fumily of livors. A mixin flavor that provides the nuanble feature is often
named nwmble - mixin,

If you arc writing a program that uses someone else’s facility 0 do something, using that
tacility’s flavors and methods, your program might still define its own flavors, in 4 simple way.
Fhe facility might provide a base flavor and a set of mixins, and the caller can combine these in
various combinations depending on exactly what it wants, since the lacility probably would not
provide all possible uscful combinations. Even if your private flaver has exactly the same
components as a pre-cxisting flavor, it can sull be useful since you can use its :default -init-plist
{scc page 20) to select options of its component flavors and you can define one or two methods to
customize it "just a little”,

1.11 Vanilla flavor

Unless you specify otherwise (with the :no-vanilla-flavor option to defflaver), cvery flavor
includes the "vanilla” flavor, which has no instance variables bud provides some basic uscful
methods. ‘Thus, ncarly every instance may be assumed to handle the following messages,

:print-self stream prindepth slashify-p

The object should output its printed-representation to a stream. ‘The printer sends this
message when it cncounters an instance or an entity. The arguments are the stream, the
current depth in list-structure {for comparison with prinlevel), and whether slashilication is
enabled (prin1 vs princ: see page 154 in the Lisp Machine Manual). Vanilla-flavor
ignores the last two arguments, and prints something like # flavor-name octal-addressd,
The flavor-name tells you what type of object it is. and the octal-address allows you to tell
different objects apart (provided the garbage collector doesn’t move them behind your
back).

:describe
‘The object should describe itself, printing a description onto the standard - output stream.
The describe function sends this message when it encounters an instance or an cntity.
Vanilla-flavor outputs the object, the name of iis flavor, and the nmnes and values of its
instance-variables, in a rcasonable format.

DSK:I.MMAN:FLLAVOR 55 16-JAN-81

Flavors 25 AMethod Combmation

:which-operations
The object should return o list of the messages it can handle. Vanilla-flavor generates the
list once per favor and remembers it minimizing consing and compute ume, 5 a new
method s added. the list is regenerated the next time someone asks for it

:get handler-for operation
The object should return the method it uses o handle operanon. 16 it has no handler for
that message, it should return nil. This is like the get-handler-for lunction (see page
19), but, of course, you can only use it on objects kKnown 1o accept messages.

:eval-inside-yourself form
The argument 15 a form which is evaluated in an environment in which special variables
with the names of the instance variables are bound o the vatues of the mstance vanables.
It works o setq one of these special variables: the instance variable will be modified.
This is mainly intended to be used for debugging. An especially usctul salue of form s
{break t): this gets yvou a Lisp top level loop inside the enviromment of the methods of
the flavor. allowing you to examine and alter instance variables, and run functions that
use the instance variables.

:funcall inside-yourself fiunction &rest args
Sinetion is applicd o args in an environment in which special variables with the names of
the instance variables are bound to the values of the instance variables. 1t works 0 setq
onc of these special variables: the instance variable will be modified. This is mainly
intended to be used for debugging.

1.12 Method Combination

As was mentioned carlier, there are many ways to combine methods. ‘The way we have seen
is called the :daemon type of combination. To use one of the others, you use the :method-
combination optivn to defflavor (sce page 23) o say that all the methods for a certain message
to this lavor, or a Navor built on it, should be combined in a certain way.

The following types of method combination are supplied by the system. It is possible to
define your own types of method combination; for infonmation on this, see the code. Note that
for most types of method combination other than :discron you must define the order in which
the methods are combined, cither :base-flavor- first or :base -flavor-last. In this context, base-
Havor means the last clement of the flavor's fully-expanded hst of components.

Which method type keywords are allowed depends on the type of method combination
sclected. Many of them allow only untyped methods. There are also certain method types used
for internal purposes.

:daemon This is the default type of mcthod combination. All the :before methods are
called. then the primary (untyped) method for the outermaost flavor that has one s
called, then all the :after methods are called. The value returned is the value of
the primary method. :

progn All the methods are called, inside a progn special form. No typed methods are
alfowed. This means that all of the methods are called. and the result of the
combined method is whatever the Tast of the methods returns,

DSK:I.MMAN:FTL.AVOR 55 16-JAN-81

Flavors 26 Mcthod Combination

or All the methods are called, inside an or special form. No typed methods are
allowed. This means that cach of the methods is called in wrn. If a method
returns a non-n’l value, that value is returned and none of the rest of the
mcthods are called; otherwise. the next method i called. In other words, cach
method is given a chance to handle the message: it it doesn’t want to handle the
message. it should return nil, and the next method will get a chance to try.

.and All the methods are called, inside an and special form. No typed mcthods are
allowed. ‘The basic idea is much like :or; sce above,

:list Calls all the mecthods and rcturns a list of their returned values. No typed
methods are allowed.

sinverse-list Calls cach mcthod with one argument; these arguments are successive clements of
the list which s the sole argument to the message. No typed methods are
allowed. Return: no particular value. If the result of a :list-combined message is
sent back with n inverse -list-combincd message, with the same ordering and
with corresponding method dcfinitions, cach component flavor receives the value
which came from that flavor.

Here is a table of all the method types used in the standard system (a uscr can add more, by
defining new forms of mecthod-combination).

(no type) If no type is given to defmethod, a primary method is created. 'This is the most
common type of method.

-before

:after These arc used for the before-dacmon and after-dacmon methods used by
.daemon mcthod-combination.

:default If there are no untyped methods among any of the flavors being combined, then

the :default methods (if any) arc treated as if they were untyped. If there are any
untyped methods, the :default methods arc ignored.
Typically a basc-flavor (sce page 23) will define some default methods for certain
of the messages understood by its family, When using the default kind of
mcthod-combination these default methods will not be called if a flavor provides
its own method. But with certain strange forms of method-combination (or for
example) the base-flavor uses a :default method o achieve its desired effect.

:wrapper Uscd internally by defwrapper.

:combined Used internally for automatically-gencrated combined methods.

The most common form of combination is :daemon. Onc thing may not be clear: when do
you use a :before dacmon and when do you use an cafter dacmon? In some cases the primary
mcthod performs a clearly-defined action and the choice is obvious: :betore Jaunch-rocket puts
in the fucl, and :after :Jaunch-rocket turns on the radar tacking.

In other cases the choice can be less obvious. Cuonsider the cinit message, which is sent to a
newly-created object. To decide what kind of dacmon (0 use, we observe the order in which
dacmon mcthods are called. First the before diacmon of the highest level of abstraction s called,
then :before dacmons of successively lower fevels of abstraction are called, and finally the :before

DSK:EMMAN:FLAVOR 55 16-JAN-8!

Flavors 27 Implamentition ol Flavors

dacmon (it any) of the base finvor s called. Then the primary method is called Atter that, the
after dacmon for the Towest level of abstraction s called, followed by the after dacmons
successinehy higher fevels of abstraction.

Now. it there s no oteraction among all these methods, o thar actitons are completely
arthogonal, then it doesn’t matter whether vou use o betore ducmon or an alter dacmon. It
mdakes a difference if there s some imteraction. The wmteraction we are talkimg about s usually
done through instance variahles: i general. instance vanables are how the methods of dilferent
component avors communicate with cach other. In the case of the init message. the e plist
can be used as well, The important thing o remember is that no nethod knows beforchand
which other fvors have been muxed in to form this Havor; a 1acthod cannot make any
assumptions ghout how this flaver has been combined, and in what order the vanous components
are mixed.

This means that when a :before dacmon has run, it must assume that none of the methods
for this message have run yet. But the :after dacmon knows that the tefore dacmon for cach of
the other lavors has run. So if one finor wants o convey information to the other, the first one
should "transmit” the information in a :before dacmon. and the sccond one should “receive” it in
an cafter dacmon. So while the :before dacmons are run, information is “transmitted™; that is,
instance variables get set up. lhen, when the after daemons are run, they can look at the
instance variables and act on their valucs.

In the case of the :init method, the :before dacmons typically set up instance variables of the
object based on the init-plist. while the :after daemons actually do things, relying on the fact that
all of the instance variables have been initialized by the time they are called.

Of course. since flavors arc not hicrarchically organized. the notion of levels of abstraction is
not strictly applicable. However, it remams a useful way of thinking about systems.

1.13 Implementation of Flavors

An object which is an instance of a flavor is implemented using the data type dtp-instance.
The representation is a structure whose first word. tagped with dtp-instance -header, points to a
structure (known to the microcode as an “instance descriptor™) containing the internal data for the
flavor. and whose remaining words are value cells contamning the values of the instance variables.
‘The instance descriptor is a defstruct which appcars on the si:Hlavor property of the flavor name.
It contains, among other things. the name of the flavor, the size of an mstance. the table of
mcthods for handling messages. and mformation for accessing the mstance varnables,

defflavor creates such a data structure for cach flavor, and links them together according to
the dependency relationships between flavors,

A messape is osent Lo an instanee simply by calling it as 4 function, with the first argument
heing the message keyword. The imcrocode binds sell 1o the object, hinds the instance variables
(as special closure variables) 1o the value cells o the instance, and calls o dtp -select- method
assockted with the Tavor. This dtp select method assoctates the message keyword to the actual
function to he called. If there w only one method. this s that mcthod, otherwise it is an
antomatically-generated function which calls the appropriate methods in the nght order. If there
arc wrappers, they are incorporated into this automatically-generated function.

DSK:L.MMAN:FILAVOR 55 16-JAN-81

\

Flavors 28 Implementation of Flavors

The function-specilier syntax (method fluvor-name optional-method-type message-nanie) s
understood by fdefine and refated functions. It is preferable to refer to methods this way rather
than by cxplicit use ol the Aavor-method-symbaol (sce page 15).

1.13.1 Order of Definition

There is a certain amount of freedom to the order in which you do defflavor’s, defmethod’s,
and defwrapper’s. This freedom is designed to make it casy to load programs containing complex
flavor structures without having to do things in a certain order. 1t is considered important that
not all the metheds for a flavor need be defined in the same file. Thus the partitioning of a
program into files can be along modular lines.

The rules for the order of definition are as follows.
Befure a method can be defined (with defmethod or defwrapper) its flavor must have been

defined (with defflavor). ‘This makes sense because the system has to have a place to remember
the method, and because it has to know the instance-variables of the flavor if the method is to be

compiled. i
When a flavor is defined (with defflavor) it is not necessary that all of its component flavors :
be defined alrcady. 'This is to allow defflavor's to be spread between files according to the 1
muodularity of a program. and to provide for mutually-included flavors (sce the :included-flavors
' defflavor option, page 21). Mecthods can be defined for a flavor some of whose component

flavors are not yet defined. however in certain cases compiling those methuds will produce a
spurious warning that an instance variable was declared special (because the system did not realize

it was an instance variable). In the current implementation these warnings may be ignored,

although that may not atways be true in the future.

The methods automatically generated by the :gettable -instance-variables and :settable-
instance-variables defflavor options (sec page 20) are gencrated at the time the defflavor is k
done.

The first time a flavor is instantiated, the system looks through all of the component flavors

and gathers various information. At this point an error will be signalled if not all of the

components have been defflavor'ed. ‘this is also the time at which certain other errors are

detected, for instance lack of a required instance-variable (see the required-instance -variables

defflavor option, page 21). The combined methods (see page 12) are generated at this time also,

unless they alrcady cxist. ‘They will already exist if compile-flavor- methods was used, but if

those incthods are obsolete because of changes made to component flavors since the compilation,
new combined methods will be made.

After a flavor has been instantiated, it is possible to make changes to it. These changes will
affect all existing instances if possible. This is described more fully immediately below.

DSK:I.MMAN:IT.AVOR 55 16-JAN-81

T

Flavors » Implementation of Flavors

1.13.2 Changing a Flavor

You can change anmvthing about a flinor at any tme. You can change the flavor's general
attributes by doing another defflavor with the same name. You can add or modity incthods by
doing defmethod’s. It you do o defmethod with the same flinvor-name. message-name, and
{optional) method-type as an cxisung ncthod, that method s replaced with the new defininon.
Currently there is no good way to remove a method.

These changes will always oropagate to all flavors that depend upon the changed flavor
Normally the system will propagete the changes to all existing instances of the changed flavor and
all flavors that depend on i, However, this 18 not possible when the flavor has been changed so
drastically that the old instances would not work properly with the new lavor. This happens if i
you change the number of instance variables, which changes the size of an nstance. 1t also
happens if you change the order of the instance variables (and hence the storage lavout of an
instance), or if you change the component flavors (which can change several subtle aspects of an
instance). The system does not keep a list of all the instances of cach flavor, so it cannot find
the instances and modity them o conform to the new flavor defintion. Instead 1t gives you a i
warning message, on the error-output stream, to the effect that the flavor was changed
incompatibly and the old instances will not get the new version. ‘The system feaves the old flavor
data-structure intact (the old instances will continue e point at i) and makes a new one to
contain the new version of the flavor. If a less drastic change is made, the system modifies the
original flavor data-structure, thus affecting the old instances that point at it.

One cxception to this is that changes to defwrapper's are never automatically propagated.
This is because doing so is expensive and the system cannot tell whether you really changed it or
just redefined it w be the same as it was. (Note that the initial definition of a wrapper is
propagated, but redefinitions of it arc not) Sce the documentation of defwrapper for more
details.

1.13.3 Restrictions

There is presently an implementation restriction that when using dacmons, the primary
method may return at most three values if there arce any :after dacmons. This is because the
combined method needs a place to remember the values while it calls the dacmons. This will be i
fixed some day.

In this implementation, all message names must be in the keyword package, in order for the
flavor-method-symbols (sce page 15) to be unique, and for various tools in the editor to work ,
correctly.

DSK:L.MMAN:IFLAVOR 55 16-JAN-81

Flavors 30 Enuties

1.14 Entities

An entity 1s a Lisp object: the enuty is once of the primitive datat ‘pes provided by the Lisp
Machinc system (the data-type function (sce page 111 n the |isp Machine Manual) will rewrn
dtp-entity if it s given an centity). Entities arc just like closures: they have all the same
attributes and functionality. the only difference between the two prumitive types is their data
type: entities are clearly distinguished from closures because they have a different data type. ‘The
reason there 1s an important difference between them s that various parts of the (not so primitive)
Lisp system treat them differently,

A closure is simply a kind of function, but an cntity is assumed to be a message-receiving
object. Thus, when the Lisp punter (sce sections 18.2 and 184 in the | isp Machine Manual) is
given a closure, it prints a simple textual representation. but when it s handed an entity, it sends
the cnlity a :print-self message, which the entity s expected w handle. The describe function
(scc page 261 in the lisp Machine Manual) also sends entities messages when it s handed them.
So when you want to make a message-receiving object out of a closurc, as described on page 7,
you should use an entity instead.

Usually there is no point in using entitics instcad of flavors. Entitics were introduced into
Lisp Machine Lisp before flavors were, and perhaps they would not have been had flavors already
cxisted. Flavors have had considerably more attention paid to cfficicncy and to good tools for
using them.

[U'he rest of this scction is not yet written. It would explain how to create entities, and how
the defselect function is uscd to make a function that dispatches on its first arzument at relatively
high speed.]

1.15 Uscful Editor Commands

Since we presently lack an cditor manual, this section briefly documents some cditor
commands that are useful in conjunction with flavors.

meta-.
The meta-. (Edit Definition) command can find the definition of a flavor in the same
way that it can find the definition of a function.

Edit Definition can find the definition of a method if you give

(:method flavor type message)
as the function name. The keyword :method may be omitted. Completion will occur on
the flavor name and message name as usual with Edit Definition,

meta - X Describe Flavor

Asks for a flavor name in the mini-buffer and describes its characteristics. When typing
the flavor name you have complction over the names of all defined flavors (thus this
command can be used to aid in gucssing the name of a flavor). The display produced is
mousc sensitive where there arc names of flavors and of mcthods: as usual the right-hand
mouse button gives you a menu of operations and the left-hand mouse button does the
most common opcration, typically positioning the editor to the source code for the thing
you are pointing at,

DSK:1.MMAN;FILAVOR 55 16-JAN-81

3 Uscful Editor Commands

meta- X List Methods
meta- X Edit Methods

Asks you for a message in the mini-buffer and lists all the flavors which have a method
for that message. You may type in the message name, point to it with the mouse, or let
it default to the message which is being sent by the Lisp form the cursor is inside of,
List Methods produces a mouse-sensitive display allowing vou to edit selected methods or
just see which flavors have methods. while Edit Mcthods skips the display and proceeds
dircctly to cditing the methods. As usual with this type of command, the editor
command control-. is redefined to advance the cditor cursor to the next method in the
list. reading in its source file if necessary. ‘Typing control-. while the display is on the
screen cdits the first method.

meta- X List Combined Methods
meta- X Edit Combined Methods

Asks you for a message and a flavor in two mini-buffers and lists all the methods which
would be called if that message were sent to an instance of that flavor. You may point to
the message and flavor with the mouse, and there is completion for the flaver name. As
i List/Edit Mcthods, the display is mouse sensitive and the Edit version of the command
skips the display and proceeds directly to the editing phase.

List Combined Mcthods can be very uscful for telling what a flavor will do in response to
a message. It shows you the primary method, the daemons, and the wrappers and lets
you sce the code for all of them; type controf-. (0 get to successive ones.

DSK:I MMAN:FILAVOR §5 16-JAN-81

Flavors 32 ' Index
Index
all-flavor-names Variable 14
:describe Message
:cval-inside-yourself Message R A
:funcall-inside-yourself Message 25
:get-handler-for Message 25
:print-self Message 24
:which-operations Message 25
base-flavor23
combined-method . . A V]
compile-flavor-methods Macro D9
declarce-flavor-instance- variables Macro . 18
deflavor Macro 14
defmethod Macro 4
defwrapper Macro 16
flavor . . T |
ﬂavor-mcthod symbol S b1
funcall-sclf Function 18
get-handlcr-for Function 19
instance . . . T |
Instantiate-flavor Funcnon S £
lexpr-funcall-self Function 18
makc-instance Function 15
message oo ..]
methodo 0]
mixin2
object . . . ST |
recompile-flavor Funclum B ¢
self Variagble 18
sct-in-instance Function 19
si:*flavor-compilations® Function 19
si:describe-flavor Function 19
symeval-in-instance Function 19
16-JAN-81

