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A Session With TINKER:
Interleaving Program Testing With Program Design

Henry Lieberman and Carl Hewitt

Artificial Intelligence Laboratory
and Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract

Tinker is an experimental interactive programming system which integrates
program tesling with program design. New procedures are created by
working out the sleps of the procedure in concrete situations. Tinker
displays the results of each step as it is performed, and constructs a
procedure for the general case from sample calculations. The user
communic ates with Tinker mostly by selecting opeations from menus on an
interactive graphic display rather than by typing commands. This paper
presents a demonsiration of our current implementation of Tinker.

1. Introduction

Tinker is our first attempt at building an experimental programming environment for
Lisp which explores two new directions in programming methodology:

Programs are tested with examples as they are being written: In conventional systems,
the user writes a complete program, then tests it as a whole. In Tinker, new
functions are defined by supplying examples, and working out the steps of the
procedure on examples. As each step of the program is introduced, the effect of that
step on an example is displayed immediately. Tinker remembers the steps and
constructs a procedure for the general case. Program writing and program testing
happen simultancously.

Menu sclection can replace much typing in constructing programs: lastead of specifying

operations and operands by typing, the system displays on the screen a menv of
available choices whenever possible, and the user simply points to one to select it.

A Session With TINKER 1 Introdction




Tinker EplT menu
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Fill in an ARGUMENT
EVALUATE something
NEW EXAMPLE for function
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The user doesn't have to remember or look up in a manual what commands are
available or what the syntax of the language is. We are experimenting with Tinker
to sec to what extent menu selection can replace typed commands in designing and
debugging programs.

We chose the name Tinker to suggest the process of building or fixing something in
small steps, incrementally making a small change, seeing what happens, then making
another change.

In contrast to previous research labelled as programming by example, Tinker doesn't
attempt to try to gwess the definition of the procedure from simply a statement of
what values the function returns for given arguments. Instead, we must explicitly
demonstrate the steps which the procedure must take to compute the value.
Guessing the procedure definition from input-output histories is a much harder
problem. It is an automatic programming task which is currently beyond the state
of the art for non-trivial examples. Tinker's contribution lies in integrating the use of
examples with program construction.

Rather than describe the capabilities of Tinker in the abstract, we feel that a good
way to convey our ideas about programmming methodology is to show Tinker in
action. The body of this paper will consist of a demonstration of Tinker, prescnting
it to the reader as we would to a new user of the system. The illustrations depict
what appears on the user's display screen. We will explain features of Tinker as
they are encountered in the demonstration.

Our session with Tinker will consist of three parts, starting out very simply and
working up toward more complicated tasks. The first part will discuss Tinker's uscr
interface, and show how to build up and evaluate Lisp expressions using Tinker.
The second will show how to introduce new functions into Tinker, illustrating the
role of examples. The third part will present a more realistic scenario, one which
would be plausible for an experienced user. This will show how to define functions
with conditionals through the use of multiple examples, and recursive functions using
partially specified definitions.

2. Getting started

The first illustration shows what Tinker looks like when it's first started. The screen
starts out with three windows

A Sessinn With TINKER 2. Getting started
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The large window in the center of the screen is the snapshotr window. The snapshot
window shows the current state of the computation. Whenever we introduce a new
object or piece of program text, it will appear in the snapshot window. The
snapshot window always contains a partial definition of the body of soine function.
(Initially, we're defining a special function called HISTORY, which contains top level
evaluations.) Later, when we define a new function, the name of the function will
appear in the label of the snapshot window, and we will construct a definition for it
in the snapshot window.

At the top of the screen is the Tinker Edit menu. This shows the list of available
operations at the top level of Tinker. These operations edit the contents of the
snapshot window. They may create, delete, move or modify objects in the snapshot
window.  We'll explain what each editing operation does as we go along.

We can select an item from the menu by pointing to its name and pressing a button.
Tinker runs on the MIT Lisp Machine, a personal computer equipped with a mouse,
i pomting device.  The current position of the mouse is indicated on the screen by
an X When the position of the mouse touches the name of an operation, the name
is highlighted on the screen.

The window at the bottom of the screen is the editor window. Occasionally, Tinker
will sk the user to type something, such as names for functions, or code to be
exccuted.  Everything typed on the keyboard goes into the editor window.
Informative messages {like Welcome ro Tinker!) and error inessages also appear in the
editor window.  The editor window is connected to Zwei, a sophisticated real-time
display text editor. This gives the user access to a wide range of editing operations
whenever anpthing is typed. The editing operations include motion across characters,
words, sentences, and expressions; search; cut and paste; expansion of abbreviations;
and many more.  This is in contrast to many systems which only allow a few trivial
editing operations when typing input, and require the user to use a separate editor
program tor more extensive changes.

3. _When Tinker evaluates some code it remembers both the value and the code

We will first show how to use Tinker as a kind of desk calculator for Lisp, building
up Lisp expressions and evaluating them. Whenever Tinker evaluates an expression, it
remembers the code that produced that value. Whenever that value is used as an
ingrodient in a subsequent computation, the code corresponding to the value is
carried along.  This allows us to incrementally build up complicated expressions.

A Sesslon With TINKER 3. When Tinker evaluates some code i remembers both the vaiue and the code
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Since we get to see all the intermediate results along the way, we can imimediately
verify the accuracy of each step before proceeding to the next. 1

One way of introducing new expressions to Tinker is by typing. Tinker provides two
operations for introducing something new into the snapshot window by typing. The ¥
TYPEIN and EVAL operation is like the READ-EVAL-PRINT loop of Lisp. It reads a Lisp ' !
expression in the editor window (prompting with Type something to evaluate), and
calls EVAL on it. TYPEIN, but DON'T EVAL is similar, but doesn't evaluate the
expression. It just reads an expression and puts it in the snapshot window.

The first thing we do is select TYPEIN and EVAL, and type in the code (LIST 1 2 3) ‘
in the editor window. This evaluates to the list (1 2 3). In the snapshot window

appears a message telling us that the value (1 2 3) was produced by the code (LIST

, 1 2 3).

A Session With TINKER 3. When Tinker evaluates some code It remembers both the value and the code
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i Defining (HISTORY):

txample: (1 2 3), Code: (LIST 1 2 3)

FT’;;l-)(- Somﬂhing to evaluate: ]
(LIST_123)

Edr tor Mmoo

Figure 2. Selecting the menu operation "TYPEIN and EVAL"
(In this case, the code is always going to evaluate to the same value, but in general

the code might have variables, and the value shown may only be an example of what
the code could evaluate to.)

A Session With TINKER 3. When Tinker evaiuates some code it remembers both the vaiue and the code
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To show what happens when we make further use of the value (1 2 3), let's try
reversing the list. We select the operation CALL a function, and Tinker asks us for
the name of the function in the editor window. We type in REVERSE.

Defining (HISTORY):
txample: (1 2 3), Code: {LIST 1 2 3)
Code: (REVERSI)

(LIST 12 3)
What's the name of the function to call?
REVERSE

Edrtor Hord

Figure 3. Selecting the menu operalion "CALL & Tuunction”

It's not strictly necessry that we access the function by typing its name. We would
like to extend Tinker so that we could point to an operand like the list, and Tinker
would produce a menu of possible operations on if, based on the type of the data.
For lists, it could Kiow that conunon operations on lists are CAR, CDR, CONS, KULL,
and one of these could be chosen, or another menu containing a larger nuwinber of
less common functions could be sclected.  Tinker could also interactively check the
types of argumeats.  If we inadvertently selected an argument of the wrong type,

A Sesslon With T:NKER O, Whan Tinker avaluales somn eode it temembers both the value and the code
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Tinker could warn us right away, and we could fix it immediately. In conventional _
systems, the bug would go undetected until much later. f

What appears now on the screen is a partial description of some code, a call to
REVERSE. It isn't complete yet, because we haven't filled in the arguments to /

REVERSE, and evaluated it.

Next, we select Fill in an ARGUMENT. Selecting the list (1 2 3) chooses it as the
argument  to  REVERSE, moving the list inside the call to REVERSE.  Tinker
automatically makes this selection for us, rather than stopping to ask, since there was
only one piece of code that needed arguments, and only one object on the screen

that could possibly be an argumnent to REVERSE.

Befining (HISTORY): L

Code: (REVERSE (QUOTE (1 2 3)))

o L e e e S e s o s s
"Example: (12 3), Code: (LIST 123" §
t
REVERSE .
Since there was auly ane choice, 1 assumed: i
“Code: (REVERSE)"
Since there was only one choice, I assumed:
frh’:‘/u l"l"f"-l'.lv L ) N o . ) o L |
Figure 4. Selecting the menu operation "Fill in an ARGUMENT". W
A Sesslon With TINKER 3. Wren Tinker evaluates some zode il remembers both the value and the code
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Tinker has a policy of bothering the user as little as possible; if it can determine
that there's only one reasonable choice to be made, it goes ahead and makes the
choice. (The choice can always be retracted, of course, if it had any unwanted
consequences.) Tinker informs us of this in the editor window by saying Since there
was only one choice, I assumed: .... If there were more than one possibility,
Tinker would ask us which one we wanted. We shall see this later. Automatically
making the obvious choice in the current context is very helptul, especially to
experienced progranuners who find that this speeds up interaction with the system.
This automatic choice feature can be disabled for naive users, or those who don't
find it to their taste.

Now that we've filled in all the arguments, we choose EVALUATE something, to find
out the value of the call to REVERSE. (Tinker could be made to realize that since
REVERSE takes only one uargument, the code could be evaluated as soon as that
argument is filled in.) This produces the list (3 2 1) from (1 2 3).

e o befining (1sioRry):
Example: (32 1), Code: (RIVIRSE (1181 1 273))

i Figure 5. Selecting the menu operation "EVALUATE something”.

Notice that the code (L1ST 1 2 3) that produced the argunient to REVERSE appears in
the code portion. When we used the list as 4 component of a larger expression, the
cade which produced that hst as carrted along as part of the code for the larger
expression. We can build up large expressions a little bit at a time, and Tinker
makes visible all the intermedive steps of the evaluation, so we can verify that each
step had the effect we ntended.

A Session With T1I7inER 2 VWhen Tinker evaluates some code it remembers both the value and the code
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In this way, Tinker allows us to build up parts of a program like pieces of a jigsaw
puzzle. We're free to piece together small parts of a program in any order, then
combine them into larger chunks. The order in which we evaluate expressions while
constructing the program doesn't have to be the same as the order in which the final
program will evaluate expressions. We can write the program in the left-to-right
order as we would write it conventionally, or we can follow the bottom-up order of
evaluation.  We believe this added flexibility will make it much easier to
incrementally construct and modify prograins.

4. Defining a new function using an example

We will now demonstrate how to tell Tinker about a new function. Tinker will
learn about a new function by watching us work out an example of a typical use of
the new function. We will show Tinker how to perform each step of the definition
of the function. Tinker will remember each step, showing us the result of each step
on the data we supplied it in the example. When we've finished working out the

example, Tinker will generalize that example and construct a procedure for the
general case.

it

inciitiibsionsain

A Session With TINKER 4, Defining a new function using an e»ample
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We will start with a very simple example, so the reader can get the flavor of our
approach, and we will then proceed to more complex examples. We will now define
a function 2ND which extracts the second element of a list using the operations CAR
and CDR

To begin, we pretend we already have the definition of the function 2ND, and we
show Tinker a sample of how we would like the procedure to be used. We feed it
the list (FIRST SECOND THIRD), and we would like it to evaluate to SECOND.

We use TYPEIN, but DON'T EVAL to enter the code (2ND '(FIRST SECOND THIRD)) then

use NEW EXAMPLE for function, to identify this as a new example for the function
Z2nd.

Defining (H!STORY):

Code: (2MD (QUOTE (FIRST SECOND THIRD)))

e = - e e e el e e e e o e o e s e — e e ¢ e e

Type some code:
(ZND (FIRST SECOND THIRM)

Eds toe Hineee i

Figure 6. Selecting the menu operation "NEW EXAMPLE for function".

A Session With TINKER ) 4. Detining a new function using an example

it it shcaibs s o
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The label of the snapshot window informs us that we are now defining what the
code (2ND '(FIRST SECOND THIRD)) should evaluate to. Tinker has saved the state of

the snapshot window. Inside the snapshot window, we see that Tinker manufactured !
a new variable, which it called 2ND-ARG-1, to represent the single argument to the f

procedure 2ND.

(We could, if we like, rename the variable.) Tinker tells us that the

list (FIRST SECOND THIRD) is an example of the argument to the function 2ND. Given ;

the arguments as raw material, we compute the value of the procedure in the
snapshot window. 4

Figure 7. Selecting the menu operation "CALL a FUNCTION".

A Sesslon With TINNER 4. Detining a new function using an example

Defining (2HD (QUOTE (FIRST SECOND THIRD)}): e ‘
Example: (FIRST SECOND THIRD), Code: 2HD-ARG-1 .
Code: (CDR)
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To extract the second element of the list, we must first chop off the first element
using the function CDR. We perform the menu operations CALL a function, type in
CDR, Fill in an ARGUMENT, then EVALUATE something. After these three operations,
we're shown that the COR of the argument to 2ND is the list (SECOND THIRD).

Defining (2ND (QUOTE (HIRST SLCOND THIRD))): . L :

Example: (FIRSI SLCOND THIRD), Code: 2ND-ARG-1
Example: (SECOND THIRD), Code: (COR ZND-ARG-1)

Figure 8. Selecting the menu operation "EVALUATE something”.

Now, we're getting closer. We can see that the symbol SECOND is the first element of i
that list, and we can obtain it by taking the CAR  Tinker shows us that the answer
we want, SECOND, is obtained by taking first the CDR, then the CAR of the argument

to 2ND.

A Session With TINKER 4. Detining a new function using an example

S
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Next argument to (CAR_)?

Example: (FTRST SECOND THIRD), Code: 2ND-ARG-1
> [ExampTc: (SLCOND TIIRD), Codc: (CDR ZND-ARG-1))
; Code: (CAR)

Figure 9. Selecting the menu operation "F111 in an ARGUMENT".

Although this function is really simple, it illustrates an important point about Tinker.
In conventional programiming, extracting elements of a list with CARs and CORs is
usually an error-prone process. It's very easy to specify one operation too few or
too many. This is because when we specify a path through a data structure, we
have to imagine where the path will lead. Since Tinker shows us all the
intermediate results when the path is specified, the immediate visual feedback makes
it easy to verify that a sequence of operations has the desired result.

A Session With TINKER 4. Detining a new function using an example
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Since we've now obtained our desired result for the function, we select the RETURN «
value operation, saying we want to return SECOND as the result of (2ND ‘'(FIRSY
SECOND THIRD)).

Return which one?

T T TExample: (FIPS1 SECOND THIRD), Code: Z2ND-ARG-1 |
[Fxampie: STCOND, Code: (CAR (CDR_ZND-ARG-1))]

S amd

Figure 10. Selecting the menu operation "RETURN a value®

A Session With TINKER 4. Detining a new funclion using an exampie '
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Tinker restores the state of the snapshot window, returning us to HISTORY. In the
editor window, we examine the definition of 2ND. This shows us that Tinker has
written the code for 2ND, defining it as a function of one argument

Defining (HlSIVOR?Y)_:A e
txample: SICOND, Code: (?Nl) (OUOIL (IIRSI SLCOND HIIRD)))

(GRINDEF 2NDY 7 T e e e
{DEFUN 2ND (2ND-ARG-1)
fCAR (CDR 2ND-ARG-1)))

r‘-h o ”'A""' e

Figure 1. Selecting the menu operation "RETURN a value”.

The output produced by Tinker is a ordinary Lisp program, indistinguishable from a
definition typed in using the tnore conventional methodology. When we're writing a
progriam, Tinker maintains its own data representation for programs, and has its own
evaluator, so it can provide services the ordinary Lisp system does not provide. But
since Tinker also writes ordinary Lisp code, functions produced by Tinker cian be
compiled with the Lisp compiler. This means there's no penalty for using Tinker
during program development. The resulting code runs just as efficiently as if it were
written conventionally. B

A Se sion Whth TINKER 4. Detining & new function using an example
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Notice that as soon as our procedure appears, we are guaranteed that it works for
the test case we've given it' There's no separation between wrifing a program und
testing it.  Instead, both writing and testing are interleaved and performed
incrementally.

Tinker's approach is more robust than conventional systems. When a piece of

erroneous code is introduced in a conventional program, it is usually buried deep

within many other operations before we get a chance to see whether the code h:.

the desired result for typical test cases. The symptoms appear only when the entire

program s tested, and an error message or incorrect result is produced. We ure

then faced with the arduous task of isolating the erroneous code from many other ‘
operations, most of which ure irrelevant. With Tinker, we can see that an incorrect

piece of code fails to work for a test case as soon as it is introduced to the system.

S. Defining a function with conditionals and recursion

Now that we've shown how to define a simple function with Tinker, we will proceed
to a more realistic scenario.  This will show how to introduce functions with
conditronals and recursion, !

A folk wisdom among programmers says that in order to thoroughly test a progriam,
at least one example for each branch of a conditional must be tried. So, to define a
program with a conditional, we must provide Tinker with several examples, each one
illustrating an important path for the resulting program.

We will also use a set of examples to build up functions with recursive calls. At any
time, the cxamples we've given so far for a function will generate a partial definition
of that function. It may not completely define the function we want, but the partial
definition wili work for the examples given it so far. We can then extend the
function’s behaviour with new examples which enable it to handle new cases, building %
upon the partial definition.

Our  demonstration  will show defining a symbolic differentiation function. The
tunction will uaccept a list representing a symbolic expression in prefix form, and
return the syinbolic derivative in the same form. The DERIVATIVE function will have
several cases, buased on the type of the expression, and may need to recursively
compute the derivative of a subexpression.

A Session With TINKER 5. Defining a function with conditionals ard recu s on
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First, let's tell Tinker about a very simple case. The derivative of a variable is 1
with respect to itself. For this, we give Tinker the example (DERIVATIVE 'X ‘X).

Delfining (HISTOPY): o !

§ v . S
Code: (DERIVATIVE (QUOTE X) (QUOTE X))

i

. : : _— N

Figure 12. Selecting the menu operation "NEW EXAMPLE for function” '
We type in the constant 1 using TYPEIN and EVAL, and return it with RETURN a value.

Defining (DERIVATIVE (QUOITL X) (QUOTE X)): L
o CExample: X, Cote: DERIVATIVE-ARG-1 ]
Frample: X, Cote: DERIVAYIVE-ARG-2
Example: 1, Code: 1 1
i

_— ,_ o N R

Parore 54 Seleching the meny operabion "RETURN a vajue”

A Session With TINKER 5. Detining a function with conditionals and recursion
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Next, we preseat a more complicated example. Let's try the derivative of the
expression (« X 3). This example leads to considering fwo more cases: we shall tell
Linker how 1o ke the derivative of an eapression: which is a sum, and also how 1o
take the dernative of a constant.

Detaniong (Hnlopy):

' S fxample: 1. Code: (DEPIVALIVE (QUOLE X) (QUOTE X))

Code: (DERIVATIVE (QUOTE (+ X 3)) (QUOTE X))

L

Figure 14. Selecting the menu operation "NEW EXAMPLE for function®.

The recursive rule for finding the derivative of a sum says that the derivative of a
sutn s the sum  of the derivatives of the subexpressions. We extrict the
subeapressions X and 3 from the sum (+ X 3). Tinker remembers that X is the
second element of the first urgument to DERIVATIVE, and that 3 is the third element.

A Sesson Wdan TNk AR 5 Detining a funclion with condiliongls And 1@ s n
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Defining (NP.IVAI]V! (ovort (+‘X ) (Ql‘!(HlA X)):
[ T T T Vhxampie: (+ X 3), Code: DIRIVATIVE-ARG-]
fxample: X, Code: DIRIVATIVI-ARG-2
Example: X, Code: (CADIE DIRIVATIVE -ARG-1)
Fxample: 3, Code: (CADDR DIRIVATIVE-ARG-1)

mom ey

L - .

Figure 1N, Selecting the menu operation "EVALUATE something”.

Now, we have to take the derivative of X, so we CALL a function, type DERIVATIVE,
and feed it the subexpression X as an argument. Since taking the derivative of a

viiriable is something Tinker already knows how to do, we simply EVALUATE I,
returning the answer 1

Defining (DERIVATIVE (QUOTE (+ X 3)) (QUOTE X)):
Example: (+ X 3), Code: DERIVATIVE-ARG-1
Example: X, Code: DERIVATIVE-ARG-?
Example: 3, Cotle: (CADDR DERIVATIVE-ARG-1)
Example: 1, Code: (DERIVATIVE (CADR DERIVATIVE-ARG-1) DERIVATIVE-ARG-2)

Fizure 16 Sclecting the menu operation "EVALUATE something”.

A Lession With TINKER 5. Detining a funclion with conditionals and recursion
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Now, we try the same thing with the other subexpression, 3 But wait -- Tinker
doesn't know how to take the derivative of a constant like 3 yet. So, we have to tcll
it. Instead of evaluating the call (DERIVATIVE 3 'X), we select NEW EXAMPLE for
function, telling Tinker we wish to define this case.

Dot ining (DERIVATIVI (QUOTE (+ X 3)) (QUOTE X)):
Frample: (+ X 3), Code: DIRIVATIVE-ARG-]
Pyample: X, Code: DERTVALIVE-ARG=?
bxample: 1, Cote: (DURTYALIVE (CABE OLREVATIVE-ARG=1) DERTVATIVE CAPG=2)
Corle (DEREYS LI e )

L . o . U , s

Figure 17. Selecting the menu operation "NEW EXAMPLE for function®.

We leave temporarily the process of defining the derivative of (+ X 3) to define the
derivative of 3. This shows a kind of rop down program development process. In the
course of developing our DERIVATIVE procedure by stepwise refinement, we discovered
a new case that had to be handled. We can produce a definition of that new case,
then return to the caller to continue with the original definition. This would also be
uscful it we discovered that it would be helpful to have an auxiliary function. We
could define the auxiliary function, inake sure it works in the cases needed by its
caller, then return to continue the definition of the caller.

We would like Tinker to support a rop down debugging methodology. What tempts
most  practical programmers to a bottom up programming style rather than the
conceptually cleaner top down programming style advocated by experts? To a great
extent, it is the fact that debugging is usually performed bottom up. Subprocedures
are tested before the calling procedures can be debugged. One well-known way to
encourage top down debugging is the use of dummy subprocedures. To test a calling
procedure, a partial definition of the subprocedure is constructed, which need only be
sufficient to test the cases used by the calling procedure.

A Sesslon With TINKER 5. Defining a funclion with conditionals and recursion
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Tinker makes top down debugging very convenient. When we decide we would like
to use a subprocedure we haven't written yet, we write the call to it, and define it
using the NEW EXANPLE operation, just having it return the answer for a specific cuse
rather than compute the value in general. This allows us to test the calling
procedure. Later, when we are ready to write the definition of the subprocedure, we
already have a set of appropriate test cases to guide us in writing the definition.

Now, we type in 8 as the answer for the derivative of the constant 3, and select
RETURN a value.

Defining (DERIVATIVE 3 (QUOTE X)):
‘Fxample: 3, Code: DERTVATIVI-ARG-1
txample: X, Code: DIRIVATIVE-ARG-?

txample: ¢, Code: 0

Fipure 18. Selecting the raenu operation "RETURN a value”
This gives Tinker /wo examples for the DERIVATIVE function,

(DERIVATIVE 'X 'X) evaluates to 1
(DERIVATIVE 3 'X) evaluates to 8

Tinker compares the code for the two cases, and notices that they're different. So

Tinker decides that the code for the DERIVATIVE function must contain a conditional
But how should the two cases be distinguished?

A Session With TINKER 5. Defining a function with conditionals and recursion
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Tinker asks us to distinguish between the two cases by defining a predicate for the
conditional. When defining a predicate, Tinker displays two snapshot windows. One
will correspond to the true case of the conditional, one to the false case.

True predicate for: txample: 1, Code: 1
Fxample: X, Code: DERIVAIIVE-ARG-)
Example: X, Code: DIRIVATIVE-ARG-2

False predicate for: txample: 0, Code: 0
Example: 3, Code: DERIVATIVI-ARG-)
Example: X, Code: DERIVATIVE-ARG-?

Type samething to evaluate:
0

How do I distinguish hrtween
"Example: 1. Code: 1" and
“"Example: 0, Code: 0"7)

Ed:ter Nindow

Figure 19. Selecting the menu operation "RETURN a value".

As we define the predicate, code will appear simultancously in both windows. Since
the values of the arguments to DERIVATIVE are different in the two cases, the code
for the predicate may evaluate differently in one window than the other. Hopefully,
if we've successfully defined a predicate to distinguish between the two cases, the
predicate will evaluate to T (Lisp's way of saying true) in the top window, and NIL
(Lisp's falso) in the other.

A Sesslon With TINKER

5. Detining a tunction with conditionals and recursion
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How do we decide how to choose between the two cases? In the first case, the
distinguishing property is that the two arguments to DERIVATIVE are equal So, we
enter the code (EQUAL DERIVATIVE-ARG-1 DERIVATIVE-ARG-2), and see that 1t evaluates
1o T in the top window, NIL in the bottom window. We return this as the value of
the predicate.

True predicate for: Example: 1, Code: 1

Example: X, Code: DERIVATIVE-ARG-1
Example: X, Code: DERIVATIVE-ARG-2
Example: T, Code: (EQUAL DERIVATIVE-ARG-1 DERIVATIVE-ARG-2)

False predicate for: Example: 0, Code: 0

example: 3, Code: DERIVATIVE-ARG-1
Example: X, Code: DERIVATIVE-ARG-2
Example: NIL, Code: (EQUAL DERIVATIVE-ARG-1 DERIVATIVE-ARG-2)

PP o

Figure 20. Selecting the menu operation "RETURN a value".

Tinker's displaving both cases of a conditional is valuable in that it helps to assure
that the predicate performs its desired function of separating the two cases. Often,
the distinguishing predicate is more easily determined after the code for the cases
appears.  Conditionals can also be introduced explicitly in a more conventional
manner with the Make a CONDITIONAL menu operation. We would also like to provide
the option of leaving one branch of the conditional undefined while the code for the
other branch is worked out.

A Sesaon With TINKER 5. Detining a function with conditionals and recursion
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Tinker returns to the case of defining the derivative of the sum, (+ X 3) We
cexamine the code for the DERIVATIVE function that Tinker's built up so far. We can
sce that the code consists of an if with the predicate and the two cases wc've
defined.

Defining (DERIVATIVE (QUOTE (+ X 3)) (QUOTE X)):

Example: (+ X 3), Code: DERIVATIVE-ARG-1
Example: X, Code: DERIVATIVE-ARG-2
Example: 1, Code: (DERIVATIVE (CADR DERIVATIVE-ARG-1) DERIVATIVE-ARG-2)
Example: 0, Code: (DERIVATIVE (CADDR DERIVATIVE-ARG-1) DERIVATIVE-ARG-2)

[ DEFUN DFRIVATIVE IDERIVATIVE-ARG=1 DERIVATIVL-ARG-2)
(F (EQUAL DERIVATIVE-ARG-1 DERIVATIVE-ARG-2)

\ 4

anj

Eedr o Myt N o o _ ]
Figure 21, Selecting the menu operation "RETURN a value”

At this stage, Tinker thinks that in every case where the arguments to DERIVATIVE
aren't equal, the answer is zero. This isn't correct, of course, but it constitutes a
partial definition, correct for what we've shown it so far, and we will continue to
extend the definition.

A Session With TINKER %. Defining a function with conditlionals and recursion
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We've computed the derivatives of the subexpressions, now it's time to combine them
to form the derivative of the sum. Since the derivative of a sum is the sum of the
derivatives, we construct a list of the symbol + and the expressions for the
derivatives of the subexpressions. Evaluating this results in the list (+ 1 8).

Det ining (DERIVATIVE (QUOTE (+ X 1)) (QUOTE X)):
bxample: (+ X 3), Code: DIRIVATIVE-ARG-)
Example: X, Code: DIRTVATIVE-ARG-2
Example: (+ 1 ...), Code: (LIS (QUOTE +) .. .)

e e oo — e

e e o e i & e 425

Fipvre 20 Selecting the nenu operation "EVALUATE something”.
(We won't bother trying to simplify the expression for the derivative, so that it could

recognize that (+ 1 8) is the same as 1.) Since this is the correct answer for the
derivative of (+ X 3), we return it

A Session With TINKER 6. Detining a function with conditionals and recursion
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This provides Tinker with yet another case for the DERIVATIVE function. Again, it
shows us two snapshot windows and asks us to define a predicate, contrasting the
sum with the last case we showed it, (DERIVATIVE 3 'X). We enter the code (ATOM
DERIVATIVE-ARG-1) to distinguish the constant case and return it Now, Tinker can

differentiate constants, variublef and surns. )
True prediaicate Tor: Example: 0, Code: 0

[ Uxample: 3, Code: DIRIVATIVI -ARG-]
Ixample: X, Code: DIRIVAIIVE-ARG-?
txample: 1, Code: (ATOM DERIVATIVI-ARG-1)

False predicate fov: txample: (+#1 ...), (’:mlo‘i. (li‘»l_ ( QUO T +)
- Exampic: (+ X 3), Code: PDIRIVATIVE-ARG-]
Example: X, Code: DIRIVATIVE-ARG-?2
txample: HIt, Code: (ATON DERIVAIIVE-APG-1)
U, . et e e e e e

Figure 23. Selecting the menu operation "RETURN a value”.

Tinker currently treats multi-way branches or dispatches as nested two-way branches.
It is possible to modify it to produce a dispatch directly.

A Session With TINKER 5. Detining a tunciion with conditionals and recursion
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To round out our DERIVATIVE program, we could add another case telling Tinker
how to do products, using the chain rule

Defining (HISIOPY):
Ixample: 1, Code: (DIPIVATIVE (QUOTE X) (QUOTE X))
Example: (+ 1 6), Code: (MEPIVATIVE (QUaTE (+ X 3)) (QUOTE X))
Code: (DERIVATIVE (QUOTE (* X X)) (QUOTE X))

e e e e e —

Figure 24. Seleching the menu operalion "NEW EXAMPLE for function" ;

Detining (DIRIVAVIVE (QUOTE (* X X)) (QUOTE X)):
" xample: (% X X), Code: DIRIVATIVE-ARG-]
Ixample: X, Code: DERIVATIVE-ARG-2
Example: (+ (* X ...) ...), Code: (LIST (QUOTE +) ...)

Figure 25. Selecting the menu operation "RETURN a value™

A Session With TINKNER . 5. Defining a function with conditionals and recursion l
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True predicate tov: Ixample: 1, Code: (DERIVALIVE (CADR DERIVALIVE -ARG- ] ) .-

—

Exampie: (+ X ), Code: DIRIVATIVE -ARG-)
Erample: X, Codel BEPIVALIVE -ARG-2
Ixample: 1, Code: (l‘,"'l\l (lil\l’ DERIVATIVIE -ARG-D ) (ouore ))

———— s e - -~

False predicate for: txample: (* X ...), Code: (LIS (Quott )
[ Example: (¢ X XY, Code: DERIVATIVE -ARG-)
txample: X, Code: NERIVALIVE-ARG-2
txample: #Hit | Code: (l()W\I (CAR B RIVALTVE —I\R(i-l) (o 4

Figure 26. Selecting the menu operation "RETURN a value".

And, if we're really going to be conscientious about our derivative program, we
should also define a case where we can't take the derivative! (Programmers often
neglect to include negarive examples as well as positive ones when testing a progran.
This is a prime cause of the fragility of many current software systems.) We
illustrate a cuse where our DERIVATIVE function should produce an error message.

Detining (HISI0RY):

Ixample: 1, Code: (DERTVATIVE (QUOTE X) (QUOTE X))
Example: (+ 1 6), Code: (DIRIVAIIVI (QUOTI (+ X 3)) (QUOTE X))

pre——— . .

Code: (DERIVATIVI (QUOIE (UNKNOWN)))

Figure 27. Selecting the menu operation "NEW EXAMPLE for function”.

A Session With TINKER 5. Defining a function with conditionals and recutsion

Example: (+ (* X 1) (* 1 X)), Code: (DERIVATIVE (QUOTE (% X X)) (0014 X))
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Pefining (DEPIVATIVE (QUarE (UORHOMIY Y (eiorE X)) .
S Example: (UHENOVHY), Code: DERTVATIVE-ARG- )
Fxample: X, Code: DIRIVALIVE-ARG-2

Example: “You goofed!, Code: (PPINL "You goofetdt )

Finure 28 Selecting the menu operation "EVALUATE something".
True predicate tor: Txample: (+ (¢ K . ) o) Coder (1051 (ot 4)
[ Example: (* X X). Code: BIRIVATIVI ARG |
txample: X, Code: DIRTIVALIVE -ARG-?
Example: 1. Code: (1QUAL (CAR DIRIVATIVI-ARG-T) (QUOTL +))

[ Example: (UBKBOMEY . Code: DEPTVATIVE-ARG- 1
Pxample: X, Code: DERIVATIVE-ARG-?
Example: NI, Code: (FQUAL (CAR BERIVALIVE-ARG=1) (QUaTE +))

L. . ,
Figure 29. Selecting the menu operation "RETURN a value®

A Session With TINKER 6. Detining a function with conditionals and recursion
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N Detiming (MEs1ony):
[ Example: 1, Code: (DERIVATIVE (QUOTE X) (OUOIE X))

txample: "Yon gooled!", Code: (DIPIVALIVE (QUOTE (UHYHOVIY ) (OG0

L , o

Figure 30. Selecting the menu operation "RETURN a value”.
Collecting all these cases results in the following final program:

(DEFUN DERIVATIVE (DERIVATIVE-ARG-1 DERIVATIVE-ARG-2)
(IF (EQUAL DERIVATIVE-ARG-1 DERIVATIVE-ARG-2) 1
(IF (ATOM DERIVATIVE-ARG-1) @
(IF (EQUAL (CAR DERIVATIVE-ARG-1) '+)
(LIST '+
(DERIVATIVE (CADR DERIVATIVE-ARG-1)
DERIVATIVE-ARG-2)
(DERIVATIVE (CADDR DERIVATIVE-ARG-1)
DERIVATIVE-ARG-2))
(IF (EQUAL (CAR DERIVATIVE-ARG-1) '*)
(LIST '+
(LIST '»
{CADR DERIVATIVE-ARG-1)
(DERIVATIVE (CADDR DERIVATIVE-ARG-1)
DERIVATIVE-ARG-2))
{LIST '»
(DERIVATIVE (CADR DERIVATIVE-ARG-1)
DERIVATIVE-ARG-2)
(CADDR DERIVATIVE-ARG-1)))
(PRINT “You goofed!”)}))))

Associating examples with function definitions will yield important benefits during
program maintenance as well as program construction. When the definition of a
function is edited, Tinker can run through all the test cases again, automatically, and

txample: (+ 1 0), Code: (DIPIVATIVE (QUOTE (+ X 3)) (Qhort ¥))
Example: (+ (* X 1) (* 1 X)), Code: (MPIVALIVE (QUOTE (* X X)) (0imit X))

X))
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issue a warning if any examples work out differently with the new definition
Tinker can make sure that changes intended to exrend the behaviour of some
function don't have the effect of breaking previously correct code.

6. Other features of Tinker

We will present brief explanations of other features of Tinker which appear on the
Tinker edit menu, but weren't encountered in the above scenario.

Tinker EDIT menu

CALL a function
Fill in an ARGUMENT
EVALUATE something
NEW EXAMPLE for function
TYPEIN and EVAL
4ATYPEIN, but DON'T EVAL
Viake a CONODITIONAL
Edit TEXT
Edit DEFINITION
Step BACK
UNFOLD something
COPY something
DELETE something
Escape to LISP
RETURN a value

Figure [31]

UNFOLD is a kind of inverse to Fill in an ARGUMENT. It takes apart expressions,
removing the arguments from a piece of code. COPY duplicates an expression in the
suapshot window. DELETE simply removes an expression from the snapshot window.

Edit DEFINITION is the operation for modifying definitions of functions. It chooses a
specific example for a function defined with Tinker, and returns to a snapshot

window defining that example. Commands can be used to edit the definition which
appears in the window, and the definition of the function is suitably changed. We

A Sec<zion With TINKER 6. Other features of Tinker
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would like to have Tinker run through all the examples again to check to see if they
have changed as a result of the edit

Step BACK is a debugging tool Since Tinker always remembers the code that
produced every value which appears on the screen, the Tinker interpreter is
completely reversible! (Normally, the expense of remembering everything might be
prohibitive, but this is only done for functions being debugged with Tinker. After a
function is completed, it is compiled, and the overhead disappears.)

When 4 bug is encountered, we can simply step backwards until the offending
expression is found. Since we selecs which expression to examine from the menu, it's
casy to skip over details of the evaluation of expressions which are irrelevant to the
bug. We cun zoom in on bugs by examining evaluations at progressively finer levels
of detail. This is unlike conventional steppers which always step linearly forward or
breakpoints and stiack debuggers which always step backward and lose information
about evaluated arguments.

We also provide operations which fall back on the more conventional programmng
tools, so that these can also be used in the cases where they're appropriate. Edit
TEXT tiakes the Lisp code representation for an item in the snapshot window, and lets
us edit it with the Zwei text editor. When we're finished editing the text, we can
indiciate an expression in the editor and return it to Tinker to replace the originally
selected item. Sometimes it's easier to fix things by typing than by menu selection.

Escape to LISP puts us in an ordinary Lisp READ-EVAL-PRINT loop in the editor
window. Anyv Lisp expression can be evaluated there, and the result is printed buck
into the editor window. And, as we have seen, any typed Lisp expression can be
included in Tinker's snapshot window using the TYPEIN and EVAL operation. Thus
Tinker can be used to supplement existing facilities rather than replace them. Tinker
provides compitible interfaces to the conventional programming system which make
all of its features available as well

7. Previous work

The most direct ancestor to our work was Smith's Pygmalion, which pionecered the
idea of menu-oriented programining. Our techniques of displaying examples and
source code for programs simultaneously, our direct production of Lisp code, our
method of abstracting conditionals, and the use of a set of test cases for each
function are some of the contributions which distinguish our work from his. Curry’s

A Session With TINKNER 7. Previous wor
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system is similar in spirit to Pygmalion, and both these systems made interesting use
of graphical rather than textual representations of programs, which we have not
explored. Biermann has an interesting system which applies automatic programming
technigues to synthesizing programs from demonstrations using examples. We see this
as a fruitful area for further research, and we intend to experiment with hooking up
Tinker 10 the description system Omega of Attardi, Simi and Hewitt to perform
reasoning about the structure of programs. Tinker might be useful as a basis for a
user interfuce to program understanding systems such as that of Rich, Shrobe, and 1
Waters.  While we are interested in incrementally interleaving program construction

with resring, they have explored interleaving program construction with verification.

Ultimately, we would like to integrate all of these. |
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