<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
<th>DRSMI/0-80-5-TR</th>
<th>SBIE-AD-E950 094</th>
<th>NL</th>
</tr>
</thead>
</table>

AN APPROXIMATE METHOD FOR CALCULATING CONCENTRATION-PATHLENGTH -- ETC(U)

JUN 80 B W FOWLER
TECHNICAL REPORT 0-80-5

AN APPROXIMATE METHOD FOR CALCULATING CONCENTRATION-PATHLENGTH THROUGH A GAUSSIAN PLUME

Bruce W. Fowler
Advanced Systems Concepts Office

12 June 1980

U.S. ARMY MISSILE COMMAND
Redstone Arsenal, Alabama 35809

Approved for public release; distribution unlimited.
DISPOSITION INSTRUCTIONS

When this report is no longer needed, Department of the Army organizations will destroy it in accordance with the procedures given in AR 380-6.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

TRADE NAMES

Use of trade names or manufacturers in this report does not constitute an official endorsement or approval of the use of such commercial hardware or software.
Title: An Approximate Method for Calculating Concentration-Pathlength through a Gaussian Plume

Author: Bruce W. Fowler

Abstract:

The calculation of concentration-pathlength along a general line-of-sight is one of the most time and memory consuming calculations in most obscuration models. An approximate method for calculating the concentration-pathlength for a general, finite length line-of-sight through a Gaussian plume cloud in closed form is developed. Comparisons of the approximation to detailed numerical calculations are presented for selected white phosphorus munitions.
I. INTRODUCTION

Most models for simulating the concentration of obscurant in a smoke or dust cloud make use of gaussian plumes. This concentration must be integrated along some line-of-sight that connects an observer to a target. The complexity of this integration usually dictates that it be performed numerically at great cost in terms of both computer memory and execution time. In this report, an approximate method for calculating this concentration-pathlength in closed form is described.

This investigation is part of an ongoing examination of the effect of battlefield obscuration on the performance of missile (and selected nonmissile) weapon systems as part of the Concepts Analysis and Validation work area of the A214 Missile Technology Program. The results of this examination will be used in the formulation, analysis, and evaluation of present and conceptual missile weapon systems.

II. CONCENTRATION-PATHLENGTH DEVELOPMENT

The transmission through an obscurant from an observer to a target (point in space to point in space) is commonly expressed as

\[T = \exp \left[-\alpha C_z \right] \] (1)

where: \(T \) = transmission,
\(\alpha \) = extinction coefficient of the obscurant (cm\(^2\)/g), and
\(C_z \) = concentration-pathlength through the obscurant (g/cm\(^2\)).

The concentration-pathlength is usually given by

\[C_z = \int_{\text{target}}^{\text{observer}} C(x,y,z) \, d\xi(x,y,z) \] (2)

where: \(C(x,y,z) \) = concentration of obscurant at point with coordinates \(x,y,z \) (g/cm\(^3\)), and
\(\xi(x,y,z) \) = line-of-sight (cm).

The most common coordinate system used is a cartesian coordinate system with origin at the formation point of the obscurant cloud (the cloud coordinate system). The x axis of this system lies in the ground plane along the wind direction, positive downwind. The y axis is vertical and the z axis is oriented so that the system is right-handed. An alternate coordinate system, called the cloud centroid coordinate system, has the same orientation, but the origin is at the cloud centroid. This coordinate system is time dependent.
The observer and target have coordinates \(x_o, y_o, z_o \) and \(x_t, y_t, z_t \) in the cloud coordinate system. The centroid of the cloud has coordinates \(u(t-t_0), 0, z(t-t_0) \), where \(u \) is the ground plane wind speed, \(t_0 \) is the initial formation time of the obscurant, and \(z(t) \) is the centroid rise function.

The concentration of obscurant is most commonly expressed as some form of trivariate gaussian. One of the simplest of these which contains the complexity needed for this report is that of the Smoke Effectiveness Manual Model (SEMM).\(^{10}\) This model is

\[
C = \frac{2Q\lambda\Omega}{(2\pi)^{3/2}\sigma_x\sigma_y\sigma_z} \exp \left[-1/2 \left(\frac{(x-ut)^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} + \frac{z^2}{\sigma_z^2} \right) \right]
\]

where:

- \(Q \) = munition load of obscurant producing material (g),
- \(\lambda \) = efficiency factor,
- \(\Omega \) = yield factor,
- \(\sigma_x, \sigma_y, \sigma_z \) = cloud standard deviations (time dependent) (m),
- \(x, y, z \) = cartesian coordinates of points in cloud coordinate system (m),
- \(u \) = wind speed (m/s), and
- \(t \) = time since cloud formation (s).

The cloud rise function is zero. Equation 3 is appropriate for an instantaneous cloud.

Two methods are commonly used to develop the explicit form of the concentration-pathlength: line-of-sight (LOS) parametrization and coordinate system rotation. Each shall be reviewed separately. In LOS parametrization, the coordinates along the LOS are written as

\[
x = x_o + \Delta x_n \tag{4}
\]
\[
y = y_o + \Delta y_n \tag{5}
\]
\[
z = z_o + \Delta z_n \tag{6}
\]

where:

\[
\Delta x_n = \frac{\xi_t - x_o}{d} \tag{7}
\]
\[
\Delta y_n = \frac{\xi_t - y_o}{c} \tag{8}
\]
\[
\Delta z_n = \frac{\zeta_t - z_o}{d} \tag{9}
\]

The distance between the observer and the target is
\[d = \left[(x_t - x_o)^2 + (y_t - y_o)^2 + (z_t - z_o)^2 \right]^{1/2} \]

(10)

The parameter \(\eta \) takes on all values between 0 and \(d \). Equations 4 through 6 are substituted into Equation 3 to yield:

\[
C(\eta) = \frac{2\eta \lambda \Omega}{(2\pi)^{3/2} \sigma_x \sigma_y \sigma_z} \exp \left[-\frac{1}{2} \left\{ \frac{(x - ut)^2}{\sigma_x^2} + \frac{y_o^2}{\sigma_y^2} + \frac{z_o^2}{\sigma_z^2} \right\} \right]
\exp \left[-\eta \left\{ \frac{(x - ut) \Delta x}{\sigma_x^2} + \frac{y_o \Delta y}{\sigma_y^2} + \frac{z_o \Delta z}{\sigma_z^2} \right\} \right]
\exp \left[-\frac{\eta}{2} \left(\frac{\Delta x^2}{\sigma_x^2} + \frac{\sigma_x^2}{\sigma_y^2} + \frac{\Delta z^2}{\sigma_z^2} \right) \right]
\]

(11)

after some minor rearrangement. The explicit form of the concentration-pathlength is then

\[
C(z) = \int_0^d C(\eta) d\eta
\]

(12)

Although only the last two terms of the right hand side of Equation 11 are \(\eta \) dependent, the integral of Equation 12 must either be performed numerically, the square of the exponent completed and the result extracted from a table, or if \(d \) is sufficiently large, an approximation that \(d = \infty \) may be introduced and the integral performed analytically.11

The technique of coordinate system rotation first translates into cloud centroid coordinates, and then defines the scaled coordinate system given by

\[
x' = \frac{x}{\sigma_x} \\
y' = \frac{y}{\sigma_y} \\
z' = \frac{z}{\sigma_z}
\]

(13)

where \(x, y, z \) are in cloud centroid coordinates. Thus, the observer coordinates in this system are
and the concentration, Equation 3, is

\[C(x', y', z') = \frac{20\lambda_{\mu}}{(2\pi)^{3/2}\sigma_x\sigma_y\sigma_z} \exp\left[-\frac{1}{2} \left(\frac{x'^2}{\sigma_x^2} + \frac{y'^2}{\sigma_y^2} + \frac{z'^2}{\sigma_z^2} \right) \right] \]

(15)

Next, the ground plane distance (scaled) between observer and target is defined as

\[d' = \left[(x'_t - x'_o)^2 + (y'_t - y'_o)^2 \right]^{1/2} \]

(16)

and two angles

\[\phi = \arctan \left[\frac{y'_t - y'_o}{x'_t - x'_o} \right] \]

(17)

and

\[\theta = \arctan \left[\frac{z'_t - z'_o}{d'} \right] \]

(18)

These two angles define a rotation matrix

\[R = \begin{bmatrix}
\cos(\theta) \cos(\phi) & \cos(\theta) \sin(\phi) & \sin(\theta) \\
-sin(\phi) & \cos(\phi) & 0 \\
-sin(\theta) \cos(\phi) & -sin(\theta) \sin(\phi) & \cos(\theta)
\end{bmatrix} \]

(19)

and a new coordinate system by

\[\eta = R \cdot \tau' \]

(20)

where:
The new coordinate system has the advantage that \(\eta_y = \eta_{y0} \) and \(\eta_z = \eta_{z0} \). Only \(\eta_x \) varies. The concentration is given by

\[
C = \frac{2Q_0\Omega}{(2\pi)^{3/2}\sigma_x\sigma_y\sigma_z} \exp \left[-\frac{\eta_x^2}{2} \right] \tag{22}
\]

The concentration-pathlength is then given by

\[
C_k = \frac{2Q_0\Omega}{(2\pi)^{3/2}\sigma_x\sigma_y\sigma_z} \left(\frac{\cos^2(\theta) \cos^2(\phi)}{\sigma_x} + \frac{\cos^2(\theta) \sin^2(\phi)}{\sigma_y} + \frac{\sin^2(\phi)}{\sigma_z} \right)^{-1} \exp \left[-\frac{1}{2} \left(\eta_y^2 + \eta_z^2 \right) \right] \int_{\eta_{x0}}^{\eta_x} \exp \left[-\frac{\eta_x^2}{2} \right] d\eta_x \tag{23}
\]

which is equivalent to Equation 12 if the square of the argument is completed and the variable of integration shifted. The value of Equation 23 is that it may be written in terms of error functions (erf's).

The error function is given by

\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp \left[-t^2 \right] dt \tag{24}
\]

Equation 23 may be rewritten in this form by defining a new variable of integration

\[
\zeta = \frac{\eta_x}{\sqrt{2}} \tag{25}
\]

and simple algebra. This gives
\[
C_x = \frac{\Omega}{2\sigma_x \sigma_y \sigma_z} \left\{ \frac{\cos^2(\theta) \cos^2(\phi)}{\sigma_x} + \frac{\cos^2(\theta) \sin^2(\phi)}{\sigma_y} + \frac{\sin^2(\theta)}{\sigma_z} \right\}^{-1} \\
\exp\left[-\frac{1}{2} \left(\eta_y^2 + \eta_z^2 \right) \right] \left[\text{sgn}(\eta_{x/t}) \text{erf}\left(\frac{\eta_{x/t}}{\sqrt{2}}\right) \right] - \text{sgn}(\eta_{x/o}) \text{erf}\left(\frac{\eta_{x/o}}{\sqrt{2}}\right)
\]

where:

\[
\text{sgn}(x) = 1, \ x > 0, \\
= 1, \ x = 0, \ \text{and} \\
= 0, \ x < 0.
\]

The use of the \text{sgn} function arises from the fact that the integrand of the error function is even (non-negative) so that the sign of the integral depends only on the sign of the end point.

Equation 26 is usually the most efficient form to use in computing concentration-pathlength since the error function may be compactly computed using a single \text{Pade} approximant.12 Alternately, if \(|\eta_{x/t} - \eta_{x/o}| \gg |\eta_{x/t}| \), and \(|\eta_{x/o}| \gg |\eta_{x/t}| \), then the integral of Equation 23 may be analytically solved for infinite limits.11

\section*{III. APPROXIMATION TO THE ERROR FUNCTION}

A function that is well-known to solid state physicists and statistical mechanicians is that used to describe the distribution of states of particles obeying Fermi-Dirac statistics.13 This function has the form

\[
f(x) = [1 + \exp(x)]^{-1}
\]

which has the property:

\[
f(x) = 1, \ x \ll 0, \\
= 0, \ x \gg 0, \ \text{and} \\
= 1/2, \ x = 0.
\]

For simplicity, \(f(x) \) is referred to as a Fermi function.

Less well-known are the properties of the derivative of the Fermi function. The derivative may be calculated in straightforward manner as

\[
\frac{df(x)}{dx} = -\exp(x) f(x)^2 \\
= -f(x) f(-x).
\]
The derivative of the Fermi function has a maximum value of 1/4 at $x = 0$. It is also approximately gaussian in shape. This is shown in Figure 1.

This shape leads to the suspicion that the Fermi function may be used as an approximation to the error function

$$\exp \left[-x^2 \right] = -4 \cdot \frac{df(ax)}{d(ax)}$$

(31)

where a is a parameter chosen to give agreement with the error function.

IV. PERFORMANCE OF THE APPROXIMATION

As an investigation of the relative accuracy of the approximation for the error function developed in the last section, Equation 35, the SEMM model was exercised for several WP munitions. HC (hexachloroethana) munitions were not exercised because of the additional computational burden involved. The approximation is, of course, still as valid for HC, and reduces the computational burden, but the time dependence of the calculation for HC only detracts from the examination of the approximation.

Several geometries of target and observer were considered, both symmetric and unsymmetric with respect to the cloud. The quantity of comparison used was the visual transmission through the cloud, Equation 1, between observer and target. The worse cases found were when both target and observer were on the same side of the cloud relative to the cloud centroid. An example of these results are shown in Figure 2 through 8.

These figures are plots of transmission for a 4.2-in. WP round, neutral meteorology, and head wind. The observer and target are located on the x axis. Thus, the LOS either passes through the centroid or may be extended through it. The observer is always located $3 \sigma_x$ from the centroid. The distance between observer and target is varied from 0 to $6 \sigma_x$.

It may be seen that the error is greatest for early times when the observer and target are within σ_x of each other. At time $t = 0$, this distance apart (σ_x) is about 4 meters, increasing approximately linearly with time. The error decreases with time. For reasonable observer target distances of 10^3 m, approximately 5×10^3 seconds are required for σ_x to grow to 10^3 m in size. This is interpreted to indicate that the error in this approximation is not stressing for most simulation uses.

By substituting Equation 31 into Equation 24, we may get
erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \left\{ -f \frac{df(x)}{dx} \right\} dx \tag{32}

= \frac{8}{\sqrt{\pi}} \int_{0}^{a} \frac{df(y)}{dy} dy \tag{33}

= \frac{8}{\sqrt{\pi}} [f(0) - f(ax)] .

By using erf(\infty) = 1, Equation 33 may be written as

1 = \frac{8}{\sqrt{\pi}} f(0)

= \frac{4}{\sqrt{\pi}}

which yields

a = \frac{4}{\sqrt{\pi}} \tag{34}

and

erf(x) = 1 - 2f \left(\frac{4x}{\sqrt{\pi}} \right) \tag{35}

Equations 26 and 35 may be combined to yield an approximate concentration-pathlength of

\[C_{\perp} = O \frac{Q \Omega}{2\pi \sigma_x \sigma_y \sigma_z} \left[\cos^2(\theta) \cos^2(\phi) + \cos^2(\theta) \sin^2(\phi) + \sin^2(\phi) \right]^{-1} \tag{36} \]

\[\exp \left[-1/2 \left(\frac{\eta_y^2 + \eta_z^2}{\sigma_y} \right) \right] \left[\text{sgn}(\eta_{xt}) \left[1 - f \left(\frac{4|\eta_{xt}|}{\sqrt{2\pi}} \right) \right] - \text{sgn}(\eta_{xo}) \left[1 - f \left(\frac{4|\eta_{xo}|}{\sqrt{2\pi}} \right) \right] \right] \]

The advantage of Equation 36 lies in its simple evaluation.

V. SUMMARY AND CONCLUSIONS

A closed form integrable approximation for the error function has been developed. This approximation has the advantage that it can significantly reduce the computational burden in existing obscuration models for the calculation of concentration-pathlength. This computational burden currently
represents a large fraction of the computer memory and execution time required to exercise these models.

The error implicit in this approximation has been shown to be such that it is not excessive for most geometries that are of interest to obscuration modelers.

Figure 1. Comparison of gaussian and derivative of Fermi function.
Figure 2. Comparison of transmission calculated using error function and Fermi function through smoke cloud at $t = 0$.

Figure 3. Comparison of transmission calculated using error function and Fermi function through smoke cloud at $t = 30$.

10
Figure 4. Comparison of transmission calculated using error function and Fermi function through smoke cloud at \(t = 60 \).

Figure 5. Comparison of transmission calculated using error function and Fermi function through smoke at \(t = 120 \).
Figure 6. Comparison of transmission calculated using error function and Fermi function through smoke at $t = 240$.

Figure 7. Comparison of transmission calculated using error function and Fermi function through smoke at $t = 480$.
Figure 8. Comparison of transmission calculated using error function and Fermi function smoke at $t = 360$.
REFERENCES

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>DISTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Commander US Army Training and Doctrine Command</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Mobility Equipment Research and Development Command</td>
</tr>
<tr>
<td>1</td>
<td>Commander Naval Weapons Center</td>
</tr>
<tr>
<td>3</td>
<td>Director Night Vision and Electrooptics Laboratory</td>
</tr>
<tr>
<td>1</td>
<td>Commander Naval Air Systems Command</td>
</tr>
<tr>
<td>15</td>
<td>Director US Army Materiel Systems Analysis Agency</td>
</tr>
<tr>
<td>3</td>
<td>Director US Army TRADOC Systems Analysis Activity</td>
</tr>
<tr>
<td>1</td>
<td>Project Manager, Smoke/Obscurants</td>
</tr>
</tbody>
</table>

Commander US Army Training and Doctrine Command
ATTN: ATCD-TEC, Dr. Pastel; -Z, MAJ Licata
Ft. Monroe, VA 23651

Commander US Army Mobility Equipment Research and Development Command
ATTN: DRDME-RT, O. F. Kezer
Ft. Belvoir, VA 22060

Commander Naval Weapons Center
ATTN: Dr. Alex Shlanta (Code 3173)
China Lake, CA 93555

Director Night Vision and Electrooptics Laboratory
ATTN: DRSEL-NV-VI, R. J. Bergmann
T. Cassady
L. Obert
Ft. Belvoir, VA 22060

Commander Naval Air Systems Command
Code Air - 310C, Dr. H. Rossenwasser
Washington, DC 20361

Director US Army Materiel Systems Analysis Agency
ATTN: DRXSY-LM (SAWG Chairman, Mr. J. O'Bryon)
Aberdeen Proving Ground, MD 20783

Director US Army TRADOC Systems Analysis Activity
ATTN: ATTA, Dr. Payne
ATTA-TDS, MAJ Allen
ATTA-TGA, Dr. Dominquez
White Sands Missile Range, NM 88002

Project Manager, Smoke/Obscurants
ATTN: DRCPM-SMK
Aberdeen Proving Ground, MD 21005
DISTRIBUTION (Continued)

Director
Chemical Systems Laboratory
ATTN: DRMAR-CYL-A. R. Pennsyle
 -CLB-P. J. Vervier
 -CLB-P, Stuebing
Aberdeen Proving Ground, MD 21010

Commander
Horry Diamond Laboratory
ATTN: DRXDO-RAF, D. Giglio
2800 Powder Mill Road
Adelphi, MD 20783

The Pentagon
ATTN: Dr. Walsh, Rm 3 D1079
 DUSA(OR) H. Fallin
Washington, DC 20301

Commander
US Army Materiel Development and
 Readiness Command
ATTN: DRCBSI
5001 Eisenhower Road
Alexandria, VA 22304

Oklahoma State University Field Office
ATTN: C. Arpke
 B. Chancey
Eglin Air Force Base, FL 32542

Commander
Wright-Patterson Air Force Base
ATTN: ASD/ENSAC, L. J. Beasley
Dayton, OH 45433

Commander
Naval Weapons Support Center
ATTN: Code 502, D. Johnson
Crane, IN 47522

Commander
Dugway Proving Ground
ATTN: Luther Soloman
Dugway, UT 84022

No. of Copies

3
1
2
1
2
1
DISTRIBUTION (Continued)

No. of Copies

Commander
Office of Missile Electronic Warfare
ATTN: DRSEL-WLM-SE, A. Davenport
 K. Larson
 S. Hoihjelle
White Sands Missile Range, NM 88002

Director
Atmospheric Sciences Laboratory
ATTN: F. U. Hansen
 AMSEL-BL-SY, F. Horning
 DELAS-EO-MD, R. Gomez
White Sands Missile Range, NM 88002

Commander
Eglin Air Force Base
ATTN: AFATL-DEMT, D. Burnett
Eglin Air Force Base, FL 32542

Commander
Naval Support Weapons Center
ATTN: Code DG-302, D. L. Shamblin
Dahlgren, VA 22448

Commanding Officer
Naval Intelligence Support Center
ATTN: NISC (Code 43-H.F. St. Aubin)
4301 Suitland Road
Suitland, MD 20390

Ballistic Research Laboratory
ATTN: DRDAR-BLB (A. LaGrange)
Aberdeen Proving Ground, MD 21005

Commandant
US Army Infantry School
ATTN: ATSH-CD-CS
Ft. Benning, GA 31905

Commander
US Army Test and Evaluation Command
ATTN: DRSTE-AD-M (W. Baity)
Aberdeen Proving Ground, MD 21005

Commander
US Army Combined Arms Combat Development Activity
ATTN: ATZLCA-TM-K (MAJ C. Otto)
 -CAT, R. E. DeKinder, Jr.
Ft. Leavenworth, KS 66027
DISTRIBUTION (Continued)

No. of Copies

Commander
Marine Corps Development Center
ATTN: Code D092, MAJ Tucker
Quantico, VA 22134
1

Commandant
US Army Field Artillery School
ATTN: ATSF-GD-RA, J. Price
Ft. Sill, OK 73503
1

Commander
US Army Concepts Analysis Agency
ATTN: MOCA-SMC, H. Hock
8120 Woodmont Avenue
Bethesda, MD 20014
1

Commander Tactical Air Command
Tactical Air Command
ATTN: RRAR, MAJ Nix
Langley Air Force Base, VA 23665
1

Commander
US Army Ordnance and Chemical Center and School
ATTN: ATSL-CLC-C, LT Slavinski
Aberdeen Proving Ground, MD 21005
1

US Army Materiel Systems Analysis Agency
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005
1

IIT Research Institute
ATTN: GACIAC
10 West 35th Street
Chicago, IL 60616
1

Lockheed Missile and Space Co., Inc.
Huntsville Research and Engineering Center
ATTN: L. R. Baker
Huntsville, AL 35806
1

DRSMI-LP, Mr. Voight
-R
-RPT (Reference Copy)
-Record Copy
-RPR
-OGA, Dr. Fowler
1
1
1
1
15
12