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I. INTRODUCTION

Most models for simulating the concentration of obscurant in a smoke or

dust cloud make use of gaussian plumes. 1- 10 This concentration must be in-
tegrated along some line-of-sight that connects an observer to a target. The
complexity of this integration usually dictates that it be performed numeri-
cally at great cost in terms of both computer memory and execution time. In
this report, an approximate method for calculating this concentration-
pathlength in closed form is described.

This investigation is part of an ongoing examination of the effect of
battlefield obscuration on the performance of missile (and selected nonmissile)
weapon systems as part of the Concepts Analysis and Validation work area of
the A214 Missile Technology Program. The results of this examination will be
used in the formulation, analysis, and evaluation of present and conceptual
missile weapon systems.

II. CONCENTRATION-PATHLENGTH DEVELOPMENT

The transmission through an obscurant from an observer to a target (point
in space to point in space) is commonly expressed as

T = exp [-aCi] (1)

where: T = transmission,

a = extinction coefficient of the obscurant (cm 2/g), and

C£ = concentration-pathlength through the obscurant (g/cm 2).

The concentration-pathlength is usually given by

target
CZ f C(x,y,z) dZ(x,y,z) (2)

observer

where: C(x,y,z) = concentration of obscurant at point with coordinates

x,y,z (g/cm 3), and

Z(x,y,z) = line-of-sight (cm).

The most common coordinate system used is a cartesian coordinate system
with origin at the formation point of the obscurant cloud (the cloud co-
ordinate system). The x axis of this system lies in the ground plane along
the wind direction, positive downwind. The z axis is vertical and the y axis
is oriented so that the system is right-handed. An alternate coordinate
system, called the cloud centroid coordinate system, has the same orienta-
tion, but the origin is at the cloud centroid. This coordinate system is
time dependent.
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The observer and target have coordinates x, Yo z 0 and xt , Yt' zt in the

cloud coordinate system. The centroid of the cloud has coordinates u(t-to),

0, z(t-t ), where u is the ground plane wind speed, t is the initial formation

time of the obscurant, and z(t) is the centroid rise function.

The concentration of obscurant is most commonly expressed as some form of
trivariate gaussian. One of the simplest of these which contains the com-
plexity needed for this report is that of the Smoke Effectiveness Manual
Model (SEMM). I0 This model is

C =  exp 1/2 (x-ut)2

(23/2 a aa2 a (3)
x yz x y

where:

Q = munition load of -curant producing material (g),

X = efficiency factor,

= yield factor,

ax, y, z = cloud standard deviations (time dependent) (m),

x, y, z = cartesian coordinates of points in cloud coordinate system (m),

u = wind speed (m/s), and

t = time since cloud formation (s).

The cloud rise function is zero. Equation 3 is appropriate for an instanta-
neous cloud.

Two methods are commonly used to develop the explicit form of the
concentration-pathlength: line-of-sight (LOS) parametrization and coordinate
system rotation. Each shall be reviewed separately. In LOS parametrization,
the coordinates along the LOS are written as

x = x + Axn (4)

y = Yo + Ayn (5)

z = z + Azn (6)
0

where:

AX :t 0-o (7)

kV - V
t 0 (8)

(Z

(z - Z

T! it di;tnlnc between the observer and the target is
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d = [(xt-xo) 2 + (yt-Yo)2 + (zt-zo) 2 ] 1/2 (10)

The parameter n takes on all values between 0 and d. Equations 4 through 6
are substituted into Equation 3 to yield

______ [ 0(x ut) 2 2 21

C exp e /p +L2 + 2o
(27r) 3/ aG C a 2 a 2

x yy

__ __ [ T__ 
+~ou ) x + y z 0 z}]

exp yx y

after some minor rearrangement. The explicit form of the concentration-
pathlength is then

Z f C(n)dn (12)

0

Although only the last two terms of the right hand side of Equation 11
are n dependent, the integral of Equation 12 must either be performed
numerically, the square of the exponent completed and the result extracted
from a table, or if d is sufficiently large, an approximation that d may
be introduced and the integral performed analytically.

11

The technique of coordinate system rotation first translates into cloud
centroid coordinates, and then defines the scaled coordinate system given
by

xv X
x

Y= y (13)
y

_ z
a

z

where x, y, z are in cloud centroid coordinates. Thus, the observer co-
ordinates in this system are
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S(x 0 -
ut)

0 cy

V
V (14)

0 a7

y

z
ZI

I 0
z

and the concentration, Equation 3, is

C(x',y',z') = 2QX - exp -1/2 x'2 + y12 + z12 ] (15)
(7)32ax Uy az

Next, the ground plane distance (scaled) between observer and target is
defined as

d' =[(xt-x')2 + (yt-Yo > 2] 112 (16)

and two angles

= arc tangent (x' -x') (17)(xtxo) (7

and

e = arc tangent [(z (18)

These two angles define a rotation matrix

cos (e) cos (M) cos (e) sin (4) sin (8)1

R -sin (W) cos (4) 0 (19)

-sin () cos (W) -sin (0) sin (4) cos (e)

and a new coordinate system by

= R. r' (20)

where:
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' (i(21)

The new coordinate system has the advantage that nyt  n and n zt = zo"

Only ix varies. The concentration is given by

(2QXQ - exp 2 (22)

( 2rr)3/ 2o aaaI

The concentration-pathlength is then given by

2 2 2 2 2 1

2QU' ~Cos (9) Cos W4 cos Ce) sin W~ sin ()
Cz=(27) 3/2 aaaC

xyz yz

exp -1/2 ( n+y n}z J exp [ 2d x  (23)

nxo

which is equivalent to Equation 12 if the square of the argument is completed
and the variable of integration shifted. The value of Equation 23 is that it

may be written in terms of error functions (erf's).

The error function is given by 12

erf(x) = -L exp [-t 2 ] dt (24)

0

Equation 23 may be rewritten in this form by defining a new variable of
integration

nX
C x (25)

and simple algebra. This gives
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C cos (0) cos () cos (6) sin() + sin2(0)

x V z x y z

2 2 2 j(0)

sgn(x) = 1, x+-O,

= 1, x-.O, and (27)

= 0, x=0.

The use of the sgn function arises from the fact that the integrand of the
error function is even (non-negative) so that the sign of the integral
depends only on the sign of the end point.

Equation 26 is usually the most efficient form to use in computing

concentration-pathlength since the error function may be compactly computed
using a single Pade approximant. 12 Alternately, if nxt lxo < 0, ITxtl >>I,

and IrNo! -I, then the integral of Equation 23 may be analytically solved
for infinite limits.
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III. APPROXIMATION TO THE ERROR FUNCTION

A function that is well-known to solid state physicists and statistical
mechanicians is that used to describe the distribution of states of parLi-les
obeying Fermi-Dirac statistics. 13 This function has the form

f(x) = [1 + exp(x)] (26)

which has the property:

f(x) = 1, x << 0,

= 0. x >> 0, (29)

= 1/2, x = 0.

For simplicity. f(x) is referred to as a Fermi function.

Less well-known are the properties of the derivative of the Fermi func-
tion. The derivative may be calculated in straightforward manner as

df(x) = -exp (x) f(x) (30)
dx

= -f(x) f(-x).
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The derivative of the Fermi function has a maximum value of 1/4 at x = 0. It
is also approximately gaussian in shape. This is shown in Figure 1.

This shape leads to the suspicion that the Fermi function may be used as
an approximation to the error function

exp [-x2 1 -4 df(ax) (31)
d(ax)

where a is a parameter chosen to give agreement with the error function.

IV. PERFORMANCE OF THE APPROXIMATION

As an investigation of the relative accuracy of the approximation for
the error function developed in the last section, Equation 35, the SEM

10
model was exercised for several WP munitions. HC (hexachloroethana)
munitions were not exercised because of the additional computational burdc
involved. The approximation is, of course, still as valid for HC, and re-
duces the computational burden, but the time dependence of the calculation
for HC only detracts from the examination of the approximation.

Several geometries of target and observer were considered, both symmetric
and unsymmetric with respect to the cloud. The quantity of comparison used
was the visual transmission through the cloud, Equation 1, between observer
and target. The worse cases found were when both target and observer were
on the same side of the cloud relative to the cloud centroid. An example of
these results are shown in Figure 2 through 8.

These figures are plots of transmission for a 4.2-in. WP round, neutral
meteorology, and head wind. The observer and target are located on the x
axis. Thus, the LOS either passes through the centroid or may be extended
through it. The observer is always located 3a from the centroid. The dis-

x

tance between observer and target is varied from 0 to 6a
x

It may be seen that the error is greatest for early times when the ob-
server and target are within ax of each other. At time t = 0, this distance

xxapart ((jx ) is about 4 meters, increasing approximately linearly with time.

The error decreases with time. For reasonable observer target distances of

193 m. approximately 5 x 103 seconds are required for a to grow to 103 m in
x

size. This is interpreted to indicate that the error in this approximation
is not stressing for most simulation uses.

By substituting Equation 31 into Equation 24, we may get
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erf W)xJ 4 df (at) cit (32)f I d(at)I

____ df (Y)

a r J dy
ax

8 fo - f(ax)] (33)
= [fT o

Bv using erf () 1, Equation 33 may be written as

1 8 f (0)

4

av 7T

which yields

a = 4(34)

and

erf(x) = 1 - 2 f (ktT (35)

Equations 26 and 35 may be combined to yield an approximate concentration-
pathlength of

_______ cos 2 (8) Cos 2 W~ + cos 2 (0) sin 2 Wp + sin 2 (4 -l

o, aaCa( (36)

exp [- 112 I V + n z}] sn (,I t) Fl-f U t)] sgn( )1fjx! )]

The advantage of Equation 36 lies in its simple evaluation.

V. SUM4MARY AND CONCLUSIONS

A ciosed form integrable approximation for the error funct ion has been
develoied. This approximation has the advantage that it can significantly
reduce the coi-,ptational burden in existing obscuration models for thle cal-
culat ion of concentration-pathiength. This Computational burden currently

8



represents a large fraction of the computer memory and execution time required

to exercise these models.

The error implicit in this approximation has been shown to be such that

it is not excessive for most geometries that are of interest to obscuration

modelers.
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Figure 1. Comparison of gaussian and derivative of Fermi function.
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Figure 2. Comparison of transmission calculated using error function and Fermi
function through smoke cloud at t = 0.
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Figure 3. Comparison of transmission calculated using error function and Fermi
function through smoke cloud at t =30.
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Figure 4. Comparison of transmission calculated using error function and Fermi
function through smoke cloud at t = 60.
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Figure 5. Comparison of transmission calculated using error function and Fermi
function through smoke at t 120.
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Figure 6. Comparison of transmission calculated using error function and Fermi
function through smoke at t = 240,
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Figure 7. Comparison of transmission calculated using error function and Fermi
function through smoke at t = 480.
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Figure 8. Comparison of transmission calculated using error function and Fermi
function smoke at t =960.
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