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SELF-CONSISTENT NONLINEAR SLOW-TIME SCALE FOIMATION AND SUM4JATION OF

OVERMODED GYROT4 OSCILLATORS AND AMPLIFIERS

1. INTRODUCTION

The gyrotron (or, electron cyclotron maser) instability arises from

the interaction of a TE waveguide (or cavity) mode with a relativistic

electron beam, which drifts along and rotates about an externally applied

static magnetic field. This instability occurs for sufficiently close

synchronization of the relativistic electron gyrofrequency in the external

field to the wave frequency, Doppler shifted in the electron frame, since

it is then that the wave electric field acts on the beam electrons co-

herently, causing changes in their relativistic factor, y, depending on

the electron phase relative to the wave, resulting in phase slippage and

bunching, with the corresponding current driving in turn the wave. Volu-

minous theoretical and experimental investigations of this instability

(1-12 and references therein) have established the gyrotron as a very

potent source for microwave generation, with inherent efficiencies

approaching 50%. Further improvements to this value for the efficiency

are possible by introducing axial gradients either in the diameter of the

oscillator (13, 14), hence the axial wavenumber, or in the guiding field

(15-17).

In view of the impressive performance of the gyrotron in converting

the kinetic energy of the beam electrons to electromagnetic energy, it is

the prime candidate to be used as the radiation source for the heating of

tokamak plasmas at the electron cyclotron frequency. For the parameters

M mnucript submitted December 4, 1980.



currently considered, e.g., for a confining field of the order of 50 kG,

requiring a radiation wavelength of the order of 2 m, the obvious size

and power limitations require an operation of the gyrotron not at the

fundamental harmonic. Accordingly, it is required that the operation of

an overmoded gyrotron cavity be investigated, to assess the performance

of the desired mode and the potential of destructive interference by the

competing modes.

The problem of multimode interactions in an electron cyclotron maser

has been addressed analytically in the Soviet literature (l-20). In their

analysis, the coupled system of equations for the eigenmodes and the beam

distribution is presented, and the coupling coefficients are expressed in

terms of series involving the even powers of the field amplitudes. From

the consideration of the coefficients of these expansions, distinction

between soft and hard coupling is made and general conditions are given

to distinguish between stable and unstable equilibria. This approach is

mathematically involved to an extent that obscures the physics of the inter-

action, and its applicability appears limited to situations involving

restrictions, such as, a low amplitude for all but one mode, or small

beat frequencies compared to the inverse of the electron transit time

through the resonator, or a premodulated electron beam, or an identical

axial dependence of the modes.

An alternate approach has been recently initiated at NRL (21), in

which the motion of test particles is followed in cavity waves with constant

amplitude and frequency, the latter taken equal to the empty cavity eigen

frequency. Equating the energy lost by the particles to each mode to the

diffraction losses gives the values of the quality factors, Q, consistent

2
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j with equilibrium, and, by iteration, the equilibrium amplitudes (and

efficiencies) for given values of Q (and of the beam power). A presentation

of these results in the form of contour plots appears to be very useful

for the determination of the operating conditions. However, these results

are liable to reservations regarding the assumption of constant (and not

oscillating at the beat frequency) amplitudes and frequencies, and that

the latter is not shifted by the action of the beam.

The purpose of this work has been to develop and apply a self-

consistent formulation for the multi-mode problem, which is simultaneously

adoptable for efficient numerical simulations and applicable for theoretical

considerations. After a brief description of the physical model in Sec. 2,

the theoretical method is discussed in Sec. 3, while the resulting equations

are presented in Sec. 4, along with a discussion on the algebraic manip-

ulations that led to their derivation. In order to establish the correctness

of the equations and to demonstrate their applicability for an analytical

treatment, they are used in Sec. 5 to rederive and generalize the equations

pertinent to the evolution in a waveguide, and this evolution is shown in

Sec. 6 to be accurately described by the algorithm based on these equations.

Some consideration of introductory nature is given in Sec. 7, on the inter-

action responsible for the efficiency enhancement in a nonuniform external

field, while examples on the application to an overmoded cavity are

presented in Sec. 8. Finally Sec. 9 summarizes our results, compares our

method to the test particle approach, and indicates various possible

extensions to this work.

3



2. DEFINITIONS

This section serves the purpose of defining the physical model we are

considering and the nomenclature for the quantities of interest.

We consider a rectangular cavity with perfectly conducting walls. The

transverse dimensions of the cavity are Xmax and Ymax, and the length is Zmax

(Fig. 1). The choice of the rectangular geometry was for the purpose of

simplifying the algebra, while the physics of the interaction is not obscured.

The results obtained with this geometry can be directly applied to a coaxial

cavity with large aspect ratio, while for a general cylindrical geometry an

appropriate conversion of either the results or the formalism is necessary.

An external magnetic field is present inside the cavity. The main

component of this field is B(ex), along the axis of the cavity, however, az
weak nonuniformity is allowed, i.e., 9B ex)/Dz and the transverse components,z

B~ex) and B~ex), are small but not necessarily zero. The introduction of this

nonuniformity is for the purpose of assessing the associated efficiency enhance-

ment (15, 16), similar to the corresponding behavior in the case of the

Whistler mode (22, 23). For normalization purposes, it is appropriate to

express the external field components by their nonrelativistic electron

gyrofrequencies, nx ,y and Sz' defined by z = eB (ex)/mec, with similar

definitions for Sx and ry, where - e and me are the electron charge and rest

mass, respectively, while c is the speed of light.

An electron beam is continuously injected into the cavity at z = 0

and propagates self-consistently with the external magnetic field and the

cavity fields, defined below. The distribution function of the electrons is

defined as

4
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imax t)

f(r, v, t) 6 (X - i(t)) 6 - i(t)(1)
i=l

where -ri(t) and v(t) are the instantaneous position and velocity vectors of

the i-th particle, obtained from its equations of motion in terms of its

entry properties, and imax(t) is the number of particles inside the cavity

at time t. No assumption is made with regard to the form of the distribution

function at z = 0, hence it is possible to consider the effect associated with

a position or velocity spread of the electrons or with any slow time dependence

of their bulk entry properties (e.g., velocity or density). It is convenient

to introduce the instantaneous plasma frequency, w p(t), of the beam, defined by

max me max max Zma) It is assumed that the beam density and

axial velocity inside the cavity are not too much different from those outside,

so that any effects on the beam distribution by its self-fields can be

adequately accounted for by an appropriate expression of the distribution

function at the entry point. However, the exact (i.e., self-consistent)

particle density and axial velocities inside the cavity will be considered for

the computation of the beam effect on the cavity fields. The transverse

components of the position, (x,y), and velocity (vx, v ), of the electrons are

expressed by the position of the guiding center, (x, y), and the amplitude and

phase of the velocity, (vi, ), defined by

x = x + p sin 4, y = y - p cos ,

(2)
vx v cosp, Vy v. sini ,

as shown in Fig. 2, where p = yv /nz is the Larmor radius and

, y= c/(c 2 _ V2 _ 2) is the relativistic factor. Obviously, this transfor-

mation is suggested by the fact that the principal motion of the electrons

6
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is that under the action of the axial external field component, Bzx)

The fields of the cavity are expanded in terms of the vacuum eigenmodes.

Since the gyrotron instability involves the TE modes, only these modes are

included in the expansion. The (n, m, L.) mode is characterized by the con-

stant wavenumbers (kns km, k2.) corresponding to the three Cartesian axes and

defined by kn = n~l/max (n = 0,1,2,...), km = rmrymax (m =0,1,2... ) with

the restriction n + m 0, and k . rn/z mx(k. = 1,2,3...) The transverse

wavenumber is defined by k m= (1kn + k2)'2 and the total wavenuntber is

nmt = (k n + k). The 4me evolution of each mode is described by the varia-

tion of the amplitude, B nmX(t)1 or its electron gyrofrequency, Q~nmj= eB nmi~2/mc,

and the phase, 0 nmk.~t), or the frequency, 'nm. = donmi /dt. In addition, we use

the growth rate, r nmY, = Simi.1 dil mi/dt, and the frequency shift, Annii Wnm.

kn, c, as well as the quality factor,ni nnit' which is assumed to be much larger

than unity. Using the above definitions and the shorthand notations Cn =Cos

(k nx), Sn =sin(k nx), Cm = cos(knty), Sm = sin(kmy), C2. =cos(k .z) and

SP. sin(k2.z), the cavity fields are given by

B (w) = FnlC 2.unmB sin *m

-() '' SL 5CC B sin.
x k 2 n m 2. nm. *lnt

B~w) = kinBksi
y nm2 ~~ n m Z nmifl nm

E(w)=O0z

E(w) = kmCSSd( six ck2Cn SM SI ~ nmk i nmtix nmi nm

8
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kw In dsnnm)Ey =_n k n CkMm Sn Cm s  ( Bn p s i n enz),

for the components of the magnetic induction and electric field along the z,

x and y axes, respectively. The summation formally extends over the triple

infinity of eigenmodes supported by the cavity, however, when our resultant

equations are to be used, it suffices to sum only over those modes whose forward

or backward component is adequately resonant with the beam.

The quantity of interest in oscillators is the efficiency, ni, of con-

version of beam power to radiation power of the mode (n, m,t). Calculating

the field energy from Eq. (3), multiplying by W n/Qnj and dividing the

result, the radiation power, by the beam power yields the formula for the

efficiency,

m +6nmo wnnl Zmax (0nmI 2 IsnmIN (4)
1nt 6 (k mo mtp(Y-) V Q knmC kwpo

where 6nmo = 1, if either n = 0 or m = 0, and 6nm,o = 0, otherwise. The

efficiency in Eq. (4) is calculated in terms of the instantaneous values of

WnmX and Oni and the entry values yo, vzo and 'po of the beam, which may be

slowly time dependent, if a beam with variable properties is employed.

9
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3. THEORETICAL METHOD

In principle, the solution to the problem involves the solution of the

wave equation for the cavity fields, e.g.,

V2 1 v J D2sa
iv cT -)B (w) = -A- (a

with the current density, J(r,t) = - efdv v f(r, v, t), obtained from the

solution of the equations

d
d- r = v

(5b)

d = cE(w) + v x (B(w) (ex)

for the relativistic motion of the beam electron under the joint action of the

cavity and external fields. The above equations, together with Faraday's

law, c V x E(w) + DB(w)/t, form a complete system, whose solution can be

Fourier analyzed in the eigenmodes, Eq. (3), to give the evolution of the

spectrum. Such an approach, although straightforward conceptually, has

limitations associated with its numerical implementation, since it involves

a large number of arithmetic operations. In addition, for a theoretical in-

vestigation of the physics of the multi-mode interaction, this approach is

not useful, since its equations are not formulated in the time scale of the

energy transfer from the beam electrons to the fields.

The aim of this work is to develop a formulation which is both efficient

for numerical applications and useful for theoretical considerations, without

sacrificing the rigor of self-consistency. The central assumption in our

approach is that there exists a time interval, At, during which the energy

10
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I ol

transfer between the electrons and the fields, and between the parallel and

perpendicular components of the electron motion, is small, while At is not

necessarily small compared to the gyroperiod or the wave period. For a

numerical application of our equations, At will be the time step. Then,

according to our assumption, the quantities nmtS2 nmt' xi, yi' VL and vzt

will be constant to zero order during the time interval At, while the

quantities 0nmV' zi and ii will vary linearly with time,

CnnM(t =nmk(to) + (t - to ) wnmt(to),

zi(t) = zi(to) + (t - to) vzi(to) , (6)

i(t) = Oi(to) + (t - to) Qz(i(to))/Yi(to)

where to is the time at the beginning of the time step and t - to < At. These

zero order solutions can be introduced into the differential equations to

obtain the first order equations for the electron propagation and wave evolu-

tion at the time scale of energy transfer.

Formally, the above assumption can be described quantitatively by the

strong inequality

w.kc, sl >> r, A0+ IS2(7)

where the subscript triad nmi has been suppressed and e= 0_+nmt,i =nz/y -

WnmX ± k vzi is the rate of change of the particle phase, vi, relative to

the wave phase in the particle rest frame, *nmt ± ktzi. Using this inequality,

11
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each quantity of interest, say q, where q stands for i, , zv, v, ,, r

and A or any combination of them (like y), can be associated with a

differential equation, which is expanded in the form

t Aoo + i Ai sin(cjt + pj) (8)
=1 j=o

where the amplitudes are required to satisfy A. >> Ai+ l ,j and Aij Ai , j + ,ij A1 , i
and the frequencies aIj << j+ , with pj being an appropriate phase. The

quantities Aij, 1ij and pj are assumed to vary slowly during the energy trans-

fer time, i.e., to be constant during At. The zero order term, Ao, represents

the unperturbed cyclotron motion of the electrons in a uniform external field

and the steady state propagation of the cavity modes, while the terms under the

summation represent the effects to first and higher order (given by i) of the

nonuniformity and of wave-particle coupling, and the slow (j=O) and fast (to

all degrees, j) phase variations. The slowest phase variation corresponds to

guiding center motion in the nonuniform external field (a = 0) and to resonant
0

interaction, ao = 0+.

Clearly, there is no need to evaluate and use many terms in the expansion

of Eq. (8). A truncation,

dq = A + A sin(ott+P) (9)
dt 00 10 0 0

is expected to be sufficient, since the cortribution of the higher order terms,

i > 1, is negligible, (Aij/A00 ) - (A10/A00 ) << 1, and the effects of the fast

terms, J > 0, phase mixes to zero during the energy transfer time, in view of

12

S



a/r -. jw/r >> 1. In this sense, our approach is conceptually identical

to that already employed for electrostatic and whistler waves (24).

A final remark is associated with the choice of time, t, rather than

the axial position, z, as independent variable. Certainly, the conversion

of the method and the equations is straightforward, by the simple trans-

formation dt = dz/v z. The reason behind this choice has been to guard

against the possibility that the parameters of some electrons become multi-

valued functions of z, which could well be the case especially due to the

nonuniformity, and to avoid complications in the evaluation of the wave

properties, which are necessarily time dependent quantities and would be

obtainable by an appropriate interpolation in the electron dynamics.

13
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4. SLOW-TIME-SCALE EQUATIONS

In this section we present the slow-time-scale equations for the

propagation of the electronsand the evolution of the eigenmodes. Our approach

has already been discussed in the previous section. Since the procedure

involves a lengthy series of calculations which, however, are of elementary

nature, we will limit ourselves to the presentation of the final results, with

only a discussion of the steps used in obtaining them. (See also Ref. 25.)

The slow-time-scale equations for the electron dynamics are:

d 1~
d (Yvz) : - v zp

k .k nm (k mCnS m sinc+ + knSnCm cosnmi m

d1

Snz- )(kmCnS m sinC+ + knSnCm cos

Ykn,,,ii 2 +_~(~~~k~ - C _?)

nmktm +
t L zl V c2 " t- n n m

nm 1 + kmP

x (kmCnSm cos¢+ - knSnCm sin¢+)] (10)

!i -z
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Fm d I
0<+vz dt

- 1p = I

= + -- + + vk a§ XodtSdt 2 y ay r2z( x z -

ai

sin~+

a nalyt mic kmVa ll ( km CnCmCSc+ + knSnSm sinc+ )

reatv+ o f b w +a a + (knC C cos+ kSn sing ,1 k nm + n n _

y p2 i+ i the +LVz rdu a =ic

the right-han sec n be c nsidered) (ktonbe constant, e f S o csic+)

n m1

+ km (±e+)l(km~n Em sins+ - k n )n m coscl+)

1knm +

In the above equations,a superscripted bar denotes evaluation at the guiding

center, i.e., n = cos(k n ) etc., J1I and J i are the Bessel function of first

kind and first order and its derivative, both evaluated at knmP, where

p = yv/ z is the Larmor radius, and c+
=  - n - kziste lcrophe

relative to the forward/backward wave and 6+ =dC+/dt is the corresponding

relative frequency. For numerical purposes, these equations can be integrated

analytically over the time step, At, since during that time all quantities of

the right-hand side can be considered to be constant, except for C+, for which

15



a variation d+/dt = c+(to) + (t - to ) 6+ (to) is sufficient, in terms of the

corresponding values at to, the beginning of the time step. These integrated

expressions can be used to evaluate the integrals of dy/dt and d(yv z)/dt, which

appear on the right hand-side of Eq. (10), thus resulting in an algebraic

single-step algorithm. Although this algorithm includes linear equations in

a uniform external field, a successive application of these equations will

give the nonlinear nonuniform final solution, since the nonlinearities and

nonuniformities are accounted for by the reinitialization after each time step.

Let us present now a few comments on the derivation of Eq. (10). We

have started with the equation of motion, Eq. (5b), in which the external and

wave fields are treated separately, the latter expressed by Eq. (3) and the

transverse position and velocity are expressed by Eq. (2), resultinr 'n the

evaluation of certain quantities of ( as indicated in Eq. (10) by the

superscripted bars. With regard to the contribution of the cavity fields,

expressions similar to cos(knmp cos~i) are expanded in Fourier

series, with the coefficients obtained from the integral representation of the

Bessel functions,

l k ) cos(knp sin* - n*)d# (11)

as well as their symmetry relations. The products of trigonometric functions

are converted to sums whose argument changes at the frequency so z /y f w + k Xv z .

We consider only interactions at the fundamental (s=l) and elimination of the

fast terms, Qz/y + w + k vz , leaves only the two slow relative frequencies,

6+, and the corresponding phase angles, ;+, in terms of which Eq. (10) is

expressed. A similar application of Eqs. (5) and (2) on the external field

contribution, in which terms varying at the frequencies flz/y and 29 z/y are

16
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omitted, gives the expected acceleration due tothe nonuniformity in the equa-

tions for yvz and yv,, and the drift due to the gradient of the external field

in the equations for i and j. The latter equations do not include the curva-

ture drift but contain additional terms, due to the fact that the axis z is

defined to be the axis of the cavity and not the exact direction of the exter-

nal field.

Similarly, the slow-time-scale equations for the growth rate and

frequency shift of each eigenmode are:

I nmt 4 p
rnm 2 Qnmi +  nm,o wnmi Snmt

xK'Ji v ( _ 1)(kmC sinc+ + kSC cosc+)>

2 (12)
A4 p
nmk 1 + 6
A - nm,o nm. nmi

x x<d v, (+ l)(kmCnS cos+- knS CmSinc+)
+l nL9 m n n m

where 6nmo = 1, if either n = 0 or m = 0, and 6nm,o = 0, otherwise, and the

angular brackets denote an average over all particles inside the cavity, their

number, imax' being accounted for by the beam plasma frequency, Wp.

Let us review briefly the steps involved in the derivation of Eq. (12).

The wave equation was applied on the cavity fields, expressed by the summa-

tions in Eq. (3). The orthogonality of the eigenmodes was used to decouple the

wave equation, by integrating over the cavity volume after multiplying by the

17
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appropriate trigonometric functions, with the term 1 + 6nm,o arising out of

the different normalization when either n = 0 or m = 0. The boundary condition

corresponding to the power radiated outside the cavity is accounted for by

the quality factor, QnmV, which depends on the cavity and the structure (but

not the amplitude) of each eigenmode. The terms r/Q + (r2 + dr/dt)/W and

dA/dt are neglected compared to A and to w/Q + 2r, respectively, and a multi-

plication by cosq and sin with omission of the fast terms leads to Eq. (12).

'i I
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5. ANALYTICAL APPLICATION IN A WAVEGUIDE

Before using Eqs. (10) and (12) for any extensive study either to predict

the behavior of a given oscillator or to investigate the physical processes

involved in multi-mode interactions, it is prudent to first establish relia-

bility in their correctness. This purpose is served by the present section,

in which our equations are used to describe analytically a variety of situations,

in order to compare these results with the appropriate earlier ones. The only

configuration in our rectangular geometry, for which sufficient information

exists to compare to our results, is that of an amplifier operating at a

single mode. The conversion of our equations to that configuration is straight-

forward: it suffices to eliminate C_, the backward wave dependence, to remove

the meaningless term w/2Q in the equation for r and to divide the equations

for r and A by 2, since their derivation for the amplifier case involves an

integration only over the cross section of the waveguide, and k has now an

arbitrary value, not quantized by the meaningless zmax.

First it is noted that the equations for the electrons, Eq. (10), for the

special case of no nonuniformity reproduce earlier results (3), when m=O,

n 0, and, with an appropriate rotation of the coordinate axes, when n=O,

m i 0. On the other hand, as noted in the previous section, the effects

associated with the nonuniform external field, that is, the acceleration due

to a longitudinal gradient, the drift due to a transverse gradient and the

drift due to an imperfect alignment of the external field with the cavity

(or waveguide) axis, are properly accounted for by our equations.

In order to see whether Eq. (12) describes the correct evolution of the

fields, and because of the usefulness of a dispersion relation for arbitrary

m and n, it is advisable to derive such a general relation and to compare it
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to the earlier result (2) for m=O. In order to obtain the dispersion relation,

it is assumed that r and A are constant. The equations of motion are solved

self-consistently with the exponentially amplified field and, as appropriate

for the high gain regime (rt >> 1), the small terms are dropped. A final

integration over the initial phase angle of the electrons, assumed uniformly

distributed, gives the expressions for r and A, which are combined to yield

the dispersion relation,

xmax Ymax G

P (k + 6nm,o 0 Xmax o Ymax o

xY J) R[ nm R + k knmP) J1] fo

(13)

where f (X, yP P is the unperturbed distribution function and

w + i = knmc + A + iF

R = a -
(14): ( - Q /y - k vz

K2 = (kmCnSm)2 + (knSnCM)2

Introducing into Eq. (13) a monoenergetic pencil beam, fo = (ax Ymax)/(2,p )

6(- Xmax/2) 6(y - Ymax/2) 6 (p± - pLo ) 6(pil - p1l o) reproduces earlier

expressions. Furthermore, omitting the less important second term in brackets

in Eq. (13) and confining our attention to the behavior of the dispersion rela-

tion away from the isolated (and uninteresting) real root a - knmic, gives

the simplified cubic relation
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(c_ knm c) k . 2 c 3 (15)

where 0+0 = / - knmi + k vz is the frequency mismatch and the coupling

parameter, cot is given by

S 1  nmo Y3 knmc (16)

As indicated by Eq. (15), for parameters sufficiently above threshold and for

adequate synchronism, the evolution of the instability depends on the parameters

+0 and o.3
0 0'

An important approximation in the derivation of Eq. (13), the dispersion

relation, has been that the small argument expansion, J1 (A) = A/2, has been

employed, where

W2

A b (17)
r2 + (W-z 1 7 )2YO0 k zo)

and

2 KV.-Lo nmb 21 .o (18)

This approximation is appropriate for the linear regime before saturation is

reached, i.e., when 0nm(and W2) is small. Since this approximation becomes

increasingly inaccurate after A = 1.84 (where dJl/dA = 0) and definitely fails

when A = 3.83 (where J1 = 0), these two values give the range of A in which

saturation is expected, 1.84 < A < 3.83, and therefore also an estimate for

the saturation amplitude, Snmk' from Eqs. (17) and (18).
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A final application of our equations is for the case of a saturated

monochromatic wave, with almost constant amplitude and frequency. Assuming

that v, and y vary only weakly (low efficiency), then the most important

variation is that of the phase angle +, which is found to satisfy the pendulum

equation,

d - -+ = 2 s in ( + n ) , (19 )

where the bounce frequency, wb, has been defined in Eq. (18), and the reference

angle n is defined by the field structure,

k S C
tan n n-nm (20)

k~mCnSm

Both wb and n simplify to the known expressions (3) when m=O, n$O. Furthermore,

the corresponding equations for the growth rate and frequency shift of the

wave give

r kv 2 <sin(c+ +n)21 kvo Up(21)

A, nm,o n0 wnmnmk <- cos(i+ + n)> (

In view of the electron bunching that has occurred during the exponential

stage of the evolution, the evolution of the center of mass of the bunch

during the nonlinear stage according to the pendulum equation, Eq. (19),

schematically represented in Fig. 3, gives from Eq. (21) the characteristic

one- and two-hop variation of r and A during one bounce period, shown in Fig. 4.
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Fig. 3 - Schematic representation of the motion of the bunch.
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Fig. 4 Evolution of the average relative phase of the bunch and associated

evolution of the growth rate and frequency shift during a bounce

period.
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6. NUMERICAL APPLICATION IN A WAVEGUIDE

In the previous section we have derived equations governing various

aspects of monochromatic wave evolution in a waveguide. We have shown there

that these equations reproduce earlier results in the appropriate limit nmO,

nO, thus establishing by implication the correctness of Eqs. (10) and (12).

The next subject, covered by this section, is to establish that the algorithm

based on these equations gives acceptably accurate numerical results. In all

simulations discussed in this section a low amplitude monochromatic wave was

initialized in a system with periodicity length zmax - 2/ktl. The initial

distribution of the electron position in z and the phase angle * was uniform,

with the initial values assigned to each electron by the use of a random number

generator, to add an experimental flavor to the results, while x, , v and vz

were initially the same for all particles. The subsequent evolution of the

electron and wave properties was obtained by a successive application of the

long time-scale algorithm of Eqs. (10) and (12).

The time evolution of the amplitude, growth rate and frequency shift is

shown in Fig. 5, for a simulation with kn = 0.958 z /c (n = 1, xmax = 3.28 c/Qz),

km = 0, kt = 0.108 sz/C (zmax = 58.0 c/Qz), wp = 10- 3 1z' vzo = 0.22 c,

v1o =0.26 c, yo= 1.0636 and Ro = 0.5 Xmax. For these values, the theoretical

predictions are r = 1.68 x 10-3 SIP A = 0.97 x 10-3 z, to which the wave

evolution is in good agreement in the linear regime. The estimate Amax = 1.84

gives Qmax = 1.16 x 10" , comparable to the measured value max = 1.30 x 10" .

Finally, at saturation, oscillations are observed at the bounce frequency

wb . 2.72 x 10 3 iz, as expected from Eq. (21). Some skewness in the variation

of r and the inequality of the peaks of A in Fig. 5b, are accounted for by the

dependence of Eq. (21) on the inverse of the wave amplitude, which was assumed

to be constant when Fig. 4 was prepared.
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Fig. 5 -Evolution of (a) the amplitude and (b) the growth rate and the

frequency shift for the reference simulation.
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Some additional simulationsare presented in Table 1. Case 0 is the

simulation already described, which we regard as the reference simulation.

*The simulations of Table 1 have the same initial values as the reference

case, except as indicated in the input column and discussed below. As it

is seen, cases 1-5 have the appropriate scaling with regard to w and v

The absence of amplification in case 5 is consistent with the value of v

being below threshold. In cases 6 and 7, where the distribution of the

guiding center is taken as f(R) = 1/n and (sini)/2 respectively, rather than

Xma x 6(' - xmax/2), the growth rates and frequency shifts are reduced, since

the average electron is acted upon by a weaker field. No amplification occurs

when a delta distribution is introduced at the node of the n=2 field (case 8),

while case 9 gives essentially the same results as case 6, consistent with the

fact that the average field is independent of the number of nodes for a uni-

form particle distribution in x.

The last set of numerical results are summarized in Fig. 6. In these

simulations the purpose was to check the extent to which the dependence of r

and A and wb (at saturation) satisfy the dispersion relation of Eq. (15)

and the estimate A = 1.83, for various values of the frequency mismatch, e+.

The data in Fig. 6 were obtained with input parameters equal to those of the

reference simulation, except for the values of Oz or the periodicity length,

in order to produce a variety of values for e+. The quantities in Fig. 6 are

scaled to the relevant parameter, ao, defined in Eq. (16). As can be seen,

given the difficulty of measuring these values from curves like those of

Fig. 6, the agreement is very good with regard to r and A, and the saturation

amplitude only slightly exceeds the value given by the estimate A - 1.83.
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Table 1

DEPENDENCE OF r, A and nmax ON THE INPUT PARAMETERS

FOR APPLICATIONS IN A WAVEGUIDE

Case Input r/Qz A/Q z gmax/nz

0 Reference 1.7 x 10 3  1.0 x 10- 3  1.3 x 10- 4

1 p = 10 -  4.0 x 10-  2.4 x 10-  6.7 x 10- 6

2 p = I0 - 2  7.7 x 10-3  4.5 x 1O 3  3.2 x 1O 3

3 vjc= 0.6 2.1 x 10- 3  1.4 x 10- 3  2.3 x 10- 4

4 v/c= 0.1 8.2 x 10-4  5.0 x 10-4  1.0 x 10-4

5 v/c= 0.01 0 0 undef.

6 uniform distr. 1.2 x 1O 3  5.7 x 10- 4  1.3 x 10 4

7 sine distr. 1.6 x 1O-3  6.2 x 1O 4  1.4 x 10-4

8 n = 2, delta distr. 0 0 undef.

n = 2, uniform distr. 1.2 x 10 5.3 x 10 4  1.2 x 10 4

28



x x X+ (Onni - kI vz)/oo

-1 0

0 0 0

Fig. 6 -Dependence of growth rate, frequency shift and bounce frequency at

saturation on the sharpness of synchronism: Comparison of the

simulations to theory.
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7. EFFECTS OF AN EXTERNAL FIELD NONUNIFORMITY

It has been shown theoretically that the efficiency enhancement is achieved

if the external field has some nonuniformities, either in the form of a
step(15) or of a constant gradient (16). The same effect has been also shown

experimentally (17). A qualitative explanation of this phenomenon is that the

introduction of the nonuniformity keeps the frequency mismatch, e+, at

favorable values over a prolonged interval, thus delaying the occurrence of

saturation. Some theoretical considerations of the effects associated with

the nonuniformity are given in this section. Although these considerations

are of introductory nature, they may prove useful for the elucidation of the

interaction.

'1 In order to simplify the analysis, we consider the simple case in which

the transverse velocity is not too much perturbed during the interaction,

e.g., during the transit time in the cavity. This assumption, already employed

in Sec. 5 for the derivation of Eq. (19), is rigorously applicable only when

the efficiency of conversion is low, however, it is felt that the results may

be extrapolatable to the high efficiency regime, at least qualitatively. In

the sense of this approximation, the equation for ;+ is now given by

d 2

T 2[R +sin( +n)] ,(22)

where wb is defined in Eq. (18) and the effects of the nonuniformity are

described by the nonuniformity ratio, R, expressing the gradient of the

external field in relation to the wave field and defined by

*Rq [wvz +.t (23)
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Generally, the difference of the last two terms in the above definition is

small compared to the first term, so that approximately RW2 .6(Sz/y)/6t,

where 6t is the interaction duration and 6(1z /y) is the corresponding change

in the electron gyrofrequency.

Equation 22 represents the pendulum equation, with an added external

torque expressed by R. Several features associated with this equation are

presented in Ref. 22. Here it suffices to note that the condition for existence

of trapped particles is

IRI < 1 (24)

and that the separatrix extends approximately to the values

I6+1 . 2 wb(l - IRI) . (25)

For the representative case R - 0.4, the trajectories of the particles are

shown in Fig. 7b, in phase space coordinates c+ + n and C+ = dC+/dt. These

trajectories are to be compared to the case of a uniform external field,

Fig. 7a, where by definition R = 0. In both cases, trapped particles like

1 and 1' execute oscillatory orbits about the vortex, which is located at

+ n = i, when R = 0, and at c+ +r = 7t + arcsin R, when R 1 0. On the

other hand, untrapped particles like 2 and 2' execute a wavy motion, when

R = 0, never crossing the resonance line 0+ = 0, while the introduction of a

nonzero value for R introduces an additional upward drift, causing untrapped

particles to eventually cross the resonance line.

Based on the above remarks, but before describing the mechanism responsible

for the improved efficiency when R 0 0, It Is convenient to discuss first the
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Fig. 7 -Comparison of the trajectories of particles in close resonance with

a wave in (a) a uniform medium, to (b) a nonuniform medium, R 1 0.

The horizontal line denotes the initial conditions of the beam.
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uniform case, R = 0, within the framework of our equations. Recalling from

Eq. (21) that energy transfer from the particles to the wave is associated

with ( sin( + + n)) > 0, that is, when the average phase is in the interval

0 < + n < n, we note from the direction of the trapped particle motion

in Fig. 7a that this interval is satisfied for interaction times, t, such

that wb- < i, provided that 0 < 0. This is also consistent with the fact

that during such a time interval, the value of e+ = Qz/y - w + kYv z increases

for these particles, resulting in a decrease of y and energy loss. The

untrapped however, do not contribute to the average of sin(C+ + n) substantially,

as can also be seen from the fact that their value of 0t suffers weaker changes

compared to the trapped particles. Accordingly, the optimal situation is

determined by a trade-off between the desire for a large value for - 0.o, so

that the average of sin( + + n) is large for the trapped particles, and for

a small value for - 0+o, in order to reduce the percentage of idle untrapped

particles.

Let us now turn our attention to the additional effects caused by the

nonuniformity. We consider first the case R > 0 (but R < 1), that is of an

external field increasing in the direction of the motion. This case is

characterized by the transition of the untrapped particles through the line

e+ = 0 preferentially at values satisfying sin(c+ + n) > 0, while the

trapped particles oscillate about the vortex, where sin(c+ + n) < 0.

Accordingly, the desirable initial properties of the beam are those that

correspond to untrapped particles. On the other hand, distant untrapped

particles are not particularly attractive, since such particles will first

execute a number of oscillations in c+ + n = (0,27T), before crossing the

resonance line, 0+ = 0, with sin( + + n) > 0. Therefore, the most effective

initial arrangement for the beam is that for which e - 2wb (I-R), i.e.,
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the beam is initially close to the edge of the trapping region. Following

the trajectories of the particles for such an initial arrangement, e.g.,

according to Eq. (22) or Fig. 7b, one can see that a bunch is formed, which

remains over extended times in the region sin(C+ + n) > 0. The effect of this

bunch can be optimized by adjusting the value of R and 0+0. However, it can

be seen that the corresponding optimized efficiency will be larger when R 1 0

than when R = 0, since the bunch is formed out of all particles, and not only

out of that fraction, which is initially trapped, as is the case when R = 0.

The opposite situation, that of an external field gradient opposite to

the direction of motion (R < 0, but R > - 1), is characterized by a location

of the vortex such that sin(C+ + n) > 0. Therefore, in this case it is

advantageous to arrange for a bunch to be formed out of the trapped particles,

as shown in Fig. 8b. Comparing this evolution to the uniform case, it can

be seen that this bunch is expected to be weaker than that of the uniform case,

since the trapping region is smaller and relatively more particles will be

untrapped and therefore idle, as far as the energy conversion is concerned.

On the other hand, this bunch, although weaker, will be located closer to the

convenient phase angle, + + n= + arc sin R, when R < 0. If this shift of

the vortex (and bunch) phase is stronger than the reduction of the bunch

density, then the efficiency for R < 0 will be larger than the uniform case.

However, this question carot be answered within the present qualitative

discussion. It is clear, nevertheless, that if the trapped particles are

allowed to execute a number of bounce oscillations, then they will contribute

energy to the wave during each oscillation, since for the vortex sin(c+ + n)

- R > 0, hence an improved efficiency is expected when wbT >> 7, i.e., for

systems with high field amplitudes (e.g., driven by high currents), or long

transit times, T, e.g., an amplifier.
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Fig. 8 - Schematic representation for the evolution of the bunch for a non-

uniform external field, (a) when R > 0, -+o . 2 b (l-R), and (b)
when R < O, -0+o <_. 2wb (l+R).
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It is interesting to note that when R ' 0, limitations associated with

beam quality are not so severe as when R = 0. In the uniform case, a beam

temperature associated with a spread of Q+, such that 6e+ 2 wb, essentially

kills the instability, since in this case the effect of a particle with

initial values 6+0. C+o + n is compensated by that of a particle at - +0,

2Tr - ( +o + n). This is not the case, however, when a nonuniformity is intro-

duced. For example, when R > 0, the external field can be adjusted so that

at the entrance of the cavity 6+ < - 2wb (1 - R) for all particles. The

ensuing motion of these untrapped particles (Fig. 9a) will bring them near

resonance, where they will occupy a region with (sin(c+ + n)) > 0 transferring

energy to the wave. Similarly, when R < 0, the initial value of + can be

arranged to be on the average close to zero. Then, the untrapped particles

will eventually leave the resonance region, spread uniformly in r+, while the

trapped particles will remain inside the separatrix, with <sin(z+ + n)) > 0.

The case R > 0 is particularly adoptable to a cavity, since enrgy conversion

is limited to the time it takes the untrapped particles to move around the

separatrix, while the case R < 0 is primarily applicable to an amplifier, to

take advantage of the extended time, over which the trapped particles are able

to convey energy to the wave. In either case, calculations for the correspond-

ing efficiencies can be made based on the data of Ref. 22.

Finally, it can be seen that mathematically the introduction of a gradient

in the external field is equivalent to a variation of the cavity cross section,

since both cause e+ to vary independently of the cavity fields. A generalized

expression can be written for R,

-w d(z + k~vz) (26)

36

* S



+ (a) R 0 (b) R<O

if

Fig. 9 - Schematic representation for the evolution of a beam with temperature,

(a) when R > 0, with no particles initially trapped, and (b) when

R < 0, with the trapping region initially filled.
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with the derivative being evaluated in the absence of the cavity fields. When

daz /dz 0 , Eq. (26) yields the expression already presented (Eq. (23)). A

variable cross section causes kL to be a function of z, since k 2 = (W/c)2 -

J 12(n 2 /Xax(Z) + m2/ymax(z)), hence the corresponding expression for R is

2v dk (27)

In addition, an alternate situation where Eq. (27) is applicable Is when the

cavity is lined with a thin and weak dielectric material, with its dielectric

constant varying with z, while an appropriate expression can be obtained from

Eq. (26) when a weak electrostatic field is externally applied along the axis

of the cavity.
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8. APPLICATION TO AN OVERMODED CAVITY

In this section we present and discuss various results obtained from the

numerical application of the algorithm formed from Eqs. (10) and (12) to the

case of a rectangular cavity, in which more than one eigenmode is in close

resonance with the beam. We have chosen the parameters so that they correspond

as closely as possible to those of typical NRL experimental arrangements. Thus,

the electron beam was chosen with initial velocities vzo = 0.267c and v =

0.400 c, giving a relativistic factor of yo = 1.14 and an anisotropy ratio

Vo/V = 1.50, typical of the NRL beam. The dimensions of the rectangular

cavity were zma = 33.10 c/ z in length, x  = 6.78 c/ z in width, with the

height, Ymax' sufficiently short, so that only the modes with m = 0 can be

resonant. In this cavity, resonant modes are those with n = 2, hence

kn 0.927 z/c, and with k. = l and £ = 2, corresponding to 0.9=7 n x 0.095 Qz/C.

This choice gives a ratio of k n/k z equal to the corresponding ratio in the NRL

cylindrical cavity with a length to diameter ratio of 4, with the coordinates

(x, y, z) corresponding to (r, e, z) of the cylindrical geometry and Xmax

corresponding to the diameter. The beam is placed at i = 0.33 Xmax , since at

that point the ratio E y/Bz = tan(knR) 1.84 is equal to the corresponding

value at Ee/Bz for the cylindrical cavity at the point where E0 is maximum.

The corresponding values of the empty cavity frequencies are wl = 0.932 Oz and w2

= 0.946 az' the frequency mismatches relative to the foreward components of these

modes are e+ = - 2.95 x 10-2Qz and 0+2 = 1.85 x 10-2z , where the subscripts

refer to t, the axial harmonic number. The transit time of the electron

through the cavity is T = Zmax/Vzo = 124 a-z and at the position of the beam
the effective transverse wavenumber, defined by Eq. (14c), is K = kn stn(k n)

0.811 flz/C.

For the numerical implementation of our slow-time-scale algorithm, the

cavity is initially assumed empty, with low amplitude standing cavity waves.
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The beam electrons are initialized all with the same values for i, vz , yj, as

given above, while their initial position, z0 < 0, and phase angle, 00' are

given a uniform distribution by use of the random number generator. The

) electrons advance according to Eq. (10), if inside the region of interaction,

0 < z < Zmax , and according to unperturbed cyclotron motion, given by Eq. (6)

when outside the cavity. Depending on the density (or current) that the

simulation electrons represent, it was found that approximately 100 to 300

electrons suffice to yield accurate statistics, while an accurate integration

of their equation of motion is obtained with a time step, At, ranging from

1/8 to 1/15 of the transit time. Because of the continuous positioning of

the electrons along the z-axis, they do not, in general, cross the boundaries

at the quantized multiples of At, hence for electrons near the boundaries the

algorithm is applied over the effective time of interaction, that is, the

fraction of At which corresponds to motion inside the cavity. Finally, since

electrons that cross the exit boundary do not contribute to the interaction

any more, they are "destroyed" and their memory locations in the computer is

occupied by properties of electrons, which are about to enter the cavity. This

procedure results in substantial savings on the size of memory required, since

the transit time is a very small fraction of the total time required to observe

a semblance of a steady state. In implementing this procedure, care has been

exercised to assure that a uniform particle density in z is maintained, before

they enter the cavity.

In Table 2, we present the results of ten simulations for the cavity and

modes presented above. In these simulations the quality factors are Q, - 1000

and Q2 = 700, and the simulation electrons represent different plasma densities,

as given by the value of wp. In cases 1-6 and 10, both modes are initialized
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with a low amplitude, ai = lO'3nz , and one mode became dominant, as denoted

in the Table. This mode was initially amplified essentially exponentially,

at a rate given by r, and later approached an oscillatory asymptotic satura-

tion, with the value n max and the corresponding value for the bounce frequency,

wbs as given in the Table. Additional entries in the Table are the ratio

11max/Wp, the product wbT of the bounce frequency times the transit time, the

ratio - 0+/wb of the frequency mismatch to the bounce frequency, and the effi-

ciency, n, of conversion, defined by Eq. (4) as the ratio of radiation to beam

entry power. Case!& 7-9 are a repetition of cases 10, 1, and 5, except that

the nondominant mode of the original cases was initially primed to a value of

l0 - 2 nz for the amplitude. This resulted in these modes becoming artificially

dominant, with parameters at saturation as given in the Table.

Typically, the evolution of the amplitude and frequency of the two modes

is as shown in Fig. 10, where the actual values of the parameters are those of

case 4. The dominant mode, which here is that with 1=2, is seen to grow

exponentially, with a weak oscillation superposed, and later to approach an

asymptotic state. The nondominant mode initially attempts to grow, at a

weaker rate and with relatively stronger oscillations, reaching a maximum

amplitude with a value depending on the beam density. The peak amplitude is

always reached near the time of transition from the exponential amplification

to approach to equilibrium of the dominant mode. Beyond that time, the non-

dominant mode decays on the average, while the oscillations persist. In all

simulations, the period of these oscillation is equal to 450 fl1, equal to

the beat period, 2n/(w 2 - wl), of the two modes. Oscillations of the same

period are also present in the amplitude of the dominant mode, however these

oscillations are too weak to be seen in Fig. 10. With regard to the frequency

plots, one first notes a relatively wide dispersion in the data points,
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Fig. 10 - Evolution of the (a) amplitude and (b) frequency of the resonant

modes for case 4 of Table 2. The horizontal broken lines in (b)

give the empty cavity frequencies.
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primarily during the initial evolution of the k-2 mode and always for the

V1 mode. The dispersion is directly related to the fluctuations associated

with the randomness in the particle initialization. Similar fluctuations are

present in the evolution of the growth rates. Such fluctuations are of no

major concern, since they affect only the instantaneous values, r and A,

while particle dynamics are governed primarily by the wave amplitudes and

phases, which are much smoother (-see Figs. 10a and 11) being integrated values.

Apart from these fluctuations, it can be seen that the frequency of the

dominant mode essentially approaches a constant value, shifted from the empty

cavity value by approximately 1%, while the frequency of the 9=l mode has

similar beat oscillations, like the amplitude.

In all cases of Table 2, and in many more two-mode cases not presented

here, the asymptotic behavior of the spectrum is dominated by one mode, the

amplitude and energy of the additional mode being respectively one and two

orders of magnitude smaller. In such cases, it is appropriate to treat the

nondominant mode as a stable perturbation driven by a constant amplitude

monochromatic field, while the dynamics of the electrons is determined by the

large amplitude field only. If we assume that the motion of the particles is

adequately represented by the pendulum equation, Eq. (19), in the limit of

small oscillations about C+ + n = f, then integrating sin(i++n) over the

transit time, substituting this time average in place of the ensemble average

in Eq. (21a), with r replaced by w/2Q, as is appropriate for a steady state

oscillator, and using also the definition of wb , Eq. (18), with J= 0.5,

one obtains a relation for the amplitude of the dominant mode,

/,'max 2 3 -e+°3 0 (28)
k-; WP f 1 + 6nm,o

and accordingly, the efficiency Is obtained from Eq. (4),
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2f o -+0o (29)

y0- nm9

The above equations demonstrate the known fact that the wave frequency must

exceed the gyrofrequency, i.e., O+0 < 0, in order for positive energy conver-

sion to be possible. The coefficient f has the value f = 1 in the idealized

situation when the pendulum equation is applicable, the bunch is perfect and

consists of all particles, and the bunch performs half of a bounce oscilla-

tion during transit. Deviations from such idealized conditions reduce somewhat

the value of f. For the simulations already discussed, the idealized values

of Smax/Wp, from Eq. (28) when f = 1, are 2.24 and 1.45, for the k=l modes

respectively, and as can be seen from Table 2, depending on wbT and e+/w b , the

actual values of Smax/p indicate that f _< 0.6. The same holds true also for

the simulations not presented here.

Let us turn our attention now on the effects which the large amplitude

wave has on the nondominant one. Since the bunch is attached to the dominant

mode, the current it represents will alternatingly act constructively or des-

tructively on the secondary mode, depending on whether they are in or out of

phase. This succession is repeated at the beat period, as observed in the

simulations. Similarly, due to the oscillations of the reactive component of

the current relative to the low amplitude wave, its frequency oscillates about

the empty cavity value. This can be seen in Fig. 10b up to the time t = 3000.

However, beyond that time, which incidentally coincides with the time the

dominant mode amplitude has practically reached the final saturation value,

the frequency of the driven mode appears to oscillate about that of the

dominant mode. This can be better seen in Fig. 11, where the phase of mode

* -=l relative to that of 1=2, 01 - *2' is plotted against time, the latter in

45

4

t ,,,,,, . -,,, -' '- ,'epm m lV. .. ... . .... .. ... 'r .. . .... .. . ..-- . . .. .

. . .. .. .N. x , .. . : - - -' - - II II I



r7

2

0 2 4 x103

Qzt
Fig. 11 - Relative phase of mode 1 to mode 2, - 2 eru ie o h

simulation of Fig. 10.

46

Ma



an expanded scale compared to Fig. 10, for improved clarity. It can be seen

there that the relative phase initially executes a number of complete rota-

tions, during which it preferentially remains a relatively longer time in the

vicinity of 0, - 02 " 7T, at times which coincide with the occurrence of

maxima in the amplitude. However, after the initial complete rotations, the

relative phase appears locked in the interval n < 01 - ¢2 < 3w/2, and

accordingly, the frequency of the k=I mode oscillates about that of the 1=2

dominant mode.

Before concluding, let us point out that in all two-mode simulations, those

of Table 2 and those not presented here, only one mode seems to dominate. This

mode is not necessarily the one corresponding to the highest amplitude or

efficiency. For example, the amplitude and efficiency of the dominant k=2

mode in cases 1 and 5 are significantly below the corresponding values of the

X=l mode, if the excitation of the latter is assured through priming, as is

done is cases 8 and 9. The opposite holds true in a comparison of case 10 to

case 7. On the other hand, simulations of a long cavity, in which many modes

are resonant with the beam, ranging from 4=l to Z=10, have shown that many of

these modes are simultaneously excited to comparable amplitudes and efficiencies.

Such situations have not been adequately analyzed at this time, and accordingly

we choose not to present them here.
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9. DISCUSSION

In this work we have developed the self-consistent formalism for the

interaction of the eigenmodes with the electron beam in an overmoded gyrotron

cavity. The resulting equations have been applied in various simplified

situations, both analytically and numerically, in order to establish their

correctness, to extend earlier results, to interpret the effects of an axial

nonuniformity and to initiate the investigation of the multi-mode interactions.

The approach we have adopted, discussed in Sec. 3, consists of an integration

over the fast-time scale, which includes variations at the wave and the

electron cyclotron frequencies, resulting in equations depending only on first

order parameters describing the amplitude of the cavity fields and the non-

uniformities, and varying only at the slow-time scale characterized by the

bounce frequency and the relative frequencies. The derivation of these

equations was discussed in Sec. 4. In addition to self-consistency, Eqs. (10)

and (12) have the advantages of applicability to analytical investigations and

of high efficiency whca used in numerical simulations.

The correctness of the equations was established in Sec. 5, and the

accuracy of their numerical implementation was demonstrated in Sec. 6, by

applying a simplified version of the equations to study the evolution in a

rectangular waveguide. Our analysis has enabled us to derive general expres-

sions for the dispersion relation and for the bounce frequency for the case

of arbitrary variations of the wave in both transverse directions. These

results are represented by Eq. (13) (or Eq. (15) for conditions well above

threshold) and Eq. (18). In addition, a dimensionless parameter, A, was

obtained in Eq. (17)., which is useful to determine the saturation level of the

instability, and simplified equations were obtained for the particle dynamics

and wave evolution at saturation (see Eqs. (19) and (21)).
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The subject of external axial nonuniformities was considered in Sec. 7.

The equations of motion were simplified to the pendulum equation, Eq. (22),

with an external torque, given by R in Eq. (23) (or Eqs. (26) or (27))

representing the effects of the nonuniformities. Based on the corresponding

electron trajectories, the efficiency enhancement was interpreted when R > 0,

while the possibility of similar effects was discussed for the case R < 0,

under the appropriate conditions. It was also shown that a positive efficiency

should be expected also in the case of a beam with substantial thermal spread,

both when R < 0 and R > 0, wnder conditions roughly representative of an

oscillator and amplifier, respectively. Finally, the equivalence of a multi-

tude of nonuniformities was shown. Such nonuniformities include a gradient

of the external magnetic field, a gradient in the cross section, the presence

of an axial static electric field and the introduction of a dielectric material

with a dielectric constant which depends on position.

Some introductory investigation of two-mode competition has been presented

in Sec. 8. It was seen that one mode eventually dominates the spectrum and

effectively suppresses the excitation of the second mode, regardless of whether

:or not the unamplified mode would have reached higher power levels, were it

permitted to grow alone. This behavior is similar to that observed by
Dialetis and Chu (21). Analytical expressions for the saturation amplitude

and efficiency were obtained, see Eqs. (_28) and (29), and satisfactorily

verified by the simulations. Finally, it was shown that the asymptotic

behavior of the system is characterized by amplitude and frequency oscillations

at the beat frequency. It can easily be seen that such oscillations correspond

to a weak excitation of a discrete sideband spectrum with separation equal to

the frequency difference of the two modes. It is possible that the simultaneous

excitation of many modes in a highly overmoded cavity is related to the
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corresponding denseness of this spectrum parts of which might well resonate

effectively to different eigenmodes.

At this point it is appropriate to present a discussion on the limitations

of the test particle analysis by Dialetis and Chu (21). One limitation in

their approach is related to the absence of self-consistency, caused by the

omission of the reactive component of the current. This suppresses any shift,

A, of the frequency from its empty cavity value, causing incorrect conclusions

to be drawn when this shift is important. Such a situation would arise when

the frequency shift is comparable to, or larger than, either the frequency

mismatch, or the inverse transit time, that is, either A/e z 1 or T A I,

since in such cases one would obtain inaccurate evaluations of the motion of

the trapped or untrapped particles, respectively. In general, however,

A-w/Q, as can be seen from Eq. (12), hence the parameters they consider satisfy

A/e - TA-O.l, and no danger of substantial error appears present. More

serious could be their assumption on the existence of a steady state. As has

been shown in our simulations, the equilibrium state is not steady, but

oscillatory. These oscillations may be very important when more than two

modes are simultaneously present, because of the possibility of synchronism

between parts of the discrete spectra, which such oscillations represent.

In conclusion, let us discuss various extensions and modifications to our

work. One desirable modification appears to be that associated with the

adoption of a cylindrical geometry, which is more compatible with the experi-

mental arrangements. No conceptual difficulty is expected, with the method

of Sec. 3, including Eq. (6) being directly applicable. The eigenmodes will

have a different transverse dependence, and the only added feature will be the

application of Graf's addition theorem in the evaluation of the fields along

the zero order trajectories, e.g.,
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Jm(kn r) cos(Ni)=qF Jm+q(knF) Jq(k nP) Cos [m0 - + + -r

q=.oo(30)

where tane = / and tane = y/x, while here n and m are the radial and

azimuthal harmonic numbers.

A second possible extension, independent of the choice of rectangular or

cylindrical geometry, involves the introduction of alternate axial nonuniformi-

ties. The additional force due to an axial electric field is a trivial exten-

tion, while the inertial forces produced by a variation of the cross section

and the introduction of a dielectric sleeve with position dependent dielectric

constant can be accounted for by assigning a WKB-type axial field dependence,

of the form sin kIz, where k is now a function of z, calculated in terms of

the frequency and the local value of the transverse wave number. In addition,

and regardless of the above, calculations have to be performed to extend the

definition of R (Eq. (23)) to the high efficiency regime, to investigate the

dependence of efficiency enhancement on R, and to assess the effects of the

direction of the nonuniformity and the possibility of obtaining acceptable

values for the efficiency in spite of a thermal spread, as discussed in Sec. 7.

Finally, the introductory results of Sec. 8 are expected to be useful in

various aspects of the study of multi-mode competition. An interesting first

step appears to be the investigation of particle trajectories in a two-mode

field, with a steady large amplitude dominant mode accompanied by an oscilla-

tory low amplitude secondary mode, to establish criteria for the stability

of such a configuration. The following step would be to study the effects of

coupling between harmonics of the beat frequencies in a highly overmoded

cavity, in which more than two resonant modes are present. In addition, the

competition of modes with different tranverse structure should be considered.
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Clearly, all these subjects are to be pursued primarily numerically, with

supporting analytical considerationsto the extent it is feasible.
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