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I.  INTRODUCTION 

Temperature measurement is of vital interest in studies of flames. 
It is necessary for determination of number densities of species in 
flames from spectroscopic data.  It is also useful for comparison with 
the results of detailed modeling calculations. One of the better 
accept 3d spectroscopic techniques for the measurement of flame temper- 
ature Ls the reversal method,! which has generally been applied using the 
sodium D lines. The technique is then termed line reversal.  For certain 
burner types, however, Na seeding is difficult or impossible.  In these 
cases it is wise to look for a transition involving one of the flame 
species. This paper describes application of reversal to the (0,0) R 
bandhead of the OH A2E+ -»- X 2II system. The technique is best termed band 
reversal. 

Rsversal techniques do not provide the spatial resolution of laser 
based techniques, and measurements therefore cannot be made in the flame 
front oy  reversal.  Such measurements, however, can be easily performed 
in the burnt gas region where the temperature gradients are not large. 
The results can be used for comparative purposes with those of the laser 
based nethods. 

This paper is written as an introduction to line reversal to point 
out some subtleties in what is conceptually a very simple experiment. 
First the theory behind the technique is discussed, then the experimental 
apparatus is discussed and, finally, results of reversal measurements are 
presented and compared with laser excited fluorescence measurements. 

II.  THEORY 

Consider a gas inclosed by a blackbody in equilibrium at tempera- 
ture 7. Suppose that only radiative heat transfer is possible between 
the walls of the blackbody and the gas. The spectral intensity in the 
frequency range v to v + dv is isotropic and is given by2 

A.   G.   Gaydon and H.  G.   Wolfhardj Flames:    Their Structure^  Radiation 
and Temperature,   (Chapman and Hall,  LTD.,  London,   1970). 

Y,  E.   Zel'doviah and Y.  P. Raizer, Physios of Shock Waves and High 
Temperature Eydrodynamio Phenomena,   (Academic,  New York,   1966,Vol.   1, 
Chapter 2; S.  S.  Penner,  Quantitative Spectroscopy and Gas Emissivities, 
(Adaison-Wesley,  Inc.,  Reading, Mass.,  1959);  L.  D.   Landau and E.  M. 
Lifshitz,  Statistical Physics   (Addison-Wesley,  Inc.,  Reading, Mass, 
1955). 



Ivdv = 
2hv3 

■ C2 
1 

exp(hv/kT)-l 

h is Planck 's constant, ( 

dv (1) 

where h is Planck's constant, c the speed o£ light and k Boltzmann's 
constant. Since some confusion might easily result, it is worthwhile 
to discuss the physical meaning of Iv and its relation to other observ- 
ables in radiation theory. The quantity Iv is the amount of radiant 
energy in the spectral interval dv passing a unit area in space in unit 
time. The propagation vectors of Iv are restricted to lie within a 
solid angle d^ about the normal to the unit surface area. Typical units 
for Iv are therefore erg/cm2 sec Hz ster. Two other radiant energy 
observables are typically discussed. They are the spectral energy density, 
Pv, and the intensity of parallel radiation, Ivp. The energy density is 
essentially hv times the number of photons in the range dv present in a 
unit volume at a given instant in time (for purposes of the present 
study, all observables are assumed to be time independent). The intensity 
of parallel radiation is defined for parallel radiation, as, for example, 
from lasers, and is the amount of radiant energy in the spectral interval 
dv passing a unit area perpendicular to the direction of propagation in 
unit time. For isotropic radiation, pv = (4n/c)Iv.  For parallel radia- 
tion, pv = (l/c)Ivp. Typical units for pv are thus erg/cm^Hz and for 
Ivp are erg/cm2 Hz sec. Care must be taken to avoid error by a factor 
411 if intensity is used, especially in calculations of absorption or 
emission rates. 

The steradiancy2 of an emitting surface is defined as the amount 
of radiant energy in unit frequency interval emitted per unit time from 
a unit area of the surface into unit solid angle. The intensity at a 
surface parallel to the emitter surface and placed along the normal to 
the emitter, but a great distance away, is equal to the steradiancy 
normal to the emitter. Therefore, for a blackbody emitter surface, the 
steradiancy normal to the surface is also given by Eq. 1.* 

Let us now consider the gas at equilibrium with the blackbody in- 
closure. Suppose a transition between lower level 1 and upper level 2 
of energy hv is possible for the gas. The ratio of the number densities 
in the two states is then given by the familiar Boltzmann law: 

N2/N1 = (g2/g1)expC-hv/kT) (2) 

The steradiancy at an angle  6 to the normal of the emitter surface 
drops by the factor cos   6 (see Eef.  1 and 2).    One must take care to 
use only radiation from a smalt solid angle normal to the surface of 
calibrated emitters to avoid error. 



where N^ is number density and gi the level degeneracy.  Radiative 
transfsr occurs via three processes: absorption from the ground state, 
stimulated emission from the excited state and spontaneous emission from 
the excited state. The rate of absorption is given by B12 Iv Nl. stim- 
ulated emission by B21 Iv ^2  and spontaneous emission by A21 N2, where 
A21> B12 and B21 are the Einstein coefficients expressed in terms of 
spectral intensity.2,3 At equilibrium, the rate of absorption is equal 
to that of emission, assuming nonradiative energy transfer is negligible, 
and than 

12 1 N. 
V 1 21 v 2   21 2 (3) 

By substituting Eq. 2 into 3 and solving for I  (after rearrangement to 
the form of Eq. 1), one finds2 

and 

BL = c2k2l/2hv5 (4a) 

12 (g2/g1)B21. (4b) 

Eqs. 4a and b were originally derived by Einstein as described above, 
Rearranging Eq. 3 one finds 

^B12NrB21N2)VA21N2' (5) 

What happens if the blackbody and gas are not in equilibrium? Suppose 
the blackbody temperature, Tb, is lower than the gas temperature, Tg. 
Since Iv is smaller at the lower temperature, the spontaneous emission 
is larger than the net absorption. There will thus be a net emission at 
v.  Similarly, if Tg < Tb, there will be a net absorption at v.  If 
Tg = Tb,  there is no absorption or emission. 

A.  C.  G. Mitchell and M.   W.   Zemansky3 Resonanae Radiation and Excited 
Atoms3   (Cambridge University Press,  1934) p.   92-5. 

i 
Einstein's original derivation of the relation was in terms of energy 
density,   p . One must be extremely careful in rate calculations that 
the observable one is using  (pvj Xv or I\m)  is appropriate for the 
dimensions of Bjo« 4" error by a hidden factor of 411 can easily result 
otherwise. 

7 



A blackbody as described above is impractical for experimental work. 
If one places a blackbody emitter and a detector subtending the same 
solid angle, d^, on either side of a gas confined to the volume V, as 
shown in Figure 1, one may analyze the situation for practical experi- 
ments. Since the spontaneous emission is isotropic, the rate of spon- 
taneous emission into the detector is A2iN2Vdfi/4II. The stimulated terms 
in Eq. 5 are affected by an equivalent factor since the solid angles for 
source and detector are equivalent. Thus, an experiment can be run with- 
out integrating over 411 ster. * The solid angle of the detector must be 
the limiting aperture, not the emitter. Otherwise, the emission of some 
of the flame gases, with no background irradiation, will enter the de- 
tector, causing erroneous measurements. 

Let us now consider the most common emission source used in reversal 
work, the tungsten ribbon lamp. Such a lamp contains a strip of tungsten 
which is heated by a constant current source.  Light emitted from the 
filament may pass through a pyrex window. However, this work necessita- 
ted use of a lamp with a fused silica window to pass ultraviolet radia- 
tion. The eraissivity of tungsten is not unity so that Eq. 1 does not 
apply.  Instead, the steradiancy is multiplied by an emissivity factor, 
E.  Converting to unit wavelength interval dA, since the lamp used in 
this work was calibrated in such units, and remembering |dv| = cdX/A^, 
one finds the intensity normal to the surface is 

= 2hciECVr1     1     dA (6) 

X        exp(hc/AkT)-l 

where T is the temperature of the filament. Tables of emissivity for 
tungsten may be found in ref. 1, if needed. However, the method described 
in this work requires usage of Eq. 6 only for a hypothetical blackbody 
emitter which has E = 1. 

III.  EXPERIMENTAL 

A diagram of the apparatus used in this work is shown in Figure 2, 
The standard lamp is a tungsten ribbon lamp with a fused silica exit 
window which is calibrated for steradiancy normal to the surface vs. 

*In this design}  the spontaneous emission loss is not aompensated by a 
surrounding blackbody inalosure.    Collisional excitation and quenching 
usually dominate the energy partitioning.    However at sufficiently low 
pressures3 as discussed in ref.  1,  the radiative losses may appreciably 
lower the temperature of the electronic modes.    This phenomenon can 
result in measured reversal temperatures which are quite  low compared 
to the translational temperature. 

8 



SPONTANEOUS 
EMISSION 

(ALL DIRECTIONS) 

BLACKBODY 
EMITTER 

DETECTOR 

Iv* = 
IN dQ 

- ABSORPTION + STIMULATED EMISSION + SPONTANEOUS  EMISSION OCCURING 

Figure 1.    Gedanken reversal  experiment for an emitter-detector combina- 
tion of solid angle dn.    In a real   experiment, the gas  in volume V is 
replaced by a  flame and the emitter by a lens.    The blackbody emitter 
could equally well   be represented by a  point blackbody emitter at the 
center Df the sphere. 
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wavelength at a constant current of 35 amp (Eppley Laboratory, Inc.)- 
A similar working lamp is used for most measurements and later calibrated 
against the standard lamp.  Light from the lamp is 1:1 imaged into the 
flame hy a quartz lens. Thus, the intensity at the flame is equal to the 
lamp steradiancy (neglecting lens losses). The lamp radiation and flame 
emission are 1:1 imaged on the slits of a monochromator.  An aperture 
stop limits the acceptance angle of the monochromator so that it views 
equal solid angles of the flame and background radiation.  The aperture 
must be small enough to restrict the background emission to that portion 
which is nearly normal to the filament. 

Care must be taken to avoid chromatic aberation of the lenses. 
Variation in the index of refraction with wavelength causes the focal 
length of the lenses used to change for 12.70 cm in the visible to 
12.07 cm at 3070A, as calculated using the lensmakers equation. 
Ignorance of this change can introduce a 100-200 K systematic error into 
the results. 

As previously stated, the flames used in this work were CH4/N2O 
flames. The flames were produced by a water-cooled, sintered bronze flat- 
flame type burner of 6.4 cm diameter. Capillary flow regulators 
provided supply gases to the burner. The absolute flow rates were ac- 
curate to within 1%.4 

A 0.3-m Heath monochromator was used in this work. A 100-micron 
5 

slitwidth was used yielding a bandpass of ^ 3A FWHM.  Output from the 
monochiomator was detected by an EMI 9558QA photomultiplier (PMT). 
Current from the PMT was monitored by a picoammeter. Hard copy of the 
picoammeter output was obtained on a strip-chart recorder. 

The transmission of the first lens after the lamp was determined in 
the following manner. The PMT response was determined with the appartus 
set up as shown in Figure 2 with the flame off.  Then the lens and burner 
were removed. The lamp was moved to the point where the tungsten filament 
was abcve the center of the original burner position, i.e., at the origi- 
nal imaging point.  The ratio of PMT responses yields the transmission. 
Of course, the lamp supply current, slitwidth and wavelength observed 
must be held constant. 

Ir. a typical temperature run, the monochromator was scanned from 
about 5050 to 3080 K  across the Ri and R bandheads of the OH (0,0) 
vibrational band.  Figure 3 shows a scan of the flame emission with the 
lamp turned off. The Ri  and R2 bandheads appear as a splitting on the 
peak between 3060 and 3075 A. The sharp rise at 3060 X and the splitting 
of the peak were found to be very useful in temperature runs with low 
signal to noise ratio.  For a given flame, the lamp current is changed 
and the monochromator is scanned each time until the reversal point is 

M.  A.  Dewi.Zde3   "Capillary Flowmeters for Accurate Stable Flows of 
Gases".   BRL Technical Revort ARBRL-TR-02230,  March 80. (AD #A083874) 

11 
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obtained. A typical set of scans is shown in Figure 4. The graybody 
curve of the lamp is shown in Figure 4a with the flame off. With the 
flame on, the OH spectrum shows up, in Figure 4b, as an emission. The 
splitting of the R^ and R2 bandheads may be discerned on the scan. The 
peak positions are pointed out by arrows on the scan. Though the exact 
temperatures are not known, the background temperature was lower than, 
but very close to, the flame temperature. Once the reversal point had 
been determined, the monochromator was scanned with the lamp current set 
+ 0.5 and - 0.5 amps away from the reversal point to be sure that absorp- 
tion and emission, respectively, could be discerned. The ± 0.5 amp 
current setting typically introduced ± 25K into the error limits. 

The reversal temperature wasodetermined in the following manner. 
The monochromator was set at 3070A, the approximate center of the OH 
peak used.  The PMT current was then determined for the working lamp at 
the reversal current and for the standard lamp at its calibration current 
(35 amps).  The steradiancy, S, of the standard lamp was known from its 
calibration vs. wavelength. The intensity at the reversal point is thus 

I ^3070 A) (C /C )St v w sJ (7) 

where Cw is the PMT current for the working lamp at the reversal point, 
Cs that for the standard lamp at its calibration current and t is the 
transmission of the lens. The temperature of the flame is then that at 
which a blackbody (not the tungsten filament!!!) produces the intensity 
of Eq. 7. This temperature is determined Qy  inserting E = 1 in Eq. 6 
and solving for T. IT 

The absorption measured in this work was of the order of 5%.  This 
low signal level made discerning the absorption peak from background 
noise very difficult.  In retrospect, it would probably have been better 
to use a high resolution monochromator with bandwidth of order 0.05 A, 
the approximate bandwidth of a single rotational line of OH in the flame, 
and use pulse counting techniques.  The signal to noise ratio should be 
much higher and the reversal of individual lines could be examined. 

No other species besides OH were used in this study. The primary 
reason for this restriction was the impracticality of seeding the 
porous sintered bronze burner with sodium salts or other materials com- 
monly used in reversal work. A scan of emission from the burnt gas 
region of the CH4/NgO flames revealed the presence of minor emissions 
from NH (3360 - 70 A) and CN (3880 A) which probably were too small to 
yield useful results by this technique.  (However, with a higher resolu- 
tion monochromatoy they might be used).  Strong H2O bands were observed 
at 6930 and 7165 A.  The first has a sufficiently sharp bandhead that it 
might y_eld good results, but neither was tried in this study. 

15 



OH   BAND   REVERSAL 

BACKGROUND  LAMP 
ONLY 

BACKGROUND   LAMP   PLUS 
FLAME  EMISSION 

TBKGRD^   TFLAME 

4 (4) 

Figure 4. Scan of lamp plus OH Emission. 
Figure 3 are pointed out in Figure 4b. 

The Ri and Rz bandheads of 

14 



The OH reversal temperature was determined in the burnt gas region 
of stoichiometric, slightly lean and slightly rich CH4/N2O flames. The 
results are presented in the next section and compared with the results 
of laser-excited fluorescence measurements. 

IV.  DISCUSSION 

The flame temperature was measured in the burnt gas region of 
several CH4/N2O flames by line reversal and at several heights by OH 
laser-excited fluorescence.  The results are shown in Table 1. The 
fluorescence, measurement at ^ = 1.01 is the average over four measure- 
ments at various heights above the burner, all in the burnt gas region, 
shown in Table 2. As can be seen, the temperature does not vary, within 
error limits, above the burner. This result is important since the re- 
versal resolution was only good to about 1 cm in this study.  For the 
fluorescence technique, the resolution was much better, the beam dia- 
meter being about 200 microns. The agreement between the results is 
most gratifying. Note also that the temperature probably peaks near an 
equivalence ratio of 1.0, as one would expect. 

The OH band reversal measurement is essentially a determination of 
the electronic temperature of the OH in the flame. As such, in spite of 
the wide acceptance of reversal measurement by the combustion community, 
the technique is subject to errors as grievous as other less well accepted 
techniques.  Even if great care is taken to avoid systematic errors, as 
discussed by Snelleman in ref. 6, the electronic temperature of the 
reversed species can differ from the translational temperature of the 
flame gases, resulting in error. The technique lacks good spatial reso- 
lution.  It is a line of sight method which cannot be easily applied 
in flair.es with large horizontal temperature gradients. Yet, it is an in- 
expensive and relatively easily applied technique. 

The laser-excited fluorescence measurements were performed in the 
(1,1) vibrational band of the A 2j; + ■*- x 2n electronic transition.  The 
temperature measured was the rotational temperature in the first excited 
vibrational state of the ground electronic state of OH. Measurements by 
this technique could also be subject to effects of nonequilibration with 
the translational temperature. However, one would intuitively expect 
the rotational levels in the ground electronic state to equilibrate much 
more quickly than electronic states due to the relative energy transfer 
rates involved. Thus, if a reaction produces electronically excited OH, 
the slow equilibration could be especially problematic leading to 

W, R. Anderson,   "Laser Excited Fluoresaenae Measurement of OH Rotational 
Temperatures in a CH4/N2O Flame"}  Eastern Section Meeting3  Combustion 
Institute,  Atlanta,  Georgia,  Nov 1979, paper 3; L.  J.   Decker and W.  R. 
Anderson,   to be published. 

6W.   Snelleman,   "Errors in the Method of Line-Reversal",  Combust.  Flame 
U,   45Z   (1967). 
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i Line Reversal JX 

1.18 2129 ± 50 

1.01 2194 ± 45 

0.55 2089 ± 70 

TABLE 1.  CH4/N2O TEMPERATURES IN THE BURNT GAS REGION, 
THE TEMPERATURES WERE MEASURED AT SEVERAL EQUIVALENCE 

RATIOS, $ = 4ICH4]/IN20]. 

Laser-Excited Fluorescence [K] 

2113 ± 38 

2199 ± 53* 

not measured 

Average of the four measurements in Table 2.    The temper>atva>e above the 
burner does not change in the burnt gas region so that this average is 
meaningful. 

TABLE 2.  CH4/N2O TEMPERATURE AS MEASURED BY LASER EXCITED 
FLUORESCENCE.  THE TEMPERATURE IS MEASURED AS A FUNCTION 

OF HEIGHT ABOVE THE BURNER AT THE EQUIVALENCE 
RATIO (|) = 1.01 

Height (cm) Temperature (K) 

0.25 ± 0.05 2220 ± 48 

0.50 ± 0.05 2186 ± 55 

1.00 ± 0.05 2201 ± 76 

2.50 ± 0.05 2189 ± 36 

16 



erroneously high temperature measurements.  Equilibration in the burnt 
gas region of atmospheric pressure flames is not expected to be a serious 
problem as no reactions leading to electronically excited OH are expected 
to be important and rotational equilbration is rapid. * The agreement 
between the rotational and electronic temperatures substantiates these 
arguments. 

The usefulness of the OH band reversal technique is demonstrated 
in this work. The technique provides a temperature measurement for 
comparison with results of less-well-accepted techniques.  It is hoped 
that this paper will help others avoid some of the subtle errors 
encountered in this work. 
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In emission spectra of radicals in the primary reaction zones of flames3 
as discussed in ref lt  the radicals are sometimes extremely rotation- 
ally hot.    Often,  the rotational distribution will have two very dis- 
tinct temperature regimes for the high vs low rotational levels.    This 
phenomenon doubtless occurs due to production of rotationally hot mole- 
cules in an excited electronic state due to a chemical reaction.    Pref- 
erential quenching of states at one end of the distribution probably 
leads to the observed dual temperature distributions.    However, such 
effects are observed only in law pressure flames. 

17 
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