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INTRODUCTION

For the surface protection of high strength steels against severe high
temperature gases, attention has often been directed towards the use of
refractory metal coatings. Electrodeposition would be an economical way for
depositing refractory metals but is limited to rheniuml=3 which 1s a britkle
and costly metal. Amongst the successful metals that can be electrodeposited
is high contractile (HC) or hard chromium. This has shown the ability to
withstand severe wear and high temperature environments. In spite of its
success however, chromium is also brittle and possesses an inherent crack
pattern which leads to excessive spalling or flaking when subjected to high
stresses. Evidence of the latter can be seen in Figure 1.

Low contractile (LC) chromium®=6 1s a more ductile coating and is less
susceptible to spalling. It, however, lacks some of the mechanical properties
that one requires under high loads.

Attempts to Improve the properties of electrodeposited chromium or
refractory metals by alloying with iron group metals have also fell far short
of the ideal coating. 1In such cases, the deposits were found to be brittle,
and non-adherent to steel substrates.’~10

Heat ing chromium plated high strength structural steels to an elevated
temperature for diffusing the chromium with the substrate to produce suitable
alloying at the surface has also been attempted. The major disadvantages of
this approach are the formation of brittle diffusion layers,u the decrease

in the mechanical properties of the bulk structure, and the distortion which

may occur,

References are listed at the end of this report.
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Figure 1. Cross-sectioned chromium plated steel
segment taken from the bore 6f a gun
tube which fired hypervelocity rounds.

In view of the above, recent attention has been given to a new approach
for altering the properties of a metal deposit, which involves the heat treat-
ment of the plated surface using LASERS. This present investigation is‘basic-
ally a preliminary study which advances the efforts of a previous investiga- .
tion on the behavior of LASER treated chromium deposits on steel substrates.l?

During the past two decades the LASER (Light Amplification by Stimulated
Emission of Radiation) has advanced from a laboratory curiosity to a precious
tool promoting numerous advances in metal processes. The LASER has attracted
the metallurgists, primarily because it can focus vast amounts of energy very
rapidly and with pinpoint accuracy upon a metal surface.

The introduction of the LASER in the 1950's and the development of high

power gas LASERS in the 1960-70's have led to rapid advancement in industrial

applications for the processing of metals, Due to these advances, LASERS are

P L
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being successfully applied in the field of cutting, drilling, welding, and

surface heat treating of metals and alloys.

Solid LASERS were the first to be employed but are limited since they can
function fn a pulsed rather than continuous mode and due to their melting
point could absorb only a limited power iaput. In 1965, the concept of the
gas LASERS was introduced whereby high energy could be radiated in the contin-
uous mode as well as In pulses. Because of the high power capability, the gas
LASER was employed for this present study.

A LASER techniquel3 developed in recent years for the thermal treatment
of a metal surface 1s called Laserglazing*. Such a technique 1nvolves the
melting of thin surface layers (e.g., steels) at a high melting efficiency,
resulting in rapid solidification and cooling to achieve a variety of
microstructures and properties without affecting the bulk substrate. This is
accomplished by rapidly traversing the surface of a materfal with a LASER beam
focused to a power density range of 10" - 107 W/ cn2.

In order to compare Laserglazing with other material processes using
LASERS, a spectrum for operational boundaries is shown in Figure 2 in which

LASER power densitfies are related to interaction time.

*LASERGLAZE - Trade Mark by United Technologies Corporation, East Hartford,
CT.
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Figure 2. Operational boundaries for laser
beam-material interaction for
various processes.13 The
diagonals are lines of constant
specific energy with the values
shown.

The significant difference which results in the structure of a Laser-

glazed surface can be clearly realized when comparison is made with the

structure obtained in conventional casting of an alloy. In the casting of a

bulk alloy, the phases with high melting points are difficult to melt and
phase separations occur. Such structures provide non-uniform properties.
the case of a Laserglazed surface, the melted layer is thin and since the
substrate remains cold, rapid solidification occurs thus reducing those
problems associated with slow cooling.13

This technique of achieving homogeneous phase transformations in the

surface with sufficient control of surface depth has formed the basis of this

In




AT e e s v

e a

present investigation. Also the ease of automating the process for a variety

of geometrical shapes offers a number of economic advantages.

The work of Montgomery12 appears to be the first study dealing with the
Laser treatment of electrodeposited chromium to improve properties and
adhesion. This work involved LASER heating of the plated surface with
transformation of the steel substrate approaching depths .203-.254 um (80-100
mils). The coating thicknesses ranged from 25-317 um (1-12.5 mils) and the
speeds of LASER beam travel (which controls interaction time) were 25-102
cm/min (10-40 in./min). Results of the above study revealed suitable Fe~Cr
alloying but some undesirable embrittlement of the softened unalloyed portions
of the deposit and indications of the formation of intermetallic compounds of
Cr-Fe carbide. The latter deposits resulted in premature failure in wear

tests.

OBJECTIVE

In this present investigacion, the effects of intermedfate layers of LC
chromium and cobalt are investigated as a function of exposure time as a means
of optimizing structural and interfacial characteristics.

In view of the possibility of the formation of brittle Cr-Fe carbide
phages at the interface and the potential erosion resistance properties of
cobalt, the steel/Co/Cr combination was included 1ﬁto the present study to
compare its behavior with the steel/Cr combination.

Low contraction (LC) chromium has been introduced in this study because
it 18 known to have less cracks, contract less and subsequently have less

oxide®~6 than HC chromfum, and therefore would be expected to behave

differently during LASER treatment.




EXPERIMENTAL PROCEDURE

{
l
!
t Electrodeposition
f All test cortings were plated on flat steel strips (cold rolled SAE
4340%) which measured approximately 1.9 c¢m wide, 15 cm long, and 0.16 cm thick
(0.75 x 6 x 1/16 1n.). The test panels were first cleaned by soaking in a hot
caustic solution and scrubbing, followed by a hot water rinse. After rinse
the panels were electropolished to remove 25-50 um (1-2 mils) of the surface,
Without delay the panels were immediately rinsed and plated on one side to
produce deposits of:

(a) 84.4 um (3.4 mils) of Cr on steel (42.4 um of HC chromium over 42.2

pm of LC chromium).

(b)Y 84.4 um (3.4 mils) of Cr on 95.3 um (3.75 mils) of Co on steel.

Bath Formula and Process Controls:

1. Cobalt Plating

Cobalt Sulfamate « « « ¢ o o o o o ¢ « o « « 320 g/% (43 o0z/gal)
Boric Acld « &« ¢ ¢ ¢ « o o ¢ ¢ 4 o o o o o o 22-30 g/% (3-4 0z/gal)
Cobalt Bromide Concentrate « « « « « « o « o 45-67 g/2 (6-9 oz/gal)

i Current DensitiesSe « « o+ o o ¢ ¢ ¢ « « « « o 11 amp/dm? (100 amp/ft?)

Tempel‘atul‘e...-.............4911C(12012°F) ‘

pH.......-.-............4.0i.2 !
Spgr...............-....1.25-1.28(29-3133ume')

Anodes (bagged). « ¢« « ¢« « ¢ s+ s+ s« o« « « o o Cast Cobalt

w *No concern was given to the tempering of the test coupons prior to plating,
! in view of the altering of the underlying steel during LASER heating and
8 quenching.




2. Chromium Plating

E | Cr0J o o o o o o o o o o o o o s o o o o o o 250 g/% (33 o0z/gal)
H2SO o o ¢ o o o o o o o s o o o o o o o oo 2.5g/4% (.33 0z/gal) d
t ' SP BLe o o ¢ o o s o o o o o s o o o o o w o 1417 = 1.18 (21~22 Baume')
: ) Current densitye. « ¢ « o o ¢ o o o o » o » o 32 amp/dm2 (300 amp/ftz)

; ! For HC chromium;

] 64 amp/dm? (600 amp/ft?)
For LC chromium

;o Temperature. « « s « o« o o o o o o« o o o o o 54°C £ 1°C (130°F) HC
: chromium;
85°C + 2°C (185°F) LC
chromium

Anodes ® 8 & 8 6 & o o & s s ° & o s s s o Lead-Tin

3. Electropolishing

' HoSO4e o o o o s o o o o o s o o s s o s o o 50% (vol.)
H3PO4e o o o « o « o s o o o 2o o o o o o« o » 50% (vol.)
Current densitye « o« « o « o « o o o o o » o 32 amp/dm? (300 amp/ft?)
Temperature. « « « o o« o o o o o « o o o o« o 43°C £ 1°C (110°F)

Laser Treatment

A high-power electric discharge cross beam CO LASER, operated as an

unstable resonator (with a constant power setting of 6 KW), was employed in a
continuous mode to heat the plated specimens for the present study with the
following parameters:

Total energy applied to specimen surface . . 4.7 KW max

Powerdensity................2.3x106W/cm

Wavelength ¢« « ¢ o o o o o o ¢ s ¢ o ¢« o o o 10,6 uUm

" TR T T T S Y G 4

Focal length of beam « « ¢ o ¢ o ¢ o o o o 47.6 cm (18 3/6 1“0)

Diameter of focal 8POt « o o o ¢« o« o ¢ o o o 051 cm (20 mils)

[ )
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Scanning speed (linear). . « « ¢ « o ¢ o « « 5.1-95.5 cm/sec
Shielding (1002 He)- e e o o 5 s s s o o o o 2.8 ms/hr

Focusing Mirror. « ¢« « ¢« s« ¢ ¢« ¢« o« ¢« &+ o « « Copper, off-axis parabola

The LASER treatment was carried out by mounting the plated specimens on a
large aluminum rotating horizontal disk so that the LASER beam (mounted in a
stationary position) would make contact with the surface along the length of
the specimen during various preset speeds. The speed of the rotating disk and
the number of revolutions (or passes) controlled the interaction time (i.e.,
time specimen was exposed to the LASER beam). 1In order to prevent oxidation
of the plated surfaces during the LASER treatment, a helium environment was _
utilized.

Nominal exposure times, calculated from specimen speeds were 0.5, 10, and
50 ms, resulting in the surface patterns shown in Figure 3. The widths of the
affected trails were increased by displacing the specimens a small distance
laterally from the fixed focal point of the LASER beam before each pass.

Specimen Evaluation

Examination of the samples consisted of metallographic, microhardness,
and microprobe analysis.

Photomicrographs

Specimens were cross-sectioned normal to the LASER treated paths and
mounted and polished using diamond abrasives. The polished specimens were
etched as follows: the steel etchant used consisted of two grams picric acid
100 ml ethyl alcohol plus seven drops concentrated hydrochloric acid. The
chromium and cobalt etchant used consisted of a solution of 60 parts lactic
acid, 30 parts HNOj3 + 5 parts HF, by swabbing 10-15 sec. The photomicrographs

were made with a Polaroid camera using a Leitz MM5 Research Metallograph.

8
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Hardness Measurements

Hardness measurements were made on the cross sections of the deposited
specimens with a Wilson Tukon microhardness tester using a 50 gm load and are
reported on the Knoop scale (KdN).

Microprobe Analysis

Coatings were analyzed with the scanning electron microprobe (Materials
Analysis Corporation Model 4005) using a specimen current to approximately
10-20 nA and 25 KV. The specimens were scanned along the two directions of
the mounted cross sections ({.e., from the substrate to the top layer of the

deposit and along the center of the coating parallel to the substrate).
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Figure 3. Surface view of laser treated chromium plated
specimen showing the altered traills caused by
the laser beam during specimen travel.
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RESULTS AND DISCUSSION

As-Plated Cobalt/Chromium on Steel

A cross—section of the as-plated duplex structure of electrodeposited
chromium over cobalt on steel is shown in Figure 4. The etched layers of
chromium reveal the coarser grained columnar structure of the LC versus the HC
denosit (see top inset). The microstructure of the cobalt is also typically
columnar and shown in the lower inset. The steel is shown to be a spheroidal
structure,

The hardness and characteristics of chromium deposits directly onto steel
substrates were found to be approximately the same as those with the cobalt

underlay.

Figure 4., Cross=section of an as-plated duplex
structure of electrodeposited chromium
over cobalt onto steel.
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LASER Treated Cr on Steel and Co/Cr on Steel

A. Exposure Time of 0.500 ms - This test run was accomplished by a single

pass across the LASER beam with a specimen travel speed of 95.5 cm/sec (188
ft/min).

Chromium on Steel - The LASER beam affect on the microstructure of this

trial run i{s shown in Figure 5(a)*. As can be seen, the microstructure of the
LC chromium 18 no longer columnar but has been transformed (through recrystal-
lization and grain growth) to a somewhat equiaxed structure with the grains
progressively coarser towards the edge of the LASER path., The HC chromium top
layer which obviously experienced higher temperatures, still reveals some
columnar structure, but has significantly coarsened. The underlying steel -
substrate reveals some early signs of phase reaction. The substrate exhibits
an increase and the chromium a decrease {in hardness as shown in Figures 6 and 7.

Cobalt/Chromium on Steel — The microstructural changes of the chromium

layers over the cobalt are approximately the same as the chromium/steel speci-
mens (Figure 5(b)) with a corresponding decrease in hardness. An interesting

observation is the widening of the initial cracks in the chromium. The cobalt
and underlying steel revealed no changes in microstructure although the hard-

ness profiles (Figures 6 and 7) revealed a slight hardness decrease for cobalt
and slight increase in the steel just beneath the cobalt.

B. Exposure Times Of 10 ms -~ This LASER treatment was performed with a

specimen linear speed of 25.9 cm/sec (51 ft/min) and the specimen passing

across the LASER beam five times for a total interaction time of 10 ms.

*The diamond shaped indentations shown in the photomicrographs are due to the
hardness measurements taken.
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The specimen was moved .025 cm (10 mils) laterally prior to each
overlapping pass in order to widen the heat affected zone. The total lateral
displacement for the four succeeding passes was approximately .152 cm (60
mils).

Chromium on Steel - Figure 8(a) shows extensive changes in microstructure

of the chromium and underlying steel with no visibility of the HC-LC
interface. 1In addition, the coating did not respond to microetching -
indicating changes in chemical resistance. Microprobe analysis has shown
indications of varying concentrations of iron in the chromfum. One can see a
heat affected zone (HAZ) in the underlying steel with significant
nonhomogeneity at the steel/Cr interface. Another significant observation 1is
the existence of internal cracks in the chromium coatings (possibly related to
the high quenching rates or shrinkage during cooling). Figure 8(b) is a
cross—section of an area adjacent to the LASER beam path which reveals the
thermal alterations due to edge affects. Material from the substrate appears
to be partially drawn up through the cracks in the chromium. This indicates
that the substrate could possibly approach the melting temperature at the
bottom of pre-existing cracks. The entry of material into the cracks was
observed to a greater extent in the previous study.12

Cobalt /Chromium on Steel - Figure 9 clearly depicts the significant phase

changes 1in the steel/Co/Cr system for the same interaction time (10 ms). The
extreme left of the view (a) represents the center of the narrow LASER beam
path where the coatings appear to have transformed into a single and
homogeneous layer which again did not respond to etching. However, the
section on the right side of the photomicrograph (i.e., less heat input)

clearly reveals the chromium and cobalt layers. The chromium is shown to be

15
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progressively recrystallized as it approaches the beam path. The interface
between these two zones reveals a number of voids and disarranged structure
due to the end effects of the LASER beam where temperature gradients are
extremely high.

Figure 9(b) shows the overall view of the transformed coating which
corresponds to the center of the LASER beam path.

Examination of the underlying steel reveals a transformation which
appears to be untempered martensite. These microstructural changes of the
coatings and substrate, again are shown to correlate with the corresbonding
hardness changes in Figures 6 and 7.

C. Exposure Time of 50 ms ~ This LASER treatment involved a specimen linear’

speed of 5.1 cm/sec (10 ft/min). Again, the specimens were passed across the
LASER beam five times for a total interaction time of 50 ms. The specimen
lateral displacements for these trials were .051 cm (20 mils) for each
succeeding pass for a total displacement of .254 cm (100 mils).

Chromfum on Steel - The results from this LASER treatment shown in Figure

10 reveals phase transformations which extend through the complete thickness
of the specimen. Again, neither the affected coatings or the steel responded
to microetching confirming that significant phase changes have taken place.
The structural changes as a result of this treatmeat was accompanied with an
increase in microhardness (as shown in Figure 6). This could be due to solid
solution strengthening of the Cr-Fe formation which was identified by
microprobe analysis. A hardness plot extending through the full thickness of
«157 cm (62 mils) of the specimen reveals a relatively uniform level as shown

in Figure 11.
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Figure 10. Cross-section of

heat affected electrodeposited

Cr on steel specimen after

LASER interaction time of 50 ms.
Phase transformations have advanced
through the complete thickness of
the specimen.
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Figure 11. Hardness plot through specimen thickness for
the interaction time of 50 ms.
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Cobalt/Chromium on Steel - The 50 ms LASER treatment of the steel/Co/Cr

system appears to have experienced the same extensive phase transrormations
and the metallographic view appeared identical to the Cr on steel as shown in
Figure 10. The change, was again, accompanied by an increase in hardness
which was comparatively greater than the Cr on steel speclmens (see Figures 6

and 11).

CONCLUSIONS
(a) The LASER technique employed was shown to affectively confine the
heating of the surface to controllable depths. At an exposure time of .5 ms,

grain growth in the chromium occurred with a decrease in hardness and negligi-

ble {interfacial effects. At an exposure time of 10 ms, total recrystalliza-

tion of the chromium occurred. In the cobalt-chromium duplex coating, com-
plete alloying occurred. At 50 ms, alloying through the total .157 cm (62
mils) specimen thickness occurred.

(b) The introduction of cobalt as an underlay for chromium was found to
be beneficial in eliminating phase reactions between steel and chromium. Also
the steel/Co/Cr system exhibited less cracking and porosity and possessed
greater hardness after treatment than the Cr on steel system.

(c) The LC chromium layers exhibited less cracking and porosity than the
HC chromium following the 0.5 ms and 10 ms LASER treatments, After the 50 ms

treatment, no differences could be observed.
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