ELECTRODE BOUNDARY LAYERS IN DENSE, DIFFUSE PLASMAS

O. BIBLARZ
R. E. BALL
S. T. VAN BROCKLIN
DEPARTMENT OF AERONAUTICS
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93940

OCTOBER 1980

TECHNICAL REPORT AFWAL-TR-80-2088
Final Report for Period September 1978 to March 1980

Approved for public release; distribution unlimited.

AERO PROPULSION LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433
NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

[Signature]
Project Engineer

[Signature]
ROBERT R. BARTHELEMY
Chief, Energy Conversion Branch

FOR THE COMMANDER

[Signature]
JAMES D. REAMS
Chief, Aerospace Power Division
Aero Propulsion Laboratory

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/POOC, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/30 January 1971 - 130
ELECTRODE BOUNDARY LAYERS IN DENSE, DIFFUSE PLASMAS

Q. Biblarz, R. E. Ball, and S. T. van Brocklin

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

AERONAUTICAL LABORATORIES
Wright-Patterson Air Force Base, OH 45433

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

Approved for public release; distribution unlimited.

This report presents a description of two-dimensional current flow at non-emitting electrodes. The plasma is generated by an E-beam or other external source. Diffusion and ionization/recombination are accounted for in the formulation but neither convection nor magnetic field effects are included. Results for a potential drop at the electrode region of 10 volts clearly indicate the boundary-layer nature of the sheath; the boundary-layer nature of the ambipolar region shows up when ionization/recombination are included. Various physical and numerical
arguments are given for the dimensionality of the problem and a description of the calculation scheme together with the computer program are included.
FOREWORD

This final report was prepared by Oscar Biblarz and S. T. van Brocklin of the Department of Aeronautics of the Naval Postgraduate School, Monterey, CA 93940 for AFWAL under MIPR 79-00618, Project 2308, task S503, Dr. Alan Garscadden was the Government Project Monitor. This report has been identified within the Naval Postgraduate School by the number NPS67-80-011 and was submitted to the Air Force on July of 1980.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1. Approach</td>
<td>3</td>
</tr>
<tr>
<td>2. Parameters of Discharge Gas</td>
<td>6</td>
</tr>
<tr>
<td>II: PROBLEM FORMULATION</td>
<td>8</td>
</tr>
<tr>
<td>1. Equations</td>
<td>8</td>
</tr>
<tr>
<td>2. Characteristic Lengths</td>
<td>9</td>
</tr>
<tr>
<td>3. Dimensionality of Problem</td>
<td>16</td>
</tr>
<tr>
<td>III: PROBLEM SOLUTION</td>
<td>21</td>
</tr>
<tr>
<td>1. Working Equations</td>
<td>21</td>
</tr>
<tr>
<td>2. Program</td>
<td>26</td>
</tr>
<tr>
<td>IV: RESULTS</td>
<td>29</td>
</tr>
<tr>
<td>V: SUMMARY AND CONCLUSIONS</td>
<td>52</td>
</tr>
<tr>
<td>APPENDIX A - Ambipolar Solution -- One Dimensional Description</td>
<td>54</td>
</tr>
<tr>
<td>APPENDIX B - More on Problem Dimensionality</td>
<td>62</td>
</tr>
<tr>
<td>APPENDIX C - Computer Program</td>
<td>66</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>95</td>
</tr>
<tr>
<td>FIGURE</td>
<td>TITLE</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Nitrogen Parameters for E/N Range of Interest</td>
</tr>
<tr>
<td>2</td>
<td>Behavior of K^- at the Anode, Undisturbed Plasma and Cathode Regions</td>
</tr>
<tr>
<td>3</td>
<td>Anode Model with Periodic Current Constrictions</td>
</tr>
<tr>
<td>4</td>
<td>Boundary Conditions for Computational Method</td>
</tr>
<tr>
<td>5</td>
<td>Case I Results</td>
</tr>
<tr>
<td>6</td>
<td>Case II Results</td>
</tr>
<tr>
<td>7</td>
<td>Case III Results</td>
</tr>
<tr>
<td>8</td>
<td>Case IV Results</td>
</tr>
<tr>
<td>A1</td>
<td>E-Beam Discharge Configuration</td>
</tr>
<tr>
<td>A2</td>
<td>n and n' Versus Spacing</td>
</tr>
</tbody>
</table>
SECTION I
INTRODUCTION

Electrode boundary regions play an important role in high energy density discharges presently used for electrical lasers. Discharge media of particular interest are molecular gases in glow-discharge generated plasmas as exemplified by the CO$_2$ laser. A quantitative description of the electrode regions is required in order to establish energy loadings and geometric scaling in such discharges for various practical devices presently under development.

The electrode regions correspond to those portions of the plasma that are affected by the presence of the electrodes.1 Under certain conditions, the relevant characteristic lengths of the problem are independent of and smaller than typical interelectrode dimensions. The variables, therefore, display a "boundary layer" behavior. This behavior is already well understood for any fluid dynamic lengths that may be of importance.2 In both stationary and moving plasmas of moderately high density, the electrode regions are of the boundary layer type and the electrode contributions may be described with the continuum or classical fluid dynamical equations. In addition to diffusion3, these equations must describe the electrical conduction term, Poisson's equation, and suitable energy relations. To the extent that the presence of non-equilibrium effects may be well represented, the continuum approach may be both simpler than present kinetic theory
approaches⁴,⁵ and accurate. Any classical approach brings together a vast body of literature unmatched by kinetic theory, even if the latter is more appropriate for non-equilibrium situations. The method in our work corresponds to a hybrid approach to the problem.

Electrode voltage drops are significant in glow discharges because in addition to the necessary allowance required in the external power source, "one can never impose a uniform electric field on a plasma by means of collecting electrodes".⁶ Thus, in the ionizer/sustainer discharge mode of pumping a laser, the proper E/N value is obtained after the electrode regions have been accounted for. Moreover, the values of E/N are higher in the electrode regions than in the plasma core (i.e., in the positive column or undisturbed plasma), and the discharge stability to glow collapse may be governed by what E/N values can be tolerated in the electrode regions without exceeding some ionization rate critical value which will lead to instabilities and arcing.⁸ Another phenomenon that affects both plasma homogeneity and stability is the presence of constriction or spots at the electrodes⁹ surfaces. In the so-called vacuum arc,¹⁰,¹¹ anode spots appear under certain operating conditions and are of some practical importance; anode spots have also been observed¹² in high density plasmas. Since intense vacuum arcs produce a dense metal vapor at the surface, they too are described by the continuum equations and ultimately it should be possible to reconcile results from the arc literature to our work.
The intense cathode spot is the conventional mode of operation of many arcs; however, we shall be only concerned with describing the "cold cathode" because of its relative simplicity and its closer kinship with anode behavior.

Thus, the imposition of a homogeneous, precisely defined value of F/N in an E-beam generated plasma is not without challenge. The E-beam generated ionization is usually less homogeneous than the sustainer field distribution so that E/N and n_e may vary in space and time throughout the discharge. For CW devices, we must add fluctuations in density due to turbulence and to heating, and in pulsed devices fluctuations in density due to shock waves. Fortunately, in the $\text{He-N}_2\text{-CO}_2$ laser, the optimum E/N for laser efficiency is rather broad.

1. Approach

Our description of the anode and the (cold) cathode is based on the existence of both a continuum and local thermodynamic equilibrium (LTE). As such, except for photons, particles are locally at equilibrium and the Boltzmann relation between energy states may be used. Moreover, we sometimes assume that both electrons and heavy particles have Maxwellian velocity distributions but at different temperatures. Whenever electron collisions are the primary source of transitions, then the electron temperature appears in the corresponding Boltzmann relation. Thus, the non-equilibrium situation represented is one where the electrons have a Maxwellian distribution at a corresponding temperature greater than the translational or vibrational temperatures of the lasing molecules. The term "two-temperature plasma" is often used to describe the above situation.
At this stage, there are a number of simplifications incorporated in our description. First, the effects of a magnetic field are neglected since no external magnetic fields are present and since in the unconstricted mode the internal or self-generated magnetic fields is expected to have no effect on the discharge. Second, we consider the overall gas temperature to remain constant; this is an adequate assumption for convectively cooled, high-volume discharges. In such a thermally stable system, however, transitions from a glow to arc filaments cannot be represented. Third and last, the molecular gas described is pure nitrogen rather than the required laser mixture, and the source of ionization through an E-beam or other source13 is external to the sustainer power; the only function of the electrodes is that the imposing an E/N to pump the laser medium.

The equations that describe the electrode voltage drops comprise species continuity, the electron energy equation, and Poisson's equation15,16. The small electron mass yields important consequences, two of which are the ability to neglect convection in the electron continuity equation and the strong dependence of the electron temperature on E/N. In this report, we decouple the presence of the E-beam by assuming that the sustainer operates only during the afterglow region.

In glow discharges, the electron energy distribution is known to be non-Maxwellian17-19 and suitable account must be made of this important fact. In order to allow for non-Maxwellian distributions and still retain the use of the concept of temperature,
empirical information is used in the representation of the coefficients26: thus, the electron temperature, the ionization and recombination coefficients, the diffusion coefficients, etc., are given as parametrized functions of E/N from experimental measurements.

In the usual boundary layer problem in fluid mechanics a two-dimensional flat plate is assumed2. It is shown herein that similarly a two-dimensional Cartesian description is the minimum suitable description for our equations in the limit of low currents. We further argue that convection can only be significant in the plasma portion of the ambipolar regions. Note that compared to the sheath, the ambipolar regions contribute only a minor fraction of the voltage drop. The sheath and ambipolar regions, however, are important in questions of stability of the discharge and must be included in the problem formation.

We model a quiescent plasma in the immediate neighbourhood of the electrode surfaces. In an attempt to describe CW devices, we have included in this report a discussion of possible effects of convection. In actuality, no calculations of such effects are performed. Now in pulsed lasers, where pulse lengths of the order of 50 μsec are of interest, convection will play no direct role. Of considerable importance, however, is the fact that both the sheath and ambipolar regions can establish themselves within such short times; this possibility is a direct result of the boundary layer nature of the problem.
2. Parameters of Discharge Gas

Throughout this work we deal exclusively with nitrogen discharges under the following coefficients:

- Gas Density: 1 Amagat or 3×10^2 m$^{-3}$
- Gas Type: molecular (nitrogen)
- Gas Temperature: 273°K
- Electric Field: 1.5 to 15×10^5 V/m ($E/N = 0.5$ to 5×10^{-2} Vm2)
- Electron Density: 10^{17} to 10^{19} m$^{-3}$
- Electrode Voltage Drop: 35V

Since cross-section data for electron in nitrogen discharges are readily available,18 the electron temperature and diffusion coefficient are calculable. Also, n^*/N where n^* is a stationary state (see Section II-2) and N the gas number density can be computed. These parameters are shown in Figure 1 as a function of E/N. The ions are assumed to follow the gas temperature. An electrode voltage drop of about 35 volts may be assumed since it represents the effective ionization energy8 for N_2 and, therefore, the anode fall. However, results shown in Sec. IV are presently restricted to 10 volts because of computational difficulties at the higher voltages.

The cathode is more complicated to describe because of the requirement of electron emission from the surface. The cathode fall in cold cathodes is of the order of 250 volts and in thermionic cathodes considerably less. A proper representation of the cathode will require a more efficient computational scheme with suitable boundary conditions.
empirical information is used in the representation of the coefficients: thus, the electron temperature, the ionization and recombination coefficients, the diffusion coefficients, etc., are given as parametrized functions of E/N from experimental measurements.

In the usual boundary layer problem in fluid mechanics a two-dimensional flat plate is assumed. It is shown herein that similarly a two-dimensional Cartesian description is the minimum suitable description for our equations in the limit of low currents. We further argue that convection can only be significant in the plasma portion of the ambipolar regions. Note that compared to the sheath, the ambipolar regions contribute only a minor fraction of the voltage drop. The sheath and ambipolar regions, however, are important in questions of stability of the discharge and must be included in the problem formation.

We model a quiescent plasma in the immediate neighbourhood of the electrode surfaces. In an attempt to describe CW devices, we have included in this report a discussion of possible effects of convection. In actuality, no calculations of such effects are performed. Now in pulsed lasers, where pulse lengths of the order of 50 μsec are of interest, convection will play no direct role. Of considerable importance, however, is the fact that both the sheath and ambipolar regions can establish themselves within such short times; this possibility is a direct result of the boundary layer nature of the problem.
Figure 1: Nitrogen Parameters for E/N Range of Interest
SECTION II
PROBLEM FORMULATION

1. Equations

The species equations for singly ionized atoms without any magnetic fields may be written as are commonly in mass transfer analysis15,16,21

Ions: \(\rho \mathbf{u} \cdot \nabla C_i - \nabla \cdot \left[\rho D_i \left(-\frac{eC_i \mathbf{E}}{kT_0} + \frac{C_i}{p_i} \nabla p_i \right) \right] = \dot{w}_i \) (1)

Electrons: \(-\frac{m_e}{e} q - \nabla \cdot \left[\rho D_e \left(\frac{eC_e \mathbf{E}}{kT_e} + \frac{C_e}{p_e} \nabla p_e \right) \right] = \dot{w}_e \) (2)

where
- \(\rho \) = overall gas density
- \(\mathbf{u} \) = overall gas velocity field
- \(C_{i,e} \) = species mass fraction \(\Sigma_j C_j = 1 \) \((\rho C_j = m_j n_j) \)
- \(\dot{w}_{i,e} \) = net source term \(\Sigma_j \dot{w}_j = 0 \)
- \(D_{i,e} \) = diffusion coefficient
- \(T_e \) = electron temperature
- \(T_0 \) = overall gas temperature
- \(p_{i,e} \) = species partial pressure \((p_j = n_j kT_j) \)
- \(e \) = charge of the electron
- \(m_e \) = mass of the electron
- \(k \) = Boltzmann's constant
- \(\mathbf{E} \) = electric field
- \(q \) = rate of thermalization of fast electrons
Futhermore,

\[\dot{w}_i = \dot{w}_e \text{ for single ionization in the gas} \quad (3) \]
and \[E = -\nabla \phi \text{ where } \phi \text{ is the electric potential} \quad (4) \]

In our notation, \(n \) represents species number density and \(N \) the overall number density. Also, since \(T_e \) is a given function of \(E/N \), there is no further need for an electron energy equation. The species mass fraction, \(C \), is in itself dimensionless but it will prove useful to define a new ratio for this variable (see Section III). Equations 1 and 2 are written for steady flow.

The only equation needed to complete the set now is Poisson's equation,

\[\nabla^2 \phi = -\frac{e_0}{\varepsilon_0 m_i} (C_i - \frac{m_i}{m_e} C_e) \quad (5) \]

where \(\varepsilon_0 = \text{permittivity of free space} \).

From this set of equations, the sheath and ambipolar regions evolve in a self-consistent way, obviating the requirement to match boundary conditions between the regions.

2. Characteristic Lengths

It turns out that all the dependent variables in this problem, namely, \(C_i, C_e, \) and \(\nabla \phi \), can be of the boundary-layer type. As such, there is an individual characteristic length over which the magnitude of these variables changes from their value at the electrode to their value in the undisturbed plasma. Of course, the fluid dynamic boundary
layer is established by non-electrical considerations and we shall assume that it ranges from one or a few millimeters to a few centimeters depending on the Reynolds number of the flow.

The concentration boundary layers are not easily surmised because of inflections at the sheath and because, as will be pointed out, their boundary layer nature depends strongly on the degree of reaction in the plasma, i.e., on $\dot{\omega}_e$.

The extent of the sheath is one of the most important characteristic lengths in this work because it is within the sheath that most of the voltage drop is expected to occur (for a short discharge). Fortunately, the sheath length can be estimated rather easily from Poisson's or in this case Gauss' equation,

$$\nabla \cdot E = \frac{\varepsilon}{\varepsilon_0} (n_i - n_e)$$ \hspace{1cm} (6)

where ε is the permittivity of free space.

Let

$$\hat{E} = \frac{(E - E_S)}{\phi_s - \phi_\infty}$$ \hspace{1cm} and \hspace{1cm} $$\hat{n}_{i,e} = \frac{n_{i,e}}{n_\infty}$$ \hspace{1cm} (7)

where λ_s is sheath characteristic length; the subscript "s" indicates the value at the electrode (anode or cathode) and "\infty" the value at the undisturbed plasma. Equation 7 then becomes

$$\nabla \cdot \hat{E} = \frac{en_\infty \lambda_s^2}{\varepsilon_0 |\phi_s - \phi_\infty|} (n_i - n_e)$$ \hspace{1cm} (8)
In the equation above, λ_s is used to non-dimensionalize the del operator in all directions. That is, independent of the dimensionality of the problem, the sheath is effective over the characteristic dimension of λ_s. Now we can estimate the size of the sheath by setting the square brackets in Equation 8 to be of order one, since all other terms have been made of order one,

$$\lambda_s = \left(\frac{e_0 |\phi_s - \phi_\infty|}{\epsilon n_\infty} \right)^{\frac{1}{4}} = \lambda_D \left(\frac{e |\phi_s - \phi_\infty|}{kT_{e\infty}} \right)^{\frac{1}{4}}$$

(9)

where $\lambda_D = \lambda_{D\infty}$ is the Debye length in the undisturbed plasma.

We now establish the specific values anticipated for λ_s. Take for example

$$n_\infty = 10^{17} \text{ to } 10^{19} \text{ m}^{-3}$$

$$|\phi_s - \phi_\infty| = 25 \text{ volts}$$

Then,

$$\lambda_s = 1.4 \times 10^{-4} \text{ to } 1.4 \times 10^{-5} \text{ m}$$

It is interesting to note that a change of $|\phi_s - \phi_\infty|$ by a factor of 10 would change λ_s by a factor of 3 so that we may consider the estimate reasonable for the above-quoted electron number densities in the undisturbed plasma. Now, if the fluid dynamic boundary layer for a density of one Amagat is at least an order of magnitude greater than the sheath, then we may conclude that convection will have a small if not
negligible effect in the sheath. Note that the sheath, being always adjacent to the surface, resides in the region where the velocity drops to zero; therefore, it is entirely appropriate to assume that convection plays no significant role in the sheath.

Next in importance is the length of the ambipolar region, i.e., the transition region between the sheath and the undisturbed plasma. This region is neutral and can perhaps span the boundary layer so that, in CW devices, convection would likely be present. We do, however, expect that convection may be neglected without affecting the resulting voltages appreciably. In Equation 1, for example, we know\(^2\) that in the ambipolar region the last term of the left hand side is small compared to electric conduction; therefore, we need only compare convection with conduction, or the fluid velocity with the drift velocity. The transverse velocity component in the boundary layer problem is\(^2\)

\[
v \approx U_\infty R_e^{-\frac{3}{2}} \approx 0.1-1 \text{m/s}
\]

assuming the Reynolds number to be \(R_e \approx 10^4 - 10^5\) and the free stream velocity to be \(U_\infty \approx 10 - 100 \text{ m/s}\). Now the drift velocity may be approximated by

\[
v_D \approx \nu_i E_\infty \approx 10 - 100 \text{ m/s}
\]

for \(E_\infty \approx 10^5 - 10^6 \text{ V/m}\) and \(\nu_i \approx 10^{-6} \text{ m}^2/\text{s\cdot volt}\). Clearly, in the presence of a sufficiently strong interelectrode field,
the contribution of ion convection due to a cross flow should be negligible. The geometrical orientation of the discharge with respect to the flow is an important factor here.

The concentration profiles behave in a more complicated manner than either the voltage or the electric field. While the magnitude of n_i and n_e will change appreciably within the sheath, fractional analysis is risky because inflections are present in the profiles. In this section and in Appendix A, we give a discussion pertaining to the stability of the ambipolar region and its boundary layer nature. Since L_n (see Equation A6 and Figure 1), the characteristic length for ambipolar diffusion, turns out to be comparable to the sheath length, ambipolar diffusion to the walls can establish itself during periods of the order of 50μ sec.

In general, the ambipolar diffusion equation can be written as

$$\frac{\partial n}{\partial t} - D_a \nabla^2 n = \dot{n}_e$$

(10)

where D_a = ambipolar diffusion coefficient

If we may assume a form for the net production rate, \dot{n}_e, some important conclusions may be drawn about the stability of the ambipolar region. Let

$$\dot{n}_e = v_i n - \alpha n^2 + \psi$$

(11)

where

v_i = ionization rate coefficient, sustainer
α = three-body neutral recombination rate coefficient
ψ = ionization rate coefficient E beam
In a nitrogen discharge, no electron-neutral attachment is present. (Presumably, attachment instabilities can be significant in lasers, but are not described here.)

If we look now at the steady form of the equation we have

\[\nabla^2 n = \frac{\alpha n}{D_a} (n^* - n) - \nabla^2 \frac{\psi}{D_a} \] \hspace{1cm} (12)

where \(n^* = \frac{\nu_j}{\alpha} \) or \(\frac{n^*}{N} = \frac{\nu_j}{\alpha} \)

The parameter \(n^* \) above is governed solely by the sustainer discharge, i.e., by \(F/N \) as shown in Figure 1. It is reasonable to assume that \(F/N \) is designed to be fairly homogeneous in the interelectrode space but that the \(F \)-beam produced charge concentration is not. Now at the outer edge of the ambipolar region (at the undisturbed plasma), \(n(x,y) = n_\infty \), where \(n_\infty \) is assumed to be governed exclusively by the \(E \)-beam conditions.

If we now assume that we operate in the afterglow region,

\[\nabla^2 n_\infty = -\frac{\alpha n_\infty}{D_a} (n^* - n_\infty) \] \hspace{1cm} (13)

From the properties of the Laplacian operator, we can infer the following:

i) for \(n^* > n_\infty \), \(\nabla^2 n_\infty < 0 \) and a steady solution is possible: \(n \) can reach a maximum.

ii) for \(n^* < n_\infty \), \(\nabla^2 n > 0 \) and the steady solution is not possible; \(n \) cannot be a maximum.
iii) for \(n^* = n_\infty \), \(n \) can neither be a maximum nor a minimum inside the domain and, indeed, it must be a constant.

The reason that the second case is impossible is that in the ambipolar region \(\nabla^2 n < 0 \) and \(n \) seeks a maximum toward the centerline. If, however, \(n^* < n_\infty \) then this trend must reverse itself somewhere and a minimum must exist within the domain. Such a situation corresponds to a physically unsteady condition and the full form of Equation 10 must be investigated.

The criterion for stability appears to be \(n^* > n_\infty \), with the equal sign as the marginally stable case. \(n_\infty \) is considered to be a steady distribution attributed solely to the E-beam; this simplification of the physics models the ionizer/sustainer as if the plasma is externally generated and a steady distribution (\(n_b \)) is independent of \(E/N \) and reasonably constant for the pulse duration.

In pulsed lasers, diffusion may only be established within the boundary layers. This, however, is in itself significant because the electric field reaches a maximum within the electrode regions. But the problem cannot be simplified here and one must work with the entire set of equations.

The use of the ambipolar diffusion equation, i.e., Equation 10, is the traditional approach to the problem. This, however, rather complicates the calculation of the electric field as it does in the Schottky solution. This complication does not seem to appear when the full
formulation of the problem including the sheath, is utilized. In order to get some intuition into the nature of the solutions, it is worthwhile to attempt some sort of simplification. In Appendix A, the ion flux equation in the ambipolar region is investigated; it is assumed that this equation is sufficient to describe the concentration profile given an electric field and the form of \(n_e \). We further assume that a one-dimensional description is possible and, indeed, desirable since it yields a constant electric field in this region. Results indicate that for E/N values of interest the ambipolar charge concentration is indeed of the boundary layer type.

3. Dimensionality of the Problem

In the limit of low currents, the elevation of electron temperature may be neglected together with ionization from the sustainer discharge, and the quiescent plasma governing equations may be written in a simpler, equivalent form. We shall further examine the one dimensional form because, at first glance, the smallness of the sheath compared to a typical electrode dimension suggests that the one-dimensional Cartesian description might indeed be adequate. As before, \(y \) is the interelectrode coordinate.

\[
j_i = \frac{c^2 D^i}{kT_0} n_i E - eD_i \frac{dn_i}{dy} \tag{16}
\]

\[
j_e = \frac{c^2 D^e}{kT_0} n_e E + eD_e \frac{dn_e}{dy} \tag{17}
\]
\[
\frac{dE}{dy} = \frac{e}{e_0} (n_i - n_e) \quad (18)
\]

Now in one-dimensional flow with no ionization or recombination, \(j_i \) and \(j_e \) are individually constant throughout the interelectrode space.

Subtracting Equation 17 from 16 we obtain

\[
K^- = \frac{j_i}{eD_i} - \frac{j_e}{eD_e} = \frac{eE}{kT_0} (n_i - n_e) - \frac{d}{dy} (n_i + n_e) \quad (19)
\]

Now let us look at the sign of the terms in the above equation for three regions, namely, (a) in the anode sheath, (b) in the undisturbed plasma, and (c) in the cathode sheath.

<table>
<thead>
<tr>
<th>Region</th>
<th>(\frac{eE}{kT_0} (n_i - n_e))</th>
<th>(- \frac{d}{dy} (n_i + n_e))</th>
<th>(K^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>negative</td>
<td>negative</td>
<td>negative</td>
</tr>
<tr>
<td>(b)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(c)</td>
<td>positive</td>
<td>positive</td>
<td>positive</td>
</tr>
</tbody>
</table>

Clearly, if \(j_i , j_e , D_i , \) and \(D_e \) are constants, then Equation 19 is invalid. What is needed is for \(j_i \) and \(j_e \) to decrease from the anode to the plasma and to increase from the plasma to the cathode thereby producing current concentrations at the electrodes\(^{12}\). It is therefore obvious that for the frozen-property flow of current a one-dimensional formulation is inadequate.
In order to see if ionization is a requisite for a one-dimensional solution we use the conservation equations in the form of Equation 19 and we get

$$\frac{d}{dy} \left[\frac{j_i}{eD_i} - \frac{j_e}{eD_e} \right] = n_e \left(\frac{1}{D_i} + \frac{1}{D_e} \right)$$

(20)

But since $D_e >> D_i$ we may simplify,

$$\frac{dK^-}{dy} \approx \frac{n_e}{D_i}$$

(21)

Figure 2 shows the behavior of K^- as defined in Equation 19. As can be seen from the sketch, the term has either a positive or zero slope, so we may conclude that

- w_e or $n_e > 0 \ (a)$ anode region
- $= 0 \ (b)$ undisturbed plasma
- $> 0 \ (c)$ cathode region

Of course, this means that ionization must exceed recombination by an appropriate amount in order to satisfy Equations 16-18 and 10, 11. As mentioned previously, we shall assume that ionization is due to electron impact and that recombination is of the two or three-body type as appropriate for moderately high pressure discharges.

The material presented in this section points out some interesting facts. These may be summarized by stating that the geometry of the current flow is not necessarily imposed by the electrode geometry. Depending on the level of the
Figure 2. Behavior of K⁻ at the Anode, Undisturbed Plasma and Cathode Regions
current, the plasma constituents, etc., we may have a spot
mode or a glow mode (one-dimensional disregarding end effects)
at one or both of the electrodes12. Moreover, the sheath
and ambipolar regions may grow with increasing current
making the solution of the problem a challenging one. It is
clear that one does not a priori specify the dimensionality
and size of the domain for calculation but that one has to
make certain that the description will be sufficiently un-
restricted to permit a solution of the problem.

There are other instances where a given formulation is
tractable only for certain geometries or shapes such as the
flow of a uniform, incompressible viscous fluid due to a
moving body at small Reynolds numbers (Stoke's flow)27.
SECTION III
PROBLEM SOLUTION

1. Working Equations

It has been shown above that the depending on the level of the current and associated voltage, the electrode regions represent a multidimensional problem. We are, therefore, modeling non-emitting electrodes as depicted in Figure 3. Here a periodic, 2-dimensional, flat plate region is seen. We assume the coefficients to be either constant as in the case of the ions and neutrals, or dependant on E/N. For the range of E/N considered, it is adequate to take the electron diffusion coefficient and the electron temperature as

\[D_e = 5.5 \times 10^{-2} \text{ (m}^2/\text{s}) \] (22)

\[T_e \approx \frac{12.1\ln(E/N \times 10^{+2.6}) + 38.5T_e^{(0\text{K})}}{38.5} \] (23)

Note that E/N is in Volts-m\(^2\) in the above.

Since we are neglecting convection and assuming that the sustainer operates in the afterglow of the E-beam current, the governing equations in our model are written as follows

\[-\nabla \cdot (\hat{n}_i \nabla \phi + \hat{n}_i) = \frac{D_e}{D_i} \hat{n}_e \] (24)

\[\nabla \left[\frac{\hat{n}_e \nabla \phi}{\theta} - \hat{n}_e - \frac{n_e}{\theta} \right] = \hat{n}_e \] (25)

\[\nabla^2 \phi = \gamma_p (\hat{n}_e - \hat{n}_i) \] (26)
Figure 3. Anode Model with Periodic Current Constrictions
where

\[\hat{n}_i = \frac{C_i}{C_{i\infty}} \]

\[\hat{n}_e = \frac{C_e}{C_{e\infty}} \]

\[\phi = \frac{e\phi}{kT_{e\infty}} \]

\[\theta = \frac{T_e}{T_{e\infty}} \]

\[\hat{n}_e = w_e(\lambda_s^2/C_{e\infty}pD_e) \]

\[\beta = \frac{T_{e\infty}}{T_0} \]

\[\gamma_p = \frac{e\phi - \phi_0}{kT_{e\infty}} \]

Now, we specialize our formulation to the flat plate depicted in Figure 3. We drop the carets (\(^\wedge\)) for simplicity, but it is to be understood that all variables have been suitably non-dimensionalized. In particular,

\[\gamma_p n_i (n_i - n_e) - \phi \left(\frac{3n_i}{\partial x} \frac{3\phi}{\partial x} + \frac{3n_i}{\partial y} \frac{3\phi}{\partial y} \right) - \left(\frac{3^2 n_i}{\partial x^2} + \frac{3^2 n_i}{\partial y^2} \right) = \left(\frac{D_e}{D_i} \right) n_e \]

\[\gamma_p n_e (n_e - n_i) \theta^{-1} + \left(\frac{3n_e}{\partial x} \frac{3\phi}{\partial x} + \frac{3n_e}{\partial y} \frac{3\phi}{\partial y} \right) \theta^{-1} - \theta^{-2} n_e \left(\frac{3^2 \phi}{\partial x^2} + \frac{3^2 \phi}{\partial y^2} + \frac{3 \frac{\partial \phi}{\partial y}}{\partial y} \frac{3 \frac{\partial \phi}{\partial x}}{\partial x} \right) \]

\[+ \theta^{-2} n_e \left[\left(\frac{3 \frac{\partial \phi}{\partial x}}{\partial x} \right)^2 + \left(\frac{3 \frac{\partial \phi}{\partial y}}{\partial y} \right)^2 \right] - \theta^{-1} n_e \left(\frac{3^2 \phi}{\partial x^2} + \frac{3^2 \phi}{\partial y^2} \right) = \hat{n}_e \]

\[\frac{3^2 \phi}{\partial x^2} + \frac{3^2 \phi}{\partial y^2} = \gamma_p (n_e - n_i) \]
The associated boundary conditions are shown in Figure 4. Each node is in a periodic field whose side or x-dimension is given by a few sheath lengths. This "packing" is arbitrary but yields a maximum total current at the electrode for a given electrode voltage drop. The latter is governed by the individual node current. Thus, we model a maximum "crowding" condition. Any further crowding would precipitate the same situation that negates the one-dimensional solution. The top or y-dimension is unbounded, as required by the boundary-layer type of behavior. Note, furthermore, from Figure 4 that the electron density at the anode is not zero as is often done in conventional probe analysis. Such a change is needed because a finite node current requires a finite node charge density. The node density is found by trying various values until a match of the current at the node and the current at the undisturbed plasma is obtained.

The continuous domain around one node is modeled with equidistant grid points on a square mesh as shown in Figure 4. The finite difference equations approximating the two species equations and Poisson's equation are solved simultaneously in a line-iterative fashion.
Figure 4. Boundary Conditions for Computational Method
2. Program

The electron and ion species equations (Equation 27 and 28) contain non-linear terms which present problems in their computer analysis. The Jacobi method includes all non-linear terms on the "right hand side", i.e., external to the coefficient matrix. Convergence to a solution is possible if these non-linear terms change slowly enough over each iteration. It was found by Dolson in Reference 29 that the Jacobi method was in fact unstable for the present set of equations and conditions. As a consequence of the failure of the Jacobi method, a quasi-Jacobi method was used, in which an estimate was computed for each total variable (\(\phi, n_e, n_i\)) at each grid point during each iteration. When the product of two variables was encountered, one variable was treated as a constant coefficient for each iteration. This means that the non-linear terms are retained in the coefficient matrix. The "constant" coefficients are updated after every iteration, thus changing the coefficient matrix. The conventional Jacobi method was found to converge only for very low values of \(\phi\) at the electrode, whereas the quasi-Jacobi procedure provided converged solutions for values of \(\phi < 2\) volts. Thus, the Newton-Raphson method was chosen.

The Newton-Raphson method, Reference 30, is presented by way of illustration. Equations 27, 28 and 29 are the three non-dimensional equations for \(\phi, n_e,\) and \(n_i\). The Poisson Equation can be written at grid node \(i,j\) as:

\[
\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\gamma (n_i - n_e)}{p} = F_{1,ij}
\]

(30)
The solution in this case is said to have converged ideally if \(F_{1,ij} = 0 \) or practically if the \(k^{th} \) iteration value \(F_{1,ij}^k < \epsilon \). Writing this equation in a linear truncated Taylor series expansion, and dropping i,j subscripts for simplicity:

\[
F_{1}^{k+1} = F_{1}^{k} + \Delta F_{1}^{k+1}
\]

where \(\Delta F_{1} = F_{1}(\Delta \phi, \Delta n_e, \Delta n_i) \)

and \(\phi^{k+1} = \phi^{k} + \Delta \phi^{k+1} \) etc.

or

\[
\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \gamma(n_{i}^{k+1} - n_{e}^{k+1}) = \gamma(n_{i}^{k} - n_{e}^{k})
\]

This equation must hold at each of the ixj grid points of the finite difference mesh.

A typical non-linear term:

\[
\nabla \phi \cdot \nabla n_e = \frac{\partial \phi}{\partial x} \frac{\partial n_e}{\partial x} + \frac{\partial \phi}{\partial y} \frac{\partial n_e}{\partial y}
\]

The expanded iteration form would look like, (x-terms only):

\[
\frac{\partial n_e}{\partial x} = \frac{\partial n_e}{\partial x} + \frac{\partial \Delta n_e}{\partial x} + \frac{\partial \phi}{\partial x} \frac{\partial n_e}{\partial x}
\]

\[
+ \frac{\partial \Delta n_e}{\partial x} \frac{\partial n_e}{\partial x}
\]

\[
\frac{\partial n_e}{\partial x} + \frac{\partial \Delta n_e}{\partial x} \frac{\partial n_e}{\partial x}
\]

\[
\frac{\partial n_e}{\partial x} + \frac{\partial \Delta n_e}{\partial x} \frac{\partial n_e}{\partial x}
\]

27
ΔF is considered linear in $\Delta \phi$, Δn_e, and Δn_i, and so the last term in equation 34, is neglected, and the products of the k^{th} solutions are known, as are the k^{th} coefficients of the unknowns, $\Delta \phi^{k+1}$ and Δn_e^{k+1}.

Thus the final matrix has the form:

$$
\begin{bmatrix}
k^{th} \text{ Coefficients} \\
\text{Matrix}
\end{bmatrix}
\begin{bmatrix}
\Delta \phi^{k+1} \\
\Delta n_e^{k+1} \\
\Delta n_i^{k+1}
\end{bmatrix}
=
\begin{bmatrix}
F_1^k \\
F_2 \\
F_3
\end{bmatrix}
$$

(35)

where the F_i's correspond in form to Equation 30, for each of Equations 27, 28 and 29.

Thus the solution procedure consists of evaluating the right hand side based upon the k^{th} solution and solving the system of equations for $\Delta \phi^{k+1}$, Δn_e^{k+1} and Δn_i^{k+1} which are used to update their respective grid point values.

Appendix C shows the program listing with additional detail.
SECTION IV

RESULTS

Computer solutions were obtained for the set of conditions presented in Table I. The anode voltage is 10 volts in all cases.

<table>
<thead>
<tr>
<th>CASE</th>
<th>\hat{n}_e</th>
<th>θ</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>not coupled</td>
<td>not coupled</td>
<td>2.0</td>
</tr>
<tr>
<td>II</td>
<td>coupled</td>
<td>not coupled</td>
<td>2.0</td>
</tr>
<tr>
<td>III</td>
<td>coupled</td>
<td>not coupled</td>
<td>0.5</td>
</tr>
<tr>
<td>IV</td>
<td>coupled</td>
<td>coupled</td>
<td>0.5</td>
</tr>
</tbody>
</table>

The results are shown in Figures 5-8 as three-dimensional views of the potential field, temperature field, space charge density, electron and ion densities. Also included are graphs of potential, species and space charge densities along a cut from the anode to the free stream for each case.

Table I gives the five case conditions, where \hat{n}_e represents the "right hand side" of Equations (28) and (29), θ represents the temperature equation which is a function of the solution set (E/N, properly) and H is equal to the size of the computational node spacing, i.e., H_s is physical space.

Initial solutions were obtained with $\hat{n}_e = 0$ with the sheath size smaller than the grid spacing. These coarse solutions were illustrative of the ambipolar solution in which $\nabla^2 \phi = 0$ except at the anode where the space charge is forced as a "boundary condition". The effect of "turning-on" the
\[\phi = 10 \text{ volts} \]
\[\lambda_s = 2.35 \times 10^{-5} \text{ meter} \]
\[H = 2.0 \]

\[\dot{n}_e \text{ not coupled isothermal} \]

Figure 5. Three dimensional presentations of CASE 1. (a) potential field, (b) temperature field, and (c) space charge density.
Figure 5 (continued). Three dimensional presentations of CASE 1.
(d) back view of electron density and (e) backview of ion density.
Figure 5 (f). Two dimensional presentation of potential vs. distance from the anode to the freestream.

\(\phi = 10 \) volts
\(\lambda_s = 2.35 \times 10^{-5} \) meter
\(H = 2.0 \)

\(\dot{n}_e \) not coupled isothermal
Figure 5 (g). Two dimensional presentation of electron and ion densities vs. distance from the anode to the freestream.

\[\phi = 10 \text{ volts} \]
\[\lambda_i = 2.35 \times 10^{-5} \text{ meter} \]
\[H = 2.0 \]

\(n_e \) not coupled isothermal
Figure 5 (h). Two dimensional presentation of space charge density vs. distance from the anode to the freestream.

\[\phi = 10 \text{ volts} \]
\[\lambda_1 = 2.35 \times 10^{-5} \text{ meter} \]
\[H = 2.0 \]

\[n_e \text{ not coupled isothermal} \]
Figure 6. Three dimensional presentation of CASE 11. (a) potential field, (b) temperature field, and (c) space charge density.
Figure 6 (continued). Three dimensional presentations of CASE II. (d) back view of electron density, and (e) back view of ion density.

ELECTRON DENSITY
(d)

- $\phi = 10$ volts
- $\lambda_s = 2.35 \times 10^{-5}$ meter
- $H = 2.0$

ION DENSITY
(e)

- \hat{n}_e coupled isothermal
Figure 6 (f). Two dimensional presentation of potential vs. distance from the anode to the freestream.

\(\phi = 10 \text{ volts} \)
\(\lambda_t = 2.35 \times 10^{-5} \text{ meter} \)
\(H = 2.0 \)
Figure 6 (g). Two dimensional presentation of electron and ion densities vs. distance from the anode to the freestream.

\[\phi = 10 \text{ volts} \]
\[\lambda_i = 2.35 \times 10^{-5} \text{ meter} \]
\[H = 2.0 \]

\[\hat{n}_e \text{ coupled isothermal} \]
\(\phi = 10 \text{ volts} \)
\(\lambda_d = 2.35 \times 10^{-5} \text{ meter} \)
\(H = 2.0 \)

Figure 6 (h). Two dimensional presentation of space charge density vs. distance from the anode to the freestream.
Figure 7. Three dimensional presentation of CASE III. (a) potential field, (b) temperature field, and (c) space charge density.

\[\Phi = 10 \text{ volts} \]
\[\lambda_y = 2.35 \times 10^{-5} \text{ meter} \]
\[H = 0.5 \]
\[\hat{n}_e \text{ coupled isothermal} \]
ELECTRON DENSITY
(d)

\[\Phi = 10 \text{ volts} \]
\[\lambda_0 = 2.35 \times 10^{-5} \text{ meter} \]
\[H = 0.5 \]

ION DENSITY
(e)

\[\dot{n}_e \text{ coupled isothermal} \]

Figure 7 (continued). Three dimensional presentation of CASE III.
(d) back view of electron density, and (e) back view of ion density.
\[\phi = 10 \text{ volts} \]
\[\lambda_s = 2.35 \times 10^{-5} \text{ meter} \]
\[H = 0.5 \]

Figure 7 (f). Two dimensional presentation of potential vs. distance from the anode to the freestream.
Figure 7 (g). Two dimensional presentation of electron and ion densities vs. distance from the anode to the freestream.

- $\phi = 10$ volts
- $\lambda = 2.35 \times 10^{-5}$ meter
- $H = 0.5$
- n_e couped isothermal

43
\(\phi = 10 \text{ volts} \)
\(\lambda_s = 2.35 \times 10^{-5} \text{ meter} \)
\(H = 0.5 \)

Figure 7 (h). Two dimensional presentation of space charge density vs. distance from the anode to the freestream.
Figure 8. Three dimensional presentation of CASE IV. (a) potential field, (b) temperature field, and (c) space charge density.

\[\phi = 10 \text{ volts} \]
\[\lambda_s = 2.35 \times 10^{-5} \text{ meter} \]
\[H = 0.5 \]
\[\dot{n}_e \text{ coupled nonisothermal} \]
Figure 8 (continued). Three dimensional presentation of CASE IV.
(d) back view of electron density, and (e) back view of ion density.
$\phi = 10$ volts

$A = 2.35 \times 10^{-5}$ meter

$H = 0.5$

\dot{n}_e coupled nonisothermal

Figure 8 (f). Two dimensional presentation of potential vs. distance from the anode to the freestream.
Figure 8 (g). Two dimensional presentation of electron and ion densities vs. distance from the anode to the freestream.

$\phi = 10$ volts

$\lambda = 2.35 \times 10^{-5}$ meter

$H = 0.5$

n_e coupled nonisothermal
\(\phi = 10 \text{ volts} \quad \eta_e \text{ coupled nonisothermal} \)

\(\lambda = 2.35 \times 10^{-5} \text{ meter} \quad H = 0.5\)

Figure 8 (h). Two dimensional presentation of space charge density vs. distance from the anode to the freestream.
production term \(\dot{n}_e \) is to bring about the boundary layer behavior of the solution (Case II). The boundary layer behavior of the species densities is easily illustrated in the comparison of Figure 5(g) (Case I) to Figure 6(g) (Case II). Case I and II conditions produced an insufficient electric field to enable the electron temperature \(T_e \) to be greater than 1. Thus Case I and II conditions were identical with the temperature routine coupled or uncoupled.

A solution would always be obtained as long as the sheath is not larger than the grid size spacing, for \(\dot{n}_e = 0 \). However reasonable solutions could be obtained for grid size spacing smaller than the sheath size only for \(\dot{n}_e \neq 0 \).

Cases III and IV each represent the sheath as 2 grid spacing \((u = 0.5) \). Case IV is identical to Case III with the addition of the electron temperature effects. The temperature effect in Case IV produced only a slight increase of space charge density and a very small increase of the electron field near the anode.

In all cases the current into the inactive wall was 3 or 4 orders of magnitude less than the current at the anode node. The current at the anode node was approximately 3 times the total current at the free stream. The anode current could be better matched to the free stream current by picking a suitable \(n_e \) (anode), but this was not pursued because previous results of a preliminary nature indicate only minor changes over the results shown. In fact in cases I and II with \(n_e = 0 \), at the anode, the anode current still exceeds the current at the
free stream boundary. The electric field at the free stream boundary is insufficient to offer a current matching condition. A more proper free stream boundary condition would be $E = E_\infty$ rather than $\phi = 0$. The electron field boundary condition created numerical instabilities and is recommended as a subject for later analysis. Our approach thus far was to increase ϕ_0 large enough to produce the proper E_∞.
SECTION V
SUMMARY AND CONCLUSIONS

The results presented in this report are based on a two-dimensional description of the current flow at the anode. Diffusion is properly accounted for as is ionization/recombination. No convection or magnetic field effects are included. We assume operation in the after-glow of the E-beam ionization so that ψ and q are essentially uncoupled from the solutions. Current constricts at active nodes along the surface, and the sheath and ambipolar region are self-generating in the solution of Equations 27-29.

The boundary layer nature of the sheath is clearly evident in the results shown; the boundary layer nature of the ambipolar region only shows up when $\dot{\psi}_c$ or \dot{n}_e are coupled into the calculations. The magnitude of \dot{n}_e is highest within the sheath and along the walls, dropping off towards the undisturbed plasma. The space charge density (n_e-n_i) peaks at $0.5 \times 10^{18} \text{m}^{-3}$ near the active node.

About 90% of the voltage drop takes place within one or two sheath lengths, this produces a maximum electric field of $0.8 \times 10^6 \text{V/m}$ (for the 10 volts drop) at the electrode node. The undisturbed region electric field is about $0.5 \times 10^6 \text{V/m}$ which is considerably below the value of $0.27 \times 10^6 \text{V/m}$ required for pumping the laser medium. But then again, ϕ is 10 V and it should be 35 V. That is, roughly, an increase by a factor is 54 required for E. The temperature field, being a direct
function of E/N, does not affect our results simply because E/N is yet too low. There are, however, subtle changes which we feel are going to become important at the higher voltages.

It is anticipated that H can be decreased further (up to $1/6$ of a sheath length), with the coupling of \dot{N}_e, and that this will allow smoother changes within the sheath and more numerical stability at higher voltages. Also, it should be possible to consider jointly the E-beam ionization in our solutions to produce more realistic effects.
We have seen that within the sheath, the solution to the conservation equations cannot be one dimensional. While there may be some particular range of ionization/recombination which permits one-dimensional solutions, most often we must allow for current concentrations at the electrodes. However, away from the electrodes - the problem may become one dimensional in the ambipolar region (see Figures 3, Section III.1).

Since the extent of the sheath is quite small when compared to typical interelectrode dimensions, it is interesting to examine one-dimensional solutions within and beyond the ambipolar region. Here we assume that an initial concentration, n_s, is known at the wall-end of the ambipolar region and that a symmetry plane exists for the charge concentration (usually the mid-plate region), see Figure A1.

Equations A1, A2, and A5 are shown below for the one-dimensional, ambipolar region. We use number density instead of mass fraction and take S to represent the E-beam production rate of secondary electrons. Convection is neglected and the resulting electric field in this region is constant. Also, all the coefficients turn out to be constant.
Figure A1. E-Beam Discharge Configuration
\[
\frac{d}{dy} \left[\frac{eF_i}{kT_0} - \frac{D_i}{dy} \right] = \dot{n}_e + S \tag{A1}
\]

\[
\frac{d}{dy} \left[-\frac{eF_e}{kT_e} - \frac{D_e}{dy} \right] = \dot{n}_e + S + q \tag{A2}
\]

\[
dF/dy = 0 \quad \text{or} \quad E = \text{constant} \tag{A3}
\]

We now study Equation A1 in the afterglow region. Let \(S \) and \(q \) be zero so that

\[
\dot{n}_e = v_i n - an^2 \tag{A5}
\]

and combine with Equation A1.

\[
\frac{n_i}{v_i} \left[\frac{eF}{kT_0} \frac{dn}{dy} - \frac{a^2 n}{dy^2} \right] = n - n^2/n^* \]

In order to nondimensionalize the above relation we introduce the ambipolar diffusion characteristic length along with suitable ratios of the variables.

\[
L_n = \sqrt{D_i/v_i} \quad \text{or} \quad L_n^N = \sqrt{D_i^N/v_i^N} \tag{A6}
\]

\[
y = y/L_n
\]

\[
n = n/n^*
\]

\[
E = \frac{eFL_n}{kT_0} = \frac{e(E/N)L_n^N}{kT_0}
\]

56
The resulting differential equation becomes

\[
\frac{d^2 n}{dy^2} - E \frac{dn}{dy} + (\hat{n} - \hat{n}^2) = 0
\] \hspace{1cm} (A7)

\[(dn/dy)_{y=0} = 0 \quad \text{and} \quad \hat{n}(0) = n\]

\[\hat{n}(±\ell) = n_S\]

It is obvious from equation A7 that if \(\hat{n}'(0) = 0\) and \(\hat{n}(0) = 1\) we have truly boundary-layer behavior since both \(\hat{n}'\) and \(\hat{n}''\) become zero at the midplane. This represents a mathematical limit but note that because \(L_n\) is very small in relation to the interelectrode distance, \(\hat{n}(0)\) will be for all practical purposes equal to one, i.e., \(\hat{n} \approx 1.0\). Figure 1 in the text shows calculated values of \(L_nN\) as a function of \(E/N\). These compare reasonably well with values quoted in the literature. 25

Equation A7 is written below without the carets and with primes instead of derivatives.

\[n'' - En' + (n-n^2) = 0 \hspace{1cm} (A8)\]

\[n'(0) = 0\]

\[n(±\ell) = n_S\]

We have considered the above equation for \(E \gg 51\) (or \(E/N \gg 10^{-16} V/cm^2\)). The solution of Equation A8 was obtained
numerically and is shown in Figure A2. We note that this solution can be, within a very close approximation, easily obtained by neglecting n''. We have

$$n' \approx \frac{1}{E}(n-n^{-2}) \tag{A9}$$

and

$$n' \approx 0 \text{ when } n = 1$$

The important result is that $n' \approx O(1/E)$ and $n'' \approx O(1/E^2)$ so that only for E sufficiently large may we neglect diffusion in the ambipolar region.

Solving Equation A9 we obtain:

$$n \approx \left[1 + (1/n_s-1) \exp \left(\frac{y-\xi}{E}\right)\right]^{-1} \tag{A10}$$

Now, since $\xi \gg \hat{E}$ due to the smallness of L_n relative to \hat{c} (i.e., $L_n \approx 10^{-2}\text{cm}$ whereas $\hat{c} \approx 10\text{cm}$), $\hat{n}(0) = 1$; furthermore $\hat{n}(\hat{c}) = n_s$. For values $n_s > 0.5$, it is easy to see that the above approximation is valid. Results shown in a previous section indicate that this is reasonably true. Thus, diffusion is unimportant here.

In dimensional form, Equation A10 becomes

$$\frac{n}{n^*} = \left[1 - \left(\frac{n^*}{n_s}-1\right) \exp \left(\frac{y-\xi}{eF L_n^2/kT_0}\right)\right]^{-1} \tag{A11}$$

$$n^* = \nu_i/\alpha$$

$$L_n = \sqrt{D_1/\nu_i}$$

58
Figure A2. n and n' versus Spacing.
If we now proceed to re-examine Equations A1 and A2, assuming that the magnitude of \(n'' \) and \(q \) are insignificant but that the E-beam is operating, we have

\[
\frac{eD_{1}E}{kT_{1}} \frac{dn}{dy} = \dot{n}_{e} + S \tag{A12}
\]

\[
\frac{-eD_{e}E}{kT_{e}} \frac{dn}{dy} = \dot{n}_{e} + S \tag{A13}
\]

Clearly, the above set of equations has only a trivial, non-physical solution. We see again that a one dimensional formulation is not feasible.

It was mentioned in Section II-1 that \(\dot{n}_{e} > 0 \) was a requirement for stability in the electrode regions. We now briefly discuss what this implies in the presence of the E-beam. Recall

\[
\dot{n}_{e} = v_{i} - \alpha n^{2} + S \tag{A14}
\]

Let \(n_{0}^{2} = S/\alpha \)

So that \(\dot{n}_{e} = \alpha (n^{*}n + n_{0}^{2} - n^{2}) > 0 \) \(\tag{A15} \)

Solving for \(n, \alpha \neq 0 \),

\[
n < \frac{1}{2}n^{*} + \sqrt{n^{*2} + n_{o}^{2}} \tag{A16}
\]

Now \(n^{*} \) is a function of \(E/N \) as seen from Figure 1 and typically \(n^{*} \) is much less than \(n_{o} \) away from the electrode
regions. According to Equation A16, potential difficulties can be encountered in regions where S is sufficiently small so that as E/N and n^* decrease away from the electrode (i.e., as the discharge becomes non-self-sustaining), $\hat{n}_e < 0$. This is because n can exceed n_0 locally at the fringes of the E-beam. Whether or not such a thing can trigger arcing remains to be established.
APPENDIX B
MORE ON PROBLEM DIMENSIONALITY

The arguments introduced in Section II.3 relating to the dimensionality Equations 11-13 are based on physical grounds. Here, we present two more mathematical proofs which, while not sufficient, show clearly the inappropriateness of the resulting solutions. It is possible to combine Equations 16-18 into the single equation for the electric field seen below

\[
\frac{kT_o e}{e^2 E} (\frac{d^3 E}{dy^3}) + \frac{kT_o e}{2e^2 E^2} \frac{dE}{dy} \left[\frac{dE}{dy} \right] - \frac{kT_o}{eE^2} K^+(\frac{dE}{dy}) - \frac{e}{2kT_o} \frac{d}{dy}(E^2) + K^- = 0 \quad (B1)
\]

where \(K^+ = \frac{j_i}{eD_i} + \frac{j_e}{eD_e} \) and \(K^- = \frac{j_i}{eD_i} - \frac{j_e}{eD_e} \)

From Reference 12 \(\delta = n_i - n_e = \frac{e}{e} dE/dy \)

and

\(\sigma = n_i + n_e = \frac{kT_o}{eE}(\frac{d\delta}{dy} + K^+) \)

Equation B1 is a third order, ordinary non-linear differential equation. We may nondimensionalize it with

\[
E_o = \frac{kT_o}{eL} \quad E \leftrightarrow \frac{E}{E_o}
\]

\[
L = \frac{e^2}{\varepsilon_0 kT_o} \quad y \leftrightarrow y/L
\]

From a dimensional analysis of Equation B1, it is found that the above substitutions will result in a form of the equation free of coefficients. Equation B1 thus becomes,
substituting primes for the derivatives

$$E'''' - \frac{1}{2E}(E')' - \frac{K^+}{E} E' - \frac{E}{2}(E')' + EK^- = 0 \quad (B3)$$

Where, in the above, E, K, and y are nondimensional. We can look for solutions to this equation which monotonically decrease from the electrode to a small value at the undisturbed plasma.

A solution which is both very simple and reasonable for the anode is

$$E(y) = 2(y + a)^{-1} \quad (B4)$$

$$a = \frac{2}{E_a}$$

This solution satisfies Equation $B3$ for the special case

$$K^+ = -2K^- \quad (B5)$$

or

$$J_i = \frac{1}{3} \frac{D_i}{D_e} J_e \quad (B6)$$

Moreover,

$$E' = \delta = n_i - n_e = -2(y + a)^{-2} \quad (B7)$$

is also reasonable for the anode since the space charge is negative and rapidly vanishes as y grows. Now the sum of the charge densities is found from

$$\sigma = n_i + n_e = \frac{1}{E}[K^+ \frac{d\delta}{dy}]$$

$$= \frac{y + a}{2} \left[K^+ + 4(y + a)^{-2} \right] \quad (B8)$$

$$= \frac{y + a}{2} \left[K^+ + 4(y + a)^{-2} \right] \quad (B9)$$
But this result is unreasonable since \(\sigma \) must be zero (or near zero) at the electrode and increase monotonically to an asymptotic value at the undisturbed plasma. The result shown in Equation B9 is clearly not a physically acceptable one.

The solution for the cathode is similarly obtained with

\[
E = 2(a-y)^{1}, \quad y < a \quad \text{(B10)}
\]

and

\[
K^{+} = 2K^{-} \quad \text{(B11)}
\]

Please note that the cathode is to the right of the anode, as indicated in Figure 2 of the text. In the above solution, both \(E \) and \(\delta \) appear to be reasonable (the space charge being positive at the cathode). But, again, \(\sigma \) does not follow the physically acceptable pattern.

A more complete solution to Equation B3 may be obtained if we note that since \(K^{-} \) is zero in the undisturbed plasma, it follows that it must be zero everywhere as long as we insist on a one-dimensional, constant property solution to Equations 16-18. We have, multiplying B3 by \(E \),

\[
EE''' - \frac{1}{2}(E''')' - (E^{+}E')' - \frac{E^{2}}{2}(E^{2})' = 0 \quad \text{K}^{+} = 2j_{e}/eD_{c} \quad \text{(B12)}
\]

with \(E \rightarrow E_{\infty}, \quad E' \rightarrow 0, \quad E'' \rightarrow 0 \) as \(y \rightarrow \) the undisturbed plasma.

Now

\[
EE''' = (EE'')' - \frac{1}{2}(E^{2})'
\]

and

\[
\frac{E^{2}}{2}(E^{2})' = \frac{1}{4}(E^{4})'
\]

substituting into B12

\[
[EE''' - (E^{2} - K^{+}E - \frac{1}{4}E^{4})' = 0
\]

64
Integrating
\[E'' - (E')^2 - K^+E - \frac{1}{4}E^4 = C_1 \] (B13)

We evaluate \(C_1 \) at \(y \rightarrow \) the undisturbed plasma
\[C_1 = -K^+E_\infty - \frac{1}{4}E_\infty^4 \]

thus
\[EE'' - (E')^2 - K^+(E-E_\infty) - \frac{1}{4}(E^4-E_\infty^4) = 0 \] (B14)

After some algebraic manipulation we find expressions for \(E' \) and \(E'' \),
\[E' = \left[K^+(-2E + E_\infty + \frac{E_\infty^2}{E_\infty}) + \frac{1}{4}(E^4 + F_\infty^4 - 2F_\infty^2E^2) \right]^\frac{1}{2} \] (B15)
\[E'' = \frac{1}{2} \left[2K^+(-1 + \frac{E}{E_\infty}) + (E^3 - E_\infty^2E) \right] \] (B16)
\[E''' = \frac{1}{2} \left[2K^+/E_\infty + (3E^2 - E_\infty^2) \right] E'. \text{ as } E \rightarrow E_\infty, E' \rightarrow 0 \text{ and } E''' \rightarrow 0 \text{ as well.} \]

It is possible to solve for \(\sigma \) at this point
\[\sigma = \frac{1}{E} \left[E'' + K^+ \right] \]
\[= K^+/E_\infty + \frac{1}{2}(E^2 - E_\infty^2) \] (B17)

Furthermore, \(K^+ = \sigma_\infty E_\infty \) so that
\[\sigma = \sigma_\infty + \frac{1}{2}(E^2 - E_\infty^2) \] (B18)

Clearly, since \(E \geq E_\infty \), \(\sigma \geq \sigma_\infty \) which is an improper behavior for the sum of the charge densities. Again, while \(\delta \) and \(E \) seem to behave reasonably, the one-dimensional solution is incorrect for \(\sigma \).
This appendix includes the program listing with some preliminary comments.

As previously discussed the matrix form of the iteration scheme is:

\[
\begin{bmatrix}
\Delta n_{e}^{k+1} \\
\Delta n_{1}^{k+1} \\
\end{bmatrix}
= \begin{bmatrix}
\Delta n_{e}^{k} \\
\Delta n_{1}^{k} \\
\end{bmatrix}
= \begin{bmatrix}
F_{1}^{k} \\
F_{2}^{k} \\
F_{3}^{k} \\
\end{bmatrix}
\]

(C1)

There are three equations to be solved at each \((i,j)\) grid point corresponding to \(F_{1}, F_{2}\) and \(F_{3}\) (equations 27, 28 and 29). The solution vector is interlaced as:

\[
[\Delta n_{e}(i,j), \Delta n_{1}(i,j), \Delta n_{e}(i+1,j), \Delta n_{1}(i+1,j), \Delta n_{e}(i+1,j+1), \Delta n_{1}(i+1,j+1), \ldots]
\]

This method was chosen to keep the values of neighboring points in the two dimensional grid mesh near each other in the solution vector. Since a grid point value \(F_{ij}\) can be expressed as a linear combination of nearest neighbor \(\phi(i+1,j+1), n_{e}(i+1,j+1), n_{1}(i+1,j+1)\) this would produce a banded coefficient matrix \(\Delta A\) of width 46 and length 273 (for a 7x13 grid mesh) when economically stored. The International Mathematics and Statistics Library (IMSL) subroutine \(\text{EQTIB}\), is suited for solving equations of this form.

The Sheath program calculates the coefficients of the matrix \(A\) and vector \(F\) (referred to as vector \(C\) in the computer program). Thus \(C(3n-2)\) is the \(F_{ij}^{k}\) value at grid mesh \((i,j)\).
C(3n-1) is the value of the F_2^k value at grid mesh i,j etc., (where $n=i+j-1$). The solution to the matrix equation $C_1 [\Delta \phi(i,j), \text{etc.}]$ is assigned to vector C upon return from LEQTIB subroutine.

The solution set $\phi_1, n_e, \text{ and } n_1$ are updated per Equation 31. The electron energy term θ_{ij} is programmed as an empirical function of E/N at grid point (i,j) and is calculated at the completion of each iteration. The iteration sequence is repeated as many times as required to converge to a solution.

The program listing follows.
SHEATH
SIZE 13 X 7

R.E. BALL, PROF AERO ENG
S.T. VAN BROCKLIN, LCDR, USN
DEPT OF AERONAUTICS
NAVAL POST GRADUATE SCHOOL
MONTEREY, CALIFORNIA
FEBRUARY 1980
(MOD JUN 1980)

** NOTES **

1 RTSIDE COUPLED IF ITER.GT.ITNDT

2 THETA COUPLED IF ITER.GT.ITGRD
 THETA=1 OTHERWISE, EXCEPT COUPLED AT LAST ITERATION
 FOR DISPLAY OF PROFILE ONLY

3 WALL PERPENDICULAR CURRENT (JX=0) B.C.
 SATISFIED WITH ELECTRON DENSITY GRADIENTS ONLY
 E.G. NEGLECT ION DENSITIES.

4 NE AND NI DENSITIES ALONG THE WALL ARE "FLOATED"
 TO THE WEST OF NEAREST VALUES WITHIN 3 COMPUTATIONAL
 NODES AWAY FROM WALL.
 THIS IS ACCOMPLISHED FROM ITER NBGST TO ITBC.

5 X-COORD IS DISTANCE FROM THE WALL
 Y-COORD IS DISTANCE ALONG THE WALL
 E.G. NE(I,J)=ELECTRON DENSITY AT (X,Y)
 (THIS AXIS CONVENTION IS FOR PROGRAMMING CONVENIENCE
 AND IS DIFFERENT FROM REPORT CONVENTION.)
6 REQUIRES APPROX 16 SECS PER ITER (13 X 7); IBM 360
20 " " 25 X 71; IBM 360

** DESCRIPTION **

THIS PROGRAM SOLVES THE SHEATH AND AMBIPOLAR REGION OF THE
ELECTRODE BOUNDARY LAYER IN A HIGH PRESSURE, HIGH ENERGY
DENSITY ELECTRICAL DISCHARGE IN NITROGEN UNDER GLOW DISCHARGE
CONDITIONS.

APPLICATION IS FOR ELECTRON DENSITIES OF 1.E+18 PER CM-3, FOR E/N=1.E-16 VOLTS-CM-SQ, AT A GAS DENSITY CORRESPONDING
TO ONE AMAGAT.

THE WORKING EQUATIONS ARE NON-LINEAR, COUPLED AND SECOND ORDER.
(1) ELECTRON CONSERVATION
(2) ION CONSERVATION
(3) POISSON EQUATION

THE ELECTRON ENERGY IS COMPUTED FROM THE LOCAL ELECTRIC FIELD.

THE PROGRAM CONSISTS OF THE FOLLOWING:
MAIN ROUTINE: INITIALIZES, CONSTRUCTS MATRIX OF COEF,
UPDATES SOLUTIONS, AND CONTROLS OVERALL
PROGRAM OPTIONS USING INPUTED INDICES.
SUBR LEQ1B: AN IMSL ROUTINE, THAT FOR A GIVEN N*N
BANDED REAL MATRIX, FACTORS THE MATRIX A
INTO THE L-U DECOMPOSITION OF A ROW WISE
PERMUTATION OF A AND/OR SOLVES THE SYSTEM
OF EQUATIONS AX=B.
SUBR DELOP: COMPUTES DIFFERENCES OF SOLU AT IC,JC
SUBR WRITE: PRINTS OUTPUT (DEVICE 06) IN READABLE FMT
SUBR PUNCH: PUNCHES OUTPUT (DEV 07) FOR SUBSEQUENT INPUT
SUBR RTSIDE: CALCULATES THREE-BODY RECOM (NEQG T MATRIX)
SUBR JWALL: CALCULATES THE CURRENT INTO THE WALL
SUBR PATCH: USED TO BOUND SOLUTIONS NOT PHYS COMPAT.

THE MAIN ROUTINE IS BROKEN INTO SEVERAL SECTIONS BY PERTINENT
COMMENT STATEMENTS. THE PROGRAM INITIALIZES THE WORKING CONSTANTS
AND VARIABLES FROM THE INPUTED DATA. INPUT CONSISTS OF A CONTROL
CARD, CONSISTING OF ITERATION START, STOP VALUES, CONTROL
INDICES, AND SHEATH SIZE NUMBER. SUBSEQUENT CARDS
ARE EITHER A COMPLETE STARTING SOLUTION OF POTENTIAL,
NE, AND NI DENSITIES; OR AN ABBREVIATED BOUNDARY CONDITION
DATA SET, THE VARIABLE ITMIN (FIRST CARD) Dictates THE
FORMAT OF THE SUBSEQUENT INPUT DATA.

THE A MATRIX IS A BANDED SYSTEM OF EQUATIONS DESCRIBED
IN THE TEXT, AND IS STORED IN A SPACE-ECONOMIZED BANDED MODE.
THE MATRIX COEF ARE CALCULATED IN THREE SWEEPS,
(N=1,2, OR 3) CORRESPONDING TO THE POISSON EQUATION,
electron AND ion SPECIES CONSERVATION EQUATIONS, AT
EACH OF THE NCOLS=*SYM COMPUTATION NODES.
THESE ARE COMPUTED FOR THE WALL B.C. (DO LOOP 200),
THE BOUNDED AREA (DO LOOP 500), AND THE FREE STREAM
B.C. (SERIES 500 STMNTS).
THE FIELD NODES ARE CALCULATED AT STMNTS 410,420,430
THE BANDED MATRIX AND ASSOCIATED SOLUTION VECTOR ARE SOLVED USING
THE IMSL LEQTIB.

THE C- VECTOR UPON RETURNING TO THE MAIN PROGRAM FROM
LEQTIB, REPRESENTS A CORRECTION VECTOR TO THE PREVIOUS
SOLUTION VECTOR. THE PH, NE, AND NI MATRICES ARE UPDATED
(SERIES 700 STMNTS), AND THE TEMPERATURE (TH MATRIX)
IS COMPUTED FROM THE POTENTIAL GRADIENT (SERIES 900 STMNTS)
ALL OF THE ANCILLARY SUBROUTINES ARE STRAIGHT FORWARD,
MERITING NO ADDITIONAL EXPLANATION.

** VARIABLES **

ALFA# RECOMBINATION COEFFICIENTS
ASTAR ELECTRON DENSITY AT INFINITY (1/METER**3)
ANEUT GAS DENSITY AT INFINITY (1/METER**3)
DEO DIFFUSION COEF FOR NITROGEN (N+ IN N2)
DOE DIFFUSION COEF FOR ELECTRONS IN NITROGEN
PHIZ NODE POTENTIAL IN VOLS
ITMIN STARTING ITERATION VALUE
ITMAX ENDING ITERATION VALUE
NUMBER OF ITERATIONS=ITMAX-ITMIN +1
ITN0T NEOT IS COUPLED AFTER ITN0T ITERATIONS
ITGRD ELECTRON ENERGY IS COUPLED AFTER ITGRD ITERATIONS
ITBC ENABLES FLOATING WALL B.C. FOR ITER.LE. ITBC
NPUNCH PUNCHED OUTPUT IF NPUNCH=01
H COMP. MOLECULE INTERVAL (= NUM LAMDS PER SEPARATION)
NSTART EQI, IONIZATION RATE
PHIZ NODL POTENTIAL
PHW STARTING POTENTIAL ALONG WALL (DUMMY VARB, NOT USED)
PHQ POTENTIAL B.C. AT FREESTREAM
NED ELECTRON DENSITY AT NOD
NDI ION DENSITY AT NOD
NEW ELECTRON DENSITY ALONG WALL
MW ION DENSITY ALONG WALL
NEQ ELECTRON DENSITY AT FREESTREAM
NQ ION DENSITY AT FREESTREAM

THESE VARIABLES ARE SAVED FOR OUTPUT
RECOM COMBINATION COEF FOR SIMPLIFICATION
BETA TEMP(ELECT)/TEMP(GAS)
LAMS SHEATH LENGTH (METERS)
EQP NONDIMENSIONAL CONSTANT FOR POISSON EQN.
EQE NONDIMENSIONAL CONSTANT FOR ELECTRON DENSITY EQN.
EQI NONDIMENSIONAL CONSTANT FOR ION DENSITY EQN.
EQT DIMENSIONAL CONSTANT TO NORMALIZE E/N FOR TEMP UPDATE
PH NONDIMENSIONED POTENTIAL FIELD
NE NONDIMENSIONED ELECTRON DENSITY
NI NONDIMENSIONED ION DENSITY
TH NONDIMENSIONED t(EL)/t(EL|INF)
DPHDX POTENTIAL GRADIENT ALONG X
 SIMILAR FOR NE,NI,TH
MAIN PROGRAM
800715

EXTERNAL DELOP
EXTERNAL ATSIDE
EXTERNAL JWALL
EXTERNAL PATCH
EXTERNAL WRITEN
EXTERNAL PUNCHN
DIMENSION A(273,46),C(273),XL(7000)
DIMENSION PH(13,7),NE(13,7),NI(13,7),TH(13,7),NEDOT(13,7)
DIMENSION GRAD(13,7)
REAL*4 NEO,NEW,NEQ,NID,NIW,NIQ
REAL*4 NE,NI,NEOT,NEUT,NSTAR,TSTAR
COMMON /CURT/ DEO,DIO,LAMS,SWEP
COMMON /IONIZ/ RECOM,ALFAS,ALFAT,ALFAS3,NSTAR,TSTAR
COMMON /IPARM/ NCOLS,NSYM,ITER
COMMON /OPARM/ M,IC,JCM,ICP,JCM,JCP
COMMON /IVER/ DPHOX,DPHY,DPNEX,DPNEDY,DPNIDX,DPNIDY,DPNHDX,DPHDY

INITIALIZE VARIABLES AND PARAMETERS

EPS0=8.8541E-12
Coul=1.602192E-19
BOLTZ=1.380622E-23
ALFAS=1.5E-12
ALFAT=1.09E-02
ALFAS3=0.7E-38
ANEUT=2.7E+25
ASTAR=1.E+18
DEO=6.55E-02
DIO=6.00E-06
1 CONTINUE
NNEUT=ANEUT/ASTAR
RECOM=ALFAS+ALFAS3*ANEUT
BETA=+38.5
TSAS=273.
TSTAR = TGAS * BETA
UPH = BOLTZ * BETA * TGAS / COUL
NCOLS = 13
NSYM = 7
DI = 0.
ITER = 0

DO 50 INC = 1, NCOLS
 PH(INC, JNC) = 0.
 NE(INC, JNC) = 1.0
 NI(INC, JNC) = 1.0
 GRAD(INC, JNC) = 0.0
 NEDT(INC, JNC) = 0.0
50 TH(INC, JNC) = 1.0
 DO 51 KKL = 1, NSYM
 NE(I, KKL) = 0.0
 NI(I, KKL) = 0.0
 NE(NCOLS, KKL) = 0.0
 NI(NCOLS, KKL) = 0.0
51 CONTINUE
 READ (5, 800) ITMIN, ITMAX, ITNOT, ITGRD, ITBC, NPUCH, H, NSTAR, NAME
 IF (ITMIN .LE. 0) GO TO 9999
 IF (ITMIN .GT. 1) GO TO 10
 READ (5, 801) PH(I, PHW, PHQ
 READ (5, 801) NED, NEW, NEQ
 READ (5, 801) NID, NIW, NIQ
 SNE = SED
 SNEW = NEW
 SNEQ = NEQ
 SNID = NID
 SNIW = NIW
 SNIQ = NIQ
 SPMH = PHW
 SPHQ = PHQ
 GO TO 20
10 CONTINUE
 READ (5, 803) UPH
 DC 11 = 1, NCOLS
11 READ (5, 804) (PH(I, J), J = 1, NSYM)
 READ (5, 803) CDF2
 DO 12 I = 1, NCOLS
12 READ (5, 804) (NE(I, J), J = 1, NSYM)
 READ (5, 803) CDF3
DO 13 J=1, NCOLS
13 READ(5,804) (VI(I,J), J=1, NSYM)
READ(5,803) COF4
DO 14 J=1, NCOLS
14 READ(5,804) (TH(I,J), J=1, NSYM)
PHIZ=PHI(1,1)
DO 18 J=1, NSYM
DC 18 J=1, NCOLS
18 PHI(I,J)=PHI(I,J)/UPH
CALL WRITEN(PHI,UPH,'VOLTAGE POTENTIAL')
CALL WRITEN(EI,'ELECTRON DENSITY')
CALL WRITEN(NT, 'ION DENSITY')
CALL WRITEN(TH,'TEMPERATURE DISTRIBUTION')
20 CONTINUE

SET UP NONDIMENSIONAL VALUES

HH=H*H
PHIB=PHIZ/UPH
SPHIB=PHIB
LAMS=(EPS0*PHIZ/(COUL*ASTAR))**.5
EOP=COUL*PHIZ/(BOLTZ*BEIA*TAGS)*HH
EO=ASTAR*LAMS*LAMS*HH/DEO
EI=EO+DEO/DIO
EQT=UPH/(LAMS*ANEUT)*1.E+20/H
NSY3=NSYM/3
NXN=NCOLS*NSY3
NXN=NXN-NSY3
III=NXN
JJJ=2*NSY3+4
J1=3
J2=NSY3
J0=J2+3
J4=J0+3
J5=2*NSY3+3

BEGIN ITERATIONS

DO 9000 I, IT=ITMIN, ITMAX
WRITE(6,808)
IF(ITER.GT.1) N1W=.>
IF(ITER.GT.1) N1W=.>
IF(ITER.GT.1) NEQ=0.0
IF(ITER.GT.1) NEQ=0.0
IF(ITER.GT.1) NIQ=0.0

9000 CONTINUE
I1 = 3
I2 = NSYS-3
DO 100 INC = 1, I11
C(INC) = 0.0
DO 100 JNC = 1, J11
100 A(INC, JNC) = 0.0
DO 5000 M = 1, 3
I1 = M + 1
I2 = M + 1

FLOAT WALL NE, NI B.C.
NE, NI TAKE ON NEAREST NEIGHBOR MINIMUM VALUES OUT TO 4 COMPUTATIONAL NODES FROM THE WALL.
FLOAT WALL B.C. FOR ITER.LE.ITBC AND ITER.GT.NBCST

NBCST = 2
IF(ITER.LT.NBCST) GO TO 89
IF(ITER.GT.ITBC) GO TO 89
DO 87 JX = 2, 7
DO 87 IX = 1, 4
IF(NE(I X, JX).LT.NE(I, JX)) NE(I, JX) = NE(I X, JX)
IF(NI(I X, JX).LT.NI(I, JX)) NI(I, JX) = NI(I X, JX)
87 CONTINUE
89 CONTINUE

SET UP COEFFICIENTS FOR MATRIX...A AND VECTOR...C

M.EQ.1 POISSON EQUATION
M.EQ.2 ELECTRON CONCENTRATION
M.EQ.3 ION CONCENTRATION
SET UP FIRST 21 ROWS (WALL B.C.)

DO 200 IR=11,12,3
 IF(M.NE.1) GO TO 190

ZERO CURRENT INTO WALL FOR M.EQ.1

DFT=DEQ/D10
 XIR=IR+2
 JB=XIR/3
 DPHDX=(-3.*PH(1,JB)+4.*PH(2,JB)-PH(3,JB))/2.
 DNEDX=(-3.*NE(1,JB)+4.*NE(2,JB)-NE(3,JB))/2.
 DNIDX=(-3.*NI(1,JB)+4.*NI(2,JB)-NI(3,JB))/2.
 DPHDX=PH(2,JB)-PH(1,JB)
 DNEDX=NE(2,JB)-NE(1,JB)
 DNIDX=NI(2,JB)-NI(1,JB)
 IF(ITER.EQ.1) DPHDX=1.
 IF(ITER.EQ.1) DNEDX=0
 IF(ITER.EQ.1) DNIDX=0

CK A(IR,JD)=+NE(1,JB)/TH(1,JB)*DFT+BETA*NI(1,JB)
CK IF(ITER.EQ.1) A(IR,JD)=+NEW/TH(1,JB)*DFT+BETA*NIW
CK A(IR,J5)=-A(IR,JD)
CK A(IR,JD+1)=+DFT*DPHDX/TH(1,JB)-DFT
CK A(IR,J5+1)=+DFT
CK A(IR,J5+2)=-BETA*DPHDX+1.
CK A(IR,J5+2)=1.
CK C(IR)=CIRCLE*BETA*NI(1,JB)*DPHDX+DNIDX
CK WRITE(6,753) DPHDX,DNEDX,DNIDX

753 FORMAT(3X,3(E10.4,3X))
 A(IR,JD)=+NE(1,JB)
 IF(ITER.EQ.1) A(IR,JD)=NEW
 A(IR,J5)=-A(IR,JD)
 A(IR,JD+1)=+DPHDX*TH(1,JB)
 A(IR,J5+1)=+TH(1,JB)
 C(IR)=NE(1,JB)*DPHDX-TH(1,JB)*DNEDX

190 IF(M.NE.1) A(IR,JD)=1.
 IF(M.EQ.2) C(IR)=NEW
 IF(M.EQ.3) C(IR)=NIW

200 CONTINUE

SET UP ROWS 22 THRU NXN-22 (FIELD AND SYMMETRY)
I START = NSY3 + M
I END = NXNM - 3 + M
IC = 1
JC = 1
DO 500 IR = I START, I END, 3
CALL DELOP(PH, NE, NI, TH)
THETA = TH(1C, JC)
ALP = 1.09E-02 *(THETA * BETA * TGAS) * * (-4.5)
GO TO (410, 420, 430), M

ARRIVE HERE FOR M.EQ.1 (POISSON EQUATION)

410 CONTINUE
A(IR, J1) = -1.
A(IR, J2) = 1.
A(IR, J4) = -1.
A(IR, J5) = 1.
A(IR, J1) = -EQP
A(IR, JD) = EQP
C(IR) = PH(1CP, JC) + PH(1CM, JC) + PH(1C, JC) + PH(1CP, JC) - 4. * PH(1C, JC)
L = - EQP * (NE(1C, JC) - NI(1C, JC))
GO TO 450

ARRIVE HERE FOR M.EQ.2 (ELECTRON CONCEN)

420 CONTINUE
A(IR, J1) = + .5 * DNDX - NE(1C, JC) * DTHDX / THETA
A(IR, J2) = + .5 * DNDY - NE(1C, JC) * DTHDY / THETA
A(IR, J4) = - A(IR, J2 - 1)
A(IR, J5) = - A(IR, J1 - 1)
A(IR, J1) = .5 * DPHDX - DTHDX * THETA
A(IR, J2) = .5 * DPHDY - DTHDY * THETA
A(IR, JD) = -(DTHDX * DPHDX + DTHDY * DPHDY) / THETA
1 = - EQP * (2. * NE(1C, JC) - NI(1C, JC))
2 = TH(1CM, JC) + TH(1CP, JC) + TH(1IC, JC) + TH(1C, JC) - 4. * TH(1C, JC)
3 = -(DTHDX * DTHDX + DTHDY * DTHDY) / THETA
4 = -4. * THETA
5 = DT * EQP * THETA * (RECOM * (NSTAR - NI(1C, JC))
6 = ALP * (NSTAR ** 2. - 2. * NE(1C, JC) * NI(1C, JC))
A(IR, J4) = -.5 * DPHDY - DTHDY * THETA
A(IR, J5) = -.5 * DPHDX + DTHDX * THETA
A(IR, JD) = + EQP * NE(1C, JC)
1 = - DT * EQP * THETA * (RECOM * NE(1C, JC) + ALP * NE(1C, JC) * NE(1C, JC))
C1=DNEDX*DPHDX+DNEDY*DPHYD
C2=NE(IC,JC)*(DTHDX*DPHDX+DTHDY*DPHY)/THETA
C3=NE(IC,JC)*(PHICM,JC)+PH(ICP,JC)+PH(IC,JCP)
C4=-DNEDX*DPHDX+DNEDY*DPHYD
C5=NE(IC,JC)*(DTHDX+DTHDY)/THETA
C6=NE(IC,JC)*(DTHDX+DTHDY)/THETA
C7=-THETA*(NE(IC,JC)+NE(ICP,JC)+NE(IC,JC)+NE(IC,JC))
C8=-DT*EQI*THETA*NEOT(1C,JC)
C(I)=C1+C2+C3+C4+C5+C6+C7*C8
GO TO 450

ARRIVE HERE FOR M.EQ.3 (IGN CONCEN)

430 CONTINUE
A(IR,J1)=1.,-5*BETA*DPHDX
A(IR,J2)=1.,-5*BETA*DPHYD
A(IR,J3)=4.,-5*BETA*EQI*(2.*NI(IC,JC)-NE(IC,JC))
A(IR,J4)=4.,-5*BETA*EQI*(2.*NI(IC,JC)-NE(IC,JC))
A(IR,J5)=1.,-5*BETA*DPHDX
A(IR,J6)=1.,-5*BETA*DPHYD
A(IR,J7)=1.,-5*BETA*DNHDX
A(IR,J8)=1.,-5*BETA*DNHYD
A(IR,J9)=1.,-5*BETA*EQI*(NI(IC,JC))
A(IR,J10)=1.,-5*BETA*EQI*(NI(IC,JC))
C(I)=-NI(ICP,JC)+NI(1C,JC)+NI(IC,JC)+NI(1C,JC)-4.*NI(1C,JC)
 +ALP*(NSTAR**2.-2.*NE(1C,JC)+NI(1C,JC))
C(I)=-NI(ICP,JC)+NI(1C,JC)+NI(1C,JC)+NI(1C,JC)-4.*NI(1C,JC)
 -BETA*NE(1C,JC)-NI(1C,JC)-NI(1C,JC)
 -BETA*NE(1C,JC)-NI(1C,JC)
450 JC=JC+1
IF(JC.GT.NSYM) JC=1
500 CONTINUE

SET UP BOUNDARY CONDITIONS (EXCEPT WALL)

SET UP EQUILIBRIUM B.C.
NXNP=NXNM+M
DO 530 IR=NXNP, NXN, 3
A(IR+J0)=1.
IF(M.EQ.1) C(IR)=PHQ
IF(M.EQ.2) C(IR)=NEQ
IF(M.EQ.3) C(IR)=NIQ
530 CONTINUE

SET UP NODAL SYMMETRY B.C.
IS=NSY3+M
DO 540 IR=IS, NXNM, NSY3
A(IR+J2)=0.
A(IR+J4)=2.
540 CONTINUE

SET UP INTERNODAL SYMMETRY B.C.
IS=2*NSY3-3+M
DO 550 IR=IS, NXNM, NSY3
A(IR+J4)=0.
A(IR+J2)=2.
550 CONTINUE

NODE CONDITIONS SET
A(M+J0)=1.
IF(M.EQ.1) C(1)=PHIB
IF(M.EQ.2) C(4)=NEQ
IF(M.EQ.3) C(4)=NID
NCL1=NCOLS-1
5000 CONTINUE

MATRIX A IS NOW COMPLETE
COMPUTE SPECTRAL NORM OF C

NXM2=NXN-2
CPH=0.
CNE=0.
CN1=0.
DO 605 K=1, NXM2, 3
K1=K+1
K2=K+2
CPH=CPH+C(K)*C(K)
CNE=CNE+C(K1)*C(K1)
605 CNI=CNI+C(K2)*C(K2)
CER=CER+CNE+CNI
WRITE(6,802) ITER,CER,CPH,CNE,CNI
NSSS=NSY3+2
CALL LEQ18B(A,NXN,NSSS,NSY3+1,NXN,C,1,NXN,0,XL,IER)

UPDATE P,NE,NI FROM VECTOR C

DO 7000 M=1,3
GO TO (710,720,730) *M
710 CONTINUE
DO 711 I=1,NCOLS
K=0
DC 711 J=1,NSY3,3
K=K+1
JJ=J+(I-1)*NSY3
711 PH(I,K)=C(JJ)+PH(I,K)
GO TO 7000
720 CONTINUE

DO 721 I=1,NCOLS
K=0
DO 721 J=1,NSY3,3
K=K+1
JJ=J+(I-1)*NSY3+1
721 NE(I,K)=C(JJ)+NE(I,K)
GO TO 7000
730 CONTINUE

DC 731 I=1,NCOLS
K=0
DC 731 J=1,NSY3,3
K=K+1
JJ=J+(I-1)*NSY3+2
731 NI(I,K)=C(JJ)+NI(I,K)
7000 CONTINUE
IF(ITER.GT.3) CALL PATCH(NE,0.0,1.0)
IF(ITER.GT.3) CALL PATCH(NI,0.0,1.0)

CALCULATE THE TEMPERATURE DISTRIBUTION SEPARATELY FROM THE MATRIX ITERATIVE SCHEME.
COMPUTE AS ISOTHERMAL FOR FIRST ITGRD ITERATIONS

```fortran
IF(ITER.EQ.1) GO TO 899
IF(ITER.LE.ITGRD) GO TO 950

899 CONTINUE
NOM1=NCOLS-1
NOM2=NCOLS-2
DO 910 J=1,NSYM
IP=J+1
JP=J-1
DPX=(-3.*PH(1,J)+4.*PH(2,J)-PH(3,J))/2.
IF(J.EQ.1) JM=JP
IF(J.EQ.NSYM) JP=JM
DPY=(PH(1,JP)-PH(1,JM))/2.
910 GRAD(1,J)=(DPX*DPX+DPY*DPY)**.5
DO 920 J=1,NSYM
IP=J+1
IM=J-1
JL=J-1
JP=J+1
IF(J.EQ.1) JM=JP
IF(J.EQ.NSYM) JP=JM
DPY=(PH(IP,JM)-PH(IM,JM))/2.
920 GRAD(1,J)=(DPX*DPX+DPY*DPY)**.5
DO 930 J=1,NSYM
DO 960 I=1,NCOLS
TH(I,J)=12.1*ALOG(GRAD(I,J)*EQT)+BETA/BETA
930 CONTINUE
CALL PATCH(TH,1.0,99.)
GO TO 990

950 CONTINUE
CALL PATCH(TH,1.0,1.0)

990 CONTINUE
9999 CONTINUE
WRITE(6,809)
```

81
Output final results

CALL JNALL(PH, NE, Ni, TH)
CALL WRITEN(NE, UPH, 'VOLTAGE POTENTIAL')
CALL WRITEN(NE, I, 'ELECTRON DENSITY')
CALL WRITEN(NI, 1, 'ION DENSITY')
CALL WRITEN(TH, 1, 'TEMPERATURE DISTRIBUTION')
EFD = EQD * ANEU * 1.3 - 20
CALL WRITEN(1GRD, EFD, 'ELECTRIC FIELD')
DO 9100 I = 1, NCOLS
DO 9100 J = 1, NSYM
9100 GRAD(I, J) = NE(I, J) - NI(I, J)
CALL WRITEN(1GRAD, 1, 'SPACE CHARGE DENSITY')
CALL RTSIDE(NE, Ni, TH, Neoti)
CALL WRITEN(1EDOT, 1, 'NEDOT DISTRIBUTION')
WRITE(6, 805)
M = 1
IF(NPUNCH.EQ.0) WRITE(6, 870)
IF(NPUNCH.GT.0) WRITE(6, 871)
IF(NPUNCH.GT.0) WRITE(7, 800) ITMIN, ITMAX, ITNDT, ITGRD, ITBC, M, H, NSTAR
1 NAME
IF(NPUNCH.GT.0) WRITE(6, 806) ITMIN, ITMAX, ITNDT, ITGRD, ITBC, M, H, NSTAR
1 NAME
IF(NPUNCH.GT.0) CALL PUNCHN(PH, UPH, 'VOLTAGE POTENTIAL')
IF(NPUNCH.GT.0) CALL PUNCHN(NE, I, 'ELECTRON DENSITY')
IF(NPUNCH.GT.0) CALL PUNCHN(NI, 1, 'ION DENSITY')
IF(NPUNCH.GT.0) CALL PUNCHN(TH, 1, 'TEMPERATURE DISTRIBUTION')
IF(NPUNCH.GT.0) CALL PUNCHN(1GRAD, 1, 'SPACE CHARGE DENSITY')
IF(1MAX.LE.1NDT) WRITE(6, 860)
IF(1MAX.GT.1NDT) WRITE(6, 861) ITNDT
IF(1MAX.LE.ITGRD) WRITE(6, 859) ITGRD
IF(1MAX.LE.ITGRD) WRITE(6, 858)
IF(1MIN.LE.ITBC.OR.ITBC.LE.NBCST) WRITE(6, 862)
IF(ITBC.GT.1MIN.AND.ITBC.GT.NBCST) WRITE(6, 863) NBCST, ITBC
EQP = EQP / HH
EQI = EQI / HH
EQT = EQT / HH
WRITE(6, 864) BETA, SPHIB, LAMS, EQP, EQE, EQI, EQT
WRITE(6, 865) H, PHIZ, SNED, SNEW, SNID, SNIN, NSTAR
WRITE(6, 807) ALFA, ALFA2, ALFA3, RECOM

Calculate current balances
TCN = 5*(-NE(1,1)*(PH(2,1)-PH(1,1))*TH(1,1)*NE(1,1)) ***2
1 *TH(1,1)*NE(1,2)-NE(1,1)) ***2
TC = 5*(-NE(NCOLS,1)*(PH(NCOLS,1)-PH(NCOLS-1,1))
1 *TH(NCOLS,1)*NE(NCOLS-1,1)) ***2
TC = TC + 5*(-NE(NCOLS,NSYM)*PH(NCOLS,NSYM)-PH(NCOLS-1,NSYM))
NSL = NSYM-1
DO 9900 J = 2, NSLL
TC = TC - NE(NCOLS,J)*NE(NCOLS,J) ***2
CONTINUE
9900 WRITE(6,811) TC
WRITE(6,805)
GO TO 1
800 FORMAT(6(I2,1X),F5.2,1X,F5.2,1X,A4)
801 FORMAT(3(5X,F5.2))
802 FORMAT(10*("","",E10.4,3(5X,E10.4),/)
803 FORMAT(28)
804 FORMAT(3X,7(2X,Z8))
805 FORMAT(*1*)
806 FORMAT(*LEAD CARD PUNCHED,2X,6(I2,1X),F5.2,1X,F5.2,1X,A4)
808 FORMAT(*10(*",/)
811 FORMAT(/20X,"TC","",E10.4,"/20X,"TC","",E10.4)
858 FORMAT(*ISOTHERMAL CONDITIONS THROUGHOUT")
859 FORMAT(*THERMAL ROUTINE COUPLED AFTER",13,"ITERATIONS")
860 FORMAT(*NEDOT NOT COUPLED")
861 FORMAT(*NEDOT COUPLED AFTER",13,"ITERATIONS")
862 FORMAT(*FLOATING WALL B.C. NOT USED")
863 FORMAT(*FLOATING WALL B.C. USED FROM",12,"TO ",12)
864 FORMAT(*21X,BETA","",E9.3,",21X,"PHIB","",E9.3,/
870 FORMAT(/21X,"LAMBS","",E9.3,",22X,"EQP","",E9.3,/
871 FORMAT(/22X,"EQ","",E9.3,",22X,"PHIB","",E9.3,/
872 FORMAT(*21X,"NEW","",E9.3,",21X,"NIB","",E9.3,/
873 FORMAT(*RESULTS NOT PUNCHED")
874 FORMAT(*RESULTS PUNCHED IN 28 FORMAT*)
9359 STOP
SUBROUTINE DELOP
REDIMENSIONED

DETERMINES THE FIRST ORDER DIFFERENCES OF
THE SOLUTION SET, (PH, NE, NI, TH), AT THE NODE
POINT 'IC, JC'. TWO POINT DIFFERENCES ARE USED.

RETURNS THE DIFFERENCES THROUGH COMMON: DIVER.

SUBROUTINE DELOP(PH, NE, NI, TH)
DIMENSION PH(NCOLS,1), NE(NCOLS,1), NI(NCOLS,1), TH(NCOLS,1)
COMMON /IPARM/NCOLS,NSYM,ITER
COMMON /DIVER/ DPHDX,DPHDY,DNEDX,DNEDY,DNIDX,DNIDY,DTHDX,DTHDY
COMMON /DPARM/ M, IC, JC, ICM, ICP, JCM, JCP
REAL*4NE,NI,NEDOT
DPHDX=0.
DPHDY=0.
DNEDX=0.
DNEDY=0.
DNIDX=0.
DNIDY=0.
DTHDX=0.
DTHDY=0.
ICP=IC+1
ICM=IC-1
JCP=JC+1
JCM=JC-1
IF(JC.EQ.1) JCM=JCP
IF(JC.EQ.NSYM) JCP=JCM
IF(JC.EQ.1) GO TO 310
IF(JC.EQ.NSYM) GO TO 320
DPHDX=PH(ICP,JC)-PH(ICM,JC)
DNEDX=NE(ICP,JC)-NE(ICM,JC)
DNIDX=NI(ICP,JC)-NI(ICM,JC)
DPHDY=PH(IC,JCP)-PH(IC,JCM)
SUBROUTINE RTSIDE

USED TO CALCULATE THE NEDOT TERM OVER THE FIELD

2 BODY
3 BODY (HEAVY)
3 BODY (ELECT)... HIN & HIRSCH

SUBROUTINE RTSIDE(NE, NI, TH, NEDOT)
DIMENSION NE(NCOLS, 1), NI(NCOLS, 1), TH(NCOLS, 1), NEDOT(NCOLS, 1)
REAL*4 NE, NI, NSTAR, NEDOT
COMMON /IPARM/ NCOLS, NSYM, ITER
COMMON /IONIZ/ RECOM, A1, A2, A3, NSTAR, T
DO 10 J = 1, NSYM
DO 10 I = 1, NCOLS
10 NEDOT(I, J) = NE(I, J) * (NSTAR - NI(I, J)) * RECOM
 + A2 * (TH(I, J)**(-4.5)) * (NSTAR * NSTAR - NE(I, J) * NI(I, J)) * NE(I, J)
RETURN
END
SUBROUTINE JWall
REDIMENSIONED
CALCULATES AND PRINTS OUT THE CURRENT TO THE WALL DUE TO ELECTRONS AND IONS

SUBROUTINE JWall(PH, NE, NI, TH)
REAL*4 LAMS, JX(7)
DIMENSION PH(NCOLS,1), NE(NCOLS,1), NI(NCOLS,1), TH(NCOLS,1)
REAL*4 NE, NI, NEQ
COMMON /CURL/ DEO, DIO, LAMS, BETA
COMMON /IPARM/ NCOLS, NSYM, ITER
C=1.602/LAMS
DO 10 J=1, NSYM
T=TH(1,J)
DP2=PH(2,J)-PH(1,J)
DN2=NE(2,J)-NE(1,J)
DI2=NI(2,J)-NI(1,J)
JX(J)=DEO*(DP2*NE(1,J)/T-2DN2)*DIO*(BETA*NI(1,J)*DP2+DI2))*C
10 CONTINUE
WRITE(6,821)
WRITE(6,819)
WRITE(6,820)
WRITE(6,821)
818 FORMAT(' 7(''',11,''),')')
819 FORMAT(CURRENT FLOW PERPENDICULAR TO WALL AT EACH NODE ')'
820 FORMAT(JX 71X, E9.3)
821 FORMAT(' 10(''',10),')')
RETURN
END
SUBROUTINE PATCH

BOUNDS THE ARRAY Q(I,J)
WITHIN THE LOWER AND UPPER BOUNDS
(XL,XU RESPECTIVELY).

SUBROUTINE PATCH(Q,XL,XU)
DIMENSION Q(NC,1)
COMMON /IPARM/ NC,NS,IT
DC 100 I=1,NC
DG 100 J=1,NS
IF(Q(I,J).GT.XU) Q(I,J)=XU
IF(Q(I,J).LT.XL) Q(I,J)=XL
100 CONTINUE
RETURN
END
BOUNDARY LAYERS IN DENSE, DIFFUSE PLASMAS. (U)

OCT 80 O BIBLARZ, R E BALL, S T VAN BROCKLIN MIPR-79-00618

AFWAL-TR-80-2088
SUBROUTINE WRITEN
800715

SUBROUTINE WRITEN(Q,COF,LIST)
COMMON /IPARM/ NC,NS,IT
REAL*4 LIST
DIMENSION Q(NC,1),T(J),LIST(6)
WRITE(6,800) [I.(LIST[I],I=1,6)
WRITE(6,801) (NORK,NORK=1,NS)
DO 10 I=1,NC
DO 11 J=1,NS
11 T(J)=Q(I,J)*COF
WRITE(6,802) I, (T(J),J=1,NS)
10 CONTINUE
800 FORMAT(*1 (*,I2,*), '6A4,/')
801 FORMAT(*7(9X,*('',,I2,*)),'/)
802 FORMAT(* (*,I2,*),7(3X,E10.4),/)
RETURN
END
SUBROUTINE PUNCHN
800715

SUBROUTINE PUNCHN(Q, COF, LIST)
COMMON /IPARM/ NC, NS, IT
DIMENSION Q(NC,1), T(7), LIST(6)
REAL*4 LIST
WRITE(7,800) COF, (LIST(KL), KL=1,6)
DC 15 I=1, NC
DO 10 J=1, NS
 10 T(J)=Q(I, J)*COF
WRITE(7,801) I, (T(J), J=1, NS)
800 FORMAT(28, 1, 6A4)
801 FORMAT(13, 7(2X, 28))
RETURN
END
PROGRAM PICT

PROGRAM TO DISPLAY THE PUNCHED OUTPUT FROM PROGRAM SHEATH IN THREE DIMENSIONAL PRESENTATIONS.

DISPLAYS ARE OF THE FORM Z=F(X,Y), WHERE Z IS...
(1) VOLTAGE POTENTIAL DISTRIBUTION
(2) NE DENSITY DISTRIBUTION
(3) NI DENSITY DISTRIBUTION
(4) TEMPERATURE DISTRIBUTION
(5) SPACE CHARGE DISTRIBUTION

THREE DIMENSIONAL SHEATH DISPLAY

EXTERNAL PLOT, PLT3D1
REAL*4 TTL[12], D(13,7), X(13), Y(13), F(2), SZ(2)
REAL*4 DD(13,19), WK(13,19,3)
INTEGER*4 KX(200), KY(200)
LOGICAL*1 IOM(13,19)
NC=13
NS=7
FKTR=25.
READ(5,802) WM(13,7)
DO 10 1=1, NC
 IF(KRK.EQ.2.OR.KRK.EQ.3) IK=NC-I+1
 X(I)=FLOAT(I)
10 READ(5,801) (D(IK,J), J=1, NS)
 X*AX=0.0
DO 11 I=1,NC
DC 11 J=1,NS
IF (XMAX.LE.D(I,J)) XMAX=D(I,J)
11 CONTINUE
DO 12 J=1,NS
DO 12 I=1,NC
D(I,J)=D(I,J)/XMAX
DD(I,J)=D(I,J)*FKTR
DD(I,10-J)=D(I,J)*FKTR
12 CONTINUE
WRITE(6,808) (NORK,NORK=1,NS)
DC 20 I=1,NC
WRITE(6,809) I,(D(I,J),J=1,NS)
20 CONTINUE

BETA ROTATES FIRST ABOUT Z AXIS
ALPHA ROTATES SECOND AROUND Y AXIS

ALPHA=45.
BETA=45.
ALPHA=30.
BETA=30.
F(1)=3.6E+06
F(2)=2.1
SZ(1)=2.
SZ(2)=SZ(1)
NK=200
LNS=2
CALL PLT3DL (X,NC,Y,JM,DD,ALPHA,BETA,F,TTL,SZ,WK,IDN,KX,KY,NK,LNS)
1000 CONTINUE
800 FORMAT(6A8)
801 FORMAT(3X,7(2X,8))
802 FORMAT(12)
808 FORMAT('STOP',*7(12,9X),'/')
809 FORMAT('**',7(3X,E10.4))
STOP 1
END
PROGRAM PLOT

THIS PROGRAM CONSTRUCTS A PLOT OF
(1) POTENTIAL Vs. DISTANCE FROM WALL
(2) NE AND NI DENSITIES Vs. DISTANCE FROM WALL
(3) SPACE CHARGE Vs. DISTANCE FROM THE WALL

THE PLOTS ARE OF VALUES TAKEN ALONG THE ANODE LINE
OF SYMMETRY. INPUT DATA CONSIST OF THE OUTPUT
FROM THE SHEATH PROGRAM FORMATED AS ZB.

REAL*4 LX(5),'DISTANCE'(CM)', '/
REAL*4 LY1(5),'POTENTIAL', '/
REAL*4 LY2(5),'SPECIES', '/
REAL*4 LY3(5),'SPACE CHARGE', /
REAL*4 X(13),Y1(13),Y2(13),Y3(13),Y4(13),Y5(13)
NC=13
XL=4.5
YL=3.75

1 CONTINUE
READ(5,800) K
IF(K.LE.0) GO TO 900
READ(5,801) HH
READ(5,802) Z1
READ(5,803) (Y1(I),I=1,NC)
READ(5,802) Z2
READ(5,803) (Y2(I),I=1,NC)
READ(5,802) Z3
READ(5,803) (Y3(I),I=1,NC)
READ(5,802) Z4
READ(5,803) (Y4(I),I=1,NC)
READ(5,802) Z5
READ(5,803) (Y5(I),I=1,NC)
DO 20 K=1,NC
20 WRITE(6,808) K,Y1(K),Y2(K),Y3(K),Y4(K),Y5(K)
Y5MIN=0.0
Y5MAX=0.0
DO 40 I=1,NC
IF(YMIN.GT.Y5(I)) Y5MIN=Y5(I)
IF(YMAX.LT.Y5(I)) Y5MAX=Y5(I)
40 CONTINUE
Y5MAX=2.*Y5MAX
Y5MIN=Y5MIN/2.
DO 50 I=1,NC
50 X(I)=FLOAT(I-1)*HH*7.434273E-04*Y1(I)**.5
CALL PLOTG(X,Y1,NC,1,1.0,LX,20,LY1,20,0.,X(NC),0.,Y1(I),XL,YL)
CALL PLOTG(X,Y2,NC,1,1.0,LX,20,LY2,20,0.,X(NC),0.,I.,XL,YL)
CALL PLOTG(X,Y3,NC,2,1.0,LX,20,LY2,20,0.,X(NC),0.,I.,XL,YL)
CALL PLOTG(X,Y5,NC,1,1.0,LX,20,LY3,20,0.,X(NC),Y5MIN,Y5MAX,XL,YL)
CALL PLOT(0.,0.,999)
800 FORMAT(I2)
801 FORMAT(18X,F5.2)
802 FORMAT(Z8)
803 FORMAT(5X,Z8)
808 FORMAT(\"* \"I2,\" \",5(2X,E9.3))
990 CONTINUE
STOP
END
REFERENCES

