This research was sponsored by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N00014-78-C-0022, Contract Authority Identification Number, NR 157-408.

This report is issued by the Learning Research and Development Center, supported in part as a research and development center by funds from the National Institute of Education (NIE), United States Department of Health, Education, and Welfare.

Reproduction in whole or part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.
This project examined processes of informal reasoning and relationships between informal and formal reasoning in problem solving. One set of studies focused on relationships between knowledge of problem-solving procedures and knowledge of general conceptual relationships. We have specified ways in which problem-solving performance can be influenced, and problem-solving procedures can be understood, because of their relationships to conceptual knowledge in the form of schemata. The second set of studies was concerned...
with relationships between general formal principles and cognitive procedures. Contributions included a method for formally analyzing relationships between procedures and constraints, and a theoretical and empirical analysis of understanding the principle of formal deductive consequence in the context of geometry proof problems.
This project examined processes of informal reasoning and relationships between informal and formal reasoning in problem solving. One set of studies focused on relationships between knowledge of problem-solving procedures and knowledge of general conceptual relationships. We have specified ways in which problem-solving performance can be influenced, and problem-solving procedures can be understood, because of their relationships to conceptual knowledge in the form of schemata. The second set of studies was concerned with relationships between general formal principles and cognitive procedures. Contributions included a method for formally analyzing relationships between procedures and constraints, and a theoretical and empirical analysis of understanding the principle of formal deductive consequence in the context of geometry proof problems.

1.0

OVERVIEW

This is the final report for Contract N00014-78-C-0022, for the period 1 October 1977 - 30 September 1980. The research examined processes of informal reasoning in problem solving and relationships between informal and formal reasoning.

In an important tradition in cognitive theory, correct thinking is characterized as a set of formal principles to be followed. In modern cognitive science, thinking is characterized as a set of cognitive processes and structures, and cognitive theory consists of analyses of these and their relationships to formal principles.
Informal reasoning includes thinking processes of two kinds: procedural knowledge and tacit conceptual knowledge. We have analyzed relationships between cognitive procedures and general conceptual knowledge in the form of schemata, resulting in clearer conceptualization of the role of understanding in planning, constructions, problem-solving set, and transfer related to meaningful learning.

In studies of relationships between formal principles and informal reasoning, a theory of procedural planning has been developed, providing a framework for analyzing relationships between procedures and general principles in the form of constraints, and an analysis of flawed or "buggy" procedures has been developed. An analysis was developed involving procedural knowledge for solving proof problems and the formal principle of deductive consequence; a theoretical analysis and an instructional experiment were conducted to specify the cognitive processes that constitute understanding of the principle underlying the procedural knowledge.

2.0 BACKGROUND

The purpose of this research was to contribute to a cognitive theory of reasoning and problem solving. Such a theory will identify the kinds of knowledge that are required for someone to reason successfully and solve problems.
One starting point for a theory of reasoning is in formal systems. In a tradition that includes, among others, Aristotle, Descartes (1637/1980), and Boole (1854), knowledge required for correct reasoning is characterized as a set of rules codified in a formal language. If one wishes to reason correctly in logic or science, one should learn the rules of thinking in the field, and with correct understanding of the rules, correct reasoning will follow. The way in which students are most often instructed in scientific fields seems to agree with this formalistic idea. Students are taught the formulas that describe relationships among quantitative properties—say, in electronic circuits or in mechanical systems. Examples are shown in which the formulas are used in solving problems, but if a student does not succeed in solving problems it is not unusual to say that the student failed because the formula was not "really" learned or understood.

Cognitive science provides a different view. Knowledge required for correct reasoning is characterized as a set of cognitive processes and information structures that can produce correct performance on reasoning and problem-solving tasks. Knowledge of formal principles may be included in the cognitive requirements for successful reasoning and problem solving. Such knowledge, however, may be in tacit, rather than explicit, form. Furthermore, formal knowledge is always incomplete; it does not provide a sufficient cognitive system for performance. As Ryle (1949) noted, knowledge of propositions, which includes explicit knowledge of formal principles, must be supplemented by knowledge of procedures which Ryle referred to as "knowing how." Another form of knowledge required for
successful reasoning was called "tacit knowledge" by Polanyi (1967), referring to conceptual ability that is not formulated explicitly.

In the psychological literature, the best-known discussion of the relationship between formal knowledge and informal conceptual processes was provided by Wertheimer (1945/1959). Along with other Gestalt theorists (e.g., Duncker, 1945; Kohler, 1927; Luchins, 1942), Wertheimer considered achievement of structural understanding as the primary requirement for successful reasoning and problem solving. Wertheimer explicitly distinguished between problem solving with understanding and problem solving in which solutions are obtained using a rote, mechanical procedure. In many of Wertheimer's examples, the mechanical procedure was an item of formal knowledge, and the cognitive process required for structural understanding was identified informally, often as a set of spatial relationships.

Most psychological studies of problem solving during the 1950's and 1960's were conducted in the framework of behaviorism or associationism, and theoretical analyses (e.g., Maltzman, 1955) were focused on factors influencing performance. In the 1970's, analyses of performance in problem solving have become more rigorous and more detailed with the development of information-processing concepts and theories largely stimulated by Newell and Simon's (1972) important studies.

In psychological studies of reasoning, a major concern has been to identify ways in which thinking is discrepant from rules of formal logic;
well known studies include those of Chapman and Chapman (1959), Henle (1962), Wason and Johnson-Laird (1972), and Woodworth and Sells (1935). Recent investigations have provided more specific hypotheses about the nature of cognitive procedures involved in performance of syllogistic reasoning tasks (e.g., Braine, 1978; Guyote & Sternberg, 1978; Johnson-Laird & Steedman, 1978; Osherson, 1975).

In addition to the major advances that have been made in understanding the procedural aspects of informal reasoning, some significant beginnings have been made toward analysis of conceptual aspects. Studies conducted thus far have considered knowledge required for intelligent representation of problems, especially in physics (McDermott & Larkin, 1978; Novak, 1976), and the nature of qualitative reasoning in solving problems in physics and electronics (Bundy, 1978; deKleer, 1975, 1979; Simon & Simon, 1978).

3.0
SUMMARY OF RESEARCH FINDINGS

Results of research in this project have been in two general groups. One set of results involves relationships between two kinds of informal knowledge in problem solving. We have completed three analyses of relationships between general conceptual knowledge, in the form of schemata, and problem-solving procedures. The other set of results involves relationships between general formal principles and cognitive procedures. These analyses investigated ways in which knowledge of formal
principles, in the form of constraints on problem solutions, can influence generation and understanding of procedures for solution of problems.

3.1 Schemata and Problem-Solving Procedures

Our analyses of interactions between conceptual schemata and cognitive procedures were developed in three studies. First, we analyzed schematic structures involved in planning geometry proof problems. This analysis provided a plausible hypothesis about the way in which simple constructions are produced in problem solving. The hypothesis also gives an explanation of one kind of problem-solving set.

A second analysis dealt with the problem of meaningful learning. A hypothesis was developed regarding the role of conceptual schemata in the acquisition of new problem-solving procedures. The hypothesis provides an explanation of the way in which meaningful learning results in knowledge that can be transferred more successfully to new kinds of problems, as well as a form of understanding of the cognitive procedures that are learned.

The third analysis investigated relationships between task demands and cognitive procedures that are used in solving problems. We conducted an experimental study of a task in which subjects retrieved information about a spatial display. Interpretations of previous findings had hypothesized different forms of information used to represent locations of objects. We replicated previous empirical findings by varying the phrasing of questions
about a single spatial display, and proposed an interpretation in which performance differences result from differences in cognitive procedures for retrieving information and making inferences.

3.1.1 - Schema-Based Planning

The theoretical problem addressed in this study was the problem of constructions. In well structured problems, the materials presented in the problem situation are sufficient for solution of the problem. One way for a problem to have weak structure is to present an incomplete set of materials, so that the problem solver has to augment the problem space in order to find a solution.

Problems with incomplete initial problem spaces occur in the domain of geometry proofs in a form that turned out to be quite manageable for theoretical analysis. The incomplete problems are those in which the diagram presented in the problem must be augmented by the addition of an auxiliary line.

A computational model that simulates solution of problems requiring constructions was developed. Knowledge for problem solving is organized in the model in a way similar to that developed by Sacerdoti (1977), with knowledge about actions of varying degrees of generality. Knowledge of general actions used in planning includes patterns of problem features that constitute prerequisites for using the plans. These schematic patterns provide the basis for constructions when their components are partially but
not completely matched by features of the problem situation.

In addition to explaining the occurrence of constructions, the model also provided an explanation of a form of problem-solving set that has been studied extensively, notably by Luchins (1942). Problem-solving set occurs, according to this analysis, when global features of the problem situation are used to choose a plan for solving the problem, and then further activity takes place in the context of the goals and requirements of that plan.

The results of this study, including data from a few protocols and some experiments on set, were reported in Greeno, Magone & Chaiklin (1979). Further documentation, consisting of protocols from several problems involving constructions, was provided in Greeno (1979). Briefer summary reports of these results were included in two other papers (Greeno, 1980b; in press).

3.1.2 - Meaningful Learning

The analysis of meaningful learning was undertaken as part of a collaborative project with John Anderson, studying processes of learning problem-solving skills in geometry. A model was developed that simulates learning in two forms: one in which new cognitive procedures are simply associated to stimuli in the problem situation and one in which new material is connected to general conceptual schemata. The latter provides a hypothesis about the nature of meaningful learning.
Learning that was simulated was based on solutions of three example problems. In one problem, the meaningful learning system learned to apply a schema that was already known in a situation where it was not previously applicable. In a second problem, new procedural knowledge was added to a schema. And in a third problem, the learner formed a new schematic structure with previously existing schemata as subschemata of the new structure. In all three cases, the rote learner simply learned to do what was done in the example problem, forming productions with relatively specific problem features as the conditions.

The model seems to provide a plausible hypothesis about the nature of meaningful learning. It also shows how schemata that incorporate general conceptual knowledge can provide a basis for transfer to new kinds of problems. When a new kind of problem can be schematized using a conceptual structure that was learned previously, then problem-solving procedures associated with that schema are available for use in the new situation. Data in the form of thinking-aloud protocols on a transfer problem in geometry provided evidence that was generally consistent with the model's account of transfer.

Reports of our analysis of meaningful learning are in Anderson, Greeno, Kline, and Neves (in press) and in Greeno (1980a).

3.1.3 - Retrieval of Schematized Information

In previous experiments, Lea (1975) and Hintzman, O'Dell & Arndt
(1979) obtained evidence that led to quite different interpretations about the cognitive representation of spatial information. Lea's conclusion, based on reaction times to report objects displaced varying distances from a specified object, was that information about locations is stored as a circular list. Hintzman et al's conclusion, based on reaction times to move a stylus in the direction of a specified object, was that the spatial representation includes information about relative directions and distances between objects.

An experiment was conducted in which \(\ldots \) subjects answered questions of the form, "What object is at X," where X was a location relative to a specified object, thus avoiding a substantial difference between the tasks used by Lea and by Hintzman et al. However, in one condition relative location was specified by displacement on the circumference of a circular display, and in the other condition location was specified by compass directions. In the data we obtained, Lea's findings were replicated in the displacement condition, and Hintzman et al's were replicated in the direction condition.

We propose an interpretation in which information about locations is stored in a spatial schema, and different retrieval procedures are induced by the different forms of questions used in the two tasks. This interpretation extends ideas about forms of cognitive representation in linear arrays, used for storing information about ordered sequences (e.g., Banks, 1977; Bower, 1971). Our empirical findings provide further documentation, along with Hintzman et al's results, for cognitive
representations that are distinctively spatial in their directional characteristics. In previous empirical demonstrations (e.g., Kosslyn & Pomerantz, 1977), support for spatial representation was related to consequences of information about distances.

Our findings are reported in Greeno, Magone, Siegel, and Mokwa (in press).

3.2
Formal Principles and Informal Procedural Knowledge

Three studies have been completed investigating relationships between knowledge of formal principles and cognitive procedures. In one analysis, general principles in the form of constraints were used as the basis of a theory of procedural planning. The result of the analysis is a theoretical framework that is generally applicable for analyzing the consequences of prescriptive principles that relate to cognitive procedures.

A second study analyzed processes of applying incomplete knowledge and creating new procedures by extending existing knowledge to new circumstances. The theory that resulted from this analysis explains the occurrence of flawed procedures on the basis of informal methods of patching existing procedural knowledge when conditions are inappropriate for use of the existing procedures.

In a third study we examined the understanding of formal principles
that are relevant to a set of problem-solving procedures. We found that students typically lack understanding of an important general principle, and developed a hypothesis about knowledge that would constitute at least implicit understanding of the principle. In a training study, we had some success in instructing student subjects in the procedure that was identified in our theoretical analysis.

3.2.1 - Formal Constraints in Planning

A theory was developed for analyzing relationships between a set of prescriptive principles, in the form of constraints, and a cognitive procedure that conforms to the constraints. The theory consists of a process that generates a data structure, called a planning net, that represents the steps in synthesizing a procedure based on the constraints. The analysis shows which components of a procedure are needed to conform to specific principles. Therefore, human performance that is faulty in specific ways can be taken as diagnostic evidence that the person lacks knowledge or understanding of specific principles that are violated by the performance flaws.

The analysis worked out in developing the theory involved a series of procedures involving a spatial model of arithmetic. Constraints were analyzed for performing subtraction using concrete objects. An important result of the analysis is a distinction between constraints that are essential in the goal of a procedure and constraints that are useful in making the procedure more efficient. Distinguishing between essential and
inessential constraints can provide a first step in the analysis of robustness of procedural knowledge, when circumstances make it impossible to conform to all the constraints of a normal procedure, and the adjustment that is made should sacrifice constraints that do not cause the major goal of the procedure to be violated.

The theory of planning nets is described in VanLehn and Brown (in press).

3.2.2 - Misapplication of Procedures and Generation of "Bugs"

Many cognitive procedures are not strongly grounded in a set of prescriptive principles that are known by the individual who can perform the procedures. When an individual encounters a situation in which existing procedures cannot be executed normally, some extension or modification of the procedures often occurs. This can lead to erroneous performance, and if the modification is stored in memory, a systematically flawed procedure may result.

An analysis of procedural misapplication has been completed and given the name "Repair Theory." The theory provides an explanation for an extensively compiled set of procedural flaws that occur in the domain of elementary arithmetic (Brown & Burton, 1978). We believe that the principles identified in this analysis contribute to an understanding of the importance of understanding the constraints that must be honored in modifying procedural knowledge, and also provide an important beginning for
a principled theory of procedural learning.

The theoretical analysis is reported in Brown and VanLehn (in press).

3.2.3 - Understanding of a Formal Principle About a Procedure

An analysis was performed of understanding of an important general principle that has to be honored for correct performance of a cognitive task, and often is not appreciated by individuals who learn to perform the task correctly. The principle studied was the concept of deductive consequence, which is the critical idea involved in construction of formal proofs. It is widely believed--and data that we collected in interviews of students supported the belief--that although students in geometry become quite skilled in constructing proofs, they do not acquire a deep understanding of the concept of proof.

Our main focus in studying the concept of formal proof was on a task of proof checking. In this task, a proof problem is presented with what is purported to be a solution. The subject's task is to evaluate the alleged proof, to determine whether it is valid, and to identify any error that may be present in it. This task tests a student's knowledge of the principle of deductive consequence in a way that is similar to the traditional experimental test of a subject's knowledge of a categorical concept, in which candidate examples are presented and the subject's task is to identify which are positive and which are negative examples.
We found that students in a geometry class performed poorly in tasks of checking proofs, especially when the error to be detected involved an omission of needed information. This suggested that their knowledge about proof was deficient in the important characteristic of deductive arguments; namely, that for each step there have been sufficient prior assertions to make the next step follow necessarily. A model of knowledge required for checking proofs was developed as a computer program, modifying an earlier model of proof construction (Greeno, 1978). The model provided a clear characterization of knowledge that would constitute implicit understanding of the principle of deductive consequence that is not required for constructing proofs. We designed training materials, based on the computational model, and succeeded in producing significant improvement in proof-checking performance by presenting this instruction to student subjects.

A brief report of our study of proof checking was included in Greeno (1980a), and a more complete report is in preparation.

4.0

REFERENCES

Greeno, J. G. *Some examples of cognitive task analysis with instructional implications*. In R. E. Snow, P. A. Federico, & W. E. Montague (Eds.), *Aptitude, learning, and instruction: Cognitive process analyses of

Guyote, M. J., & Sternberg, R. J. A transitive-chain theory of syllogistic reasoning. New Haven, Conn.: Department of Psychology, Yale University, April 1978.

Navy

1 Dr. Ed. Aiken
Navy Personnel R&D Center
San Diego, CA 92152

1 Meryl S. Baker
NPRDC
Code P309
San Diego, CA 92152

1 Dr. Robert Breaux
Code N-711
NAVTRA EQUIPMENT
Orlando, FL 32813

1 Dr. Richard Elster
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

1 Dr. Pat Federico
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Dr. John Ford
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Henry M. Halff
Department of Psychology, C-009
University of California at San Diego
La Jolla, CA 92093

1 LT Steven D. Harris, MSC, USN
Code 6021
Naval Air Development Center
Warminster, Pennsylvania 18974

1 Dr. Jim Hollan
Code 304
Navy Personnel R&D Center
San Diego, CA 92152

1 CDR Charles W. Hutchins
Naval Air Systems Command HQ
AIR-340F
Navy Department
Washington, DC 20361

Navy

1 CDR Robert S. Kennedy
Head, Human Performance Sciences
Naval Aerospace Medical Research Lab
Box 29407
New Orleans, LA 70189

1 Dr. Norman J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054

1 Dr. William L. Maloy
Principal Civilian Advisor for
Education and Training
Naval Training Command, Code 0OA
Pensacola, FL 32508

1 CAPT Richard L. Martin, USN
Prospective Commanding Officer
USS Carl Vinson (CVN-70)
Newport News Shipbuilding and Drydock Co
Newport News, VA 23607

1 Dr. James McBride
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. William Montague
Navy Personnel R&D Center
San Diego, CA 92152

1 Library
Naval Health Research Center
P. O. Box 85122
San Diego, CA 92138

1 Naval Medical R&D Command
Code 44
National Naval Medical Center
Bethesda, MD 20014

1 Ted M. I. Yeften
Technical Information Office, Code 201
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Library, Code P201L
Navy Personnel R&D Center
San Diego, CA 92152
Navy

1 Technical Director
Navy Personnel R&D Center
San Diego, CA 92152

6 Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390

1 Psychologist
ONR Branch Office
Bldg 114, Section D
666 Summer Street
Boston, MA 02210

1 Office of Naval Research
Code 437
800 N. Quincy St Street
Arlington, VA 22217

5 Personnel & Training Research Programs
(Code 458)
Office of Naval Research
Arlington, VA 22217

1 Psychologist
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101

1 Special Asst. for Education and
Training (OP-01E)
Rm. 2705 Arlington Annex
Washington, DC 20370

1 Office of the Chief of Naval Operations
Research Development & Studies Branch
(OP-115)
Washington, DC 20350

1 Dr. Donald F. Parker
Graduate School of Business Administration
University of Michigan
Ann Arbor, MI 48109

Navy

1 LT Frank C. Petho, MSC, USN (Ph.D)
Code L51
Naval Aerospace Medical Research Laborat
Pensacola, FL 32508

1 Dr. Gary Poock
Operations Research Department
Code 55PK
Naval Postgraduate School
Monterey, CA 93940

1 Roger W. Remington, Ph.D
Code L52
NAMRL
Pensacola, FL 32508

1 Dr. Bernard Rimland (03B)
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Worth Scanland
Chief of Naval Education and Training
Code N-5
NAS, Pensacola, FL 32508

1 Dr. Robert G. Smith
Office of Chief of Naval Operations
OP-987H
Washington, DC 20350

1 Dr. Alfred F. Smode
Training Analysis & Evaluation Group
(TAEG)
Dept. of the Navy
Orlando, FL 32813

1 Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

1 Roger Weissinger-Baylon
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

1 Dr. Robert Wisher
Code 309
Navy Personnel R&D Center
San Diego, CA 92152
Navy

1 Mr John H. Wolfe
Code P310
U. S. Navy Personnel Research and Development Center
San Diego, CA 92152

Army

1 Technical Director
U. S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 HQ USAREUE & 7th Army
ODCSOPS
USAAREUE Director of GED
APO New York 09403

1 DR. RALPH DUSEK
U. S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 Dr. Dexter Fletcher
U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 DR. FRANK J. HARRIS
U. S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 Col Frank Hart
Army Research Institute for the Behavioral & Social Sciences
5001 Eisenhower Blvd.
Alexandria, VA 22333

1 Dr. Michael Kaplan
U. S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 Dr. Milton S. Katz
Training Technical Area
U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Harold F. O'Neil, Jr.
Attn: PERI-OK
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
Army

1 Dr. Robert Sasmor
U. S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Frederick Steinheiser
U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Joseph Ward
U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Air Force

1 Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

1 Dr. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20332

1 Dr. Marty Rockway
Technical Director
AFHRL(OT)
Williams AFB, AZ 58224

2 3700 TCHTW/TTGH Stop 32
Sheppard AFB, TX 76311

1 Jack A. Thorp, Maj., USAF
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20332
Marines

1 H. William Greenup
 Education Advisor (E031)
 Education Center, MCDEC
 Quantico, VA 22134

1 Special Assistant for Marine Corps Matters
 Code 100M
 Office of Naval Research
 800 N. Quincy St.
 Arlington, VA 22217

1 DR. A.L. SLAFKOSKY
 SCIENTIFIC ADVISOR (CODE RD-1)
 HQ, U.S. MARINE CORPS
 WASHINGTON, DC 20380

Other DoD

12 Defense Technical Information Center
 Cameron Station, Bidg 5
 Alexandria, VA 22314
 Attn: TC

1 Dr. Craig I. Fields
 Advanced Research Projects Agency
 1400 Wilson Blvd.
 Arlington, VA 22209

1 Military Assistant for Training and Personnel Technology
 Office of the Under Secretary of Defense for Research & Engineering
 Room 3D129, The Pentagon
 Washington, DC 20301
Civil Govt

1 Dr. Susan Chipman
Learning and Development
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 Dr. Joseph I. Lipson
SEDR W-638
National Science Foundation
Washington, DC 20550

1 William J. McLaurin
Rm. 301, Internal Revenue Service
2221 Jefferson Davis Highway
Arlington, VA 22202

1 Dr. Arthur Melmed
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 Dr. Andrew R. Molnar
Science Education Dev. and Research
National Science Foundation
Washington, DC 20550

1 Personnel R&D Center
Office of Personnel Management
1900 E Street NW
Washington, DC 20415

1 Dr. Frank Withrow
U. S. Office of Education
400 Maryland Ave. SW
Washington, DC 20202

1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

Non Govt

1 Dr. John R. Anderson
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 Anderson, Thomas H., Ph.D.
Center for the Study of Reading
174 Children's Research Center
51 Gerty Drive
Champaign, IL 61820

1 Dr. John Annett
Department of Psychology
University of Warwick
Coventry CV4 7AL
ENGLAND

1 Dr. Michael Atwood
SCIENCE APPLICATIONS INSTITUTE
40 DENVER TECH. CENTER WEST
7935 E. PRENTICE AVENUE
ENGLEWOOD, CO 80110

1 Psychological research unit
Dept. of Defense (Army Office)
Campbell Park Offices
Canberra ACT 2600, Australia

1 Dr. Alan Baddeley
Medical Research Council
Applied Psychology Unit
15 Chaucer Road
Cambridge CB2 2EF
ENGLAND

1 Dr. Patricia Baggett
Department of Psychology
University of Denver
University Park
Denver, CO 80208

1 Mr. Avron Barr
Department of Computer Science
Stanford University
Stanford, CA 94305
1 Dr. Nicholas A. Bond
Dept. of Psychology
Sacramento State College
600 Jay Street
Sacramento, CA 95819

1 Dr. Lyle Bourne
Department of Psychology
University of Colorado
Boulder, CO 80309

1 Dr. John S. Brown
XEROX Palo Alto Research Center
3333 Coyote Road
Palo Alto, CA 94304

1 Dr. Bruce Buchanan
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Dr. C. Victor Bunderson
WICAT INC.
UNIVERSITY PLAZA, SUITE 10
1160 SO. STATE ST.
OREM, UT 84057

1 Dr. Pat Carpenter
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

1 Dr. John B. Carroll
Psychometric Lab
Univ. of N. Carolina
Davie Hall 013A
Chapel Hill, NC 27514

1 Charles Myers Library
Livingstone House
Livingstone Road
Stratford
London E15 2LJ
ENGLAND

1 Dr. William Chase
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 Dr. Micheline Chi
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

1 Dr. William Clancey
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Dr. Allan M. Collins
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

1 Dr. Lynn A. Cooper
LRDC
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

1 Dr. Meredith P. Crawford
American Psychological Association
1200 17th Street, N.W.
Washington, DC 20036

1 Dr. Hubert Dreyfus
Department of Philosophy
University of California
Berkely, CA 94720

1 LCOL J. C. Eggenberger
DIRECTORATE OF PERSONNEL APPLIED RESEARCH
NATIONAL DEFENCE HQ
101 COLONEL BY DRIVE
OTTAWA, CANADA K1A OK2

1 Dr. Ed Feigenbaum
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Dr. Richard L. Ferguson
The American College Testing Program
P.O. Box 168
Iowa City, IA 52240
1 Mr. Wallace Feurzeig
Bolt Beranek & Newman, Inc.
50 Moulton St.
Cambridge, MA 02138

1 Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850

1 Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

1 Dr. Alda Friedman
Department of Psychology
University of Alberta
Edmonton, Alberta
CANADA T6G 2E9

1 Dr. R. Edward Geiselman
Department of Psychology
University of California
Los Angeles, CA 90024

1 Dr. Robert Glaser
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Marvin D. Glock
217 Stone Hall
Cornell University
Ithaca, NY 14853

1 Dr. Daniel Gopher
Industrial & Management Engineering
Technion-Israel Institute of Technology
Haifa
ISRAEL

1 Dr. James G. Greeno
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Harold Hawkins
Department of Psychology
University of Oregon
Eugene OR 97403

1 Dr. James R. Hoffman
Department of Psychology
University of Delaware
Newark, DE 19711

1 Glenda Greenwald, Ed.
"Human Intelligence Newsletter"
P. O. Box 1163
Birmingham, MI 48012

1 Dr. Earl Hunt
Dept. of Psychology
University of Washington
Seattle, WA 98105

1 Dr. Steven W. Keele
Dept. of Psychology
University of Oregon
Eugene, OR 97403

1 Dr. Walter Kintsch
Department of Psychology
University of Colorado
Boulder, CO 80302

1 Dr. David Kieras
Department of Psychology
University of Arizona
Tuscon, AZ 85721

1 Dr. Kenneth A. Klivington
Program Officer
Alfred P. Sloan Foundation
630 Fifth Avenue
New York, NY 10111

1 Dr. Stephen Kosslyn
Harvard University
Department of Psychology
33 Kirkland Street
Cambridge, MA 02138
<table>
<thead>
<tr>
<th>Non Govt</th>
<th>Non Govt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mr. Marlin Kroger</td>
<td>1 Dr. Donald A Norman</td>
</tr>
<tr>
<td>1117 Via Goleta</td>
<td>Dept. of Psychology C-009</td>
</tr>
<tr>
<td>Palos Verdes Estates, CA 90274</td>
<td>Univ. of California, San Diego</td>
</tr>
<tr>
<td></td>
<td>La Jolla, CA 92093</td>
</tr>
<tr>
<td>1 Dr. Jill Larkin</td>
<td>1 Dr. Jesse Orlansky</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>Institute for Defense Analyses</td>
</tr>
<tr>
<td>Carnegie Mellon University</td>
<td>400 Army Navy Drive</td>
</tr>
<tr>
<td>Pittsburgh, PA 15213</td>
<td>Arlington, VA 22202</td>
</tr>
<tr>
<td>1 Dr. Alan Lesgold</td>
<td>1 Dr. Seymour A. Papert</td>
</tr>
<tr>
<td>Learning R&D Center</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>University of Pittsburgh</td>
<td>Artificial Intelligence Lab</td>
</tr>
<tr>
<td>Pittsburgh, PA 15260</td>
<td>545 Technology Square</td>
</tr>
<tr>
<td>1 Dr. Michael Levine</td>
<td>Cambridge, MA 02139</td>
</tr>
<tr>
<td>Department of Educational Psychology</td>
<td></td>
</tr>
<tr>
<td>210 Education Bldg.</td>
<td></td>
</tr>
<tr>
<td>University of Illinois</td>
<td></td>
</tr>
<tr>
<td>Champaign, IL 61801</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Robert A. Levit</td>
<td>1 Dr. James A. Paulson</td>
</tr>
<tr>
<td>Director, Behavioral Sciences</td>
<td>Portland State University</td>
</tr>
<tr>
<td>The BDM Corporation</td>
<td>P.O. Box 751</td>
</tr>
<tr>
<td>7915 Jones Branch Drive</td>
<td>Portland, OR 97207</td>
</tr>
<tr>
<td>McClean, VA 22101</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Charles Lewis</td>
<td>1 MR. LUIGI PETRULLO</td>
</tr>
<tr>
<td>Faculteit Sociale Wetenschappen</td>
<td>2431 N. EDGEWOOD STREET</td>
</tr>
<tr>
<td>Rijksuniversiteit Groningen</td>
<td>ARLINGTON, VA 22207</td>
</tr>
<tr>
<td>Oude Boteringestraat</td>
<td></td>
</tr>
<tr>
<td>Groningen</td>
<td></td>
</tr>
<tr>
<td>NETHERLANDS</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Erik McWilliams</td>
<td>1 Dr. Martha Polson</td>
</tr>
<tr>
<td>Science Education Dev. and Research</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>University of Colorado</td>
</tr>
<tr>
<td>Washington, DC 20550</td>
<td>Boulder, CO 80302</td>
</tr>
<tr>
<td>1 Dr. Mark Miller</td>
<td>1 DR. PETER POLSON</td>
</tr>
<tr>
<td>Computer Science Laboratory</td>
<td>DEPT. OF PSYCHOLOGY</td>
</tr>
<tr>
<td>Texas Instruments, Inc.</td>
<td>UNIVERSITY OF COLORADO</td>
</tr>
<tr>
<td>Mail Station 371, P.O. Box 225936</td>
<td>BOULDER, CO 80309</td>
</tr>
<tr>
<td>Dallas, TX 75265</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Allen Munro</td>
<td>1 Dr. Steven E. Poltrock</td>
</tr>
<tr>
<td>Behavioral Technology Laboratories</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td>1845 Elena Ave., Fourth Floor</td>
<td>University of Denver</td>
</tr>
<tr>
<td>Redondo Beach, CA 90277</td>
<td>Denver, CO 80208</td>
</tr>
<tr>
<td></td>
<td>1 MINNAT M. L. RAUCH</td>
</tr>
<tr>
<td></td>
<td>P II 4</td>
</tr>
<tr>
<td></td>
<td>BUNDESMINISTERIUM DER VERTEIDIGUNG</td>
</tr>
<tr>
<td></td>
<td>POSTFACH 1328</td>
</tr>
<tr>
<td></td>
<td>D-53 BONN 1, GERMANY</td>
</tr>
</tbody>
</table>
Non Govt

1 Dr. Fred Reif
SESAME
c/o Physics Department
University of California
Berkely, CA 94720

1 Dr. Andrew M. Rose
American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007

1 Dr. Ernst Z. Rothkopf
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

1 DR. WALTER SCHNEIDER
DEPT. OF PSYCHOLOGY
UNIVERSITY OF ILLINOIS
CHAMPAIGN, IL 61820

1 Dr. Alan Schoenfeld
Department of Mathematics
Hamilton College
Clinton, NY 13323

1 DR. ROBERT J. SEIDEL
INSTRUCTIONAL TECHNOLOGY GROUP
HUMARO
300 N. WASHINGTON ST.
ALEXANDRIA, VA 22314

1 Committee on Cognitive Research
% Dr. Lonnie R. Sherrod
Social Science Research Council
605 Third Avenue
New York, NY 10016

1 Robert S. Siegler
Associate Professor
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

1 Dr. Edward E. Smith
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Non Govt

1 Dr. Robert Smith
Department of Computer Science
Rutgers University
New Brunswick, NJ 08903

1 Dr. Richard Snow
School of Education
Stanford University
Stanford, CA 94305

1 Dr. Robert Sternberg
Dept. of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520

1 DR. ALBERT STEVENS
BOLT BERANEK & NEWMAN, INC.
50 MOULTON STREET
CAMBRIDGE, MA 02138

1 David E. Stone, Ph.D.
Hazeltine Corporation
7680 Old Springhouse Road
McLean, VA 22102

1 DR. PATRICK SUPPES
INSTITUTE FOR MATHEMATICAL STUDIES IN
THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305

1 Dr. Kikumi Tatsuoka
Computer Based Education Research Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801

1 Dr. John Thomas
IBM Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

1 Dr. Douglas Towne
Univ. of So. California
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277
Non Govt

1 Dr. J. Uhlaner Perceptronics, Inc.
 6271 Variel Avenue
 Woodland Hills, CA 91364

1 Dr. Benton J. Underwood
 Dept. of Psychology
 Northwestern University
 Evanston, IL 60201

1 Dr. Phyllis Weaver
 Graduate School of Education
 Harvard University
 200 Larsen Hall, Appian Way
 Cambridge, MA 02138

1 Dr. David J. Weiss
 N660 Elliott Hall
 University of Minnesota
 75 E. River Road
 Minneapolis, MN 55455

1 DR. GERSHON WELTMAN
 PERCEPTRONICS INC.
 6271 VARIEL AVE.
 WOODLAND HILLS, CA 91367

1 Dr. Keith T. Wescourt
 Information Sciences Dept.
 The Rand Corporation
 1700 Main St.