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1
INTRODUCTION

Optical methods have been successfully applied in a number of
data processing applications such as correlation and Fourier trans-
formation operations. Typically, these optical processing techniques
are analog in nature and they offer very high processing speed within
the optical channel by operating in parallel. For example, the
equivalent of 106 data samples can readily be Fourier transformed
in parallel in a few nanoseconds once the data are entered into the
optical processing channel. However, compared to digital devices,
the analog optical techniques are more limited in accuracy, flexi-
bility, and programmability. The prospect of combining the parallism
and speed of an optical processor with the accuracy and flexibility of
a digital machine is a highly attractive concept and may well serve as

the design goal of modern computer engineers.

In the design of digital electronic devices considerable effort is
directed to increasing processing speed. Higher degrees of parallism are
achieved through pipelining and the use of LSI and VLSI technologies.

New electronic switching devices are being developed to push the
propagation speed closer to that of the speed of light. An alternate
approach toward the same goal is to produce a numerical optical
processor with the accuracy and flexibility of an electronic digital
machine, The possibility of developing such a numerical optical

processor is the subject of this study.

A basic tenant for the numerical optical processor considered
here is that data are handled in a quantized and encoded form. The
encoding would be dependent on the underlying number system. There
are several number systems that might be used for a numerical optical
processor. However, our present study is directed to the residue
number system. The use of the residue number svstem allows basic
arithmetic to be performed without the need for carry operations.
Residue arithmetic is also very inducive to parallel architecture

in processor design.

11




The fundamental properties of the residue number system and related
computing algorithms were examined in the study and they are reviewed
in Section 2. An overview of various numerical optical processor
design approaches using residue arithmetic is given in Section 3.
In Section 4, we describe in depth the design of an optical processor
utilizing the optical mapping approach. The implementation is
realized as programmable spatial maps that are built up into a
versatile arithmetic module. These computation modules can be inter-
connected and programmed to perform a variety of more complex processing
operations. Section 5 provides a performance level estimate and
comparison for -the processor design concept introduced in Section 4.
A discussion of the developmental needs for the realization of a
numerical optical processor is presented in Section 6. The last
section of the report, Section 7, provides a developmental plan for

the realization of a numerical optical processor.

The processor designs presented in this report are quite
specific as to hardware implementations. The purpose is to provide
a more solid perspective on the potential capabilities of a numerical
optical processor. However, the design concept can be implemented
equally well with hardware other than those chosen in this report.
Based on the demonstrated performance of the hardware utilized in
our design, we are able to show that a processor throughput rate over
300 MHz can be achieved. The versatility of the system is also
demonstrated by applying it to various signal processing problems
such as matrix multiplication and discrete Fourier transformationm.
The same high throughput rate is obtained for these computations with
the use of parallel structures and pipelining. We should also emphasize
that our design concept reflects the stage of present hardware
technologies; the design will evolve with the development of hardware

components directed specifically to a numerical optical processor.

12
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2
REVIEW OF RESIDUEZ ARTIHMETIC

2.1 INTRODUCTICN

Nearly all of the number systems we generally encounter are

weighted number systems and most of them are fixed radix systems

(e.g., decimal and binary systems). The residue number system is

not a weighted number system and many of the common properties that

we are so familiar with no longer apply. The unique characteristics

of the residue number system and residue arithmetic provide some

very useful properties together with a few troublesome penalties.
The major advantage in performing arithmetic operation in the
residue number system is the absence of the carry, thereby allowing

the computation to be performed in a single step (1 clock cycle).

The time saving is particularly pronounced in multiplication oper-

ations since the need for partial product is also eliminated.

Carried with these advantages are some consequences of not

being a weighted number system. The magnitude of a number with

residue representation is not evident from the values of the residue

digits. This adds significantly to the complexity of performing
many condition checks such as magnitude comparison, sign check,

overflow detection and error detection. The residue number system

is an integer system and no fractional value can be represented
(at least in a straightforward manner). Thus, the operands and
the results of any arithmetic operation must be integers. This is
especially troublesome for division operation where the quotients
are generally fractional values, even when both the operands are

integers. Division cannot be carried out without complex pro-

cedures and the quotient must be rounded to the closest integer
which is smaller than the exact result. Therefore, to fully
utilize the speed potential of residue arithmetic, it is usually
applied to problems that can be formulated in such a way such

that no division is necessary.

13
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Due to the efficiency with which residue arithmetic performs

addition and multiplication, computer engineers have, for years, tried
to incorporate residue arithmetic in their computer syste%g? While
they were successful, residue arithmetic so far has very limited impact
in the field of numerical computing. Partly, it is due to the draw-
backs we mentioned earlier regarding the residue number system. In
addition, the efforts in the past are concentrated in adopting existing
computer hardwares for the implementation of residue arithmetic. To
fully utilize the advantages offered by residue arithmetic, special
hardware and design concepts which are tailored to the unique features
of the resiude number system must be developed. The optical approach
to implementation ofifers techniques which in several respects may be

especially well suited to the residue number system.

2.2 RESIDUE NUMBER REPRESENTATION

A residue number system is based on N relatively prime integers

m s m2, ceeom called moduli. An integer within this number system

is represented by a N-tuple of integers {r;,rs, ...rv} and r, I3
L

defined by the equation
Xx=km, +r,, i=1, 2, ... X
i i

. . X
where k is an integer and 0 < £ < m . If we let [;—]tepresent the
integer part of the quotient obtained from the division operation
%~, the residue of x modulo m, is defined as
i

14




For example, for a residue number system based on moduli 2, 3, 5,
and 7, an integer number x = 14 can be represented as

14 = (r =(o: 29 4) O)

1* Tpr T3e T,)

The residue representation of numbers, however, is not unique.

Let us assume that two integers x and x' have the same residue

representation (rl, Ty oo rV). Since

r, = x - km,
i i

we -have x - x' = mi(ko k') for all m,. X - x' is therefore divisible

by all m, and this would imply that (x - x') is a multiple of M where

Thus, the residue representations are the same for integers A, A + M,
A + 2M, etc. The residue representation of integers is thus unique
only 1f (k - 1)M < x < kM. For simplificity, the range 0 < x < M - 1

will be used in this report.

Although the residue number system represents only positive
numbers explicity, negative numbers can be represented implicitly.

For example, we can assign one half of the range, 0 < x i-% -1 to
represent positive integers and the other half, %.ﬁ X <M-1, to

represent negative integers, that is, M - A = <A, This representation

is illustrated in Figure 2-1.




, M .
negative values; 0 £x< = positive values

M-1l<x<&
2

YIS

FIGURE 2.1 RESIDUE REPRESENTATION OF NEGATIVE NUMBERS.
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2.3 ADDITION, SUBTRACTION AND MULTIPLICATION

A unique feature of the residue arithmetic is that the
computations for each modulus are performed simultaneously but
independently without any carry bit, This allows the computations

to be carried out in a single step.

2.3.1  ADDITION

Addition is the most basic of the arithmetic operations.
The addition of two numbers is illustrated in Figure 2.2. Residue
arithmetic is performed on the residue of each modulus and the N-

tuple of residue sums will be the residue representation of the

sum of the two numbers. That is, if (al,az,... aN) and
(bl’b7"" bN) are the residue representation of A and B, then
f \
(la; + T fa, + bz[ s e [aN + byl ) represents the sum
™ )

A + B. We should note however, that the magnitude of the sum
must also be within the range of the residue number system
0 <z <M-1. 1In a later section, we shall discuss in more details

the problem of overflow and its detection.

2.3.2  SUBTRACTION

Subtraction can be performed in a similar manner. An example
of the subtraction operation is given in Figure 2.3(a). An alternate
method is to first transform the subtractor into its additive inverse
and sum it with the subtrahand. The additive inverse I-Klm is

defined by *
[k + {-K]mi{mi =1

With this transformation, the subtraction operation is con-

verted into an addition operation. That is

-8l = fa+ -8l |
i ii

17




DECIMAL RESIDUE

Mod. 2 3 5 7

41 = 1 2 1 6
+ 28 = + 0 1 3 0
69 1 0 4
FIGURE 2.2 RESIDUE ALDITION,
DECIMAL RESIDUE

Mod. 2 3 5 7

41 = 1 2 1
l -28= - 0 1 3 _ G
13 = 11 3

FIGURE 2.3A DIRECT RESIDUE SUBTRACTION.

Moduli
2 3 5 7
28 = 01 3 @O
+ |-28 | = 0 2 2 0 (additive inverse)
0 = 00 0 O
DECIMAL RESIDUE
Mod. 2 3 5 7
41 = 1 2 1 6
+1-28[= + 02 2 0
13 = 11 3 6

FIGURE 2.3B RESIDUE SUBTRACTION BY THE USE OF ADDITIVE
INVERSE. .




There is a one-to-one correspondence between a residue number lklm.
| and its additive inverse I-klm . The transformation can be achieved
with the use of table look up %r fixed mapping. The concept of map-
ping will be discussed in the next chapter. A subtraction operation

using the additive inverse technique is illustrated in Figure 2-3(b).

F 2.3.3 MULTIPLICATION

Multiplication can also be performed by operating directly on

each modulus as shown in Figure 2.6(a). That is, (al, By eee an).

(bysby, «eiby) = (|al.bll ,1a2.b2| , ...IaN.bNI |). Alteinatively, a x
m m

1 2

homomorphic appreoach can be taken. '

Let mi-l be a prime number. The residues 1, 2, ... mi—l then

form a cyclic group with respect to multiplication of order mi—l and

each nonzero integer is a power of a prime interger b. For example,

with modulus 5, each nonzero residue is a power of 2. The exponential
function, given by Table 2-1(a) establishes a one-to-one correspondence {

between itself and the nonzero residues. Thus for example

2%, = 4
and as with any exponential function
a+b ! . b l
‘2 |5= llzals 12 lsls 'i

Let us define the inverse function of ]2k|5 as ]1og2ki5 (although it

is not the same as the conventional definition of logzk transformation).

Thus,

NPT

|1og24|5 =2

L M

The table for }logzki5 transform can be obtained by simply inverting
Table 2.1(a) and rearranging as shown in Table 2.1(b).
Using these transformations, a modulo Mi multiplication operation

can be converted into a modulo Mi—l addition. The homomorphic multi-

plication process is illustrated in Figure 2.4.




MODULUS 5 o
k ; 0o |1 |2 3
2% 1 |2 #la '3
5 i
. |
TABLF {E TRANSFORM,
MOL.
|
-
b k 1 2 3 4
| Log ki 0 } 1 3 2

 logy k|

Log k|

m,
v =13=1(1, 1, 3, ») =—=>"+[0, 1,3, 3] Md m -1

(o, 1, 3, 1]

JL[bklm.
1

x +y =11 x 13 = 143 = [1, 2, 3, 3]

FIGURE 2.4 RESIDUE MULTIPLICATION WITH HOMOMORPHIC
APPROACH.
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If one of the operators is a multiple of modulus, then the

corresponding residue would be zero. However, the ]logbk|m. trans-
formation is not defined for the value zero and the homomor%hic
approach cannot be directly applied. Nevertheless, computation for
such cases can proceed by noting that if either the multiplier or

multiplicand is zero, the product must also be zero.

2.4 DIVISION AND SCALING

Only integer numbers are represented by residue number system.
For additions and multiplications, the sums and products are always
integers if both the operands are integers. Such is not the case
with the division operation. Even if both the division and dividend
are integers, the quotient is generally a fractional value. Division

operations in the residue system are therefore much more complex.

Depending on the problem involved, we separate the division operations

into 3 categories:

1. Division with remainder zero
2. Divisor is a modulus or a product of two or more moduli
3. General division.

Let us first examine the remainder zero case. If the dividend
is exactly divisible by the divisor, then the quotient would be an
integer and it can therefore be represented unambiguously by residue
numbers. Under such a condition, the homomorphic approach employed
previously for multipliication can be utilized. With this technique,

a modulo m, division is converted into a mi—l subtraction operation.

Once again, the transformation of ilogZO[m is not defined.

With multiplication, this problem is circumventéd by noting that

lx{ E |y|m' = 0 if Ix\m or lyl =0
i i 1

m m

2




Such a simple solution however, does not exist for the division operation.

First, let us examine the case where only the dividend is a multiple

of a modulus. For example, with moduli 2, 3, 5, and 7, to perform

55 +11 =35
we have,

rz (1,1,0,6)#(1,2,1,4) = (1,2,0,5)

For the remainder zero case, the corresponding residue of the
quotent would be zero if the residue of the dividend alone is zero.

That 1is 3

x|, #lvly, =oif |x|_ =0
i i i
On the other hand, if only the divisor is a multiple of a modulus,

for example

5 + 5 =10

| &

r = (0,093,)5) < (192’_905) =7

then the remainder zero condition would not be satisfied.

Finally, if both the dividend and divisor are a multiple of a

modulus such as thé operation C
55 + 5 =11
r £(1,1,0,6) + (1,2,0,5) = (1,2,1,4)

Then the corresponding residue of the quotient could not be computed

directly. The most commonly used technique is to perform the division

without the modulus where the residue is zero. That is,
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We note that
X

M
Of0£—<-‘7.

moduli 2, 3,
. extension of

extension of

For the

the use of the multiplicative inverse.

(lylv-’6) + (1)2,")5) = (1;2")4)

the value of the quotient X pust lie within the range
Thus the quotient can beyrepresented with only

‘and 7 as (1,2,4). To obtain the residue for modulus 5, the

base technique can be used. The algorithm for the

base will be discussed in a later section.

remainder zero case, an alternative division method is

The multiplicative inverse

;%1 is defined by
o,

1

For example,

=1 for all m
mi i

with moduli 4, 5, 7, and 11 and Y = 3 = (3,3,3,3); the

multiplicative inverse of Y would be ?lﬁ = |£j = (3,2,5,4). Note that
Y'm, 3 m ;
1
=i =
l3|m‘ (3,2,5,4)
i

x3 _(3,3,3,3)

1 (1,1,1,1)

The division

operation can now be performed as a multiplication. For

example, with moduli 4,5,7, and 11,

e

18 =+ 3 =

(2,3,4,7) ( 3,3,3,3)

(2,3,4,7) x (3,2,5,4)

(2,1,6.6)




The multiplicative inverse does not exist whenever one of the ;
residue is zero. Thus, the multiplicative inverse technique cannot
be used directly if the divisor is a multiple of a modulus. The
situation is very similar to that encountered when using the homo-
morphic technique. The discussion presented earlier for the homo-
morphic approach would also apply here. 1If only the residue of
dividend is zero, for the remainder zero case the residue for the
quotient would also be zero. If the residues for both the divisor
and dividend are zero, the division can proceed while ignoring the
corresponding modulus. The residue for this modulus is obtained later

by using the extension of base technique.

Remainder zero represents a very limited case of division that
by itself would not have any practical importance. However, it can
be extended to the case where the divisor is a modulus or a product
of two or more moduli. We first note that division in a fixed radix
system can be implemented very easily if the divisor is a power of

the radix or base. For example

1234
1011

with base 10, 12340 + 10
with base 2, 10110 + 10

We see that the quotient can be obtained by simply shifting the
dividend by an amount specified by the divisor. Although such a
simple procedure cannot be applied for the residue system, it is not
surprising that the case of the divisor being a modulus would also

facilitate the division operation.

For a general division operation, it can be expressed as

x =[§]+ x|
y Ly y
Wwith the residue number system, only the integer part of the quotient

can be represented. Let us examine the case where y is a modulus,
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that is y = m The residue representation of X for modulus m

’ . |
fx]m = [x!y, would bec equal to the remainder of the division i

!
operétion ?. Thus, if we subtract x by |x|y, the difference would

always be exactly divisible by y. The division operation

X = ‘x|5

y ‘Y

can be performed using either the homomorphic approach or the

multiplicative inverse technique. For example, with moduli 2,3,5,and 7,
1

to perform 46 * 5 = 9 + %, the dividend is first subtracted by 146|5 = 1.
That is,
46 = (0, 1, 1, 4)
- Jasls = (1, 1, 1, 1)
46 - l46| = (1, 0, 0, 3)

The difference is then divided using multiplicative inverse technique

(1, 0, 0, 3) + (1, 2, 0, 3 %
=(, 0,0, 3) x (1, 2, -, 3)
= (1, 0, -, 2)
Since the residue of the divisor for modulus 5 is zero, the division

is performed without modulus 5. The residue for modulus 5 is

obtained from the values of the other moduli by the extension b
of the base. We then obtain

(1, 0, - 2) = (1,0, 4, 2) =9 = &




Next, we shall consider the case where the divisor is the product

of two moduli, that is, Y = We note that is always within the

mm.
range ﬁ . The quotient can therefore be represented uniquely without

moduli mkzand m, . The division operation is performed by first

subtracting the value represented by the residues of o and m, and
dividing the difference without moduli m and m . For example, to
perform 47 + 15 = 3 +-I% with moduli 2, 3, 5,and 7, the divisor 15 is
a product of two moduli 3 and 5, The residue representation of 47
for moduli 3, 5 is (2, 2)3,5, corresponaing to the value of 2.

Subtracting 2 from the dividend, we have

47 = (1, 2, 2, 5)

-(2, 2) = (0, 2, 2, 2)
47 =(2,2)5 5 = (1, 0, 0, 3)

The difference is then divided by 15 without the moduli 3 and 5.
That is,

(1, 0, 0, 3) = (1, 0, 0, 1)

= (l’ 0’ 0’ 3) X (l, s T l)

= (11 Ty T 3)

Using extension of base, we then obtain the quotient

e

- =3=[4
a, -, -, 3 =4(,0,3,3 = 3-[15]

The condition that the divisor be a modulus or a product of moduli

is still quite strict. Nevertheless, this limited division procedure

can be verv useful, especially in performing scaling operations.
As we shall discuss in the next section, overflow and its detection

is a serious problem in the resiiue number system. To avoid




overflow, the operands have to be periodically scaled down. Since the

scaling factor need< not be an arbitrary number, we can design the computer
system such that the scaling factor is equal to the value of a modulus

or a product of moduli.

General division is a difficult operation in residue arithmetic or
any other integer arithmetic. It is cumbersome, time consuming, and not
very accurate. It is generally wise to avoid applications where general
division is required. Fortunately, there are many importamt applications
where the algorithms can be structured in such way that the general
division operation can be eliminated. Nevertheless, general division can be
performed in the residue system when needed. There are a few algorithms
proposed but none of them can be performed without many sequential steps.
We shall present in the following one of the proposed algorithms. The

complexity is quite typical of the procedures for general divisions.

First, a product of moduli is found such that it approximates
the divisor. For example, with moduli 2, 3, 5, and 7, to perform
206 + 13, we can use the product of moduli 3 and 5 as the approxi-
mated divisor Y. The division operation is then performed for
206 ¥ 15. Since the division is a product of the moduli, we can
proceed with the method we described earlier, 206 is represented
as (0, 2, 1, 3) and (2, 1) modulo 3, 5 corresponds to 1l. The
divident is then subtracted by 1ll. That is,

(206 - 11) (0, 2,1, 3) - (1, 2, 1, &)

"

(1, 0, 0, 6)

(1, 0, 0, 6) is exactly divisible by Y, and we can perform the division
without moduli 3 and 5,

(1, 0, 0, 6) + (1, 0, 0, 1) = (1, -, -, 6),




Using the extension of base technique, we obtain
(1’ T T 6) = (ly l, 3’ 6) = 13

The dividend x is then subtracted by Y(%) and the difference is
denoted as X', That is,

206 - 13 x 13 = 37 = x'

or
(O) 29 l’ 3) - (la l, 3’ 6)(19 l’ 3, 6) = (1, l) 2, 2) = X'
<! <! < )
Using the same procedure the values of (;} (T) . (S;—)are .
recursively computed until ]

then

For our example

(5 ()

and

Since

5 () - | -




we have for the round-off quotient,
[§]=13+2+o=15

The result obtained Eg], corresponds to the integer part of the

quotient. Thus, the result can provide good accuracy only if

x >> y,such that [3] >> |x|y. It may not be the case in general
discussion. For example, with 15 + 8, the difference between the

exact quotient 1-7/8, and the rounded off value 1, is almost 50%. On

the other hand, it is generally true that x >> y in scaling operatioms.
Thus, scaling can be performed without severely affecting the computation

accuracy.

2.5 ENCODING AND DECODING

Before residue arithmetic can be performed, the operands must first
be converted into the residue system. After the computations are
completed, the output must also be converted from its residue represen-~
tation to a number system that is recognizable to a human operator or

conventional machine.

2.5.1 ENCODING

The encoding process is in general fairly simple., One may of

course, obtain the residue number directly from the relationship

r, = |x| =x-|%|n
i m, m i
i i
However, such a conversion procedure would require the use of non-
residue arithmetic. In order to allow a residue computer to perform
the encoding, an alternate approach can be used. For example, if the
number is originally in fixed radix formed, it can be written as
n-1 o

x=abl+a b + ... ab
n n-1 0
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where a is t@e coefficient and b is the radix. The coefficients a,
and weights b+ can be converted into the residue representations

Ai,Bi using table look up. The residue representation of the number x
can then be obtained by performing the sum of the product with residue

arithmetic. That is,

A+a B4 480
n o m.
i
In the example above, the encoding is performed from a fixed radix
representation. However, the same approach can be applied equally
well for the encoding from a mixed radix number. Encoding will be

discussed again in better details in Chapter 4. Specific encoding

procedures and implementation techniques will also be presented.

2.5.2 DECODING

The earliest technique for the decoding of a residue number was
introduced by Sun Tsu in the first century AD and later formulated by
K. F. Gauss in the nineteenth century7. The resulting theorem is
generally referred to as the Chinese Remainder Theorem. The theorem

states that an integer within the range of 0 and M-1 can be written as

N
~ T,
i
X = m.| —
Ha
i=1 i m,
m,
i
where
N
M= n
]
j=1
and
N
i mi
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While the Chinese Remainder Theorem provides one of the simplest

method of decoding a residue number, it requires a summation operation
that must be performed outside the residue numbex system. The residue
computer itself therefore cannot be used for the decoding procedure.
On the other hand, the algorithm for the residue to mixed radix
conversion can be computed completely with residue arithmetic. This

would allow the decoding to be performed by the residue computer at

its system throughput rate. The residue to mixed radix conversion
\ process will be discussed in details in the next section. In Chapter 4,

the implementation technique for decoding will be presented.

2.6 RESIDUE TO MIXED PADIX CONVERSION AND EXTENSION OF BASE

In this section, the algorithm for converting a residue number to
its equivalence in the mixed radix form will be discussed. This
conversion process is singled out for discussion because of its
importance not only in the final decoding of the output, but also
in performing condition checks such as overflow detection, magnitude
comparison and error detection. The conversion algorithm can also
be modified to perform the extension of base which is an integral

part of the division or scaling operatioms.

2.6,1 RESIDUE TO MIXED RADIX CONVERSION

A mixed radix system is composed of a set of radices my, M,

<

m cee WS and a number 1is represented by

3’




such that
N n-1
x = E («’:1n 111 mi)
n=1
N-1
=2 + a,m, + a3m1m2 + ... ay Ell m,

If the radices of a mixed radix system are chosen such that they
are identical to the set of moduli of a residue system, then the two
system is said to be associated. These associated number systems
will have the same range of integers that can be represented uniquely.
More importantly, the algorithm for the residue to mixed radix
conversion can be performed using residue arithmetic, This would
allow the conversion to be performed by the residue computer itself.
Because of the potentially high throughput rate an optical residue
computer, it is essential that the decoding be performed at the
same rate. In Section 4, we shall show that through pipelining,
the residue to mixed radix conversion can be performed by the

residue computer at the system throughput rate.

The coefficients of the mixed radix number can be obtained by

the relationship,
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The algorithm is best demonstrated with an example. Let us assume
that a residue system with moduli 3, 4, 5, and 7 is used and the residue
nunbers are to be converted to an associated mixed radix system. We

begin by noting that r, = a,. The residue T, (or al) is then subtracted

1 1
from x and the difference would be divisible by @ . Division using the

multiplicative inverse approach can be performed and the quotient for

modulug m, would correspond to the coefficient a The entire procedure

2
is illustrated in Figure 2.5.

2°

2.6.2 EXTENSION OF BASE

As discussed previously, in performing division operations, the
extension of base is necessary to obtain the residue of the modulus
where the residue is zero for the divisor. The extension of base can
be performed by modifying the residue to mixed radis conversion
process. For example, to extend the base of a residue number
w1 ©F
the mixed-radix representation be zero since the residue number is

represented by moduli m1m2"'mN+l’ we can let the coefficient a

within the range

With this prior knowledge, the residue for modulus mo,p can be
obtained by the residue to mixed radix conversion process as

illustrated in Figure 2.6.

2.7 OVERFLOW DETECTION, MAGNITUDE COMPARISON AND ERROR DETECTION

Overflow detection is a trivial problem with weighted number
systems. With the residue number system however, overflow detection
is not so automatic., First of all, the magnitude of a residue

number is not evident from the values of its residues. Secondly,

the residue number system is cyclic over the range.

N
M= m
i=1




Moduli 3 4 2 7

x = 389 L4 4 Ja =x =2
(-a)) - 2 2 -2 -2 -2
33 3
[
o2 )< & x3 3 5
Ini m, 3|mi
3 a1
(-a,) - 1 -1 -1 -1
3 2
X El—‘ X Zl_im x4 2
E ' 33 = 2
(-ay) - 2 2 22
2
1, 1
X -m—- X —5- o x3
3lm i -
[e] [a, =

Xx =6(3x 4x5) +2(3x4) +1(3)+2=2389

Figure 2.5. Residue to Mixed Radix Conversion
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Moduli 2 3 7 5 !

[
! Residue = 1 2 4 {xls
|

-1 -1 -1 -1 a; =1
[ 1 3 lxlg + 4
: |
; x}%\ x2 4 3
: . oy 2 s 3 a, = 2
b
f

-2 -2 -2 =2

/
3 3lx|g+o0
x-% x5 2
m
i 1 lx[5 a; =1

i -1 -1 -1

x=ll=[l, 2, l‘]=>[1-1 2’ l‘a 1]

Mod 2,3,7  Mod 2,3,7,5

Figure 2.6, Extension of Base
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That is, the residue representation is the same for integers k, k+M

k+2 ¥, etc, For additive overflow, the prchlem is a little simpler.
By using a range M which is twice as large as the required range ﬁ,
we can avoid the situation where the sum of two numbers is larger
than M and the residue representation circles back to produce an
erroneous answer. Overflow can be detected by converting the sum
from the residue system to a weight number system (e.g., mixed radix
system). The magnitude is then determined to see if it is in range.

For example, if the required range is

M = = ,
1,

W e
B

mo_1r creslp, 4 can be used. When

the residue number is converted into the mixed radix system it becomes

for overflow detection, moduli m o,

X = Ao(l) + Al(mn) + Az(mn . mn_l)

Foeo A @ comy geeemg) + A, (D

The value of An+l would provide an indication of the sign and range of

the residue number as illustrated in Figure 2.7.

Multiplicative overflow cannot be detected by simply extending
the range. In order to do that, the range would have to be MM,
which is impractically large. To ¢etect multiplicative overflow, -
the magnitude of the multiplicand and the multiplier must be checked

before the multiplication is performed.

One possible technique is to convert both operands into the mixed

radix form with an order of Ml, M2, ey MK’ MK+1’ vees MV

&

where M, Myy eey M n u




2M

/ OVERFLOW

3M=-M
a =3
n =
-ve +ve

a =0 =3 +ve
n
an=l or 2 —» overflow

a =3 —» -ve.
n

F1Gure 2./ (VERFLOW DETECTION WITH RESIDUE TO
MIXED RADIX CONVERSION,
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4

For example, with MOD 2, 3, 5, and 7; the range M is equal to [T m, = 210
i=1

the conversion into mixed radix form is performed in the order of 3, 5, 2, 7

since 3 x 52 v/210.

Let us denote operands A and B in the mixed radix form as

[A3, ags Ay A7] , [b3, bss by, b7]

No overflow will occur for A X B if one of the following conditions

is met:

2 2 7
2, A2 = A7 = b7 = 0 and A5 <2
3 A7 = b2 = b7 = 0 and b5 <2
4. Ay = A 5 A; =0and by, =1
5 b7 = b2 = b5 = 0 and A, = 1

Example: Mod 2, 3, 5, 7

AxB=7><80=[l, 1, 2, o]x[o, 2, 0, 3]

After the conversion into the mixed radix form, we have

[1, 2, 0, o:| x [2, 1, 1, 1]

A LA b,,b ,bz,b

A ’ASQ 2’ 7 39 S

3 7

Since none of the conditions listed above is satisfied, overflow

occurs.
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Since overflow detection can be detected much easier for a weighted
number system, another approach is to check ior possible overflow while

the input is still in the binary form (from A/D converter).

Let us assume that the range of the residue computer is M bits
and we would like to check if the product of two numbers will be
within the range M. Let us define A and B as the sizes in bits of

the two operands to be multiplied. For example

00101001 x 00110110

A=6 bits B=6 bits

Thus, if [A + B] - M < 0, product in range
> 0, overflow

For the above example, if M = 8 bits, then [A + B] = M =4 > 0 and

overflow will occur. And indeed,

00101001 x 00110110 = 100010100110

> M (overflow)

The product is larger than M = 8 bits. 1In order to avoid overflow,
the numbers must first be scaled down by an appropriate factor. This
can be done by shifting the two numbers to be multiplied by a total
of [A + B] - M bits.

Using the same example, [A + B] - M, we should shift the two

numbers by a total of 4 bits, (e.g., 2 bits each). We now have
00101001 {41] x 00110110 [54]
00001010 {10] x 00001101 [13}

= 10000010,[130]

L__.r—-'

<M (in range)
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The product is within range of M = 8 bits. To produce the correct

result, the product has to be scaled back up by the same factor.after

it is decoded from the residue system. This can be achieved very easily

by shifting the product by [A + B] - M bits. Thus

10000010 — 100000100000 = [2080]

Comparing this result with the exact answer 1000101001100 {2214}, we

see that the round off error is 67%.

There is no actual calculation involved with this technique. It
requires only simple logic controls and it can therefore be executed

at very high speed.

Magnitude comparison is essentially a subtraction and sign

determination procedure.

To compare the magnitudes of two numbers A and B,

if A>0and B - A, >0 then A < B
A>0 |8 - Al <0 B <A
A<O [B - Al >0 A<B
A<O IB-A|M<O A<B }
A<O |B - A, <0 B> A 1

To determine if A and B - AI,\4 is positive or negative values, they
can be converted into the mixed radix form. Using the sign
representation discussed previously. A is positive if 0 < A < M/2-1 1

N\
and A is negative if % < A< M-1.

<

il

Another approach is to simply convert both A and B into the
mixed radix form and compare their magnitudes digit by digit, starting ;

from the most significant digit. For example, with moduli 4, 5, 7

to compare 100 and 65, we have




decimal = 100 65
residue = [0,0,2] (1,0,2]
4 mixed radix = 35,0,0 3,1,1

Since 5 > 3

(0,0,2] > [1,0,2]

hologram would not result in the loss of a part of the image.

only loses the precision witl which the image points can be determined.
The same is true with the residue code. Losing one residue number
would not produce a complete loss of the coded value. Instead, there
will be a multiple of possible values within the range M that are

represented by the remaining residues, analogous to a loss in image

resolution for & degraded hologram.

The above discussion applies only to the case where residue
number is missing, or known to be in error and discarded. If the

output produces an erroneous but legitimate result, a way must be

devised to detect 1it.

One method is to use an extra modulus to be used as a check code.
This extra modulus should be larger than the rest of the moduli in the
numbers system. For example, with moduli 2, 3, 5 and a range of 30,
we can add an extra modulus of 7. If any digit is in error, the
erroneous residue number would have a magnitude beyond that of the

range M = 30. This can be checked by converting the residue number

into the mixed radix form. For example, for an output of

24 = [1, 0, 4, 3], an error occurs in the residue of modulus 2 and

the output becomes [0, O, 4, 3j. [0, 0, 4, 3] corresponds to 129

and it is therefore larger than the range M = 30. An error

in the residue aritimetic is thus indicated.

There are certain redundancy associated with the residue code.
not unlike holography where an image point is coded into a multiple

of points in the hologram. Losing some bits of information in the




3
PHYSICAL REPRESENTATION OF RESIDUE NUMBER
SYSTEM AND IMPLEMENTATION APPROACHES

3.1 INTRODUCTION

Fundamental to the optical implementation of a numerical processor
is the use of devices which provide numerical control of a light beam
or wave, In this section, the use of various physical properties of a
light beam to represent residue numbers will be discussed together
with some possible implementation concepts for performing residue

arithmetic.

Among the physical properties that may be considered are phase,
polarization, intensity and spatial position. Phase and polarization
are of special interest because of their cyclic properties. In
increasing the phase or polarization angle of a light beam, a modulo
27 addition is in effect performed. The use of spatial positions to
represent residue numbers has the advantage of allowing the residue
numbers to be represented in binary form with m, discrete positions.
The discussion in this section will center on the unique features
of these two distinctively different concepts. The possibility of

combining the two concepts will also be discussed.

3.2 PHYSICAL REPRESENTATION

Consider the control of light wave phase as a light beam passes
through an electro-optic modulator depicted functionally in Figure 3.1.
Since the phase of the light wave is inherently cyclic modulo 2w, then
by providing control of the phase shift in increments of A where
4 = 27/m and m the desired modulus, the phase of the emergent light
wave can serve as a residue number representation. For example, for
modulus 5, we make A = 27/5, Changing the phase incrementally, we
progress through A, 2A, 34, and 4A and then start to repeat modulo
27 such that we have an equivalent representation between 0 and 54,

2. and 637, etc, With an input (control voltage) that is continuous
rather than quantized, the optical phase shift modulator device

mav be designed to provide a quantized response, analogous to
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approaches under development with polarization modulation schemess’g.

Otherwise, quantization must be provided at the point of detection or

in the applied control voltage itself.

In addition to electro-optic devices, other devices available are
based on acoustic-optics, thermo-optics, and material deformation
(optical path length modulation) for the control of the phase of a

light wave.

Rather than altering the phase of light wave, the polarization
angle which is also inherently cyclic can be used for residue number
representationl’s. The choice of approaches for realizing quantized
control are similar to that discussed above for phase control.

A different representation approach is the use of spatial
positionsl’lo’ll. Each residue number can be represented by a
different spatial position. Since modulus my is generally not very
large, all the possible residue numbers can be represented by distinct
resolvable positions within a relatively small area. The use of
spatial positions for the rep;esentation of residue numbers has the
advantage of retaining the low error rate inherent in a binary
machine. It is particularly important to a residue computer since
error checking is more difficult to implement. Unlike phase or
polarization angle, spatial position is not inherently cyclic.
Nevertheless, the cyclic characteristic can be inserted in the

implementation approach.

Other physical representations such as intensity levels or
frequencies can also be used. These representations, much like
spatial positions, are not inherently cyclic. However, intensity
and frequency representations do not possess the advantages of a
binary representation such as spatial position. Thus, the
representation by intensity or frequency would encompass the weak-
nesses of the phase and position representations but not their

advantages.
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3.3 IMPLEMENTATION APPROACHES

There are two important characteristic inherent in residue arith-
metic. In order to implement a residue computer efficiently, these
two unique features should be taken advantage of. First of all, the
residue numbers are cyclic over the range of modulus m, . Physical
phenomena such as phase and polarization angle that are naturally
cyclic can be used to perform operations in residue arithmetic.

Other physical representations may also be used if the proper design

of a controlling device can be made to produce the cyclic behavior.

Another characteristic of residue arithmetic is the decomposition
of a computation with a range of M possible output values. into N parts,
each having only m, possible results, This feature makes the use of
lookup tables for computation feasible, A table look up is essentially
a mapping operation. For example, to perform A x B = C, the operation
can be looked upon as the mapping of a set of number A into a set of
numbers C. Computationé can therefore be performed by a physical

implementation of the mapping operatiom.

In the following sections, the cyclic and mapping approaches will
be examined. The discussion-will center on the general characteris-
tics of these approaches. In a later section, a more specific design

will be presented using the mapping approach.

3.3.1 CYCLIC IMPLEMENTATION APPROACH

As an example of cyclic implementation, we take the case of
spatial phase modulation which can be implemented with such devices
as acousto-optic spatial phase modulatorslz. We start with the
basic set of components shown in Figure 3.2, which consist of two
modulators and the means for introducing collimated light waves
into each of them. The collimated beams 1 and 2 originate from a
laser diode light source directed through a collimating lens and a
beamsplitter grating G. This arrangement serves as an interferometer

which provides an interference or fringe pattern at its outputl3. It
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will operate with light sources of modest coherence. The spatial
frequency (carrier) in the modulators is twice the grating frequency
in G. If the modulators have a sinusoidal spatial modulation of
optical index along their length (X~dimension) of the form

cos (wx + a) and cos (ux + B), then the diffracted first order

light waves 3 and 4 can be written as

e-J(uHa ) and e+j(wx + B)
Assuming for convenience that these waves have unity amplitude, then

the interference or fringe pattern at the detector plane will be of
the form

1 + cos [uwx + (¢ + B)]

Thus the phase of the fringe pattern output is the sum of the input
or modulator phase o and 8. Phases and a and B would be entered into
the acousto-optic modulators as equivalent residue numbers for a

particular modulus m,. Since the accumulated output phase is cyclic,

i
the output sum will have the desired residue property of being cyclic

modulo m, .

Rather than using a detector at the output, two other possibilities

exist, An optical transducer or memory may be used at the output plane
which records the sinusoidal fringe pattern and then acts as a diffrac~
tion grating containing the output phase (& + 3). When illuminated, it
would serve to readout the summation data (@ + 3) as the phase of the
diffracted output beams for use in another cascaded computing element
possibly of the same type. A second possibility for handling the out-
put avoids the use of a detector or a transducer by simply allowing

the output waves 3 and 4 to continue and become inputs to another set

of acousto-optic modulator elements as shown in Figure 3.3. This
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figure shows a succession of such cascaded modulators. The phase of
frange pattern output for the set would be the accumulated sum

Z(OL1 + Bl), i.e., the output fringe pattern is of the form

N
cos | w + E (ai + Bi)
i

With this device, we can realize a computing module capable of addition
subtraction and multiplication (through successive addition). For
addition or subtraction of two residue numbers, we need only two
modulators. With multiplication, the number of modulator elements

in this type of computing module must equal the largest multiplier
which, for modulus m,, will be m, = 1. Multiplying two numbers

X x Y is done by entering a phase o = 8 = X in all modulator elements

and having the total number of modulators equal to Y.

The time required to perform the single summation a + B is
quite short, being simply the propagation time from the AO cell to
the output fringe detection plane. It could be only a few picoseconds
for small integrated optic configurations. Clearly, however, overall
cycle time of such a unit is the characteristic of importance and it is
comprised of the set time of an AO device, the light propagation time
and the output fringe phase detection time. At the present state-of-
the-art, the AQ0 cell set time capability is in the range 0.1 to 10
usec which is quite modest for the computing operations of interest
here. Another problem with this approach is the limited capability
of present devices in performing the phase detection of the output

fringe pattern with very high speed and accuracy.

Using the inherent cyclic characteristirs of phase or polariza-
tion angle, the addition operation can be performed very naturally.
However, extending the implementation approach to wmuitiplication and
other more complicated functions such as x" cannot be easily achieved.
To perfore multiplication, one approach is to sequentially add the

multiplicand by itself n times for a xn operation. For large moduli,

such an implementation would be tedious. Moreover, a maximum of




mi—l addition operation have to be performed and the quantization errors
would accumulate as each addition operation performed. To avoid such
accumulation of errors, it would be necessary to use a cyclic device
with multistable states characteristic. While there have been some
success in producing devices with a limited number of stable states,

the problem of extending it to many stable states remains.

3.3.2 MAPPING IMPLEMENTATION APPROACH

The use of spatial position for the representation of residue
numbers has the advantage of retaining the low error rate inherent
in a binary machine. It is particularly important to the residue

number system since error checking is more difficult to implement.

One of the unique features of residue arithmetic is the
breaking up of a computation with M possible answers into N parts, each

having only m, possible answers. Residue arithmetic can therefore be

implemented w£ih N tables where the my possible answers for each
modulus can be looked up. Indeed, residue arithmetic has been
implemented by electronic computer engineers using precisely this
approach. However, the computation rate is limited by the speed
with which the table look ﬁp can be accomplished (i.e., access
time of the memory). Using position representation of residue
numbers, this table look up can be implemented very simply as a

spatial map. For example, in the operation A x B = C, for each

modulus there is a one to one correspondence between the multiplicand

A and product C. That is, IAlm :é, iC[m . As an illustration to perform

A X 4 = C modulo 5, we have i 1

—= o [»
o

3
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Thus the operation X4 modulo 5 can be implemented as a spatial map
as shown in Figure 3.4. The routing in the map can be constructed
with electrical wires or optical waveguides. A signal entering the
input port at the position corresponding to IAI5 will emerge at the
output position which is the spatial representation of the product
]CES. The same concept can be applied to more complexzmathematical
operations. For example, to evaluate a polynominal 3x + 2x + 4 = z,

we can once again create a map for Jx,m==€;>fz{m . The spatial map
i .

i
for the evaluation of the above polynominal is shown in Figure 3.5 for

modulus 5.

The hardwired (fixed) maps presented above can each be used for
only one operation. A more flexible approach is to utilize
programmable light deflectors to steer the light beam into selectable
paths as shown in Figure 3.6. Each of the optical switches has two
output ports which are selectable by a control voltage. The switches
either allow the entering light beam to pass through undeflected
or steer the beam to an alternate path. Since a light beam entering i}
into any of the m, input port can be deflected into m, possible
output positions, it requires a total of mi(mi-l) switches to

implement a fully programmable map. The light beam paths may be

open or confined (e.g., optical waveguides, fibers, stacked diffraction
gratings, etc.). Switching devices such as optical waveguide couplers,
acousto-optic diffraction cells and fiber optic couplers may be used
for position or path control. The beam paths are discrete and the

switches are generally controlled with binary control signals.

Instead of individual two state switches for beam position control,
devices having multiple output positions may also be used. Some acousto-
optic beam deflector designs for example, can provide over 10
discernible output positions which might serve in place of a set of two-

position optical switches,
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3eside the low probability of error provided by the binary
representation, the mapping approach also offers the advantage of
flexibility. A computation map can perform a complicated computation
procedure (e.g., evaluation of polynominals) as easily as a simple
addition operation. While residue addition and subtraction are
performed very naturally with the cyclic approach, the concept can-
not be extended much beyond addition without the simplicity of the

concept being lost.

3.,3.3 COMBINATION OF CYCLIC AND MAPPING APPROACHES

In our discussion so far, we have associated the phase and
polarization representation exclusively with the cyclic approach
and the spatial position representation with the mapping approach.
Although it is a natural association, there is no reason why they
cannot be used in different combinations. An example of such an
implementation is illustrated in Figure 3.7(a). For this case, the
phase (or polarization) shift elements are of a fixed and passive
type. The amount of phase shift is determined by the light path

which is controlled by the states of the optical switches.

Since the incremental phase (or polarization) shifters are fixed,
they can be made very accurately. This would reduce the probability
of error, allowing a longer sequence of operations to be performed.
This approach can also be used in conjunction with a spatial map
as shown in Figure 3.7(b). The best of the two approaches are
therefore combined using the spatial maps for the more complex
operations and the phase shifters for additions. With this imple~
mentation, L discrete light paths are still required within this
device., However, unlike using exclusively the position representa-
tion, there is only one light beam position entering or leaving

the device,
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gimilarly, the spatial position representation can also be used
with the cyclic approach. A geared wheel is a perfect example of a
device that utilizes position representation which is also inherently
cyclic. In fact, some of the earliest attempts in implementing a
residue computer made use of geared wheel. In some ways, the
characteristics of a geared wheel is ideal for a residue computer.
Many of the current efforts in developing hardwares for residue
arithmetic with the cyclic approach are actually looking for an elec-

tronic or electro-optic equivalence of a geared wheel!

3.6 OPTICAL SWITCHES

To implement the mapping approach, optical switches are used to
guide the input light beam through a predetermined path to the
appropriate output. There are several possible devices that can be
used to construct such a programmable computation map. Acousto
optic modulators for example, can deflect a light beam into many
resolvable output positionSlB. The use of acousto optic modulators
to implement a computation map for the x2 operation is illustrated
in Figure 3.,8. With the capability of the acousto optic modulators
to deflect a light beam to a multiple of output positiomns, the
programmable map can be implemented with less switches than with other
devices. However, due to the constraint imposed by the small
diffraction angle, the size of the computation map would be relatively
large. Moreover, the switching speed of acousto optic modulators is

undesirably slow.

An alternative device is the electro optic gratinglé. A grating
like electrode structure is used to induce a diffraction grating in
the LiNb03crystal. The switching speed is significantly faster than
the acousto optic deflectors but the light beam can only be deflected
to one preset direction. The diffraction efficiency is also quite
low, only a small portion of the input light 1is switched to the

desired output positionm.
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Another electro optic device is the total internal reflection15
optical switch as shown in Figure 3.9. The electro optic material at
the center has a refractive index that is slightly lower than that of
the surrounding substrate. The input light beam is injected at an
incidence angle that is close to the critical angle. By varying the
electrode voltage, the refractive index of the electrode material
is changed. The critical angle for total internal reflection will
change accordingly such that depending on the electrode voltage,

the incident beam will either be reflected or transmitted.

One of the most promising optical switches is the directional
waveguide coupler. It is the most versatile of the electro optic
switches. A direction coupler is schematically shown in Figure 3.10.
Two wave guides are placed physically close to each other such that
in the absence of an applied electric field, the wave guides are
synchronous. That is, a light wave propagating in one wave guide
will be coupled to the adjacent one producing a switch in light
path 16—18. When an appropriate voltage VT is applied to the
electrode, the synchronism between the wave guides is broken and
the light propagation will remain in the wave guide originally
excited as illustrated in Figure 3.10. The co-directional coupling
feature provides a flexibility not obtainable with other types of
optical switches. The total internal reflection optical switch
cannot be operated under this mode because of the physical displace-

ment between the transmitted and reflected beams as illustrated in

Figure 3.9.

The switching is not very complete with the simple coupler
switch shown in Figure 3.10. Different approaches have been
proposed to achieve more complete switchings. One technique
utilizes the directional couplers to construct a balance bridge
as illustrated in Figure 3.11l. The refractive index of one of the

branches is varied by the application of a voltage. The recombined
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beams interfer either constructively or destructively to produce the
. . 1 .

switching effect 9. Another technique makes use of an alternating

AR structure as shown in Figure 3.12 to produce more complete

switchingzo. This unique structure allows better control over the f

coupling and requires a substantially lower electrode voltage to

achieve switching. Cross talk as low as -26 dB has been demonstrated.
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4
IMPLEMENTATION OF THE MAPPING APPROACH

4.1 INTRODUCTION

We have introduced in the last section several implementation con-
cepts for optical residue computations. The numeric representations
and computation mechanisms of these concepts are fundamentally different.
In order to develop a definite design concept and evaluate its perform~
ance, it is necessary to base the design on an explicit set of hardware
and specifications. To this end, we have chosen the mapping approach
for our conceptual development. As pointed in the last chapter,
the use of cyclic devices for numerical operations entails the use of
analog devices for digital representation. This would involve
quantization errors that could accumulate to an unacceptable level in
long sequential operations. The spatial representation of the mapping
approach is inherently binary; the advantage of low probability of
error of a digital system is thus preserved. To reduce the quantization
error with the cyclic implementation, a cyclic device with a multi-
stable states characteristic would be necessary. While feed back devices
that exhibit multistable states behavior have been demonstrated, none
can yet produce a large enough dynamic range for the representation
of large moduli. Furthermore, while sequential addition operation
can be performed efficiently with the cyclic approach, the imple-
mentation of multiplication and fixed transformation is much more
complex than the mapping approach. We should emphasize however, that
our choice of mapping approach should not be taken as a definitive
endorsement. While we believe that the mapping approach is promising
and practical with the hardware available today, the cyclic approach
also possesses unique advantages and its potential cannot be ig-
nored. In the end, the most efficient approach may well be a
hybrid combination of the features offered by both the mapping and
cyclic approaches. In the following sections, we shall develop a

design concept based on the mapping approach, using integrated
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optics components of demonstrated capabilities. While the design
described is very specific as to hardware implementation, the de- o
sign concept is flexible enough to be adapted for different and bet-

ter hardware that may be introduced in the future.

In the last section, we have discussed some spatial switching
devices for guided and unguided light beam. They are all candidates
for an optical residue computer using the spatial mapping approach.
However, to be integrated into a small package, the devices that de-
flect unguided light beam (e.g., acoustical modulators) seem the
least feasible due to the limits imposed by deflection angle and
light diffraction. Among the devices that switch the light path of
guided light beams, the directional waveguide coupler is the most
promising at this time. The directional coupler is one of the better
developed integrated optics devices due to its importance as a spa-
tial multiplexer in fiber optics communication systems. The 2 input-2
output port feature of the coupler also offers maximum flexibility in
the integrated optics circuit design. To demonstrate the design con-
cept, we have therefore chosen the use of directional couplers for the

implementation of the optical residue computer.

We have briefly described the mechanism of the directional coupler
switch. To provide a better insight as to the physical size of the
devices, we have illustrated in Figure 4.1, the typical dimension of a
simple coupler switch. At present the coupler has a minimum length of
about 3 mm, fairly large as compared to integrated electronic devices.
However, the width of the coupler switch is only 20 um. Thus many switches

can still be packed into a relatively small area.
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4,2 TMPLEMENTATION OF ADDER, SUBTRACTER AND MULTIPLIER

The most basic arithmetic operator is the adder

21’22. Addition

in residue arithmetic is essentially a shifting operation. The input

light beam is shifted by K positions for the operation +K as illus-

trated in Figure 4.2 for modulus 5. It is possible to construct a

residue computer entirely out of such fixed maps. However, the

storage and selection of a large number of hard wired maps would

not be practical. The programmable map approach is in general more

desirable. One possible implementation of a modulo 5 adder is shown

in Figure 4.3. With this design, the electrode voltages of all the

coupler waveguide switches are initially set at V

T The light wave

injected into the input of the adder will therefore propagate inside

the same waveguide through the adder.

To program the device for

the +2 operation for example, the electrode voltage of the

corresponding row of couplers is change to 0. Thus, when the

light propagation reaches that particular set of coupler wave-

guide switches the light wave will be coupled into the adjacent

waveguide, changing the optical path.

maintained at constant levels of VT or
to a set of S-R flip flops. The adder
electric pulse to the 'S' input of the

it to change state. Alternatively, we

The electrode voltages are

0 by connecting the electrodes
can be programmed by sending an
appropriate flip flop, triggering

could let the initial electrode

voltage of all the couplers be 0 and program the adder by changing the

electrode voltage of a particular row of coupler switches to V.. The

T

alternate design of a modulo 5 adder is shown in Figure 4.4. However,

we generally find that it is easier to
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former design and to make the devices easier to study, we shall make

use of the former design in this report. We shall also use the term -
'on' to describe the state where coupling occurs at the coupler switch

and term ‘'off' for the state where the light propagation will remain

in the same waveguide.

Subtraction can be performed with the use of the additive

: inverse. The additive inverse |-K|m of a residue number K is
defined such that *

K + [-K|m l =0 (4.1)

There is a fixed one-to-one correspondence between a residue

number and its additive inverse. The additive inverse transformation
can therefore be implemented by a fixed map. And by adding this
transformation map to an adder, one can convert it into a subtractor

as shown in Figure 4.5 for modulus 5.

Multiplication can be implemented directly by using m, maps for
the operations of x0, x1, x2, ..., xmi - 1. Altermatively, omne
can make use of a homomorphic approach where a modulus m, multiplication
is converted into a modulo m, - 1 additive operation?. A logbK—like
forward transform is first performed on the operands. A modulo m, - 1
addition is then performed and the sum is inverse transformed by a
bK-like transform to obtain the product of the two original numbers.
The transform table for modulus 5 is shown in Figure 4.6(a), and the
process is illustrated schematically in Figure 4.6(b). Although the
logbK-like transformation for the value 0 is not defined, it is known
that if either the multiplier or the multiplicand is 0, the product
is 0. A modulo 5 multiplier is shown in Figure 4.7 using this homo-~

morphic approach. We note that for a modulo 5 multiplication, a
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modulus 4 addition is performed. Thus, in order to convert a modulo
5 adder into a modulo 5 multiplier, the modulo 5 adder should be
designed in such a way that it can be easily converted into a
modulo 4 adder. This can be achieved with the design shown in
Figure 4.8. While the concept can be applied to an adder of any
modulus, we should note that this homomorphic approach can be used

only if the modulus is prime.

The feature of this design is that the input, output and
programming controls are all represented spatially in the same way.
This allows the interconnection of these devices for sequential
operations. The outputs of one module can be connected directly
to the inputs of the next module or it can be used to program the
map of the next adder as illustrated in Figure 4.9. An electrical
pulse is sent to the first multiplier to program it to perform xlX[m_

i

where my is the modulus. A light pulse is then injected into the

adder at the spatial position corresponding to |Y|m The exit position
T
of the light beam would correspond to |X x Ylm . A fast avalanche photo-
i
diode is connected to each of the output wave guides. The existing

light pulse will be detected by the photodiode, generating an electric
pulse. The electric pulse in turn triggers the corresponding flip

flop of the next adder, setting it for the +|X x Yfm operation.
i
Another light pulse is then injected into the input of the second

adder at the position corresponding to Zm . The position where

the light pulse exits will represent the %um of |Xx Y+ Zlm
i
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4.3 PROGRAMMABLE MULTI-PURPOSE COMPUTATION MODULE !

With the subunits described above, we can proceed to describe the
multi-purpose programmable computation module. The module will contain
four distinct parts as shown in Figure 4.10. Each of these subunits
can be turned on and off individually, allowing the different combinations
of the subunits to perform various computation operations. However, it
is more complicated than simply stacking all the subunits together.
Special attention must be paid to the case of +0 and x0 by noting that
X+0, X0=0, 0°Y = 0 and X-1 = X. Furthermore, the modulus w,
adder must be modified to perform modulus m, - 1 addition and the |—K|m

. ; i
additive inverse transform must be converted into a |-K|m .1 transform
i
when the module is programmed to perform multiplication and division.

A possible design of the programmable multipurpose computation module

is shown in Figure 4.11.

The multi-purpose computation module can be programmed to perform
+, -, X and + arithmetic operations with simple binary controls. For
example, to perform modulo 5 addition, the subunits for logzK—like
transform, additive inverse transform and ZK—like transform are all
turned 'off'. That is, light pulse injected into any of the m
input ports will propagate undeviated along the same wave guide through
these subunits. With these units 'off', the module would be essentially
the simple adder shown earlier in Figure 4.3. To perform subtraction,
the additive inverse transform I-K}m. unit is turned 'on', changing
the light path according to the tran:form map shown in Figure 4.6.

We note that while operating in the addition and subtraction modes 3
with the logzK-like transform unit off, an input to the '*0' control
has no effect on the light path. The position of the exit beam would

therefore be the same as that of the input beam, performing in effect,

o
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the +0 operation. The programming of the computation module for

addition and subtraction operations are illustrated in Figures 4-12(a)
and (b).

In programming the computation module for multiplication, there
are two possible approaches. The module can be connected as a multi-
plier by rerouting the electrode leads to perform the logzK—like
transform on the multiplier value (X). The ZK—like transform unit
is turned on to inverse transform the sum as illustrated in Figure
4-12(c). With the second approach, both the multiplier (X) and the
multiplicand (Y) values are transformed by computation modules, as
illustrated in Figure 4.12(d). This approach has two advantages. The
connection of the electrode leads do not have to be changed, allowing
the module to be switched back to addition mode when desired. Secondly,
it would provide more flexibility in performing division. Observe that
the extra coupler switch at the left lower corner in Figure 4.11 is

necessary for the module to be programmed in this mode. The coupler

is turned on together with the log,K-like transform unit at the top.
When the value of the multiplier X~is 0, the '"#0' control of the
second module is turned on, and the x0 operation is performed. If
the multiplier is 1, its logzK-like transform is 0; the purpose of

the extra coupler switch is to keep the transformed output of

the multiplier from setting the *0Q control of the second module.
Instead, the coupler switches the light path away from the 0 output
port such that the second module would be left undisturbed. The
light pulse will exit at the same position as it enters the module,

performing the xl operation.

As pointed out in Section 2, division can be performed using
the same homomorphic approach, converting a modulo m, division into
a modulo m, - 1 subtraction if the quotient is an integer (i.e., no
remainder). For reasons discussed before, residue arithmetic is
generally applied to problems that do not require division operation
such as matrix multiplication. Nevertheless, it would be useful to
be able to perform division even if it is limited to the remainder

zero case. One operation that requires such division operation
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is scaling. In order to keep the values within the range of the

residue number system, it may be necessary to periodically scale the
values down by a factor of K. We have shown that scaling can be
achieved by division if K is a value of one of the moduli or the
product of two or more moduli. The programming of the computation
module for the division operation is illustrated in Figure 4.12(e).
An i-Klm _j additive inverse transform is required for the divisor
i
after the logZK—like transform. A I-Klm transform can be changed into
i
a I-Klm _j transform by shifting down the values of the |-K|m trans-
i i
form by 1. Referring back to the module design shown in Figure 4.11,
the down shifting is performed by the set of three switches at the

fourth row. They are turned on together with the 1og2K-transform unit.

4.4 MATHEMATIC OPERATIONS

We have demonstrated the uses of the computation modules for
various basic arithmetic operations such as multiplication and addition.
In the next few sections, we shall apply the computation mecdules to
more complicated mathematical operations such as polynominal evaluations,
matrix multiplications, correlations and Fourier transformations.
These operations are quite representative of those often encountered
in signal processing. They have one common feature; there is no
general division required in the computation. In the implemencation,
parallel structures are used whenever pcssible to optimize speed and
pipelining is used to maintain a high throughput rate. With such a

parallel processing approach we shall show that it is possible to

achieve a throughput rate over 300 MHz for these computatious.
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4.,4.1 EVALUATION OF POLYNOMIALS

To demonstrate how the computation module can be interconnected
to perform various mathematical calculations, we first apply it to
the evaluation of polynomials. As discussed by Huang et. al, a
polynomial may be evaluated using a single map. For example, the
modulo 5 map for the computation of X3 + AXZ + 3X + 2 is shown
in Figure 4.13, However, to generate that map, one would require
the help of some external intelligence. The routings of the m, pos-
sible inputs have to be computed beforehand. This implementation is there-

fore not easily programmable. An alternative is to utilize a set of
fixed maps for Xn, Xn_l, cen X2 functions in conjunction with the
computat ion modules as shown in Figure 4.14. To perform the modules
for the computation of X3 + 4X2 + 3X + 2 for example, the coefficients
1, 4, and 3 are entered into the multipliers. Light pulses are
injected into the inputs of the multiplier at the ports corresponding
to the value of input X. The adders would be set by the output of

the multipliers for +(X3), +(4X2) and +(3X) operations. Another

light pulse is then entered into the first adder at input port 2,

and the position where the light pulse exits would correspond to the

value of X3 + 4X2 + 3X + 2.

The computation time would be equal to the time needed to set
the adder module plus the propagation time through four modules.
The propagation time through a single module of 1/2 inch size would
be about 40 psec. The set time of the module is the sum of the
detection delay of the photodiode, the switching delay of the flip
flop and the switching time of the waveguide coupler. It is
possible to achieve a set time under 2 nsec for the computation

module ™ """ | And if we assume that an additional lnsec is required
for the light pulse to pass through the module and to reset the flip
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Ficure 4,13 EVALUATION OF A POLYNOMIAL WITH A
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flops, the set-reset cycle time for the computation module would be
about 3 nsec. The throughput rate for the evaluation of third

order polynominal would then be

1

3.12 nsec = 320 Miz

Due to the parallelism of the arrangement, the computation time is

approximately the same for polynominals of any order.

4,4,2 MATRIX MULTIPLICATION

One of the important applications of the numerical optical
computer is the multiplication of matrices. It can be extended
to a number of transform operations such as DFT, Hadamard trans-
form, etc. We shall examine the general case of matrix multiplica-

tion, The coefficients of the master

[Alyey Blygp = [Clygp:
matrix [B]NXP are stored in the modules as multipliers as shown in
Figure 4.15. The values of the matrix [A]MxN pass through the
multipliers row by row setting the corresponding row of adders.
Light pulses are entered into the first adder of each row, providing
in parallel the values of the first row of [Clj] at the output. The
flip flops are then reset, ready for the entries of the next row of
[A]MxN' The total computation time is equal to M + 1 set-reset times
of the module and P + 1 propagation time. The number of computation
modules required is 2NP. [or example, to multiply two 10 x 10 matrices,
the computation time would be about 34 nsec if we assume a module set-
reset time of 2 nsec and the use of 200 computation medules for each
modulus. The coefficients of [A], . could be for example, the encoded

signals from an array of sensors. The signals are sampled and entered

into the optical residue row by row at the system throughput rate.
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4.4,3 CONVOLUTION AND CORRELATION

In performing matrix multiplication [A]:[B] = [C], we have
n

. Cij = E ik bkj (4.2)

k=1

Two special cases of matrix multiplication that are of special
interest in signal processing are
N

Ct =Z bn at-n 4.3) i

n=1 o

and
N

Ce =anat+n (4.4)

n=1

They correspond to the convolution and correlation operations i

regpectively.

In Figure 4.16, the conceptual implementation of the convolution
{ operation is illustrated. With this scheme, the reference function
Bn is stored in the form of multipliers and the input data Ac-n are
propagated through the parallel multipliers at a rate of 1/T where

T is the cycle time for one complete sum of product operation. The
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input data are shifted from one multiplier to the next with a series
of optical data registers. Alternatively, the multipliers can be set
by the input data through a series of electronic shift registers as
illustrated in Figure 4.17, With this design, the reference function
is represented by the positions where light pulses are injected into
the multipliers and the input data a_n are used to program the
multipliers. After each cycle of computation, input data are shifted

down one multiplier, reprogramming them for the next set of

computation. The computation speed of the two schemes are about equal.

However, the second scheme may be simpler to implement.

It may be interesting to note that with an electronic computer,
the convolution and correlation operations can be performed more
efficiently using the transform techniques than with the direct ]
computation of Eq. 4.3 and Eq. 4.4. Multiplication is the most time
consuming computation operation in an electronic digital computer.
The computation time required for an algorithm is therefore deter-
mined largely by the number of sequential multiplication steps.
With the use of the Fast Fourier Transform (FFT) technique, convolu-
tion and correlation can be performed with less multiplication
operations than the direct computation of Eq. 4.3 and Eq. 4.4. The
same however, is not true for the optical residue computé; where
multiplications can be performed at essentially the light propagation
speed. The computation speed is determined instead, by the set-reset
cycle time of the computation modules and the number of sequential

steps.

A

4.5 PIPELINING CONCEPT

With the systems described above, the light pulse has to
propagate through a long series of adders. There are two dis-

advantages associated with such a scheme. First of all, the
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optical loss through a module is quite high. Passing through a large
number of modules, the intensity of the light pulse could be reduced
to an undetectable level. Secondly, the cycle time per computation
is increased. 1If the number of modules that light pulses have to
propagate through is small, then the propagation delay may not be

as significant a factor on the computation speed as the set-reset
time of the computation module. However, if the number of modules

is large, the propagation time could be the determining factor for
computation speed of the system. The number of modules that a light
pulse has to go through should therefore be kept small to achieve

optimal computation speed and bit error rate.

As an illustration, we shall look at the operation

N;
E ai Xi

i=1

To obtain a quantitative comparison, let us assume that N = 16. The
basic system structure is shown in Figure 4.18a. If we assume a
module set-reset time of 3 nsec and propagation time of 40 psec,

the throughput rate would be

1

. . = 271.7 MHz
3 + 17(.04)nsec

The initial delay in obtaining the first output is about 3.69 nsec and
the light pulse has to propagate through 16 consecutive modules. In
Figure 4.18bwe show an alternate arrangement where the light pulse
needs only to propagate through 8 modules. It requires an additional
step but the throughput rate can be maintained by pipelining the
operation. The output of one side of the summation is used to

program an adder while the sum of the other half is stored in a
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register. At the next clock cycle, the data is recalled from the
data register and propagated through the adder, giving the value
of the full sum. At the same time, the next set of input data xi+l
will go through the multipliers and reprogram the adder. Since

the light pulse at each cycle has to go through a maximum of only

eight modules, the throughput is now increased to

1

3 + 8(.04)nsec= 297.6 Mz

Although the 6.4 nsec initial delay is longer, for a long series of
continuous computations, the increase in throughput rate would more
than make up for the lengthened initial delay. If we carry the
concept to the farthest, we obtain an arrangement as shown in
Figure 4.19. Now the light pulse will only have to propagate
through a maximum of 2 modules and the throughput rate is increased

to 324.7 MHz. The initial delay would also be increased to 12.3 nsec.

If the number of input data is small, then the increase in
throughput rate cannot offset the additional initial time delay. The
light pulse should then be propagated through as many modules as allow-
able by the optical loss. If the series of “nput data is very long,
then the highly cascaded version of Figure 4.19 shodid be used since
the increase in throughput rate becomes a significant factor. In
addition, the probability of error would be lowered due to reduced

optical loss.

4.6 DISCRETE FOURIER TRANSFORM

One of the most powerful transform operations for signal processing
is the Fourier transformation. Optical Fourier transformation with
coherent light and lens system is the heart of coherent optical
processing while the FFT computation is the fundamental operation in

digital signal processing.
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4.6.1 DFT

The discrete Fourier transformation (DFT) can be expressed as

N-1
£(kS) = Z £ (nT) 10 TKE

n=0

N-1 o

= Z £(aT)el N (4.5)

n=0

where

£(nT) is generally a function of time or space and T is the temporal or

. . . inTk
spatial increment between samples. Since e

is complex, it can be
expressed as a + ib., However, a and b are less than or equal to 1 and
fractional numbers can not be represented by the residue number system.
The values of a and b must therefore be scaled up and rounded off into
integers. That is

M _inTkS
e

2 3 A+ iB

To obtain the correct values of £(k?), the output must be rescaled by
Z—M. This may be accomplished more conveniently after the outputs of
the residue computers are decoded into binary form. The down scaling
can be achieved by simply shifting the output values down by M binary
digits.

Let us first consider the case where f(nT) 1is real. This would
correspond to applications where the inputs are signal intensities.

For this speéial case, the real and imaginary part can be operated

on separately and independently by noting that (A + iB) C = AC + iBC.

One possible scheme is to store the input values f(nT) in the form of




N multipliers as illustrated in Figure 4.20. The scaled and round-

off values of the coefficients einTkQ are then recalled from a ROM

and entered into the multipliers. The ROM can be a conventional
electronic unit and the coefficients are stored in the residue form
(e.g., 001000 for 2 mod 7). The binary digits are recalled in parallel
and used to set the flip flops of an optical data register which is

connected to the inputs of the multiplier as shown in Figure 4.21.

The throughput rate of such a system would be tniec where t is the
access time of the electronic ROM. While the access time of state
of art ROM can be as short as 20 nsec, it is still substantially
longer than the cycle time of the optical computation module.
Alternatively, a series of optical data registers that are shifted
cyclically can be used to maintain the throughput rate of the
optical residue computer. The arrangement is illustrated in
Figure 4.22. Another possibility is the use of holographic
memories as shown in Figure 4.23. We note the total number of

spatial positions for all moduli is only

and the recorded data of a coefficient for all the moduli can be stored
in the same sub-hologram. The data are reconstructed together and
focused onto a bundle of optical fibers which lead the light pulse

to the input ports of the multipliers. The read beam is scanned

across the holographic memory, reading out sequentially the appropriate

coefficients.

In the discussion above, the inputs f(nT) are assumed to be real.
However, the values of f(nT) are in general complex. For the
multiplication between two complex numbers, the real and imaginary

parts can no longer be treated separately. Complex multiplication
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involves 4 real multiplications, 1 addition and 1 subtraction. Instead

of using separate modules for each operation, the real and imaginary
parts can be time-multiplexed to reduce the number of required hard-
wares. The process is illustrated in Figure 4.24 for (A + iB)-(C + iD)
= [AC - BD] + i[AD + BC]. The multipliers are programmed for xC and

xD operations. The real part A is entered into the multipliers first,
setting the subsequent modules for -AD and +AC operations. The
imaginary part B then propagates through both multipliers and the
adder-subtractor modules. The light beam exiting from one of the
module will give the real part of the output [AC - BD) while the

other provides the imaginary part (AD + BC). The switches between the
multipliers and adders will be alternmatively switching the light exiting
from the multipliers between the programming inputs and the operators inputs
of the adder modules. The computation time of a complex multiplication

would be twice that of a real multiplication.

Using this concept, the complex Fourier transformation can be
performed as shown in Figure 4.25. An electronic ROM is used for the
storage of the real and imaginary part of the coefficients. Though
this may not be the optimum in terms of speed, it may be the more
reidily achievable approach. With the systems described above, the
pipelining concept was not utilized. To perform a 1024 point DFT for
example, the light pulse would have to propagate through 1024 adders.
This would be very inefficient both in terms of optical loss and
system speed. To pipeline the system, we can use the cascaded
arrangements as shown in Figure 4.19. However, a substantial
number of additional adders would be necessary. Alternatively, we
can make use of the fact that the input f(nT) are entered into the
computer sequentially and utilize the system shown in Figure 4.26.
With this system, the computation begins as the input data are filling
up the multipliers instead of waiting till all N samples are obtained.

As the second input data is entered to the second multiplier, the
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first coefficient for the first input is propagated through the
multiplier and the first adder is set. When the third input data

is entered, the first coefficient of the second input is propagated
through both the second multiplier and the first adder setting the second
adder. The first adder is then reset. When the fourth input is

entered, the -secoud coefficient of the first input and the first
coefficient of the third input would be sent through their respective
multipliers to set the next adder. The time sequence of the system opera-
tion is shown in Figure 4.27. The data input is entering the computing
svstem at twice the computation rate. One clock cycle after the

last data f[(N-1)T] is entered, the values of the transform f (k)

would begin to flow out of the last adder. Since the light pulses

pass through only two modules in each cycle, with the assumption of

3 nsec set-reset time and 40 psec propagation time for the computation
modules, the cycle time would be 3.08 nsec. For a 1024 point DFT with
real input functions, the transform can be completed in about 3.2 .isec

after the last input data is entered.

4.6,2 FFT

The introduction of the Fast Fourier Transform technique has
greatly reduced the computation time for digital Fourier transform.

The same benefit can be realized for the optical residue computer.

There are two basic techniques, decimation in time and decimation
in frequency. With decimation in time, the original sequence of N
numbers is subdivided into 2 Sequences. For illustration, let us
examine the case where k = 1. A sequence f(n) with n=0,...N-1,

is divided into two sequences g(n) and h(n) where

g(n) = £(2n)
with = 3 -~
n=40, ... 2 1

and

h(n) = £(2n + 1)
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The Fourier transform of f(n) can be written as

N
=t -12Dnk . -12T & -125nk
F(k) = E g{n)e ~ N +e N z : h(n)e ~ N (6.6)
n=0 n=0

The N point DFT of f{(n) can therefore be expressed as the summation
of two g point DFT. These two % point DFT however, can be performed
simultaneously in parallel. The computation time would therefore be reduced
to that of a g point DFT. The FFT algorithm can be implemented
with the optical residue computer concept for real input as shown
in Figure 4,28, With this arrangement, the upper half will compute
one cycle ahead of the lower half. The output of G(k) would set
the adders while the multipliers are set for the coefficients
2m 27

-1k "L At the next cycle the output of H(k) would

propagate through the two multipliers and adders to produce the
values of £(k) and £(G+o).

With this system, the pipelined arrangement shown in Figure 4.26
for the computation of DFT cannot be utilized if we want to fully
maintain the speed advantage. The reason is that the computation can
not begin with FFT until all N input data are entered. The cascaded
version shown in Figure 4.19 can be used but it would require additional
hardwares and add log2 g cycles to the total computation time. With
such a system, the transform can be completed in g + 1 + log2 g cycles.
For a 1024 point input, this would correspond to 1.6 psec. The

computation time is therefore cut almost by half.

An alternate technique is decimation in frequency. With this
technique, the input data sequence is also subdivided into Zk
sequences, Once again, let us examine the case where k = 1. An
input sequence f(n) can be divided into two sequences g(n) and h(n)

where
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g(n) = f£(n)
N
for n=20, ... 3" 1

h(n) = £(n + g)

The Fourier transform of f£(n) can then be written as |

N/2-1
2m L2T N
F(k) = E g(n)e_i~§nK + h(n)e-l N(n + Z)k
n=0
’c
. ;
ki -imk -2k
= E g(n) + e h(n)Je ~ N (4.7)
n=0

Separating the odd and even points of F(k) and letting 2m = k, we

have
N/2-1
2T
F(2m) = Z (g(n) + h(n)) e ¥y 200 (4.8)
n=0
and i
N/2-1 _i2ﬂ _iQEan o
Fm+ D) = Y (e - b@)e TV & .
n=0

What we have is essentially two N/2 point DFT for the functionms.

27

(g(n) + h(n)) and (g(n) - h(n))e N°
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To implement this algorithm, we would require N additional computation

modules to compute the values of

-120
(g(n) + h(n)) and (g(n) - h(n))e ~ N

as shown in Figure 4.29. The output are then entered into the multipliers

similar to the arrangement for DFT in Figure 4.20. The computation time

is slightly faster than the system using decimation in time, requiring

X + 1 cycles. For a 1024 point FFT, the computation time would be

2
1.58 usec. The number of computation modules required to implement

the decimation in time system is

N, N
4

2N+ 4+ 5+ +§+”.1=mn

While for the decimation in frequency system, the number of modules

is 3N = 3072. Thus we see that the efficiencies of both techniques
are about equal. With this first order of decimation, the computation
time is decreased by about 100% with 337 more hardwares. Additional
increase in computation speed can be realized wiEh further decimation
The computation time is approximately equal to %ﬁ cycles where 2 is
the number of input data point and N is the number of times the input
sequence is subdivided. Since a cycle is equal to one set-reset time
of a module plus the propagation time through two modules the cycle
time is about 3.08 nsec . To maintain this throughput rate, an

optical ROM using the cyclically shifting data registers as shown in

Figure 4.22 must be used.
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4.6.3 TWO-DIMENSIONAL DFT

The same concept can be extended to two-dimensional Fourier
transform. The DFT of a two-dimensional input function f(nx,my) with

n=0, N-1and m = 0, M-1 can be written as

M-1 N-1
F(ap, bg) = Z’Z f(nx,my)eq-irlapx e-imbqy
m=0 n=0
M-1
= Z q(ap,my)e” PP (4.10)
m=0

where

=20 and -2t
P~ W Ty

To optimize speed, the highly parallel structure shown in Figure 4.31
can be used. The output of the first transform operation g{(ap,my)
would program a second set of multipliers. The system can be pipe-
lined in such a way that as the first column of multipliers are being
programmed by the output g(0,m) the computation begins for the second
dimension for the values of F(O,m). With such a high degree of
parallism, the computation time for a N x N input would only be 2X
cycle times. The number of required computatior modules would be 2(2N)2
Thus if ¥ is large, such an arrangement would not be practical.
Alternatively, the system structure shown in Figure 4.32 can be used
to reduce the number of hardwares at the expense of computing speed.
With this arrangement, the multipliers have to be reprogrammed after

the computation for each column of input data. The output 4are stored

in a buffer storage which is then loaded into the second set of
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multipliers after the computation for the first dimension has been

completed. The transform operation for a N x N input signal would
require at least 2N2 cycles. However, it would require only 4N
computation modules and 2N optical data registers for the buffer
storage. We may also note that the discussions above would also apply
to the extension of the convolution and correlation into 2-dimensional
operations.,
4,7 ENCODING

Before computation can be performed with the modules, the input
must be encoded into its equivalent residue number in the appropriate
spatial representation. The simplest approach may be to convert the
analog input into an intermediate binary form with the use of a
conventional A to D converter or the integrated optics implementation
scheme introduced by Taylorz4 . The binary input can then be converted
into residue numbers in the spatial form with the arrangement shown in

Figure 4.33. We note that for modulus 5,

[3N]
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Thus, we see that encoding can be performed in 1l set time of the
module. We may note that the binary to residue conversion can also

be implemented using the programmable modules as shown in Figure 4.34.

The same concept can be modified for decimal to residue conversion

by noting that an integer

123 =1 x 100 + 2 x 10 + 3

The conversion procedure requires three steps. The decimal digits
are individual to converted into into the residu equivalent. It
involves a 10 to m, mapping which can be achieved with the use of
mixed maps. The residue digits are then multiplied by x[lOnlm
which can also be performed with fixed maps. Then the producti

for each residue digits are summed with modular additions to obtain
the residue equivalent. The algorithm is illustrated in Figure 4.35

and the implementation is shown in Figure 4.36.
4.8 DECODING

Decoding a residue number is a more complicated operation than
encoding. The most popular approach is to convert the residue number
into the mixed radix systemz. The reason is that the conversion
procedure can be performed with the same type of hardware used for
the basic residue arithmetic computations. The algorithm is shown

schematically in Figure 4.37 for moduli 2, 3, 5, 7, 1l. |1/K,

m,
i
1

represents the multiplicative inverse where (K x .l/Kim m, =
i

The drawback is that the procedure requires N-l sequential steps
where N is the number of moduli used. Since encoding and computation
can be performed at a throughput rate of l/one set-reset cime »f a
module, this sequential decoding prucedure would seemingiy be a
bottleneck for the entire process. Fortunatelv, the conversion

procedure can be pipelined. To pipeline the operation, it is




kR = et et

et g

'IINAOW NOTLVINdWOD
INIYWWYHO0Md HNISN NOISYIANOD 3IANAISI¥ 0L AYYNIF Ho'H JUNOIY -

S = - m ] - e = O
rA L L O b 010 ] ofo 0 f—mj 2] 0 0 pmeadO |0 eﬂaa 02 -
o2}] o =<1 2 b w |l O T e ] e [FS u
I - B
0 1 0 ¢ I I




123 = 1 x (100) + 2(10) + 3

For Mod 7
MOD 2, 3, 5, 7
x =1 2 3 _ 123 = (1, 0, 3, 4]

x =1 2 3
r=1 0 1

' =
I, =x0 0 1 10" | 102 10t 10°

o+0+1=19 [1] [10%],[ o 0 1

x|10n

Figure 4.35. Decimal to Residue Conversion
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necessary to synchronously delay the coefficients obtained earlier in the

procedure such that all the coefficients would advance through the decoding
procedure at the same rate. This necessary delay can be accomplished by
use of the simple data register module shown in Figure 4.38. We also

note that the multiplying factors |l/mi|mj are fixed and they can be
implemented by fixed maps. The design of a pipelined residue-to-

mixed radix converter is illustrated schematically in Figure 4.39. The
input residue numbers are first stored in the data register modules
(represented by boxes with bold lines). At the same time, the computa-
tion modules are set by r, for the -a, operation. Light pulses are then
injected into the data registers to recall the residue numbers. The
light pulses propagate through the computation modules performing -a,
operation, and then through the fixed maps for xll/ZIm.. The output

i
is stored in the next set of data register modules and the next

computation modules are set for the -a, operation. Simultaneously,

the second entry of the residue numberi are entered into the first set
of data registers, ready for the first step of computation. The timing
sequence of the input, the data recall light pulses and the output are
shown in Figure 4.40, We see that no part of the converter sits idle
at any time and the conversion is performed at a constant throughput
rate of l/one set-reset time of a computation module. The pipelining
concept can be applied to any sequential computation procedure. The
encoding computation and decoding can therefore be performed at the
same throughput rate. Assuming once again that the set-reset time of
a computation module is 3 nsec and the propagation time is 40 psec,

a numerical optical computer with a system throughput rate of 320 MHz

would be possible.

Residue to mixed radix conversion is a very important procedure
in residue arithmetic. Besides decoding the output, the conversion
is used for other important operation52 such as sign detection,
magnitude comparison, and overflow detection. Pipelining the

procedure 1is therefore an important concept in an optical numerical
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computer using residue arithmetic. The original residue number may
be stored in a cascade of data registers while it is being converted

into the mixed radix form for condition check. The residue number

is moved down at the same rate as the coaversion process and the
computation is continued at the same vate as the conversion process

and the computation is continued after the checking is completed.
Alternatively, after the residue numbers are converted into their

mixed radix equivalent for sign detection or overflow detection,

they can be converted back into the residue form for further computation.

The inverse conversion (mixed radix to residue) can be achieved very

easily, and once again in one set time of the computation module.

Let us take the case where the moduli are 2, 3, 5, 7. The resi-
due representation can be written as x = (rl, T, Tgs r7) and the
mixed radix representation as x = [al, 3,5 34, a4] = al(l) + az(l x 2)
+ a3(l x2x 3) + a4(l ¥ 2 x 3 x 5). For example, to calculate the

residue for modulo 3,

ty = [a;[lly +a,[2]; + a,]6], +a,{30],],.

Since I3O|3 = I6|3 =0, ry= |alll|3 + a2|2|3|3. The implementation

is illustrated in Figure 4.41.

We like to point out that the extension of base operation required
for the scaling operation is essentially a modified residue to mixed
radix conversion algorithm. The same pipelining technique can also be
used for the extension of base and the throughput rate can therefore

be maintained with the scaling operation.

In order that the optical computer can communicate with
conventional electronic computers, the output of the optical residue
computer has to be converted into binary form. The binary representa-
tion of X is (bo, bl’ b2’ ...) where

2 3
= . $2 + b,*2 + ...
X bo + bl 2 + b2 3
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If one of the moduli of a residue representation is 2, then h

Subtracting b, from X, the result is divisible by 2. Thus, we can

readily compuge X - bo)/2 using fixed maps in the residue number system
for all moduli except 2, for which the extension of base technique
(which can be pipelined) must be used. Then bl is given by the new
value of r,. In a similar way all the binary digits bi can be

computed uiing the residue number system. However, the extension of
base technique must be used for each binary digit (as opposed to just
once for residue to mixed radix conversion). The entire procedure can
be pipelined to keep the same dat a rate, but the initial time delay is
roughly 3 nsec times the number of moduli times the number of bits in

the number being decoded.

The above procedure for residue to binary conversion can be
speeded up by working with a power of two for a modulus. For example,
consider the case of modulus 8. Then

2
b +bl-2+b-2“=r

0 2 8

Given r8, the values of b b., and b, can be easily determined by the

’
simple look-up table strugturi shown in Figure 4.42 (a fixed map
position to binary mapping). The number (X -~ r8) is divisible by 8
and so (X - r8)/8 can be easily computed by residue arithmetic except
for modulus 8, which must be done by the extension of base technique.
Then b3 + bu-2 + b522 is given by the new value of gy and b3, b&’ and
b, can be computed using the converter shown in Figure 4,42, This

5
method requires only one-third the number of base extensions as

compared with using modulo 2.




FIGURE 4.42 RESIDUE TO BINARY CONVERSION,




4.9 OPTIMIZATION OF COMPUTATION MODULE

In the first part of this section, we developed a programmable
multipurpose computation module. The goal of that design is
versatility However, we have also shown that the bit error rates
and computatidn speed are greatly affected by the size of the
computation module. More specifically, the optical loss and propaga-
tion delay through a module is proportional to the number of optical
switches that the light pulses have to pass through. In this
section, we shall take the opposite approach: instead of driving
for maximum versatility, the computational modules are optimized
in terms of the number of required optical switches. Such modules
would be important to applications where speed and size are of prime
importance while programmability is not a concern. These would
include many special purpose signal processing applications.

Je shall first examine the basic mod 7 adder shown in Figure
The first order of switch reduction can be achieved by noting that the
+(Sl-Sz) operation is performed when +Sl and +82 controls of the adder
are activated. For example, for the modulo 7 adder, the +5
operation is performed when +6 and +l1 controls flip flops are
activated. The rows of switches for the operation of +5, +3, and
+2 can therefore eliminate. With such a scheme, the number of
optical switches required to implement the adder is reduced from
mi(mi-l) to mi(Z/EZ ~ 2). More important, the numper switches the
light pulses have to be propagated through is reduced from (mi-l)
to (2/5: - 2). For example, with modulus 31, the probation delay
per module is cut by 2/3 and the optical loss is reduced 26 times.

More generally, if a number of stages in the configuration S1
Sys +.. are turned on, then the resultant operation can be shown

to be
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where

That operation +l to +(m - 1) can then be accomplished by the N

stages

SN~i41

where
N = [log2 m]

This number of stages is far less than the number required by the
conventional adder, m ~ 1. For example, operations +0 to +31 can be
accomplished with the N = 5 stages +1, +3, +7, +15, and +31, as seen
in Table 1. (Table 1 also shows the operations +0 to +15 using the
four stages +1, +3, +7, +15, and so on.) The adders for modulus 5
using this scheme are shown in Figure 4.43. The routing

of the waveguides within the adder is determined as follows. Start
with a conventional m;dule and eliminate all the switches except

those for +s +5,, +s3, etc., and simply straighten out the resulting

l’
paths where possible. The result is that a right-hand path exiting

stage s, will comnect to the right-hand path entering stage Sitl at a
residue position (value +is, - 5k+l'm with respect to that at Sy For
modulus 5, :sl}s = 1 Tig = *2.

A disadvantage of this scheme is that the +5 operation requires
the input control light to be split into 3 parts, the +10 operation

requires 4 parts, and the +21 operation requires 5 parts, etc. Thus




o
s
b o
(W)
F

S -
. R @ AN JIC ___5
=
3 | J
S = \L e
&
: & A v—. > -
] ,
i\-—-‘——-—f — |
1 —s 3 1
= \
0“&
’ .
% 0 1 2 3 4
Output
H FIGURE 4.43 [oDULO 5 ADDER WITH SWITCH REDUCTION.

137

NI IR -y

PR NP TONE




TABLE 4.1 SETTING OF MULTIPLE STAGES REQUIRING
THE MINIMUM TOTAL NUMBER OF STAGES

OPERATION STAGES SET (Contribution from each stage is + or -)
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the reduction of the required number of stages (and switches) and the
reduction of light losses due to switches is accomplished at the
expense of light loss at the input controls. This trade-off will

be favorable if a light pulse must pass through a number of modules

before being detected as with the sum of products operation.

Similar switch reduction can be realized for the multiplier
module. As shown in Figure 4.7 , a modulo m, multiplier can be
constructed from a modulo m g adder. Thus, the minimum number of

required switches for a modulo m, multiplier would be

w;log,(my p) + (myy)
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5
DESIGN CONCEPT ANALYSIS

5.1 INTRODUCTION

In the last section, we have presented a specific design for
an optical residue computer using the mapping approach. We shall
now examine the possible performance levels of such a system using

. demonstrated hardware performances. We shall emphasize the word
'demonstrated' since some of the hardware technologies are not yet

k in the production stage. The estimates would also apply only to

the particular system presented and it is not to be taken as the

3 inherent system performance of an optical residue computer. The

implementation approaches reflect the present stage of component
technology. The system design concepts will evolve together

with the development of component technology.

With the performance estimates, the optical residue computer
will then be compared with electronic units having similar capabiliries.
The purpose of this comparison is solely to provide some perspectives
for the performance levels of the optical computer. Performance is
a function of complexity but the complexities of an optical and an
electronic system cannot be compared directly or fairly due to the
vast differences in the stages of development and design concepts.
Thus whatever comparisons that are made between the optical and

electronic units should be taken in relative terms.




5.2 DEMONSTRATED HARDWARE PERFORMANCES AND PERFORMANCE LEVEL
ESTIMATES FOR OPTICAL RESIDUE COMPUTER

The setting and resetting of a computation module require four
sequential steps: detection, setting the flip flops and couplers,
propagating a light pulse through the module and the resetting of
the flip flops and couplers. The architecture of the optical computer
is designed to minimize the number of such setting and resetting
operations by using parallel structure. When a sequence of set-reset
operations are required, pipelining is utilized to maintain the
throughput rate of approximately l/one-set-reset time of the

computation module.

To achieve a 300 MHz throughput, a set-reset cycle time of about
3 nsec is required for the computation module. 1In Figure 5.1, we
show the timing sequences for setting and resetting the module and
in Figure 3.2 , we show the states of the flip-flop and the coupler
switch during the set reset cycle. The state of the coupler switch
is represented by the refractive index n as controlled by the output

voltage of the flip flop Q. We note that it is not necessary to
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provide a complete time period for the resetting of the coupler switch.
As illustrated in Figure 5.2, if the next state is also 'l', the
refractive inad:x of rie coupler material will be driven up again and

if the next state is '0', the flip flop output voltage Q will remain
at zero and there wouid be ample time for the refractive index to be
lowered before the light pulse is propagated through. The 100 psec
gap between cycles is to provide a margin of safety in case the
setting pulse of the next cycle occurs early and merges with the

tail end of the resetting pulse, producing an ambiguous switching

of the flip flop. This extra time period can be eliminated in the

eventual development and refinement of the hardwares.

To compare these requirements with demonstrated hardware
performances, we listed in Tables 5.1, 5.2, 5.3, and 5.4, the
performance levels of some hardwares including light source,
detectors and modulators that are possible candidates for the
implementation of an optical numerical computer. And in Table 5.5,
we listed the performances of the preferred hardwares for our design
concept together with the performance requirements. We find the
requirements and the performances of state of art hardwares are
quite compatible. The major exceptions are the physical size and

the optical loss through an optical switch. .

The larger than desired physical size has 3 adverse effects.
First, the propagation time of the light pulse through a module
would be longer. Secondly, the optical loss through scattering
and absorption is proportional to the length of the waveguide. A
longer device would result in more optical power loss. Thirdly, a
large device is simply undesirable if not unacceptable for many

applications such as airborne processors.
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Table 5.1 Performances of Bulk Modulators
Bi]ZSiO20 DKDP Liquid Thermo- Photo- Silver
Crystal plastic chromic Halide
Type of Photo Photo or | Photo Photo or | Photo Photo
Address Electron Electron
Type of Pockels Pockels Hybrid Surface Absorption{ Absorption
Modulation |Effect Effect Field Deformation
Erase uv & uv & Electric | Heat IR N.A.
Mechanism |Electric |Electric | Field
Field Field
Cycle 5 msec 5 msec 40 msec 1 sec 1 sec N.A,
Time
Sensitivity|5 wi/em® |10 uj/em®| 5 uj/em® |10 wj/em® | 2 x 134 1 wj/em’
i uj/cm
E Storage Short Short Short Long Short Short
| Tim
Life Time |> 107 > 107 10 cycle| 10° cycle | 10° Cyele | N.A.
Cycle Cycle
Resolution |150-500 75 2/mm 50 2/mm 250 » 2000 | 2000 2000
. /mm 2 /mm
Contrast > 1000:1 {100:1 100:1 100:1 1000:1 1000:1
Ratio
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Table 5.2

Performances of Integrated Modulators

Directional
E.0. Modulators Coupler
(kDP, ADP, CdTe) (PbM0)4, Glass) (LiNb03)
Bandwidth (MHz) 2000 100 2000
Operation L.V. H.V. 50 20
Voltage (V) 300 3K
Power Dissipation 0.02 90 0.03
(mw/MHz)
Extinction 33 30 25
Ratio (dB)
Power Loss (-dB) -0.2 -0.4 Alt ag, Cobra

-0.05, -1.2
plus -0.5 dB/cm
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Table 5.3 Performances of Photodetectors

Pin APD

Peak Responsivity (A/W) 0.5 100
Sensitivity at 1 MHz -60 -80
{dBmW)

. . -13 -15
Noise Equlv?1§nt 1 x 10 1 x 10
Power (W/Hz!/
Rise Time (nsec) 1 0.2
Bandwidth (MHz) 1000 2000
Peak Response Si Ge Si Ge GalnAsP
Wavelength (nm) 870 1400 | 880 1500 1000-17000
Quantum Efficiency (%) 85 50 - 85% o
Gain 1 100
Bias Voltage (V) 50 300
Ave. Lifetime 106 10°
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Table 5.4 Performance of Light Sources
LED ILD
Output (mw) Large Small CW Pulse
7 2 20 1000
Insertion Loss -18 -9 -3
(-dB)
Modutation
Banawidth (MHZ) 50 250 1500 0.1
Optical 35 22 22
Bandwidth (nm)
Rise Time (nsec) 20 0.1 .05
Min. Drive 1 0.5 50
Current (ma)
Temperature Moderate High
Dependent
Ave. Lifetime 10 10°
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Table 5.5 Performances of Preferred Hardwares

Performance
Required for
‘ 300 MHz Through- Preferred Demonstrated
; put Rate : Hardwares Performance
" laser 500 psec (1LD) 1 nsec
Pulse Width Injection i
{ Laser Diode
Pulse Repetition ; 300 MHz | Injection | 300 MHz
Rate i i Laser Diode ; !
Detect Response t 200 psec (APD) ; 100 psec |
Time ! Avalanche | i
Photodiode ! |
Optical Switch 500 psec Directional 1 500 psec
Switching Time Waveguide
! Coupler i f
Energy Dissip. <10 uw/MHz Directional i 100 ww/MHz |
per Switch Waveguide ’
(Modulation Power) Coupier JA4 ‘
Optical Loss -0.1 dB/cm Out-Diffused ; 0.5>1 dB/cm |
in Waveguide ' LiNbO4 | f
Physical Size 0.5 mm x Directional | 3 mm x 20 um .
of Optical 20 um Waveguide '
Switch Coupler
Equivalent 50 psec Directional 290 psec .
Propagation Waveguide '
Time Through Coupler i
MOD 31 Module :
FLIP FLOP 500 psec Bipolar 500 psec
Switching Time

Other considerations: Average life time reliability component inte-
gration feasibility of mass production.




There are 2 basic causes of optical loss through an optical
switch. As mentioned above, optical power is lost as it propagates
through a waveguide, whether it is part of an optical switch or not.
However, the number of optical switches would ultimately dictate the
total length of waveguide in the computation module. Moreover,
switching in general is not complete. Additional power is lost
because not all the input light is switched to the desired channel.
The power loss caused by such incomplete switching is quite high
(-1.2 dB) for a simple coupler switch. The cross talk can be
substantially decreased with the use of the alternate AB or the
balanced bridge arrangements. However, the length of the device
with these arrangements is also increased. This would result in a
higher propagation loss that partially offsets the lower loss due
to incomplete switching. If we assume a propagation loss of -
-0.7 dB/cm through a waveguide, the simple coupler has a minimum
length of 3 mm and the total power loss would be (-1.,2 dB) +
(-0.3 x 0.7 dB) = -1.4 dB or 72% transmission. On the other hand,
the balanced bridge arrangement has an incomplete switching loss
of -0.04 dB and a minimum length of 9 mm. The total power loss
though a switch would be (-0.04) + (-0.9 x 0.7 dB) = -0.67 dB or

. 86% transmission.

The pulse ILD can produce very narrow light pulses (< 100 psec)
but the pulse repetition rate (< 100 KHz) is too low. The alternative
is to pulse-modulate a cw ILD. Modulation frequency up to 1.5 GHz
has been demonstrated for cw ILD. A chain of pulses can therefore be
produced at 300 Hz with a pulse width of about 1 nsec, although it
would be quite marginal for an optical computer system operating at

300 MHz clock rate.
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Let us examine a more specific example, for an optical computer with
15 bits accuracy, moduli 2, 3, 5, 7, 11 and 13 can be used. Since 13
is the largest modulus, its implementation would determine the perfor-
mance of the computer. Assuming that a sum of products operation is
performed with the pipelined arrangements shown in Figure4,19, the
light pulses have to propagate through a maximum of two computation
modules each cycle. With either device, the light pulses passes
through a maximum of mi-l optical switches and thus for modulus 13,
the total would be 24 switches. If the simple couplers are used in
the implementation, the transmission through each coupler switch is
y 72% and the minimum waveguide length is 3 mm. Propagating through
24 coupler switches, the total transmission would be 1% and the

propagation delay would be 240 psec. If 1 mw of laser power is

injected at the input, the optical output power would be 1 uw, well
within the detectable level of an avalanche photodiode. The cycle
time is equal to the set-reset time of a computation module plus ]
the total propagation delay. Thus, the minimum cycle time for the
computer would be 3.24 nsec, corresponding to a throughput rate of

300 MHz. 1If the optimized modules implemented with the minimum

number of optical switches are used, the number of optical switches
the light pulses have to be propagated through would be decreased to
log213 = 4. The propagation delay is then reduced to 80 psec and

a throughput rate up to 325 MHz would be possible.

5.3 COMPARATIVE ANALYSIS FOR SPECIAL PURPOSE ELECTRONICS AND OPTICAL
NUMERICAL COMPUTERS
In a general purpose computer, it usually takes 4 cycles to 1
complete an operation. To perform x + y for example, the instruction

is first fetched from the instruction memory and the operation code

is decoded. Next, the operand is readout from the data memory and

entered into the arithmetic unit together with the operand from the
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input data register. In the last cycle, the arithmetic operation is
performed and the result is put into the accumulator. Thus about 3/4
of time was spent in the noncomputation part of the operation. One
approach to increase the throughput rate is to pipeline the process
as illustrated in Figure 5,4. Such pipelining can only be fully
utilized under two conditions. There must be separate memories for
the instruction and coefficient data such that both can be fetched
simultaneously. Secondly, there must be no logic decision (branch
instruction) in the program. It is especially true if the branching
is conditional, that is, the next instruction cannot begin until a
decision is made on whether branching is to occur or not. Such a
computer system would have less flexibility in programming but it

is still very much programmable. The next step would be to eliminate
the instruction fetch and operation code decode functions entirely.
This can be done only if there is a fixed and limited set of
instructions that have to be performed. What we now have is a

class of highly specialized computers, capable of performing a

very limited set of operations at high speed. These would include
such systems as the FFT processors and various signal processing
systems, In a way, they are very similar to their analog counter-
parts, performing only specific functions (e.g., low pass filtering).
Flexibility has been sacrificed to gain speed. The speed can be .
further increased, at the expense of system complexity and cost,

by using parallel structures. Hardwares are duplicated such that

computations can be performed simultaneously in parallel instead

of sequentially. The amount of parallelism (and therefore duplication)

is determined by the throughput rate requirement. To have more

parallism than necessary would be an inefficient use of hardware,

For most signal processing applications, the central operation

that is performed repeatedly is
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Some important examples are correlation detection, FIR filtering and
various transform operations such as DFT and Hadamard transform. To
compare the performance of the two types of computer, it would there-

fore be realistic and instructive to use

N

Z 3, () x, (%)

i=1

as the computation goal.

To obtain a quantitative comparison, let us assume that N = 16

and determine the throughput rate for

16

£(t) -Z a.(t) x,(t)
1 1

i=1

using the electronic and opwical computers. For valid comparisom, the
electronic computer would be of a highly specialized type, capable
only of performing a fixed set of computation and with a fully parallel

architecture.

In Figure 5.5, the structure of the electronic computer is
illustrated. It features parallel multipliers and data memories. The
summations are performed with an adder tree. The operations are fully
pipelined to obtain a % throughput rate where T is the time required to
perform the most time consuming instruction in the pipelined chain.

The access time of the fastést ROM in the market is about 20 mnsec, an
8 x 8-bit multiplication would require about 60 nsec and an 8 + 8-bit
addition takes about 10 nsec. The throughput rate is therefore

determined by the multiplication time. The initial delay in obtaining
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the first output would be 6 x 60 = 360 nsec and the throughput rate

would be-*-l——— = 16.7 MHz.
60 nsec

The system speed can be further increased if we assume the
following: 1) the coefficients a, are fixed over the duration of the
computation. This would be true for correlation and filtering operationms;
2) the dynamic range M is sufficiently small that with a fixed set of
ass the total number of possible results can be stored in N ROM memories
as multiplication tables. Each of these ROM would have a capacity of
M words. The multiplication operation is then performed through table
look-up instead of using multipliers. The structure of such a system
is illustrated in Figure 5.6 . The most time-consuming instruction is
now the table look-up. Since the access time of a ROM is 20 nsec, the
pipelined throughput rate would be 50 MHz and the initial delay is

about 100 nsec.

The system we described above is highly specialized and it has
very limited flexibility. However, it is optimum in terms of system
speed. Any further improvement in speed will have to come through

the use of faster hardwares.

To compare the performances with optical numerical computers,
let us first examine the arrangement without pipelining as shown in

Figure 4.17. For N = 16, the throughput rate would be

1
3 + 17(.12) nsec

= 198 MHz

with an initial delay of 5 nsec. If the optimized computation

modules are used, the throughput rate would chen be

1

T 170,00 msec ~ 272 MHz

and the initial delay would be 3.68 nsec. We can see that the optical
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residue computer enjoy a speed advantage both in terms of throughput
rate and initial delay. The throughput rate can be further improved
with the use of pipelining as shown in Figure 4.19. The throughput

rate would be increased to

1
3 4+ 2(.12) nsec

= 308 MHz

with a 3.24 nsec initial delay using the basic multiplier and adders,

and a throughput rate of

1

3 F 2(. 04 nsec - 22° MHz

with 3.08 nsec initial delay using the optimized versions.

We must be careful in interpreting any comparative studies between
optical and electronic computers. The above discussion is valid only
for the electronic hardwares chosen for comparison. Electronic
computers can be constructed to produce much higher throughput rate
using such new technologies as GaAs transfer electron devices. The
use of these devices however, entails the use of much more complex
systems. To compare optical and electronic system, we have to

compare the respective curves of throughput rates as a function of

complexities25 as illustrated in Figure 5.7 . The integrated optics

technology is too new to generate a reliable curve for the optical
computer. However, it is likely that within a certain range, the
optical computer can provide a higher throughput rate than its
electronic counterpart for an equivelant level system complexity.
We may also add that the system performance level estimated for the
optical computer is valid only with the assumptions given for the
hardware performances. The switching speeds of the flip-flop and
optical switches are likely to improve with further development.

The system throughput rate would also be improved accordingly.
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Beyond all the numbers, a point can be made that the optical
residue computer is conceptually much simpler and in certain aspects
it is fundamentally more efficient. A case in point is the multi-
plication by a number in storage. It eliminates the access time
delay entirely and reduce the multiplication time by allowing the
multiplication operation to be performed without carries and partial

sums.

5.4 POSSIBLE SYSTEM APPLICATIONS FOR OPTICAL RESIDUE COMPUTER

The most attractive feature of the optical residue computer is
obviously the high throughput rate and the relatively low level of
complexity. Any practical application of the optical system should
fully utilize its speed and parallel processing capability. Similar
to its electronic counterparts, the applications would be of a
specialized type. For example, the optical computer could be used

as the front end processor for a radar system as shown in Figure 5.8.

The function of the optical computer would be data reduction,
performing such operations as FFT, filtering and correlation
detection. The output data is decoded and entered into the central
processing unit (CPU) where the data from various radars are
correlated. The CPU would make the decisions and issue commands.
Few or no decisions would be made by the optical computer and the
program instructions and algorithms are fixed., However, the
coefficients in the algorithm can be altered at any time by the !
CPU, changing for example, the filter functioms. :

Such as application would fit very well with the capabilities

and limitations of the optical residue computer. It has the

following features:

RRaT————
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1

(2)

3)

(%)

(5)

Program instructions are unchanged - the bulk of the computer

time is often spent on addressing and decoding instructioms.

To eliminate these time delays, the program instructions
must be fixed and limited.

No branching instruction required in program - it is
especially true if the branching is conditional. This
condition 1is necessary in order to fully pipeline the

optical computer,

Constant and unidirectional data flow - these are also
requirements for efficient pipelining of the system for

real time processing.

Computation algorithm suitable for parallel computation
structure -~ one reason for the high computation speed
of the optical residue computer is its parallel structure.
Large number of operations are performed simultaneously.
When using such a computer, the algorithm must be written
in such a way that the parallism is taken full advantage
of.

No general division required - this requirement is
unique to computers using the residue number system.

Fortunately, many important computation algorithms can be

written without any division operation.




6
DEVELOPMENTAL NEEDS

6.1 INTRODUCTION

In this section, we shall examine the development and advances
in hardware technologies that are required before a numerical optical
processor can become a practical reality. Some of these constitute
only general improvements in the performance levels of present
technology while others may require the development of better
materials and fabrication techniques. However, none of these demand

any scientific breakthrough.

While significant advances have been achieved in the last few
years, the advances in integrated optics would have been even greater
if there were better focus on the potential application of the
integrated optics devices. This lack of clear direction for
research has caused some companies and individual researchers to
become hesitant in committing themselves in the field. The optical
numerical computer may well be the needed impetus for the development
of integrated optics, providing the research community with a viable

application and specific area of research.

6.2 DEVELOPMENTAL NEEDS FOR IMPLEMENTATION OF MAPPING CONCEPT

In Section 4, we have presented a design for an optical processor
based on the mapping concept. In the following we shall examine the
immediate developmental needs to make the construction of such a
processor practical, and the long term developmental needs to

further improve the capabilities of the system.

6.2.1 IMMEDIATE DEVELOPMENTAL NEEDS

Most of the needed improvements are related to the phvsical

size of the optical devices. Integrated optics today is at a

comparable stage as the early transister in the field of electromics.




While the integrated optics devices are substantially smaller than

their bulk counterparts, they have a long way to go before true

miniaturizing and integration are achieved. {

There are several advances in fabrication technology that must take

place before the optical numerical computer concept can be realized:

(1) Integration of all necessary devices on the same chip.
These would include laser diodes, optical switches,
amplifiers, flip flops, and optical detectors. Such a
development is quite feasible since all the devices can
be constructed from the same basic substrate material,

namely, GaAS.

e

(2) Development of fabrication technology to allow bending,

overlapping, splitting and combining of waveguides with

low optical loss and cross talk, This may require the
development of new concepts, such as the etching of
holographic gratings into corners of bent waveguide to

allow abrupt deflection of guided light wave.

(3) The construction of identical optical switches, Since
several devices have to be turned on by the same signal
voltage, it would be necessary that the optical switches
constructed be identical in their characteristics,

especially the voltage required for complete switching.

With these developments in fabrication technology, an optical

residue computer can be constructed. The first generation would
likely have a throughput rate of about 100 MHz with a l5-bit accuracy
(using for example moduli 2, 3, 5, 7, 11, 13). For a 100 MHz rate,
the hardware performance requirements can be satisfied with a

500 psec detection time, a 3 nsec switching times for flip flops

and coupler switches, and a 1 nsec laser pulse width. They are

well within the demonstrated performance levels. .To improve the ;

throughput rate to 300 MHz for the second gemeration of ¢ptical




computer with 32 bit accuracy (using for example, moduli 2, 3, 5,
7, 11, 13, 17, 19, 23, and 29), the following improvements would

be necessary:

(1) Reduction of optical loss through a waveguide switch to
-0.5 dB/switch by decreasing the propagation loss in the .
waveguide and achieving more complete switching. For

example, with a modulo 29 adder implemented without switch
reduction, the light pulse has to propagate through a max-

imum of 28 switches per module. Thus, the transmission of |
optical power through each module would be about 4%, Using I3
the pipeline concept, the light pulse has to propagate through
only 2 modules before its detected. If for example, 0.1l mw
of the optical power is coupled into the waveguide of the first :}
module, the light pulses detected at the output of the sec- *
ond module would have an optical power of 158 nw, well above
the detectable level of an avalanche photodiode.

(2) Reduction of laser pulse width. To maintain a 300 MHz
throughput rate, a pulse width under 0.5 nsec for the
laser pulse would be desirable. This would require
improvements for both the laser diode and the electronic

driving circuits.

6.2.2 LONG TERM DEVELOPMENT NEEDS

The first and second generation computers can be built upon the
concept we presented in this report. For the third generation computer,
more radical technology development might be needed. We list in the
following, some of the possible developments that could substantially

improve the performance level of the optical numerical computer:
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1)

(2)

(3

Reduction of the physical size and optical loss of optical
switches with the development of new electro-optical
materials. The coupling length of a coupler switch and

the amount of cross talk are ultimately determined by the
electro-optical material. To further decrease the physical
size, cross talk and propagation delay, new electro-

optical materials must be developed.

The production of mode-locked laser diodes for the generation
of very narrow pulses (< 100 psec) at high repetition rate

( >1 GHz). Such a laser diode would make possible the
development of an optical computer with a throughput rate
over 1 GHz.

Reduction or elimination of electronic devices and optical-~
electronic interfaces with the use of fast optically
activated switches. Most of the fast optical switch existing
today are electrically activated. The use of photo detectors
for optical-electrical conversion and electronic devices such
as amplifiers and flip flops is therefore necessary for the :
control of the switches. Such hybrid approach is not the most i
efficient in terms of speed. However, it is and likelf to

be for some time, the most practical and realizable approach.
One reason is the difficulty in producing a fast optically
activated device, First of all, the switching speed is
related to the optical power activating the material and

the amount of light power, especially in integrated optics,
is very limited. Secondly, optical intensity cannot be
amplified as easily as electrical voltage. A scheme utili-
zing stimulated emission may be necessary to provide

amplification and high speed switching capability.
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(4) Wavelength multiplexing - this would allow two or more
computations to be carried out simultaneously with the same
hardwares. Alternatively, the same computation but for
different moduli (e.g., modulus 13 and modulus 1l1) can be
performed together in the same computation module. This
would further increase the packing density of the optical

computing system.

6.3 DEVELOPMENTAL NEEDS FOR IMPLEMENTATION OF CYCLIC CONCEPT

Most cyclic devices such as phase shifter, modulators are analog
devices. To utilize them for numerical operations would require the
quantization of the control signals. However, quantization always
involves certain probability error. In sequential operations,
incremental errors will accumulate and the probability of error can
gasily be built up to an unacceptable level. To avoid such accumulation
of errors, a device that would aytomatically adjust itself to the
desired quantized state would be necessary. One approach is to
develop a cyclic device that exhibits multistable state behavior.
Several electro-optics devices have been proposed using feedback
arrangements that would produce multistable states behavior. However,
with the use of feedback the inherent cyclic characteristic is
generally lost. The ideal characteristic of a cyclic device for
residue arithmetic is illustrated in Figure 6.1. A device with such

a characteristic still awaits development.

Even with an ideal cyclic device, the only operation that can be
performed directly would be addition and subtraction. Multiplication
can be performed by successive addition but such an approach is not
efficient or practical if the modulus is large. It is also difficult
to perform transformations and other common functions such as xn, %,
and -x which can be implemented easily by the mapping approach using
fixed maps. One solution is to combine the cyclic and mapping concepts.
utilizing mapping devices in performing transformations and specifi-

cations and the cyclic devices for the addition and subtraction operatioms.
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7
DEVELOPMENTAL PLAN

7.1 INTRODUCTION

The results of our study indicate that the concept of a numerical
optical processor can be a viable alternative to conventional electronic
approaches in improving the computation speed and possibly packing
density and power consumption without a substantial increase in system
complexity. Although the optimum implementation approach for a numeri-
cal optical processor cannot be defined concisely at this time due to
the early stage of our investigation, it is clear that the mapping
{(or table look up) and cyclic approaches are the two most promising
directions available. The eventual best approach will be influenced
strongly by the development of key components directed to the numeri-
cal optical processor. From these points of view, we suggest as a
first phase of development program three tasks. These tasks deal
with the refinement of the system design concept, key components
development and the fabrication of a basic functional computing unit
which would serve as the foundation of the total system development

in the second phase.

7.2 SYSTEM DESIGN CONCEPT

The objective of this task is to refine the present optical
numerical processor design and to produce a system design for a
specific application. This would include the design development
of input output interfaces, data buses, programming controls and
data storages. This effort would be directed to both the mapping
and cyclic implementation approaches. In addition, new design
approaches will also be explored, including system that are not
based on the residue number system, One specific approach that
may be looked into is the use of electro optical devices to
implement large array of binary logic gates, particularly NOR

gates.
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For the mapping implementation of a residue based optical processor,

the development efforts would include the following:

1)

2)

3)

4)

Establishment of the optimum mapping structure and the
definition of a systematic design method for the computa-
tion modules. The design will be optimized for speed and
physical size.

Streamlining of processor architecture for maximum

throughput rate.

Updating the selection of hardware components and the
initiation of contacts and consultations with leading

researchers and manufacturers.

Selection of a specific processor application and the
production of a comprehensive system design. System
performances will be evaluated through computer simula-

tion.

For the cyclic approach, efforts under this task would include
the following:

1

2)

3

4)

Establishment of a choice of materials and feedback
techniques for the generation of multistable states

behavior for quantized operations.

Development of efficient methods for performing multi-

plication, division and table look up with cyclic devices.

Development of design concepts for the efficient and

high speed coupling between cyclic and mapping devices.

Selection of a specific application and system design
based on the cyclic approach. A combination of cyelic

and mapping devices may also be used.

For the non residue approaches, the possibility of implementing

a large array of binary logic gates with electro optic devices will
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be investigated. This is motivated by the potential of high packing
density and system throughput with its two-dimensional parallel
| processing capability, This work will include the following:

i) Reviewing current electronic digital techniques for

parallel processing,

2) Reviewing proposed optical techniques for logic gates
implementation.
3 Establishment of the most suitable architecture for

optical implementatiom.

4) Development of a design for large optical logic arrays

and estimates of performance characteristics.

5) Selection of a specific processor application and
establishing a system design configuration using

optical logic devices.

7.3 COMPONENT DEVELOPMENT

Concurrent with the development of the system concept, an
intensive developmental program for key components will be carried
out., Most of these components have been demonstrated and required
only further refinement to improve the performance levels. Others
may require the development of new materials, fabrication techni-

ques and engineering approaches.

For the mapping implementation, the following development

program will be performed:

1) Refinement of existing electro optic switches. The
goal is to decrease optical loss, cross talk, physical

size and operating voltage.

2) Development of fabrication technology to allow over-
lapping, splitting, splicing and bending of waveguides

with low loss.
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3)

4)

3
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)

2)

3)

For the cyclic implementation, the following developmental

program will be undertaken:

Development of integrated mode-locked laser

diode.

Refinement of avalanche photodiode including the improve-
ment of sensitivity, signal to noise ratio, gain, response

time and the lowering of bias voltage.

Development of high density optical ROM for fixed map
transformation and storage of reference coefficients.
This may include the use of holographic optical

memories.

Development of new electro optic material to decrease
the physical size and improve the switching performance

of optical switches.

Integration of all key components using GaAs as the

basic substrate material.

Refinement of existing feedback technique to produce multi-
stable states behavior, The efforts will be geared towards
the increase in the number of stable states and the reduction

of hysteresis effect.

Development of a cyclic device with multistable states
behavior. This may be achieved with the use of electronic
comparator and triggering circuits together with the feed

back techniques above. ]

Development of new electro optic material to improve the

switching speed and dynamic range.
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Beside the refinement of components for the arithmetic computa-
tion units, key components for other functional units will also be
developed. This will include the input interfaces, storage devices,

timing and programming controls.

7.4 DEMONSTRATION UNIT DEVELOPMENT

According to the results of the component development task,

the system and component designs will be finalized. The designs
will be based on available hardwares and fabrication technologies. !
A small demonstration unit will then be constructed with the aid

of subcontractors. The word length will be limited to 8 bits and

the computation will be of a fixed and nonrecursive type. The

S

unit is not intended to be used in an actual operating system but 1
as a demonstration unit for the evaluation of the designs and ]

hardware implementations of the computing units, interfaces and

controls. From the results of these evaluations, the system and
component designs will be modified and improved. A plan for the

construction of a prototype numerical optical computing system

will then be produced for a specific BMD application.
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