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Abstract

The problem of estimating the trajectory of a maneuvering target

using passive sonar measurements obtained from an array of stationary

sensors is investigated. The formulation is considered in a two-

dimensional rectangular coordinate system. The unknown acceleration

components are modelled as Brownian motion processes and consequently

the dynamic model is linear. The types of measurements used in the

estimation process are the frequency and the bearing angle of some

sound signal emanating from the target. These measurements are nonlinear

functions of the state vector which consists of a reference frequency

and the components of position, velocity and acceleration. Computation

algorithms for Extended Kalman Filter and "batch-sequential" filter

are presented. Equations for including the effects of process noise

on the batch solution are derived and the computation algorithm is

also given. The performance of these filters is compared using noisy

measurements simulated for two different scenarios with typical target

maneuvers and sensor locations. Extended Kalman Filter is found to

be the best in terms of computation time and accuracy of the estimated

trajectory. Sensors located as far apart as feasible yield better

results than those which are closer to each other.

vii



1. Introduction

The problem of estimating the trajectory of a maneuvering target

is one of the more difficult of the current estimation problems. For

military applications the target may be an airborn venicle, a surface

ship or an underwater submarine. Though there are similarities in

the problem formulation and in the methods of solution for these

targets, the motion characteristics and the data required to track

the motion are distinctly different. The airborn targets are usually

fast moving and highly maneuverable, while the underwater targets

are slower moving and have limitations on their ability to execute

rapid maneuvers. The measurements made on the aircraft and missiles

are of high quality, usually characterized by a high data rate active

sensor signal, whereas those for underwater targets are obtained pri-

marily from passive signals badly corrupted by the environment in

which they travel. In this report, primary attention will be given

to the problem of estimating the trajectory of a single unknown un-

derwater target. As a consequence, attention is directed to the

question of modeling the motion of the maneuvering target and to the

questions of the structure of the estimation algorithm used to process

the measurements.

Statistical estimation techniques, set in the framework of modern

control theory, are applied to obtain a solution to this problem. With

all the versatility of linear filtering theory, there are several

unresolved aspects related to the tracking of maneuvering targets.

The Extended Kalman Filter (EKF) [i], which is a local optimal nonlin-

ear filter, represents the best contemporary approach. However this

method encounters difficulties due to filter divergence; an effect

1
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caused by modeling errors arising from incomplete a priori knowledge

of the nature of the target maneuvers. Depending on the coordinate

system, either the dynamics or the observation models or both will

be nonlinear. The optimal solution to nonlinear estimation problems

is extremely difficult to obtain. For example, finding the minimum

variance estimate involves the computation of the mean of the con-

ditional probability density function of the state for a given set of

observations, and this in turn will require, in a general nonlinear

problem, the solution of a partial differential equation which de-

scribes the evolution of the conditional probability density function

[2]. Even assuming that the noise in the measurement, the noise

influencing the system dynamics and the a priori state are all in-

dependent Gaussian random variables, the conditional probability

density function will evolve as a non-Gaussian process due to the

nonlinearities in the system model. Though some results are available

for particular approximations of a few nonlinear models, no satis-

factory theory has been developed for the general nonlinear problem.

The contemporary approach to Lhe solution to this class of problems is

to linearize the problem by referencing the motion to a known solu-

tion. This known solution is selected to be "close" to the actual

motion and the time-rate of change in the difference can be described

by a set of linear differential equations. The estimation algorithm

based on this approach is referred to as the Extended Kalman-Bucy

Filter (EKF) [2] [3]. The EKF has been adopted as the best choice

for solving the maneuvering target trajectory estimation problem in

the majority of the previous investigations and this algorithm will

be used as the basis for the investigations reported here. Having
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selected the EKF algorithm, the next step is to find ways of over-

coming the difficulties that may be encountered when the target ex-

ecutes a maneuver.

Several authors [4] have discussed the problem formulation for

a single observer tracking a maneuvering target. They have consid-

ered two dimensional motion in a rectangular coordinate system. The

acceleration is assumed to be zero and the state vector consists of

position and velocity components. In the single-observer tracking

problem using only bearing measurements, the observer must know his

own motion and must execute a maneuver within the time period of

the observation set if the target state to be observable. The

Extended Kalman Filter is used in these investigations with different

variations in the implementation. Alspach 151 discusses an approximate

nonlinear estimation approach based on an optimal Bayesian filter

implementation by the Gaussian sum approach. The results presented

demonstrate the difference between this method and the EKF approach.

Moose and McCabe [6] consider a two dimensional problem with passive

time delay measurement and Doppler frequency measurement. Their ap-

proach is to model the target dynamics by assuming a time-correlated,

randomly switching mean forcing function as a deterministic input

command, and the single observer is assumed to be moving with con-

stant velocity. The EKF is used to estimate the position and velocity

in a relative polar coordinate system referenced to the moving observ-

er.

The problem considered in this investigation is one of estimating

the trajectory of a target moving intwo dimensions, using measure-

ments obtained from an array of stationary or drifting sensors. The
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types of measurements are the 'Doppler frequency' of some sound signal

emanating from the target and the direction from which this sound

signal is coming. It should be noted that in an actual target motion

analysis application these measurements must be considered in three

dimensions due to the nature of signal propagation. Though the formu-

lation is no more complicated (except for the algebra) than the two

dimensional application, in order to demonstrate filtering approaches,

we have used the two dimensional model.

Coordinate System

There are several choices for the coordinate systems used in the

mathematical formulation of the maneuvering target problem, and a

'natural' coordinate system would be the polar coordinates from each

sensor with each sensor in turn related to a common reference frame.

Another convenient choice is a single polar coordinate system to

which measurements from all the sensors are referred. However, sel-

ection of either of these co-ordinate systems will lead to a com-

plicated nonlinear model for representing the dynamical motion. Hence

a fixed rectangular coordinate system is chosen for the formulation.

In this reference frame, the dynamics are linear (except for some

advanced models), but the observation-state relation is nonlinear.

To illustrate the effect of the co-ordinate system selection,

let the simplest estimation state vector for the polar coordinate sys-

tem shown in Figure 1, be taken as,

T
x [f 0 P 0] = [x x 2 x 3 X 4 x5 ] (5.1)
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so that

x = f(x,t) + w (1.2)

where

fl(xt) = 0

x2 = f2 (xt) = x4

= f3 (x,t) = x5  (1.3)

= f4 (xt) = u + x x

5 = f5 (x,t) = (u0 - 2x 4 x5 )/x 2

and

T
w = [wf 0 0 0 0] (1.4)

In the above, f is the reference frequency for Doppler frequency

measurement, 0 is the range, 0 is the bearing angle, wf is a

zero-mean Gaussian white noise, and u and u0  are the input accel-

eration components in the radial and transverse directions respective-

ly. The () indicates differentiation with respect to time. For the

case with polar coordinates referenced to a single sensor, the compon-

ents of x refer to the relative motion of the target with respect

to that sensor. As shown in Fig. 1.1, the observation-state relation

for the bearing angle measurement is given by

( = O(x) + E0 = x3 + t0 (1.5)

For the formulation in a polar coordinate system common to all the

sensors, the dynamics refers to the position and velocity of the tar-

get with respect to the origin of the coordinate system. To simplify

the algebra, consider one of the sensors, located as shown in Fig. 1.2.

..........................& ..
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Fig. 1.1 Relative Polar Coordinate Geometry for a Single Observer
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Fig. 1.2 Geometry for the Multi-Observer, Common Polar Coordinate System
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Then the observation-state relation for the bearing angle measurement

is obtained from the relation,

u 1 = 0 + ki (1.6)

To compute CXi note that

P1 cos (I + L1 cos 0' = p (1.7)

with

= 2 + L 2p L1 cos 0' and 0' - 0 - L (1.8)

It then follows that

GC = ( l + r

-i x2 - L1 cos x

= + C - 2 1 + (1.9)

33

and 3 x 3 -2 1

Thus, even if the bearing angle measurement is the only measurement

type, in the latter system it is nonlinear. Furthermore, the second

type of measurement to be considered, namely, the Doppler frequency

has nonlinear forms, in both of the above two polar coordinates. In

the former system, along with Equation 1.5, the Doppl:r measurement is

given by

f x1Gf =+ E"f x + f (1.10)

( + (1+-)
c C
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In the latter system to obtain the relation between the state and

frequency measurement, note that

2 2 02

P = LI + P - 2LIP cos 0'

1 Pi LIP cos e' + LI06 sin 0')

Then

f
Gf f + Ef + f

(+1
c

or

Gf + Ef (1.12)
(1 + 1)

C

where
x2x4 - L x4 cos x' + L x x sin x
2 3 12(1 2 5

/L2 + x2 - 2LlX cos x
1 2 1 2 3

Hence in both the coordinate systems at least one type of measurement

is nonlinear and the dynamics are always nonlinear. In a rectangular

coordinate system, as will be shown in Chapter 3, the dynamic model

is linear and although both the measurement types are nonlinear, the

algebraic expressions are not as complicated as those given in Eqs.

(1.9) through (1.13). Consequently, in the investigation described

in the following chapters, the rectangular coordinate system is

chosen to exploit the linearity in the dynamic model.

For this investigation, the estimation state vector will consist

of the components of position, velocity and acceleration and also the

reference frequency for the received signal. The reason for estimating
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the acceleration components is as follows. The acceleration of the

target cannot be known for the entire period of interest. While the

target acceleration is zero for some periods of time, there will be

other periods during target maneuvers when it will have a significant

acceleration. Consequently, it is important to model the acceleration

in such a way that the filter can detect any maneuver that the target

might execute and track it as accurately as possible. One approach to

satisfying this requirement is to model the acceleration components

as Brownian motion processes. This model has been used to estimate

the accelerations due to unmodeled forces in a number of previous in-

vestigations. See for example, References [71, [81 and [9]. By

using this approach the time rate of change of the acceleration com-

ponents can be included in the dynamic model as white noise. This

representation is adopted for the model described in the following

chapter.

An important requirement for the success of the Extended Kalman

Filter throughout the estimation time period is that an acceptable

initial estimate for the trajectory be available to satisfy the as-

sumptions involved in linearizing the original nonlinear problem.

One way of achieving this estimate is to process a limited set of

measurements with a batch estimation algorithm to obtain a solution

for the initial state and the error covariance matrix. This infor-

mation can be used as the a priori state and the a priori covariance

matrix to start the EKF. When the state error covariance and con-

sequently the gain decays to some steady state values (small), at

a later state, the filter may saturate and may not be able to detect

a possible maneuver of the target and consequently may diverge. One
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approach to avoid this situation would be to divide the period of

interest into a number of smaller arcs and find the iterated least-

square solutioq for each arc by propagating one arc solution (esti-

mate and covariavce) to the next. This method obviously will be time

consuming and does not provide a real-time solution, although it does

provide an on-line solution with some lag. The primary purpose of

such an approach is to avoid the divergence associated with the Kalman

(or sequential) filter. An alternate procedure for using the batch

estimation algorithm is as a initializer for the EKF or sequential

processing algorithm. Both approaches are considered in the subse-

quent investigation.

Finally, during this investigation, a sequential batch algorithm

is developed by including the effects of process noise in the a priori

batch estimation algorithm [3]. The development of this algorithm

is described and in the numerical studies it is compared with the

EKF algorithm to determine the relative accuracy of the methods in

estimating the motion of a maneuvering target.



2. Theoretical Background

The linear state estimation problem is concerned with finding

the best estimate of the state, x E Rn, of a linear dynamical sys-

tem whose time-evolution is characterized by the set of differential

equations,

x(t) = A(t)x(t) + B(t)w(t) (2.1)

mfrom a set of observations Y c R , made on the system output x,

where the linearized observations, y c Rm , are related to the state

at discrete epochs, tl, t2, ..., t., through the following linear re-

lation,

= Hi xi + E1, i = 1, 2, ... , Z (2.2)

The subscript, i, represents the discrete observation epochs. In

the above equations, A(t) and B(t) are called the system matrices,

w(t) C Rq  is a zero mean Gaussian random disturbance vector and C.

iiis te nisein he th
is henoseinth i observation. Note that each yi could be

a vector, say, y C Rp , in which case m = x × p. For the general

non linear estimation problem, one would have a dynamical system rep-

resented by

X(t) = F(X(t),w(t),t) (2.3)

and measurements given by

Y, = G(X(ti ), t i) + igi i = 1, 2, ... , k (2.4)

where F(') and G(.) are nonlinear functions of the state X(t).

12
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Then Eqs. (2.1) and (2.2) would correspond to a linearized system

obtained by expanding Eqs. (2.3) and (2.4) about some reference solu-

tion, X (t). The matrices A(t) and H. would be obtained from
,

F() and G() by the following definitions:

A(t) = X = X (t) H - Xi  X (ti)

Accordingly, x(t) in Eq. (2.1) represents the deviation from a

reference trajectory X (t) satisfying Eq. (2.3), where w(t) = 0

and X(t ) = X , a known vector, and yi in Eq. (2.2) is the lin-o o 1

earized observation deviation from the reference value G(X (ti), ti).

The term B(t)w(t) in Eq. (2.1) is the process noise term added to

compensate for the incomplete modeling.

Given the observation set Y = {Y1 9 Y2 9 ..., Y} , the estimate

of the state may be desired either at some particular epoch, say to,

which we will call the batch solution k = (t /t) or estimates

of the state may be desired at each time point ti , (t1 < ti < t R

based on all the observations up to that time, Y = {Y1 9 .'' Yi

This latter solution is referred to as the filtered solution

i = (ti/t i). To compute the batch estimate, Eqs. (2.2) are ex-

pressed in terms of the state at the epoch to, as

Yi H.i x + i ' i i, ... , 2 (2.5)

where

Hi = H i (ti'to)

t i
r)i = il f (tiT)B(T)w(T)dT + E (2.6)t

J0
tO+ (26

.... ..... -ll " III - I . ...... . ... ....... ... ... .... ...
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The nx n matrix i(ti,t.) is referred to as the state transition

matrix for the matrix A(t) [21 [3]. The batch solution for a linear

dynamical system with the process noise w(t), has exactly the same

structure as the solution to the system with w(t) = 0 (see Appendix

A). Hence, for the purpose of reviewing the theory, we consider

only the homogeneous part of Eq. (2.1), namely the system:

x(t) = A(t) x(t) . (2.7)

Then, ri = in Eq. (2.6) and Eq. (2.5) becomes

Y Hi X + ti, i = i .... (2.8)

This sequence of observations can be collected into a single matrix

as follows:

y = H x + 6 (2.9)0

where

'1 H11

y Lj H=jj and c

Now the problem reduces to solving the linear system in Eq. (2.9)

for x •
0

Because of the noise present in the observations, it is not

possible to compute x from y deterministicallly and some criter-0

ion must be used to obtain a solution. Using the principle of least

squares, [2] [31 the optimal estimate of x is selected to minimize

L.o
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the sum of the squares of the observation residuals, calculated from

an assigned value of x . In this approach, the quantity c. is

interpreted not as a random noise but as an error arising from lin-

earization mismodeling and/or the specification of an incorrect value

for x . The solution is obtained by solving a deterministic opti-

mization problem for which the performance index is some function of

the errors C.. The commonly defined performance index is the weighted

sum of the errors Ei, expressed as

J = cTR-I (2.10)

where R is the inverse of the weights assigned to the observation.

For the minimum variance or maximum likelihood estimates, R is the

covariance matrix associated with the set of observation errors, C.

The result of minimizing J, as defined in Eq. (2.10), leads to the

following estimate [31,

= (HTR H) (HTR y) (2.11)

In order to avoid possible numerical difficulties and to make use

of previous knowledge, a priori information can be included in the

solution. This is equivalent to considering a performance index

= TR- + (X)T - (xoo) (2.12)
F_ ( 0 0 0 (xO0 0

where x and P are the a priori state and the state error covar-

iance respectively. These statistics represent all information on

the estimate of the state prior to obtaining the observation set, y.

The solution obtained by using the a priori information is given by

Ibm--b
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0= (HT R H + P 0- 1(HT R-y + P -1x ) (2.13)

This estimate of the state deviation, x , is added to the a priori
0

state X , to obtain the least squares batch estimate for the initial

state of the rnnlinear system at epoch to9 i.e.,

X* (2.14)

0 0 0

Eq. (2.13) could be the solution to a parameter estimation prob-

lem, or to the problem of state estimation of a linear dynamical sys-

tem at some spEcified time epoch. More often the best estimate of

the state of a dynamical system may be desired at different time

points rather than at a single epoch. Though this could be obtained

with Eq. (2.13) at desired time points, a powerful recursive algor-

ithm designed by Kalman [1], is the most widely used technique due to

its efficiency in processing the measurements sequentially. This

algorithm can te derived in several different ways based on different

principles. In the most direct approach, it can be derived from

Eq. (2.13) using an identity in matrix algebra known as the Schurr

identity, [10] which can be stated as follows:

(BA-1BT + C-1) - 1 = C - CB(BTCB + A)- BTC (2.15)

Suppose that the estimate (k/k) of the state at a time

k
tk,(tl < tk < tz) based on observations up to tk, y , is to be com-

puted recursively from the estimate j(k-I/k-l) and its covariance

P(k-l/k-l) at time tkl . x(0/0) and P(0/0) are assumed to be

given. Then the estimate and covariance at tkl are propagated

according to Eq. (2.7) to obtain the a priori estimate R(k/k-l) and
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its covariance P(k/k-1) as

= (k/k-l) = D(k,k-l)£(k-l/k-l) (2.16)

Pk = P(k/k-1) = 4(k,k-l)P(k-l/k-l) T (k,k-l) (2.17)

Now, Eq. (2.15) can be applied to Eq. (2.13) if the matrices H, R,

Po y and x are replaced by the appropriate quantities; in other

words, Eq. (2.13) is rewritten as

T-- - i( r1 - i -1 -l1 (.1a

(k/k) = (HkTkRk-Ik + Pk-) Hk k Yk + (2.13a)

which implies that the new measurement yk with an error Ek whose

covariance is Rk, is combined with the a priori estimate, Xk, by

minimizing an appropriate performance index similar to the one de-

fined in Eq. (2.12). Application of Eq. (2.15) to (Eq. 2.13a) leads

after some algebraic manipulation, to the following expression. [3]

R(k/k) (2.18)

where

Kk = PkT(H kPkkT + Rk)-i (2.19)

The error covariance of this estimate is given by

P(k/k) = Pk - KkHkPk (2.20)

Equations (2.16) through (2.20) define the equations needed for the

recursive filtering algorithm derived by Kalman [1]. The estimate

X(k/k) of the state for the nonlinear system is computed by adding

the estimate of the deviation (k/k) from Eq. (2.18) to the
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nominal value X (k) obtained by integrating X in Eq. (2.3) from

tkl to tk with X (k-l). X (0) is assumed to be given.

The Extended Kalman Filter is the same as the above algorithm

except for the reference trajectory and Eq. (2.18). The reference

trajectory is updated, after processing each observation, with the

estimate of the deviation. In other words X in Eq. (2.3) is inte-

grated from tk_ to tk with X(k-l/k-l) instead of X (k-l),

to obtain X(k) which is updated by the estimate of the deviation

(k/k) = KkYk  (2.21)

and the estimate at tk, then is

X(k/k) = X(k) + i(k/k) (2.22)

It should be noted that the measurement partials Hk are to be eval-

uated using the state, X(k). Thus the EKF algorithm is given by

Eqs. (2.16), (2.17) and (2.19) through (2.22).

The least-squares solution given in Eq. (2.13) involves the in-

version of an n x n matrix, n being the dimension of the state

vector, (usually R is assumed to be a diagonal matrix and, hence,

involves only scalar inversion) and on many occasions due to the

ill-conditioned nature of the n x n matrix, (HT R H + P-1), its in-
0

version will result in an inaccurate solution. This numerical diffi-

culty can be circumvented if the least-squares problem is formulated

in a different way. The solution represented by Eq. (2.13) is based

on the 'normal equations' formed by minimizing the performance index

in Eq. (2.12). An alternate least-squares solution to the problem

can be obtained if one uses the 'data equations' involving the
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information matrix (H R H + P-). This solution, discussed in Ref.
0

[11] and [121 is based on the use of a sequence of orthogonal trans-

formation matrices to triangularize the information matrix. The

solution to the estimation problem is obtained by a sequence of back

substitutions. For the scenarios considered in this investigation,

we did not encounter any serious problem in matrix inversion, partly

due to the word length of the Cyber 170/750 computer used for the

study. Consequently, we do not present numerical results obtained

with this approach. However, in an actual target tracking applica-

tion where a computer with a smaller word length must be used, the

matrix triangularization approach can lead to a more accurate solu-

cion than the normal matrix approach. Hence, a brief account of the

approach is given in the following discussion and a useful computa-

tional algorithm is described in Chapter 5. The method could be ob-

tained by requiring that the performance index, J, be minimized, where

TJ = C E

Then if T is an m x m orthogonal matrix [11], it follows that

J = (y-Hx) TTTT (y-Hxo), T orthogonal,

= ITY-THxOIl
2

If furthermore, T is selected so that TH where, the nx n

matrix R, is upper triangular, it follows that

= ]I(1-Rxo )H 2 + 11^112 (2.23)
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J is minimum when Z - Rx = 0 and thus the solution is obtained0

from the relation.

RR = 2 (2.24)
0

The sum of the observation residuals is given by the remainder in

Eq. (2.23), i.e., J = Er 2 Since orthogonal matrix T is

chosen such that the matrix R is an nx n upper triangular matrix

Eq. (2.24) can be used to obtain R by back substitution. When0

there is a weighting matrix R- 1  in the performance index as in Eq.

(2.10), the observation vector y and the matrix H are normalized

by multiplying each by R-1/2 which amounts to scaling the H and

y matrices by the standard deviations of the observations. This

approach can be extended in a straight forward manner to include the

information contained in the a priori estimate and covariance matrix.

The a priori estimate x and P is converted into a data equation0 0

by writing P in terms of its square root matrix U, such that
0

= UUT . Using the Cholesky decomposition method [11], U can be
01

determined as an upper triangular matrix, and if R = U- , then

the data equation corresponding to the a priori information is

= x + (2.25)
0

where 0 = . This is combined with the observation Eq. (2.9),0

after normalization, as follows.

J= CTE + T

= (y - Hx )T (y - Hxo) + (a - i) T(a - Rix)
0 0 0 0

IY Hx Ol + Il1i2- l
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= IT - T . lXo) 1

e 0

= II2 - olI 2 + l[II2

which is again the same as Eq. (2.23) and, hence, the solution is still

of the form given in Eq. (2.24). There are two types of orthogonal

matrices which will produce the same result of matrix triangulariza-

tion, namely, Householder transformation [111 [121 and the Givens

rotation [11]. It is important to note that the above method of tri-

angularization by orthogonal matrices will hold, only if the informa-

tion array H and the observations y are normalized so that the

error c has zero mean and unit variance; however, the method can be

readily extended to the case where the observation covariance matrix

is not the identity matrix, I.

As is obvious, the solution by use of orthogonal transformation

matrices, has been described above for the least-square problem. The

method can be extended to the sequential estimation process also.

Besides numerical accuracy, another attractive aspect of the ortho-

gonal rotation method is that the orthogonal matrix T, required to

convert the m x n matrix H into the n x n upper triangular matrix,

R, does not have to be computed and stored explicitly. The trans-

formation is implicit and it is performed recursively on the columns

of the information array. For a detailed discussion of the numerical

characteristics of this method, one may refer to Lawson and Hansen

[11] and Bierman 12].



3. Dynamical Model for a Maneuvering Target

The best strategy for the solution of the problem of estimating

the trajectory of a moving target, using passive sonar frequency meas-

urements and bearing angle measurements obtained by a set of observers,

is discussed in this chapter. The target under consideration is as-

sumed to be a slow moving object incapable of making complicated

maneuvers within a short period of time. However, it can accelerate

(decelerate) and can execute certain patterns of maneuvers. The

maneuvers are of unknown magnitude and direction and occur at unknown

times. At a given instant, the target could be in any one of the fol-

lowing states - it could be at rest or it could be moving with constant

velocity or it could be executing a maneuver. Any proposed dynamic

model must be able to accomodate all the states of motion and the

state of rest. It is obviously impossible to assume an expression

for the acceleration which will describe all possible maneuvers. How-

ever, a mathematical model has to be assumed which is simple enough

to allow efficient computations and which can be used to estimate the

general characteristics of an accelerating target. A simple model

which satisfies these requirements is described below.

The problem of modeling unknown accelerations in a different

practical situation has been considered by Tapley and Ingram [7],

Tapley and Schutz [8] and Tapley and Hagar [9] among others. Since

a deterministic expression cannot be found for the unknown accelera-

tion, it is assumed to be a random process with known statistics. The

acceleration components in a rectangular coordinate system, for exam-

ple, can be modeled as (1) Brownian motion processes (zeroth order

22
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Gauss Markov processes) or as (2) first order adaptive Gauss Markov

processes driven by white noise or as (3) second order adaptive Gauss

Markov process driven by white noise. These models are of increasing

complexity in the order mentioned above. The first and second order

adaptive Gauss Markov process models are nonlinear dynamic models

whereas the Brownian motion model is a linear dynamic model. Further,

the dimension of the state vector and hence the computation time in-

creases with the order of the acceleration model. Large dimension of

the state vector could cause numerical difficulties in matrix inver-

sion. Based on these considerations we model the acceleration compo-

nents as Brownian motion.

The target motion is assumed to occur in two dimensions only and

the estimation state vector will contain the position, velocity and

acceleration components. Use of sensor frequency measurements in the

estimation process, involves assumption of a reference frequency fo"

Since the reference frequency may not be known exactly, it is necess-

ary to include f in the estimation state vector. Thus, for the
0

model considered in this investigation the state vector will have

seven components - two each for position, velocity and acceleration

of the target and one for the reference frequency. Under these

assumptions, the equations of motion and their solution are given in

the following.

The time rate of change of acceleration components are modeled

as zero mean Gaussian white noise, namely,

a wI  (3.1)
x

I ay= w2  (3.2)

y 2L
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where w i  N(O , i = 1, 2. That is, each acceleration component

is assumed to be a zero mean Gaussian process with variance, qi"

Then the solution (in the mean) to the equations of motion will be

given by [2]

x(t) = x(O) + v (O)t + a (O)t2
x 2 x

y(t) = y(O) + v (O)t + a (O)t

y 2 ay

v (t) = v (0) + a (O)t

X X x

(3.3)

v (t) = v (0) + a (O)t

a t) = a (0)
x x

a y(t) = ay (0)

The components of position, velocity and acceleration and the

reference frequency are arranged in the estimation state vector as

shown below:

x(1) fo

x(2) x

x(3) y

X : x(4) - v (3.4)

x(5) v
y

x(6) a

x(7) ay
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The reference frequency f is basically a constant value. Since0

the value is not known exactly, its time rate of change is also assumed

to be a white noise and is modeled as,

o = w with Wf N(0,qf) (3.5)
o f

Then the equations of motion of the target can be written as a set of

first-order differential equations

f =wf
0 f

S=v
x

y=v
y

v =a
x x

S=a
y y

a = w
x 1

y 2

which can be written in matrix form as

X AX + w (3.6)

where

00000000 "wf

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 (3.7)

A= 0 0 0 0 0 0 1 and w 0

0 0 0 0 0 0 0 w

0 0 0 0 0 0 0 w2
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Note that the first-order matrix differential equation of motion for

the target is linear and the state equation linearization associated

with many non-linear estimation applications is not necessary. In

particular, Eq. 3.6 does not have to be linearized to use the esti-

mation algorithms described in Ch. 2. In the present problem, as

modeled above, the nominal trajectory can be computed in a straight

forward manner using the state-transition matrix for the matrix A

given above, which is

1 0 0 0 0 0 0

0 1 0 (t-t ° ) 0 1 (t-to2 0

i 2
0 0 1 0 (t-t°) 0 _f(t-t o)

(t,t 0 0 0 1 0 (t-to) 0
(3.8)

0 0 0 0 1 0 (t-t)
0

0 o 0 0 0 1 0

0 0 0 0 0 0 1

Thus considering the state X as a random vector governed by the

differential equation (3.6), its mean is propagated as

X(t) = i(t,to)X(to) (3.9)

and its coveriance is propagated according to [2] [3]

P(t) = D(t,t )PoPT(t,to) + f D(t,T)QDT(t,T)dT (3.10)

t
0

where X(t ) and P are the a priori state and covariance at time
0 0

t and Q is a 7x 7 matrix with zeros everywhere except ql, q2 and

qf on the second, third and seventh diagonal elements respectively.



4. Measurement Model

Introduction

Measurements of two basic types are available for use in esti-

mating the motion of a meaneuvering target. These measurements are

1) the frequency of the received signal and 2) the bearing angle

between the signal source and some arbitrary reference direction. The

changes in the bearing angle and frequency are assumed to be related

to the motion of the target. In the treatment discussed here, the

effects of multipath, medium inhomogenities and measurement bias" are

neglected.

Frequency Measurement

The mathematical model for the frequency measurement processed

in the estimation algorithm, is based on the principle of the Doppler

effect [13]. When both the observer and the sound source are station-

ary, the observer receives the true frequency, f , transmitted by the
0

source. If the observer or the source or both are in motion, then

the observer receives either a greater or smaller number of cycles

per unit of time, depending on the relative motion between the obser-

ver and the source. This difference in frequency between the received

and the transmitted wave, is known as the Doppler effect [13]. A

mathematical relation exists between this frequency shift and the

relative speed of the observer with respect to the source. Thus by

measuring the frequency of a signal and knowing its actual frequency

an observer can calculate the relative speed of the source. Depend-

ing on whether the source is moving and the observer is stationary or

vice-versa, there are two different expressions for this frequency

shift: 27
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For the moving source/stationary observer case,

ff 0 (4.1)

C

For the moving observer/stationary source case

f f (1 - -) (4.2)
0 C

In each of these expressions, f is the measured frequency, f is
0

the reference (or actual) frequency, c is the speed of sound in

the wave propagation medium, and p is the time rate of change of

the linear distance between the source and the observer. In the

present investigation, the source will be assumed to be in motion with

respect to the observer and Eq. (4.1) is applicable.

The observed frequency f is related to the state vector through

the quantities f and P. This relation is non-linear and hence

must be linearized in order to be used in the estimation algorithm.

The linearization of the non linear relation between the state X

and the measurement f, denoted by the general relation, Y = G(X,t),

involves the computation of the first partials of G with respect

to (the components of) X. For a single observation, these partials

form a (Ix n) row matrix, which will be denoted by H. For the fre-

quency measurement, the partials are as follows.

Let (x,, ys) be the coordinates of an observer (which for this

investigation will be a sonar buoy), (x, y), (x, y) be the compon-

ents of position and velocity of the target at a given instant and

let f be the frequency received at that instant. Then the range

and range rate are given by
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)2 )21/p = [(x - x)s + (y - Ys 2]/

(x- x S);+ (y -ys)y
_ P

With G = f /(I + Q/c), we have

3G 1 (4.3a)

0 1+
c

The remaining partials can be obtained as follows:

3G - 3p

f00o 1 _p

+ 2 c ax(1 +)
c

where

x 2 - [(x - x )x + (y - ys)yI x s
P

px - p(x - xs)

2

Using this procedure, the remaining elements of H are determined as

follows

G n[px -(x - x (4. 3b)
ax

3Gy n[py - P(y - y)] (4.3c)
ay

3G np[x - x I (4.3d)
_x xs
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y =nP[- y (4.3e)

3a = 0 (4.3f)

x

_a = 0 (4.3g)

y

where
-f

O (4.3h)cp2 (1 + )2

C

Collecting the partials from Eqs. (4 .3a) to (4.3h), the H matrix

corresponding to the frequency measurement is

[f G 3G G G G 1
Hf= af x 0 0 (4.4)

where the partial derivatives are defined by Eqs. (4.3). The partial

derivatives are evaluated on some reference solution assumed to be

near to the actual target motion.

Bearing Angle

The bearing angle of the target with respect to a sensor (ob-

server) is another type of measurement used in the estimation algor-

ithm. It is defined as the angle between the x-axis and the line

joining the sensor and the target measured in a direction from the

x-axis towards the y-axis, as shown in Fig. 1.2. It is given by

= Y = sin- I y - (4.5)

) /x - xs) + (y - ys )

This measurement is also a non linear function of the state and hence
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it must be linearized. The first partials of B with respect to the

components of the state vector are as follows:

=_ - 0 (4.6a)
f
0

x 2 
(4.6b)

P
B x - xs

- (4.6c)
y 2

@- _ =y a-- = 0 (4.6d)
a - a=x y

Thus the H matrix corresponding to the bearing angle measurement

is given by

S -(y - Ys) (x - xs 1=~ 2 2 ,0 0 0 01 (4.7)

P

Effects of Measurement Noise

The noise in the measurement model is assumed to be additive;

in other words, the measurement Y. obtained at time t. is assumed1 1

to be the sum of the true value and the noise due to instrument and

to signal propagation. Since the true value is not known, it is

assumed to be close to the value computed using the reference traject-

ory. The functional relation is given by

Y = G(Xi'ti + Ei

where
f

G(Xi,ti) = = o0

(1 +
c
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for the frequency measurement from Eq. (4.1) and

G(X.,t.) = sin-  - Y

for the bearing angle measurement from Eq. (4.5). E. is assumed to

be a zero mean Gaussian random variable. Though in reality, c. is
1

indirectly dependent on the range p, here it is assumed to be inde-

pendent of the state vector and hence it remains unaltered as an addi-

tive term in the linearized equation also, as in Eq. (2.2). For

real observations, the variance of the measurement error is a function

of the signal to noise ratio which depends on the relative range and

other parameters. For the present investigation we have assumed

constant values for the measurement noise variance.

W"W



5. The Estimation Algorithms

Introduction

For a target estimation problem of the type considered in this

report, an on-line sequential filter is a natural choice. The Ex-

tended Kalman-Bucy Filter (EKF) is chosen to reduce the effect of

non linearities on the accuracy of the estimate. The EKF may not

perform well following a target maneuver or when the filter gains

become very small. Further, it may not always be possible to guess

a reasonable a priori value for the initial state. One way to over-

come such difficulties, would be to use a batch algorithm to process

an initial set of observations. The estimate obtained by the batch

processor can be used, then, to start (or restart) the extended se-

quential filter from the time epoch. Such a hybrid combination of

batch and sequential filter holds promise as the best strategy for

estimating the motion of a maneuvering target with the simple model

discussed in Ch. 3 and the computational algorithms for both of these

filters are presented in the following sections. The numerical ill-

conditioning problem often encountered in a batch solution is elimi-

nated by use of orthogonal transformation applied to the information

matrix, and tbe steps involved in computing the batch solution by

this approach are also given. Finally, the conventional batch esti-

mation algorithm is modified to include the effects of process noise.

The Least-Squares Algorithm

For the computation of the least-squares solution given in

Eq. (2.11) or Eq. (2.13), the matrices HT R 1H and HT R Iy must be

formed using all the measurements available in a given batch. In

33
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the case of the conventional least-squares solution for a system with-

out the random disturbance w in the dynamics, these matrices can

be formed by simple matrix additions corresponding to each observation.

After processing all the observations, either Eq. (2.11) or Eq. (2.13),

depending on whether a priori information is to be included or not,

is used to calculate the batch solution for a given time epoch. The

steps involved in this computation are as follows.

Algorithm A -- Let X be the given initial state vector, and m be0

the number of measurement to be processed. The a priori error x in
the initial state and the a priori error covariance P are option-

0

ally assumed to be given. The following steps lead to the estimate

of the state.

0. Initialize the matrices, M, (n x n), where n is the dimension

of the state vector and L, (n x 1). Set M = 0, L = 0 and k = 1.

1. Read the observation: t, Y, 0, the time, the measurement and the

measurement standard deviation. Let

tk = t ; Y k = Y  ; ak = o and At = t k - tk_

2. Compute the state-transition matrix 4(tk, t).

3. Integrate X = AX to get X(tk).

i.e., compute X(tk) = D(tk, t )X°

4. Compute the measurement partials

H = ?G(Xt) and H = Hk(tk, t)
k aX X = X(tk )  k o

5. Compute the observation Yck and the observation deviation, Yk

where

Yk = Yk C k

ck
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2
6. Compute the weight: R 0 2

7. Update the matrices M and L:

T -I
M = M + Hk Hk

T -I
L = L + Hk -k

8. Increment k: k = k+l

If k < m go to step 1

9. Otherwise compute the solution 0 as
0

= M-IL, if a priori is not to be added
0

= (M + P-I)-I(L + T-i 1)o if a priori is to be added.o o

10. Then, X = X + R

11. Replace X with X and go to step 0 for the next iteration.
0 0

With the solution X one can construct the trajectory of the0

target, provided the assumed acceleration model adequately describes

all the target maneuvers during the entire observation interval. The

target maneuver acceleration model assumed for this investigation is

a constant acceleration, and hence will not describe even simple

maneuvers such as a steady turn with constant speed. Consequently,

if the target executes a maneuver within the time span, AT, over

which the m observations were taken, then the solution X will
0

deviate from the true state at the epoch time due to the unmodeled

acceleration. Under such circumstances, one approach to obtain a

reasonable trajectory for the target would be to split the whole ob-

servation set, consisting of m, observation, into several (say )

batches, each consisting of a subset of the original m measurements,

and then compute a least-squares solution for each batch successively

L ... ,.. . ... . .. .... . .... ,.h ,, I I . . . ... ... .. iM , , .
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by propagating the solution from one time epoch to the time epoch

of the next batch. Fig. 5.1 illustrates this idea. The arcs can be

divided based on equal time intervals or an equal number of observa-

tions (i.e., n I = n2 = .. = n9). In either case the number of ob-

servations in each arc, n i , should be selected so that the information

matrix (HT R H) is full rank and does not lead to numerical diffi-

culties while computing the matrix inverse. However, the time span

of each arc should not be long compared to the possible maneuver in-

tervals. In the work reported here, we have assumed individual arcs

having a constant number of observations, i.e., n. = NBTCH, i=l,...,Z.
1

Algorithm A is applied to each arc by replacing m by ni, and

X by X , and then, iterating the individual arc solution if de-

sired. The solution of arc i at the epoch t is then propagated
0.

1

to the epoch time t of the next arc by the equation°i+1

°i+l 0°i+l 0 1 12

Thus, the initial state for the arc (i+l will be X with
°i+ I

a priori error being zero. The a priori errir covariance matrix for

this initial state is computed as

T -1 --1l1 TP = (D(ti, t )(HiRi Hi + P )l T(t' to) (5.2)
T-1 -1i

The estimate, covariance pair [X , (HTR_ H + P- )- i provide the
1 0

estimate of the trajectory at a certain interval of time which is

analogous to the extended sequential filter solution. Since the solu-

tions X are obtained by the least-squares method, the resulting
0i

trajectory may be called a 'batch-sequential' solution.
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to, tot...1o ..-......... to ,

n ,

obs obs obs obs

n. - m
i=l

Fig. 5.1 Symbolic Representation of Dividing the Complete Observation
Set into Several Batches



38

Batch Estimate with Process Noise

Inclusion of the effects of process noise, w(t), in the batch

or batch-sequential solution is the next step to be considered. The

solution to Eq. (2.1) with w 0 0, is given, formally, as
t k+l

'k+l = D(tk+l' tk)Xk + fk (tk+'T)6(T)W(T)dT (5.3)

tk

Presence of the second term complicates the computation of the least-

squares solution. One simplifying assumption would be to consider

the noise w(T) as a piece-wise random constant function of time with

zero mean and specified covariance for each time segment. Further

assumptions and the derivation of the batch solution in the presence

of process noise are given in Appendix A. The computation algorithm

for this case is as follows.

Algorithm B -- Given the initial state X , the measurement set,

Y9 ... I Ym, to be processed, the a priori error x in the initial

state and the a priori covariance P 00

0. Initialize an nx n (n being the dimension of the state vector)

and an nx 1 matrices M = 0 and L 0 respectively. k = 1

1. Read the observation: t, y, 0

Let tk 
= t ; Yk = Y  ; ak =

At = tk - tkl

2. Compute 4(tk, to )

3. Compute X(tk) = 4(tk, t )X°

. CpG(Xt)X
4. Compute H k =Xtk
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5. Compute the observation Y and the residual (0 - c)ck

Yk = Yk - Yck

6. Stack the measurement partials matrix, and the residuals

H(k) = Hk (tk, to ) ; y(k) = yk

where H(k) and y(k) indicate the elements of the k
th row of

H and y, respectively.

7. Compute the kth row of the inverse weighting matrix, p , where:

11 + 1 1.2 ........ lk

kl Pkk + Rk

2
where Ri = i. That is, for i = 1, ... ,k , compute, p ik where

kik T i 1-

8. Increment k: k = k+l

If k < m, go to step 1

9. (otherwise) Compute the solution x:
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This procedure forms the information arrays

IF H(l1) yMl

H(2) y(2)

H- . and y=

H(m) 1 y(m)

and the associated inverse weighting matrix, P, is given as

P1 1 + RI 1 12 . .*Im

p2 1

Oral - mrm + Rm

With H, y, and r determined, the solution is given by the expression

o =(HTF-lH + P-)-I(HTF-Iy + PTl- )-

= (HTF-lH + P 0-O O

An approximation to Algorithm B, which saves some of computation

time required to invert the mx m matrix, F, is obtained by neglecting

all the non-diagonal terms in the F matrix. For such an assumption

F is obtained by m scalar divisions. This will be exactly the

same as Algorithm A except for Step 6. Thus, an approximation to

algorithm B, denoted as algorithm C can be obtained as follows.

.* .
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Algorithm C -- All steps are exactly the same as in Algorithm A, except

Step 6 which is as follows. Compute the new weight R 1 for the

measurement: = kk where

t. ti

=kk z t(k,T)B(T)dT Qi-f BT(T)I (kT)dT)}Hk
i-i

All of the above algorithms can be used in either a batch or a batch-

sequential solution.

Least-Square Solution by Matrix Triangularization

Since the theory for the approach was outlined briefly in Chapter

2, attention in this section will be devoted to the computational

algorithm. Again the approach can be adapted to obtain either a

batch or a batch-sequential solution. Furthermore, this method can

be applied to each of the three cases discussed in the previous sec-

tion, and we will denote the corresponding algorithms as Algorithm A',

B', C', respectively.

Algorithm A' and C' -- Given X ' ,Y1 ... m } ' Xo To$ perform the

following computations

0. Set m = 0
0

" If there is no a priori {X Po} then go to Step 1. Otherwise,

compute the upper triangular square root matrix U of P using0

the Cholesky decomposition method so that P = UUT0

-1
" Invert U and let R=U

" Compute z = Rx

" Move the upper triangular matrix R and the vector to the

information array A.
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n 1

m =n
0

1. Set k 1

2. Read observation: t, Y, a

Let t k= t ;Y k= Y ;a k a

At = tk t

3. Compute- (t t)

4. Compute X(tk = D(tk t)

- aG(X,t)5. Compute H k= 9 x = X tk

6. Compute the observation Y C and the residual (0-c) k k -

7. Compute the scale factor to normalize the observation partials and

the residuals (0-c):

Algorithm A' -- * =1

Algorithm C'-- t =

2? + P
0k ~kk

where

Pk 4 )1~ (k)B(T)d . Q ~ j B T(T) T (k,T)dT) 1HT
i~ f-1 i-l
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8. Stack the measurement partials and the scaled observation devia-

tions:

H(k) = ckHk(tk, to)

y(k) = *k

9. Increment k: k = k+l

If k < m, go to Step 1

10. Compute the solution R 00

(a) Move the matrices H and y to A such that

A(mo+l, 1) = H(l) and A(m +1, n+l) = y(l)

Then depending on whether a priori is added or not, we have

A= ------ or A= [HI y] m

H ' y m n 1

n 1

(b) Apply Givens Transformation [11] to A to obtain

TA 0 j n , where T is orthogonal

n 1

(c) The solution is computed as x 0 R-I and the covariance

of the solution is, 0 R

Algorithm B' -- This algorithm proceeds exactly same as Algorithm A'

up -hrough step 5. Then,

- ..... .. s .....
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6. Stack the measurement partials matrix and the observation deviation

Y as

H(k) = Hki (tk, to)

y (k) y

7. Compute (part of) the inverse weighting matrix p:

011 +R 1. 12 . . . P1k

P1

k1 Pkk+R

2
where R. = . That is, for i 1, ... , k, compute

i i

t t

Pik= Hi { 
- ( (i,x)B(T)dT QZI t

Z=I tf_ 1

8. Increment k: k = k+l

If k < m go to Step 1

9. Compute the solution X 0O

The arrays H and y have to be normalized using the mx m

inverse weighting matrix, F, where

P + R1  P 12  "1m

0
21

+ R
mrl Omm m
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(a) To accomplish this task, compute the Cholesky decomposition

of f U T  so that
PP

- I = U-T U-l
P P

(b) Compute A=U-lH and z = U - y
p p

(c) Move the matrices A and z to (the information array) A

such that

A(m +1, 1) = A(l, 1) and A(m +1, n+l) = z(l)
0 0

Then, depending on whether a priori is added or not, we have

n

--4--j or A" [A Z]mI I

znZ m

n 1

(d) Apply Givens Transformation to A to obtain

n

01 m+m,-nLO ~ O
n 1

(e) The solution is given by x = R-z and its error covar-

iance is given by P = R

Sequential Filtering

As painted out previously, for the problem of estimating the

trajectory of a moving target, the most appropriate algorithm appears

to be the Extended Kalman Filter algorithm given in Eq. (2.21),

rather than the standard Kalman Filter solution given in Eq. (2.18).

In the Extended Kalman Filter solution, after processing each
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observation, the trajectory will be rectified using the estimate of

the state. In accordance with the dynamic model given in Eq. (3.6),

the 3variance propagation from one time point to the next is given

by

P k 4)(t k' tk-l)P k-l4(t k9 t k-l + Fk(5.4)

where

-k P(k/k-l)

P - P(k-l/k-l)

Fk = 4D(t k9T)Q(-T)(DT (t k' TOdt (5.5)

Assuming Q~)to be a constant diagonal matrix and using the state

transition matrix given in Eq. (3.8), the integral in Eq. (5.5) can

be carried out analytically, to obtain

qf(At) 0 0 0 0 0 0

0 q1 2  1  1(At) 5  0 q(At) 4  0 q(At) 3  0

(t5  4__ (_t__3
0q0(At 0 q (At)4  0 q(A)2 02 8 2 6

0 q(At) 4  V ( -At)3  (At)2  0 (5.6)
1~ 1  8 1) q 3  0

k

00(A t)
4  0_q _____ 0 (At)

2

q2 8  2 322

0 q A 0 q1  0 q 00t 0

0 0 q2 (At)3 (At) 2 0 q2 (At
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where At = tk - tik and qf, ql, q2  are defined in Eqs. (3.5)

and (3.2). The computational algorithm for the extended sequential

solution can be expressed as follows.

Algorithm D -- Given the initial state X , number of measurements m0

to be processed, a priori estimate of the error in initial state xo,

and the a priori error covariance matrix, P,

0. Initialize the state and the covar-ance matrix:

X =X +x

P P ; set k= 1

1. Read the observation: t, Y, 0

Let tk  t ; Yk = Y  
; ak = a and Atk = tk -t

2. Compute the state transition matrix O(tk, tk_)

3. Compute rk

4. Propagate the state and the covariance:

Xk = 4 (tk, tk-l)k_ 1

Pk= D(tk9 tk-l)Pk-l (tk2 tk-l) + Fk

5. Compute measurement partials:

DG(X,t)
k ax X =

6. Compute the observation Y and the observation deviation yk'

where

Yk =
k ck
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7. Compute the gain and the estimate:

K = P T 6jjj + J2-1
k k k k kk Ok

Xk = KkYk

8. Update the state and covariance matrix:

Xk Xk + 5k

Pk = (I - KkHk)Pk

9. Increment: k = k+l

If k < m go to Step 1, otherwise stop.

Adaptive Sequential Filtering

Though in general the Extended Kalman Filter is very stable,

in some cases where a non linear dynamic model is in error or incom-

plete, the filter performance, will degrade and in some cases the

estimate will diverge from the true trajectory. One of the remedies

for such a problem is to adapt an 'adaptive filtering' method which

forces a lower bound on the unreliably decreasing state error covar-

iance matrix by introducing fictitious noise in the dynamics, to

'cover' the model error. The variances of such fictitious state noise

are estimated using the filter residuals. The method is described

by Jazwinsky [141. The dynamic model considered for the problem

discussed in this report, though not non linear, is an unstable linear

model and is incomplete so far as the target maneuvers are concerned.

Hence, application of the Extended Kalman Filter algorithm may en-

counter the above mentioned divergence for some scenarios. As a
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consequence, adaptive filter equations described in [14] have been

implemented in the computer simulation program. The equations used

for coding the algorithm are summarized in Appendix B. Since at the

present the performance of the filter with the adaptive state noise

compensation has not been completely evaluated, this topic will not

be considered further.



6. Numerical Results

Simulation Procedure

The measurement simulation is performed as follows. A repre-

sentative configuration of positions for a set of sensors is assumed

in a rectangular coordinate system. A trajectory for the target,

with typical maneuvers, is obtained by integrating the equations of

motion with an assumed acceleration model and initial conditions. At

selected intervals of time, the doppler frequency aixd the bearing angles

with respect to the sensors are computed. To obtain simulated meas-

urements, which are representative of real observations, the computed

measurements are corrupted by additive Gaussian random noise. The

Gaussian noise is obtained from a sequence of numbers which are com-

puted as follows. The random number generator RANF, which is a

Fortran Library Function on the Cyber 170/750 system at the University

of Texas, is used to obtain a random number F which is uniformly

distributed over the interval (0,1). According to the Central Limit

Theorem, the sum of a large number of independent and identically

distributed random variables is a Gaussian random variable [15].

Since has a mean of 1/2 and variance 1/12, the random variable

N

= - N/2 is considered Gaussian with zero mean and unit
i=l

variance for N = 12 . Thus, calling the RANF function twelve times

and adding the returned values to -6.0 , a zero mean Gaussian random

number with unit variance is obtained, which is then multiplied by the

given measurement standard deviation a af for frequency and a for

bearing angle). The resulting random number is added to the computed

50
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measurement to obtain the sir. lated observation. Other methods of

generating random numbers are discussed in Reference [161.

Two basic maneuver histories are considered in this investigation.

Fig. 6.1 shows the first of the target maneuver trajectory and the

sensor locations. As mentioned earlier, the target motion is considered

in two dimensions only. The target is assumed to have zero acceleration

along the straightline paths and travels with constant speed. Conse-

quently, during the turn and the circular motion it will have non-zero

acceleration components. Thus, the trajectory shown in Fig. 6.1 rep-

resents a target moving with a constant speed of 5 m/sec along a

straightline path through the origin of the coordinate system.

After maintaining a steady course for 500 seconds, the first maneuver

executed is a 450 turn. The 45' turns are executed with constant

values for acceleration components maintaining the magnitude of the

velocity to be 5 m/sec. The circular motion is executed with a con-

stant turn rate of 0.5 deg/sec and speed 5 m/sec. The total simulation

time is 1900 seconds.

Variations of the frequency and bearing angle measurements with

time, computed along such a trajectory, are shown in Figures 6.2 and

6.3, respectively. These measurements are computed from the array of

sensors located 2 km apart, along the sides of a right triangle, as

shown by dots in Fig. 6.1 and the middle sensor of the array (sensor

No. 3) is at 10 km from the origin. The coordinates of the sensor

locations for this case are given in Table 6.1. It can be seen

clearly (at least in the frequency plot) that the different sigments

of each curve correspond to the various maneuvers or straightline

motions of the target. Note that for the first 500 seconds, there are
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only three distinct lines in the frequency plot; this is due to the

symmetry of the sensor locations with respect to the first segment

of the target trajectory. In other words, during this time period,

the range rate and hence the frequoncy from sensors 1 and 5 are eq,'al

and those from sensors 2 and 4 are equal.

Though the frequency and the bearing angle measurements are

computed with respect to all the sensors simultaneously, as shown

in Figures 6.2 and 6.3, observations corresponding to a specified

selection of sensors and to specified intervals of time could be saved

for processing. Such a capability allows one to study the effects

of measurement interval and the number of measurements from different

sensors on the accuracy of the estimate. The simulated observations

consisting of frequency measurements from all five sensors and

bearing angle measurements from only two sensors (sensor No. I and

sensor No. 5) are processed as a nominal case. The frequency

measurements are sampled every 10 seconds, whereas bearing angle

measurements are sampled every 30 seconds. This amounts to a total of

955 frequency measurements and 128 measurements over a period of 1900

seconds. Variations in sensor locations and in data rate are considered

to study the effects of geometry on the trajectory estimation. For

all cases considered, a standard deviation of af = 0.1 Hz for the

frequency measurement and a = 5 degrees for the bearing angle

measurement are assumed to compute Gaussian random numbers. It should

be remarked that the noise variance for the angle measurement depends

on the relative range between the target and the sensor and that for

the frequency measurement depends on the relative range and the

.. 2.7M
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resolution of the measuring device. The quality of the measurements

degrades with increasing range [171. The measurement standard

deviations attainable in practice vary from 3 degrees to 6 degrees

for angle measurements and from 0.002 Hz to 0.2 Hz for frequency

measurements. For the scenario described above, the relative range

lies between approximately 2.4 km and 10 km during the entire period

of simulation and hence the assumed constant values of 5 degrees for

the angle and 0.1 Hz for the frequency measurement standard deviations

can be considered to be realistic to pessimistic. The reference

frequency for the Doppler shift measurement is assumed to be 300 Hz,

and the speed of sound, c , in the ocean is assumed to be 1530 m/sec.

Numerical Results

Fig. 6.4 compares the estimated trajectory (the solid line) with

the true trajectory (the dashed line) for the case described above,

which is referred to as Case A.I. The estimated trajectory is obtained

by the Extended Kalman Filter. The initial conditions for the state

propagation are the same as those used for trajectory simulation, and

the measurement noise standard deviations used for processing are also

the same (a8 = 5 degrees, of = 0.1 Hz) as those used for observation

simulation. The initial state, the diagonal elements of the a priori

state error covariance matrix and the process noise covariance matrix,

which were used to obtain the estimated trajectory in Fig. 6.4, are tab-

ulated in Table 6.2. The error in the estimate (Xi - Xi  , i = 2,
true

* . . , 7) for the components of position, velocity and acceleration

are shown in Figures 6.5 through 6.10. The dashed lines in all these

S
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figures, which are symmetric about the time-axis, represent the one-

sigma standard deviations (+ 0) for the errors in the respective com-

ponents. The errors in the position and velocity components are ran-

dom and bounded by the one-sigma boundary except for occasional peaks.

The errors in the acceleration components are also random, but show

a definite trend in the mean, which can be correlated to the acceler-

ations of the target during its various maneuver phases. The times

of occurrence of maneuvers and the accelerations during these man-

euvers, that were used to stimulate the trajectory, are shown also in

Figures 6.9 and 6.10. It is clear that the simple Brownian motion

model for the dynamics is able to follow the trends in the actual

acceleration, and a close inspection of the Figures 6.4 through 6.10

indicates that, for this scenario, the accuracy of the estimated tra-

jectory is quite satisfactory.

The Effect of Sensor Geometry

In order to see the effects of the sensor location geometry, the

distance between consecutive sensors is reduced from 2 km to 700 m, and

simulated observations for this case were obtained, holding all other

parameters constant. The sensor No. 3 is at a distance of 10 km from

the origin. Sensor No. 3 is kept at the same location and the others

are moved symmetrically towards it as indicated by the stars in Fig. 6.1.

The coordinates for these sensor locations are given in Table 
6.3. The

result obtained by processing the observation set obtained with this

geometry (Case A.2) is shown in Fig. 6.11. Comparing Fig. 6.4 and

Fig. 6.11, it is obvious that the wider the sensos are spread, the
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better the tracking results. For the sensor locations selected for

Case A.2, another observation set (referred to as Case A.3) was

generated by including bearing angle measurements from all the 5

sensors every 10 seconds, instead of every 30 seconds from only two

sensors. Consequently, this set consists of 955 frequency and 128

angle measurements for Case A.1 and Case A.2. The result obtained

when Case A.3 observation set was used, is shown in Fig. 6.12. A

significant improvement in the estimated trajectory, compared to the

one shown in Fig. 6.11, is obtained. The same sets of values for

X , P and Q given in Table 6.2 were used for Case A.2 and
0 0

Case A.3. Comparisons between the above three cases indicate that in

terms of estimation accuracy and the cost of acquiring and processing

observations, it is better to spread the sensor locations as far as

feasible than to obtain more measurements from closely located sensors.

Keeping the same orientation of the sensor locations, the whole

array is moved away from the starting position of the target, so that

the sensor No. 3 is 15 km away from the origin. For this scenario

(which is the same as Case A. 1), three cases with the sensors

2 km apart (Case A.4), sensors 700 m apart (Case A.5) and sensors

700 m apart but bearings from all sensors every 10 seconds (Case A.6),

were considered. The results are shown in Figures 6.13 through 6.15.

The values for X0, P and Q in Table 6.2 are used for all three

cases. Sensor location coordinates for Case A.4 are given in Table 6.4

and those for Case A.Sand Case A.6 can be found in Table 6.5. Figures

6.13 through 6.15 confirm the conclusion reached in the previous

paragraph. Further, it is to be noted that an increase in range leads

LI
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to an effective decrease in the angular resolution obtained by the

sensor array and hence the estimated trajectories shown in Figures

6.13 through 6.15 are much worse compared to the ones shown in Fig.

6.4, 6.11 and 6.12, respectively.

Effects of Errors in the Initial Estimates

In each of the above cases, a perfect initial state is assumed to

compute the estimated trajectory and the estimates show the ability of

the algorithms to track the motion, once an acceptable trajectory has

been obtained. The results demonstrate the applicability of the man-

euver model and the sequential estimation algorithm to the problem of

tracking the motion of a maneuvering target. The trajectory and the

errors in the estimates of the position components shown in Figures

6.16 through 6.18 are the result of processing the first observation

set (Case A.1), but with errors in initial state and are to be com-

pared with those shown in Figures 6.4 through 6.6. An initial state

with errors of -300 m in the x-component and -1000 m in the y-component

of the position and -3.535534 m/sec in each of the velocity components,

was used to initiate the filtering process. The values of the initial

state (X ) of the diagonal elements of the a priori state error
0

covariance matrix (Q) used for this case are given in Table 6.6. As

can be seen from Figures 6.17 and 6.18, it takes about 120 seconds

or so for the transients to disappear, and from then on, the estimated

trajectory stays close to the true trajectory, as in the case of Fig.

6.4. The noncircular loops in Fig. 6.16 as opposed to the circular

loops in Fig. 6.4 are due to the fact that the x- and y-axis are

drawn to different scales in the former, whereas the scales are the

bJ



57

same in the latter. Note the change in scale for the vertical axes

in Figures 6.5 and 6.6. Similar perturbations in initial state will

be considered for the second type of target maneuver history in order

to demonstrate the stability of the Extended Kalman Filter.

Comparison of Algorithm Performance

In order to compare the filter methods described in Chapter 5,

a second scenario with a different trajectory and sensor orientation

is considered. A simulated observation tape, corresponding to the

trajectory and sensor locations (indicated by dots) shown in Fig. 6.19,

was obtained from Tracor, Inc. As part of a joint effort to analyze

filtering techniques for target trajectory estimation, this scenario

was used to evaluate the filter algorithms described in Chapter 5.

However, in order to be able to vary some parameters in the analysis,

noisy measurements simulated at the University of Texas for the same

trajectory, as shown in Fig. 6.19, are used to obtain the results

shown in Figures 6.22 through 6.30. Values for the measurement

noise standard deviations, reference frequency, speed of sound, and

the turning rate are all the same as before, but the speed is 8 m/sec

instead of 5 m/sec. Thus, the trajectory is computed assuming zero

acceleration along the straight line paths. The initial position of

the target is at (+ 10 km; - 5.6 km); the target moves along a straight

path parallel to y-axis at a constant speed of 8 m/sec for the first

700 seconds and then makes a 450 turn with the above speed and a

constant turn rate of 0.5 deg/sec. The acceleration components will

be nonzero during this turn. After completing the turn, It proceeds
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0
along the 45 line, as shown in Fig. 6.19, at the same constant

speed. The sensor location coordinates are given in Table 6.7. The

total simulation time is 1800 seconds. Frequency measurement

sampled at every 10 seconds from all the sensors and bearing angle

measurements sampled at every 30 seconds from sensor No. 1 and sensor

No. 5 are saved for processing and consequently the observation set

will have a total of 905 frequency measurements and 122 bearing angle

measurements. The observation set simulated for the scenario described

above will be referred to as Case B.1.

The frequency and bearing angle measurements simulated in Case B.l

have been plotted (without the noise being added) against time and are

shown in Figures 6.20 and 6.21, respectively. The frequency, being a

function of the range rate of the target (see Eq. 4.1), varies as the

range rate changes. The range rates corresponding to all the sensors

are negative to start with, and increase steadily as the target moves,

and hence the computed values of the frequencies decrease continuously.

The sharp corners are due to thL jump in the values for the accelera-

tions components occurring at the start (700 sec.) and at the end

(790 sec.) of the target maneuver, and the steep linear increase in

the frequency values occurs during the turn. The line joining the

sensors 3, 4, and 5 is perpendicular to the trajectory at a point

towards the end, at which the range rates of the target with respect

to these sensors become zero. Hence, the frequency curves correspon-

ding to these sensors concur at a point with the ordinate 300 cycles/sec.,

as can be observed in Fig. 6.20. The bearing angles (measured from

positive x-axis towards positive y-axis) with respect to all the sensors
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increase continuously, as the target moves along the trajectory, and

are shown in Fig. 6.21. Taking the bearing angle as modulo 2r causes

the discontinuities in the curve, which occur when the target crosses

from one quadrant to the next for the respective sensors. Finally, note

that in this figure also, the curves corresponding to the sensors

3, 4, and 5 intersect at one point due to the fact that the position

of the target at this time lies on the same line joining these three

sensors.

Trajectory solutions obtained by processing the above observation

set Case B.1. using the Extended Kalman Filter and the "batch-sequential"

filter are shown in Figures 6.22 through 6.24 in order to compare the

two filter algorithms. The initial state X , the a priori state

error covariance matrix P , and the process noise covariance matrix0

Q used to obtain the estimated trajectories shown in the above three

figures, are tabulated in Table 6.8. The initial state is the same as

that used for simulating the true trajectory (shown by dashed lines),

and the measurement noise standard deviations used for processing the

measurements are also the same as those used for simulation of the

observations. One comon feature among all the three figures is that

the estimated trajectories stay closer to the true trajectory in the

earlier portion than during the rest of the estimation period. This

can be oxplaited by noting that the initial state for the estimation

process is expct, yielding a perfect trajectory to start with, and

also the filter gains are large in the beginning, which decrease when

the state error covariance matrix decreases with time. A-other common

feature among the three figures is the large deviation of the estimated

-- I 1 1 1
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trajectories from the true trajectory, occurring approximately around

a point (10 kni - 2.5 km). At this point, the frequency measurement be-

comes insensitive to the target position and velocity when the radius

vector joinin) the target and a sensor is normal to the velocity

vector of the target. Hence the frequency measurements from sensor

No. 1 will have very little or no information about the target state

when the y-coordinate of the target is near -1.4 km. This could be the

reason for the above mentioned large deviation in the estimated

trajectories. Fig. 6.22 shows a comparison between the true and the

estimated trajectory obtained by using the Extended Kalman Filter,

whereas the true and the estimated trajectories obtained by using "batch-

sequential" algorithm are compared in Figures 6.23 and 6.24. The only

difference between the latter two trajectories is that the one in

Fig. 6.23 does not have process noise in the dynamics, whereas the one

in Fig. 6.24 includes the effects of non-zero covariance for the process

noise in the acceleration components. For both trajectories, the

observation set (Case B.1) is divided into 34 small batches, each con-

sisting of 30 observations and batch solutions are obtained for each

sub-arc, as described in Algorithm B of Chapter 5. The solution of

each sub-arc is iterated 4 times within the sub-arc and the estimate

converges in 2 or 3 iterations for all arcs. Besides being not so

accurate compared to the EKF estimates, these trajectories take an

appreciable amount of computing time. For example, the execution times

for the trajectories shown in Figures 6.22 through 6.24 are 10.8 sec.,

59.6 sec., 21'.7 sec., respectively. Comparing Fig. 6.23 with Fig. 6.24,
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it is obvious that having process noise in the dynamics shows a

definite improvement in the solution. From the above discussion of

Figures 6.22 through 6.24, one can conclude that the performance of

the EKF algorithm is comparable to the "batch-sequential" algorithm

both in terms of accuracy and computing time.

In order to check the performance of the EKF, the initial con-

ditions to the filter were perturbed and solutions were obtained.

A few sets of initial errors were considered and the results of pro-

cessing the observation set Case B.1, for one typical set of errors

are shown in Figures 6.25 through 6.27. The initial state X , the
0

a priori state error covariance matrix P , and the process noise
0

covariance matrix Q used to obtain these figures, are given in

Table 6.9. During the initial few seconds the error in the x-component

of position oscillates between -3.3 km and 2.4 km and that in the

y-component between -1.0 km and 1.9 km. These figures show that after

about 90 seconds of initial transients, the estimated trajectory

converges to the true trajectory, indicating that a reasonable error

in initial state will not cause a total failure of the EKF algorithm.

However, the performance of the filter is degraded in that the

deviation of the estimated trajectory from the true trajectory shown

in Fig. 6.25 is larger compared to that in Fig. 6.22. The increase

trend in the later part of the one-sigma curve shown in Fig. 6.27

may not signify the divergence of the filter, since that in Fig. 6.26

decreases steadily and the errors in both the components of position

are well-bounded within the one-sigma curves.
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In order to verify the statement made earlier regarding sensor

geometry for this scenario also, the sensor locations are spread over

a wider area (as marked by the stars in Fig. 6.19 and the coordinates

given in Table 6.10) and a set of simulated observations (Case B.2)

were obtained. Using the set of values for X0, P and Q given

in Table 6.9, i.e., with the same set of initial errors as for Figures

6.25 through 6.27, the results obtained by processing this observa-

tion set are shown in Figures 6.28 through 6.30. When compared with

Fig. 6.25, a significant improvement can be noticed in the estimated

trajectory shown in Fig. 6.28. Though in this case also it takes

about 90 seconds for the initial transients to disappear, the errors

in Figures 6.29 and 6.30 are bounded with the one-sigma curves and

are smaller compared to those shown in Figures 6.26 and 6.27, re-

spectively. (Note the difference in scale between the corresponding

figures.) Hence, it can be concluded again that a wider station

location geometry reduces estimation errors.
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Table 6.1 Sensor Location Coordinates for Case A.1

sensor
No. x-coordinate (m) y-coordinate (m)

1 7071.07 3071.07

2 7071.07 5071.07

3 7071.07 7071.07

4 5071.07 7071.07

5 3071.07 7071.07

Table 6.2 Values of X , P and Q for Processing Case A.10 0

through Case A.6 (Figures 6.4 through 6.15)

Component Initial Diagonal Diagonal
of State State X of P of Q0 0

x 300.0 1.0 0.0

x2  0.0 I.OE+05 0.0

x3  0.0 I.OE+05 0.0

x4  3.535534 I.OE+0 0.0

x 3.535534 l.OE+0 0.0

x6  0.0 1.OE-02 1.OE-05

x7 0.0 I.OE--02 l.OE-05
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Table 6.3 Sensor Location Coordinates for Cases A.2 and A.3

Sensor No. x-Coordinate (m) y-Coordinate (m)

1 7071.07 5671.07

2 7071.07 6371.07

3 7071.07 7071.07

4 6371.07 7071.07

5 5671.07 7071.07

Table 6.4 Sensor Location Coordinates for Case A.4

Sensor No. x-Coordinate (m) y- Coordinate (m)

1 10606.6 6606.6

2 10606.6 8606.6

3 10606.6 10606.6

4 8606.6 10606.6

5 6606.6 10606.6

Table 6 5 Sensor Location Coordinates for Cases A.5 and A.6

Sensor No. x-Coordinate (m) y-Coordinate (m)

1 10606.6 9206.6

2 10606.6 9906.6

3 10606.6 10606.6

4 9906.6 10606.6

5 9206.6 10606.6
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Table 6.6 Perturbed Values of X and Values of P and Q for Case
A.1 (figures 6.16 through 6.18) o

Components Initial Diagonal Diagonal
of state state X of P of Q

x 300.0 1.0 0.0

x2  -300.0 i.OE+08 0.0

x3  -1000.0 i.OE+08 0.0

x 0.0 i.OE+02 0.0

x5  0.0 i.OE+02 0.0

x6  0.0 i.OE-02 i.OE-05

x 7  0.0 i.OE-02 i.OE-05

Table 6.7 Sensor Location Coordinates for Case B.1

Sensor No. x-Coordinate (m) y-Coordinate (m)

1 0.0 -1400.0

2 -700.0 -700.0

3 -1400.0 0.0

4 -700.0 700.0

5 0.0 1400.0

LlS
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Table 6.8 Values of X0, Poo and Q used for Case B.1

Components Initial Diagonal Diagonal
of state state X of P of Q

__ _ __ _ _ 0- 0

x 300.0 1.0 0.0

x2  10000.0 I.OE+05 0.0

x3  -5600.0 1.OE+05 0.0

x4  8.0 I.OE+0 0.0

x5  0.0 I.OE+01 0.0

x6  0.0 l.OE-02 1.OE-05

x7  0.0 1.OE-02 1.OE-05

Table 6.9 Perturbed Values of X and Values of P and Q
for case B.1 and B.2 °(Figures 6.25 through 6.30)

Components Initial Diagonal Diagonal
of state state X of P of Q

o 0

x 300.0 1.0 0.0

x 10000.0 1.OE+08 0.0

x3  -6600.0 1.OE+08 0.0

x4  0.0 I.OE+02 0.0

x5  0.0 1.OE+02 0.0

x6  0.0 I.OE-02 1.OE-05

7 0.0 1.OE-02 l.OE-05
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Table 6.10 Sensor Location Coordinates for Case B.2

Sensor No. x-Coordinate (in) y-Coordinate (in)

1 0.0 -4000.0

2 -2000.0 -2000.0

3 -4000.0 0.0

4 -2000.0 2000.0

5 0.0 4000.0
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7. Conclusions and Recommendations

The problem of estimating the trajectory of a slow moving maneuv-

erable target using passive measurements from an array of stationary

sensors, has been investigated in the previous chapters. Based on the

results discussed in Chapter 6, the following conclusions can be

drawn regarding the mathematical model and the algorithms used in the

study. These are listed below along with recommendation of topics to

be studied in the future.

Conclusions

" The choice of a rectangular coordinate system is advantageous

in that the target dynamics is linear for the acceleration

model considered here.

" Modelling the acceleration components in rectangular coordinates

as Brownian motion process is adequate to estimate the traject-

ory of the target executing typical maneuvers. Though it is a

simple model, it is able to closely follow the actual maneuver

acceleration curves when used with the EKF algorithm.

" The Extended Kalman Filter performs well for the scenarios con-

sidered and provides satisfactory results. It is especially

well suited to tracking the targets motion once the estimation

initiation transient has dissipated.

* The 'batch-sequential' filter method with the process noise

modification estimates a trajectory which is in general agree-

ment with the estimate obtained using EKF. However, the compu-

tation time for estimating the trajectory using this algorithm

is larger than the EKF execution time by a factor of about 20.

98



99

When the process noise is not included in the 'batch-sequential'

filter solution, the solution is not as accurate as the EKF

solution during and following the maneuvers.

Though the measurements were simulated with pessimistic values

for the measurement noise standard deviations, the trajectory

estimated by EKF converges to the true trajectory even when

the initial state is perturbed. The errors in the initial state

cause initial transients in the estimated trajectory, which dis-

appear within a short time (about 5% of the total time period).

The effect of sensor geometry is an important factor in the

accuracy of the estimates of the target motion. Measurements

made from sensors located as far apart as feasible, yield better

estimates than those obtained from closely located sensors.

The geometric orientation of its sensors is far more important

than the number of observations.

Recommendations for Further Study

Further investigations must be made to understand the character-

istics of the measurements. The dependence of the measurement standard

deviations on the relative range is an important aspect that should be

modeled in future simulation studies. The model formulation should

be extended to three dimensions. The characteristic of the signal

propagation in the medium, for example, the multi-path effects on the

signal received at the sensors, should be studied. Initial results

obtained with adaptive filtering wherein the process noise covariance

is also estimated, appear promising and should be given a more thorough

evaluation. Different models for the dynamics should be investigated;
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for example, modelling the acceleration components as an adaptive

first order Gauss-Markov process. This model will increase the dimen-

sion of the state vector, but allow a better estimate of the acceler-

ation.

i -
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Appendix A

Batch Solution in the Presence of Process Noise

The linear dynamic model for the system with process noise is

assumed in the form

x = Ax + Bw (A.1)

where w is a zero mean white Gaussian process. If D(tl,t 2 ) is

the state transition matrix for A, then the formal solution to

Eq. (A.1) can be expressed as

tk

xk = D(k, k-l)xk I + I 4(k,T)B(T)w(T)dT (A.2)

k-l

In order to derive the batch solution including the effect of process

noise on the propagation of the state, the white noise process w(t)

in Eq. (A.2) is assumed to be the limit of a Gaussian white sequence.

In other words, w(t) is considered as a random piecewise constant

function, as shown in Fig. A.1, with covariance

E{w(ti)w (tj)} = Q(ti)6 ij (A.3)

Then the integral in Eq. (A.2) can be evaluated after removing the

constant wk_ 1 from the integral. If t is the epoch time at0

which the batch estimate is to be calculated, then all the state

vectors can be expressed in terms of the epoch state x . So the
O

state propagation equation, Eq. (A.2), can be written as

k 
txk = (kO)x° + ( (k,T)B(T)d wi I  (A.4)
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Fig. A. 1 Approximation of a Random Process w(t) by Discrete

Random Constants. (Note that w(t) as shown here is

a scalar and represents wf tW or w 1(W or w 2(t)

referenced in Eq. 3.7)
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VNow, at a measurement time point t k9 the measurement yk is related

(after linearization) to the state at t k by the relation

Yk Hkxk + 6k (A.5a)

where :Ek is the measurement noise, with variance Rk. Substituting

Eq. (A.4) in Eq. (A.5a),

=k Hk((k,0)xo + 11k E Y 4D(k, )B(T)d w 1 1 + Cki=l

- Hkx+ ~k(A.5b)

where the combined noise term

k t~i1
T1k=Hk iEl [! CPk )B(T)dT]w- + C A6

and H.k H Hk 4(k, 0) .

In order to simplify the notation, define

t t1

= ~ ~ ((k~t)BT)dt ;t2

0t ttIk-li
(A.7a)

T T T T
Ui [wow1  . . . w I (A.7b)

so that we can write

,= H kI~k + 'k(A.8)

After processing, say, m scalar measurements, the equations

as in (A.5b) can be placed in the following matrix form as

y - Hx + nl (A.9)
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whe re

1 1 H I -11

Y2 H 2 T2

y = . H= and =

Y Hm I m

each Hi, i = 1, 2, ... , m being a ln row vector. To compute

the least-squares estimate of the epoch state x from Eq. (A.9),

given an a priori epoch state x and its covariance P , from the

data equation,

x = x + C where E{ T}= P (A.10)
0 0 0 0 0 0

the following procedure is used. Augument the measurements in

Eq. (A.9) with the a priori information contained in Eq. (A.10) to

obtain:

Lox x 0 + 0

or

z = X x + V (A.1)
0

The covariance matrix for the augmented error, V , can be obtained as

TE{VT

F=EvvlT T
E (Eo T ) E(e 0on (A.12)

E= (c6 (ETT)} _ iT

E( n ) E( n r T

0- . .

III ,,r m... .. . . i i .. .. . .. . . . . . . .. . ... . . ..... ... . . ...
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Note that,

E{conT}= E{c (n .. 2n)}

T T T TT TTT T T-T
E{ o( ... C )} + E{E (UI 1 ?H 2 UqJ . U H)01 " m U11 2 22 " mmm)

Since c , the error in the a priori state is uncorrelated with the
0

measurement noise (ci, i = 1, ... , m) and with the process noise

(w1 , i = 0, 1, ... , m-i), it follows that

E{t nT } = E{nE T I = 0 (A.13a)

o 0

The diagonal terms of r are

E{t £
T } = P (A.13b)

0 0 0

and E{n T } =F , where

-- T T(I

E(nini) ... (Tl1n m

r = (A.13c)

T
E(fll I) ... E(mnT)

Now, the (i, j) th element of E(nnT) is:

T(i ~ T T~T - T T T T ~i

E(n n = HiE(U U )'H + HiPiE(Ui£ ) + E(eiU )H + EC

~ T T~T

H= E(U Uj)IjH + Ri6 ij

where, assuming that the process noise w1 , i 1 1, ... k and the ob-

servation noise are uncorrelated, it follows that E[EiU] = E[Ui C] = 0

for all i and J. Substituting for and U, from Eqs. (A.7a) and
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(A. 7b), Pij is defined as

~ - E(U UT IT~T

ij ii ij ) Jj

= HiEI( (D(iT)B(T)dT. w _ l m-l B(TJTi)d)

= H~ min (i, j t t(r QT- T PT

( )(i,=)B(T)dT.QZ 1  B (T)BPT(jT)d } .H

t -tk-I

(A.14)

where Q= E{w~w } . Finally then the elements of r are given as

T

ri.= E{i } q T ij + R.6.. and

Pl + R1  P12 Plm

P21

(A. 13c)

Pml pMM + Rm

From Eqs. (A.12) and (A.13), i.: follows that

Foj (A.15)

The least-squares solution corresponding to Eq. (A.9) and (A.10) is

given then by the following expression.

£ r ( AI)-lAT1-lz

(HTr-IH + l)-1 (HTI ly + -1x ) (A.16)
0 0 0



109

It is to be noted that the mxm matrix, F, is not a diagonal matrix
and therefore the computation of by Eq. (A.16) involves inversion

0

of first, an mx m matrix and then, an nx n matrix where m is

the number of observations processed and n is the dimension of the

state vector.

_



Appendix B

Process Noise Variance Computation
for Adaptive Filtering

The main idea involved in arriving at the equations for esti-

mating the process noise covariance (Q) is based on the assumption

that the filter residuals be consistent with their statistics. In

other words, defining the (predicted) residuals as

rk+ = Yk+ - E{yk+/Yk} k > 0 (B.1)

where yk+k is the measurement deviation at time tk+Z defined

k
in Eq. (2.2) and E{y k+/Y I is the expected value of the measure-

ment deviation at time tk+9 based on measurements up to time tk,

it is required that

2 E{r 2 Z = 1, 2, ... , m (B.2)rk+k = ~ = .,mq

y( ) and hence r are assumed to be scalars in this discussion.

From Eq. (B.2) one derives the process noise covariance Qk required

at time tk to propagate the state error covariance matrix Pk-l

to the next time point tk+l as given in Eq. (3.10). Note that such

an adaptive filter will have a time lag (t ), since (k+m q) observa-
qq

tions have to be obtained before prediction to time tk+l can be made.

The state-noise compensation matrix Q for the dynamic model defined

in Eq. (3.6) is a 7x 7 matrix with non-zero values for the first,

6th and the 7th diagonal elements and with zero for all other elements.

Here a 3x 3 diagonal matrix Q' is considered with non-zero diagonal

elements and consequently an appropriate matrix B is introduced by

pre-multiplying Q' so that Q = BQ'B T  and

110

S!



Q'= F l
Using the same notations as in Chapter 2, for the filter residual, we

have

E r + }= Hk+ X 'I(k+ , k)k oT(k+ ,k)lT+ k + Hk+ k

ED(k+kk+i)BQ3BTDT(k+kk+i " HT + 2 2 1,2, ...
i~~l k+. 0k+ qZl2,.,

J q

(B.3)

Imposing the condition

2 2
rk+Y = , = ,...,mq

will give rise to the following set of equations:

2k9  - T(+ -Tns1.O., 22~ _ k+k ((k+9,k) kD(k+k,k)~T+y_ 2l~ ~ k~rk+ . 0k+£ = Hk+ .

LE~ 4(k+9.~k+i)GQ G (D(k+z~k+i) 9,+ ~ = 1.2,...,q(B4

Each equation corresponding to k = 1,2,...,mq is a scalar equation.

However, the scalar on the right hand side of (B.3) can be written

as the product of a row vector and a column vector, so that the above

m equations can be put in the following matrix form:q

E = A[diag Q'I (B.5)

where E is m x 1, A is m x 3 and [diag Q'] is 3x 1. Then

q q
the solution to Eq. (B.4) can be computed as
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(diag Q'] = (A TA)* A T (B. 6)

where (P) *is the pseudo-inverse of P. This leads to the esti-

mator

C 0- each element of E < 0(B7

dia Q'-- diag Q', otherwise(B7

subject to the condition that if 0(a..) < 0, then set (4 i. 0, since

the diagonals are variances and cannot be negative.



DISTRIBUTION LIST
for

"Estimating the Motion of Maneuvering Targets Using Passive Measurements"

(All addressees receive one copy unless otherwise specified)

Defense Technical Information Center Dr. Nasser Ahmid
Cameron Station Kansas State University
Alexandria, Virginia 22314 12 copies Department of Electrical Engineering

Manhattan, Kansas 66506
Center for Naval Analyses
2000 North Beauregard Str(:tL Naval Postgraduate School
Alexandria, Virginia 22311 Monterey, California 92940

Technical Library
Alphatech, Inc. Dr. H. Titus
260 Hillside Avenue Dr. N. Forrest
Arlington, Massachusetts 02174 Dr. G. Sackman

Defense Advanced Research Dr. C. Carter
Projects Agency Naval Underwater Systems Center

Tactical Technology Office New London Laboratory
1400 Wilson Boulevard Code 313
Arlington, Virginia 22209 New London, Connecticut 06320

Office of Naval Research Naval Underwater Systems Center
Arlington, Virginia 22217 Code 352

Code 431 2 copies Newport, Rhode Island 02840 2 copies
Code 436

Dr. J. Anton
Dr. Fred W. Weidmann Systems Control, Incorporated
Tracor, Incorporated 1801 Page Mill Road
Tracor Sciences & Systems Palo Alto, California 94304
6500 Tracor Lane
Austin, Texas 78721 Office of Naval Research Branch Office

536 South Clark Street
Dr. Richard L. Moose Chicago, Illinois 60605
Virginia Polytechnic Institute

and State University Dr. Thomas 0. Mottl
Department of Electrical Engineering The Analytic Sciences Corporation
Blacksburg, Virginia 24061 Six Jacob Way

Reading, Massachusetts 01867
Dr. Thomas E. Fortmann
Bolt, Beranek and Newman, Inc. VERAC, Inc.
50 Moulton Street 4901 Morena Boulevard
Cambridge, Massachusetts 02138 Suite 209

San Diego, California 92117
Massachusetts Institute of Technology
Laboratory for Information and Naval Surface Weapons Center

Decision Systems White Oak Laboratory
Cambridge, Massachusetts 02139 Code U-20

Silver Spring, Maryland 20910 2 copies
Dr. George Johnson
IBM/Federal Systems Division Dr. Yaakov Bar-Shalom
9500 Godwin Drive The University of Connecticut
Manassas, Virginia 22110 Department of Electrical Engineering

and Computer Science
Box U-157
Storrs, Connecticut 06268



Mr. J. Conrad
Naval Intelligence Support Center
Code 20
Suitland, Maryland 20390

Mr. V. T. Gabriel
General Electric Company
Sonar Systems Engineering
Farrell Road Plant
Building 1, Room D6
Syracuse, New York 13201 2 copies

Naval Air Development Center
Warminster, Pennsylvania 18974

Manager, ASW Systems Project Office
Naval Material Command
ASW-118
Washington, D. C. 20360

Naval Research Laboratory
Washington, D. C. 20375

Code 2627
Code 5308
Code 7932

Naval Sea Systems Command
Washington, D. C. 20360

Code 63R-1
Code 63R-16

Dr. Peter Schultheiss
Department of Engineering
and Applied Science

Yale University
New Haven, Connecticut 06520

Tracor, Incorporated
6500 Tracor Lane
Austin, Texas 78721




