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20. Abstract /
o4
..In thiswdiasertationfp procedure for estimatring the parameters of
a quantile regression funcgion is investigated. The procedure is based
on the work of Parzen (1979a) in the theory of quantile functions and

is applicable to a wide range of distributional families.

The procedure assumes the quantile functions of k populations to be
location-scale shifts of a common quantile function. First, a goodness-
of-fit procedure for determining the common distributional shape of the
k populations generalizes the one-population data modeling techniques
of Parzen (1979a). An estimator of the shape parameter of a distri-
bution is also investigated. The methods of Ogawa (1951) and Eubank
(1979) are then used for estimating the location and scale parameters
of the k populations. A regression model for the location and scale
parameters is specified, and the resulting estimators of the regression
parameters are used to determine a regression function for any quantiles
of the observed data. Finally it is shown that inferences about the
quantile relationships can be based on the asymptotic normality of the
estimated parameters. The procedures are applied to some published

data seti?”
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1. THE PROBLEM OF K~SAMPLE QUANTILE REGRESSION

The technique of regression analysis is used to model the rela-
tionship between the mean of a response variable Y and a predictor
variable X. In some situations it may be movre useful to model the
relationship between the percentiles (or quantiles) of a response
variable Y and the values of a predictor variable X.

Hogg (1975), Griffiths and Willcox (1978), and Angers (1979)
investigate the relationship between several percentiles of salary
level for professors at a major university as a function of their
years in service. Hogg (1975) uses a nonparametric graphic tech-
nique to estimate linear percentile relationships. Griffiths and
Willcox (1978) wuse a maximum likelihood approach based on assuming
the data to have a normal distribution. Angers (1979) adopts a
nonparametric approach using linear grafted polynomials. He assumes
that a specific dependent relationship exists among the various
percentile regression curves.

Reliability and survival analyses often lead to situations
where one is intercsted in modeling percentiles of the survival
distribution as a function of the treatment, e.g. modeling the
median survival time of fish as a function of water temperature.
Matis and Wehrly (1979) investigate the resistance ~f the green

sunfish, Lepomis cyanellus, to various levels of thermal pollution

Citations follow the format of the Journal of the American
Statistical Association.
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using a compartmental models approach. The data consist of survival
times of fish at fixed temperatures. They assume the data to have a
three-parameter Weibull distribution and estimate all three parameters
for several temperatures. LaRiccia (1979) analyzes the same data
using minimum quantile distance estimators of the parameters. Our
goal is to estimate the relationship between the percentiles of the
survival times and the test temperature.

Thus we consider the following statistical situation. Consider
random samples from k(k > 2) populations, i.e. for i = 1, ..., k, let

{y Y } be n, independent observations of a random variable Yi

i1 o ing i

which has cumulative distribution function

F.ly) = Pr(v, < y)

and quantile function

Qi(U) = Fi-l(u) = inf {y : Fi(y) >u}, 0 <ux<l

Associated with Yi is a numerical characteristic, X,, of the ith

i

population and we assume for convenience that X1 < ... 2 Xk

Thus X,, ..., X

) would be the various years in service or water

k
temperatures in the examples cited above.
The k sample quantile regression problem is to find estima-

tors of and make inferences about A(u) and B(u) in the k-sample

regression model

Qi(u) = A(u) + B(u) Xi sy =1, ..., k.




The purpose of this dissertation is to investigate a method for deter-

mining such estimators based on the approach to quantile functioas
presented by Parzen (1979a).

We assume a location-scale shift model for Qi’ i.e. that
Ql’ veey Qk can be written as a location-scale shift of some common

quantile function. We write

Qi(u) = p to, Qfuw) ,1=1, ..., k,

where Hy and o, are the location and scale parameters respectively

i

of Qi and where either the form of Qo is unknown but does not depend
on any unknown parameters or Q(}u) = [Qo*(u)]Y where Q(f(-) is a

known, completely specified quantile function and vy is an unknown shape
parameter. For example, we may believe that QO corresponds to either a

standard normal so that
Q= ot ,
where
3(y) = /7 (VT ) exp(-t7/2)dt
or a standard lognormal distribution so that
Q (1) = exp(e™ ()

On the other hand we may believe that Q()corresponds to a three-para-

meter Weibull distribution so that

Q(uw) = (-log(l - u)) Y




where the shape parameter Yy needs to be estimated.

We further assume that My and o, are linearly related to X

i ’

=g + B8 X
i

ui 1 i

01 aG+BO Xi ’i-':l, OOD,k .

Thus, we can write the quantile regression model

il

Qi(“) [ozu + BuXi] + [ad + BOXi]Qo(U)

+ .
[uLl aOQo(u)] + IBU + BGQO(U)]Xi
The aim of this dissertation is to investigate

1) methods for identifying the shape of Qo’ i.e. either choose
a completely specified function from possible contenders or

estimate v,

- ~ ~ ~

2) methods for determining estimators a“, Bu’ L Bo’ of uu,

Bu’ uo, 80, and

3) the properties of estimating A(u) and B(u) by

ke,

A(u)

é(u)

)

B“ + ROQoﬁﬂ .

Section 2 presents basic definitions and theorems regarding the
quantile function and the empirical quantile function. The Weibull

distribution and its properties are also discussed.




In Section 3, Parzen's (1979a) nonparametric data modeling
method of determining Qo for one population is described and exten-
ded to determining a common QO for k populations. An estimator of
the shape parameter y is proposed and its properties are investigated.

In Section 4 we discuss two formulations for estimating location
and scale parameters using linear combinations of order statistics.
The approaches are due to Ogawa (1951) and Eubank (1979).

In Section 5 we develop new methods for k-sample quantile
regression using the models discussed above. Hypothesis testing pro-
cedures are provided. The application of the technique to a particu-
lar type of location~scale comparison problem is also discussed.

Finally in Section 6 the techniques of Sections 3 throwgh 5
are applied to the analysis of the Hogg data and the Matis and Wehrly
data.

Section 7 consists of conclusions and suggested topics for

future research.




2. QUANTILE FUNCTIONS AND THE WEIBULL DISTRIBUTION

In Section 2.1 we introduce the quantile function notation of
Parzen (1979a) and state some useful theorems and properties of the
quantile function. In Section 2.2 we define the Weibull and extreme
value distributions and provide plots of the Weibull quantile and
density quantile functions for a range of values of its shape para-
meter. Lower bounds on the variance for unbiased estimators of the

parameters of the Weibull distribution are given,
2.1 Definitions and Notation of the Quantile Function Approach

We adopt the quantile function notation of Parzen (1979a).

Some useful definitions are:

1. The cumulative distribution function (cdf) of a random
variable X is defined by F(x) = Pr(X < x).

2. The quantile function of X, Q(u), is defined by
Q(uw) = Fl(u) = inflx: F(x) >u}, 0<u<l,

3. The probability density function of a continuous random

variable X 1is defined by

f(x) = d F(x) / dx

so that

X
F(x) = J f(t)dt .

-—C0




4, The quantile density function, q(u), is defined by

q(u) = dQ(u) / du, 0 <u<l ,

S. The density quantile function, fQ(u), is defined by

fQ(u) = £(Q(u)) , 0 <uc<1l .

The sample analogs of the above quantities are presented in

the following definitions. Let X < een <X be the order
l;n — - n;n

statistics of a random sample of size n from a population with cdf F.

6. The empirical distribution function (edf), F(x), is given

by
F(x) =0  1f x < X
1;n
= i < “
j/n if Xj;n < x Xj+l;n .
j = l, scony n—l
=1 if X < x
n;n —
or n
F(x) = 1/n = GX(X) R
j=1 h|
where
s,(x) =1 1f X < x

0 otherwise .




7. The empirical quantile function, Q(u), is defined by
Qv) = F - (u)

= Xj;n » (3-1) /n < u< j/n,

While this is a natural definition of Q(u), two other continuous

definitions discussed by Parzen (1979a) are useful in both theoret-

ical and applied problems. The piecewise linear version of Q(u) is

defined by
Qu (@) = aly/n-ulX, ;| + nlu = G=D/al Xy,
(3-1)/n<u<i/n,
J=1, cony n | (2,1.1)
where XO; is a natural minimum, i.e. a lower bound on the
range of the data, if one exists, and X = X otherwise,

0;n 1i;n
The shifted piecewise linear version of Q(u) is defined by

Qg(w) = nl(3 + .5)/n = ulx,, +nlu =~ (= S/l o

(J-.5/n<us< @+ .5/n
j =1, seay,n =1 .

We leave Qs(u) undefined for u < .5/noru >1 - ,5/n .




8. If we use Qs(u) then we can define the empirical quantile

density, q(u), as

a() = dQg(w)/du

= “(Xj+1;n - xj;n)‘ (3=.5)/n < u < (j+.5)/n,
J=1 oy n -1, (2.1.2)
~~
and the empirical density quantile function, fQ(r), as

Q) =1/ qu) .

Two useful properties of the quantile function are given in

Theorems 2,1.1 and 2.1.2.

Theorem 2,1.]1: Let F(-) be a strictly increasing cdf and let g(-) be ;

a strictly increasing continuous function. If Y = g(X), then

Q(u) = g(QX(u)). If g(°) is strictly decreasing, then

Qy(u) = g(Qx(l - u)) .

Thus, if Y = u + oX , then QY(u) =y + oQX(u), and 1f Y = log(X),
then QY(U) = log(QX(u))n This property of the quantile function pro-
vides a natural representation for parameter estimation since it
allows one to formulate the ecstimatlon of location and scale para-
meters as the estimation of parameters in the simple linear regress-

ion of QY on QX if Qx is a simple known function.

Theorem 2.1.2: Let fQ(+) and q(-) be the density quantile and quan-

tile density functions corresponding to Q(+). Then fQ(u) = 1/q(u).




Definitfons and useful theorems regarding the asymptotic dis-

tribution of Q(u) follow.

9. A Brownian Bridge process {B(u), 0 < u < 1} is a zero mean

normal process with covariance kernel
KB(ul, u2) = Cov(B(ul), B(uz)) = min(ul,uz) - uu, .

Theorem 2.1.3: Under suitable conditions (see Csorgd and Révész 1978)

/o £Q(u) (Qu) - Q(u)) 4 B(u), for all u,
where the symbol 4 denotes "converges in distribution to".
A special case of this convergence theorem is the following:

Theorem 2.1.4: Let F be an absolutely continuous cdf with pdf f and

let 0 < u, < ...< u. < 1. If fQ is differentiable in a neighborhood

1
of uy and fQ(ui) # 0, for all i, then
~ d
/o (@ - Q) >N (0, C)
where
a0 = (Q( QT
0 = Q ul), eens Qu ),
= N’
(3_ Q Ul); aney Q(Ur ’
_ T
qr" (0’ en ey 0) s
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and
C = (Cij)
where
ui(l -u,)
Chi = Coy = oy s L1232 .

ij  Uji £Q(u ) fQ(u))
] (2.1.3)

2.2 The Weibull and Extreme Value Distributions
In this dissertation the basic model for Q(u) is to assume
Qu) = nu+o QO(U)

where Qo(u) is a completely specified quantile function except for a
possibly unknown shape parameter and y and 0 are the location and
scale parameters of Q. Two quantile functions that have proven to be
particularly useful in a variety of statistical problems are those of
the three-parameter Weibull distribution and the extreme value distri-~
bution. The Welbull and extreme value distributions have been used

as models in reliability, survival studies, quality control, hydrology,

etc. (see Dubey 1967; Hassanein 1971; Johnson and Kotz 1970).

Dcfinitiggz A continuous random variable Y is said to have the three-~

parameter Weibull distribution with parameters u, o, and c if

F(y) =0 1if y <

=1 - expl={Cy = ) /a]S) if y > u  (2.2.1)

where o, ¢ are gpreater than zero,




The parameters u, o, and c(= 1/y) are the location, scale, and shape

parameters,respectively. For a random variable following a three-

parameter Weibull distribution we have

1]

Q(u) = u + o[-log(l-w)}", vy =

0 | pe

{-log(1-uw)]",

Q (uw)
o

c-1
fo(y) = ¢ y"Texp(~y©) ,

and
£,Q, () =(1/) (1-w) [-log(1-w) 17"
]
By varying the shape parameter y, one can fit a wide range of
unimodal distributional shapes from skewed right to almost symmetric %

to skewed left. The role o1 pu is as a threshhold value (or starting
value), i.e. Q(0) = u, rather than as a measure of central tendency.
Figures 2.A to 2,J display the Weibull Qo and foQo functions for

y = (.11,

1) in 2,.2.1 we obtain the exponential

By letting c l(or vy

distribution. For ¢ < 3(or y > .333) the distribution is skewed
right, When 3 < c < &4 (or .25 < y < .333) the distribution looks
more symmetric. For ¢ = 3,6 the Weibull density is similar to *“hat

of the normal giving /gl = ,0006 and b2 = 2,7167 (Kiibler 1979)

where /31 is the skewness measure and b, measures kurtosis (see Rao

2
1973, p. 101), For c > 4(or y < .25) the distribution 1s skewed left.
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Defin{g}g&; 1f the continuous random variable Y has the three -
parameter Weibull distribution, then X =-log(Y-u) is said to have

the extreme value distribution.

Since X = -log(Y - 1) we have by Theorem 2.2.1 that
QX(U) = -log Qy_“ (1 - u) and
Fy) = exp(-exp{={(y = ") /a"}D,=v <« v < &y
Qu) = u' + o'{-logf-log(u)]}l, 0 <uc<1l,
£,(y) = expl-[y + exp(-y)1},
and
f = -
oQo(u) u log u
where p' = log o and o' = vy , and ¢ and y are the Weibull scale and

shape parameters, respectively.

The Cramer Rao Lower Bound (CRLB, see Rao 1973, pp. 324-331)

T
for the variance of unbiased estimators 0 = (u, 0, ¢ ) of

~

8 = (u, o, c)T is given by Kiibler (1979) as:
~ -1
Var(g) > 1/n 1T 7(8)

where for matrices A and B the notation A > B means that A - B is

positive semidefinite and I1(v) =(Iij(g))is the Fisher information

matrix (see Rao 1973, p33Ll) of u, v, ¢ and is given by




18 =

1528

I133(0) =

112(9) -

T15®

and

130 =

where

I'(x)
v(x)
and

¥ (x)

2
cggl) I(h,) provided c > 2 ,

.2

= (E) ’
-2
= ch s
c(c-1) ,

= 121(?) =T F(hl) provided ¢ > 1 ,
=1..(0) = - <L rin ) ided ¢ > 1

31 T T e 1’7y Provided c >

P(2)
I3,0) = - =

V(L) + $2(2) = 1.82368066,
vh) + 1,
1- j/c » J =1, 2,

oo
ftx—le_tdt is the Gamma function,
0

d log T(x)/dx = I''(x)/I'(x) ,

d v(x)/dx .




3. IDENTIFICATION OF DISTRIBUTIONAL SHAPE

BPRRNT .

The identification of the shape of an unknown distribution
is the first stage of analysis as we perceive the k sample quantile
regression problem. In this section we describe three quantile func-
tion approaches to identifying a distributional shape.

In 3.1 we discuss quantile-box plots and present the nonpara-

metric data modeling and goodness-of-fit procedures for one popula~

tion developed by Parzen (197%9a) to determine Qo. In 3.2 we discuss
a parametric approach to estimating the shape parameter y in the

model:

’

Q (W) = u, + oi(Qo*(u))Y ,i=1, .., k

where Q *(+) is a completely specified quantile function. The pro-
o y

cedure is a generalization of one proposed by Dubey (1967) for
estimating the shape parameter of the Weibull distribution. In
3.3 a procedure for either determining Q, for k populations or
The procedure is based on the

for estimating vy is discussecd.

goodness—of-fit procedures of Parzen.

3.1 Determination of Q,

In this section we describe the quantile-box plot approach
(Parzen 1979a) to represent data and compare k samples of data.

We discuss how quantile-box plots can ascist one in determining

Q0 for the model
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Qi(“) =y +01 Qo(u) , =1, ..., k

i

The nonparametric data modeling techniques and goodness of fit
procedures for one population developed by Parzen (1979a) are

also discussed.

Quantile-box plots are described by Parzen (1979a) as a

"quick and dirty" approach to exploratofy data analysis. The
technique is a variation of the box and whiskers technique intro-
duced by Tukey (1977). Quantile-box plots assist one in determining
the qualitative characteristics of Q(u), e.g. skewness, symmetry,
modality, and tail behavior. However the study of quantile-box
plots is an imprecise science; much of the interpretative value
of the plots, especially for small sample sizes, depends on the
predilections of the investigator,

A quantile-box plot of a sample of data consists of a graph
of é(u) (we use és(u)) as a function on the unit interval 0 < u < 1)
on which a series of boxes is superimposed. The boxes have as
vertices (p, Q(p)),(psQ(L = p))s (1 = p. QCL = p)), and (1 - p, Q(p)).
One usually chooses p = .25, .125, and .0625 . Within the H box
(p = .25) one can draw a horizontal median line through 6(.5).
Parzen (1979b,p.243) gives an approximate 957 confidence interval

for the median:

Q(.5) + (2//R)Q(.75) - Q(.25)] .
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One can use the quantile-box plot technique to classify the

distribution of data as normal shaped, skewed right vs. skewed left,
or long-tailed vs. short-tailed. One can detect modes as flat spots
in 6(u) and the presence of two groups as jumps in 6(u). Intervals
of sharp rise outside the D box (p = .0625) cause one to suspect the
presence of outliers or a long-tailed distribution. Skewness and
symmetry can be checked by inspecting the shape of 6(u) within the
boxes and also by examining the position of the U box within the E
box (p = .125) and the E box within the D box.

One can use multiple quantile-box plots to check if k samples
of data have homogeneous shapes cxcept for a location-scale shift.
Figure 6.C (p. 87) shows the quantile-box plots for four samples of
the Hogg (1975) professors' salary data, Comments on the plots are

given in Section 6.1.

Parzen's approach to determining Q . For a random sample
[¢]
{Xl, cees Xn} of a continuous random variable X with cdf F(x)

and quantile function Q(u), one hypothesizes a location-scale model
Hy: QQu) = w +0Q (u), (3.1.1)

Parzen (1979a) discusses procedures which provide a test of H, and

also vield estimators of the true fQ function when Ho is rejected.

The situation of interest is when Q 1s unknown and one would like
[¢)

to test H for various specifications of Q. (e.g. normal vs.

logistic vs. Cauchy).




Parzen defines the following quantities:

1) the transformation density, d(u), defined by
d(u) = (1/00) foQO(u)q(u) , 0<uc<1l,

where

1

o = fO fOQ0 (wWq(u)du |
foQo (u) = fo (Qo (uv)),
q(u) = dQ(u)/du ;

2) the transformation distribution, D(u), defined by
D(u) = [y d(E)dt 3

3) the complex-valued transformation correlations, p (v),

v=20,+1, +2, ..., defined by
1
plv) = fO exp(2 miuv)d(u)du .
One can estimate the above quantities using:
4y d(u) = 1/ co)ﬂ)q)(u)q(u) » 0 <u =<1, where
o = st q (wqeuxu
‘o 0 oo q ’

q(u) is defined by 2.1.2

u

0 d(t)de

5) D(u) = f

- ST S . i-ﬂm‘mj




6) p(v) = Ié exp(2 w iuv) d(u)du, v =0, +1, ... .

One can obtain smoothed estimators of the above quantities using

antoregressive methods :
7) d (w =K ¢ (exp(2 n 1u))| 7
) o u) = n | g (exp(2 n 1u))] .
where
g (z) =1+a (Dz+ ...+ (mz",
m m m

am(l), cens am(m) satisfy the normal equations

o(~v) + &m(l);(l “V) + ..+ &m(m)S(m -v) =0,

= + .
K = 1+a(De) + ... +a (mp(m) ,
and m is the order of the autoregressive smoothing;

3 oy) = Y4 .
8) Dm\u) J‘O dm(t)dt :

Iém(exp(Z ™ iu ))IzlfOQO(u)

9)
Q. (u) = -

T -
ol (exp(2 m 1w))[2f 0 (u)q(u)du

Parzen proposes minimizing the CAT criterion defined by

CAT(m) = 1/n I K, - K




to determine an "optimal" order m of autoregressive smoothing. One

can also select an appropriate order of smoothing by visually check-
ing how well Dm(u) fits D(u).
The hypothesis H_: Q(u) = u + OQG(u) is equivalent to any of

the following hypotheses:

1) d(u) =1 ,
2) D(u) = u,
3) p(v) =0 for v 0.

The following test statistics could be used to test H @

1) max d(u) or fé log d(u)du, 0 < u <1
2) max Iﬁ(u) -ul, 0<uc<l

N lFw?,vso.

Parzen (1979a) provides references for the properties of these
statistics. When CAT selects ; = 0, Parzen regards it as confir-
mation of Ho.

A useful diagnostic discussed by Parzen (1980) is the p
mode or mode percentile, It is defined to be the value of u at
which fQ(u) achieves its mode (or maximum value) when fQ(.) is
unimodal. When the P mode exceeds .5 the distribution is skewed
left and when the p mode is less than .5 the distribution is
skewed right.

The function fam(u) is a useful estimator of fQ(u) even when

one has sufficient evidence to reject H_ . By examining the interval

of u values for which Dm(u) (or D(u)) 1is approximately linear in u,



one can detect which parts of the data seem to fit the hypothesized
Q, function.

The computer package ONESAM (Parzen and White 1979) provides
plots of 6(u), ;(u), and ?Biu). By specifying any of several famil-
iar Q0 functions, plots of é(u), B(U),IB (v)|2, Bm(u), and fam(u)
(for several orders m) are produced along with the goodness-of-fit

diagnostics discussed above.
3.2 Estimation of the Shape Parameter
Motivated by the fact that Q(u) is of the form
Qu) = w+ o (Q*w)Y (3.2.1)

for X having the three parameter Weibull distribution (with
QO*(u)= -log(l-u)) and the three parameter lognormal distribution
(with Q_*(u) = exp[¢ 1 (u)], see Johnson and Kotz 1970, p. 112), we
investigate the estimation of the shape parameter in (3.2.1),.

We first find an estimator ; of y for the one sample case and

then show how to pool estimators Yo e Yy obtained from samples

from k populations, the ith of which has quantile function

Q.(u) = u+ 0, (Q *(u)7, (3.2.2)
1 i o

i

to produce an estimator of y .

Theorem 3.2.1: Lot 0 < v, <u, < uy < 1 be values satisfying

QO*(UZ) = (Qo*(ul)QO*(uj))i~
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Then

2 log{[Q(u3) - Q(uz)I/IQ(uz) - Q(ul)]} (3.2.3) ]
Y = .
log [Q *(uy)/Q *(u )]
Proof:

For u, < u, < u_ we have

1 2 3

Q(Uj) =y +a (Qo*(uj )) ) j = lo 2’ 3

Then

Quy) = Qu) @)Y - (@ *(u,)T

Q(u,) - Q(u)) (Q*(w,)Y - (@ *(u N

Since Qo*(uz) = fQo*(ul)Qo*(u3)J'I , then
X
Quy) - oy 10*(ug) 12
Quy) - Q(ul) Qo*(ul)

Log{[Q(uy) - QCu,)1/(QCu,) = QCu )T} = ¥ Tog[Q*(u,)/Q *(u )]

2 . ‘

2 logf lQ_(,”}_)_____Q_(‘“‘ZV)_]_/[Q(UZ) - Q(ul)]}

Y = ———— ——————— — e e

log{Qo*(u3)/Qo*(ul)]

and

Hence
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Theorem 3.2.2: Let

) _iﬂl?g{Ié(u3)'é(u2)]/[éfzg)-é(ulil} (3.2.4)

Yy =

log [Qo*(uj)/Qo*(Ul)]

Then va(y - y) 3 N(O, V(y))

where
y =% o dd 4o (d. +d.% 4o, .d2
viy) = 2 o901 P ol T iy 33932
2 20,.d,.d 2 (12 +d4,.4d4..)]), (3.2.5)
-20,,(dy ) + dydags) + 20,4d),dg, = 20,40dy) +dydgp) ), (3.2

d = log[Qo*(u3)/Qo*(Ul)] ,

- Y _ Y
dyy = V@ * )Y ~ @* Nl

J
oy - T )y
foQo*(ui)foQo*(uj)

where fOQO* is the fQ function corresponding to Qo* .
Proof: By Theorem 2.1.4, we have
/a(QQuy) - QGu )y Qi) = Qu), Q) - )T $ 8.0, ©
1 1 2 2 k! 3 323
where

G = Cji = Ui(l - 9

y )/(fQ(uj)fO(uj)) vl <ci <y <3 .,

i <
Then since Yy = g(Q(ul), Q(uz). Q(uj)) and y = g(é(ul), 6(U2). é(u3))

where u(xl, Xy x3) 1s defined by (3.2.3) and (3.2.4), we have (see

Rao 1973, p. 387)

1 KB T A b, manas



Ay - y) NGO, V)

where

. . T
= ( ag/sxl, ag/dxz, ag/8x3) .

(a4
[{

Since

g/ 3%, = 2/[d(Q(u2) - Q(ul))]~.

g/ 3 %, —Z/d(l/(Q(u3) - Quy)) + l/(Q(uz) - Q(ul))] ;

]

dg/ 3x 2/[d(Q(u3) - Qlu,1

3

the theorem follows.

Remarks on Theorem 3.2.2:

1) The estimator ; and its asymptotic distribution is inde-
pendent of |, and ¢

2) Theoretically one can choose optimal values of Uy Uy, Uy

which minimize the variance of y . The values will be a
function of y for a given Qo*. Table 3.1 gives optimal

values of u;, u which minimize V(y) for y = .05, .1(.1)1

2* "3
2, 3 when Qo*(u) = -log(l - u) (i.e. the Weibull distri-
hution). The table also gives the minimum value of V(y)
and compares {t to the CRLB for unbiased estimators of y
Figure 3.A plots the optimal values of Uys Uy, Uy 35 A
function of +y. See page 32 for further discussion of

Table 3.1.

3) Since V(y) is a continuous function of y, a consistent esti-
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mator V(y) of V{(y) is obtaincd by substituting y for y in (3.2.5).

Dubey (1967) gives the formula for an estimator of the shape
parameter of the three parameter Weibull distribution when o and u

are unknown. The estimator of 1/y = ¢ is given by

. - 1og[—loﬂ(l-u3)] - log[-log(l - ul)]
Q/y) =c = ——x : - N :
2[10g(Q(u3) - Q(uz)) - IOS(Q(UZ) - Q(ul))]

r

where
u, = 1 -{exp -[log(l - ul)log(l - u3)]5} .

.

which is just the reciprocal of (3.2.4) using Qo*(u) = -log(l - u)
Dubey states that the variance of ¢ depends on the true value of ¢

and consequently he does not utilize optimal values of Yy and ug

which minimize the variance of c.

When one has samples from k populations which satisfy the
model (3.2.2), we now show a method to test for homogeneity of
shape and to estimate the common value of y. Let éi(u) be the

empirical quantile function bascd on a sample of size n, from

population i. To combine estimators yl, cey Yk of y we have

Theorem 3.2.3:
. ~ .
let H =¥ »“‘;A(_‘_tr - _Yy_)_
i=1

2

V(‘y)

and
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~p _ iEl “i;i/“ . (3.2.6)
where
;o R TR ) T )
1og[Qo*(u3)/Qo*(ul)]
k

Qo*(UZ) = [Qo*ﬁll) QO*(uj)}i »Up S Uy < Uy,

and V(y) 1is given by (3.2.5) .

If the k populations do in fact have the same shape parameter y ,

then

D G, -y SN0, Vi)
where as ne=, the ratio ni/n approaches a constant.
Proof: This is a direct application of Rac (1973, p. 389).
Remarks on Theorem 3.2.3:

1) The statistic H can be used to test for homogeneity

of shape.

J) oy inoa povled estimator of the common shape parameter

of the Qi's.
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3) A consistent estimator of V(Y) is obtained by substituting
Yp for y in (3.2.5).

4) Optimal values of u_, uz, and u, which minimize the var-

1 3

iance of Yp will depend on the true value of y. Table

3.1 can be used to find the optimal values of ups Uy, U

2)

for a range of values of y and Qo*(u) = ~log(l - u).

3

Information obtained from quan{ile-box plots or histori-
cal data regarding the distributional shape may help to
determine an appropriate set of values of Ups Uy Uge
Remarks on Table 3.1 and Figure 3.A:

Table 3.1 gives the optimal values of Ups Uy, Ug for the

estimator y assuming Qo* for the Weibull distribution, V(y) using
these u values, the CRLB for y when appropriate, and the asymptotic
relative efficiency (ARE) of y defined by ARE(y) = CRLB/V(y).

u u, as a function

Figure 3.A plots the optimal values of u 20 U3

1’
of y. The following trends are evident.

1) For y > 1.0 (i.e. the distribution has no mode and is

highly skewed right), then uy = 1.0. The optimal value

of u; goes from .63 {(for y=3.0) to .01 (for vy = 1.0).
2) For y = 1.0 (i.e. the exponential distribution), uy = .98
and u, = .01 are optimal,

1) As Yy goes from 1.0 to .3 (i.e. the distribution is uni-

modal and goes from skewed right to almost symmetric),




33

Table 3.1 Optimal Values of ul,uz,u3 for ;; Weibull Distribution

y u o o V(Y)  CRLB  ARE(Y)
3 6283 9452 .9998 L0311 NA -

2 2754 7750 .9930 4948 NA -

1 .0064 1461 .9795 1.0326 54683 .53
.9 .0015 0694 L9630 8257 8462 538
.8 .0002 07224 9225 .5799 .3500 605
7 .00017 0177 .8473 13356 2687 .8007 °
6 .00017 0162 .7902 2059 Na7g 9587
.5 .00017 L0145 L7141 1481 23 .9257
A .00017 L0131 6380 1256 0877 6982
3 .00017 0115 5429 a2 .0493 .4079
2 00010 L0057 5274 427 L0210 1043
1 .0001 L0057 5274 L4645 0055 0118
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the optimal value of u, goes from .98 (for y = 1.0) to

3
.54 (for y = .3). The optimal value of ul remains close
to 0.

4) When y = .3 (i.e. the distribution is almost symmetric,
normal shaped), u,y = ,002 and uy 2 .54 are optimal.

5) As y goes from .3 to .05 (i.e. the distribution goes from
almost symmetric to skewed left), the optimal value of uy
goes from .54 (for y = .3) to .52 (for y = .05) and the
optimal value of uy remains close to O.

6) The ARE increases from .53 for y = 1.0 to .96 for y = .6.
The ARE is .41 when y = .3 and decreases rapidly to .01
for y = .05.

7) The CRLB for y is inappropriate for y > 1.0 since the
Fisher information measure for y > 1.0 does not exist.
One might wish to compare V(y) to the asymptotic variance

of the maximum likelihood estimator of y based on a cen-

sored sample (see Harter and Moore 1967) ,

Thus a strategy emcrges. 1f one assumes the data to have a
Weibull distribution with an unknown shape parameter, one can select

almost optimal values of uy and u, (and consequently u2) according

3
to the shape sugpgested by quantile-box plots or other graphical
techniques. If the shape is "super exponential” (i.e. very skewed
right and no mode), then select u, 2 1.0 and uy in the range (.01, .63)

(a longer tail implies a larger value of ul). If the data seem to

be exponential (i.e. skewed right and no mode), choose uy = .97 and

e - A St b ‘hi




uy = ,0064. If the data are unimodal and skewed right, values of u

in the range (.6, .95) (a longer tail implies a larger value of u3)

3

and vy = .0002 will be almost optimal. If the data seem almost
symmetric, select ug = .55 and uy = .0002. If the data are unimodal
and skewed left, values of u, = .54 and u1 = .0002 will be almost
optimal.

The estimation of y can also be done iteratively. &An estimate
; based on one set of (ul, Uy, u3) values may suggest better values
of (u;, u,, u3)-

In Section 6.2 we i1llustrate the use of the estimator ;p of vy
for ten samples of data representing the tolerance of green sunfish

to thermal pollution.
3.3 A Goodness-of-Fit Approach for Determining Distributional Shape

In this section we describe how to apply the one population
goodness-of-fit (GOF) procedures of Section 3.1 to the estimation

of the common value of y in the k population model
= * Y = Cease
Qi(U) lJi + 0i [QO (U)] y 1 1, . » k

where Qo*(-) is assumed known and y is an unknown shape parameter,

and also to the ddentification of Qo in the model
Qi(u) =yt oy QO(U) s 1= 1, eaes k.

Estimation of y using GCOF. The proposed GOF procedure consists of

three parts:
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1) Form a grid {Yo . Yom} of potential values for vy.

l’
2) For each value of Yoin the grid, form estimates ﬁi(Y )
)

and oi(Yo) of My and o, using linear combinations of order

i
statistics (see Section 4.2 below). For the ith sample

~

form a transformed sample 0_i v (u) defiaed by

(o]

~ o ) 1/y
Qe - (v ) )
Qi,Y (Uj) -[ i | 1_“\3__:] »

° R
01(Yo)

uy = G -/n . 3=, ..o, 1=1, o,k

Next, pool the k transformed samples.

3) The hypothesis

v
R - o
H:o Q@) = ug + 0 (Q *(u))

can be written as

Qi(u) -y l/Yo
poo | A1 - Q *(u)
o o

g,
i

Under this hypothesis for a specified value of Y,» We can
consider the pooled transformed sample as a random sample

k
of size n = ¥ n, from a population with quantile function

i=1 i
Qo*(u). Select the best valuc of Y, to be the value that
gives the best agreement of the pooled transformed sample

and Qo*(u) according to the GOF criteria of Section 3.1.

Considerations in determining the grid {Yo]‘ cevs Y } oare:
om

s . cstesniatmsnisieiionion o stinine ; “~i-uﬂ-ﬂﬂﬂ-ﬂ-hmﬂji




1)

2)

3)
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Knowledge of the qualitative properties of Qi(u)(c.g.
symmetry, right skewness, or left skewness, and tail
behavior) obtained from quantile-box plots can help one
select a narrow grid of Y, values.

Computationally the procedure is expensive.

1f one specifies QO*(u) = =log(l -~ u) ({,.e. Qi(u) is in
the Weibull family), tables of'optimal spacings and coef~
ficients for the estimation of My and 9y using linear
combination of order statistics are available for limited
values of y. Programs to compute the optimal spacings and

coefficients for a wide range of y values should be made

available.

1)
2)

3)

Identification of Q using GOF. The above procedure is also appro-
U

priate for identifying Qo. The steps arc:

Specify a family of possible QO functions.

For eact functi f stimate d
cach QO mction form estimates “i(Qo) an oi(Qo)

of by and 01 using linear combinations of order statistics.

For the ith sample form a transformed sample defined by

. 0, (0 - n, Q)
Qg W= . S A R T "
"o Gi(QO)

and pool the k transformed samples.

The hypothesis

H = + = .« e
Ho Qi(u) My GiQo(u) . 1 1, , k
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is equivalent to

Thus under this hypothesis for a specified Qo, we can
consider the pooled transformed sample as a random sample
of size n =.L1 n, from a populétion with quantile function
Qo(u). Selzgt the best specification of Qo as the one that

gives the best agreement of the pooled transformed sample

and Qo(u) according to the criteria of Section 3.1.

Examination of how the misspecification of Yo affects the estimators
& and 8 for the one population case is examined analytically in
Section 4.3, In Sections 6.1 and 6.2 we illustrate the techniques
of didentifying Q0 using the professors' salary data of Hogg (1975)

and the green sunfish data of Matis and Wehrly (1979).

\
Sl 0 ale Sk i J
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4. ESTIMATION OF LOCATION AND SCALE PARAMETERS

The estimation of location and scale parameters is the second
stage in the k-sample quantile regression procedure as we perceive
it. Existing techniques for the estimation of location and scale
parameters in the one population case are also appropriate for the
estimation of location and scale parameters when there are k popul-

ations Satisfying
. + = l
Qi(u) = UI (o Q (u) Y j s 0--,k 9

where Hy and o, are the location and scale parameters respectively

of the ith population.

The location and scale parameter model for one population can

be written

F(x) = F <{§155>
o\ ¢

or
Qu) = u + UQO(U)

where Fo and QO are completely specified and u and o are unknown
location and scale parameters, respectively. One would like
estimators of p and o which are statistically efficient and rela-

tively simpic¢ to computc.

Estimators p and o of p and ¢ bhasced un linear combinations of

order statistics (LCOS) are defined by




=
[ ackal

i an(uj)

Q

I b.Qu,)
IFISTRE AR

where é(u) is the empirical quantile function, r is the number of
values of 6(u) (or the number of order statistics) used, and aj, bj’
j=1, ees, r, are specified constants., Two approaches to the choice
of r, the aj's and bj's, and uj's are discussed in the next two sec-—
tions. The first approach (Section 4.1) is due to Ogawa (1951) and
Hassanein (1971, 1972) and the second (Section 4.2) is due to Eubank

(1979). Section 4.3 investigates the estimation of v and 0 for the

Weibull distribution when the shape parameter y is misspecified.
4.1 Optimal Linear Combinations of Order Statistics

In this section we present the general work of Ogawa (1951)
and the work of Hassanein (1971, 1972) dealing with the selection
of optimal linear combinations of order statistics for the simulta-
neous estimation of y and o.

Using the model
Qu) =y +UQO(n)

and recalling Theorem 2.1.4 regarding the asymptotic distribution of
d(u), asymptotically Q(ul), ceey Q(”r) satisfy the conditions required
for the application of the (auss-Markov Theorem. Thus generalized

least squares may be used to obtain asymptotically best linear

unbiased estimators (ABLUE's) of ,, and/or o. Ogawa (1951, see

41
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Eubank 1979) gives general formulae for the estimators and their

asymptotic relative efficiencies(ARE's) when compared to the CRLB.

Let %) =0, U4 1 and foQo<'b) = foQo(ur + 1) = 0,
Def ine
2
Kll = r;l EfoQo(uj) i fOQO(‘{j—l)] . (4.1.1)
j=1 4 - u .
j j-1
2
(ot [Qo(uizfoQo(uj) - Qo(ui:;)foQo(uj_l)] ,
22
i=1 up TN (4.1.2)

.. r;ﬂfoQo(uj)—foQo(l{i_l)][Qo(uj)foQo(tjj)-Qo(uj_l)foQo(Ei_l)]
12

3= Y57 Y1 (4.1.3)
2
A= K11K22 - K12 ,
- rgl}fOQO(uj)_fOQO(Ei-l)][IOQO{Ej)Q(ui?_foQo(uj-l)Q(uj-l)] ’
o1~ I :
= RS
r+1
Kpp = b | Ve Q (0.)-q (u. VEQ (u, )
st [ 1% %0 1 et
[fOQo(uj)Q(uj)_foQo(uj—l)Q(uj—l)]

Then ABLUE's for the simaltancous cstimation of w and g are given

by

b= (

K22 Kor ™ ¥12 Ko?/ A (4.1.4)
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o = (K )/ b . (4.1.5)

11 Ro2 ™ %12 Xy
Notice that these are just the generalized least squares estimators

of v and o given by
u T -— - T -
(;)-s «cho ™y,

where

where C is given by (2.1.3).
For the simultaneous estimation of u and ¢ Ogawa (1951) defines

the ARE by

.. 11710
ARE(u, o) = - = = s
Var(y)var (o) - CovZ(u, 0)

where

=, o7

f' x) f (X)
1(0) - { o) 1 { “x)> ]
X £ (X)
E[X<’f‘(x)) J ]‘[(\ f(x)) ]




£ .Q (W, fQ (w)> <A (w)s Q (u)f Q (u)>
<foQ°(u). Qo(u)foQo(u)> <Q (W f Q(u), QO(U)fOQO(u)>
(4.1.6)
and
1
<f(u), g(u)> = {) £ "(u) g'(u) du

Examination of-the equations for the estimators and their ARE's
reveals that the equations are functions of the ‘spacings Ups ey
u. - Thus the problem reduces to finding a set of optimal spacings
which maximize the ARE of the estimators. For certain distributions
the expressions for the ARE's are quite complicated and numerical
methods have to be used to find optimal or near optimal spacings.
Fer a given distribution the results are usually expressed as tables

of optimal spacings u oyou and the corresponding coefficients

1’

br for the ABLUE's for various values of r.

a .y a , b
r

IEERERE

Hassanein (1971) uses this procedure to find optimal spacings

1’

and coefficients for the simultaneous estimation of j and ¢ for the
Weibull distribution. The tables he provides are a function of the
shape parameter, ¢ = 1l/y , and he provides spacings and coefficients
for r = 2, 4, 6 order statistics. The values of ¢ he considers are

3(1)10(5)20 . Subroutine QTOLSW uses Hassanein's tables for

(2]
It

6 values to compute estimates of ) aud ¢ for any of the above

r
specified values of (.
Hassanein (1972) considers the problem of selecting optimal

spacings and coefficients for the simultaneous estimation of the

location and scale parameters of the extreme value distribution.
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He provides optimal spacings for r = 1(1)10 order statistics. Let
us recall the property that 1f X has a Weibull distribution with

p = 0, then Y = log X has an extreme value distribution with the
location parameter ;' = log o and o' = y where ¢ and y are the scale
and shape parameters of the Weibull distribution. Thus one can use
the optimal spacings and coefficients for the extreme value distri-
bution to estimate the scale and shape parameters of the Weibull
distribution as long as the location paramcter u is known.

There is an extensive literature on the use of linear combin-
ations of order statistics to estimate location and scale parameters
for many common distributions. The approach adopted by Ogawa,
Hassanein, and others centers on maximizing the ARE of the estimators.
In the next section we present another approach to the selection of a
set of spacings and coefficients for optimal location and scale

parameter estimation.
4.2 Asymptotically Optimal Linear Combinations of Order Statistics

In this section we discuss the approach taken by Eubank (1979)
for the selection of asymptotically optimal LCOS for the simultaneous
estimation of y and ¢. Eubank formulates the problem within the
framework of continuous parameter time series regression. Using

Theorem 2.1.% and the model

Q(u) =y + o Qo(ll) .
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we have
/a/o £ (W) - ¥ - 0 Q (W] $ B  (4.2.1)
where {B(u), u €[0, 1]} is a Brownian bridge process.
Then we can write a regression model
F QAW = uf Q_(w) + 0Q_ (£ Q_(w) + o Bu) (4.2.2)

where Og = o//n is estimated as a free parameter and is not constrained
to be related to o. Eubank restates the problem of selecting a set of
spacings for the estimation of u and o as that of selecting an optimal

design for a Brownian bridge process.

Definition 4.2.1: An r point design for a Brownian bridge process,

and consequently for {foQo(u)a(u), 0 <u< 1}, is an r-tuple

{ul, N ur} with 0 < ul < ... < ur < 1. Denote by Dr the set of

all such r point designs.

Definition 4.2.2: For TcDr, let OT denote the best linear unbiased

estimator (BLUE) of 8 = (u, o) based on observations taken according

to T. Let 0 denote the estimator of 0 obtained using observations

over all of [0, 1].

Definition 4.2.3: A design sequence (Tr}r:l’

TrcDr , Is asymptotically

optimal for estimating 6 1f




]Vur—l(QTr)f - ,Vur—l(é)l
1im "‘—“"'_"l" 'A"“"—'*'"“_'l'",‘."= 1 .
r> inf [Var (OT)I - [var “(0)]

TcDr N -

Theorem 4.2.1 (Eubank 1979): Suppose foQo(u) and Qo(u)foQO(u) have

the representations:

1
foQo(u) = - fo (foQo(t) .KB(U. t)de ,
l "
Qo(u)foQo(U) = - fo (Qo(t)fooo(t)) Kg (u, t)dt

where
KB(u, t) = min(u, t) —u t

and (g(t))" denotes dzg(t)/d

" n T
(W) = -((EQ (), QIR ()")

Then the density

T +
) 174y y(w)

h(u) =
flldf(u)T I_l(()) l{l(u)]3du

where 0 = (p, o) and 1(0) is defined by (4.1.6) gcnerates asymptoti-

cally optimal designs for the simultancous estimation of p and o.

(see remark 2 on p. 43)

Remarks on Theorem 4.2.1:

1) The asymptotic optimality of the design means that as r,

47




the number of spacings, grows large, then the spacings
generated by Theorem 4.2.1 lead to estimators with approx-
imately the same efficiency as estimators based on the
optimal set of r spacings.

2) Optimal designs are those that minimize the generalized
variance lVar (;T . ;T)l .

3) The density h generates the asymptotically optimal design

o
sequence {Tr}r— where

1
T=wldy, w2 gl (E)) {
r r+1’ °’ +17 * " r+l 1
and
l
H(u) = /% h(t) de . ]
0

Eubank (1979) supplies general formulae for the coefficients aj and i

bj for the estimation of p and ¢ using the asymptotically optimal ‘
spacings to yield estimators
r
R - 104
= 3§ a, QH (1))
jop 3 r+l
R r -1
= £ b, QH “(_1))
j=1 3 r+l

where

=
|

= [K22(h)w“(j,h) - Klz(h)wo(j, h)] / a(h)

>
i

—‘[Kll(h)wo(j,h) - Klz(h)wu(j,h)] / a(h) ,
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Kij(h) is the same as Kii given by (4.1.1), (4.1.2) and (4.1.3) with

uj replaced by H_l(j/(r + 1)),

_ 2
a(h) = K (h) - [Klz(h)] ,

ll(h)K22

-1, 13y -1-1
foQo(H (r+l)) foQo(H (r+1)) foqo(H (r+l))

W (j,h) = -
y SN
SPRLY R D b N o)

[P I I |
£ 07 -t o a7ty

ST = )
H G- 7 ()

and

-1 i
O CE )
Wq(j,h) . 00 r+1 x
Kyp (W

-1 jJ =13 yy_ -1 j-1 -1,j-1
£Q T (0 T (=€ Q7 (e, wT ()
10§ _ -lj-l
H(3) - 065D

r+1
- -1 j*l -1+l -1.] -1 3
£,Q, (H (r+1))Qo(H (rtl))—foQo(H (r+1))Qo(H G
"—l(i{%’ - “~1(r£1)

While the approach is direct and once H(u) is computed asymp-
totically optimal spacings can casily be found, many distributions
do not satisfy the required representation for foQo(u) and
Qo(u)foqo(u). (see Eubank 1979, p. 116)

Eubank (1979) gpives tables of asymptotically optimal spacings
and coefficients for the strmultaneous estimation of y and ¢ based on
r =2, 7, 9 order statistics for the normil and lopistic distributions.

1t has been suggested (Eubank, personal communication 1980) that




e e

I
+
;
!

asymptotically optimal spacings for the sirultaneous estimation of

U and O can be generated for the Weibull distribution for certain

values of the shape parameter v.
4,3 Estimation of v and o when Y is Misspecified

In this section we examine analytically how the misspecifica-
tion of v affects estimators of u and o based on LCOS for the Weibull
distribution. Using estimators n(y_ ) and o(y_ ) based ou a range of

specified values, Yoo of the true value, y, of the shape parameter,

we have:

Blas(u(y ) = EGu(y ) -
T Y
= 7 - -
i aj( log(l uj)) ,
Blas(o(v)) = E((r) = o
r Y
= % b,(~log(l-u,)) -1,
jo1 3 j
Varu(y) = 5 | a;a,Cov(@(u), Qeu))
) o niéj[min(ui’uj)—ui%jJ
nji

Vaf(;(yo)) - ; byb cov(o(u ), Q(uj))
) 21 b b [min(ui,uj) -u u ]
n 3 (l—ui)(l-uj)[log(l-ui) Log(1-u,) }1=Y

50

]
(l—ui)(l-uj)[log(l—ui)log(l-uj)] 1=y
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MSE(n(y ))= E(u(y )= 1)°
(o] 18]

= [Bias(u(yo))]2 + Var(;(Yo)) R

MSE(O(YO))= E(()(yo)- u)z

- [Bias(”(yo))lz + Var(o(y ) .

We calculate the values of each of the above properties of
;(Yo) and ;(Yo) using the values of y and ! 333, .25, .20,
.167, .143, .125, .111, .10, .067 and .05 . The coefficients {éj}
and (bj} and optimal values {uj) are obtained from tables given by
Hassanein (1971) using r = 6 order statistics and the specified Yo
value. The MSE (mean squared error) is computed for samples of size
n = 20 and 50.

The results are summarized in Tables 4.1, 4,2, 4.3, and 4.4,
The first entry in each cell of the varlous tables 1is for ;(yo)
and the second entry is for ;(yo). Figures 4.,A, 4.B, 4.C and 4.D
represent plots of the properties of the estimators vs. the specified
value of Yo. Each curve on the plots represents a distinct value
of y as indicated in the key. Plotting the curves for all the values

of y on the same set of axes facilitates comparison of the properties

for different misspecifications.

Remarks on Table 4.1 and Figure 4.A:

Table 4.1 and Figure 4.A present the results of a bias study of

the estimators u(yo) and o(Yo). The following remarks can be made:

il it i —— ) _ N o J
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Table 4.1 Bias of u(yo), O(Yo)

YO
Y .333 .250 .200 .167 .143 A2 . .100 .067 .050
.333 .000 -.239 -.519 =814 1017 -1.424 1,734 -2.046 -3.618 -5.201
-.001 .264 .557 .360 1.163 1.479 1.792 2.105 3.684 5.270
.250 .163 .000 -.204 -.422 -.648 -.877 -1.109 -1.342 -2.522 -3.710
-.185 .000 .215 .440 .670 .902 1.136 1.372 2.556 3.747
.200 279 .159 .000 -.173 -.383 -.536 -.722 -.909 -1.855 -2.808
-.308  -.169 .000 179 .363 .548 736 925 1.875 2.830
.167 .367 274 .144 .000 -.149 -.302 -.457 -.613 -1.4C4 .2.201
-.393 -.288 -.149 .000 .153 .308 . 465 .662 1.416 2.215
.143 L4138 6N KLl 727 -0 -.132 0 -0 Mo R N 7
-.466 -.376 -.?5/ -.130 .00 L1348 1269 .404 1,088 1.775
125 .490 .429 L334 .227 .15 .000 -.116 -.234 -.830 -1.43
-.520 -.445 -.342 -.23t -7 .000 g 236 835 1.432
! 1 .535 .484 .400 .305 .206 L1046 000 -.105 -.635 -1.171
-.565 -.499 -.409 -3 -.209 -.105 .000 -.106 .639  1.176
.100 .573 .529 .454 .369 .280 L1388 .094 .000 -.479  -.961
-.601 -.544  -,463 -.3/7%  -.283 -.190 -.095 . 000 .481 . 965
.067 .697 .672 .624 .567 .508 L6 384 321 .000 -.324
-.719  -.685  -.632 -.573  -.512 -.450 -.386 -.323 .000 .325
.050 .765 .149 AK .671 .626 L5300 53] . 435 .244 .000
-.183  -.715%  -.720 -.676 -.630 -.543 -.536 -.488 -.245 .000
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1) Bias (;(Yo)) and Bias (;(Yo)) for Y = ,333 get large in
magnitude as Y, gets small. A consequence of this 1is that
if the data 1s almost symmetric and one specifies the data
to be skewed left (Yo small), then ;(yo) may seriously
underestimate p and ;(yo) may seriously overestimate o.

2) For data that is skewed left, the risk of a seriously biased

estimator when Y, is misspecified 1s not as great as in (1).

When y = .05 and one specifies Y, < .333, Bias(;(.333))= .8
and Bias(c(.333))=-.8 .

3) Bias(;(yo))=-Bias(;(yo)) for all values of y.

4) One might wish to approximate the bias curves as a function
of y and Yor While this would be useful in general, exam—-
ination of the general formulae for ;(Yo) and ;(yo) given

by 4.1.4 and 4.1.5 do not offer much promise of this,

Remarks on Table 4.2 and Figure 4.B

Table 4.2 and Figure 4.B present the results of a study of

Var(u(yu)) and Var(c(yo)). The following remarks can be made:

"~

1) 1t should be noted that the table and figure give
nVar(u(yo)) and nVar(;(yo)) since the variance of each ’
estimator is a function of the sample size,

2) 1In general Var(;(yo)) and Var(;(yo)) remain fairly constant
for Y, equal to .25 or .333 regardless of the true value vy. 1

3 Var(uly)) = Var(aly ).




Table 4.2 Variance of u(yo), o(yo)

Y .333 250 .200 . 167 .143 125 AN .100 .067 .050
.333 .358 .583 .963 1.502 2.184 .0{4 L9944 5.123  13.024 24.688
.428 749 1.237  1.877  2.667 .607 .696 5.936 14,391 26.612

.250 . 401 .472 .683 L9520 1.354 806 L3350 2,940 7.112 13.192
.360 .482 .733 1.068 1,482 .974 L5422 3.186 7.555 13.834

.200  .a21 .400 .530 .723 .967 260 .601 1.990 4.636 8.482
.343 .366 517 .728 .989 .300 .658  2.064 4,304 8.724

167 421 .343 .428 .564 .738 947 .189  1.465 3.332 6.013
B E) .297 .396 .642 .724 .94 192 1.475 3.382  6.102

143 a0/ .297 .355 456 .537 .745 927 1.135 2.534  4.533
316 .249 307 425 561 .723 .909 a2 2.538 4.556

.125  .386 .258 .298 L377 L4719 L6022 .744 .906 1.995  3.544
.293 213 .261 313 .448 574 .79 .882 1.979 3.537

N .362 .226 .255 .7 .399 .498 613 .743 1.618  2.859
L2713 L1384 .220 235 .369 .46% 585 AL 1.594 2.838

1000 .33 200 .220 0 .338 .420 .54 .622 1.341  2.360
799 161 L3 210 .09 .39 LADA .504 1.3113 2.332
067 731 116 120 142 173 A Py L3071 .645 1,120
173 092 .099 L1723 L1654 a3 237 .287 .622  1.094

050 163 N7y .0/5 .on7 105 1en 154 .183 L3830 U655
126 .059 062 .075 .093 AN )| 170 .363 .636

[T N S U
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4) For vy = .333 the variance is very large when Y, is mis-

specified. When y = ,05,the variance when Y, is misspec-
ified 1is not significantly different from when Yo is

correctly specified.

Remarks on Tables 4.3 and 4.4 and Figures 4.C and 4.D

Tables 4.3 and Figure 4,C present the results of a study of
MSE(U(YO)) and MSE(O(YO)) for the sample size n = 20. Table 4.4
and Figure 4.D present analogous results for the sample size n = 100,

The following remarks can be made:

1) For small sizes the variance term will dominate the bias
term when computing MSE. As sample size increases, the

effect decreases.

2) The curves for MSE look surprisingly like the curves for
the variance of the estimators. Examination of Table 4.1
reveals that [Bias(;(yo))]2 is approximately equal to
nVar(;(yo)) and [Bias(;(yo))]2 is approximately equal to

avar (o (v ).

3) Since we are comparing biased and unbiased estimators of
wand o, it {s reasonable to compiare the MSE of the

estimators. L




Table 4.3 MSE of u(yo), c(yo) n = 20

Y .333 .250 .200 .167 .143 125 N .100 .067 .050
.333 .004 .063 .279 .678 1,269 2.058 3,046 4,236 13,222 27.293
.004 077 .322 .758 1.390 2.222 3.256 4,492 13.717 28,035

.250 .031 .005 .048 .188 .433 .787 1.253 1,831 6.430 13.894
.038 .005 .053 .204 .463 .833 1.317 1.913 6.610 14.176

.200 .082 .029 .005 .037 .134 L300 ,537 .846 3.486 7.969
.098 .032 .005 .039 141 .314' .558 .875 3.563 8.097

.167 .139 .079 .025 .006 .030 01 22 .391  2.003 4,903
.162 .086 .026 .005 .031 104,228 .402  2.040 4,969

BLK) 103 g LORR .021 L0068 28 L NRN A7 1,190 3.161
.220 .143 .069 .021 .006 .0?5  .081 JA75 1,208 3,197

125 .244 .187 114 .055 .018 .006 .021 .064 .708 2.083
.274 .200 .120 .057 .018 .006 .021 .065 .718  2.104

A1 .290 .236 162 .093 .046 .016  .006 .018 .420 1.400
.321 .251 .169 .099 .047 .016 .006 .018 424 1.412

.100 .332 .282 .208 .139 .082 .039 .04 .006 .242 .948
.364 .298 .217 .143 .083 .040 .014 .006 .244 .955

.067 .488 .453 .390 .323 .259 .201 150 .106 .006 116
.519 .470 .40 .330 .264 L2040 152 .107 .006 J17

.050 . 587 .561 . 509 .451 . 393 .38 .286 .237 .063 .007
.614 .577 .519 .458 .398 34 288 .239 .064 .006
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Table 4,4 MSE of u(yo), (3(yo) n =100

YO

Y .333 .250 .200 167 .143 Jd25 .100 067 .050
.333 .018 .086 .38 .738 1.356 2:]79 3.206 4.441 13,742 28,281
.021 .107 372 .833 1,497 2.366 3.444 4,729 14,293 29.099

.250 .047 .024 .076 227 .487 .859 1.346 1.949 6.715 14,422
.052 .024 .033 .247 .522 .912 1.419 2,040 6.912 14,729

.200 .039 .045 .027 .066 73 .35 .601 .926  3.672 8.308
12 .047 .026 .068 .18 .366  .625 .958  3.755 8.446

167 .155 .092 .042 .028 .059 139 .268 L4493 2,136 5.143
75 .098 .042 .027 .060 042 276 461 2,175 5,213

.143 .209 .145 .080 .039 .029 055 .17 216 1.291  3.342
.233 L153 .082 .028 .028 .05 .18 219 1.310 3.380

125 .259 197 .126 .070 .037 .030 .05 .100 .788  2.225
.286 .208 .130 NA .036 .029  .050 110 W797 2,245

AN .305 .245 .173 109 .062 036 .03 . 048 .484 1.514
.333 .259 .178 AR .062 .034  .029 .047 .488 1,525

.100 .354 .2%0 217 .150 .095 .05%  .035 .031 .296  1.042
.374 .304 .224 .153 .096 .05 .033 .030 .297 1,048

.067 .497 .458 .395 .3729 .266 .20 .160 .18 .032 161
«526 .474 .405 .335 .270 L2120 .61 118 .03} .160

.050 .593 .564 512 .454 .397 L343 .?792 .245 .079 .033
.619 .580 .51 .461 .402 316 .294 .246 .078 .032
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4) When Y = ,333, MSE(U(YO)) and MSE(O(YO)) is very large

when Yo is misspecified. However when y = ,05, MSE(u(yo))
and MSE(O(YO)) do not change significantly when Yo is

considerably misspecified.

Based on consideration of the bias, variance, and MSE of each
estimator, the worst situation is to have data that is almost symmetric
and to misspecify it as very skewed left. The consequences of misspec-
ification are not severe when the data is skewed left. One will not
do too badly if he uses estimators of p and o based on specifying
Yo = «333, .25, or .20 regardless of whether the distribution is
skewed left or symmetric.

The techniques of determining y investigated in Sections 3.2
and 3.3 seem to lead to a specification of y that is in the range of
the true value of y. Thus estimators of u and ¢ based on such a

specification should yield reliable estimates of p and o.




5. QUANTILE REGRESSION AND COMPARISON FOR K SAMPLES
In the previous sectlons we described techniques to

1) identify Qo or estimate Yy (Section 3),

2) estimate u and o (Section 4)
in the model
Qu) = u+o0Q (v .

The results of Section 3 have been generalized to the k sample problem,
The results of Section 4 generalize directly to the estimation of
location and scale parameters using independent samples from k popula-

tions.

Let us restate the model for k sample quantile regression. We

assume

Qi(U)=ui+01 QO(U) » 1=1, oo k

where

1]

+
Ui au BuXi ’

+
oy ao BoXi ’
Qi(u) is the quantile function of the ith population, Qo(u) is an
unknown quantile function or Qo(u) = (Qo*(u))Y where Qo*(u) is

completely specified and y is an unknown shape parameter common to

the k populations, and X1 is a numerical characteristic of the ith
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population. We further nssunu'xl < e f’Xk for convenience.

A commonly assumed quantile regression model 1is
Q,(u) = A(w) + B(w) X

where A(u) and B(u) are unknown constants which depend on u. We
desire estimators of A(u) and B(u) for a specified value of u,
Section 5.1 discusses the contributions of Brown and Mood (1950)
and Hogg (1975) in the area of nonparametric quantile regression and
the work of Griffiths and Willcox (1978) in parametric quantile
regression. We also show the equivalence of the model of (5.1l.1) and
(5.1.2) to the model of (5.1.3) citing the work of Griffiths and Willcox
(1978). -
In Section 5.2 the generalized least squares technique is used
to estimate au, Bu, ao, and Bc . We state pertinent hypotheses about
the regression parameters and provide test statistics for the hypo-
theses based on the asymptotic distribution of the estimated parameters,
Section 5.3 discusses how the regression technique of Section 5.2
can be applied to the k-sample comparison problem under certain

restrictions. Test statistics for pertinent hypotheses about the

location and/or scale parameters of the k populations are provided.
5.1 K Sample Quantile Regression

In this section we discuss the nonparametric technique of Hogg
(1975) and the parametric approach of Griffiths and Willcox (1978) to

estimate k sample quantile (percentile) relationships. The data for
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the regression problem may consist of k random samples {Yil’ ooy

Y1n , 1=1, «ouy k} of the dependent variable together with the
i

corresponding values {(x i=1, ..., k} of the independent variable

i’

or it may consist of a bivariate sample {(X Yi) ,i=1, ..., n}.

i’
Brown and Mood (1950) propose a nonparametric technique to

estimate the median regression line for the model median (Y|X) =

a + BX based on examining the residuals of the regression. They

assume that for the bivariate sample {(Xi, Yi)’ i=1, ..., n} the

errors Y1 -a - BXi have the same distribution for all X. They then

estimate the median of the distribution of Y given X by

where

-~

median (Y1 -a - BXi) = 0 X, < median(X) ,

i

median (Yi -a - Exi) = ( X1 > median(X) .

In words they split the sample into two subsamples of size n, and

n,, N, = n/2, and then graphically find estimates a, 8 so0 that the
median of the residuals Y1 -~ a - axi is zero for each batch.
Hogg (1975) modifies the technique of Brown and Mood in a

. natural way to estimate the pth percentile of the Y's. Hoggs model is

\(p = Alp) + B(PIX




where Yp denotes

particular value

write

where Q +) is

le(

B(p) are unknown

the signs of the

the pth percentile of the Y observations for a

of X. In terms of the quantile function we can

Qle(p) = A(p) + B(p)X

the quantile function of Y given X and A(p) and
constants which may vary with p. By examining

residuals, Hogg estimates the regression line of

the pth percentile so that a fraction p of the data points are below

the regression line, Hogg proposes statistics for testing

H :

o QY]x(u) = AO(U) + Bo(u)x

where Ao(u) and Bo(u) are specified based on the binomial distribution

of the number of observations below the hypothesized regression line.

Several alternative procedures for splitting the data into more than

two groups are also proposed .

Griffiths and Willcox (1978) assume the model

where

Q.1 (W=u
_Y_I.Z(_~-.__i =Q (v) , for all X ,
fo] [o]
X
=a +
x T %y Bux *
Oy T @ + RUX .
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This is equivalent to assuming
QY|x(u) = A(u) + B(u)x ,
i.e. a linear regression model, where
Alw) = o +aQ (W |,
B(u) = B, + B,Q, (0 .

They then estimate @ Bu’ ao,Bc using iterative maximum likelihood

procedures on the weighted residuals

[Qy () = (o, + B/ (a + BX .

-~ ~

By weighting the estimates ;u, éu, s Bo using their estimated vari-
ance matrix, point estimates or interval estimates of A(u) and B(u)
can be computed. The authors use Qo(u) = o_l(u). The likelihood
equations do not have a closed-form solution,and Griffiths and Willcox
use linear programming methods to determine optimal values for the
parameters., They state that an advantage in using a parametric model
for the data is a gain in precision and efficiency,

In the next section we describe a parametric approach to solving
the k sample quantile regression problem based on a quantile function

approach. The procedure is more general than that of Griffiths and

Willcox yet incorporates parametric assumptions which give it certain

advantages over the nonparametric technique of 'ogg.
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5.2 A Quantile Function Procedure for K Sample Quantile Regression

In this section we generalize the model of Griffiths and Willcox
(1978) to allow any Qo(u). We assume
QY'X(u) = ny *+ oy Qo(u)
or more specifically

Qi(u) = by + 9y Qo(u) , 1=1, +.ey k (5.2.1)

where

=
(]

+ X
au Bu i
(5.2.2)
’ i=.l., oeoy k .

Q
]

ag + dei

~ ~

Using the estimates s o1 based on LCOS (Section 4), we obtain
estimates of “u’ Bu’ s BO using generalized least squares.,

The first step is to identify the Qo function common to all k
populations using the techniques of Section 3.1 and 3.3 or, if

appropriate, to estimate the shape parameter y of the specified

Qo* using the techniques of Section 3.2 and 3.3.

From each of the random samples {Y, ., ..., Y , 1=1, ...,k}
i1 ini
one forms estimates by and 9y of vy and 9y using optimal or asympto-

tically optimal LCOS.




Theorem 5.2,1: Assuming that the standard conditions for the validity

of the Cramer-Rao bounds are satisfied and that the spacings

{0, ul, sees U, 1 } satisfy

max (uj - uj_l)-» Qas r +» o
h|
1;
then i
Uy
u u d -1
Y n - +N2(02,021 (0) ) asr »

o

where y, o are computed using the optimal or asymptotically optimal i

LCOS. based on r order statistics and I(8) is the Fisher information

matrix of (u, g) defined by (4.1.6).

Proof: (nonrigorous)

EY

"~

The asymptotic zero mean normality of /n ( -

o o

follows from Theorem 2.1,4 and the fact that ({l) are ABLUE's for (u)-
a

(]

~

The variance of (u) is given by
ey




(see Ogawa 1951 or Eubank 1979) where K

11° K12’ and K22 are defined

by (4.1.1), (4.1.2), and (4.1.3). It is sufficient to show that

[—Kll Klz:]converges componentwise to I(g) as r + o,
K12 Ky

Consider K11 defined by

2
(£,0, (u)-FQ (u,_ 1 N*

u, = u,
j i-1

Using the Mean Value Theorem,

.0y (uy) = £,0,Cuy ) + (uj-uj_l)foQo'(uj*)

so that
f u,) - f .
%o " %0 <o twm
u, - u
] j-1
h * 0 =1 .'Th i h
where uj_1 < uj < uJ , uO-— R ur+l : - en we can write the

Riemann integral

1 2
1,9 6 (£.Q,"(w))" du

r+l 2
lim ¥ (I'O()o'(uj*)) (uj - "j—l)

r»o j=1

as

2
(%%5%)'fJ%03_ﬂ)

r»~ j=1 u, - u

3 3-1
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i
. |
I

The convergence of K, to 122(9) and X, , to 112(9) follow

analogously.,

Remarks on Theorem 5.2,.1:

1) A rigorous proof would entail examining the limits n + = y

and r »~ more closely as well as the asymptotic normality

of (u, ) (see Chernoff, Gastwirth, and Johns 1967, and

Stigler 1974), Theorem 2,1.4 holds for f{ixed Ups eevs U

but here we let r -+,

2) It seems clear that the asymptotically optimal spacings
generated by Eubank (1979) satisfy the conditioms of
Theorem 5.,2.1 since H(u) and H_l(u) are both defined on
[0,1]. One should substitute H-l(ril) for uj in the
expressions for Kll’ K12’ and K22 to get the variance of
Eubank's estimators.

3) 1t is not clear that the optimal spacings of Ogawa (1950)
satisfy the conditions of Theorem 5.2.1. Examination of
the ARE of the estimators of v and 0 using Ogawa's formula-
tion suggest that ARE(;, 8)+ 1l as r =, This seems to

indicate cthat the conditions on the spacings are satisfied,

Corollary 5,2.1: When there are k independent samples, the

estimators by and 9y based on LCOS from a random sample of

size ni from population { satisfy




-

I_l(O)) as r + »

and the k distributions are independent.

Theorem 5.2.2: a) When there are k populations satisfying the

-~ ~

model of (5.2.1) and (5.2.2), then ABLUE's (au, Bu, a s Bo) of

(Gu, Bu’ a_ »B) are given by

a

Au ~

8 k n -1 k n, 1 u
Mo tey®l s L ow S ®/ 1o | L)Y,
% - i=1 g2 i i=1 o2 LZ \3( o]

a i i i i

a

(5.2.3)

where 1(0) is the Fisher information matrix of (u,o0) defined by
(4.1.6), In is the n dimensional identity matrix, and the Kronecker
product, A® B (Rao 1973, p. 29), of an n x m matrix A = (Aij) and

anr x s matrix B = (Bij) is the nr x ms matrix

a B a B ... a B

and




b)

(51 (¢4
M p
\ B 8
-z PRV B u 4
v a a N, (9 » 1)
.0 o
Bo Bo

where

Using model (5.2.2) we can write

(5.2.4)

PS o
13
S S | N W A E T R .
o 0 0 1 X H € : R ,
i i 0.0 21
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Y

;' Using the asymptotic normality of Ei (Theorem 5.2.1), the

. %1
observations | W1 approximately fit the framework of the Gauss~-
o,
i

Markov Theorem (see Rao 1973,pp.544-546) and we can form the ABLUE's
(0 85

u 80) given by (5.2.3) which have

o’ 80) of (au: BU, a(}’

asymptotic variance given by (5.2.4).

Remarks on Theorem 5,2.2:

1) Notice that oi is an unknown parameter so that usually

an iterative estimation scheme is in order. However,

analogous to the treatment of 02 in the continuous para-

meter time serles regression model of (4.2,2), we can

2

treat oy as the scale parameter of a Brownian bridge

process (see Parzen 1979a). Hence under the assumption

it e I i e e

of (5.2.1), i.e. that Qi(u) is a location-scale shift of

PRPNIVESEON

some Q (u), an "independent" estimator of o, is provided
° ’ p P

i
by Oo where
i
- 1 -
GOi = fO foQO(u)qi(u)du .

~

This is the k=-sample analog of o defined in Section 3.1.
o

The estimator is consistent for o, when (5.2.1) 1s true.

Consequently we compute the estimators
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au
B k n <1k n .
- : u
A e e @[z L w:] 201, O Yoyt
a ~ = 2 i = 2 2 ~\o
a0 i=1 g i=l o i
8 i i
o
(5.2.5)
with estimated variance
- -1 k N -1
V=1 (0)() (r iw, ) (5.2.6)
- _ - i
i=1 02
i

3) Programs to implement the estimation techniques are avail~-
able. Subroutine KSAM forms quantile-box plots and uses
the goodness-of-fit techniques of Section 3.3 to determine
the distributional shape of the k samples. Subroutines

QTOLS, QTOLSC, and QTOLSW compute estimates u_, and 9 of

i

ui and 0i for a specified Qo function using LCOS., Subroutine
LSTOAB estimates the coefficients (au, Bu’ s 80) and their
variance using (5.2.5) and (5.2.6) based on the k pairs of
observations (;i’ ;i)’ i=1, ..., ko Listings of the
subroutines are on file at the Institute of Statistics,
Terxas A&M University.

4) Model (5.2.2) has been used for simplicity. A general

parametric model relating My and o to Xi is

il

f
My p K00

g = f(j (Xi,(;)o) 'Y i-= l, seey k .




Scatter diagrams of u, and 0, vs X

i 1 i will help determine

appropriate fu (+ 5 +) and £ (-, +) functions.

The final step in the k-sample quantile regression problem is

to estimate the parameters A(u) and B(u) in
Qi(u) = A(u) + B(u) X1 »y 1=1, ..., k .,

By making the substitution

A(u) = Gu + CV-O Qo(u) s
B(w) = B + B Q(u)
we obtain the estimators
A(u) = au + @ Qo(u) s
(5.2.7)
B(u) = B, + 8 Q () -

A significant advantage in this estimation scheme over other methods
is that one need not use sophisticated methods to estimate A(u) and
B(u) for each value of u for which a regression line is desired. One

can simply substitute the appropriate value of Qo(u) in (5.2.7).

Hypothesis testing procedures:

The first hypothesis of interest is

H : Q(u) = u, + o, Qo(u) y 121, voey k

i

"+ hwpothesis examines the adequacy of the model Qi(u) = ”1+°1Qo(")’

P p——
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To test this hypothesis we propose the GOF procedures outlined in

Section 3.3.

One might also wish to examine the adequacy of the linear model

1 and o Scatter diagrams of Hy Vs. Xi and g, Vs. X

provide a quick graphic technique to check the linear relationship

(5.2.2) for u 1

between the estimated parameters and the X values.

A hypothesis which states that there is no linear relationship

between the quantiles of Y and X is

To test this hypothesis one could use the joint asymptotic distri-

bution of Bu and Bc given by Theorem 5.2.2 and form the test

statistic
x> = (B, B )[Var(d, 8¢ u
= w B ar w8 a
(o]

VN Y
where Var(Bu, Bo) consists of the appropriate elements of the
estimated variance matrix given by (5.2.6). Under Ho, Xz has an
asymptotic x2 distribution with two degrees of freedom. Large values

of X2 indicate departure from Ho.

Other hypotheses involving a“,Bu,aU,Ba can be tested using

the asymptotic normality of (a“, 8 s ﬂ”). Some of these

w?

hypotheses are discussed in the next section.




5.3 The K-Sample Comparison Problem

The k-sample comparison problem is defined to be the estimation
4

and comparison of the location and/or scale parameters of k popula-~-

tions based on samples {Y ., ..., Y, , 1 =1, ..., k}. Usually one
il ini
assumes
Y'ui
Fi(y) = Fo ( g, )
i
or

Qi(u) = Ui + oi QO(U) y 1 =1, «ouy k

where ui and 0i are the location and scale parameters respectively

of the ith population and F0 and Q0 are completely specified. There
are a multitude of parametric and nonparametric procedures available

to compare the ui's or the ci's.

If one records some numerical characteristic, Xi, of the ith

population, e.g. treatment level, one can specify a relationship

e g suc
between (ui, i) and Xi such as

= +
u uu B;. Xi

op =a +B_ X . (5.3.1)
a o i

Thus the estimation procedures of Section 5.2 are also appropriate

for a particular type of location and scale comparison problem.




A hypothesis which examines the equality of the k location

parameters is

A

In Section 5.2 we state the asymptotic variance of Bu from which we

can form the test statistic

z, = Bu/( Var(Bu))I

-~ A

where Var(Bu) is the appropriate element of (5.2.6). Under Hu ,
zu has an asymptotic N(0, 1) distribution. For the alternative
H: B # 0 , one rejects Hu at level a if | 2, | > ¢_1(1 - a/2).

The test is not appropriate, however, for the general alternative
Ha: not all ui are equal.,

A hypothesis which states the equality of the k scale

parameters is

which under model (5.73.1) is cquivalent to

79
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Analogous to the test statistic for Hu s we can form the test

statistic, L for Ho defined by

LS PaN -~
2, = 8 /(Var(3 ))?

which has an asymptotic N(0O, 1) distribution under Ho'
One might also wish to test simultaneously the equality of

the ui's and the ci'sp i.e. test

or

To test this hypothesis use the test statistic X2 of Section 5,2

defined by
x2 = (8, 8.)(far (B, 617t K
u’ o u' o Bo

which under H0 has an asymptotic x2 distribution with two degrees
of freedom.

The advantages of this comparison procedure are:

1) There are no restrictions on Q0 (e.g. Qo = ¢—1).

’ 1 ]
s (or ui s)

when comparing the ui's (or Oi'S)' The standard ANOVA

2) Once can accommodate hetcrogencity of the o

procedure for the comparison of location parameters

PRI




1

assumes 0) = ... =0 and Q_ =¢ 7. The resulting F

1 k
statistic performs fairly well when either of the
assumptions are violated but its performance worsens
when both assumptions are violated particularly if the
ni's vary considerably (Box 1954) ,

3) In many situations (e.g. the Weibull distribution) the
location parameter 1s a threshhold value and not a measure
of central tendency. The mean and median of the distri-

bution will depend on scale and shape parameters as well

as the location parameter. Thus a procedure based on

comparing sample means or medians seems inappropriate

for comparing location parameters.

A substantial disadvantage of the procedure is that location
and scale comparisons based on the model of (5.3.1) have very low

power against general alternatives,

81
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6. EXAMPLES

In this section two published data sets are analyzed using the
techniques of Sections 3 through 5. The results of the analyses are
compared to results of other investigations of the data. Computing
programs to implement the techniques of data analysis described in
this dissertation have been developed by the author. The programs
make use of subroutines which implement the nonparametric data
modeling techniques of Parzen (1979). All computing was performed

on an AMDAHL 470V /6 computer at Texas A&M University.

6.1 Professors' Salary Example

Hogg (1975), Griffiths and Willcox (1978), and Angers (1979)
investigate data consisting of the salaries of 96 professors at a
major university as a function of their years in service. Each of
the investigators estimate linear percentile lines for p = .25, .50,
.75, The techniques of Hogg (1975) and of Griffiths and Willcox
(1978) have been described in Section 5.1. The approach of Angers
(1979) is to use grafted polynomials, a nonparametric technique,
where the curves for the 75th and 25th percentiles are restricted to
be symmetric about the curve for the 50th percentile. He uses
linear percentile regression curves. Table 6.1 summarizes the

estimated quantile regression coefficients obtained by each author,




Table 6.1 Estimated Parameters for Professors' Salary Data.

A(.25) B(.25) A(.50) B(.50) AG.75) B(.75)

Hogg(1975) 18.8 .300 20.0 .485 21,5 .625 !
' Criffiths & . .
i Willcox(1979) 17.50 .40 19.15 .48 20.81 +56 ?

Angers (1979) 18.173 .331 19.646  .478 21.119  .625

The data are presented in Figure 6.A.

Griffiths and Willcox state:

"There is no clear evidence in the data of departures from
normality by way of either highly skewed or heavily tailed
residual distributions. There is, however, a trend to

increasing spread ..."

However, generally with salary data one would expect the data to

be skewed right particularly when there are few years in service.
There seem to be several outliers in the data when there are few
years in service. While one might expect increasing spread of the
salary distribution ar years in service increases, the increase in
spread evidenced by this data does not seem substantial.

What one would like to detect is how the quantiles behave as
a function of years in service. One would like to determine which

of the potential curves in Figure 6,B represents the relationship

between salary quantiles and years in service and to estimate

the unknown parameters of the quantile regression function.




?0TAX9S Uy sieak

00 °hl 00°2l 0001 00°g 009 00°h 0g2 00°q
—+— —+— —— —+ + ~ —— ]
x - 8
- »
»
" - o x x +a
= » * m
» » » x »
»
* »
3 »* »* » » »
* * » » | v
* » * “ 4“l
= 8
]
x »* » 3 =
»
* » » x
»® - » - - »* * + “
[
- * » 8 o
la}
<
x X m
* x » » - I LV.R OrL
S’
» » » m
» » x
» x
»* x » x +8
x 8
»* ONW
x 8
%.N
8

(S26T 380H) eieq Laeyes ,si08s823j01g V'9 2inBrg

-

T T o ne e PR e e




85

Figure 6.B Possible Salary Quantile Regression Curves

Since the sample sizes are quite small for each value of X,
in order to use our quantile regression technique, it is necessary
to repartition the data by pooling hcmogeneous samples, Tukey (1977)
suggests that one way to partition Y observations when X is a random
variable is to use selected quantiles of X. In this study three
methods of partitioning the data were investigated:

1) pooling the data into four year intervals;

2) pool the data into five year intervals;

3) pool the data using similar midrange values which resulted
in five samples representing 3, 3, 4, 4 and 6 years of
service respectively.

It was found that pooling in four samples each representing five
years of service, was most satisfactory for this study. It seems that
there is a jump in salary a'ter five years of service. Another
method of partitioning the data 1is to pool the data into overlapping
samples.  However this technique violates the assumption of k
independent samples.

Based on pooling the data into four samples of five years each,

we shall describe each stage of the analysi., We use the mean value
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. Thus X, = 3, X

1 =8,

of X within each sample as the value of X

i 2

Xy = 13, X, = 18.

Stage 1: The quantile-box plots of all four samples are given
in Figure 6.C. The shift in location is very evident. The shapes
of the distributions seem compatible but all of the plots show
varying degrees of skewness. However all of the sample sizes are
relatively mall and it is difficult to identify incompatible
shapes from the quantile-box plots. The plots do suggest that one
should test the goodness-of-fit of the data to symmetric and slightly
skewed Qo functions.

Using the technique of Section 3.3 we test the goodness-of-fit
of the data to the normal, logistic, and Weibull (y = .333, .250, .20)
distributions,

By specifying Qo(u) = 0’1(u) (normal distribution) we obtain
the quantile-box plot of Figure 6.D for the pooled transformed data.
The plot is not incompatible with a normal shape except in the tails.
Figure 6.E is a plot of S(u), the raw transformation distribution
function. The line D(u) = u has also been superimposed on the
figure. Serious departures from the line D(u) = u are not obvious.
The value of ;(1) is .0206. Under Ho’ 2n;(v), v # 0 has an
asymptotic x2 distribution with two degrees of freedom. The .05
critical value of a xg is 5,99, The value of Zn;(l) is 3.95 where
n = 96 and ;(1) = ,0206. This is also evidence that the normal

distribution is compatible with the data. Finally CAT selects an
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Figure 6.D Professors' Salary Data;Quantile-Box Plot of
Pooled Transformed Data, Normal case
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Figure 6.E Professors' Salary Data; The Function 13(u), Normal case
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optimal order of zero which is consistent with the other diagnostics
in failing to reject a normal distribution for the data. Based on

this stage of analysis we conclude that Qi(u) =uy + oy ¢~ 1(u) ’
i=1, 2, 3, 4. Using a consensus of the diagnostics, the other

distributions, i.e. logistic and Weibull (y = ,333, ,250, .20) ,

are not as compatible wiﬁh the data as the normal distribution.

"~ -

Stage 2: We compute estimates Hys O of u,, o, using LCOS

i i* Ui

based on the normal distribution using the asymptotically optimal
coefficients and spacings (r = 7) of Eubank (1979). Figure 6.F

~

plots uy and oi vs Xi' The figure suggests a linear model for the

ui's but it appears that there is no definite trend for the Si's.

However we shall attempt to fit the linear model of (5.2.1) for

both My and g, in Stage 3.

i

Stage 3: We use generalized least squares to obtain the

following fitted regression lines for My and o4t

19.8642 + .5024 xi

L}

o 4 1.3914 + ,0363 X1

Since we suspected that o4 does not change significantly with xi’

we test H : g = 0 giving z = .8117. Based on this value we fail
(4 4] (3]

to reject Hc at the a = .05 level and conclude that Xi does not

have a significant linear effect on o A test of Hu: Bu = 0 gives

e
zu = 7,943 and we reject H at the .05 level.

e

et ekl sl o




Figure 6.F Professors' Salarv Data; Plot of p and
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Stage 4: Based on the results of Stage 3 and analogous

with previous investigations of the data we estimate A(u) and B(u)

for u = ,25, .50, and .75. The estimated values are

A(.25) = 18.926 ,
B(.25) = .466 |,
A(.50) = 19.864
B(.50) = .502 ,
A(.75) = 20.802 ,
B(.75) = .527 .

These values are comparable to those of Table 6.1.

While we reached the same general conclusions as the other
investigations, our technique has several distinct advantages over

the other procedures:

1) The procedure is flexible enough to incorporate virtually
any specified distributional shape. Griffiths and Willcox
(1978) only use the normal distribution. Angers (1979)
and Hogg (1975) use nonparametric methods.

2) The procedure is computationally simple. Both Griffiths
and Wilicox (1978) and Angers (1979) use techniques that
are fairly complicated and involve iterative solutions,
Hogg's (1975) technique is graphical and gseems very
subjective in all phases of estimation.

3) The procedure uses simple well-known procedures for

hypothesis testing.
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One should note the danger of trying to predict salaries at other

universities or outside the range of years of service using the
results of this analysis. As the years of service increase, the

quantile curves will undoubtedly flatten.

6.2 Green Sunfish Example

Matis and Wehrly (1979) illustrate compartmental modeling
techniques using data from a study to investigate the resistance

of the green sunfish, lepomis cyanellus, to various levels of

thermal pollution. The data consist of the time until death (Y)

of samples of fish exposed to water heated to a range of sub~lethal
and lethal temperature (X). As part of their analysis Matis and
Wehrly utilize samples at the temperature levels of 39.5°C and
39.7°C. They model the time until death as a three-parameter
Weibull distribution and estimate all three parameters for each
sample., LaRiccia (1979) uses the temperature levels 39.5°C, 39.6°C,
and 39.7°C and using a Weibull model, he estimates all three parameters
for each sample using minimum quantile distance estimators. The
estimates of Matls and Wehrly (1979) and those of LaRiceia (1979)
using r = 6 quantiles are summarized in Table 6.2. LaRiccia (1979)
states that for the temperature levels of 39,5°C and 39.7°C the data
fits well a Welbull distribution with the estimated parameters but

that the estimated parameter values for a temperature of 39.,6°C are

unrealistic.
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For this study we use the ten (k = 10) temperature levels
38.9°c, 39,0°C, 39.3°C (.1°C) 40.0°C and model each of the ten
populations as a location-scale shift of a Weibull distribution with
a common but unknown shape parameter, While this is a reasonable
model for a time until failuré distribution, it should be noted
that in the ichthyological literature tolerance times of fish are

often assumed to have a lognormal distribution.

Table 6.2 Estimated Parameters for Green Sunfish Data

»

"~ ~ ~ 1
u g c = (—
(Y)
a. 39.5°C
Matis and
Wehrly (1979) 96. min 1.00* 3029,
LaRiccia(1979) 135,37 79.46 1.15
b. 39.6°C
LaRiccia(1979) 91.3 4.96 x 10° 1.70 x 10*
c. 39.7°%
Matis and
Wehrly(1979) 35. min . 599% 2.486
LaRiccia(1979) 48.83 48,58 1.46

*the scale parameter Matis and Wehrly (1979) estimate 1is

k = (1/0)€ . The value o is obtained by o = (lf.)-l/Y




The reasonability of our distributional assumptions is investigated
in Stage 1 below. Our goals in this study are twofold:
1) to investigate if there is a significant difference in

the location and scale parameters of the time until

failure distributions for these temperature levels,

2) to estimate quantile regression lines for u = ,50 and
.90 (i.e. for the 50th and 90th percentiles of the time
until failure distributions).

The sample sizes are n, = 20 for 1 = 1, ..., 7, ng = 11,

i

ng =mn, = 10. Figure 6.G presents the data plotted as a function
of temperature level. The four stages of analysis are described

below:

Stage 1: The quantile-box plots of all ten samples are
given in Figure 6.H. The shift in location is evident but is not
uniform for all the temperature levels. The decreasing spread as
temperature increases is apparent by examining 61(.75) - 61(.25).
The plots of Gi(u) seem fairly symmetric except for i = 3(X3 = 39.3°C),

i=6(X, = 39.6°C), and i = 9(Xg = 39,9°C). For i = 3, 6 and 8,

6
ai(u) is slightly skewed left and for 1 = 2 and 9, Qi(u) is skewed

right, The plots suggest that a potential set of values of the
shape parameter might be in the range (.5, .2).

Using the estimator ;p of y defined by (3.2.6) and using
ul = ,0002, u, 3

we obtaln the estimate ;p = 416,

= ,0115, u, = ,5429 which are optimal for vy = .3,
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Using the technique of Section 3.3 we test the goodness-of-fit of
the data to the Weibull distribution for Y, = .333, .25, .20, .l67,

and .143 using the model
Yo
Qi(u) = ui + oy [-log(1-u)] , 1=1, «0.y, 10 .

By specifying Yo = ,333, we obtain the quantile-box plot of
Figure 6.1 for the pooled transformed data., We are testing whether
the pooled transformed data fits an exponential distribution and
the plot is not incompatible with an exponential shape except for
the two outliers in the right tail., Figure 6.J is a plot of B(u),
the raw transformation distribution function with the line D(u)= u
superimposed on the plot. Serious departures of B(u) from the line
D(u) = u are not evident except as u gets close to 1. The value of
;(2) is .0097 so that comparing 2n ;(2)(=3.317 where n = 171) to
the .05 critical value of X; (=5.99) yilelds further evidence for
failing to reject Yo = ,333 as the true value of y. Finally CAT
selects an optimal order of zero which is consistent with the other
diagnostics in accepting Yy T «333 as an appropriate value of y.

The values Yo = ,25 and .20 do not prove to be acceptable
values of Yy based on a consensus of the diagnostins from the ONESAM
analysis of the pooled transformed data. Based on this stage of

the analysis we conclude that

Q’(u) o +dl (-lop(1 - u)l'”‘ s, i =1, Juey, 10 .
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Figure 6.1 Green Sunfish Data; Quantile-Box Plot of Pooled Transformed
Data, Weibull (y = .333) Case
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Figure 6.J Green Sunfish Data; The Function D(u), Weibull (y =.333) Case
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Stage 2: We compute estimates We 9 of Wo o q using LCOS

based on the Weibull distribution with y= ,333 using the optimal

coefficients and spacings (r = 6) of Hassanein (1971). Figure

~

6.K plots y and g, Vs xt. The figure suggests a linear model for

a and the presence of a linear trend for ;i' It gshould be noted

that W is less than min (Y’ij

desirable. However the ui's vacillate so that a uniform decrease

in the threshhold of the tolerance times as the temperature increases

s 1 =1, ceey ni) for all i which is

is not evident. The failure to detect a uniform trend is attribu-

' table to competing physiological causes of death in the apecified ;

temperature range.

We can compare our estimates of y, o, and y(=1/c) to those of
Table 6.2 for i = 5, 6, 7 (39.5°C, 39.6°C, 39.7°C). Our values are
summarized in Table 6.3. The value y = .333 which we used is not
consistent with the estimate, 2, of LaRiccia but is consistent with

that of Matis and Wehrly for the temperature 39.7°C.

Table 6.3, Estimated Parameters of Green Sunfish Data, 1 = 5,6,7

;1 ;i ;1 ;p Yo
i=5, 39.5 109.319 95.899 . 206 416 <333
i =6, 39.6 63.926 91.753 416 416 .333
i~ 7, 39.7 29.708 66.847 416 416 .333
We shall attempt to fit the linear model of (5.2.1) for both
My and ¢, in Stage 3.

i




Figure 6.K Green Sunfish Data; Plot of ui and o, versus Xi
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Stage 3: We use generalized least squares to obtain the

following fitted regression lines for by and 0y

Pl 4601 - 114.25 X1

o4 = 6707 ~ 167.188Xi .

The asymptotic variances of o and o are very large. One solution
u

to this might be to rescale the X values by subtracting median (Xi)

from each one. If we let X * = xi— 39.55, we get the regression

i

lines

- *
My 89.560 124.185)(i

oy 102,0931 - 181.777X1*

Testing Hu: Bu = (0, we get zu = 9,31 and consequently we reject Hu.
Testing Ho: 80 = (, we get zo = 12,48 and we also reject Ho. The
hypothesis Hu is equivalent to the hypothesis that all ci's are
equal and Ho is equivalent to the hypothesis that all oi's are equal.

Thus for the k sample comparison of location and scale parameters we

conclude that the ”1'8 are significantly different as are the oi's.

Stage 4: Based on the results of Stage 3 we estimate A(u)
and B(u) for u = .50 and .90. The resulting quantile regression

lines are

Qi(°50) = 160.326 ~ 250,183 Xi*

Qi(.90) = 324.638 - 542,742 Xi*

104
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These lines are drawn on Figure 6.G.

The estimated quantile regression lines seem fairly reasonable.
Better knowledge of the physiological effects of thermal pollution
should lead to a better range of temperature levels where one effect
is the dominant cause of death., Larger sample sizes will result in

a better estimation of y and of My and o, which will improve estimates

i

of the quantile regression line., We are convinced that this technique

of quantile regression is appropriate and very useful for analy:ing

this type of data.




7. CONCLUSILONS

7.1 Summary:

In this dissertation we have investigated a quantile function
approach to the k sample quantile regression prohlem. By modeling
the quantile functions of the k populations as location-scale shifts
of a completely specified quantile function, Qo’ and then modeling
the relationship of the location and scale parameters My and oy to

a predictor variable X , four stages in the analysis have been

i’
delineated,

Stage 1, the identification of Qo’ is discussed in Section 3.
Multiple quantile-box plots are used as a quick graphic technique
to identify the qualitative characteristics, e.g. skewness, symmetry,
modality, and tail behavior of the distribution of each population.
Parzen's (1979) data modeling technique for one population is
described and extended to a goodness-of~fit procedure for k popula-
tions, An estimator, ;, of the shape parameter, y, of Qo is
given and is shown to have an asymptotic normal distribution,

Optimal spacings for y when Qo corresponds to the Weibull distribution
are given,

Section 4 describes Stage 2, the estimation of location and
scale parameters using k independent samples of data. Two approaches
to selecting optimal linear combinations of order statistics for one
population are discussed and shown to provide computationally simple
and statistically cfficient estimators of the location and scale

parameters of k populations, A study of bias, variance and mean




squared error of estimators based on a misspecified value of the
shape parameter of the Weihull distribution shows that mild mis-
specification of Qo does not seriously affect the estimation of

location and scale parameters.

Stage 3, the estimation of the parameters of a linear regres-

sion model for u, and ¢,, is discussed in the first part of Section

i i’
5. The estimated parameters and theilr joint asymptotic normality
are based on the generalized least squares technique, The model
used for the k sample quantile regression is flexible in that it
accommodates almost any specification of Qo yet leads to simple
estimators of the regression parameters.

Stage 4 is the estimation of and inference about quantile
regression curves. The estimation technique is simple and contrary
to many existing techniques, one can estimate regression curves for
several quantiles without having to reestimate the regression para-
meters. Inference about the curves is based on the asymptotic
normality of the estimated parameters,

Finally in Section 6, the technique is illustrated using two
data sets. In both cases an appropriate specification of Qo is
made and the estimated quantile regression curves fit the data well,
The results are consistent with those of previous investigators.

The two analyses illustrate the flexibility and simplicity of the k-

sample quantile regression procedure.
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7.2 Problems for Further Research

The most critical stage of the analysis as we perceive the
k sample quantile regression problem is the identification of Qé.
There are several areas for future investigation dealing with this
stage. There are a multitude of goodness-—of-fit procedures for one
population. The extension of these procedures to k populations and
a comparison of these k population procedures to our GOF procedure
should be conducted,

The estimator ;(and ;p) of the shape parameter y, is formulated
, and u, should

3
be available for distributions other than the Weibull, especially

in general terms. Tables of optimal values for ups U,
the lognormal distribution. The use of this type of estimator
should be extended to the case of censored samples. Other methods
of estimating Y, e.g. cross-validation techniques (Stone 1974),
might prove useful.

Optimal linear combinations of order statistics yield
estimators of location and scale parameters that are simple to
compute and statistically efficient but require tables of optimal
spacings and coefficients., Eubank (1979) suggests the investigation
of techniques to use spacings from a subinterval of [0, 1] for
distributions where the simultaneous estimation of location and
scale parameters 1is not possible using the continuous parameter
time scries approach. This would be usceful in the k sample quantile

regression problem also., Tables of optimal spacings and coefficients
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for a wider range of values of the shape parameter of the Weibull
distribution need to be made available,
While this formulation of the k-sample quantile regression

has proven 1its worth, it would be worthwhile to investigate a

quantile function approach to the k-sample comparison problem,
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