
AO7A095 077 TEXAS A AND 14 WIly COLLEGE STATION INST OF STATISTICS F/6 12/

QUANTILE FUNCTION APPROACH TO THE K-SAMPLE QUANTILE REGRESSIO--ETCUNOV 80 J M WHITE DAA629-80-C-0070
UNCLASSIFIED TR-B-4 AR0-16992.4- N L

EmIImIIIIIlII
IIIIIIIIIIIIIl
IIIIIIIIIIIIIl
IIIIIIIIIIIIIl
EIIEIIIIEEIIEE



TEXAS A&M UNIVERSIT/Y-// %

COLLEGE STATION, TEXAS 77843

INSTITUTE~ OF~ STATISTICS
PIo.) 713 - 845-3141

A QUANTILE EUNCTION APPROACH TO THE

K-SAMPLE QUANTILE REGRESSION PROBLEM *

James Michael White

Institute of Statistics, Texas A&M University

EF_ L r- - l

)Technical Repor No. B-4 FEB t 8 198

' 7NovembeT 1-980

Texas A & M Research Foundation
Project No. 4J6

"Robust Statistical Data Analysis and Modeling"

Sponsored by the U.S. Army Research Office
Gr AA G29-80-C-070 I

CProfessor Emanuel Parzen, Principal Investigator

C-J
-4J

Approved for public release; distribution unlimited.

81 2 17 269



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (ften Does Entered)___________________

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
IREPORT NUMBER GOTACIESION NO. 3. RECIPIENT'S CATALOG NUMBER

Technical Report B-4 II)P.f Z i 6 rA/
4. TITLE (mid ubtl.e) S. TYPE OF REPORT A PERIOD COVERED

A Quantile Function Approach to the K-Sample Technical
Quantile Regression Problem

S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) S. CONTRACT OR GRANT NUM11ER1(s)

James Michael White DAAG29-80-C-0070

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK
AREAS& WORK UNIT NUMBERS

Texas A&M University
Institute of Statistics
College Station, TX 77843 ______________

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Army Research Office November 1980
IS. NUMBER OF PAGES

117
-I4. MONITORING AGENCY NAME S ADDRESS(It different free, Controlling Office) IS. SECURITY CLASS. (of thie re"efl)

Unclassified

13. DECL ASSIFPIC ATIONI DOWNGRADING
SCHEDULE

1S DISTRIBUTION STATEMENT (of this RePort)

Approved for public release; distribution unlimited.

I7. DISTRIBUTION STATEMENT (of the ebetracl entered In Block 20, If different freem Report)

NA

IS. SUPPLEMENTARY NOTES

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

19. KEY WORDS (Contdin.ue ont revere* side if noceery and identify by block numnber)

Quantile Function, Quantile Regression, Location-Scale Parameter-estimation,
K-sample Comparisons.

20 Af*Sl RACT (Conlin"e on reverse side if necesery and identify by block number)

See attached sheet.

DD FO~, 1473 EDITION Of' I NOV 66 IS OBSOLETE Unclassified
S/N 10102. LF-0Ol- 6601 SECURITY CLASSIFICATION oF THIS PAGE (When D.xeo



20. Abstract /
-.In thisdiesertatiotr a procedure for estimating the parameters of

a quantile regression func'on is investigated. The procedure is based
on the work of Parzen (1979a) in the theory of quantile functions and
is applicable to a wide range of distributional families.

The procedure assumes the quantile functions of k populations to be
location-scale shifts of a common quantile function. First, a goodness-
of-fit procedure for determining the common distributional shape of the
k populations generalizes the one-population data modeling techniques
of Parzen (1979a). An estimator of the shape parameter of a distri-
bution is also investigated. The methods of Ogawa (1951) and Eubank
(1979) are then used for estimating the location and scale parameters
of the k populations. A regression model for the location and scale
parameters is specified, and the resulting estimators of the regression
parameters are used to determine a regression function for any quantiles
of the observed data. Finally it is shown that inferences about the
quantile relationships can be based on the asymptotic normality of the
estimated parameters. The procedures are applied to some published
data sets7
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1. THE PROBLEM OF K-SAMPLE QUANTILE REGRESSION

The technique of regression analysis is used to model the rela-

tionship between the mean of a response variable Y and a predictor

variable X. In some situations it may be more useful to model the

relationship between the percentiles (or quantiles) of a response

variable Y and the values of a predictor variable X.

Hogg (1975), Griffiths and Willcox (1978), and Angers (1979)

investigate the relationship between several percentiles of salary

level for professors at a major university as a function of their

years in service. Hogg (1975) uses a nonparametric graphic tech-

nique to estimate linear percentile relationships. Griffiths and

Willcox (1978) use a maximum likelihood approach based on assuming

the data to have a normal distribution. Angers (1979) adopts a

nonparametric approach using linear grafted polynomials. He assumes

that a specific dependent relationship exists among the various

percentile regression curves.

Reliability and survival analyies often lead to situations

where one is interested in modeling percentiles of the survival

distribution as a function of the treatment, e.g. modeling the

median survival time of fish as a function of water temperature.

Matis and Wehrly (1979) investigate the resistance -f the green

sunfish, Leponmis cyanclius, to various levels of thermal pollution

Citations follow the format of the ,Journal of the American

Statistical Association.
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using a compartmental models approach. The data consist of survival

times of fish at fixed temperatures. They assume the data to have a

three-parameter Weibull distribution and estimate all three parameters

for several temperatures. LaRiccia (1979) analyzes the same data

using minimum quantile distance estimators of the parameters. Our

goal is to estimate the relationship between the percentiles of the

survival times and the test temperature.

Thus we consider the following statistical situation. Consider

random samples from k(k > 2) populations, i.e. for i = 1, ..., k, let

1Y il .... Yin, I be ni independent observations of a random variable Y.

which has cumulative distribution function

F.(y) = Pr(Y < y)

and quantlle function

-i

Qi(u) = FI  (u) inf ty : Fi(Y) > u}, 0 < u < I

Associated with Y is a numerical characteristic, Xi . of the ith

population and we assume for convenience that X I ... < Xk

Thus X. .... Xk would be the various years in service or water

temperatures in the examples cited above.

The k sample quantile regression problem is to find estima-

tors of and make inferences about A(u) and B(u) In the k-sample

regression model

Qi (u) A(u) + B(u) X , I = 1, ... k

i
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The purpose of this dissertation is to investigate a method for deter-

mining such estimators based on the approach to quantile functions

presented by Parzen (1979a).

We assume a location-scale shift model for QV, i.e. that

Q9 ...'I Qk can be written as a location-scale shift of some common

quantile function. We write

Qi(u) = Pi + 0i Qo(u) , i = 1, ... , k

where pi and o are the location and scale parameters respectively

of Qi and where either the form of Q is unknown but does not depend

on any unknown parameters or Q (u) = [Q *(u)]Y where Q *(') is a
0 0 0

known, completely specified quantile function and y is an unknown shape

parameter. For example, we may believe that Q corresponds to either a

standard normal so that

Q (u) = D-1(u)

where

P(y) = fy (1//27 ) exp(-t 2/2)dt

or a standard lognormal distribution so that

Q 0(1) = exp( -1(u))

On the other hand we may believe that Q 0 corresponds to a three-para-

meter Weibull distribution so that

Q (u) = (-log(] -u))



where the shape parameter y needs to be estimated.

We further assume that vi and a. are linearly related to Xi

i.e.

i~ = 1 + 8 X

(= aC+ X ,i=, .. , k .

Thus, we can write the quantile regression model

Qi(u) = [a + 6 X i + [I + B Xi ] Qo(u)

= (a1 + a Q o(u)] + [8 + B Qo (u)jX i

The aim of this dissertation is to investigate

1) methods for identifying the shape of Q09 i.e. either choose

a completely specified function from possible contenders or

estimate y,

2) methods for determining estimators C, B' , o , a 0, of et,

B, U , %° , ard

3) the properties of estimating A(u) and B(u) by

A(u) = a + a aQ (u)

B(u) = B + P Q(u)II (

Section 2 presents basic definitions and theorems regarding the

quantile function and the empirical quantile function. The Weibull

distribution and its properties are also discu 3sed.
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In Section 3, Parzen's (1979a) nonparametric data modeling

method of determining Q, for one population is described and exten-

ded to determining a common Q for k populations. An estimator of
0

the shape parameter y is proposed and its properties are investigated.

In Section 4 we discuss two formulations for estimating location

ind scale parameters using linear combinations of order statistics.

The approaches are due to Ogawa (1951) and Eubank (1979).

In Section 5 we develop new methods for k-sample quantile

regression using the models discussed above. Hypothesis testing pro-

cedures are provided. The application of the technique to a particu-

lar type of location-scalo comparison problem is also discussed.

Finally in Section 6 the techniques of Sections 3 throigh 5

are applied to the analysis of the Hogg data and the Matis and Wehrly

data.

Section 7 consists of conclusions and suggested topics for

future research.
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2. QUANTILE FUNCTIONS AND TilE WEIBULL DISTRIBUTION

In Section ?oi we introduce the quantile function notation of

Parzen (1979a) and state some useful theorems and properties of the

quantile function. In Section 2.2 we define the Weibull and extreme

value distributions and provide plots of the Weibull quantile and

density quantile functions for a range of values of its shape para-

meter. Lower bounds on the variance for unbiased estimators of the

parameters of the Weibull distribution are given.

2.1 Definitions and Notation of the Quantile Function Approach

We adopt the quantile function notation of Parzen (1979a).

Some useful definitions are:

1. The cumulative distribution function (cdf) of a random

variable X is defined by F(x) = Pr(X < x).

2. The quantile function of X, Q(u), is defined by

Q(u) = F- (u) = inf{x: F(x) > u}, 0 < u < 1

3. The probability density function of a continuous random

variable X is defined by

f(x) = d F(x) / dx

so that
x

F(x) f f(t)dt
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4. The quantile density function, q(u), is defined by

q(u) = dQ(u) / du , 0 < u < 1 .

S. The density quantile function, fQ(u), is defined by

fQ(u) = f(Q(u)) , 0 <u< 1

The sample analogs of the above quantities are presented in

the following definitions, Let X < .. < Xn; n be the order

statistics of a random sample of size n from a population with cdf F.

6. The empirical distribution function (edf), F(x), is given

by

F(x) = 0 if x < X; n

= j/n if X < x XXj;n- j+l;n

J = 1, .,, n-i

=1 if X < x
n;n -

or n

F(x) =I/n F 6 (x)
j=l

where

65x() W 1 if X < x

0 otherwise .
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7. The empirical quantile function, Q(u), is defined by

Q(u) = F (u)

= XJ; n , (j-l) /n < u < J/n

j n
j = 1, ..., n .

While this is a natural definition of Q(u), two other continuous

definitions discussed by Parzen (1979a) are useful in both theoret-

ical and applied problems. The piecewise linear version of Q(u) is

defined by

Q (u) = n[j/n-u]Xj-I;n + n[u - (J-l)/nI XJ; n

(J-l)/n < u < j/n

J = 1, ..-, n ,(2 .)

where XO; n is a natural minimum, i.e. a lower bound on the

range of the data, if one exists, and X = X1; n otherwise.

The shifted piecewise linear version of Q(u) is defined by

QS (u) = n[(j + .5)/n - u]jy; n + n[u - (J - .5)/n]XJ+I: n

(j - .5)/n < u < (j + .5)/n,

J lev, -u, nf i .

We leave QS (u) undefined for u < .5/n or u > I .5o/n
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8. If we use Qs(u) then we can define the empirical quantile

density, q(u), as

q(u) = dQs(u)/du

= n(XJ+l;n - Xj; n ) (j-.5)/n < u < (j+.5)/n,

jn (2.1.2)

and the empirical density quiantile function, fQ(r), as

fQ(u) = I / q(u)

Two useful properties of the quantile function are given in

Theorems 2.1.1 and 2.1.2.

Theorem 2.1.1: Let F(-) be a strictly increasing cdf and let g(.) be

a strictly increasing continuous function. If Y = g(X), then

Qy(u) = g(Qx (u)). If g(o) is strictly decreasing, then

Qy(u) = g(Qx(l - u))

Thus, if Y - p + oX , then Qy (u) = + Qx (u), and if Y = log(X),

then Qy(u) = log(Qx(u)). This property of the quantile function pro-

vides a natural representation for parameter estimation since it

allows one to formulate the estimation of location and scale para-

meters as the estimation of parameters in the simple linear regress-

ion of Q on 0 if Q is a simple known function.

Theorem 2,1.2: Let fQ(.) and q(.) be the density quantile and quan-

tile density functions corresponding to Q(.). Then fQ(u) = l/q(u).
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Definitions and useful theorems regarding the asymptotic dis-

tribution of Q(u) follow.

9. A Brownian Bridge process {B(u), 0 < u < 1) is a zero mean

normal process with covariance kernel

K (uI, u2 ) = Cov(B(u1 ), B(u2 )) = min(u1 ,u2) - U1 U2

Theorem 2,1.3: Under suitable conditions (see Csirgg and Rgv'sz 1978)

n fQ(u)(Q(u) - Q(u)) 4 B(u), for all u

where the symbol 4 denotes "converges in distribution to".

A special case of this convergence theorem is the following:

Theorem 2.1.4: Let F be an absolutely continuous cdf with pdf f and

let 0 < u1 < . u.< Ur < 1. If fQ is differentiable in a neighborhood

of ui and fQ(ui) 0, for all i, then

- d
V (9 - 2-,- Nr(0 r' C)

where

Q =(Q(u), .. , Q(ur))T I

T
Q (0, W" Q(0) )

0= (0, . ,O) T ,

OEM-
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and

C = (C )

where

C C u1( u <U<)

ij j i fQ(u )fQ(uj) , i < <

2.2 The Weibull and Extreme Value Distributions

In this dissertation the basic model for Q(u) is to assume

Q(u) = if + y QOCU)

where Q (u) is a completely specified quantile function except for a

possibly unknown shape parameter and W and o are the location and

scale parameters of Q. Two quantile functions that have proven to be

particularly useful in a variety of statistical problems are those of

the three-parameter Weibull distribution and the vxtreme value distri-

bution. The Weibull and extreme value distributions have been used

as models in reliability, survival studies, quality control, hydrology,

etc. (see Dubey 1967; Hassanein 1971; Johnson and Kotz 1970).

Definition: A continuous random variable Y is said to have the three-

parameter Weibull distribution with parameters ii, o, and c if

F(y) = 0 if y < if

= I - exp{-[(y - if)/ 1 ]C If y > ii (2.2.1)

wre, c are greater than zero.

%-W
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The parameters p, a, and c(= 1/y) are the location, scale, and shape

parameters,respectively. For a random variable following a three-

parameter Weibull distribution we have

IQ(u) = P + o[-log(l-u)] , y - , 0 < u <1

Q (u) = I-log(I-u)j,

fo(y) = c yC-l exp(-yc)

and

f Qo(U) =(l/y)(l-u)[-log(l-u)] l-Y

By varying the shape parameter y, one can fit a wide range of

unimodal distributional shapes from skewed right to almost symmetric

to skewed left. The role oi p is as a threshhold value (or starting

value), i.e. Q(O) = v, rather than as a measure of central tendency.

Figures 2.A to 2.J display the Weibull Qo and fo Q functions for

0 00y : .l(.l)l.

By letting c = l(or 1 1) in 2.2.1 we obtain the exponential

distribution, For c < 3(or y > .333) the distribution is skewed

right, When 3 < c < 4 (or .25 < y < .333) the distribution looks

more symmetric. For c = 3.6 the Weibull density is similar to 'hat

of the normal giving VI =  0006 and b2 = 2.7167 (KUbler 1979)

where Yb is the skewness measure and 1)2 measures kurtosis (see Rao

1973, p. 101). For c > 4(or y < .25) the distribution is skewed left.
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Def ini-t ion: I f the cont inUous random variabli Y has thle t hree -

parameter Weibull distrihut ion, then X =-log(Y-w) is said to have

the extreme value distrihUt Ion.

';itce X = -log(Y - ji) we have by Theorem 2.2.1 that

Q *(U) =-log Q (I -U) and

F(y) = exp(-expt-[ (y < ')~']~

Q(u) 11,i + o',{-log[-log(u)], 0 < u < 1

f 0 y) =exp{-I[y + exp(-y)])

and

f QO (u) = -u log

where o' =log oi and oi' = ' , and oi and are the Weibull scale and

shape parameters, respectively.

The Cramer Rao Lower Bound (CRLB, see Rao 1973, pp. 324-331)

T
for the' variaince of unbiased estimators 0 =(tI, 0, c ) of

0 ~,a, c) Tis given by Kilbler (1979) as:

Var(O) > 1n 1 (0)

where for matrices A and B the notation A > B means that A - B is

positive semidefinite and 1(o) =(I (()))i.; the Fisher information
- j i

matrix (see Rao 197 1, p 3 1l) of 11, oi, c and is given by
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i( = - r(h2) provided c > 2
2

i22(8) = (C 2
-2(c)

133(0) = H1e 
2

112 (0) = 1(0) = 72 r(h 1 ) provided c > 1

i3 (80) = c-i r(hl)H2 provided c > 1
13 31 =a 31(2

and

123(0) = I =() 0(2)

where

HI = '(1) + %02(2) -1 l82368066,

H = (h ) + I ,

h = 1 - j/c , j = 1, 2,

r(x) = ftX-l e- tdt is the Gamma function,

0
=(x) d log r(x)/dx = r'(x)/r(x) ,

and

'(x) =d O(x)/dx .



20

3. IDENTIFICATION OF DISTRIBUTIONAL SHAPE

The identification of the shape of an unknown distribution

is the first stage of analysis as we perceive the k sample quantile

regression problem. In this section we describe three quantile func-

tion approaches to identifying a distributional shape.

In 3.1 we discuss quantile-box plo.ts and present the nonpara-

metric data modeling and goodness-of-fit procedures for one popula -

tion developed by Parzen (1979a) to determine Q0. In 3.2 we discuss

a parametric approach to estimating the shape parameter y in the

model:

Qi(u) = Ii + o.(Q *(u)) , i = 1, , k

where Q*(,) is a completely specified quantile function. The pro-

cedure is a generalization of one proposed by Dubey (1967) for

estimating the shape parameter of the Weibull distribution. In

3.3 a procedure for either determining Qo for k populations or

for estimating y is discusscd The procedure is based on the

goodness-of-fit procedures of Parzen.

3.1 Determination of Q.

In this section we describe the quantile-box plot approach

(Parzen 1979a) to represent data and compare k samples of data.

We discuss how quantile-box plots can a=4ist one in determining

Q0 for the model

I1A
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Qi(u) = i + a Q (u) ,i= ... , k

The nonparametric data modeling techniques and goodness of fit

procedures for one population developed by Parzen (1979a) are

also discussed.

Quantile-box plots are described by Parzen (1979a) as a

"quick and dirty" approach to exploratory data analysis. The

technique is a variation of the box and whiskers technique intro-

duced by Tukey (1977). Quantile-box plots assist one in determining

the qualitative characteristics of Q(u), e.g. skewness, symmetry,

modality, and tail behavior. However the study of quantile-box

plots is an imprecise science; much of the interpretative value

of the plots, especially for small sample sizes, depends on the

predilections of the iivestigator.

A quantile-box plot of a sample of data consists of a graph

of Q(u) (we use Qs(u)) as a function on the unit interval 0 < u < 1)

on which a series of boxes is superimposed. The boxes have as

vertices (p, Q(p)),(p,Q(l - p)), (I - p, Q(L - p)), and (1 - p, Q(p)).

One usually chooses p = .25, .125, and .0625 Within the H box

(p = .25) one can draw a horizontal median line through Q(.5).

Parzen (1979b,p.243) gives an approximate 95% confidence interval

for the median:

Q(.5) + (2/n)[Q(.75) - Q(.25)]
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One can use the quantile-box plot technique to classify the

distribution of data as normal shaped, skewed right vs. skewed left,

or long-tailed vs. short-tailed. One can detect modes as flat spots

in Q(u) and the presence of two groups as jumps in Q(u). Intervals

of sharp rise outside the D box (p = .0625) cause one to suspect the

presence of outliers or a long-tailed distribution. Skewness and

symmetry can be checked by inspecting the shape of Q(u) within the

boxes and also by examining the position of the II box within the E

box (p = .125) and the E box within the D box.

One can use multiple quantile-box plots to check if k samples

of data have homogeneous shapes except for a location-scale shift.

Figure 6.C (p. 87) shows the quantile-box plots for four samples of

the Hogg (1975) professors' salary data. Comments on the plots are

given in Section 6.1.

Parzen's approach to determining Q For a random sample

{XI, ,.., Xn of a continuous random variable X with cdf F(x)

and quantile function Q(u), one hypothesizes a location-scale model

H,: Q(u) = W + o (U(U) . (3.1.1)

Parzen (1979a) discusses procedures which provide a test of B. and

also yield estimators of the true fQ function when H is rejected.0

The situation of interest is when Q is unknown and one would like
0

to test 110 for various specifications of Q,) (e.g. normal vs.

logistic vs. Cauchy).
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Parzen defines the following quantities:

1) the transformation density, d(u), defined by

d(u) = (1/ao) f Q (u)q(u) ,O0< u <1I
0 0 0

where

a f If Q (u)q(ti)dit
0 0 0 0

f Q 0(u) f = Q u

q(u) dQ(u)/du

2) the transformation distribution, D(u), defined by

D(u) = fud(t)dt

3) the complex-valued transformation correlations, P(v),

v =0, + 1, + 2, ... , defined by

P(v) f 1o exp(2 Tr iuv)d(u)du

One can estimate the above quantities using:

4) d (u) - (1/ a 0 )f 0 % (u)q(u) ,0< u- 1I where

rT0 0 f f (( Q0 (u)q(u)du,

q(u) is defined by 2.1.2

5) D(u) fu d(t)dt
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L
6) P(v) = f exp(2 7r Iuv) d(i)du, v = 0, + 1,.....

One can obtain smoothed estimators of the above quantities using

antoregressive methods:

- -2
7) dI(u) = Km I gm(exp(2 V iu))-2

where

m
gm(z) = 1 + a ()z + ... + i (m)z

a m(1), am I (m) satisfy the normal equations

m m
p(-v) + am(l)p(l - v) + ... + am(m)p(n - v) -- 0,

v =l, ... ,m ,

K I + a (i)() + ... + a (m)p(m)
in m in

and m is the order of the autoregressive smoothing;

8) Dm (u) = f0 dmt dt

9) 2
g In g(exp(2 it iu )) f0Q0 (u)

foIg(exp(2 iT iu))1 2 foQ (u)q(u)du

0 m0

Parzen proposes minimizing the CAT criterion defined by

in ^-I1 -1

CAT(m) = 1/n E K K
j m
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to determine an "optimal" order m of autoregressive smoothing. One

can also select an appropriate order of smoothing by visually check-

ing how well D (u) fits D(u).m

The hypothesis H : Q(u) = i + oQG (u) is equivalent to any of

the following hypotheses:

1) d(u) = 1

2) D(u) = u

3) p(v) = 0 for v # 0

The following test statistics could be used to test Ho:

~ i

1) max d(u) or f0 log d(u)du, 0 < u < 1

2) max ID(u) - ul, 0 < u < I

3) pI-(v)2 l , v  o .

Parzen (1979a) provides references for the properties of these

statistics. When CAT selects m = 0, Parzen regards it as confir-

mation of H
0

A useful diagnostic discussed by Parzen (1980) is the p

mode or mode percentile. It is defined to be the value of u at

which fQ(u) achieves its mode (or maximum value) when fQ(.) is

unimodal. When the p mode exceeds .5 the distribution is skewed

left and when the p mode is less than .5 the distribution is

skewed right.

The function fQ m(u) is a useful estimator of fQ(u) even when

one has sufficient evidence to reject HV. By examining the interval

of u values for which D (u) (or D(u)) is approximately linear in u,in
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one can detect which parts of tho data seem to fit the hypothesized

Q function.

The computer package ONESAM (Parzen and White 1979) provides

plots of Q(u), q(u), and fQ(u). By specifying any of several famil-

iar Qo functions, plots of d(u), D(u),Ip (v)I D(u), and fQm(u)

(for several orders m) are produced along with the goodness-of-fit

diagnostics discussed above.

3.2 Estimation of the Shape Parameter

Motivated by the fact that Q(u) is of the form

Q(u) = j + a (Qo*(I))y (3.2.1)

for X having the three parameter Weibull distribution (with

Q *(u)= -log(l-u)) and the three parameter lognormal distribution

(with Qo*(u) = exp[- l(u)], see Johnson and Kotz 1970, p. 112), we

investigate the estimation of the shape parameter in (3.2.1).

We first find an estimator y of y for the one sample case and

then show how to pool estimators yi, .... k obtained from samples

from k populations, the ith of which has quantile function

Qi(u) + 0 (Q *(u)) , (3.2.2)

to produce an estimator of y

Theorem 3.2.1: Lot 0 < u1 < U2 < u3 < I be values satisfying

Q* (u2) = (Q*(u I )QO*(u ))

i.)
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Then

2 log{[Q(u3  - Q(U )]/IQ(u2  - Q(U M] (3.2.3)

Y 3=

log [Q 0*(u 3)/QO*(u IM

Proof:

For uI< U we have

Q~u 6x + a (Q*(uj )1 , , 2, 3

Then

Q(u3) - Q(U2) (Q 0*( 3)) y - (Q 0A(u 2))

Q(u2 ) -Q(u1) (Q 0*(u 2)Y - (QO*(U ))y

Since Q 0*(u2) = IQ*(ul)Q*(u3)J1 then

Q(u 3  Q Q(U2) = QO*(3

Q(u2) -Q(u 1) LQ*(UI1F

and

log([Q(u 3) - Q(2)1/(2) - Q(u )11 "' u)/Q*(ul)

Hence

2 log( 19(ti 3) - 0612 1]/[Q(t1) Q(u )p1
Y -2----- -- -- -

log[Q 0*(u 3 )/QO*(ul) I
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Theorem 3.2.2: Let

2 log{[Q(u 3 )-Q(u 2 ) I/IQ('I 2 ) - Q ( u 1 )11 (3.2.4)
¥ = _ _ _ _ _ _ _ _ _

log [Qo*(U 3 )/Qo*(ul)]

d
Then n(y - y) -d N(0, V(y))

where

VW 4 [a d2 (d + 2
d 2 1 1d 21 + a 2 2  21 32 2 + (3 3 d 3 2d

2 2
-2o12 (d21 + d21 d32) + 2o13 d21 d32 - 2o23 (d32 + d21d32' (3.2.5)

d = log[Q *(u 3)/Qo*(Ul)j

dij i/M(Q *(Ui ))Y - (Q *(uj))Y

a..- mtn(u., u.) -utul

f0Qo* (u) foQ* (u )

where f 0 Q0 * is the fQ function corresponding to Q*

Proof: By Theorem 2.1.4, we have

Vn(Q(u 1 ) - Q( u), Q(113) - Q( 3 ))T - N3 (03. C)

where

C C = 1 (1 - u )/(fQ(u )fQ(u)) < i < j < 3

Th ,, sinco' Y g (Q(ul), Q(1 2 ), Q(u 3 ) ) and y = g(Q(u ) ,  Q(u2 ), Q(u 3 )

where :(::L' x2, x 3 ) is defined by (3.2.3) and (3.2.4), we have (see

Rao 1973, p. 387)
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-Y) dN(0, V(y))

where

V(y) = t C t

t = 3ghxl , 3g/Jx 2 ,' Dg/3x 3)
T

Since

a 1g/aX = 2/[d(Q(u2) - Q(U1 ))].,

3g/ ax 2 = -2/d[l/(Q(u 3) - Q(u2)) + 1/(Q(u 2) - Q(ul))]

g/ 3x 3 = 2/[d(Q(u3) - Q(u 2))

the theorem follows.

Remarks on Theorem 3.2.2:

1) The estimator y and its asymptotic distribution is inde-

pendent of U and a

2) Theoretically one can choose optimal values of ul, u2, u 3

which minimize the variance of y . The values will be a

function of y for a given Q *. Table 3.1 gives optimal

values of u, u u3 which minimize V(y) for y = .05, .l(.l , 1

2, 3 when Q *(u) = -log(1 - u) (i.e. the Welbull distri-
0

bution). The table also gives the minimum value of V(y)

and compares it to the CRLB for unbiased estimators of y

Figure 3.A plots the optimal values of U, U 2, u3 as a

function of -. See page 32 for further discussion of

Table 3.1.

3) Since V(y) is a continuous function of y, a consistent esti-
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mator V(y) of V(Y) is obtai iid by suhstitutin ; y for y in (3.2.5).

Dubey (1967) gives the formula for an estimator of the shape

parameter of the three parameter Weibull distribution when o and P

are unknown. The estimator of 1/y = c is given by

logi-lop(ILu3'] - log[-log(l - u 1 )1
(l/Y) = c .... ,

21 log(Q(u 3 ) - Q(u 2 )) - .og(Q(u 2) - Q(ul))

where

U 2 = 1 -{exp -[log(] - U1)log(l - u3)]12

which is just the reciprocal of (3.2.4) using Q0 *(U) = -log(l - u)

Dubey states that the variance of c depends on the true value of c

and consequently he does not utilize optimal values of u1 and u 3

which minimize the variance of c.

When one has samples from k populations which satisfy the

model (3.2.2), we now show a method to test for homogeneity of

shape and to estimate the common value of -Y. Let QI(u) be the

empirical quantile funct ion based on a sample of size n i from

population i. To combine estimators ' 1k of y we have

Theorem 3.2.3:

k 2
let H n i 0

i=l )
V

and
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k
yp = Y nyi/n , (3.2.6)

1=1

where

2log [Qi(u 3) - Qi(u/2 ) I/tQ(u) - Qi(U )
yf = _ _ _ - - - -

log[Q 0o* (u 3 )/Q *(u )]

k
n n i

1=1

(L2= ) [Q*(U ) Q*(u 3 )l , < u2 < u3

and V(y) is given by (3.2.5)

If the k populations do in fact have the same shape parameter y

then

d 2
1) k-i

d
2) Vn(yp - y) - N(O, V(y))

where as n -, the ratio n /n approaches a constant.

Proof: This is a direct application of Rao (1973, p. 389).

Remarks; on Theorem .1.-2-.-3:

1) The statIstic It can he used to test for homogeneity

of hld pe.

- i'. a pooled c:t iLmitor (if the, common shape parameter

of the (2, S.
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3) A consistent estimator of V(y) is obtained by substituting

y for y in (3.2.5).P

4) Optimal values of uI , u2, and u 3 which minimize the var-

iance of y will depend on the true value of y. Table
P

3.1 can be used to find the optimal values of u1 , u2, u3

for a range of values of y and Q *(u) = -log(l - u).

Information obtained from quantile-box plots or histori-

cal data regarding the distributional shape may help to

determine an appropriate set of values of u1, u2, u3.

Remarks on Table 3.1 and Figure 3.A:

Table 3.1 gives the optimal values of uI , u2 , u3 for the

estimator y assuming Q * for the Weibull distribution, V(y) using

these u values, the CRLB for y when appropriate, and the asymptotic

relative efficiency (ARE) of y defined by ARE(y) = CRLB/V(y).

Figure 3.A plots the optimal values of u1 , u2, u3 as a function

of y. The following trends are evident.

1) For y > 1.0 (i.e. the distribution has no mode and is

highly skewed right), then u3 = 1.0. The optimal value

of uI goes from .63 (for y=3.0) to .01 (for y = 1.0).

2) For y = 1.0 (i.e. the exponential distribution), u3 = .98

and u, = .01 are optimal.

3) As Y goes from 1.0 to .3 (i.e. the distribution is uni-

modal and goes from skewed right to almost symmetric),
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Table 3.1 Optimal Values of UlU2U 3 for y; Weibull Distribution

y u1  u2  u 3  V(Y) CRLB ARE(y)

3 .6293 .9452 .9998 .03,11 NA --

2 .2754 .7750 .9990 .4948 NA --

1 .0064 .1461 .9795 1.0326 .54,3 .531

.9 .0015 .0694 .9690 .8257 .4442 .538

.8 .0002 .02?4 .9225 .5792 .3509 .605

.7 .00017 .0177 .8473 .3356 .?607 .8007

.6 .00017 .0162 .7902 .2059 .1074 .9537

.5 .00017 .0145 .7141 .1481 .1371 .9257

.4 .00017 .0131 .6380 .1256 .0377 .6982

.3 .00017 .0115 .5429 .1211 .0494 .4079

.2 .00010 .0057 .5274 .427 .()21Q .1q43

.1 .0001 .005? .5274 .4645 .0055 .0118
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Figure 3.A Optimal Values of u 1 ,u 2 9 13 for y; Weibull distribution
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the optimal value of u3 goes from .98 (for y = 1.0) to

.54 (for y - .3). The optimal value of u1 remains close

to 0.

4) When y = .3 (i.e. the distribution is almost symmetric,

normal shaped), u - .002 and u3  .54 are optimal.

5) As y goes from .3 to .05 (i.e. the distribution goes from

almost symmetric to skewed left), the optimal value of u3

goes from .54 (for y = .3) to .52 (for y = .05) and the

optimal value of u1 remains close to 0.

6) The ARE increases from .53 for y = 1.0 to .96 for ' = .6.

The ARE is .41 when y = .3 and decreases rapidly to .01

for I = .05.

7) The CRLB for y is inappropriate for y > 1.0 since the

Fisher information measure for *y > 1.0 does not exist.

One might wish to compare V(y) to the asymptotic variance

of the maximum likelihood estimator of y based on a cen-

sored sample (see Harter and Moore 1967) .

Thus a strategy evmlrges. If one assumes the data to have a

Weibull distribution with an unknown shape parameter, one can select

almost optimal values of uI and u3 (and consequently u2 ) according

to t1.e shape suggested by quantile-box plots or other graphical

techniques. If the shape is "super exponential" (i.e. very skewed

right and no mode), then select u 3 _ 1.0 and u in the range (.01, .63)

(a longer tail implies a larger value of u ). If the data seem to

be exponential (i.e. skewed right and no mode), choose u3
= .97 and
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u= L .0064. If the data are unimodal and skewed right, values of u3

in the range (.6, .95) (a longer tail implies a larger value of u3 )

and u1 - .0002 will be almost optimal. If the data seem almost

symmetric, select u3  .55 and u1  .0002. If the data are unimodal

and skewed left, values of u3 - .54 and u .0002 will be almost

optimal.

The estimation of y can also be done iteratively. An estimate

y based on one set of (u1 , u2, u3 ) values may suggest better values

of (u1 , u2, u3).

In Section 6.2 we Illustrate the use of the estimator y of Y
p

for ten samples of data representing the tolerance of green sunfish

to thermal pollution.

3.3 A Goodness-of-Fit Approach for Determining Distributional Shape

In this section we describe how to apply the one population

goodness-of-fit (GOF) procedures of Section 3.1 to the estimation

of the common value of y in the k population model

(u) = + ° [Qo*(u)]Y k

where Qo*(.) is assumed known and y is an unknown shape parameter,

and also to the identification of Q in the model

Qiu) = + a, Qo(u) , i = I, ... 9 k

Estimation of y using GOF. The proposed GOF procedure consists of

three parts:
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1) Form a grid {Yol .... , Y om of potential values for "y.

2) For each value of y in the grid, form estimates i (Y )

and ci(yo ) of It and at using linear combinations of order

statistics (see Section 4.2 below). For the ith sample

form a transformed sample 0, (u) defiaed by

0:0a. i](yo ---)

u (j - .5)/n , j = 1, . .. , ni i 1 .... , k

Next, pool the k transformed samples.

3) The hypothesis

Y

H0: Qi(u) = i + a i(Qo*(U)) 0

can be written as

H : LQi(u) - 1Yo = Qo*(u)
1

Under this hypothesis for a specified value of yoe we can

consider the pooled transformed sample as a random sample

k
of size n = E ni from a population with quantile function

1=1
Qo *(U). Select the best value of yo to be the value that

gives the best agreement of the pooled transformed sample

and Q *(u) according to the GOF criteria of Section 3.1.

Considerations in determining the grid *.o1, " Y are:

k urn
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1) Knowledge of the qualitative properties of Qt)(e.g.

symmetry, right skewness, or left skewness, and tail

behavior) obtained from quantile-box plots can help one

select a narrow grid of 1o values.

2) Computationally the procedure is expensive.

3) If one specifies Qo*(u) = -log(l - u) (i.e. Qi(u) is in

the Weibull family), tables of optimal spacings and coef-

ficients for the estimation of Pi and o i using linear

combination of order statistics are available for limited

values of y. Programs to compute the optimal spacings and

coefficients for a wide range of y values should be made

available.

identification of Q, using GOF. The above procedure is also appro-

priate for identifying Qo. The steps are:

1) Specify a family of possible Q functions.
0

2) For each Q function form estimates ji ) and oi (QO)

of pi and ci using linear combinations of order statistics.

For the ith sample form a transformed sample defined by

Q.(u) - 11(Qo)Qi M u - - 1,.. k

i.i

and pool the k transformed samples.

3) The hypothesis

H 0 : Q (u) =k

0 j 1 ~) ,...

.............................................
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is equivalent to

io: Qi(u) - i Q(U)
0 0

Thus under this hypothesis for a specified Q0, we can

consider the pooled transformed sample as a random sample

k
of size n = L n i from a population with quantile function

i=l

Qo (u). Select the best specification of Q as the one that

gives the best agreement of the pooled transformed sample

and Q0(u) according to the criteria of Section 3.1.

Examination of how the misspecification of y affects the estimators
0

p and o for the one population case is examined analytically in

Section 4.3. In Sections 6.1 and 6.2 we illustrate the techniques

of identifying Q using the professors' salary data of Hogg (1975)

and the green sunfish data of Matis and Wehrly (1979).
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4. ESTIMATION OF LOCATION AND SCALE PARAMETERS

The estimation of location and scale parameters is the second

stage in the k-sample quantile regression procedure as we perceive

it. Existing techniques for the estimation of location and scale

parameters in the one population case are also appropriate for the

estimation of location and scale parameters when there are k popul-

ations satisfying

Qi(u) i + Q(u) , = 1, ... ,k

where jj and oI are the location and scale parameters respectively

of the ith population.

The location and scale parameter model for one population can

be written

F(x) = F 0( x o

or

Q(u) = it + GQ o(u)

where F and Q are completely specified and w and a are unknown
0 0

location and scale parametersrespectively. One would like

estimators of v and a which are statistically efficient and rela-

tively simple to compitte.

Est imators pi and o of i and (1 based on linear combinations of

order statistics (LCOS) are defined by
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r -

=l a Q(uj
J=l

r=Z bQ(u)

J=l j

where Q(u) is the empirical quantile function, r is the number of

values of Q(u) (or the number of order statistics) used, and aj, b.,

j i, ... , r, are specified constants. Two approaches to the choice

of r, the a.'s and b 's, and u.'s are discussed in the next two sec-

tions. The first approach (Section 4.1) is due to Ogawa (1951) and

Hassanein (1971, 1972) and the second (Section 4.2) is due to Eubank

(1979). Section 4.3 investigates the estimation of u and a for the

Weibull distribution when the shape parameter y is misspecified.

4.1 Optimal Linear Combinations of Order Statistics

In this section we present the general work of Ogawa (1951)

and the work of Hassanein (1971, 1972) dealing with the selection

of optimal linear combinations of order statistics for the simulta-

neous estimation of , and o.

Using the model

Q(u) + (I Q (ti)

and recalling Theorem 2.1.4 regarding the asymptotic distribution of

Q u), asymptotically Q(u1 ), ... Q(ur ) satisfy the conditions required

for the application of the (auss-Markov Theorem. Thus generalized

least squares may be used to obtain asymptotically best linear

unbiased estimators (ABILUE's) of , and/or o. Ogawa (1951, see
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Eubank 1979) gives general formulae for the estimators and their

asymptotic relative efficiencies(ARE's) when compared to the CRLB.

Let u = 0 u 1 and fQ0 = fQ (u )0.
0 r +0000 r +

Define

11= T+l f Q CU.) -f Q Cu - 2 (4.1.1)

- uJ1

r+l [Q(U)foQo(u)-Q(u )foQo(u-I 12

K~ ~ r~ Q~ j 0 0 j o J-1 00oi-
K2 2 =

j=l u. - u.j j-I (4.1.2)

r+l1foQo (u)-fQ o(u -l)][Qo(uj)f Q (u j)-Qo(Uj 1-l)foQ o(u- 1 )]
K 12 E

j=l u - uj_ 1  (4.1.3)

K= K -K

11= Kl22 - 122

r~~f~oU°-fQ (t_)u.)IfQu ) j (uf Q 1Cu

K01 =
j=l uj - uj I

r+l

jl-

K = Yj ujQ " f (11 )-Q (u )f Q Cu
02 l u t(QoJ-u0 j 0o j 0 j-l 0 0 1

ifo 0 Q(u )Q (u )-foQo (u J-l)Q(uJ_ 1

Then ARIIE' For the stmtltancou.tj estimation of 1, and 0 are given

by

(K22 K01 - K1 2 K0 2 )/ A , (4.1.4)
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a-(KI1 K0 2 -K 1 2 K )/A (4.1.5)

Notice that these are just the generalized least squares estimators

of p and o given by

(X c-X) -xc-Y

where

xTc-~x=Ly / :~
TKo2

x TC-Y - K01)

where C is given by (2.1.3).

For the simultaneous estimation of w and a Ogawa (1951) defines

the ARE by

ARE(, u) =
Var( i)Var(o) - Cov 2(p, I)

where

(w d)T

( I 6x) ) F [x (f }) 2]

E f--X-) ' -- iI
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f Q O ( u ) f°Q°(u)> <f°Q (u), Q°(u)fQ°(u)>

fo0Qo(U), Q(u)foQo (U)> <Qo(u)foQ(u), Qo(u)foQ o(u)>

(4.1.6)

and

1

<f(u), g(u)> = f f '(u) g'(u) du0

Examination of-the equations for the estimators and their ARE's

reveals that the equations are functions of the spacings ul, ...,

u Thus the problem reduces to finding a set of optimal spacings

which maximize the ARE of the estimators. For certain distributions

the expressions for the ARE's are quite complicated and numerical

methods have to be used to find optimal or near optimal spacings.

For a given distribution the results are usually expressed as tables

of optimal spacings u,, ... , Ur and the corresponding coefficients

al. ... , a , bI , ... , b for the ABLUE's for various values of r.r 1'*' r

Hassanein (1971) uses this procedure to find optimal spacings

and coefficients for the simultaneous estimation of p and o for the

Weibull distribution. The tables lie provides are a function of the

shape parameter, c = 1/y , and he provides spacings and coefficients

for r = 2, 4, 6 order statistics. The values of c he considers are

c = 3(1)10(5)20 . Subroutine QTOLSW uses Hassanein's tables for

r = 6 values to compute estimaties of p amid o for any of the above

specified values of c.

llassanein (1972) considers the problem of selecting optimal

spacings and coefficients for the simultaneous estimation of the

location and scale parameters of the extreme value distribution.
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He provides optimal spacings for r 1(1)10 order statistics. Let

us recall the property that If X has a Weibull distribution with

= 0, then Y = log X has an extreme value distribution with the

location parameter I' = log a and a' = y where o and y are the scale

and shape parameters of the Weibull distribution. Thus one can use

the optimal spacings and coefficients for the extreme value distri-

bution to estimate the scale and shape parameters of the Weibull

distribution as long as the location parameter ii is known.

There is an extensive literature on the use of linear combin-

ations of order statistics to estimate location and scale parameters

for many common distributions. The approach adopted by Ogawa,

Hassanein, and others centers on maximizing the ARE of the estimators.

In the next section we present another approach to the selection of a

set of spacings and coefficients for optimal location and scale

parameter estimation.

4.2 Asymptotically Optimal Linear Combinations of Order Statistics

In this section we discuss the approach taken by Eubank (1979)

for the selection of asymptotically optimal LCOS for the simultaneous

estimation of j and a. Eubank formulates the problem within the

framework of continuous parameter time series regression. Using

Theorem 2.1. 3 and the model

0( 1) 4- (1 0 0()

/
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we have

foQo(U)[Q(u) - a - Q(U)] B(u) (4.2.1)

where {B(u), u c[O, 11) is a Brownian bridge process.

Then we can write a regression model

foQ (u)Q(u) = fo Q () + CQ (u)f'Q (u) + o B(u) (4.2.2)
000 0 0 0 0 B

where aB = o/vn is estimated as a free parameter and is not constrained

to be related to a. Eubank restates the problem of selecting a set of

spacings for the estimation of P and 0 as that of selecting an optimal

design for a Brownian bridge process.

Definition 4.2.1: An r point design for a Brownian bridge process,

and consequently for {foQo(u)Q(u), 0 < u < 1) , is an r-tuple

{u l, ..., u I with 0 < u < ... < U < 1. Denote by D the set of1r 1r r

all such r point designs.

Definition 4.2.2: For TED , let 0 denote the best linear unbiased
r ~T

estimator (BLUE) of 0 a(, a) based on observations taken according

to T. Let 0 denote the estimator of 0 obtained using observations

over all of [0, 1].

Definition 4.2.3: A design sequence (TrI , T cD , is asymptotically

r rlo r r

optimal for estimating 0 if
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Var - Va r' Q

r- 111 [Var (0 Ivr
TED r

r

Theorem 4.2.1 (Eubank 1979): Suppose foQo(u) and Qo(U)fQ (u) have

the representations:

I

foQo(u) =-f (foQo(t) KB(u , t)dt

1

Qo(u)foQ (u) = - OQCt)f Q t)) (u, t)dt
0 000 0 0 0 KBu

where

KB(u, t) = min(u, t) - u t

and g(t))" denotes d 2g(t)/d

T
(u) = -((foQo(u)) , (Qo()foQo(u)),)

Then the density

W Tu)T I- (Q) 1,(u)]
h(u) = T_

f[qu) -1 (0) q,(u)] 3du

wire 0 = (1j, ,') and T(O) is defined by (4.1.6) generates asymptoti-

cally optimal designs for the simultaneous estimation of 11 and a.

(see remark 2 on p. 43)

Remarks on Theorem 4.2.1:

1) The asymptotic optimality of the design means that as r,
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the number of spacings, grows large, then the spacings

generated by Theorem 4.2.1 lead to estimators with approx-

imately the same efficiency as estimators based on the

optimal set of r spacings.

2) Optimal designs are those that minimize the generalized

variance IVar Oj T , T)

3) The density h generates the asymptotically optimal design

sequence {T r } where

- = 1 -h 2 - r
T {H- (i r+l r

and

H(u) = fu h(t) dt
0

Eubank (1979) supplies general formulae for the coefficients a. and

b. for the estimation of V and a using the asymptotically optimalJ

spacings to yield estimators

r 
j

r a Q(H-(1))
j=l r+

a E b Q(Hl(r))
j=l r+1

where

.= [K 2 2 (h)W~lj~,h) - K2(h)W (j , h)] / A(h)
K 2 ()W 1 j h K12 ai

b = [K l(h)W (j ,h) - K1 2(h)W (j,h)] / A(h)i 1 c
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K (h) is the same as Kij given by (4.1.1), (4.1.2) and (4.1.3) with

u. replaced by If-I(j/(r + 1)),.3

2A(h) K1 1 (h)K 2 2 (h) - [K12(h)]
f° (-1 l))l f - Q ( H - I))- 1 (r)

W (j-h) 0 0 r1 0 r+ 00 r+1

0 0 ri 0 r+1
(r)-1 (r+l)

and

f Q (IF 1 ( )

W (j,h) r+ x
K 22(h)

fo~ ( I  ( rIF I )N o(H - 1( +jl ))-foQo (H-I (j-1 )Qo (Hl-i( )

r+1 0 r+1 00 (r+

HI( j-) -H_ I(j-,)
Lr+1 r+I

f Q(H 1 (±'-)Q (lJ+))-f Q 1-1 Q i -1
-0 0 (H'+jI) (H r+1 0 0 "r+1 0~ r+1'

r+1 r+1

While the approach is direct and once H(u) is computed asymp-

totically optimal spaciligs an asily be found, many distributions

do not satisfy the required representation for f0Q0 (u) and

Qo (u)f Q (u). (see Eubank 1979, p. 116)

Eubank (1979) gives tables of a.symptotically optimal spacings

and coefficients for the si rtiltaneous estimation of v' and a based on

r = 2, 7, 9 order statistics for the normal and logistic distributions.

It has been suggested (Etibank, personal communication 1980) that
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asymptotically optimal spacings for the sirultaneous estimation of

P and 0 can be generated for the Weibull distribution for certain

values of the shape parameter Y.

4.3 Estimation of P and a when Y is Misspecified

In this section we examine analytically how the misspecifica-

tion of y affects estimators of pz and o based on LCOS for the Weibull

distribution. Using estimiLors ii(Y ) and o(y ) based on a range of

specified values, yo, of the true value, y, of the shape parameter,

we have:

Bias(p(yo)) = E(i(y )) -

r
ZJi a (-log(l-u ))Y

Bias(o(yo)) = E(o(yo)) - a

r Y
E bj(-log(l-uj)) - 1

J=l

Var(1(yo)) = aiajCov(Q(u )Q ))

Va((~y 0 j i i .i Q ).Q ig

2b biamin(u u )-u u

n j i
n i(l-i) (-u ) [log(l-ui log(l-u ) 1] -Y

1 2  T bibj [min(uiu )-uiu
n j i ( ~ l l u ) l g l u ) l g l u ) ] -
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2MSE (P(Y )=E(i(Y ) )
o 0

2 *

= [Bias(wi(y )) + Var(w(y ))

O 0

2

MS o (3 0)

2
=[Bias(o(y 0)M + Var(,(, 0)

We calculate the values of each of the above properties of

11(yo) and c(y ) using the vlues of y and : .313, .25, .20,

.167, .143, .125, .111, .10, .067 and .05 The coefficients {a iJ

and fbj} and optimal values fu.) are obtained from tables given by

Hassanein (1971) using r = 6 order statistics and the specified y0

value. The MSE (mean squared error) is computed for samples of size

n = 20 and 50.

The results are summarized in Tables 4.1, 4.2, 4.3, and 4.4.

The first entry in each cell of the various tables is for (y )
0

and the second entry is for o(y ). Figures 4.A, 4.B, 4.C and 4.D
0

represent plots of the properties of the estimators vs. the specified

value of y0o. Each curve on the plots represents a distinct value

of y as indicated in the key. Plotting the curves for all the values

of y on the same set of axes facilitates comparison of the properties

for different misspecifications.

Remarks on Table 4.1 and Figure 4.A:

'rable 4.1 and Figure 4.A present the results of a bias study of

the estimators j(yo) and (yo). The following remarks can be made:

.4
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Table 4.1 Bias of j(yo), 0 (yo )

Y
0

y .333 .250 .200 .167 .143 .325 .111 .100 .067 .050

.333 .000 -.239 -.519 -.814 -1.117 -1.424 -1.734 -2.046 -3.613 -5.201

-.001 .264 .557 .360 1.168 1.479 1.792 2.105 3.684 5.270

.250 .163 .000 -.204 -.422 -.648 -.877 -1.109 -1.342 -2.522 -3.710

-.185 .000 .215 .440 .670 .902 1.136 1.372 2.556 3.747

.200 .279 .159 .000 -.173 -.353 -.536 -.722 -.909 -1.855 -2.808

-.308 -.169 .000 .179 .363 .548 .736 .925 1.875 2.830

.167 .367 .274 .144 .000 -.149 -.302 -.457 -.613 -1.4C4 -2.201

-.398 -.288 -.149 .000 .153 .308 .465 .662 1.416 2.215

.143 .41r F nfl -'7 -.001 -. '132 -.?C .'9 .. 70 -.

-.466 -.316 -.251 -.130 .001 .134 .269 .404 1.088 1.775

.125 .490 .429 .334 .227 .115 .000 -.116 -.234 -.830 -1.431

-.520 -.445 -.342 -.231 -.117 .000 .118 .236 .835 1.438

.111 .535 .484 .400 .305 .206 .104 .000 -.105 -.635 -1.171

-.565 -.499 -.409 -.311 -.209 -.105 .000 -.106 .639 1.176

.100 .573 .529 .454 .369 .280 .138 .094 .000 -.478 -.961

-.601 -.544 -.463 -.315 -.283 -.190 -.095 .000 .481 .965

.067 .697 .672 .624 .567 .508 .416 .384 .321 .000 -.324

-.719 -.685 -.632 -.573 -.512 -.40 -.326 -.323 .000 .325

.050 .765 .749 .713 .671 .626 .530 .533 .485 .244 .000

-.783 -.759 -.720 -.676 -.630 -.5 3 -.536 -.488 -.245 .000
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1) Bias ((Yo)) and Bias (o(yo)) for y = .333 get large in
0 0

magnitude as y gets small. A consequence of this is that
0

if the data is almost symmetric and one specifies the data

to be skewed left (y 0small), then 11(y ) may seriouslyoob kwdlf (0

underestimate P and O(y ) may seriously overestimate a.

2) For data that is skewed left, the risk of a seriously biased

estimator when y is misspecified is not as great as in (1).

When y = .05 and one specifies y .333, Bias((.333))= .8

and Bias(o(.333))=-.8

3) Bias(ji(y ))=-Bias(O(y )) for all values of y.

4) One might wish to approximate the bias curves as a function

of y and yo. While this would be useful in general, exam-

ination of the general formulae for V,(Y ) and O(0) given

by 4.1.4 and 4.1.5 do not offer much promise of this.

Remarks on Table 4.2 and Figure 4.B

Table 4.2 and Figure 4.B present the results of a study of

Var(ij(y)) and Var(O(y0)). The following remarks can be made:

1) It should be noted that the table and figure give

nVar(ij(y o)) and nVar(O(y )) since the variance of each

estimator is a function of the sample size.

2) In general Var(P(Y )) and Var(o(y )) remain fairly constant

for y equal to .25 or .333 regardless of the true value y.

3) Var(p(y)) Var(a(y)).
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Table 4.2 Variance of w(y), o(yo )

'Yo

y .333 .250 .200 .167 .143 .125 .111 .100 .067 .050

.333 .358 .583 .968 1.502 2.184 3.014 3.993 5.123 13.024 24.688

.,129 .749 1.237 1.877 2.667 3.6n7 4.696 5.036 14.391 26.612

.250 .401 .472 .683 .90 1.354 11.36 2.335 2.940 7.112 13.192

.360 .482 .733 1.068 1.432 1.974 2.542 3.1186 7.555 13.834

.200 .421 .400 .530 .723 .967 1.260 1.601 1.990 4.646 8.482

.343 .366 .517 .728 .989 1.300 1.658 2.064 4.804 8.724

.167 .421 .343 .428 .5 4 .738 .947 1.189 1.465 3.332 6.013

.331 .297 .396 .5,12 .724 .941 1.192 1.475 3.382 6.102

.143 .401 .297 .355 .456 .587 .745 .927 1.135 2.534 4.533

.316 .249 .317 .425 .561 .723 .909 1.121 2.538 4.556

.125 .386 .258 .298 .377 .479 .602 .744 .906 1.995 3.544

.29.3 .213 .261 .313 .448 .574 .719 .882 1.979 3.537

.111 .362 .226 .255 .317 .399 .498 .613 .743 1.618 2.859

.27:3 .194 .220 .205 .369 .169 .585 .716 1.594 2.838

.100 .337 .200 .220 .270 .331 .420 .514 .6?2 1.341 2.360

.?5) .161 .1: 1 .2,10 .309 .391 .48( .5 4 1.313 2.332

.061 .?31 .116 .120 .1.12 .173 .21? .257 .307 .645 1.120

.1 .o ? .099 .123 .154 .19g .237 .?87 .622 1.094

.50 161 .n 5 .0;5 .0R! .105 12' .154 .183 .380 .655

.126 .0,) .06? .0/5 .093 .115 .141 .170 .363 .636

Lim= =WS
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4) For y = .333 the variance is very large when y is mis-

specified. When y = .05,the variance when y is misspec-

if led is not significantly different from when y is

correctly specified.

Remarks on Tables 4.3 and 4.4 and Figures 4.C and 4.D

Tables 4.3 and Figure 4.C present the results of a study of

MSE(j(yo)) and MSE~o(y )) for the sample size n = 20. Table 4.4

and Figure 4.D present analogous results for the sample size n = 100.

The following remarks can be made:

1) For small sizes the variance term will dominate the bias

term when computing MSE. As sample size increases, the

effect decreases.

2) The curves for MSE look surprisingly like the curves for

the variance of the estimators. Examination of Table 4.1

2
reveals that [Bias(j(y ))] is approximately equal to

nVar(p(y)) and [Bias(a(yo))]2 is approximately equal Lo

nVar ( (y

3) Since we are comparing biased aind unbiased estimators of

It and o, it is rt;islnab)l IA to conmpnre the MSE of the

est i mitors.
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Table 4.3 MSE of W(yo), o(yo) n 200 00

Yo

Y .333 .250 .200 .167 .143 :125 .111 .100 .067 .050

.333 .004 .063 .279 .678 1.269 2.058 3.046 4.236 13.222 27.293

.004 .077 .322 .758 1.390 2.222 3.256 4.492 13.717 28.035

.250 .031 .005 .048 .188 .433 .787 1.253 1.831 6.430 13.894

.038 .005 .053 .204 .463 .833 1.317 1.913 6.610 14.176

.200 .082 .029 .005 .037 .134 .300 .537 .846 3.486 7.969

.098 .032 .005 .039 .141 .314 .558 .875 3.563 8.097

.167 .139 .079 .025 .006 .030 .101 .221 .391 2.003 4.903

.162 .086 .026 .005 .031 .104 .228 .402 2.040 4.969

.143 .i ? .111 nrr .021 .006 n2 .r fl 171 i.iqO 3.161

.220 .143 .069 .021 .006 .025 .081 .175 1.208 3.197

.125 .244 .187 .114 .055 .018 .006 .021 .064 .708 2.083

.274 .200 .120 .057 .018 .006 .021 .065 .718 2.104

.111 .290 .236 .162 .093 .046 .016 .006 .018 .420 1.400

.321 .251 .169 .099 .047 .016 .006 .018 .424 1.412

.100 .332 .282 .208 .139 .082 .039 .014 .006 .242 .948

.364 .298 .217 .143 .083 .040 .014 .006 .244 .955

.067 .488 .453 .390 .323 .259 .201 .150 .106 .006 .116

.519 .470 .401 .330 .264 .204 .152 .107 .006 .117

.050 .587 .561 .50q .451 .393 .338 .286 .237 .063 .007

.614 .577 .519 .458 .398 .341 .288 .239 .064 .006
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Table 4.4 MSE of (y), (y) n = 1000O

Yo
0

Y .333 .250 .200 .167 .143 .125 .111 .100 .067 .050

.333 .018 .036 .318 .738 1.356 2.179 3.206 4.441 13.742 28.281

.021 .107 .372 .833 1.497 2.366 3.444 4.729 14.293 29.099

.250 .047 .024 .076 .227 .487 .859 1.346 1.949 6.715 14.422

.052 .024 .033 .247 .522 .912 1.419 2.040 6.912 14.729

.200 .099 .045 .027 .066 .173 .351 .601 .926 3.672 8.309

.112 .047 .026 .068 .181 .366 .625 .958 3.755 8.446

.167 .155 .092 .042 .028 .059 .139 .268 .449 2.136 5.143

.175 .098 .042 .027 .060 .142 .276 .461 2.175 5.213

.143 .209 .145 .080 .039 .029 .055 .117 .216 1.291 3.342

.233 .153 .082 .038 .028 .054 .118 .219 1.310 3.380

.125 .259 .197 .126 .070 .037 .030 .051 .100 .788 2.225

.286 .208 .130 .071 .036 .029 .050 .110 .797 2.245

.111 .305 .245 .173 .109 .062 .036 .031 .048 .484 1.514

.333 .259 .178 .111 .062 .034 .029 .047 .488 1.525

.100 .354 .290 .217 .150 .095 .056 .035 .031 .296 1.042

.374 .304 .224 .153 .096 .05( .033 .030 .297 1.048

.067 .497 .458 .395 .329 .266 .210 .160 .118 .032 .161

.526 .474 .405 .335 .270 .212 .161 .118 .031 .160

.050 .593 .564 .512 .454 .397 .343 .292 .245 .079 .033

.619 .580 .521 .461 .402 .346 .294 .246 .078 .032
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4) When Y = .333, MSE((y 0)) and MSE(o(yo)) is vety large

when Y is misspecified. However when y = .05, MSE((y ))

and MSE(O(y )) do not change significantly when y is

considerably misspecified.

Based on consideration of the bias, variance, and MSE of each

estimator, the worst situation is to have data that is almost symmetric

and to misspecify it as very skewed left. The consequences of mtsspec-

ification are not severe when the data is skewed left. One will not

do too badly if he uses estimators of p and a based on specifying

Yo = .333, .25, or .20 regardless of whether the distribution is

skewed left or symmetric.

The techniques of determining y investigated in Sections 3.2

and 3.3 seem to lead to a specification of y that is in the range of

the true value of y. Thus estimators of p and a based on such a

specification should yield reliable estimates of p and a.
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5. QUANTILE REGRESSION AND COMPARISON FOR K SAMPLES

In the previous sections we described techniques to

1) identify Q or estimate y (Section 3),

2) estimate w and a (Section 4)

in the model

Q(u) + Qo(u) .

The results of Section 3 have been generalized to the k sample problem.

The results of Section 4 generalize directly to the estimation of

location and scale parameters using independent samples from k popula-

tions.

Let us restate the model for k sample quantile regression. We

assume

Qi(u) = Pi + Q(u) , i = 1, ... k

where

a = a + (i '

Q (u) is the quantile function of the ith population, Q (u) is an
1 0

unknown quantile function or Q (U) = (Q *(u))Y where Q *(U) is
0 0 0

completely specified and y is an unknown shape parameter common to

the k populations, and XI is a nuterical characteristic of the ith

q I
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population. We further assume X < < X kfor convenience.

A comnonly assumed quantlie regression model is

Qi(u) = A(u) + B(u) X i

where A(u) and B(u) are unknown constants which depend on u. We

desire estimators of A(u) and B(u) for a specified value of u.

Section 5.1 discusses the contributions of Brown and Mood (1950)

and Hogg (1975) in the area of nonparametric quantile regression and

the work of Griffiths and Willcox (1978) in parametric quantile

regression. We also show the equivalence of the model of (5.1.1) and

(5.1.2) to the model of (5.1.3) citing the work of Griffiths and Willcox

(1978).

In Section 5.2 the generalized least squares technique is used

to estimatea , 01, au, and 0o . We state pertinent hypotheses about

the regression parameters and provide test statistics for the hypo-

theses based on the asymptotic distribution of the estimated parameters.

Section 5.3 discusses how the regression technique of Section 5.2

can be applied to the k-sample comparison problem under certain

restrictions. Test statistics for pertinent hypotheses about the

location and/or scale parameters of the k populations are provided.

5.1 K Sample Quantile Regression

In this section we discuss the nonparametric technique of Hogg

(1975) and the parametric approach of Griffiths and Willcox (1978) to

estimate k sample quantile (percentile) relationships. The data for

~i



65

the regression problem may consist of k random samples {Yi "'

n i = 1, ... , k} of the dependent variable together with the

corresponding values (X, i = 1, ..., k) of the independent variable

or it may consist of a bivariate sample {(Xi Yi) , i = 1, ..., n)

Brown and Mood (1950) propose a nonparametric technique to

estimate the median regression line for the model median (YIX) 
=

a + OX based on examining the residuals of the regression. They

assume that for the bivariate sample {(X,, Yi), i = 1, ... , n) the

errors Yi - CL - 6Xi have the same distribution for all X. They then

estimate the median of the distribution of Y given X by

a +8X

where

median (Y -i - X) = 0 Xi < median(X)

median (Yi - a - BX ) 0 X i > median(X)

In words they split the sample into two subsamples of size n1 and

n2 , n. = n/2, and then graphically find estimates a, 8 so that the

median of the residuals Y - a - 6Xi is zero for each batch.

Hogg (1975) modifies the technique of Brown and Mood in a

natural way to estimate the pth percentile of the Y's. Hogis model is

Y p A(P) + B(p)Xp
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where Y denotes the pth percentile of the Y observations for aP

particular value of X. In terms of the quantile function we can

write

Qyx (p) = A(p) + B(p)X

where Qyjx ( . ) is the quantile function of Y given X and A(p) and

B(p) are unknown constants which may vary with p. By examining

the signs of the residuals, Hogg estimates the regression line of

the pth percentile so that a fraction p of the data points are below

the regression line. Hogg proposes statistics for testing

Ho: QYjX(u) = A0 (u) + B (u)X

where A (u) and B (u) are specified based on the binomial distribtwiono 0

of the number of observations below the hypothesized regression line.

Several alternative procedures for splitting the data into more than

two groups are also proposed .

Griffiths and Willcox (1978) assume the model

=Y Q Q(') , for all XU X 0

where

1X ot + X

0X U a + U X
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This is equivalent to assuming

QyIx(u) = A(u) + B(u)X

i.e. a linear regression model, where

A(u) - e + Qo (u)

B(u) - 6 + 6 Qo (u)

They then estimate a , 0 , a Ua using iterative maximum iikelihood

procedures on the weighted residuals

[qy~x(u) -( + 0 X)]/(ao + 0 X)

By weighting the estimates a , 8 , ao , o using their estimated vari-
a

ance matrix, point estimates or interval estimates of A(u) and B(u)

can be computed. The authors use Q (u) = 0 (u). The likelihood
0

equations do not have a closed-form solution, and Griffiths and Willcox

use linear programming methods to determine optimal values for the

parameters. They state that an advantage in using a parametric model

for the data is a gain in precision and efficiency.

In the next section we describe a parametric approach to solving

the k sample quantile regression problem based on a quantile function

approach. The procedure Is more general than that of Griffiths and

Willcox yet incorporates parametric assumptions which give it certain

advantages over the nonparametric technique of ",ogg.
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5.2 A Quantile Function Procedure for K Sample Quantile Regression

In this section we generalize the model of Griffiths and Willcox

(1978) to allow any Q (u). We assume

QyIx(u) = liX + x QO(u)

or more specifically

Qi(u) = i + i Qo(u) , i=l, "'', k , (5.2.1)

where

i = + Xi

(5.2.2)

oi =a o + 8 X , i I, o., k

Using the estimates lit, 0{ based on LCOS (Section 4), we obtain

estimates of a., 8, Cia, 8 using generalized least squares.

The first step is to identify the Q function common to all k
0

populations using the techniques of Section 3.1 and 3.3 or, if

appropriate, to estimate the shape parameter y of the specified

Q * using the techniques of Section 3.2 and 3.3.
0

From each of the random samples {¥Yii ... , Y n,, i=l, ... ,k)

one forms estimates 1l1 and 0i of I) and o using optimal or asympto-

tically optimal ,COS.

.1 '



69

Theorem 5.2.1: Assuming that the standard conditions for the validity

of the Cramer-Rao bounds are satisfied and that the spacings

(0, Ulf ... S U, 1sI}satisfy

max (uju Ujl). 0 as r~

then

Fi~C)- 1I)dN 2  2l-12f(0)) as r -

where pi, a are computed using the optimal or asymptotically optimal

LCOS, based on r order statistics and 1(0) is the Fisher information

matrix of (pi, a) defined by (4.1.6).

Proof: (nonrigorous)

The asymptotic zero mean normality of ii () (l)

follows from Theorem 2.1.4 and the fact that (oI) are ABLUE's for

The variance of (vi) is given by

/11 K12

(2 K

K12 22/
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(see Ogawa 1951 or Eubank 1979) where KII, K1 2, and K2 2 are defined

by (4.1.1), (4.1.2), and (4.1.3). It is sufficient to show that

FK Kl2 converges componentwise to 1(0) as r

K12 K22

Consider K defined by
11

K = (fQ (u )-foQ (u 2

j=l
u. - u _

Using the Mean Value Theorem,

f oQ U) = f oQo (ul) + (u -uj-l)foQo'(U0 *)

so that

foQo(u f - fQ ) = fQ'(u*)

u - uJ I

where uj_ 1 < u. < u3 , Ur+ 1 - I .* Then we can write the

Riemann integral

1 11( = fI (foQ ° (u))2 du
1 ~ 0

r+l *2

r]

r +I .lfl j -i_1  2
u J-1
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The convergence of K22 to 122(0) and K to 1 (0) follow
2 2212 12

analogously.

Remarks on Theorem 5.2.1:

1) A rigorous proof would entail examining the limits n

and r - o more closely as well as the asymptotic normality

of (;, a^) (see Chernoff, Gastwirth, and Johns 1967, and

Stigler 1974). Theorem 2.1.4 holds for fixed u, .... I ur

but here we let r -+.

2) It seems clear that the asymptotically optimal spacings

generated by Eubank (1979) satisfy the conditions of

Theorem 5.2.1 since H(u) and 11-l(u) are both defined on

[0,I]. One should substitute H-(I)_ for u in the

expressions for KiI, K1 2, and K22 to get the variance of

Eubank's estimators.

3) It is not clear that the optimal spacings of Ogawa (1950)

satisfy the conditions of Theorem 5.2.1. Examination of

the ARE of the estimators of o and a using Ogawa's formula-

tion suggest that ARE(P, 1)- 1 as r - . This seems to

indicate that the conditions on the spacings are satisfied.

Corollary '.2.1: When there are k independent samples, the

estimators ji and o i based on LCOS from a random sample of

size ni from population i satisfy
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Vn i  N (O o2 1-1(0)) as r

and the k distributions are independent.

Theorem 5.2.2: a) When there are k populations satisfying the

model of (5.2.1) and (5.2.2), then ABLUE's (a , L3 li ,1 a ) of

(0 , 0 , ,1a ) are given by

"=(2) [ k n. 1 k/ n.

C JI 
z( ) 

a' 

oi l 
F-- 1 

1(6)

(5.2.3)

where 1(0) is the Fisher information matrix of (i,o) defined by

(4.1.6), I is the n dimensional identity matrix, and the Kroneckern

product, A B (Rao 1973, p. 29), of an n x m matrix A = (A ij) and

an r x s matrix B = (B)ij is the nr x ms matrix

A G B = 
B.La11 B a12 B ... a I

Lani B . . . a Bnmf

and

W =[ 
, i 

., k .X X2
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b) ~

V- 2 N, ( 144 -4I

where

v 1(0)O[0,Y WI- (5.2.4)

and V 2V V

Proof:

Using model (5.2.2) we can write

xr ,il E..
01 a 2

or

C1()='0(x)()+ ~ .,k

where

v a r ( E : : ) 0 2i ' o
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Using the asymptotic normality of (li (Theorem 5.2.1), the

observations (i) approximately fit the framework of the Gauss-

Markov Theorem (see Rao 19 7 3 ,pp.544 -54 6 ) and we can form the ABLUE's

(a 0 , , a y ) of (a , , a , a ) given by (5.2.3) which have

asymptotic variance given by (5.2.4).

Remarks on Theorem 5.2.2:

1) Notice that Y2 is an unknown parameter so that usually
i

an iterative estimation scheme is in order. However,

analogous to the treatment of a2 in the continuous para-

meter time series regression model of (4.2.2),we can

treat a2 as the scale parameter of a Brownian bridge
i

process (see Parzen 1979a). Hence under the assumption

of (5.2.1), i.e. that Q (u) is a location-scale shift of
i

some Q (u), an "independent" estimator of o is provided
0

by 0 where

°oi = f f Q (u)q (u)du

This is the k-sample analog of a defined in Section 3.1.
0

The estimator is consistent for a when (5.2.1) is true.
i

Conm;equently we compute the estimators
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(5.2.5)

with estimated variance

^k -i
V = I1) Y i ) (5.2.6)

a2
ci

3) Programs to implement the estimation techniques are avail-

able. Subroutine KSAM forms quantile-box plots and uses

the goodness-of-fit techniques of Section 3.3 to determine

the distributional shape of the k samples. Subroutines

QTOLS, QTOLSC, and QTOLSW compute estimates mi and ai of

1i and a for a specified Q function using LCOS. Subroutine

LSTOAB estimates the coefficients (am, % ,cy, a a) and their

variance using (5.2.5) and (5.2.6) based on the k pairs of

observations (i. a i), i = 1, ... , k. Listings of the

subroutines are on file at the Institute of Statistics,

Teyis A&M University.

4) Model (5.2.2) has been used for simplicity. A general

parametric model relating u i and oi to Xi is

= f (Xi,O )

0, = f (X,0) , i 1 ... ,
-0~
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Scatter diagrams of wi and ai vs Xi will help determine(. -)fncin

appropriate f (- , .) and f functions.

The final step in the k-sample quantile regression problem is

to estimate the parameters A(u) and B(u) in

Qi (u) = A(u) + B(u) X, Vi 1,. k

By making the substitution

AMu = a P+ a aQo(U)

B(u)=cW +aa Qo(u)

we obtain the estimators

A(u) =a +a Q (u)

(5.2.7)

B(u)= + Q (u)p 0

A significant advantage in this estimation scheme over other methods

is that one need not use sophisticated methods to estimate A(u) and

B(u) for each value of u for which a regression line is desired. One

can simply substitute the appropriate value of Q (u) in (5.2.7).

lHypothesis testing procedures:

The first hypothesis of interest is

H : Q (u) = + 0 i Q (u) , i =, ... , k
0 i i o

" h'vpthesis examines the adequacy of the model Qi(u)- +Oo(.
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To test this hypothesis we propose the GOF procedures outlined in

Section 3.3.

One might also wish to examine the adequacy of the linear model

(5.2.2) for i and oi. Scatter diagrams of i vs. Xi and i vs. X i

provide a quick graphic technique to check the linear relationship

between the estimated parameters and the X values.

A hypothesis which states that there is no linear relationship

between the quantiles of Y and X is

H:8 =8 =0 .
0 a= 0

To test this hypothesis one could use the joint asymptotic distri-
^ A

bution of 8 and 0 given by Theorem 5.2.2 and form the test

statistic

2 A A-

X P 0,8 )[Var(a ,)

0

where Var(6 , o) consists of the appropriate elements of the

estimated variance matrix given by (5.2.6). Under Ho, X 2 has an
2

asymptotic x distribution with two degrees of freedom. Large values

of X2 indicate departure from II 00

Other hypotheses involving o ,B ,n , B can be tested using

the asymptotic normality of (xn1 9 ' a, 0 ). Some of these

hypotheses are discussed in the next section.
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5.3 The K-Sample Comparison Problem

The k-sample comparison problem is defined to be the estimation

and comparison of the location and/or scale parameters of-k popula-

tions based on samples {Yi' ... Y ini  i = 1, ..., k}. Usually one

assumes

F(Y) = F ( La)
S0 a.

or

Qi(u) = Pi + ai Qo(u) , i = 1, ..., k

where wi and o[ are the location and scale parameters respectively

of the ith population and F and Qo are completely specified. There

are a multitude of parametric and nonparametric procedures available

to compare the Wi's or the O's.

If one records some numerical characteristic, Xi , of the ith

population, e.g. treatment level, one can specify a relationship

between (ii, ci ) and X. such as

Pi = a + X

(5.3.1)1i  = i ci 8

Thus the estimition procedures of Section 5.2 are also appropriate

for a particular type of location and scale comparison problem.

.'Ii
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A hypothesis which examines the equality of the k location

parameters is

H : Ilk. . p
V i I

Under the model (5.3.1) this hypothesis is equivalent to

H:8 =0 .

In Section 5.2 we state the asymptotic variance of 0 from which we

can form the test statistic

A

where Var(8 ) is the appropriate element of (5.2.6). Under H
P

z has an asymptotic N(O, i) distribution. For the alternativeii

H : 8# 0 , one rejects H at level a if I z > I- I(1 - a/2).

The test is not appropriate, however, for the general alternative

1C1 : not all p i are equal.

A hypothesis which states the equality of the k scale

parameters is

S1 k

which unhr model ( i. 3.1) is eqilivlent to

H i= 0
a 0

I i
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Analogous to the test statistic for H , we can form the test

statistic, za , for H defined by

z = 8 /( Var )

which has an asymptotic N(O, 1) distribution under H a

One might also wish to test simultaneously the equality of

the Pi 's and the a 's, i.e. test

i i

H l=* 1 * k and o 
k

or

H: 8 =8A = .o ~ c

To test this hypothesis use the test statistic X2 of Section 5.2

defined by

= (8, )[Var (%u ) (
2which under H has an asymptotic x distribution with two degrees

0

of freedom.

The advantages of this comparison procedure are:

1) There are no restrictions on Q (e.g. Q =

2) One can accommodate heterogeneity of the o 's (or i's)

when comparing the p i's (or ai 's). The standard ANOVA

procedure for the comparison of location parameters

9,
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-1
assumes 01J ... =0 k and Q0 = The restulting F

statistic performs fairly well when either of the

assumptions are violated but its performance worsens

when both assumptions are violated particularly if the

li's vary considerably (Box 1954)

3) In many situations (e.g. the Weibull distribution) the

location parameter is a threshhold value and not a measure

of central tendency. The mean and median of the distri-

bution will depend on scale and shape parameters as well

as the location parameter. Thus a procedure based on

comparing sample means or medians seems inappropriate

for comparing location parameters.

A substantial disadvantage of the procedure is that location

and scale comparisons based on the model of (5.3.1) have very low

power against general alternatives.
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6. EXAMPLES

In this section two published data sets are analyzed using the

techniques of Sections 3 through 5. The results of the analyses are

compared to results of other investigations of the data. Computing

programs to implement the techniques of data analysis described in

this dissertation have been developed by the author. The programs

make use of subroutines which implement the nonparametric data

modeling techniques of Parzen (1979). All computing was performed

on an AIDAHL 470V/6 computer at Texas A&M University.

6.1 Professors' Salary Example

Hogg (1975), Griffiths and Willcox (1978), and Angers (1979)

investigate data consisting of the salaries of 96 professors at a

major university as a function of their years in service. Each of

the investigators estimate linear percentile lines for p - .25, .50,

.75. The techniques of Hogg (1975) and of Griffiths and Willcox

(1978) have been described in Section 5.1. The approach of Angers

(1979) is to use grafted polynomials, a nonparametric technique,

where the curves for the 75th and 25th percentiles are restricted to

be synuietric about the curve for the 50th percentile. He uses

linear percentile regression curves. Table 6.1 summarizes the

estimated quantile regression coefficients obtained by each author.
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Table 6.1 Estimated Parameters for Professors' Salary Data.

A(.25) B^(.25) A(.50) 9(.50) A(.75) B(.75)

Hogg(1975) 18.8 .300 20.0 .485 21.5 .625

Griffiths &
Willcox(1979) 17.50 .40 19.15 .48 20.81 .56

Angers(1979) 18.173 .331 19.646 .478 21.119 .625

The data are presented in Figure 6.A.

Griffiths and Willcox state:

"There is no clear evidence in the data of departures from

normality by way of either highly skewed or heavily tailed

residual distributions. There is, however, a trend to

increasing spread ... "

However, generally with salary data one would expect the data to

be skewed right particularly when there are few years in service.

There seem to be several outliers in the data when there are few

years in service. While one might expect increasing spread of the

salary distribution a! years in service increases, the increase in

spread evidenced by this data does not seem sub-tantial.

What one would like to detect is how the quantiles behave as

a function of years in service. One would like to determine which

of the potential curves in Figure 6.B representq the relationship

between salary quantiles and years in service and to estimate

the unknown parameters of the quantile regression function.
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Figure 6.B Possible Salary Quantile Regression Curves

Since the sample sizes are quite small for each value of X.

in order to use our quantile regression technique, it is necessary

to repartition the data by pooling hcmogeneous samples. Tukey (1977)

suggests that one way to partition Y observations when X is a random

variable is to use selected quantiles of X. In this study three

methods of partitioning the data were investigated:

1) pooling the data into four year intervals;

2) pool the data into five year intervals;

3) pool the data using similar midrange values which resulted

in five samples representing 3, 3, 4, 4 and 6 years of

service respectively.

It was found that pooling in four samples each representing five

years of service, was most satisfactory for this study. It seems that

there is a jump in salary a'ter five years of service. Another

method of partitioning the data is to pool the data into overlapping

samples. However this technique violates the assumption of k

independent samples.

Based on pooling the data into four samples of five years each,

we shall describe each stage of the analyst . We use the mean value

AND1
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of X within each sample as the value of X . Thus X1 = 3, X 2 = 8,

X3 = 13, X4 = 18.

Stage 1: The quantile-box plots of all four samples are given

in Figure 6.C. The shift in location is very evident. The shapes

of the distributions seem compatible but all of the plots show

varying degrees of skewness. However all of the sample sizes are

relatively mall and it is difficult to identify incompatible

shapes from the quantile-box plots. The plots do suggest that one

should test the goodness-of-fit of the data to symmetric and slightly

skewed Q functions.

Using the technique of Section 3.3 we test the goodness-of-fit

of the data to the normal, logistic, and Weibull (y = .333, .250, .20)

distributions.

By specifying Qo(u) = -1 (u) (normal distribution) we obtain

the quantile-box plot of Figure 6.D for the pooled transformed data.

The plot is not incompatible with a normal shape except in the tails.

Figure 6.E is a plot of D(u), the raw transformation distribution

function. The line D(u) = u has also been superimposed on the

figure. Serious departures from the line D(u) = u are not obvious.

The value of p() is .0206. Under H , 2np(v), v A 0 has an
2 0

asymptotic X distribution with two degrees of freedom. The .05I2
critical value of a X is 5.99. The value of 2np(l) is 3.95 where

n - 96 and p(l) - .0206. This is also evidence that the normal

distribution is compatible with the data. Finally CAT selects an
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Figure 6.D Professors' Salary Data;Quantile-Box Plot of
Pooled Transformed Data, Normal case
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Figure 6.E Professors' Salary Data; The Function D(u), Normal case
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optimal order of zero which is consistent with the other diagnostics

in failing to reject a normal distribution for the data. Based on

this stage of analysis we conclude that Qi(u) =i + Cyi -l(u)

i = 1, 2, 3, 4. Using a consensus of the diagnostics, the other

distributions, i.e. logistic and Weibull (y = .333, .250, .20)

are not as compatible with the data as the normal distribution.

Stage 2: We compute estimates Pi. ai of Ui' ai using LCOS

based on the normal distribution using the asymptotically optimal

coefficients and spacings (r = 7) of Eubank (1979). Figure 6.F

plots Ii and ai vs X . The figure suggests a linear model for the

i's but it appears that there is no definite trend for the i's.

However we shall attempt to fit the linear model of (5.2.1) for

both p, and 0, in Stage 3.

Stage 3: We use generalized least squares to obtain the

following fitted regression lines for p, and ci:

Si = 19.8642 + .5024 X

C i = 1.3914 + .0363 Xi

Since we suspected that ci does not change significantly with x,,

we test 11 : = 0 giving z = .8117. Based on this value we fail
(0 (1 (1

to reject H at the a = .05 level and conclude that Xi does not

have a significant linear effect on ci. A test of H : 8 = 0 gives

z = 7.943 and we reject H at the .05 level.
U



91

Figure 6.F Professors' Salarv Data; Plot of V and a versus X
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Stage 4: Based on the results of Stage 3 and analogous

with previous investigations of the data we estimate A(u) and B(u)

for u -. 25, .50, and .75. The estimated values are

A(.25) = 18.926,

B(.25) = .466

A(.50) = 19.864

B(.50) - .502

A(.75) = 20.802

B(.75) - .527

These values are comparable to those of Table 6.1.

While we reached the same general conclusions as the other

investigations, our technique has several distinct advantages over

the other procedures:

1) The procedure is flexible enough to incorporate virtually

any specified distributional shape. Griffiths and Willcox

(1978) only use the normal distribution. Angers (1979)

and Hogg (1975) use nonparametric nethods.

2) The procedure is computationally simple. Both Griffiths

and Willcox (1978) and Angers (1979) use techniques that

are fairly complicated and involve iterative solutions.

Hogg's (1975) technique is graphical and seems very

subjective in all phases of estimation.

3) The procedure uses simple well-known procedures for

hypothesis testing.
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One should note the danger of trying to predict salaries at other

universities or outside the range of years of service using the

results of this analysis. As the years of service increase, the

quantile curves will undoubtedly flatten.

6.2 Green Sunfish Example

Matis and Wehrly (1979) illustrate compartmental modeling

techniques using data from a study to investigate the resistance

of the green sunfish, lepomis cyanellus, to various levels of

thermal pollution. The data consist of the time until death (Y)

of samples of fish exposed to water heated to a range of sub-lethal

and lethal temperature (X). As part of their analysis Matis and

Wehrly utilize samples at the temperature levels of 39.5 0C and

39.70C. They model the time until death as a three-parameter

Weibull distribution and estimate all three parameters for each

sample. LaRiccia (1979) uses the temperature levels 39.5 0C, 39.6 0C,

and 39.70C and using a Weibull model, he estimates all three parameters

for each sample using minimum quantile distance estimators. The

estiriates of Matis and Wehrly (1979) and those of LaRiccia (1979)

using r = 6 quantiles are summarized in Table 6.2. LaRiccia (1979)

states that for the temperature levels of 39.5 0C and 39.7 0 C the data

fits well a Wethull distribution with the estimated parameters but

that the estimated parameter values for a temperature of 39.6 0C are

unrealistic.
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For this study we use the tvn (k =10) temperature levels

38.90C, 39.00C, 39.30C (.10C) 40.00C and model each of the ten

populations as a location-scale shift of a Weibull distribution with

a common but unknown shape parameter. While this is a reasonable

model for a time until failure distribution, it should be noted

that in the ichthyological literature tolerance times of fish are

often assumed to have a lognormal distribution.

Table 6.2 Estimated Parameters for Green Sunfish Data

Ii Y

a. 39.50C

Matis and
Wehrly(1979) 96. min 1.00* 3029.

LaRiccia(1979) 135.37 79.46 1.15

b. 39.60C

LaRiccia(1979) 91.3 4.96 x 10 5 1.70 x 10 4

c. 39.7 0C

Matis and
Wehrly(1979) 35. min *599* 2.486

LaRiccia(1979) 48.83 48.58 1.46

*the scale parameter Matis and Wehrly (1979) estimate is

k =( 1 /,)c . The value a is obtalned by (k)-'
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The reasonability of our distributional assumptions is investigated

in Stage 1 below. Our goals in this study are twofold:

1) to investigate if there is a significant difference in

the location and scale parameters of the time until

failure distributions for these temperature levels.

2) to estimate quantile regression lines for u = .50 and

.90 (i.e. for the 50th and 90th percentiles of the time

until failure distributions).

The sample sizes are ni = 20for i = , ... , 7, n 8 1

n9 n1 = 10. Figure 6.G presents the data plotted as a function

of temperature level. The four stages of analysis are described

below:

Stage 1: The quantile-box plots of all ten samples are

given in Figure 6.H. The shift in location is evident but is not

uniform for all the temperature levels. The decreasing spread as

temperature increases is apparent by examining Qi (.75) Q- (.25).

The plots of Qi (u) seem fairly symmetric except for i =3(X 3 = 39.30 C),
i0

i = 6(X 6 = 39.60 C), and i = 9(X 9= 39.9 9C). For i1 3, 6 and 8,

Q1(u is slightly skewed left and for i =2 and 9, Miu is skewed

right. The plots suggest that a potential set of values of the

shape parameter might be in the range (.5, .2).

Using the estimator y Pof -y defined by (3.2.6) and using

(1 =.002, u 2=.0115, u 3 = .5429 which are optimal for y - .3,

we obtain the estimate Y .416.
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Using the technique of Section 3.3 we test the goodness-of-fit of

the data to the Weibull distribution for y0 = .333, .25, .20, .167,

and .143 using the model

Qi (u ) = Pi + 0i [-log(l-u)] ,i = i, ... , i0•

By specifying Y = .333, we obtain the quantile-box plot ofO

Figure 6.1 for the pooled transformed data. We are testing whether

the pooled transformed data fits an exponential distribution and

the plot is not incompatible with an exponential shape except for

the two outliers in the right tail. Figure 6.J is a plot of D(u),

the raw transformation distribution function with the line D(u)= u

superimposed on the plot. Serious departures of D(u) from the line

D(u) = u are not evident except as u gets close to 1. The value of

p(2) is .0097 so that comparing 2n p(2)(=3.317 where n = 171) to

2the .05 critical value of x2 (=5.99) yields further evidencefo

failing to reject y = .333 as the true value of y. Finally CAT
0

selects an optimal order of zero which is consistent with the other

diagnostics in accepting Y = .333 as an appropriate value of y.
0

The values Y = .25 and .20 do not prove to be acceptable
0

values of y, based on a consensus of the diagnosties from the ONESAM

analy!;is of the pooled transformed data. Based on this stage of

L110 :iMIa ;S;Is we cocliC[C that

(u + 1 (1 1 10
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Figure 6,1 Green Sunfish Data; Quantile-Box Plot of Pooled Transformed
Data, Weibul. (y =.333) Case
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Figure 6.J Green Sunfish Data; The Function D(u), Weibull (y =.333) Case
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Stage 2: We compute estimates a of , using LCOS

based on the Weibull distribution with y = .333 using the optimal

coefficients and spacings (r = 6) of Hassanein (1971). Figure

6.K plots ij, and a vs Xt. The figure suggests a linear model for

a, and the presence of a linear trend for pi. It should be noted

that P is less than min (Yj, j 1 1, ..., n,) for all i which is

desirable. However the i 's vacillate so that a uniform decrease

in the threshhold of the tolerance times as the temperature increases

is not evident. The failure to detect a uniform trend is attribu-

table to competing physiological causes of death in the specified

temperature range.

We can compare our estimates of p, a, and y(4I/c) to those of

Table 6.2 for i = 5, 6, 7 (39.50C, 39.60C, 39.7°C). Our values are

summarized in Table 6.3. The value y = .333 which we used is not

consistent with the estimate, c, of LaRiccia but is consistent with

that of Matis and Wehrly for the temperature 39.70C.

Table 6.3. Estimated Parameters of Green Sunfish Data, i = 5,6,7

a t Yi Yp YO

i = 5, 39.5 109.319 95.899 .206 .416 .333

i = 6, 39.6 63.926 91.753 .416 .416 .333

i 7, 39.7 29.708 66.847 .416 .416 .333

We shall attempt to fit the linear model of (5.2.1) for both

V1 and ai in Stage 3.
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Figure 6.K Green Sunfish Data; Plot of Ui and a versus Xi
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Stage 3: We use generalized least squares to obtain the

following fitted regression lines for W, and

4601 - 114.25 Xi

0= 6707 - 167.188X .

The asymptotic variances of a and a are very large. One solutionU 0

to this might be to rescale the X values by subtracting median (XI)

from each one. If we let X Xi- 39.55, we get the regression

lines

89.560 - 124.185Xi*

Y = 102.0931 - 181.777X *i

Testing H : 0 f 0, we get z = 9.31 and consequently we reject H

Testing H a: a,= 0, we get za = 12.48 and we also reject H . The

hypothesis H is equivalent to the hypothesis that all a,'s are

equal and H is equivalent to the hypothesis that all oi's are equal.

Thus for the k sample comparison of location and scale parameters we

conclude that the p 's are significantly different as are the a's.

Stage 4: Based on the results of Stage 3 we estimate A(u)

and B(u) for u - .50 and .90. The resulting quantile regression

lines are

Qi(.50) 160.326 - 250.183 X *

Qi(.90) - 324.638 - 542.742 i
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These lines are drawn on Figure 6.G.

The estimated quantile regression lines seem fairly reasonable.

Better knowledge of the physiological effects of thermal pollution

should lead to a better range of temperature levels where one effect

is the dominant cause of death. Larger sample sizes will result in

a better estimation of y and of p, and oi which will improve estimates

of the quantile regression line. We are convinced that this technique

of quantile regression is appropriate and very useful for analyzing

this type of data.
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7. CONCLUSIONS

7.1 Summary:

In this dissertation we have investigated a quantile function

approach to the k sample quantile regression problem. By modeling

the quantile functions of the k populations as location-scale shifts

of a completely specified quantile function, Q0, and then modeling

the relationship of the location and scale parameters p, and o, to

a predictor variable Xi, four stages in the analysis have been

delineated.

Stage 1, the identification of Qos is discussed in Section 3.

Multiple quantile-box plots are used as a quick graphic technique

to identify the qualitative characteristics, e.g. skewness, symmetry,

modality, and tail behavior of the distribution of each population.

Parzen's (1979) data modeling technique for one population is

described and extended to a goodness-of-fit procedure for k popula-

tions. An estimator, y, of the shape parameter, y, of Qo is

given and is shown to have an asymptotic normal distribution.

Optimal spacings for y when Q corresponds to the Weibull distribution

are given.

Section 4 describes Stage 2, the estimation of location and

scale parameters using k independent samples of data. Two approaches

to selecting optimal linear combinations of order statistics for one

population are discussed and shown to provide computationally simple

and statistically efficient estimators of the location and scale

parameters of k populations. A study of bias, variance and mean

k -i
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squared error of estimators based on a misspeclfied value of the

shape parameter of the Weibull distribution shows that mild mis-

specification of Q does not seriously affect the estimation of

location and scale parameters.

Stage 3, the estimation of the parameters of a linear regres-

sion model for pi and el, is discussed in the first part of Section

5. The estimated parameters and their joint asymptotic normality

are based on the generalized least squares technique. The model

used for the k sample quantile regression is flexible in that it

accommodates almost any specification of Q yet leads to simple

estimators of the regression parameters.

Stage 4 is the estimation of and inference about quantile

regression curves. The estimation technique is simple, and contrary

to many existing techniques, one can estimate regression curves for

several quantiles without having to reestimate the regression para-

meters. Inference about the curves is based on the asymptotic

normality of the estimated parameters.

Finally in Section 6, the technique is illustrated using two

data sets. In both cases an appropriate specification of Qo is

made and the estimated quantile regression curves fit the data well.

The results are consistent with those of previous investigators.

The two analyses illustrate the flexibility and simplicity of the k-

sample quantile regression procedure.
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7.2 Problems for Further Research

The most critical stage of the analysis as we perceive the

k sample quantile regression problem is the identification of Qo"

There are several areas for future investigation dealing with this

stage. There are a multitude of goodness-of-fit procedures for one

population. The extension of these procedures to k populations and

a comparison of these k population procedures to our GOF procedure

should be conducted.

The estimator Y(and y p) of the shape parameter y, is formulated

in general terms. Tables of optimal values for ul, u2, and u3 should

be available for distributions other than the Weibull, especially

the lognormal distribution. The use of this type of estimator

should be extended to the case of censored samples. Other methods

of estimating y, e.g. cross-validation techniques (Stone 1974),

might prove useful.

Optimal linear combinations of order statistics yield

estimators of location and scale parameters that are simple to

compute and statistically efficient but require tables of optimal

spacings and coefficients. Eubank (1979) suggests the investigation

of techniques to use spacings from a subinterval of [0, 1] for

distributions where the simultaneous estimation of location and

scale parameters is not possible using the continuous parameter

tlme series approach. This would be useful in the k sample quantile

regression problem also. Tables of optimal spacings and coefficients
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for a wider range of values of the shape parameter of the Weibull

distribution need to be made available.

While this formulation of the k-sample quantile regression

has proven its worth, it would be worthwhile to investigate a

quantile function approach to the k-sample comparison problem.

Ohio Ja
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