T

e A N T Ty Ty e SN

e R

A-w».ﬁ
oo G ST

ADAG95020

g;‘:é '.‘,’ AR + /
2 S T |
7 , J
E I 7 Y Y
LN B ~ -
g ﬁﬁg'
ol

NPS52-80-006 ~

NAVAL POSTGRADUATE SCHOOL

Monterey, California

ATHENA:
USERS MANUAL FOR INTERACTIVE ANALYSIS
OF LARGE-SCALE OPTIMIZATION MODELS

by
Gordon H. Bradley

Gerald G. Brown
Panagiotis I. Galatas

April 1980

Approved for public release; distribution unlimited.

Prepared for:

Naval Postgraduate School
Monterey, California 93940

Rear Admiral J.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

J. Ekelund Jack R. Borsting

Superintendent

Provost

This report prepared by:

Reviewed hy:

’,
.,
F4 hs 3

GERALD G. BROWN
Pepartment of Operations Research

v S g

2T et

PANAGIOTIS I/ GALATAS

Released by:

Vo Ol Lt o

MICHAEL G.

SOVEREIGNY, Chalrm WILLIAM M. TOLLES
Department of Operations Research Dean of Research

L e

L]
o #h

o

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enterod)
READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLE~ING FORM

et e —
2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG {UMBER

AD-AASOD O

A1 TCE (and Subtitle) [. TYP 159,‘.1,&'35;97
ATHENA: Users Manual for Interactive 567 Technical ep‘t‘:c]/
=== Analysis of Large-Scale J pr | o o e

- i‘ €. PERFORMING ORG. REPORT NUMBER

T Optimization Models. ' .
o oceLse..

7. AUTHOR(s) - sttt 8. CONTRACT OR GRANT NUMBER(s)

Gordon H./Bradleg}/%erald G./Erown7

Panagiotis I./Galatas ,—

Lz srw e

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :

(o]
b}
F 3
cx
zm
prt
z
<

Naval Postgraduate School
Monterey, California 93940

NT, PROJECT, TASK
MBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93940

3. MONITORING AGENCY NAME & ADDRESS(/{ g) 15, SECURITY CLASS. (of this report)

Unclassified

18a, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, i1 dliferent from Report)

18. SUPPLEMENTARY NOTES

-

19. KEY WCROS (Continue on reverse side i necessary and identity by block number)

Large-scale optimization, Linear programming, Linear program
report writing, Mixed integer optimization, Interactive model
analysis, Matrix generation in linear programming

]

20. ABSTRACT (Continus on reverae aide If necessary and identtty by block number)

S Analyses of solutions for large-scale optimization models are
very difficult without effective computer aids. Solution
reports may require weeks to design, implement and produce with
conventional report writing systems. yThe reports produced are
voluminous, often exceeding 100,000 pf£inted lines, and are thus
quite awkward to access manually. Tim and economic analysis
of solutions to large models is further hin d by inflexible

_and _costly xeport writing.software and.procedures

DD ,7SRM, 1473 E0ITION OF 1 NOV 6515 0BSOLETE UNCLASSIFIED A
S/N 0102-014-6601% !

N VY VAN S\ '\

¢

o,
SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered) P

4

i

e'v?i:m - N T RO YRR T RTRQEATSR RIS T v T WW’“W«« & i 3 ':,03’,“
3 - N < ¥

e - . SRS AR S S R

UNCLASSIFIED
JLLURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

J

| been developed to allow extremely efficient immediate {interactive
storage and analysis of the solution file froa any optimization
system. ATHENA is easy to learn and use; {fuser friendly“ features|
are provided which can preemptively assess the potential cost and |+
implications of each request for solution information, assist the
confused user, and provide the required solution information with
very fast response time. The user is provided with extensive)
L"search under mask"“and(fbompound logical relational*“constructs,
as well as the capability to quickly diagnose suspicious model
symptoms, and to format and issue offline reports. ATHENA is
implemented in poxrtabfe FORTRAN, with a parser and interpreter
easily modified and expanded to suit particular hardware environ-
ments and user demands. The system has been initially designed
and tuned for large-scale problems with up to 30,000 rows and
columns. Live test demonstrations show that the system exhibits
very fast response time in actual use. This report presents a
users manual for the prototype ATHENA query language, an error
message directory, and a description of interface and extension
provisions.

@.

e

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

T I i i R i SR

TABLE OF CONTENTS

INTRODUCTION I-1

SOFTWARE DESCRIPTION I1-1

A. GENERAL II-1

1, Parser - Code Generator II-1

2. Input II-1

3. Interpreter I1-1

B. LANGUAGE II-1

1. Host Language II-1

2. Query Language I1-3

C. DATA STRUCTURES II-4

1. Preview II-4

2. SPARSE Data Structure II-6
3. SUPERSPARSE Data Structure II-11

USZER'S MANU%L ITII~1

A. INTRODUCTION I1I~)

; B. QUERY LANGUAGE III-1
3 1. Control Queries I11-2
% «. VERIFY - e III-2
s b. NOVERIFY ‘ | ”)M/L;€ IZ71-2
| c. PROMPT |) 1II-2
t d. NOPROMPT) ~ III-3
% e. H Any String III-3
N) f. * Any String I1I-3

g. END III-3

L s

e P2
|
L

fi:peinoy SRoRRB el
S

TN T S g T

I~

o~

FTEeCT T

2. Command Queries
«. TYPE Field
b. SELECT Field
¢. MASK Field
d. CONDITION Field
e. PRINT OPTION Tield
3. The SET Command
ERKOR MESSAGES
LIMITATIONS - EXTENSIONS
SYSTEM INTERFACE
1. Preview
2. Input File
3. Packed File
EXAMPLE OF SYSTEM USE
1. Obtaining the Unpacked File

2. Using the System Under CP/CM!

LIST OF REFERENCES

INITIAL DISTRIBUTION LISRT

ITI-3
III-4 .
III-6
I1I-7
I1I-8
III-11
IrI-12
III-14
III-17
III-19
III-19
II1-20
111-21
I11-22
III1-22

I11-23

- »_4__._.

-

>

- e

D A N PR A

I. INTRCDUCTION

The generxation, solution and analysis of large scale
mathematical programming models presents significant problems
in efficient data handling and interpretation. For a typical
large scale model the printed output may exceed 100,000 lines.

It is very awkward and time consuming for the user to examine
that much paper to extract the information he needs. Space is
also required for archive storage of such reports and it is very
difficult to provide routine access to these old solution files.

Over the past several years, faculty and students at the
Naval Postgraduate School and the University of California at
Los Angeles have been cooperatively developing theory and algo-
rithms to solve large scale linear, nonlinear and integer optimi-
zation problems. This research has been rewarded by the develop-
ment of many software systems to solve large scale optimization
problems. ATHENA is part of that development and has been designed
to satisfy a pressing need to be able to quickly and easily analyze
solutions to large scale optimization models.

The research in large scale optimization at the Naval Post-
graduate School has concentrated on providing economic solutions
to current Department of Defense problems., Cne such project that
was going on concurrent with the development of ATHENA was a
large, medium-range capital budgeting problem that raquired the
solution of a mixed integer programming problem with 11,637 con-
straints and variables [8]. ATHENA was used successfully with

this project, and performance of ATHENA on this problem is

reported below.

TN ST T T g T e

PN on T S

.

-

T D> Vo

ATHENA has been developed to handle output from large scale
optimization problems by enabling the user to get the informa-
tion he needs interactively through a computer terminal and by
economically storing the large files in packed form in low cost
media. The features of the system are summarized:

1. Quick and accurate answers to simple questions that are

tedious and error prone to address manually, e.g.

How many of a set of variables are = 1,0?
How many are greater than 0?
What variables are in a specified range?

What constraints are satisfied exactly? Etc.

2. In large scale mathematical programming models the names
of rows and columns are customarily constructed systematically
so that groups of variables with relationships in the real world
have similar names. - Using the system one can have automatic,
easy and accurate answers for many interesting properties of
these groups. (For instance, the average value of all the
variables whose names begin with X, etc.)

3. ATHENA can also be used as a basis for a simple, fast-
response report writer,

4. The system provides very compact computer storage: the
solution file is typically packed into 1/10 of its original
volume. For example, a solution file from the IBM MPS/360
package [6] for a linear programming model with 12,000 rows and
columns occupies 1.5 magnetic tapes 2400 feet long at 800 BPI in
original unblocked form. In packed form the solution occupies

approximately 31 feet of magnetic tape.

-2

LAl IR L

s by

it

T g s DT AT
WL ok et E e 2l

P T R R TR R R R

P el A e, . GRS

[P— .
wmmMmW A

5. There is systematic and economic file organization'with
easy and accurate access.

6. A file structure for multiple runs of the problem for

comparisons is available.

7. The system requires modest resources (memory, compute
time) in a time-sharing environment.

8. The system is portable and allows easy change or expan-
sicn. It is implemented with an open-ended syntax analyzer in
FORTRAN.

ATHENA was inspired by a similar system developed for the
Department of Energy by O'Neil and Sanders [9] called PERUSE.
PERUSE was developed to aid in the analysis of large linear
programming energy models. A study of the needs of Naval Post-
graduate Schocl students and faculty showed that additional
capacities beyond those in PERUSE were necessary to support
current and future research in large scale optimization. 1In
addition to the standard MPS output, it was determined that
ATHENA should support the experimental optimization system XS
[4]; the output of this system contains in addition to standard
MPS output, upper and lower penalties that implement the 'elastic
formulation' of linear models that is unique to XS. ATHENA
also had to support the use of a preprocessor PREP [3] that
reformulates the original optimization problem to an equivalent
reduced problem with fewer rows and/or columns. A study of past
and current modeling efforts at the Naval Postgraduate School

identified additional commands that would help in the analysis

of large models.

I-3

B L A R B ST i e S

| R R S A R R Y S R R

LR Gl

BN S e Ty MR AR b frsge o - N
A s RS R S ey g e

——— R N mba b it A A o s oo o

ATHENA was designed to be as much as possible a direct’
extension of PERUSE. Almost all the commands and options of
PERUSE have been included with the identical names aad syntax
whenever possible. A summary of the extensions is listed under

the section LIMITATIONS -~ EXTENSIONS, of the user's manual.

I-4

1I. SOFTWARE DESCRIPTION

A. GENERAL

The whole system consists of 3 basic subsystems (see
Figure 1).
1. PARSER - Code Generatour

This subsystem accepts as input a Query, parses it

examining the syntax according to the productions of the
‘ Query Language and generates the corresponding internal
= code or gives information for syntax errors. The internal
codes for each Query are shown in the program list.
! 2. IneuT

This subsystem accepts as input either (1) an
unpacked solution file in 'standard' format which it packs

and saves for future reference, or (2) an L.P. solution

BT T o S

| file in packed form from a previous session.

3. INTERPRETER

This subsystem, using the code generated from the
PARSER, searches the packed solution file and prints out

the information requested.

B. LANGUAGE

1. Host Language

The system has been developed in a portable subset

of FORTRAN IV. FORTRAN was chosen for the following reasons:

a. FORTRAN is a general language available at almost

any computer installation, so the system can be used with

II-1

PACKED

FILE

INTERPRETER

INPUT
FILE
INPUT

PARSER

CODE
GENERATCR

QUTPUT

System ATHENA

FIGURE 1.

II-2

[R e R

s

ol ST TN g e e e =

any contemporary hardware. Non-IBM systems may require

some program modifications.

b. Since FORTRAN is a high level langaage, the
development time was low.

c. The response time for each Query is acceptable
and there is littlie need for faster responses or enhanced
efficiency.

d. Extensions and changes of the system can be
easily implemented.

e. There is good system support for FORTRAN. 1In
particular, ATHENA was developed with the FORTRAN H (Extended)

compiler.

2. Query Language

The set of acceptable Queries is divided into two
main categories:
a. Control Queries
Contvrol Queries provide commands to the system
to perform specific tasks, but usually do noi use the
solution file. Examples of Control Queries are those that
accept comments for self-documentation of the output,
print headings for the output, terminate the use of system,
etc.
b. Command Queries
Command Queries use the solution file to extract
the information asked for. Each Command Query consists of
various fields separated by at least one blank. Some of the
fields are optional, while others are required. An internal

code number is generated by parsing the Command Query for

II-3

BEET

FERET) N TR A

TR

BT

B A s T T SRR

N

each field depending upon the analysis of that field and

the previous fields in the Command Query.

The code generated by the PARSER is executed
by the INTERPRETER,which consists of a set of progams
(subroutines) activated by the code numbers, to get the

required information from the file.

C. DATA STRUCTURES

l. Preview

There are some observations about the solution file
of a linear program, especially of a large scale one, that
lead to the use of a special data structure for storing a

solution file in less memory space than it would otherwise

require.
For each row or column the Zfollowing information is

usually included in the solution file,

NUMBER of row or column.

NAME, usually 6-8 alphanumeric characters.

STATUS, usually 2 characters, e.g., BS for BASIC,

LL for LOWER LIMIT, etc.
ACTIVITY LEVEL, for each row or column.
SLACK ACTIVITY for rows or INPUT COST for columns.
LOWER LIMIT

UPPER LIMIT
DUAL ACTIVITY for rows or REDUCED COST for columns.

UPPER PENALTY and
LOWER PENALTY for the elastic linear programming

system, XS ([4].

II-4

BT e W e A R RN
) o by -

TN S g g et e

[]
kg ‘: o TN

There is redundant information in each record. Some
of these redundancies are the following:

The explicit number for each row or column may be
represented implicitly by the ordinal position of the row or
column in the file. Rows usually precede columns in solution
files.

A large number of the ACTIVITY LEVEL values will be
zero. The same is true for the SLACK ACTIVITY, LOWER LIMIT,
DUAL ACTIVITY and PENALTY values.

In many cases there will not be LOWER or UPPER LIMITS
or PENALTIES.

PENALTIES in some cases may be infinite.

When the status of a row or column is 'fixed', then
ACTIVITY LEVEL, LOWER and UPPER LIMITS are all the same
number.

Each row or column can be in only one of its
possible states.

Moreover, analysts who have experience with large
scale Linear Programming have observed that most of the
numbers of the solution file are the same. For example,
most of the numbers for LIMITS are the same for a large
number of rows or columns. For purposes of analysis, it
is rarely necessary to have more than five decimal digits
of precision for problem values. 1Indeed, some large prob-
lems cannot be solved with even this degree of significance.

Accordingly, IBM single precision REAL*4 representation

II-5

s SN T “(-_(_'w*-“_-

G Y A SR

SR e SR S

is adequate for our purposes. Conversion to REAL*8 extenéed
precision requires trivial program modifications.

Based on the above observations, two types of data
structures for storing the solution file have been developed.
The first one (SPARSE) exploits the redundant information in
each individual record. The second (SUPERSPARSE) stores each
distinct real number only once for the entire file. It is the
responsibility of the user to select the data structure type
that is appropriate for each solution file. SUPERSPARSE is
probably superior with problems for which less than half of all
non-zero coefficients possess distinct real values. What
follows is a detailed description of these two data structures.

2. SPARSE Data Structure

The entire solution file is stored in contiguous
memory (8-bit bytes) as a one-dimension array called SOLFIL,
in the following way:

a. The first 16 bytes (four 4-byte words) are used
to keep information for:

(1) The size of the file in 4-byte words.

(2) The type of data structure used to pack the
file (SPARSE or SUPERSPARSE).

(3) The number of rows and columns of the file.

b. For each row or column, 12 sequential bytes are
required, organized as follows (see Figure 2).

(1) The first 8 bytes hold the name of the row or

column left justified, one character per byte.

II-6

RN : :

8~-BYTE

NAME-1

2-BYTE

BIT MAP

2-BYTE

POINTER

8-BYTE

NAME-2

2-BYTE

BIT MAP

2-BYTE

POINTER

)

8-BYTE

NAME=-n

4=-BYTE

BlT MAP

2-BYTE

POINTER

4-BYTE

VALUE

4-BYTE

VALUE

4-BYTE

YVALUE

4-BYTE

VALUE

4-~BYTE

VALUE

4~BYTE

VALUE

2

4-BYTE

VALUE

e 4-BYTE

VALUE

4-BYTE

VALUE

4-BYTE

VALUE

FIGURE 2. SPARSE Data Structure

II1-7

———— 4 - P

X2

L agaR X

o S A

o8 o

L TN T < = o o

-
o I~ -

(2) The next 2 bytes are used (as 16 bits) ta
represent various characteristics associated with that row
or column.

(3) The last 2 bytes are used as a pointer to
the first number stored from the current record.

¢. The 16 bits from (2) above are organized in 4
groups of 4, 7, 4 and 1 bits, respectively, taken from higher
to lower order.

The first group of 4 bits represents the status

of the current row or column.

BIT PATTERN STATUS

0000 IN (INFEASIBLE)
0001 BS (BASIC)
0010 LL (LOWER LIMIT)
0011 UL (UPPER LIMIT)
0100 EQ (FIXED)

The following status indicators are reserved for use with

the program PREP [3]

0101 VC (VOID COLUMN)
0110 SC (SINGLETON COLUMN)
o111 FC (FIX COLUMN)
1000 BC (BOUND CHANGED)
1001 VR (VOID ROW)
1010 SR (SINGLETON ROW)
11 RR (REDUNDANT ROW)
1100 FR (ROW FIXES VAR. AT BOUND)
1101 ER (DOUBLETON EQUATION)

II-8

RAINT R

e

N
b
hs:
b
3

TSR, YR

ot e
> .

ot e

o e g e =

PR A, X

1110
1111

gt S

BIT NO:

11

10

N ST AN R T T AT

TR (TIGHTEN RANGE)

PP Reserved for PREP{3]

zero or nonzero values for the record.

BIT VALUE:

0
1
0
1
0
1
0
1
0
1
0
1
0
1

The next group of 7 bits represents the characteristic of

CHARACTERISTIC

ACTIVITY LEVEL NONZERO
ACTIVITY LEVEL ZERO
SLACK/COST NONZERO
SLACK/COST ZERO

LOWER LIMIT NONZERO
LOWER LIMIT ZERO

UPPER LIMIT NONZERO
UPPER LIMIT ZERO
DUAL/RED. COST NONZERO
DUAL/RED. COST ZERO
LOWER LIMIT EXISTS
LOWER LIMIT DOESN'T EXIST
UPPER LIMIT EXISTS

UPPER LIMIT DOESN'T EXIST

The next group of 4 bits represents the characteristics for

PENALTIES.

BIT PATTERN

0000
co0oo01l
oo1lo0
0011l

o e,

UPPER PENALTY

ZERO
ZERO
ZERO

NUMBER

II-9

LOWER PENALTY

ZERO
NUMBER
INFINITY

ZERO

PR ARt SR e beg T G R A S VR R o o
S L > R -~ < = Sl anicl
-

2

.

:

0100 NUMBER NUMBER
:

g 0101 NUMBER INFINITY
0110 INFINITY ZERO

.f 0111 INFINITY NUMBER
1000 INFINITY INFINITY
. The rest of the bit permutations are not used.

The last (0 bit) is used by the interpreter to
mark the active and nonactive records when the user uses
b the ACTIVE or DEACTIVE commands to avoid searching of the
3 | entire file.
3 All the above groups of bits are stored together
i : as a 16 bit binary number, which is stored in 2-byte half-

- word. ATHENA has provisions for the use of 16 bit halfwords

representing absolute magnitudes of 0 - 65535, and can extract

| any component bits of the halfwords as necessary. (In this
j; ‘ sense, the usual s{gned magnitude of IBM/360 halfword
integers is ignrored.)

d. The (nonzero, noninfinite) number values which

must be stored are located immediately after all the informa-

tion above. 1If the file represents a problem with M rows

and N columns, then location INDEX - where INDEX=(N+M)*3+4+1 =~
of the SOLFIL array is the first eligible location for

storing number values. The value of INDEX is kept in a 2-
byte pointer associated with each row and indicates for that
row the location of the first value stored. The sequence for

storing these numbers for each row is:

II-10

TR

TR O

R P

et e g 2

ACTIVITY LEVEL, SLACK/INPUT COST, LOWER LIMIT, UPPER LIMIT,
DUAL/REDUCED COST, UPPER PENALTY, LOWER PENALTY.

3. SUPERSPARSE Data Structure

This type of data structure takes advantage of the
fact that in most problems many number values in the solution
file are the same. Each distinct value is stored only once
and a 2-byte pointer is used to access this value when
needed. This is the only difference from the SPARSE repre-
sentation (see Figure 3).

The array with the packed solution file is now
separated into 3 parts:

a. The first part is exactly the same as in SPARSE.

b. The second part is substantially the same with
the following differences:

(1) It consists of 2-byte halfwords instead of .
4~byte words.

(2) Each halfword is a pointer to the third
part of the array where the distinct number values are
stored.

c. The third part consists of a pool of 4-byte
words, each representing a distinct real number value. The
pointers to the distinct real number values are relative
addresses in the real number pool, so a file which is packed
with a different array size can be used with the current
pointers providing the array size is large enough to hold

the file.

II-11

8-BYTE NAME-1

— 2~BYTE BIT MAD
2-BYTE POINTER

8-BYTE NAME~2

2-BYTE BIT MAP
2-BYTE POINTER

8-BYTE BIT NAME-n

2-BYTE BIT MAP

2-BYTE POINTER

2-BYTE INDIRECT PTR.

2-BYTE INDIRECT PIR.
—) 2-BYTE INDIRECT PTR.
— 2-BYTE INDIRECT PTR.

2-BYTE INDIRECT PTR. |
4-BYTE DISTINCT VALUE
4-BYTE DISTINCT VALUE
4-BYTE DISTINCT VALUE

) 4-BYTE DISTINCT VALUE
4-BYTE DISTINCT VALUE

FIGURE 3. SUPERSPARSE Data Structure

I1-12

TN g T g T e =

[
o~

h gyl PO 0l

v
— g

III. USER'S MANUAL

A. INTRODUCTION

The system ATHENA is a set of programs which accepts as
input a linear programming solution file, packs it in a
special data structure and interactively extracts specific
information from that file through a set of Queries.

The size of memory which is required to run the system
depends on the size of the file to be accommodated, and thus
on the size of the original optimiration problem. The user
extracts information from the solution file with a Query
Language, asking questions related to the solution of the
problem represented in the file,

The entire system has been developed in FORTRAN language
for portability and better coordination with other Linear
Programming procedures which are also written in FORTRAN.

The Queries are self-documenting and their syntax follows
closely the syntax of the English language. To avoid typing
effort for experienced ATHENA users, shoat foams of Queries
are provided. Only the characters comprising the short
forms are incerpreted by the system, with all subsequent

contiguous nonblank characters ignored.

B. QUERY LANGUAGE

The Query Language consists of three subsets of Queries:

III-1

I e X e AL O - e i =

EEBA EAENE R R M R R e
. Do SN O T

1. The Control Queries:

With this subset of Queries the user controls
mainly the output of the system, inserting comments,
headings, etc.

2. The Command Queries:

With these the user communicates with the solution

file and extracts the specific information he needs.
3. The SET Command.

This command qualifies the ATHENA queries to access

only a subset of the problem file.

1. Control Queries

a. VERIFY (Short Form V)

All the following Queries will be displayed with
the output. This Control Query is useful when the OFFLINE
printer is used for the output instead of the terminal,
or when the system is used under Batch Processing; in these
cases answers are transmitted to the output device without
the corresponding questions if the system is not in VERIFY
mode.

b. NOVERIFY (NOV)

The following Queries do not appear with the
output. This Control Query is most frequently used when a
terminal is used for all output. The DEFAULT mode of the
ATHENA system is NOVERIFY.

c. PROMPT (P)

The system responds with the prompt:
' INPUT A COMMAND '

II1I-2

X §

e

oy ¢
SO R

ia

i
R
PR X

\ e A=,

L e T T T g T T

'

AN~
G

- B8 o

..WW’WT'&W&M?{ 4 TR T T YT T {3 ATTEI e
251 2 3

R N I P ICAD RO NPttt

whenever it is ready to accept a Query. PROMPT is a
DEFAULT mode of the system.
d. NOPROMPT (NOP)
Used to avoid the prompting phrase in the
output, especially when the OFFLINE printer or Batch
Processing is used.
e. H Any Character String
When the first column of a Query is the letter
H, then the character string is printed as is in the output.
H is used to insert comments or headings in the output.
£f. * Any Character String
When the first column of a Query is the character
*, no action takes place. This is considered as a comment
and is ignored. * is useful to insert comments and/or
headings on the terminal output, but not on the OFFLINE printer.
g. END (E)
Used to end the current session.

2. Command Queries

A Command Query consists of several fields. Some
fields are required and must always appear in a Command
Query and others are optional. Each field is separated
from the others by at least one blank character. The number
of blanks between fields is not significant and a Query may
start at any character position in the command. The length

of a Query cannot exceed 80 characters including the spaces

between the fields.

I1I-3

e, SUNE.d SR

ey

LA
o P———_p—~

SN

ﬁl:

The possible fields that can be included in a

Command Query are:

a. TYPE
b. SELECT
c. MASK

d. CONDITION
€. PRINT OPTION
The fields in a Command Query must appear in the
above sequence and the first 3 of them must always appear,
with only 2 exceptions. A detailed description follows of
each individual field and the way that it may be used.
a. TYPE field
This is the first field of the Query and may
start at any character position. This field can be one of
the following:
(1) DISPLAY (D)

Used when all the records which meet the
requirements of the other fields are to be displayed in the
output in the sequence they are encountered starting from
the beginning of the solution file.

The portion of each individual record that
will be displayed depends on the PRINT OPTION field.

(2) COUNT (C)

Used when only the number of records which
meet the requirements of the other fields is desired. COUNT
is especially useful immediately preceding a DISPLAY command

so the user will know in advance the size of output, avoiding

e R A o 2 M - Cee -
Rl - it e N . D

S s
- "

%

sk Y e\ XK
RSB e
| e

unpredictably extensive printouts. For this Query the

—_—_n

PRINT OPTION is ignored as meaningless.

LR

N

(3) ADD (A)

§” | ; Used when some numerical quantities of
the qualified records are to be summed. The names of the
| numeric quantities of each record that will be added are
given in the PRINT OPTION field. 1If no PRINT OPTION
appears, all the numeric quantities of each record are

added and their sums are displayed with appropriate labels.

E ! Since it is mathematically meaningless

to add LOWER or UPPER LIMITS, or PENALTIES, they can not
} be summed or displayed.
E (4) AVERAGE (AV)
: y Used exactly as the ADD command to display
arithmetic averages. The sums are divided by the total
' number of the qualified records.
(5) ACTIVATE (AC) (Syn. ACTIVE)

With the ACTIVATE command the user can
indicate a subset of the records of the solution file with
specific qualifications determined by the other fields so

that subsequent Queries will implicitly refer only to that

. AN SRSt

subset. The user can expand the initial subset by using

PO ataiin X !

the ACTIVE command repeatedly to add new records to the

active subset.

: The command ACTIVATE can minimize the
.ﬁ searching time for the required information in the active

é ‘ subset. Each time the ACTIVATE command is issued, the system
f

III-5

e ST T O . 2 A o S A A

responds with the number of records added to the active
subset and the current total number of active records.
(6) DEACTIVATE (DE) (Syn. DEACTIVE)

Used to delete records with specific

qualifications from the current active subset - created

by the ACTIVE commands - or to eliminate any active file.
The system responds with the number of records deactivated
and the total number of records remaining active.

The entire active file can be deactivated

by:
' DEACTIVE ALL or DE A'.

With this Query all the currently active records will be

deactivated and the mersage:

'"FILE DEACTIVE'

will be printed out. Subsequent g:eries will refer to the
entire sulution file.
b. SELECT field

This field is mandatory and specifies whether

the qualified records are ROWS, COLUMNS or BOTH. It may
consist of one of the following:
(1) AuL (A)
Specifies that the entire file must be

searched for the qualified records starting from the first

ROW and continuing to the last COLUMN.

III-6

rermy

(2) COLUMNS (C)

Specifies that the COLUMNS only will be
searched for the qualified records starting with the first
COLUMN and continuing to the last COLUMN.

(3) ROWS (R)

Specifies that the ROWS only will be
searched for the qualified records starting with the first
ROW and continuing to the last ROW.

c. MASK field
Specifies that any record is gqualified for
processing if the name of the record fits the MASK field.
The MASK field is left justified and may contain 1 to 8
characters. All the right unfilled positions up to 8
characters are assumed to be the character *. The MASK is
matched against the name, starting from the left, character
by charactexr. Any character in the name is matched with
a * in the MASK field. The MASK field is mandatory.
EXAMPLES
i. The MASK 'X***x**y' gpecifies all the names
starting with the letter X and having as the 8th (last)
character the letter Y.
ii. The MASK 'X' is equivalent with the MASK 'X¥**k%x¥x!
and means all the names starting with the letter X.
iii. The MASK '******y' gpecifies all the names
ending with the letter Y and it is NOT equivalent with the

MASK 'Y'.

ITI-7

»

TR

T TR i 2

!
(

Py T e crnie < & SRR

s

iv. The MASK 'ABCDEFXY' specifies only this
name and since the names of ROWS and COLUMNS are assumed
to be inclusively unique, the searching of the file stops
when the first match is made.

v. The MASK '*' sgspecifies ALL the names and
may be used when no particular mask is desired.
d. CONDITION field

The syntax of this field is:

FOR (<conditional phrase>)

The word FOR, left parenthesis and right parenthesis must
always appear when the CONDITION field appears in a Query.
There are two kinds of conditional phrases:
The simple conditional phrase and the compound conditional
phrase.
(1) Simple Conditional Phrase
There are 3 kinds of simple conditional
phrases: The Relational, the Status and the Bound simple
conditional phrases.
(a) Relational Simple Conditional Phrase

The syntax is:

<Argl> <Relop> <Arg2>

where Argl, Arg2 and Relop are one of the following:

i. Argl
X for ACTIVITY LEVEL
Sor C for SLACX ACTIVITY or INPUT COST

ITI-8

P2 LGN e
RSO RS

x5
A

| REcitay

Pty 3 A o P esiti, i e ————

"y

-
e N Sl iy N~

R

T TRRVIE TR T e e e e A B _ .

L for LOWER LIMIT
U for UPPER LIMIT
D for DUAL ACTIVITY or REDUCED COST
P for UPPER PENALTY
W for LOWER PENALTY
ii. Relop

Relational operators EQ, NE, GT, GE, LT, LE with the same
meaning as in FORTRAN. (Note, however, that there are not
imbedded decimal characters as in FORTRAN.)

iii. Arq2

Arg2 is defined exactly as Argl
with the enhancement that Arg2 may also be any integer or
real number. Arg2 cannot be expressed as a floating point
number in exponential notation.
(b) Status Simple Conditional Phrase

The syntax is:
STATUS <Flag> or ST <Flag>

where Flag is one of the following:

BS for BASIC

LL for LOWER LIMT

UL for UPPER LIMIT

EQ for FIXED

vC for VOID COLUMN

SC for SINGLETON COLUMN
I1I-9

T F

&7

P R R AT

,.
S SRS St T it it s L

IKNWWWPWM%MWVﬁ"

T . Tt T e -

FC for FIXED COLUMN

BC for BOUND CHANGED

VR for VOID ROW

SR for SINGLETON ROW

RR for REDUNDANT ROW

FR for FREE ROW

ER for DOUBLETON EQUATION

TR for TIGHTEN RANGE

(c) Bound Simple Conditional Phrase

The syntax is:

<Argl> MINIMUM or <Argl> MAXIMUM

where Argl is specified as in Relational Simple Conditional
Phrase. The words MAXIMUM or MINIMUM can be abbreviated as
MAX or MIN, respectively. This is used to extract those
records which have the MAXIMUM or MINIMUM value in the speci-
fied field with the specified MASK. The system responds
with the first record encountered with the maximum or minimum
value associated with Argl, and the tcotal number of records
that meet the requirements. This phrase may not be used
with ACTIVE or DEACTIVE options in the TYPE field of the
Query.

(2) Compound Conditional Phrase

The syntax of this phrase is:

<Relational Cond. Phrase> <Log. Oper.> <Relational Cond.

Phrase>

III-10

e S

or

<Relational Cond. Phrase> <Log. Oper.> <Status Cond. Phrase>

where Log. Oper. is OR or AND with the meaning of the corres-

ponding logical operators. Note that the Bound Simple
Conditional Phrase is not compatible for use in a Compound
Conditional Phrase, since it exhibits no boolean value.
Also, the Status Conditional Phrase must always appear aftex

the logical operator.

o The CONDITION field as a field must be
separated by at least one blank from the other fields of the
F | Query. The word FOR, the left parenthesis, and the first
element of the conditional phrase do not require separation
| by blank chafacters, nor do the last element of the condi-

tional phrase and the right parenthesis.

The CONDITION field is optional and need
not appear in the Query. If it is not present, any record

is qualified if the MASK field is satisfied. Using the

ACTIVATE and DEACTIVATE commands the user can actually have

: unlimited length conditional phrases, by adding qualified

subsets of records in the ACTIVE file.
e. PRINT OPTION field

This is the last field of a Query. It is

e s vuse. SIS, G

optional, and if it does not appear the entire contents of
each record which satisfies both the MASK and the CONDITION

fields are printed out.

L3
o ——

S

)

ITI-11

e

AN

RENTA S Ry

X}

Ny I WA S o S w8 e S G 2 P P o e
EZ I SO S b L L

ERAL AR S

The elements of the PRINT OPTION field may be

any combination of the following:
X, C or S, L, U, D' P' W

with meanings as described in the CONDITION field. The
output will include information described in the PRINT
OPTION with corresponding headings. The elements of the
field can be separated by any number of blanks, by commas,
or not at all. 1If both C and S appear in the PRINT OPTION
neither of them is printed out. For the commands ADD and
AVERAGE the default PRINT OPTION is X, C or S, D since there
is no meaning for LIMITS and PENALTIES.

For all Queries that potentially require more
than one output record for the answer (i.e., all Queries
except COUNT, ACTIVE, DEACTIVE and SET), the output will
include the following entries for each record:

NUMBER, NAME, STATUS and the entries specified in the PRINT
OPTION field in the sequence in which they appear. At the
end of the answer output for each Query the total number

of qualified records is given. The heading for the output
is determined by the SELECT field. If for this field the
option ALL is used, the heading will be the one for ROWS
although COLUMNS may also be included in the output.

3. The SET Command

By default each time a Command Query is issued the

whole solution file is searched starting at the first ROW or

I1I-12

S T SR

N S e

- —— (_K.._...,-..-—-—

- T

o N

L]
o S——_~

COLUMN and continuing by examining sequentially all the
records.

Queries may sometimes apply only to a small part
of the solution file or to records whose relative position
in the file is known. 1In these cases the SET command can
cause searching to be initiated at a particular entry in
the file and continued to another particular entry. Aalso
a fixed step size can be specified for the search. Thus
much computational effort can be avoided.

The syntax for the SET Command is:
SET <number 1> <number 2> <number 3>

where;
number 1 is the number of the starting record;
number 2 is the number of the record to stop
searching;

number 3 is the step for searching.

All these numbers must be integers separated by at least one
blank and the presence of all of them is required. These
numbers also must be in the range of total number of records
for the file. The SET limits apply to qualify any subsequent
search of the file even if ROW or COLUMN subsets are speci-
fied by a Query.

EXAMPLE

Suppose the solution file has 300 rows and 2000

columns and the following SET command is issued:

III-13

SET 18 1500 10

For all subsequent Queries:
#‘ If the SELECT field of the Query is ALL then the searching

A starts at the 18th record and continues through the 1500th

record with step 10 (i.e., Record numbers 18, 28, 38,
i are examined).

o If the SELECT field is ROWS then the searching will start
at the 18th row through the last row (300th) with step 10.

I the SELECT field is COLUMNS then the searching will

LSRG AN B T s e

start at 18th column through the 1500th column (or equiva-

AT

& lently the 318th record through the 1800th record) since the
; number of columns is greater than 1500.

? To restore default settings, use:

'SET DEFAULT' or 'SET D'

! C. ERROR MESSAGES

The following error messages are typed at the terminal
as soon as they are detected. If the error is only in
syntax, the system is immediately ready to accept a new

query, otherwise execution is terminaied. Errors have been

grouped with one message for each group. Messages are self-

explanatory.
ERROR NO POSSIBLE REASON
1 : Attempt to parse a blank query.
101 : Invalid TYPE field. One of the characters

D,V,C or blank was expected after A.

ITI-14

102

103

104

201

202

301

502

504

505
506

507

508

511

Invalid TYPE field. One of the characters
0,E was expected after S.
Invalid TYPE field. One of the characters

P,V was expected after NO.

: Invalid TYPE field. No command starts

with the given letter.
Missing character or somewhere in the

query there is no space delimiter.

: There is no space delimiter.

: Invalid SELECT field. SELECT field is

s

missing or there is no space delimiter
between TYPE and SELECT fields.

Invalid CONDITION field. the word FOR is
missing (the string OR was expected after
F), or invalid PRINT field.

Missing left parenthesis in CONDITION field.
Incomplete condition field or missing

space delimiter.

Missing right parenthesis in condition field.
Invalid OR logical operator. Character R

R was expected after O.

Invalid AND logical operator. The string
ND was expected after A.

Invalid logical operator. Only OR and

AND are accepted.

Invalid operand for status. The character

C or S was expected after B.

III-15

512

513

514

515

516

517

518

519

520
601

602

603

604

605

oo

Invalid operand for status. The character
L was expected after L.

Invalid operand for status. The character
L was expected after U.

Invalid operand for status. The character
Q or R was expected after E.

Invalid operand for status. The character
V, S, F or B was expected before C.

Invalid operand for status. The character
V, S, R, F, E or T was expected before R.
Invalid operand for status. The character
P was expected before P.

Invalid operand for status. The character
I, A, C or D was expected before E.

Missing space delimiter after status
operand.

Non recognizable operand for status.
Invalid first operand for relational
operator in condition field.

Missing space delimiter in a simple
conditional phrase.

Invalid relational operator. The character
T or E was expected after G.

Invalid relational operator. The character
T or E was expected after L.

Invalid relational operatcr. The character

Q was expected after E.

III-16

E

e X . N & SNSRI

[
WP IS cprin o S

606 ¢ Invalid relational operator. The charaéter
E was expected after N.

607 : Invalid operand in bound conditional
phrase. The character N was expected
after string MI.

608 : Invalid operand in bound conditional

phrase. The string AX was expected after M.

609 : Unrecognizable relational_operator in
simple conditional phrase.

701 : Invalid print field, or missing word FOR
in condition field.

1001 ¢ Error in input data. Unrecognizable
status code.

1002 ¢ Error in input data. Data encountered

has less than the expected number of rows

and columns.

D. LIMITATIONS EXTENSIONS

As mentioned in the introduction, ATHENA is a direct
expansion of the PERUSE system. It includes all the features
of PERUSE, except the weighted average command, and has the
following differences and extensions:

1. ATHENA supports two distinct data structures, each
different from that of PERUSE. This was necessary in order
to support efficient access to individual records or group

of records. The SUPERSPARSE data structure is unique to

ATHENA.

ITI-17

P ratin. .. X P w e A SR

WS = NS e S

2. ATHENA accepts as input a simple file which can bé
easily obtained from the solution file of any linear
programming package on tape, disk or cards.

3. ATHENA supports the commands SET, ACTIVATE,
DEACTIVATE and COUNT, in addition to the commands of
PERUSE, allowing the user to construct logical subsets of
the solution and efficiently access these subsets as inde-
pendent files with very small access time.

4. ATHENA supports compound conditional phrases for
extraction of more specific information and the bound
conditional phrase for maximum and minimum values.

5. ATHENA uses object time variable format allowing
better appearance of output and uses the words NONE and
INFINITY instead of the number 0.7273E76 for better
readability.

6. ATHENA accepts reduced problems from PREP (3] and
can be used to pass the PREP status file with the solution
file of any optimization system to permit recovery of the
original problem solution.

ATHENA has been designed to handle solution files with
up to 30,000 records. The actual limit is imposed by the
number of real number values that must be stored explicitly.
This number cannot presently exceed 65536 since this is the
largest integer pointer value which can be stored by ATHENA
in a 2-byte halfword. Experience has shown that the average

number of stored values for each record, excluding penalties

I11-18

PR . - Pt e MRS ST e “»w!’—‘q"

0 ~ — Ao B

i @"%F*WMWWWW JPN I .. . e - 2 Pron Sy
s

|
!
;

P . . _— e = - —— — =

»
P i S
RAALZIT I

D

<

[3meT]

is 1.5 [9]. Adding to this another 0.5 per record for
penalties, the problem size limit may be as large as 30,000
rows and columns.

A rough estimation of the space needed for the packed
file in 4-byte words can be obtained by multiplying the sum
of rows and columns of the solution file by 5 for the SPARSE
data structure and by 4 for SUPERSPARSE. Before using ATHENA,
adjust the size of the SOLFIL array in common block SOLPAC to
this number. To avoid passing problems with common areas
under some time-sharing systems, use an array size which is
an exact multiple of the intrinsic page size, and which is
larger than the number calculated above. Also make correspond-
ing adjustments to the DEFINE FILE statement of the main
program (e.g. use multiples of 4,096 for IBM systems).

ATHENA has been developed in modular form and can be
easily changed or extended to support future needs. Commands
which can be easily implemented include the weighted average,
the sort of output, or further calculations needed for the
analysis of the solution file. ATHENA can also be used as

part of an integrated system for sensitivity analysis of

opt/mization problems.

E. SYSTEM INTERFACE

1. Preview

Linear Programming packages give differing forms of

output so that it is difficult for a system to be interfaced

III-19

with all of these solution formats. ATHENA accepts as inﬁﬁt
a solution file in a 'standard' form which can be easily
obtained from any other solution file form.

ATHENA is best utilized in an interactive system,
although it can also be used in batch processing. On the
other hand, most L.P. packages run only in batch processing.
An exception is XS [4]. Moreover, in some systems there is
no integration of interactive and batch processing. 1In these
cases, the solution files may be transfer.ed manually from
one system to the other using magnetic tapes or cards.

A simple input file has been designed which can be
punched in cards or entered on tape, disk, or other storage
media.

2. Input File

The input file consists of records with the following
structure:

a. The first record always contains the number of
ROWS, the number of COLUMNS, and in position 51 the character
'l' if each ROW record contains PENALTIES or '0' otherwise.

the FORMAT of the first record is
(I5,30%,15,10X,11).

b. Each subsequent record contains explicitly all
the information associated with each ROW and COLUMN, with

the following format:

III-20

NAME Format 2a4 (left justified)

STATUS Format A2

X, Cor S, L, U, and D numeric field values with Format
5E14.5 or 5F14.5. (The meanings of each of these fields is
described in the previous section.) If the solution file
includes PENALTIES, then two records will be associated
with each ROW. The first will be exactly that described
above, and the second will have the FORMAT (E14.5,16X,E14.5)
for P, and W, the UPPER and LOWER PENALTIES. 1In all cases,
INFINITE values will be represented explicitly by the number
*0,1E76. The total number of records must agree with the
sum of ROWS plus COLUMNS, with the records of ROWS preceeding
those of COLUMNS; otherwise an Input error will occur. The
file is read in and packed one record at a timé.

3. Packed File

a. Packed File as Input
If the input file is already packed from a
previous use of the system, it will be read in unformated
binary form. The system will provide the user information
for memory requirements before reading the file. The packed
file may be on a tape or disk but cannot be on cards. The
system will ask the user at the beginning of a session for
the number of the file.
b. Packed File as Output
If an unpacked file is used as input, the system

will ask for the file number where a packed file is to be

III-21

written. Of course, a DEFINE FILE statement must

be included right after the declarations of the main program.

; E. EXAMPLE OF SYSTEM USE

The procedure follows for use of ATHENA at the Naval
Postgraduate School Computer Center with the IBM 360/67.
The solution file here is produced by the MPS/360 package
and ATHENA is used under CP/CMS. Similar procedures can be
followed for any other installation.

1. Obtaining the Unpacked Solution

é a. Submit the problem to be solved using the asual
Control Cards required for the MPS/360 package inserting

before the Control Card:
//MPS2.SYSIN DD *
the following cards:

//MPS2.SYSPRINT DD DSN=Sxxxx.nnnnnn,
// ONIT=3330,VOL=3ER=DISKO04,
// SPACE=(CYL,(1,1)),DISP=(NE%,KEED]),

// DCB=(RECFM=UA,BLKSIZE=133)

With these cards the ocutput of MPS will go to the DISK

instead of the printer.

XxxXx is the user's number and

L N T W T T T

nnnnnn is the file name on the disk.

L3
. P~~~

P e

II1-22

e~y

R SEETT AT T TR T T

YT

e B o, SR, SIS

-
A -
o vhy TR

sl andn

If the solution file is too big or disk space
is not available use tape or tapes to store the output.

b. Use the program REWRITE (see [2]) to transform
the MPS/360 tape or cards to the format required for the
ATHENA unpacked Input file.

c. Now the unpacked file for ATHENA is available
and can be used to analyze the solution.

2. Using the System Under CP/CMS

ATHENA in CP/CMS TEXT form requires about 67K bytes.
The space needed for the packed file depends on the number
of records, the method used for packing and the density of
the original file. 200K bytes would be sufficient to hold a
packed file with up to 13,000 rows and columns. After
sufficient space has been secured, the following procedure
may be applied:

a. Ask OPERATOR to connect the tape with the Input
file created by the REWRITE to the private disk as device
181. As soon as the tape is connected, the message 'DEVICE
181 ATTACHED' will be printed at the terminal.

b. Before using the tape, type ALWAYS under CMS
the command ' TAPE SKIP 1 '. This command will position
the tape at the first record of the file. This command is
required because the tape created by IBM 0.S5./360.

c. Type $ ATHENA

ATHENA will ask for information about the file
identifiers for input-output, whether the file is packed

and method of packing and will give the size of the packed

111-23

file. For input file ordinal use any number between 01
and 99 excluding the numbers 03 - 06. For output file
ordinal give the number 03 or 04. These are the numbers
used by the DEFINE FILE FORTRAN statement and they can be
changed. The system will be ready to accept QUERIES as
soon as the prompt phrase 'INPUT A COMMAND' is typed by
ATHENA at the terminal. The packed file can be saved on
a tape using the 'TAPE DUMP' command under CMS.

In the next few pages a demonstration of using
ATHENA with a solution file of 766 rows and 10921 columns
is given. This problem is a mixed integer optimization
model with 963 binary variables for medium term capital
budgeting of the Naval Air Test Center [8]. For this
problem, a gquery may require as much as ~ne and a half
minutes of clock time if the interactive system on the IBM
360/67 is undér heavy use and the query is difficult to
answer. However, most queries are answered almost immediately.
Response time is especially good when the user makes use of
ACTIVATE, MASK and SET features to qualify necessary

searching.

III-24

s

J U DR R B AR TR s

w_‘ . N i, OV

*wn

ST g

C.
e

P i e P iy . X

bOATHIENA
WHAT TS THE FILE MO OF THE SOLUTION FILE % (FO™MAT I2)
04
T8 THE FILE ALKRESDY FACKED © ENTER YE3 OR NO 3
YE 3
MEMORY REQUIRMENTS FOR THE FACKED FILE $4774% 4-BYTE
WORDS

IF YOU HAVEE SUFFICIENT MEMORY SFACE ENTER YES

OTHERWISE EMTER MO MANE ADJUSTHMENTS AT COMMON AND TRY
AGATN
KA

FMPFUT A COMMaND

KCE Y RIOR KO R IO O ey e R skl 1oel ek ek
¥ UELIG THE CHARACTER & o THE FIRET COLURMN QF THID QUERY
v THID QUCRY IS ToMOREDR, TS T3 A COMURENIENT WaAY 10 X
¥ TNSERT COMMEMTS TM THIE QUTRFUT FROM A TERMINAL, &
k COMMENTS [N THIZ QUTFUT FRIOM THE OFFLINE FRINTER ARE *
k INSERTFER USING THE LETTER H INSTEAD OF . X
s TO AVOTD THE FROMFIT FHRASE INFUT A COMMAND ' AT %
¥ THE QUTHUT USE THE COMMAND “NOFROMFT . X
K X
4

THE FRINT OFTION FIELD OF THE DISFLAY COMMANT &

PR OUSET ONLY WITH 7T MOST TWO OPTIONS, X
SOk Racker o ook ek ek oolokereiek sk Pl elekoi ekl sk lolekeiteieleackek ok

] HEREZ TS N DEMONSTRATTON OF JSTNG THE SYSTEM ATHEMM.

¥ HOW MANY ROWS HAS THIEE FILE ?
COUNT ROWS K

765 ROWS OR COLUMNS WITH MABK ek
AATISFY THE CONDITTONS
X HOW MANY COLUMNG @
W)
COUNT COLUMNS X

10920 ROHS QR COLUMNS WITH MASK I Yokl v
SATISHY T CONUTTIONS

“ 10w MmNYIUF THEM AR @nsic =

C G ¥ FOR(ST RS)

III-25

e

L]
e e e LTINS

o<,

X DI

04 RDWS OR COLUMNG WITH MASK ¢ dekiorikdex
ANTIBFY THE COMUITIONS
¥
3 HOW MANY OF THEM SRE EQUAL ZERQ 7

1
"

0 % Fard 20 o, oD 87 88

T3 ROWI OR COLUMME WITH MASK 1 ke
SOATISFY THE CONDITIONG

K

X USING THE COMMAND ‘ACTIVATE’ ONLY THE ACTIVATEN
X RECOROS ARE SEARCHEDR TO ANSWER THE QUESTION.

¥ THIS I8 A GOOI WAY TO AVOLD SEARCH OF THE WHOLE
¥ FILE.

¥

AUTIVATE COLUMMNSE - XO

3 RECORTS ACTIVATEU
TOTHL RECORES ACTTWD 8 K

kX3

N MANY [ROWS MOW 7

& -z

C R

O ROWS OR COLUMNE WITH MABK o klokskeokk
SHTISFY THE CONDITIOMS
%
¥ FHERE &RE NQ ROWS STNCE ONMLY COLUMMS ACTIVANTED,
& HOW MAMY OF THEM ARE RAGTIC ¢
14
CC % FORMST B

L RONE OR COLUMNG WITH MASK 1 okkerkdokskk
HSATLEFY THE CONOTTIOMS

At
v WLSFLAY THEM
b

DISHLAY C ¥ FORMST BEY X L
THE FOLLOWIMG ROWS OR COLUMMS SATISFY COMULMIONSG

NUMRBIZR NAMEL . AT o o ACTIVITY 0 WG LOWER LIMIT,
803 X041 38 0., 12910 0. 00000

1 ROWS OR COLUMNS WEITH MASK § koo
SATISFY THF CONDITIONS
¥
K WHAT 15 THE AVEMAGE OF NONZERQ ACTIVITIES ?
N
AVERAGE © & FOR(Y NE ©)
THE FOLLOWING ROWS OR COLUMNE SATLSFY COMLTTIONS

I1I-26

;
3
¥
E:
b

ST A ST g TN

e SLE G

T i Tk
A

AV AoALR] L

]
*
A
o

£
kL
3

—_—

e

P

R

L]
P~
Rl L LRI

e —m ————— _— 2 Ao R ——— o

MUMBER NaME.. AT o ACTIVITY. .. o IMPUT COST. .

AUl O AVERMNGES ¢ G.78777 Q.74574

1O FDEG OR COLUMNG WITH MASK © oieriorek
S LEFY THE COMDEITLIONS

¥
¥ THE GU OF ACTIVITIES SND INPUT C0S8T 7
)

A0 C % FOR (¢ X NE O
THE FOLLOWING RONS OR COLUMNS SATISFY COMOTTIONS

NUMBER JNAME. . AT o ACTIVITY, . o TNFUT COST. .
SUMS OR AVERNMGES ¢ 70.12909 54,36832

P10 ROWS QR COLUMNG WITH MABK 1 deksekrekedex

X ALD B0ME MW COLUMME AT THIED ACTIVE FLLK
k
NSETT € YMO1

1735 RECORTS ACTIVATER
TOTAL RECORDS ACTIVE ¢ 248
X
¥ BWASIC *
v
0C oKk FOR (8T BS)

7 ROWS OR COLUMNS WETH MAGK 3 ek
SATISFY THE CONRDITIONS
%
¥ DISIPLAY BASTC AMNT ZERD NCTIVITY
d
0 C % FOR ¢ X EQ O OMU STATUS BB X U
THE FOLLOWING ROWS OR COLUMNG SATISFY COMUITIONS

MUMRER GNAME, s AT o NETIVITY oo s s TNFUT COST,
WAB YMOLO6T RS Q. 00000 = 01000

1 ROWS OR COLUMNGS WITH MASK $ Xkkickxkk
SATISEY THE CONLITIONY
¥
b HOW MANY THPFUT CAGTS akk ZERD 7P
*
GO FORC CEQ Q)

I11-27

gy ¥ e SN

e et

2
¥

5 ROWS DR COLUMMNS WITH MABK

GATISFY THE CONDITTONS

¥

X HON MArle AT LOWER LIsiT 7
OO0 ¥ FORMSTATUS LLD

A
¥

QR COLUMNS WITH MAEK

CONOGITIONS

LAL MES
SATISFY THE
¥
X
¥

ELIMINATE SOME RECORUS FROM THE

DEACTTIVATE C X

73 RECORIY QEACTIVATED
TATAL RECORDE ACTTVE @ 173G
i : CHEZCN FOfR THR L IMINATLON
‘ LG X
. O RKOWS OR COLUMNS WITH MASK ¢

g E SOHTISFY THE CONOITIONS
k3
| k
7 ¥

ELIMINATION O.K,

. K HOW MAMY AT FOWER LIMIT LIy NOW
;! K .
! GOk QR 8T Lo
19 ROWS O COLUMNG WITH MAGBK 3

i SATISFY THE CONODTLIUMNG

1 e
¥
v WHAT 18 THE AVERNE T
K

FOrIsT LL)

Y AY G
v FOWS OR COLURMNSG

THF FOLLOWTNG

AT

¥
v

L) H’\CY.[‘JITY# L)
0.00000

NUMBIZR S NAMIT.
SUMS QR AVFRAGES

149 ROWS OR COLUMNS WITH MASK ¢
BATIGFY THE COMNOITTONS

e, X7

%
k
&
DZACTIUATE

RETURM TO THE ORIGINAL ®IG FILIE

ALl
LK

f OEACT LY E

PR oo

III-28

TR WO s

SATIR

M e T

e IR ERRALS | LT TRl ee s

Sorseker ey

SRS EAT T

ACTIVE FILE

XK AR ARK

LA RES B

FOCOMOTTIONS
+» INFUT COST.

=0,01000
TRHARK KK

i
ke
L
{3
Eh
b

.
E
%
Ey
b
.

S IO S

AT
SR

e
<

g g T

o

&

>

Sl

L2
=~ L ———~
i L el =)

AN
il

e et

¥ OTSFLAY THE 9 FIRST ROWS

THE FOLLOWTHG FOLHE QR CULUMNG SATISFY CONDTTIONS

PUMEER Mok, AT L ACTIVITY . e Slnbk ACTIVITY

L BEMEFTITS RS 347, 326942 - 1412, 49902
T RCISLL . 0. Q0UR0 QL QOG0
I RCLO2L i Q. QU0 0L RAG00
4 RELO3L th. QeNROD0 0L 00000

5 RC1041 RS 0.00000 0. 00000

5 ROWS OR COLUMNS WITH MASK § dclkwiokie
SATISFY THE CONULTIONS
*
k THE FIRET U COLUMNG
¥
ek Cn
THE FOLLUMING ROWS O/ COLUMNG SATTSFY CONDITLIONS

MUMGER M. AT oL INFUT CuBT. . JRERUCEQ 3T,

S XOaL L. O, e 0. 38X LT
743 M0Q2 . 0.37108 0477450

74 X003 Ul 0,45607 Q. 23338
770 X004 Ui. 0.45483 0.36919
771 X035 Ul 0.73440 0.60813

5 ROWS OR COLUMNSG WITH MASK Sooiokskerk
SATISFY THE CONBLTTONGS

¥ PRETURN TO THE ORIGTNAL FILE

\:(

SET DEEAULT

k

X DISFLAY VARTABLES IN A SFECIFIC RANGE

X
oYM PR IXGT 10,0 AND X LT 25.35) X L
THE FUOLLOUING ROWS OR COLUMNG SATISEFY COMODITIONS

ANUMBER NAME ., AT o JACTIVITY . oo 0 (LOWER LLIMIT,
G708 YMOS0461 (G35 L4 00000 0.00000
HIXY YMLZL7L BH LL.54310 0.00060
6247 YMIO201 ik 17, 130209 0.00000
4708 YM3AGQHL &S L7.29999 0. Q00000
74770 YM20202 kS 18,98279 0.00000
7903 YM3IG0sQ BS 1190000 0., 00000
8627 YM20203 Gs 2100000 0.00000
20 YM3IN0A3 BH 16.597%9 0., 00000

PA7E 0 YMONOLY B3 L 90000 0L 09000
MU HYNC04 BY L3 00000 Q. 00000
FOI3IZ Viif0g g b 23.048062 QL Qg
Lo YMOS04&YU 88 14,00000 0L 00000
LLEa? YM2I0205 us L3 00000 O, 00000

LLSE8 YM3G08Y By 17,50000 Q. 00Q00

III-29

R e M
¥ .
14 ROWS OR COLUMNS WITH MASK § YMIOLKKK
SATISFY THE COMUITIOMS
%
OWIT 15 THE MavLnUM OF THE ACTIVITY LEVEL 7 \
N0 % FOR(X MY X C
L YML3134 BS 90, 63849 0, 00000
’ L ROWS OR COLUMNS WITH MASK § Xyeeek
' SATISFY YHE CONDITTONS
¥
X THE MINIMUM LOWER LIMIT FOR THE ROWS 7
%
0OROX FORCL MINY L U
744 RENEFLTS ES NONE MONE
756 ROMS OR COLUMMG WITH MASK 3 rrlkissl
SATLAFY TIHE COsUTTLOMG
b3
POTHE MAYIHUM ACTIVTTY LEUSL FROM Uk [ARLED
| K STARTING WITH LEVTER v
X
| 00 Y FOR X MAX) XU
1 YM18184 8BS 88,63849 000000
:
L ROWS OF COLUMNSG WITH MASK ¢ Yk ke
’ SATTISFY THE CONUITIOMS
ks
! ¥ ARE THERE LNUEAS!GILITIES 7
X
i COUMT ALL % FOR (ST W)
?
{ 0 ROWS OR COLUMNS WITH MASKN § kol
!
i SAVISEY THE CONDITIONS
Y =~
| ¥ OEXIT FRUM THE SYS1ER
e
} UND
\
(
/
\‘. .([3
fi
'y
%
; f III-30

T SN R R I AN T bt st s = e s 4 mt | i . ¢ e o m —a — — o - — - — - - - et o WPV W, LTS A 5 B |

Acknowledgment

ATHENA has been chosen for the name of this system for
several reasons. First, ATHENA is the goddess of wisdom from

ancient Greece. Also, it is the Greek name of the capitol of

the country of one of the authors, as well as his mother's

name.

SRR AT

R R T R D TEST T r "
s IR R AR R o R R PR

References

1.

2.

Aho, A.V. and Ullman, J.D., Principles of Compiler Design,
Addison-Wesley, 1977.

Bradley, G.H., Brown, G.G. and Galatas, P.I., "ATHENA: An
Interactive System to Analyze Large-Scale Optimization Models,"
NPS52-80-005, April 1980, Naval Postgraduate School Technical
Report.

Bradley, G.H. Brown, G.G. and Graves, G.W., "Preprocessing
Large-Scale Optimization Models," ORSA/TIMS, Atlanta,
November 1977.

Brown, G.G. and Graves, G.W., "Design and Implementation of
Large-Scale (Mixed Integer) Optimization System," ORSA/TIMS,
Las Vegas, November 1975.

Galatas, P.I., "ATHENA: A System to Interactively Analyze
Large~Scale Optimization Models," M.S. Thesis, Naval Post-
graduate School, March 1979.

International Business Machines, Mathematical Programming
System/360; Version 2, Linear and Separable Programming-
User's Manual, 1971.

International Business Machines, Control Program 67/Cambridge
Monitor System CP/CMS, Version 3.25, 1974

Mavrikas, C., "Optimal 5-year Planning Using Mixed-Integer
Linear Programming--Three Models Implemented for Naval Air
Test Center," M.S. Thesis, Naval Postgraduate School,
September 1979.

O'Neil, R.P. and Sanders, R.C., "PERUSE System Manual-~-
Version 2," September 1977.

10.

INITIAL DISTRIBUTION LIST

Office of Naval Research
Code 434

800 North Quincy Street
Arlington, VA 22217

R. Stampfel

Code 55

Naval Postgraduate School
Monterey, CA 93940

Defense Documentation Center
Cameron Station
Alexandria, VA 22314

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 55

Department of Operations Research
Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor Gordon Bradley, Code 52Bz
Naval Postgraduate School
Monterey, CA 93940

Professor Gerald Brown, Code 55Bw
Naval Postgraduate School
Monterey, CA 93940

Captain Panagiotis I. Galatas
Alketou 19, Pagrati
Athens 506, Greece

Professor Glenn W. Graves
Graduate School of Management
University of California

Los Angeles, CA 90024

No. Copies

2

10

20

v)

