
LL
0 NPS52-80-006

NAVAL POSTGRADUATE SCHOOL
Monterey, California

FL5 1 3 19 81

I 'I iI

ATHENA:

USERS MANUAL FOR INTERACTIVE ANALYSIS

OF LARGE-SCALE OPTIMIZATION MODELS

by

Gordon H. Bradley

Gerald G. Brown

Panagiotis I. Galatas

4 April 1980

3. Approved for public release; distribution unlimited.

Prepared for:
L Naval Postgraduate School

Monterey, California 93940

81 2 1304;

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund Jack R. Borsting
Superintendent Provost

This report prepared by:

." armnto Comput/ ience

-

GERALD G. BROWN
Pepartment of Operations Research

PANXGIOTIS GALATAS

Reviewed by: Released by:

14lA J/

MICHAEL G. SOVEREIG, WILLIAM M. TOLLES
Department of Operations Research Dean of Research

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPOR DOCMENTTIONPAGEBEFORE COMPLE-ING FORM

/2.
G .ac SSION NO. 3. RECIPIENT'S CATALOG 4UMBER

Adt3 ndS~t jL TecnclP t vica-

ATHENA: Users Manual for Interactive Technical e 't,

Anlsis of Large-Scale 01-
6. PERFORMING ORG. REPORT 4UMUERL------- t Optimization Models."

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

Gordon H./Bradley Gerald G.Brown
SP an agio tis ._ Ga I atas _ --------

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Postgraduate School
Monterey, California 93940

I I. CONTROLLING OFFICE NAME AND ADDRESS 12E

Naval Postgraduate School N RMWM.- .

Monterey, CA 93940
14. MONITORING AGENCY NAME & ADDRE15(I I IS SECURITY CLASS. (of this report)

Unclassified
Ia. DECLASSIIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the cbstract entered In Block 20, it different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WCROS (Continue on revere side It neceesry and Identify by block number)

Large-scale optimization, Linear programming, Linear program

report writing, Mixed integer optimization, Interactive model

analysis, Matrix generation in linear programming

20. ABSTRACT (Continue on reverse aide If necesceary md Identify by block number)

;Analyses of solutions for large-scale optimization models are

very difficult without effective computer aids. Solution
reports may require weeks to design, implement and produce with

conventional report writing systems. The reports produced are

voluminous, often exceeding 100,000 p inted lines, and are thus

quite awkward to access manually. Tim and economic analysis

of solutions to large models is further hin d by inflexible

and costly report writin- gnfi-wnrp anc pro1r~ - ATHENA hAn >__

DD , FOR3 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED -
JAN 7 UCASFE

S/N 0102-014-6601
SECURITY CLASSIFICATION OF THIS PAGE (When Dat Entered) ,%.

94 I / e

UNCLASSTFIED
.LiJq.iTY CLASSIFICATION 0: THIS PAGE(Wen Date Entered)

4 been developed to allow extremely efficient immediate intezactive

storage and analysis of the solution file fro.a any optimization
system. ATHENA is easy to learn and use; user friendly~features
are provided which can preemptively assess the potential cost and
implications of each request for solution information, assist the
confused user, and provide the required solution information with
very fast response time. The user is provided with extensive
search under mask"ind,bompound logical relational'constructs,

as well as the capability to quickly diagnose suspicious model
symptoms, and to format and issue offline reports. ATHENA is
implemented in pottabZe FORTRAN, with a parser and interpreter
easily modified and expanded to suit particular hardware environ-
ments and user demands. The system has been initially designed
and tuned for large-scale problems with up to 30,000 rows and
columns. Live test demonstrations show that the system exhibitsvery fast response time in actual use. This report presents a

users manual for the prototype ATHENA query language, an error
message directory, and a description of interface and extension
provisions.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(fton Date Enitred)

TABLE OF CONTENTS

" I, INTRODUCTION I-1

I. SOFTWARE DESCRIPTION I-

A. GENERAL I-

1. Parser - Code Generator-

2. Input II-i

3. Interpreter II-i

B. LANGUAGE II-i

1. Host Language II-1

2. Query Language 11-3

C. DATA STRUCTURES 11-4

1. Preview 11-4

2. SPARSE Data Structure 11-6

3. SUPERSPARSE Data Structure II-ll

III. US3R'S MANUAL III-i

A. INTRODUCTION III-i

B. QUERY LANGUAGE III-1

1. Control Queries 111-2

Q. VERIFY 111-2

b. NOVERIFY 111-2

c. PROMPT 111-2

d. NOPROMPT 111-3

e. H Any String 111-3

f. * Any String 111-3

g. END 111-3

1 i i

2. Command Queries 111-3

d. TYPE Field 111-4

b. SELECT Field 111-6

c. MASK Field 111-7

d. CONDITION Field 111-8

e. PRINT OPTION ?ield III-11

3. The SET Command 111-12

C. ERROR MESSAGES 111-14

D. LIMITATIONS - EXTENSIONS 111-17

E. SYSTEM INTERFACE 111-19

1. Preview 111-19

2. Input File 111-20

3. Packed File 111-21

F. EXAMPLE OF SYSTEM USE 111-22

1. Obtaining the Unpacked File 111-22

2. Using the System Under CP/CM" 111-23

LIST OF REFERENCES

INITIAL DISTRIBUTION LI3T

I. INTRODUCTION

The generation, solution and analysis of large scale

mathematical programming models presents significant problems

in efficient data handling and interpretation. For a typical

large scale model the printed output may exceed 100,000 lines.

It is very awkward and time consuming for the user to examine

that much paper to extract the information he needs. Space is

also required for archive storage of such reports and it is very

difficult to provide routine access to these old solution files.

Over the past several years, faculty and students at the

Naval Postgraduate School and the University of California at

Los Angeles have been cooperatively developing theory and algo-

rithms to solve large scale linear, nonlinear and integer optimi-

zation problems. This research has been rewarded by the develop-

ment of many software systems to solve large scale optimization

problems. ATHENA is part of that development and has been designed

to satisfy a pressing need to be able to quickly and easily analyze

solutions to large scale optimization models.

The research in large scale optimization at the Naval Post-

graduate School has concentrated on providing economic solutions

to current Department of Defense problems. Cne such project that

was going on concurrent with the development of ATHENA was a

large, medium-range capital budgeting problem that -equired the

solution of a mixed integer programming problem with 11,607 con-

straints and variables (8]. ATHENA was used successfully with

this project, and performance of ATHENA on this problem is

reported below.

1-i

ATHENA has been developed to handle output from large scale

optimization problems by enabling the user to get the informa-

tion he needs interactively through a computer terminal and by

economically storing the large files in packed form in low cost

media. The features of the system are summarized:

1. Quick and accurate answers to simple questions that are

tedious and error prone to address manually, e.g.

How many of a set of variables are = 1.0?

How many are greater than 0?

What variables are in a specified range?

What constraints are satisfied exactly? Etc.

2. In large scale mathematical programming models the names

of rows and columns are customarily constructed systematically

so that groups of variables with relationships in the real world

have similar names. Using the system one can have automatic,

easy and accurate answers for many interesting properties of

these groups. (For instance, the average value of all the

variables whose names begin with X, etc.)

3. ATHENA can also be used as a basis for a simple, fast-

response report writer.

4. The system provides very compact computer storage: the

solution file is typically packed into 1/10 of its original

volume. For example, a solution file from the IBM MPS/360

package (61 for a linear programming model with 12,000 rows and

columns occupies 1.5 magnetic tapes 2400 feet long at 800 BPI in

original unblocked form. In packed form the solution occupies

approximately 31 feet of magnetic tape.

E-2

5. There is systematic and economic file organization'with

easy and accurate access.

6. A file structure for multiple runs of the problem for

comparisons is available.

7. The system requires modest resources (memory, compute

time) in a time-sharing environment.

8. The system is portable and allows easy change or expan-

sicn. It is implemented with an open-ended syntax analyzer in

FORTRAN.

ATHENA was inspired by a similar system developed for the

Department of Energy by O'Neil and Sanders [9] called PERUSE.

PERUSE was developed to aid in the analysis of large linear

programming energy models. A study of the needs of Naval Post-

graduate Schocl students and faculty showed that additional

capacities beyond those in PERUSE were necessary to support

current and future research in large scale optimization. In

addition to the standard MPS output, it was determined that

ATHENA should support the experimental optimization system XS

(4]; the output of this system contains in addition to standard

MPS output, upper and lower penalties that implement the 'elastic

formulation' of linear models that is unique to XS. ATHENA

also had to support the use of a preprocessor PREP (3] that

reformulates the original optimization problem to an equivalent

reduced problem with fewer rows and/or columns. A study of past

and current modeling efforts at the Naval Postgraduate School

identified additional commands that would help in the analysis

of large models.

I

ATHENA was designed to be as much as possible a direct'

extension of PERUSE. Almost all the commands and options of

PERUSE have been included with the identical names and syntax

whenever possible. A summary of the extensions is listed under

the section LIMITATIONS - EXTENSIONS, of the user's manual.

1

4 1-4

II. SOFTWARE DESCRIPTION

A. GENERAL)The whole system consists of 3 basic subsystems (see

Figure 1).

1. PARSER - Code Generator

This subsystem accepts as input a Query, parses it

examining the syntax according to the productions of the

Query Language and generates the corresponding internal

code or gives information for syntax errors. The internal

codes for each Query are shown in the program list.

2. INPUT

This subsystem accepts as input either (1) an

unpacked solution file in 'standard' format which it packs

and saves for future reference, or (2) an L.P. solution

file in packed form from a previous session.

3. INTERPRETER

This subsystem, using the code generated from the

PARSER, searches the packed solution file and prints out

the information requested.

B. LANGUAGE

1. Host Language

The system has been developed in a portable subset

of FORTRAN IV. FORTRAN was chosen for the following reasons:

a. FORTRAN is a general language available at almost

any computer installation, so the system can be used with

II-1

INPT7

1. FILE

PASE

FIGURE 1. System ATHENA

11-2

any contemporary hardware. Non-IBM systems may require

some program modifications.

b. Since FORTRAN is a high level langjage, the

development time was low.

c. The response time for each Query is acceptable

and there is little need for faster responses or enhanced

efficiency.

d. Extensions and changes of the system can be

easily implemented.

e. There is good system support for FORTRAN. In

particular, ATHENA was developed with the FORTRAN H (Extended)

compiler.

2. Query Language

The set of acceptable Queries is divided into two

main categories:

a. Control Queries

Control Queries provide commands to the system

to perform specific tasks, but usually do not use the

solution file. Examples of Control Queries are those that

accept comments for self-documentation of the output,

print headings for the output, terminate the use of system,

etc.

b. Command Queries

Command Queries use the solution file to extract

the information asked for. Each Command Query consists of

various fields separated by at least one blank. Some of the

fields are optional, while others are required. An internal

code number is generated by parsing the Command Query for

11-3

each field depending upon the analysis of that field and

the previous fields in the Command Query.

The code generated by the PARSER is executed

by the INTERPRETER,which consists of a set of progams

(subroutines) activated by the code numbers, to get the

required information from the file.

C. DATA STRUCTURES

1. Preview

There are some observations about the solution file

of a linear program, especially of a large scale one, that

lead to the use of a special data structure for storing a

solution file in less memory space than it would otherwise

require.

For each row or column the following information is

usually included in the solution file.

NUMBER of row or column.

NAME, usually 6-8 alphanumeric characters.

STATUS, usually 2 characters, e.g., BS for BASIC,

LL for LOWER LIMIT, etc.

ACTIVITY LEVEL, for each row or column.

SLACK ACTIVITY for rows or INPUT COST for columns.

LOWER LIMIT

UPPER LIMIT

DUAL ACTIVITY for rows or REDUCED COST for columns.

UPPER PENALTY and

LOWER PENALTY for the elastic linear programming

system, XS [4].

II-4

There is redundant information in each record. Some

of these redundancies are the following:

The explicit number for each row or column may be

represented implicitly by the ordinal position of the row or

column in the file. Rows usually precede columns in solution

files.

A large number of the ACTIVITY LEVEL values will be

zero. The same is true for the SLACK ACTIVITY, LOWER LIMIT,

DUAL ACTIVITY and PENALTY values.

In many cases there will not be LOWER or UPPER LIMITS

or PENALTIES.

PENALTIES in some cases may be infinite.

When the status of a row or column is 'fixed', then

ACTIVITY LEVEL, LOWER and UPPER LIMITS are all the same

number.

Each row or column can be in only one of its

possible states.

Moreover, analysts who have experience with large

scale Linear Programming have observed that most of the

numbers of the solution file are the same. For example,

most of the numbers for LIMITS are the same for a large

number of rows or columns. For purposes of analysis, it

is rarely necessary to have more than five decimal digits

of precision for problem values. Indeed, some large prob-

lems cannot be solved with even this degree of significance.

Accordingly, IBM single precision REAL*4 representation

11-5

is adequate for our purposes. Conversion to REAL*8 extended

precision requires trivial program modifications.

Based on the above observations, two types of data

structures for storing the solution file have been developed.

The first one (SPARSE) exploits the redundant information in

each individual record. The second (SUPERSPARSE) stores each

distinct real number only once for the entire file. It is the

responsibility of the user to select the data structure type

that is appropriate for each solution file. SUPERSPARSE is
probably superior with problems for which less than half of all

non-zero coefficients possess distinct real values. What

follows is a detailed description of these two data structures.

2. SPARSE Data Structure

The entire solution file is stored in contiguous

memory (8-bit bytes) as a one-dimension array called SOLFIL,

in the following way:

a. The first 16 bytes (four 4-byte words) are used

to keep information for:

(1) The size of the file in 4-byte words.

(2) The type of data structure used to pack the

file (SPARSE or SUPERSPARSE).

(3) The number of rows and columns of the file.

b. For each row or column, 12 sequential bytes are

required, organized as follows (see Figure 2).

(1) The first 8 bytes hold the name of the row or

column left justified, one character per byte.

11-6

8-BYTE NAME-1

2-BYTE BIT MAP
2-BYTE POINTER

48-BYTE NAME-2

2-BYTE BIT MAP

2-BYTE POINTER

4-BYTE NAIE-n

4-BYTE BIT MA

2-BYTE POINTER

4-BYTE VALUE

4-BYTE VALUE

4-BYTE VALUE

4-BYTE VALUE

4-BYTE VALUE
4-BYTE VALUE

4-BYTE VALUE

t 4-BYTE VALUE

4-BYTE VALUE

4-BYTE VALUE

FIGURE 2. SPARSE Data Structure

11-7

(2) The next 2 bytes are used (as 16 bits) to

represent various characteristics associated with that row

or column.

(3) The last 2 bytes are used as a pointer to

the first number stored from the current record.

c. The 16 bits from (2) above are organized in 4

groups of 4, 7, 4 and 1 bits, respectively, taken from higher

to lower order.

The first group of 4 bits represents the status

of the current row or column.

BIT PATTERN STATUS

0 0 0 0 IN (INFEASIBLE)

0 0 0 1 BS (BASIC)

0 0 1 0 LL (LOWER LIMIT)

0 0 1 1 UL (UPPER LIMIT)

0 1 0 0 EQ (FIXED)

The following status indicators are reserved for use with

the program PREP [3]

0 1 0 1 VC (VOID COLUMN)

0 1 1 0 SC (SINGLETON COLUMN)

0 1 1 1" FC (FIX COLUMN)

1 0 0 0 BC (BOUND CHANGED)

1 0 0 1 VR (VOID ROW)

1 0 1 0 SR (SINGLETON ROW)

1 0 1 1 RR (REDUNDANT ROW)

1 1 0 0 FR (ROW FIXES VAR. AT BOUND)

1 1 0 1 ER (DOUBLETON EQUATION)

11-8

1 1 1 0 TR (TIGHTEN RANGE)

1 111 PP Reserved for PREP[3]

The next group of 7 bits represents the characteristic of

zero or nonzero values for the record.

BIT NO: BIT VALUE: CHARACTERISTIC

11 0 ACTIVITY LEVEL NONZERO

1 ACTIVITY LEVEL ZERO

10 0 SLACK/COST NONZERO

1 SLACK/COST ZERO

0 0 LOWER LIMIT NONZERO

1 LOWER LIMIT ZERO

8 0 UPPER LIMIT NONZERO

1 UPPER LIMIT ZERO

7 0 DUAL/RED. COST NONZERO

1 DUAL/RED. COST ZERO

6 0 LOWER LIMIT EXISTS

1 LOWER LIMIT DOESN'T EXIST

5 0 UPPER LIMIT EXISTS

1 UPPER LIMIT DOESN'T EXIST

The next group of 4 bits represents the characteristics for

PENALTIES.

BIT PATTERN UPPER PENALTY LOWER PENALTY

0 0 0 0 ZERO ZERO

0 0 0 1 ZERO NUMBER

0 0 1 0 ZERO INFINITY

0 0 1 1 NUMBER ZERO

11-9

0 i 0 0 NUMBER NUMBER

0 i 0 1 NUMBER INFINITY

0 I 1 0 INFINITY ZERO

0 1 1 1 INFINITY NUMBER

1 0 0 0 INFINITY INFINITY

The rest of the bit permutations are not used.

The last (0 bit) is used by the interpreter to

mark the active and nonactive records when the user uses

the ACTIVE or DEACTIVE commands to avoid searching of the

entire file.

All the above groups of bits are stored together

as a 16 bit binary number, which is stored in 2-byte half-

word. ATHENA has provisions for the use of 16 bit halfwords

representing absolute magnitudes of 0 -65535, and can extract

any component bits of the halfwords as necessary. (In this

sense, the usual 4Zgned magnitude of IBM/360 halfword

integers is ignored.)

d. The (nonzero, noninfinite) number values which

must be stored are located immediately after all the informa-

tion above. If the file represents a problem with M rows

and N columns, then location INDEX - where INDEX=(N+M)*3+4+l -

of the SOLFIL array is the first eligible location for

storing number values. The value of INDEX is kept in a 2-

byte pointer associated with each row and indicates for that

row the location of the first value stored. The sequence for

storing these numbers for each row is:

II-10

ACTIVITY LEVEL, SLACK/INPUT COST, LOWER LIMIT, UPPER LIMIT,

DUAL/REDUCED COST, UPPER PENALTY, LOWER PENALTY.

3. SUPERSPARSE Data Structure

This type of data structure takes advantage of the

fact that in most problems many number values in the solution

file are the same. Each distinct value is stored only once

and a 2-byte pointer is used to access this value when

needed. This is the only difference from the SPARSE repre-

sentation (see Figure 3).

The array with the paoked solution file is now

separated into 3 parts:

a. The first part is exactly the same as in SPARSE.

b. The second part is substantially the same with

the following differences:

(1) It consists of 2-byte halfwords instead of,

4-byte words.

(2) Each halfword is a pointer to the third

part of the array where the distinct number values are

stored.

c. The third part consists of a pool of 4-byte

words, each representinq a distinct real number value. The

pointers to the distinct real number values are relative

addresses in the real number pool, so a file which is packed

with a different array size can be used with the current

pointers providing the array size is large enough to hold

the file.

F 1I-11

.71.

8-BYTE NAME-1

2-BYTE BIT MAP

2-BYTE POINTER

8-BYTE NAME-2

2-BYTE BIT MAP
2-BYTE POINTER

8-BYTE BIT NAME-n

2-BYTE BIT MAP
2-BYTE POINTER

4 2-BYTE INDIRECT PTR.
2-BYTE INDIRECT PTR.
2-BYTE INDIRECT PTR.

2-BYTE INDIRECT PTR.
2-BYTE INDIRECT PTR.

j f 4-BYTE DISTINCT VALUE

4-BYTE DISTINCT VALUE

4-BYTE DISTINCT VALUE

4-BYTE DISTINCT VALUE

4-BYTE DISTINCT VALUE1

FIGURE 3. SUPERSPARSE Data Structure

11-12

I

III. USER'S MANUAL

A. INTRODUCTION

The system ATHENA is a set of programs which accepts as

input a linear programming solution file, packs it in a

special data structure and interactively extracts specific

information from that file through a set of Queries.

The size of memory which is required to run the system

depends on the size of the file to be accommodated, and thus

on the size of the original optimivation problem. The user

extracts information from the solution file with a Query

C ILanguage, asking questions related to the solution of the
problem represented in the file.

The entire system has been developed in FORTRAN language

for portability and better coordination with other Linear

Programming procedures which are also written in FORTRAN.

The Queries are self-documenting and their syntax follows

closely the syntax of the English language. To avoid typing

effort for experienced ATHENA users, ho4At ot m4 of Queries

are provided. Only the chatracters comprising the short

forms are interpreted by the system, with all subsequent

contiguous nonblank char4cters ignored.

B. QUERY LANGUAGE

The Query Language consists of three subsets of Queries:

III-i

WW ;

1. The Control Queries:

With this subset of Queries the user controls

mainly the output of the system, inserting comments,

headings, etc.

2. The Command Queries;

With these the user communicates with the solution

file and extracts the specific information he needs.

3. The SET Command.

This command qualifies the ATHENA queries to access

only a subset of the problem file.

1. Control Queries

a. VERIFY (Short Form V)

All the following Queries will be displayed with

the output. This Control Query is useful when the OFFLINE

printer is used for the output instead of the terminal,

or when the system is used under Batch Processing; in these

cases answers are transmitted to the output device without

the corresponding questions if the system is not in VERIFY

mode.

b. NOVERIFY (NOV)

The following Queries do not appear with the

output. This Control Query is most frequently used when a

terminal is used for all output. The DEFAULT mode of the

ATHENA system is NOVERIFY.

c. PROMPT (P)

The system responds with the prompt;

INPUT A COMMAND

Li1-2

whenever it is ready to accept a Query. PRO4PT is a

DEFAULT mode of the system.

d. NOPROMPT (NOP)

Used to avoid the prompting phrase in the

output, especially when the OFFLINE printer or Batch

Processing is used.

e. H Any Character String

When the first column of a Query is the letter

H, then the character string is printed as is in the output.

H is used to insert comments or headings in the output.

f. * Any Character String

When the first column of a Query is the character

•, no action takes place. This is considered as a comment

and is ignored. * is useful to insert comments and/or

headings on the terminal output, but not on the OFFLINE printer.

g. END (E)

Used to end the current session.

2. Command Queries

A Command Query consists of several fields. Some

fields are required and must always appear in a Command

Query and others are optional. Each field is separated

from the others by at least one blank character. The number

of blanks between fields is not significant and a Query may

start at any character position in the command. The length

of a Query cannot exceed 80 characters including the spaces

between the fields.

111-3

The possible fields that can be included in a

Command Query are:

a. TYPE

b. SELECT

c. MASK

d. CONDITION

e. PRINT OPTION

The fields in a Command Query must appear in the

above sequence and the first 3 of them must always appear,

with only 2 exceptions. A detailed description follows of

each individual field and the way that it may be used.

a. TYPE field

This is the first field of the Query and may

start at any character position. This field can be one of

the following:

(1) DISPLAY (D)

Used when all the records which meet the

requirements of the other fields are to be displayed in the

output in the sequence they are encountered starting from

the beginning of the solution file.

The portion of each individual record that

will be displayed depends on the PRINT OPTION field.

(2) COUNT (C)

Used when only the number of records which

meet the requirements of the other fields is desired. COUNT

is especially useful immediately preceding a DISPLAY command

so the user will know in advance the size of output, avoiding

IIIr-4

unpredictably extensive printouts. For this Query the

PRINT OPTION is ignored as meaningless.

(3) ADD (A)
Used when some numerical quantities of

the qualified records are to be summed. The names of the

numeric quantities of each record that will be added are

given in the PRINT OPTION field. If no PRINT OPTION

appears, all the numeric quantities of each record are

added and their sums are displayed with appropriate labels.

Since it is mathematically meaningless

to add LOWER or UPPER LIMITS, or PENALTIES, they can not

be summed or displayed.

(4) AVERAGE (AV)

Used exactly as the ADD command to display

arithmetic averages. The sums are divided by the total

number of the qualified records.

(5) ACTIVATE (AC) (Syn. ACTIVE)

With the ACTIVATE command the user can

indicate a subset of the records of the solution file with

specific qualifications determined by the other fields so

that subsequent Queries will implicitly refer only to that

subset. The user can expand the initial subset by using

the ACTIVE command repeatedly to add new records to the

active subset.

The command ACTIVATE can minimize the

searching time for the required information in the active

subset. Each time the ACTIVATE command is issued, the system

111-5

responds with the number of records added to the active

subset and the current total number of active records.

(6) DEACTIVATE (DE) (Syn. DEACTIVE)

Used to delete records with specific

qualifications from the current active subset - created

by the ACTIVE commands - or to eliminate any active file.

The system responds with the number of records deactivated

and the total number of records remaining active.

The entire active file can be deactivated

by:

DEACTIVE ALL or DE A'.

With this Query all the currently active records will be

deactivated and the mersage:

' FILE DEACTIVE '

will be printed out. Subsequent qimeries will refer to the

entire s..ution file.

b. SELECT field

This field is mandatory and specifies whether

the qualified records are ROWS, COLUMNS or BOTH. It may

consist of one of the following:

(1) ALL (A)

Specifies that the entire file must be

searched for the qualified records starting from the first

ROW and continuing to the last COLUMN.

111-6

(2) COLUMNS (C)

Specifies that the COLUMNS only will be

searched for the qualified records starting with the first

COLUMN and continuing to the last COLUMN.

(3) ROWS (R)

Specifies that the ROWS only will be

searched for the qualified records starting with the first

ROW and continuing to the last ROW.

c. MASK field

Specifies that any record is qualified for

processing if the name of the record fits the MASK field.

The MASK field is left justified and may contain i to 8

characters. All the right unfilled positions up to 8

characters are assumed to be the character *. The MASK is

matched against the name, starting from the left, character

by character. Any character in the name is matched with

a * in the MASK field. The MASK field is mandatory.

EXAMPLES

i. The MASK 'X******Y, specifies all the names

starting with the letter X and having as the 8th (last)

character the letter Y.

ii. The MASK 'X' is equivalent with the MASK 'X*******'

and moans all the names starting with the letter X.

iii. The MASK '******Y' specifies all the names

ending with the letter Y and it is NOT equivalent with the

MASK 'Y'.

III-7

iv. The MASK 'ABCDEFXY' specifies only this

name and since the names of ROWS and COLUMNS are assumed

to be inclusively unique, the searching of the file stops

when the first match is made.

v. The MASK '*' specifies ALL the names and

may be used when no particular mask is desired.

d. CONDITION field

The syntax of this field is:

FOR (<conditional phrase>)

The word FOR, left parenthesis and right parenthesis must

always appear when the CONDITION field appears in a Query.

There are two kinds of conditional phrases:

The simple conditional phrase and the compound conditional

phrase.

(1) Simple Conditional Phrase

There are 3 kinds of simple conditional

phrases: The Relational, the Status and the Bound simple

conditional phrases.

(a) Relational Simple Conditional Phrase

The syntax is:

<Argl> <Relop> <Arg2>

where Argl, Arg2 and Relop are one of the following:

i. Argl

X for ACTIVITY LEVEL

S or C for SLACK ACTIVITY or INPUT COST

111-8

L for LOWER LIMIT

U for UPPER LIMIT

D for DUAL ACTIVITY or REDUCED COST

P for UPPER PENALTY

W for LOWER PENALTY

ii. Relop

Relational operators EQ, NE, GT, GE, LT, LE with the same

meaning as in FORTRAN. (Note, however, that there are not

imbedded decimal characters as in FORTRAN.)

iii. Arg2

Arg2 is defined exactly as Argl

with the enhancement that Arg2 may also be any integer or

real number. Arg2 cannot be expressed as a floating point

number in exponential notation.

(b) Status Simple Conditional Phrase

The syntax is:

STATUS <Flag> or ST <Flag>

where Flag is one of the following:

BS for BASIC

LL for LOWER LIMT

UL for UPPER LIMIT

EQ for FIXED

VC for VOID COLUMN

SC for SINGLETON COLUMN

111-9

FC for FIXED COLUMN

BC for BOUND CHANGED

VR for VOID ROW

SR for SINGLETON ROW

RR for REDUNDANT ROW

FR for FREE ROW

ER for DOUBLETON EQUATION

TR for TIGHTEN RANGE

(c) Bound Simple Conditional Phrase

The syntax is:

<Argl> MINIMUM or <Argl> MAXIMUM

where Arg is specified as in Relational Simple Conditional

Phrase. The words MAXIMUM or MINIMUM can be abbreviated as

MAX or MIN, respectively. This is used to extract those

records which have the MAXIMUM or MINIMUM value in the speci-

fied field with the specified MASK. The system responds

with the first record encountered with the maximum or minimum

value associated with Argl, and the total number of records

that meet the requirements. This phrase may not be used

with ACTIVE or DEACTIVE options in the TYPE field of the

Query.

(2) Compound Conditional Phrase

The syntax of this phrase is:

<Relational Cond. Phrase> <Log. Oper.> <Relational Cond.

Phrase>

III-10

S -~ - -

or

<Relational Cond. Phrase> <Log. Oper.> <Status Cond. Phrase>

where Log. Oper. is OR or AND with the meaning of the corres-

ponding logical operators. Note that the Bound Simple

Conditional Phrase is not compatible for use in a Compound

Conditional Phrase, since it exhibits no boolean value.

Also, the Status Conditional Phrase must always appear a6tex

the logical operator.

The CONDITION field as a field must be

separated by at least one blank from the other fields of the

Query. The word FOR, the left parenthesis, and the first

element of the conditional phrase do not require separation

by blank characters, nor do the last element of the condi-

tional phrase and the right parenthesis.

The CONDITION field is optional and need

not appear in the Query. If it is not present, any record

is qualified if the MASK field is satisfied. Using the

ACTIVATE and DEACTIVATE commands the user can actually have

unlimited length conditional phrases, b adding qualified

subsets of records in the ACTIVE file.

e. PRINT OPTION field

This is the last field of a Query. It is

optional, and if it does not appear the entire contefts of

each record which satisfies both the MASK and the CONDITION

fields are printed out.

111-ll

A

- --- P-- - I- 1--W W

The elements of the PRINT OPTION field may be

any combination of the following:

X, C or S, L, U, D, P, W

with meanings as described in the CONDITION field. The

output will include information described in the PRINT

OPTION with corresponding headings. The elements of the

field can be separated by any number of blanks, by commas,

or not at all. If both C and S appear in the PRINT OPTION

neither of them is printed out. For the commands ADD and

AVERAGE the default PRINT OPTION is X, C or S, D since there

is no meaning for LIMITS and PENALTIES.

For all Queries that potentially require more

than one output record for the answer (i.e., all Queries

except COUNT, ACTIVE, DEACTIVE and SET), the output will

include the following entries for each record:

NUMBER, NAME, STATUS and the entries specified in the PRINT

OPTION field in the sequence in which they appear. At the

end of the answer output for each Query the total number

of qualified records is given. The heading for the output

is determined by the SELECT field. If for this field the

option ALL is used, the heading will be the one for ROWS

although COLUMNS may also be included in the output.

3. The SET Command

By default each time a Command Query is issued the

whole solution file is searched starting at the first ROW or

111-12

COLUMN and continuing by examining sequentially all the

records.

Queries may sometimes apply only to a small part

of the solution file or to records whose relative position

in the file is known. In these cases the SET command can

cause searching to be initiated at a particular entry in

the file and continued to another particular entry. Also

a fixed step size can be specified for the search. Thus

much computational effort can be avoided.

The syntax for the SET Command is:

SET <number 1> <number 2> <number 3>

where;

number 1 is the number of the starting record;

number 2 is the number of the record to stop

searching;

number 3 is the step for searching.

All these numbers must be integers separated by at least one

blank and the presence of all of them is required. These

numbers also must be in the range of total number of records

for the file. The SET limits apply to qualify any subsequent

search of the file even if ROW or COLUMN subsets are speci-

fied by a Query.

EXAMPLE

Suppose the solution file has 300 rows and 2000

columns and the following SET command is issued:

111-13

SET 18 1500 10

For all subsequent Queries:

If the SELECT field of the Query is ALL then the searching

starts at the 18th record and continues through the 1500th

record with step 10 (i.e., Record numbers 18, 28, 38,....

are examined).

If the SELECT field is ROWS then the searching will start

at the 18th row through the last row (300th) with step 10.

If the SELECT field is COLUMNS then the searching will

start at 18th column through the 1500th column (or equiva-

lently the 318th record through the 1800th record) since the

number of columns is greater than 1500.

To restore default settings, use:

'SET DEFAULT' or 'SET D'

C. ERROR MESSAGES

The following error messages are typed at the terminal

as soon as they are detected. If the error is only in

syntax, the system is immediately ready to accept a new

query, otherwise execution is terminated. Errors have been

grouped with one message for each group. Messages are self-

explanatory.

ERROR NO POSSIBLE REASON

1 : Attempt to parse a blank query.

101 : Invalid TYPE field. One of the characters

D,V,C or blank was expected after A.

111-14

IZ

102 : Invalid TYPE field. One of the characters

O,E was expected after S.

103 : Invalid TYPE field. One of the characters

P,V was expected after NO.

104 : Invalid TYPE field. No command starts

with the given letter.

201 : Missing character or somewhere in the

query there is no space delimiter.

202 There is no space delimiter.

301 Invalid SELECT field. SELECT field is

missing or there is no space delimiter

between TYPE and SELECT fields.

502 : Invalid CONDITION field. the word FOR is

missing (the string OR was expected after

F), or invalid PRINT field.

503 : Missing left parenthesis in CONDITION field.

504 : Incomplete condition field or missing

space delimiter.

505 : Missing right parenthesis in condition field.

506 : Invalid OR logical operator. Character R

R was expected after 0.

507 : Invalid AND logical operator. The string

ND was expected after A.

508 : Invalid logical operator. Only OR and

AND are accepted.

511 Invalid operand for status. The character

C or S was expected after B.

III-15

512 : Invalid operand for status. The character

L was expected after L.

513 : Invalid operand for status. The character

L was expected after U.

514 : Invalid operand for status. The character

Q or R was expected after E.

515 : Invalid operand for status. The character

V, S, F or B was expected before C.

516 : Invalid operand for status. The character

V, S, R, F, E or T was expected before R.

517 : Invalid operand for status. The character

P was expected before P.

518 : Invalid operand for status. The character

I, A, C or D was expected before E.

519 : Missing space delimiter after status

operand.

520 : Non recognizable operand for status.

601 : Invalid first operand for relational

operator in condition field.

602 : Missing space delimiter in a simple

conditional phrase.

603 : Invalid relational operator. The character

T or E was expected after G.

604 : Invalid relational operator. The character

T or E was expected after L.

605 : Invalid relational operator. The character

Q was expected after E.

111-16

606 : Invalid relational operator. The character

E was expected after N.

607 : Invalid operand in bound conditional

phrase. The character N was expected

after string MI.

608 : Invalid operand in bound conditional

phrase. The string AX was expected after M.

609 : Unrecognizable relational operator in

simple conditional phrase.

701 : Invalid print field, or missing word FOR

in condition field.

1001 : Error in input data. Unrecognizable

status code.

1002 : Error in input data. Data encountered

has less than the expected number of rows

and columns.

D. LIMITATIONS - EXTENSIONS

As mentioned in the introduction, ATHENA is a direct

expansion of the PERUSE system. It includes all the features

of PERUSE, except the weighted average command, and has the

following differences and extensions:

1. ATHENA supports two distinct data structures, each

different from that of PERUSE. This was necessary in order

to support efficient access to individual records or group

of records. The SUPERSPARSE data structure is unique to

ATHENA.

111-17

_ ____ -i l . , - - o.o~

2. ATHENA accepts as input a simple file which can be

easily obtained from the solution file of any linear

programming package on tape, disk or cards.

3. ATHENA supports the commands SET, ACTIVATE,

DEACTIVATE and COUNT, in addition to the commands of

PERUSE, allowing the user to construct logical subsets of

the solution and efficiently access these subsets as inde-

pendent files with very small access time.

4. ATHENA supports compound conditional phrases for

extraction of more specific information and the bound

conditional phrase for maximum and minimum values.

5. ATHENA uses object time variable format allowing

better appearance of output and uses the words NONE and

INFINITY instead of the number 0.7273E76 for better

readability.

6. ATHENA accepts reduced problems from PREP [3] and

can be used to pass the PREP status file with the solution

file of any optimization system to permit recovery of the

original problem solution.

ATHENA has been designed to handle solution files with

up to 30,000 records. The actual limit is imposed by the

number of real number values that must be stored explicitly.

This number cannot presently exceed 65536 since this is the

largest integer pointer value which can be stored by ATHENA

in a 2-byte halfword. Experience has shown that the average

number of stored values for each record, excluding penalties

111-18

is 1.5 (9]. Adding to this another 0.5 per record for

penalties, the problem size limit may be as large as 30,000

rows and columns.

A rough estimation of the space needed for the packed

file in 4-byte words can be obtained by multiplying the sum

of rows and columns of the solution file by 5 for the SPARSE

data structure and by 4 for SUPERSPARSE. Before using ATHENA,

adjust the size of the SOLFIL array in common block SOLPAC to

this number. To avoid passing problems with common areas

under some time-sharing systems, use an array siz#. which is

an exact multiple of the intrinsic page size, and which is

larger than the number calculated above. Also make correspond-

ing adjustments to the DEFINE FILE statement of the main

program (e.g. use multiples of 4,096 for IBM systems).

ATHENA has been developed in modular form and can be

easily changed or extended to support future needs. Commands

which can be easily implemented include the weighted average,

the sort of output, or further calculations needed for the

analysis of the solution file. ATHENA can also be used as

part of an integrated system for sensitivity analysis of

optimization problems.

E, SYSTEM INTERFACE

1. Preview

Linear Programming packages give differing forms of

output so that it is difficult for a system to be interfaced

111-19

with all of these solution formats. ATHENA accepts as input

a solution file in a 'standard' form which can be easily

obtained from any other solution file form.

ATHENA is best utilized in an interactive system,

although it can also be used in batch processing. On the

other hand, most L.P. packages run only in batch processing.

An exception is XS [4]. Moreover, in some systems there is

no integration of interactive and batch processing. In these

cases, the solution files may be transfer;ed manually from

one system to the other using magnetic tapes or cards.

A simple input file has been designed which can be

punched in cards or entered on tape, disk, or other storage

media.

2. Input File

The input file consists of records with the following

structure:

a. The first record always contains the number of

ROWS, the number of COLUMNS, and in position 51 the character

'I' if each ROW record contains PENALTIES or '0' otherwise.

the FORMAT of the first record is

(I5,30X,I5,10X,Il).

b. Each subsequent record contains explicitly all

the information associated with each ROW and COLUMN, with

the following format:

111-20

.I

NAME Format 2A4 (left justified)

STATUS Format A2

X, C or S, L, U, and D numeric field values with Format

5E14.5 or 5F14.5. (The meanings of each of these fields is

described in the previous section.) If the solution file

includes PENALTIES, then two records will be associated

with each ROW. The first will be exactly that described

above, and the second will have the FORMAT(E14.5,16X,E14.5)

for P, and W, the UPPER and LOWER PENALTIES. In all cases,

INFINITE values will be represented explicitly by the number

±O.1E76. The total number of records must agree with the

sum of ROWS plus COLUMNS, with the records of ROWS preceeding

those of COLUMNS; otherwise an Input error will occur. The

file is read in and packed one record at a time.

3. Packed File

a. Packed File as Input

If the input file is already packed from a

previous use of the system, it will be read in unformated

binary form. The system will provide the user information

for memory requirements before reading the file. The packed

file may be on a tape or disk but cannot be on cards. The

system will ask the user at the beginning of a session for

the number of the file.

b. Packed File as Output

If an unpacked file is used as input, the system

will ask for the file number where a packed file is to be

111-21

written. Of course, a DEFINE FILE statement must

be included right after the declarations of the main program.

E. EXAMPLE OF SYSTEM USE

The procedure follows for use of ATHENA at the Naval

Postgraduate School Computer Center with the IBM 360/67.

The solution file here is produced by the MPS/360 package

and ATHENA is used under CP/CMS. Similar procedures can be

followed for any other installation.

1. Obtaining the Unpacked Solution

a. Submit the problem to be solved using the usual

Control Cards required for the MPS/360 package inserting

before the Control Card:

//MPS2.SYSIN DD *

the following cards:

//MPS2.SYSPRINT DD DSN=Sxxxx.nnnnnn,

I/ UNIT=3330,VOL=SER=DISK04,

I/ SPACE= (CYL, (,)),DISP= (NE%,KEE"),

// DCB=(RECFM=UA,BLKS1ZE=133)

With these cards the output of MPS will go to the DISK

instead of the printer.

xxxx is the user's number and

nnnnnn is the file name on the disk.

111-22

If the solution file is too big or disk space

is not available use tape or tapes to store the output.

b. Use the program REWRITE (see [2]) to transform

the MPS/360 tape or cards to the format required for the

ATHENA unpacked Input file.

c. Now the unpacked file for ATHENA is available

and can be used to analyze the solution.

2. Using the System Under CP/CMS

ATHENA in CP/CMS TEXT form requires about 67K bytes.

The space needed for the packed file depends on the number

of records, the method used for packing and the density of

the original file. 200K bytes would be sufficient to hold a

packed file with up to 13,000 rows and columns. After

sufficient space has been secured, the following procedure

may be applied:

a. Ask OPERATOR to connect the tape with the Input

file created by the PEWRITE to the private disk as device

181. As soon as the tape is connected, the message 'DEVICE

181 ATTACIHED' will be printed at the terminal.

b. Before using the tape, type ALWAYS under CMS

the command ' TAPE SKIP 1 '. This command will position

the tape at the first record of the file. This command is

required because the tape created by IBM O.S./360.

c. Type $ ATHENA

ATHENA will ask for information about the file

identifiers for input-output, whether the file is packed

and method of packing and will give the size of the packed

111-23

file. For input file ordinal use any number between 01

and 99 excluding the numbers 03 -06. For output file

ordinal give the number 03 or 04. These are the numbers

used by the DEFINE FILE FORTRAN statement and they can be

changed. The system will be ready to accept QUERIES as

soon as the prompt phrase 'INPUT A COMMAND' is typed by

ATHENA at the terminal. The packed file can be saved on

a tape using the 'TAPE DUMP' command under CMS.

In the next few pages a demonstration of using

ATHENA with a solution file of 766 rows and 10921 columns

is given. This problem is a mixed integer optimization

model with 963 binary variables for medium term capital

budgeting of the Naval Air Test Center [8]. For this

problem, a query may require as much as lne and a half

minutes of clock time if the interactive system on the IBM

360/67 is under heavy use and the query is difficult to

answer. However, most queries are answered almost immediately.

Response time is especially good when the user makes use of

ACTIVATE, MASK and SET features to qualify necessary

searching.

111-24

AHAT T S THE H1LI O OF THE SO30LUTE ON FILE' (170NMAT 12)
a
I9 THE 17F LPA~E.' ACK\EDi ?< ENTER YES OR" NO1(

MEMOR' (REQUmIREN'TS FO'H0PCE FL 47749 4 -DYTE

W ORDSS

.IF YOU HAVET BUFF (C ENT MEMORY SPACE ENTER YES

OTHERWISE ENTER NO0 MALE ADJUSTMENTS AT COMMON AND 'TRY

Ar; A TNA

-NIJ A COMMANOT.(j~-,
~' US Li IC TH-EC-AAT:RtA THElE F.IRST COUNO i:OEY2

THEfl 'kUEF 1' TS I tNrE' TI I 13 TPS A) C01N V1-Nf N T WAY TO X<
rH T111 NS0 Ll TOE T- JN Tl F- T FL T FRM A) TERM WE NAL.)2L

1< COMMIENTS EN THE OU TROT FROM THE OFI:LINI: P'RINTER ()RE *
K I NSE"R TEE US NOJG THIE L.ET*TERI-, H I NSTEAD OF t. * *

'<TO AVOID THE PRO.MPT P'HRASE 'INP::UT A COMMAND' AT *
Ix TH1-1E OUTP,-UT USE THE C OMMAND / NOPROMPT'**

2< ~ mi TlPR-wINT OPT ION FI[ELI: OF THE D [SPLAY COMMAND 2
t (StRD ONL Y W ITHl AT MOST TWO OPT IONS ,

.3< 1 EkE I TS A) 'E*MON(3TRAT'I ON OF)S I NCO THE SYSTE M A. TU.- L-

t f :' HOWJ MA)NY ROWS HS TI-IE Ft LIE

A; ICOUNT ROWS003

76c,6 RO 0WS 0OR C 01UMNS3 WIT H MA'SK 44*2
se I A SF * :,3: Till.- CONDITIONS

* HOW MANIY CO0L U M NS

COU 1)N T CO 0LU MINS *

10921J ROWS31 OR COlLUMNS W EF TMASNK 4*2 <
SA ITSE-Y Ti ll: CONEDITI ONS

H< I OU MA)NY OF THEM 6RE1AB7

C C NX FOR(S1 BS)

111-25

'506 R:OWS OR COLUMNS WETI AS : M*ASI,
i'T [SFY TI IE C:J M DI TIONS

I IOU NAY OF THE, 14IRI- EOUAL_ ZE-I'] ?

CC " ' F:OR(l (E o () i'D ST £S

R0 WS,.- OR COI.M S WITH MASK : ,x ****

SATISFY THIE CONDITIONS

* USING THE COMMAND 'ACTEVATE' ONLY THE ACTIVATED
* RECORDS ARE SEARCHED TO ANSWER THE QUE-STION,

. Ti1113 TS A GOOD WAY TO AVOID COF* THE WHOLE
F 1" : LE.

AU T I: YiT ET COL.UMNi'S X(

". 1,T C 0 RD'S A C T ", V T 1)
IC) TAL. IRE C1]1 US ACT'F E : :'

:' I Iri m ANY ROW, rOW NO

C I" *

0 ROWS OR COLUMNS WITH MASK : *******
SATISFY THE CONDITIONS

. rF.IERE ARE NO ROWS SICE ONLY COLUMNS ACT.VATED0. lOW hMY OF THEM AR BAI lu; v

Ci (A F C R, O (S T T Ei

1 ROWS OR COI.LUMNS WTI MASK * *
SAT.LSFY TII! CON.CO'T.IONS

,' : 11 [SFLAY T HIE-M

D[SI"-I.A'Y C * FOR(S1" BS) X I.
TH1'E F:OILLO(WING FOWS (]" OR _~ K S 31.I' CO ! [f'[N

NLUJMb I.:'R ,,NAME . . AT .. O CT IV'[TY(... LIOWER L'[M.I T4,
803 X04 L DS 0. L2910 0. 00000

1 k(,WR. OR (]OL.UMNS WITH MASK I *I.l*** %k,.
SOT[S!-Y I1'11 CON011TUMO S

< WIl:' L3 TH-E AVEI''A I:-" OF' N(]NZERO ACT'.[V I:S "

)VE~I'M.AI' C X I-OR('< ME 0)
THE'1-__ FOL.LOWING ROWS OR CO.I.MNS GAT1LSFY CONi EC iNS

111-26

N't ,IDFR .NrME. 1) f ,)C'JV TY(. I [P UT COST,
S~SIRA)RAi ~ 09T30.76576

j 1:11-j" OR COLA 'IMS WEITH- MASK*
-ESY r:~(MN [r.CI\

'3E sU 01 AT EVri:* ANDS mITENUT COST '?

i)TID C 'X FO0R (X(NE 0

THlE FOL LOWING ROWS OR- COL-UMNS SAT.ISFY CONIDTTIONS

N UM BER *NAME. .Ar T .ACTIVITY ..*. .TMPUT COST..
SUMS OR AVERAGES 70.12909 54.36832

I 1 '0WS OR COLUMINS WI TI- MASK : *'*;I**

I)C~r 01Y000

17 C4ORECX OD0 ATI TVOTED 5)X

xil VOLO AS G ROW OCCLM STEYCNIIN

CtI1~ C N* M 1. 0T R r B,13,vvr twrCS

A ROW ES1 TH-RCLMNS WI TH MA)'31 X

SATSF 'il:.CONDITIONS

6 C YM16 FOR ()((01 0E 0

111-27

5 ROWS OR COLUMNS WIETH NoASK *4

cSm)VESFY THlE CONIDITIONS

4ELIMINATE SOME RECORDS FROM THE ACTEIVE FI_.E

DEACT*IE C X

177 R EC 0 D3 D F.A C TT V AT E T,

TO1 T AL RE17.CO0RDS A C V ILE :175

:C C X

10 RI01WS OR COLUMNS WITHl M)SK :' X* VX*
SA)TISFY THE CONDIT EONS

x ELEIMfNAr.EON O.K .

lK I10" MAN,.iY AT I .OWFFI, LIEMIT (I. L) 1,O0(

C C * V.ORl ClT U.)

1,569 ROWS 01< COLUMNS WETHl MASK : '.,-(*
S..ATTESFY THE.i: CON.l ET . NC3

:' WHAiT 'IS THE F I*,I) :7 ?

A V C v F~i~TL ()000 -I * 01000.A
THV FOLLOW*I N0 ROWS OR< COLUMJiN SA SP' COODT'IIIONS

NUMBERm N AME 1 A r A C AT. .V:E TY r N .fF'UI T COST.

169 ROWS OR COLUMNS WITH MA)Si :0 **.****

SAT ESFY THE CONDITIONS

x RETURN TO) THE OREGINAL BIG .E.1

D 5t EfCT T VAfrE AI.LL

F I E- T A C T IEY

111-28

i

X DTSPLAY THE 5 FIRST ROWS

SET 5

L0 R If X S
T'IE Fi)LLO!-,IH .NO OR COLUMNS SATISFY CON I E!"'iS

HIUi El R . h iji' . A , . ACT V E TY . S1.C A'Cr L Y rY

:" EN E F T S BS, 4 _V , 490 2 ' - '? .49902
'IC O : . I ! . 0 .0 0 0 0 0 ,, .)S '(N

3 RCL' v2 U _ 0 0000 000_)0
4 RC L03 L U). 0 o0000 0 00000
5 RC1041 BS 0.00000 0.00000

5 ROWS OR COLUMNS WITH MASK : ******1

SATISFY THE COND E TIONS

X THE F[RST S COLUMNS
'V

T C * C D
TIE OtL.I . 'G 1,;,OW S OP CO .LLMINS S,'lI-S Y CONEDITIONS

PHU FI L+ i I N r . + U NF't Coy;, Q SI.".ODUCEcl C' OST
:,:> 7)(0 U.. 0 ,'L')J 4 0 3 .3 I2
763 '<, 2 U!. 0 3OS 0 750
769 X003 UL 0 45629 0.23338
170 X004 UL 0.45483 0.36919

771 X005 UL 0.73440 0.60813

ROWS OR COLUMNS WITH MASK : * (X* o***
S5yf.[SPY THIE (O)NV' I T(JNS

' E' UIMRN TO Tl-II OR.[(31 I ILl.

5'. !E{T f',l F- Ff U L T
1<

* DITSIPLAY VAIR I ABILIE S IN A SPECII C' RANGE

CI C YM FOR' (X GT 10.5 ADI X LT 2',5..5) X L
TIlHE FOL.[.LOW 1[NO.) ROWS OR COI.UiINS SATI[SIY CON'I'.TIONS

t'IJH P .M MA E - - AT . AC, HY [TF , , .OWIER I.: [M E ,
J. ... 02 Y M050 6 ! BS L 00000 0 %, 00000

6 139 YMI717L 85 L L,54310 0.00000
6247 YiN!20201 10 17 .302 0 .00000
6758 YM3506 B 83 1.29999 0,00000
7472 YM20202 bS L 8 . 98279 0.00000
71803 YK335062 BS 11 90000 0 * 00000
0697 Y20203 BS 21. 00000 0. 00000
9208 YM35063 BS 16 o59999 0 ,00000
93 ; YM0014 3 o. t. 90000 0 ,00000
'"22 Y1202 4 BS 13. 0000 () 0 00000

1,0 133 Y iV 064 3 23 06062 0 0, 0 l 0
06.,;, YMO5C 6, 1 I.3 1 4 00000 O 00000

L l [47 YM20205 ti 3 13 00000 0.00000
1. 1658 YM35065 B5 19. 50000 0 00000

111-29

14 ROWS OR COLUMNS WITH MASK : YM c*t',*
SATISFY THE CONEIT ONS

-:1.

' WIAT)S THE MAX, UIM OF THE ACTIVITY LEVEL "?

11 C , FOR(X MAX) X C
I YM " ..1. 4 S ,3 63 k,9 0 000

I. ROW OR COLUMNS WITH MASK : *X **
SATISFY THE CONDITIONS

* THE MINIMUM LOWER LIMIT FOR THE ROWS ?

D R * FOR(L MEN) L U
'66 B ENIE-F ETS B'S NO0NE NONE

7.516 01-IS OJR COLUMNS WITH MASKi ,: .'t', , .
j) T' [SF'Y TI!E COr! l I T E Ci

- Tilt" i itJM ,A C :v~ 'Y i... Q F:UM lI.: r AT..-",L
~ S TART INO WtTH I T- L."TER

0 C Y FOR (X MAX) XC

I YM18184 rS 8863869 0..()00()0

I ROWS OR COLUMNS WITH MASK : Y**.IM****
iATI[S'Y THE CONDITEONS

4 ARE TFIE IN I'AS)3 ELI TIES S
,'Ic

iCOUNT ALL * FOR (ST IN)

0 ROWS OR COLUMNS WITH MASK : *******

PAwS SY THI: CONEi T EO,,S

* FXJ:IT FRO M TI.!.: ,lYS NEM
'k

111-30

Acknowledgment

ATHENA has been chosen for the name of this system for

several reasons. First, ATHENA is the goddess of wisdom from

ancient Greece. Also, it is the Greek name of the capitol of

the country of one of the authors, as well as his mother's

name.

References

1. Aho, A.V. and Ullman, J.D., Principles of Compiler Design,
Addison-Wesley, 1977.

2. Bradley, G.H., Brown, G.G. and Galatas, P.I., "ATHENA: An
Interactive System to Analyze Large-Scale Optimization Models,"NPS52-80-005, April 1980, Naval Postgraduate School Technical

Report.

3. Bradley, G.H. Brown, G.G. and Graves, G.W., "Preprocessing
Large-Scale Optimization Models," ORSA/TIMS, Atlanta,
November 1977.

4. Brown, G.G. and Graves, G.W., "Design and Implementation of
Large-Scale (Mixed Integer) Optimization System," ORSA/TIMS,
Las Vegas, November 1975.

5. Galatas, P.I., "ATHENA: A System to Interactively Analyze
Large-Scale Optimization Models," M.S. Thesis, Naval Post-
graduate School, March 1979.

6. International Business Machines, Mathematical Programming
System/360; Version 2, Linear and Separable Programming-
User's Manual, 1971.

7. International Business Machines, Control Program 67/Cambridge
Monitor System CP/CMS, Version 3.25, 1974

8. Mavrikas, C., "Optimal 5-year Planning Using Mixed-Integer
Linear Programming--Three Models Implemented for Naval Air
Test Center," M.S. Thesis, Naval Postgraduate School,
September 1979.

9. O'Neil, R.P. and Sanders, R.C., "PERUSE System Manual--
Version 2," September 1977.

Veson2

INITIAL DISTRIBUTION LIST

No. Copies

1. Office of Naval Research 2
Code 434
800 North Quincy Street
Arlington, VA 22217

2. R. Stampfel 2
Code 55
Naval Postgraduate School
Monterey, CA 93940

3. Defense Documentation Center 2
Cameron Station
Alexandria, VA 22314

4. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93940

5. Chairman, Code 55 2
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93940

6. Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

7. Professor Gordon Bradley, Code 52Bz 10
Naval Postgraduate School
Monterey, CA 93940

8. Professor Gerald Brown, Code 55Bw 20
Naval Postgraduate School
Monterey, CA 93940

9. Captain Panagiotis I. Galatas 3
Alketou 19, Pagrati
Athens 506, Greece

10. Professor Glenn W. Graves 1
Graduate School of Management
University of California
Los Angeles, CA 90024

FILMED

DI C

