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\ SYNOPSIS.
v

This thesis describes a theoretical and experimental study of the

effects of medium inhomogeneities on the performance of a parametric
recelver.

A review is made of the basic principles of parametric receiver
operation and of wave propagation in an inhomogeneous medium.

A theoretical analysis is presented for the case of a signal wave source
located on the axis of the parametric receiver in a weakly inhomogeneous
medium. Expressions are developed that predict the level of amplitude fluc-
tuations in the second-order pressure at the hydrophone of the parametric
receiver. Both collimated and spherically spreading pumyg waves are
considered.

The experimental study reported in this thesis was conducted in a model
tank in which an array of immersion heaters and a perforated screen produced
a thermal microstructure. Measurements were made of the coefficient of
amplitude variation for the signal, pump, and interaction frequency waves
associated with both a nearfield and a farfield parametric receiver,

Results are compared to theory and discussed.
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CHAPTER 1. INTRODUCTION

The subject considered in this thesis is the performance of
a parametric acoustic receiving array in an inhomogeneous medium. Develop-~
ment of this subject requires the synthesis of two branches of acoustics:
(1) nonlinear acoustics, from which the concept of the parametric receiver
has been developed, and (2) wave propagation in an inhomogeneous medium.
Both of these topics have received considerable study in recent years, and
it is reasonable to introduce the topics scparately before considering
their interrelation. In this chapter an introduction is given to monlinear
acoustics and to the effects of medium inhomogeneities. Following this is
an introduction to the present investigation, including a description of

the aims and the organization of this investigation.

1.1 Nonlinear Acoustics and Parametric Arrays

.1,
It has been known theoretically since Stokes' analysis™ in 1848 that
an acoustic wave distorts as it propagates through a fluid. This distor-
tion occurs because the propagation speed of a sound wave is a function of

the particle velocity; that is,2

Eome +ubxt) + 3 2ue,t) s (1.1)

where

%% 1s the propagation speed,

¢ is a constant equal to the sound speed for waves of infinitesimal
amplitude,

B is a constant that characterizes the nonlinearity of the pressure-
A density relation, [defined in Eq. (1.2)], and

u is the particle velocity in the x direction.

It can be seen from Eq. (1.1) that therc are two effects which contribute
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to the variability of the propagation speed. One eftect is 'convection'
which arises because the particles of the supporting medium are woving in
the same direction as the propagating wave. Convection is taken into ac-
count in Eq. (1.1) by the term u(x,t), which indicates that the propaga-
tion speed is linearly dependent on the particle velocity. A second
cause of variations in propagation speed is Jdie to nonlinearity in the

; . 3 . .
pressure -density relation. The relation between acoustic pressure and

’

excess density in a liquid mav be wrivten as’
c 2
2 1 7o B 2
P =t ¥3 7 <\> ' g (1.2)
o
where
P =Py~ P, is acoustic pressure,
P =P TPy is excess density,
A2
4 ap2 0,5

Cc
(o}

S is entropy, and
the subscripts zero and T denote equilibrium and total values,
respectively.
The quantity B/A is a measure of the nonlinearity of a fluid. 1In Eq. (1.1)
the effect of this nonlinearity on the propagation speed is accounted for
by the term %-%-u(x,t). For water, B/A has a value of the order of 5.2
while for air, B/A approximately equals 0.4.3 Tt can be seen by substitu-

ting these values of B/A into Eq. (1.1) that convection is the dominant ef-
fect in distorting airborne sound waves, while fluid nonlinearity domi-
nates in the distortion of sound waves in water.

As a result of the nonlincar character of acoustic wave propagation,

when two waves propagate simultaneously in a fluid, interaction-frequency

-
5 .
components are generatoed. Difference frequency tones have been observed




by musicians6-8 since 1745, and it was the observation of a difference
frequency sound beam9 that led Westervelt10 to formulate the concept of the
parametric array in 1960. This concept can be summarized as follows. If
pressure waves* of frequencies f1 and f2 insonify a common region of fluid,
there arise in that region secondary sound sources of frequency |f1 + f2|.
These secondary sources act as an array which can be used to transmit or
receive directive beams of sound.

In the transmitting application, the 'primary waves' (i.e., the waves

of frequency f. and f2) are launched from a common transducer, and the ef-

1
fective array length is controlled by attenuation in the medium. Such a
parametric transmitter can be used to generate a directive beam with negli-
gible sidelobe levelsll at frequencies ]fl * f2|.
In the receiving application, one primary wave is usually a low
frequency acoustic signal arriving at the parametric receiver from some dis-
tant source. This signal interacts Qith a locally generated 'pump' wave to
form sum and difference frequency sources in the region common to both
waves. The radiation from these sources is detected by a hydrophone placed b
in the pump beam. The array length in this instance is determined by the Fi
separation, L, betweenlthe pump transducer and hydrophone. The parametric |

receiver acts as a conventional end-fire linear array of length L, operating

at the frequency of the signal to be detected. The advantages of direc-

tivity offered by an end-fire array (i.e., reduction of interference due to
ambient noise and multipath signals) are achieved by the parametric receiver,

but only two transducers are required to 'construct' the array.
y y

Further discussion of the basic principles of the parametric acoustic

receiving array, as well as an outline of the history of its development,

is given in Chapter 2.

*The waves are assumed to be such that their propagation vectors are at
angles of less than 90° to one another.
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1.2 Effects of Medium Inhomogeneities

The variability of sound transmission in the sea is a topic that has
received a great deal of study in the last 30 years. There is a variety of
mechanisms that can cause fluctuations in the amplitude and phase of an
acoustic signal.l2 For example, if an acoustic source or receiver is
mcunted on a ship, then irregular motion of the platform can give rise to
fluctuations. If surface reflections contribute to the received signal,
then changes in the surface due to wave motion will cause phase and ampli-
tude variations. Even when the source and receiver are fixed and there
are no surface reflections involved, signal fluctuations will still occur.
Fluctuations having frequencies of the order of cycles per hour to cycles
per day will result from internal waves and internal tides,13 while fluc-
tuations with frequencies in the range of cycles per second to cycles per
minute will result from scattering by random inhomogeneities in the sea.
Although these inhomogeneities may be due to turbulence, thermal micro-
structure, air bubbles, or biological matter, thev may all be treated as
variations in the sound velocity (or refractive index) of the medium. The
sea can then be crudely modelled as a medium containing 'patches' of vari-
able refractive index which scatter a propagating acoustic wave. Usually
the principal cause of scattering is the thermal microstructure, as we will
see in Chapter 3.

Numerous theoretical studies have appeared that predict the amount of
amplitude and phase fluctuations in an acoustic wave when the statistical
nature of the thermal microstructure is known (see, for example, refer-
encesls—lg). Some results of these theoretical studies which are pertinent
to the present investigation will be discussed in Chapter 3.

As discussed in the previous section, there are three acoustic waves
associated with the parametric receiver: the incoming 'signal' wave, the

pump wave with which the signal interacts, and the interaction frequency

. -
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wave which arises from the nonlinear interaction. It is reasonable to
expect that cach of these waves would be scattered in an inhomogeneous me-
dium, and consequently, there would be three components of fluctuation in
the output* of the parametric receiver. These fluctuations can have a
significant effect on the performance of a parametric receiver in detecting
and resolving low-level acoustic signals. In anticipating practical appli-

cations in the ocean, it is therefore desirable to know the effects that

medium inhomogeneities have on the performance of a parametric receiver.
It is the aim of the investigation reported in this thesis to determine ;

these effects.

1.3 An Overview of the Thesis

These introductory considerations of the parametric receiver and of

the effects of medium inhomogeneities are extended in Chapters 2 and 3, re-

spectively. Both of these chapters contain a literature survey and a review
of basic principles for their respective topics.

In Chapter 4, the analytical methods described in Chapters 2 and 3 are
used to develop a theory which predicts amplitude fluctuations in the inter- 3

action frequency pressure at the hydrophone of the parametric receiver. It

is assumed in this analysis that the amplitude and phase fluctuations are
small compared to unity, and that the signal source is located on the main
beam of the parametric receiver. With these assumptions, integral expres-

sions are derived for the coefficient of amplitude variation for the cases

of collimated planar and spherically spreading pump waves. Approximate so-

lutions to these integral expressions are obtained by making a number of
assumptions regarding the spatial correlation functions contained in these

. expressions.

*The parametric receiver 'output' may be taken to be the sum or difference
frequency pressure at the hydrophone.




An experimental investigation is reported in Chapter 5. The

experiments were conducted in a model tank in which an array of immersion

heaters and a screen mesh were used to generate a thermal microstructure.
Measurements are discussed in Chapter 5 that were made to determine the i
coefficient of amplitude variation for the signal, pump, and interaction fre-
quency waves of a model parametric receiver, These results are then compared
to theoretical predictions based on the analysis developed in Chapter 4.

In the final chapter, Chapter 6, the results of this study are

summarized and discussed.
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CHAPTER 2. THE PARAMETRIC ACOUSTIC RECEIVING ARRAY

2.1 Introduction

The purpose of this chapter is to explain the basic principles of the
parametric acoustic receiving array, and to outline the history of its de-
velopment. The theoretical development of the parametric acoustic array was

20,21

based upon Lighthill's study of sound generated aerodynamically.

Westervelt applied Lighthill's results to the problem of scattering of
sound by soundzz’23 and laterlo extended this work to the parametric array.
In fofmulating the theory of the parametric array, Westervelt developed an
inhomogeneous wave equation that describes the second-order sound field. A
brief sketch of the development of this wave equation, as well as a discus-
sion of the physical significance of Westervelt's results, will be given in
the next section of this chapter. Solutions of the second-order wave equa-
tion for various configurations of the parametric receiving array will then
be discussed. Finally, practical matters such as signal processing, shad-

owing, finite amplitude effects, and the effects of noise on the performance

of the parametric receiver are considered.

2.2 Basic Theoretical Concepts

We will begin discussion of the parametric acoustic array by turning
briefly to some of the first principles of acoustics. Acoustic wave propa-
gation in a lossless medium is governed by the following equations of fluid

mechanics:24

Continuity Equation

apT N
—_— . = ’
stV () =0

(2.1)




Momentum Equation

a - — - —_ - . _ .
I (pTu) + pou(Veu) + (u-V)pTu + Vp =0 : (2.2)

.sentropic Equation of State
p=rl)g ;

where
is the total density,

V is the vector differential operator del,

u 1is the particle velocity,
p 1s the acoustic pressure, and !

] the subscript S denotes constant entropy.

The isentropic equation of state may be expanded in a Taylor series about

the ambient density of the fluid, giving

_ 2 1 % (B 2
Pp =P, t ¢ (oT - oo) t 3 o0 (A)(pT -0 s (2.3)
where the terms higher than second-order have been neglected. It may be
noted that Egqs. (2.3) and (1.2) are identical, except for a change of
variables.

The field variables p :, and p appearing in these fundamental

T!

equations can be expanded in series such that

+p, 4.+ ) g

U=u +u. +u. 4 ... 40 and (2.4)
o 1 2 n»

. + e .
lf po + pl p2 + + pn




The physical meaning of, for example, the various pressure terms in Eqgs.
(2.4) is as follows. The zeroth-order, or static component, Py is the i
pressure of the fluid in the absence of a sound wave. The first-order term,
pl, is the pressure associated with a wave propagating linearly through the
fluid. The higher order components are due to the nonlinear nature of acous-
tic wave propagation, as discussed in Section 1.1. Under the limitations of
perturbation theory for which the acoustic signals are sufficiently small
that

>>
po >> pl P, ®® «v. 2> p ’

25
terms higher than second order are neglected. Neglecting these terms
‘ is effectively the same as assuming that no nonlinear interactions occur
beyond those which give rise to the second-order field; i.e., the second-

order radiation is assumed to propagate linearly.

| First and second-order wave equations can be derived by substituting

! the series expressions in Eq. (2.4) into the fundamental equations, Eqs.

(2.1)-(2.3), and then retaining only terms of first or second order, re-
spectively. The parametric acoustic array utilizes the second-order field

variables, so the second-order wave equation is of particular interest, and

is given bylo’26
2 2
2 3
e, = - £ il
’
2 c 4 atz
where
2 2 1 3%
[j = V" - -—3-——3-15 the D'Alembertian operator, and
c at
o
B=1+2 .
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This inhomogeneous wave equation has a source term on the right hand side
that is a function of the first-order pressure field and some constants,
Apparently to emphasize the physical meaning of this wave equation,

Westervelt rewrote Eq. (2.5) in terms of the source strength density, g, as

follows:
2
- _ .29
ey == e .6

5 2

p
where q = ——?g—ja ai .

Po o

Equation (2.6) has the same form as the linear (first-order) wave equation
in which there are real mass sources present, the sources having source
strength density, q. By analogy with such a linear wave equation, Eq. (2.6)
describes the propagation of second-order acoustic waves that are generated
by the nonlinear interaction of first-order acoustic waves. The sources
that generate the secondary pressure field are not real, but are 'virtual'
sources produced by the nonlinear properties of acoustic wave propagation.
These sources are distributed throughout the region of space in which the

nonlinear interaction of the primary field occurs. The general solution for

the pressure P, in Eq. (2.6) 1527

P
Ty =2f12 &
py(r,t) = M/r. ¢ a(r ,mdv , (2.7)
v

where
r is the observation point,

;o is the source point,

-~ > A
r =r -r
(o]

=,

f

#

r
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r' . :
T = t - — is the retarded time,
c
o
V is the intcraction volume, and the geometry of Fig., 2.1

applies.

Thlis result can be summarized qualitatively as follows. Whenever some
first-order pressure Py is present at a point in the medium, a second-order
virtual source will arise at that point having a source strength qdv. The
second-order pressure at an observation point r will be the sum of all
sources in the interaction volume; this pressure is given by Eq. (2.7). In
the next few sections, we will discuss specific solutions for Py for given

first-order pressure fields.

2.3 The Parametric Array

Two practical applications for the second-order sound field described
by Eq. (2.7) were proposed by WCstervelt.lO He noted that if two plane
harmonic waves of frequencies wy and w, are projected by a common trans-—

ducer, an array of virtual sources will be established in the beam of the

transducer, radiating at sum and difference frequencies w, * w The array

1 2°
would be phased in an end-fire manner, and its radiation pattern would have
negligible sidelobe levels. This concept of a parametric transmitting array
was confirmed experimentally by Bellin and Beyer,28 and led to further
studies of this application by Berktay,29 Berktay and Smit:h,30 Hobaek,31
Zverev and Kalachev,32 Muir and Blue,33 Muir,ll and Smith.zs’34

In addition to its use as a transmitter, Westervelt also suggested
using the parametric array as an acoustic receiver. In this application
some distant signal would interact nonlinearly with a locally generated
signal. The second-order pressure arising from this interaction would
then be detected by a hydrophone placed in the vicinity of the locally gen-

35-44

erated wave. Several studies were also prompted by this possibility.

The findings of some of these studics will be discussed in the following

sections.
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2.3.1 The Nearfield Receiving Array

As an illustration of the parametric receiving array, consider the
arrangement shown in Fig., 2.2. A pump transducer of dimensions 2b x 2b is !
situated at the origin and radiates a wave of frequency wp along the x-axis.
A signal wave with frequency W propagates in a direction given by the unit

vector

ﬁ =1 cos? + 3 sing , (2.8)

where' I and E are unit vectors in the x and y directions, respectively.
The second-order pressure produced by interaction of the pump and

signal waves is detected by a hydrophone placed at x = L. It is assumed

that the detector is in the nearfield of the pump transducer, so that the

pump radiation may be approximated by a plane wave.45 The signal source is

w( assumed to be located so distantly that the signal wave is planar in the

'1; vicinity of the pump. With these considerations, the pump and signal pres-

sures are described by

jlw t - k x) ~a_x
P e P P (2.9)

Pump: pp(x,t)

j(wst - k x) -a R
P e S e (2.10)

fi

Signal: pg(x,t)

where P is the pressure amplitude of the pump wave in the nearfield

of the pump transducer,

P is the pressure amplitude of the signal wave at the origin,

o and oy are attenuation coefficients for the pump and signal

waves, respectively, and

R = x cos8 + y siné .

‘; In writing Eqs. (2.9) and (2.10), it has been assumed that the attenuation

coefficients are constants because the waves are each of single frequency.
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Also, the phase of the signal wave has arbitrarily been set to zero at the
origin.
The total first-order pressure at any point in the pump column (i.e.,

the region indicated by dashed lines in Fig. 2.2) is

pl = pp + pS . (2.11)

The second-order pressure detected by the hydrophone at x = L can be
calculated by substituting Zq. (2.11) into Egs. (2.7) and (2.8). 1If only

the sum and difference frequency terms are retained, the result is

BP P —J(k x +* k R) ~(a %x + a R)
p, L) =

4
np o o -b -b
-(a, + jk,) 2 2 2
« & % 2L - 2) ¥yt 2z gxdydz , (2.12)
/QL _ Z)2 + yz + 22
where w, Fw *w s
1 p S

o, is the attenuation coefficient at frequency w, (a constant),

k, is the acoustic wavenumber at frequency W, , and the time de-

pendence has been suppressed.

This integral is not easy to evaluate directly, but Berktay46 has
devised a method for simplifying the integration which will now be adopted.
The interaction region in front of the pump transducer can be regarded as a
series of elemental wafers of thickness dx and cross-sectional dimensions
2b x 2b (see Fig. 2.3). Each of these wafers is insonified by the first-
order sound field and will radiate at the frequency w, . These wafers will
produce nearfield, planar radiation at a range less than Ro from the wafer,
and farfield, spherically spreading radiation at ranges greater than Ro'

Using Freedman's45 description of radiation from a square piston, Berktay

and Al—TemimL38 choose Ro to be
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Ro =1.3 b/A3 , (2.13)
where Xs is the acoustic wavelength at frequency W

The detected second-order pressure may be considered to have two
components: (1) nearfield radiation from wafers within a distance Ro of the
detector and (2) farfield radiation from wafers at a distance greater than
Ro from the detector. For this illustration assume that L < Ro so that
all wafers are in the nearfield of the detector. With the further assump-
tion that absorption along the v-axis is negligible compared to that in the
x direction, so that aSR can be approximated by asx cosb, Berktay and
Al-Temini38 evaluate Eq. (2.12) with the result

-jw,P P _BL
pN(L,e) = ——————E~3—— . [exp —(ai + jki)L] . exp[&jbﬂ

Zpoco
(2.14)

. sin M
M

where
the subscript N indicates that the result is valid only when the
detector is in the nearfield of all elemental wafers, and
M=432kL(l- cos8). (2.15)
2 s
The pressure detected by the hydrophone can be expressed in terms of

the on-axis pressure amplitude, PN(L,O), and the directivity, D(6), as

follows:
= . 2.16
py(L,8) = P (L,0) - D(®) (2.16)
w, P PSBL
where P (L,0) = 25— exp(-a,L) , (2.17)
2p ¢ -
o 0

. . .
o et 5 . L.
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Experimental confirmation of the validity of Eqs. (2.17) and (2.18) is

reported by Berktay and Al—Temini.37’38’47

The directivity function is identical to that of a continuous end-fire

array of length L, realized from elements operating at frequency W It is
this directional property of the parametric receiver that makes it an at-
3 tractive device for the reception of underwater signals. It offers the same
capabilities as the conventional end-fire array as regards directional de-
tection of signals; yet the parametric device requires only two transducers
in its construction.

These conclusions have been based on results obtained assuming that
the hydrophone is placed iu the nearfield of the pump transducer. In appli-

cations requiring high directivity, and consequently large values of L, it

is likely that the hydrophone will be placed well in the farfield of the

pump. The next section extends the discussion to this situation.

2.3.2 The Farfield Receiving Array

In 1972, Barnard et gl.ag considered a case in which the hydrophone is

placed in the farfield of the pump transducer. Their analysis assumed

interaction between a plane signal wave and a spherical pump wave produced

by a baffled circular piston. Prediction of the interaction frequency pres-
sure was given by a numerical solution to Eq. (2.12). The results of the
integration were tested against experiment for the sum frequency, with good
agreement between theory and experiment.

A closed-form solution for parametric reception with spherically

spreading pump waves is given by Berktay and Shooter.43 The analysis is
similar to that for the nearfield receiving array, but rather than having
planar elemental wafers, the interaction frequency sources are assumed to

be cophasal along the spherical wavefronts. The received pressure at the

42,43

interaction frequency w, can be written
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W, i"PS;;
pp(L,0) = ——E exp [;(a+ + k)L ;;jm] Do) (2.19)
2p ¢ B -
[e ]

where
pF(L,B) is the pressure of the interaction frequency signal at x = L,
for the case of spherical pump waves, ;

P; is the on-axis farfield pump pressure amplitude referred to 1 meter,

D(B) = sin M/M is the directivity function, and
1

M == k L(1 - cosbd),
2 s

in comparing results for the collimated pump [Eq. (2.14)] and the
spherically spreading pump [Eq. (2.19)], it can be seen that the directivity
patterns for the two cases are identical. The pressure amplitude for the
case of the spherically spreading pump is, with the exception of absorption,
independent of array length, whereas for the collimated pump, the pressure

amplitude increases with L.

The directivity function of the pump transducer does not enter into the

result for the farfield parametric receiver, but it has been assumed in the

g
!
'
!
]
¢

analysis that the pump beamwidth is less than the beamwidth of the parametric
receiver.43 The directivity function of the parametric receiver for both
the collimated and spherically spreading pump is independent of pump fre-
quency, and is the same whether the sum or difference frequency signal is

used.

Berktay and Shooter43 compared the closed-form solution [Eq. (2.19)]

. : : 39
to results obtained by the numerical integration of Barnard et al. = and

found that agreement between the predictions was good. Computed results of

Eq. (2.19) were also found to be in good agreement with experimental mea-

42,43 These results show that the amplitude of the interaction

surements.
frequency signal component can be made approximately equal to the original
signal amplitude by proper choice of pump source level and array length so

that no loss in signal level is experienced in parametric reception.
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Truchard36’44 solved the problem of a parametric receiving array with

an arbitrarily shaped planar piston pump as follows. He first analyzed the
interaction of a high frequency spherical wave from a point source and a

low frequency plane wave. The solution for pump transducers of two or three
dimensions was then obtained by summing the point source solution over the
active face or volume of the pump transducer. In this manner Truchard
analyzed the following situations: (1) a point pump source with a line
hydrophone, (2) a rectangular pump with a point hydrophone, and (3) a cir-
cular piston pump with a point hydrophone. Truchard also studied these sit-—_
uations experimentally and obtained very good agreement between his theoret-

ical and experimental results.

2.4 Practical Considerations

2.4.1 Signal Processing

In practical applications there are factors which make detection of the
interaction frequency signal difficult. Since Wy << wp, the interaction
frequency wp * Wy is very close to the pump frequency wp. Also the pump
amplitude Pp is generally much greater than either of the amplitudes, PS and

P_. This situation is illustrated by the sketch of Fig. 2.4. The quantity

ex shown in the figure is the 'pump excess,' defined by Berktay and Muir4
to be the ratio of the pump pressure at the hydrophone to the amplitude of

the interaction frequency signal. For the case of spherical pump waves

. . 3
= + .
e, Zpoco /(mp * ms)BLPS . (2.20)
The signal processing problem is to reject the high amplitude pump signal

and retain one or both of the interaction frequency signals. Since a pump
excess on the order of 160 dB may be encountered in practice,48 careful de-
sign of the signal processing system may be required in applications of the

parametric receiver.

———— A
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There are three basic types of signal processing systems that have
been used with the parametric receiving array: the band pass receiver, the
carrier rejection or band elimination receiver, and the phase-locked loop
receiver. The band pass receiver is relatively simple to design and con-
struct and is adequate in applications where the pump excess is low and
the interaction frequency is well separated from the pump frequency. This
type of receiver was used in the present study, and is described in Chapter
5.

For applications involving a high pump excess and low signal frequencies,
the band elimination receiver is suitable. This type of receiver may be
described using the block diagram of Fig. 2.5. The design uses a cascade of
two crystal notch filters and two preamplifiers to reduce the level of the
carrier, and to amplify the interaction frequency (i.e., sideband) compo-
nents. The signal is then split into its in-phase and quadrature components,
and these components are processed to give the upper and lower sideband sig-
nals. Rohde gg_gl.AS report this method of signal processing to be useful in
a parametric receiver with carrier to sideband ratios approaching 180 dB. .

A third type of signal processing system is the phase-locked loop (PLL)
receiver, shown in Fig. 2.6. This system operates as a closed loop servo
system with phase as the controlled variable.49 The input of the PLL re-
ceiver is connected to the hydrophone of the parametric receiving array.

With the voltage controlled oscillator operating nominally at the pump fre-
quency, and with the loop bandwidth less than the lowest modulation frequency
of interest, the error voltage r(t) contains the demodulated signal. This

type of receiver is useful in minimizing the effects of low frequency noise,

49,50

such as due to transducer vibration. This point will be further dis- {

cussed in Section 2.4.5.

2.4.2 Shadowing

Any time that an obstacle significantly large with respect to wavelength
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is placed in the path of a propagating wave, shadows may form in the region
behind the obstacle. 1In the case of the parametric receiver, the pump
transducer and its mounting obstruct the incoming signal wave and form a
shadow in the array interaction region. This shadow has the effect of trun-
cating the array length, with consequent effects on the sensitivity and the
directivity function of the array.

47,51 has done a theoretical and experimental study of the

Al-Temimi
effects of shadows on the performance of parametric receivers. One impor-
tant result of his work is a description of the condition for which acoustic
shadows cause no appreciable deterioration of array performance and hence

may be neglected. This condition is that the shadow length d be kept below

5% of the array length L; i.e.,

d < 0.05 L, (2.21)

where

1.25 b2/>\s s (2.22)

=9
il

and 2b 1s the length of each side of a square transducer.

2.4.3 Finite Amplitude Effects

It was noted in Chapter 1 that a finite amplitude acoustic wave distorts
as it propagates, this distortion being due to the dependence of the phase

velocity on the particle velocity; i.e.,

(%%) = ¢+ 8 u(x,0) , (2.23)
u

where

co is the sound speed with respect to the fluid particles,




(%%) is the phase (or propagation) velocity of a given point on a
sound waveform, and
u is particle velocity.

The distortion of an initially sinusoidal acoustic wave gives rise to
harmonic components. Energy is transferred from the fundamental component
of the wave to the harmonics as the wave is progressively distorted, so the
fundamental is attenuated by this effect. If the wave experiences enough
distortion for a discontinuity or 'shock' to develop, the situation becomes
more complex. When the acoustic wave is 'weak,' i.e., uolc0 < 0.1, then a
method known as 'weak-shock theory' can be used to describe the wave propa-

52,53 We will not discuss this theory in any detail, but merely note

gation.
that when a shock forms, dissipation may be assumed to occur at the shock
front to the degree that the waveform never becomes multivalued.52

In general, there are three mechanisms that attenuate an acoustic wave:
geometrical spreading, absorption by the medium, and the 'excess attenuation'
due to energy transfer from fundamental to harmonic components as the wave
is distorted. The spreading and absorption mechanisms, by reducing the amp-
litude of an acoustic wave, tend to reduce the nonlinear distortion process
considerably. For example, a spherically spreading wave will have a value
of u that reduces as %, so that the importance of the second term in Eq.
(2.23) diminishes with range. Absorption will similarly reduce the effects
of nonlinearity. It can be seen, ther#fore, that excess attenuation will
only be significant in the case of waves with initially large amplitudes.

The excess attenuation for a plane wave propagating through a lossy

medium is calculated by Blackstock54 in terms of the Gol'dberg number, T,

and the normalized range parameter, o. These quantities are:

r = Lek (2.24)
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where
u
_ o
e =2
c
o]

u, being the particle velocity at the transducer face,

and

6 o= 2= ) (2.25)

The value of the excess attenuation EXDB in the fundamental component can

be read from curves given in reference 54. An approximate solution, said

to be accurate to within 1 dB of Blackstock's results, is given by>5’36

4

2 2
EXDB = 10 log |1 + (L) [1 - exp(-20/T)] . (2.26)

Some effects of finite amplitude attenuation on the performance of a

38,47 They

parametric receiver have been studied by Berktay and Al-Temimi.
found that for the case of the nearfield array, excess attenuation of the

pump wave can bring about saturation in the sensitivity of the parametric

receiver.

It was found by Al-—Temimi47 that finite amplitude attenuation had little
effect on the parametric receiver directivity. The combination of shadowing
and finite amplitude attenuation, both dependent on frequency, can reduce
the bandwidth of the receiver. The effect is particularly significant when
a great deal of extra attenuation occurs in the shadow region of the pump,

so that the pump wave is well attenuated before entering the interaction

volume.47

2.4.4 Sources of Noise that Affect Parametric Reception

Any noise in the acoustic enviromment at frequencies wy and wp * Wy

will be detected by the parametric receiver. The signal frequency noise g

component (at ws) will be up-converted along with the desired signal, and
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the interaction frequency noise component (at up * ws) will be detected
directly by the receiving transducer. The parametric receiver, by virtue of

its directivity at W, discriminates against the low frequency noise. Some

rejection of the interaction frequency noise is provided by the receiving

transducer directivity. An analysis of the effects of ambient noise on

37,57,58

parametric reception ma; be found in Berktay's papers. Effects of

ambient noise were an important consideration in the parametric receiver de-

59,60 who discusses in Ref. 61 an extensive ex-

sign described by Goldsberry,
perimental program which studied the performance of the parametric receiver

in a fresh water lake.

In addition to noise in the acoustic environment, electronic noise in
the pump signal source will contribute to the overall noise level of the
parametric receiver. This noise is due to the fact that the pump transducer
does not radiate at a single frequency, but over a f{requency band, and if
w g << mp, then there is very likely to be energy radiated by the pump at .
mp * wes which will be detected by the hydrophone. This radiation depends
primarily on the sideband noise produced by the pump oscillator, and must
be minimized if low-level, low frequency signals are to be detected bv the ‘
parametric receiver. A crystal oscillator developed for the purpose of
minimizing the noise of the pump source is reported to have a sideband noise
level (measured in a 1 Hz band) of -160 dB referenced to the carrier level,
measured at 100 Hz from the carrier frequency.6l’62 |

Another kind of noise may arise due to transducer vibration. If the

pump transducer and hydrophone are mounted such that they move relative to -

one another because of vibration, then the array length will be varied by

this motion. As a result the pump and interaction frequency signals will
be phase modulated. This modulation produces undesirable sidebands in the

hydrophone output which may appear as spurious low frequency signals that

are indistinguishable from acoustic signals.6l The response of a parametric




receiver to transducer vibration has been studied analytically and
63,64 49 .
experimentally by Reeves et al. and by Lamb. lLamb has demonstrated

the usefulness of the phase-locked loop receiver, discussed in Section 2.4.1,

in minimizing the noise due to transducer vibration.

2.4.5 Effect of Turbulence and Medium Inhomogeneities

Another factor which may affect receiver performance is the signal
fluctuation due to turbulence and medium inhomogeneities. Both turbulence
and inhomogeneities in the medium produce random scattering of an acoustic
signal. The various scattered components interfere at an observation point
to produce amplitude and phase fluctuations in the observed signal. For
the parametric receiver there are three signal components which undergo
fluctuations: the incoming low frequency signal, the pump signal, and the
interaction frequency signal. 1In a severely inhomogeneous or turbulent
medium, the composite effect of these fluctuations could prove prohibitive
to the detection of low-level signals. This is a problem that has received
little attention to date, and it is the principal topic with which this

thesis will be concerned.

2.5 Summary

In this chapter, the basic concepts of the parametric receiver have
been discussed and an outline of the historical highlights of its develop-
ment presented. Of necessity, topics have been treated briefly. Some
topics, such as the use of arrays of parametric receivers,42 the phase mod-
ulation model of the parametric receiver,l’1 and the effects of having the
signal source located in the nearfield of the parametric receiver,65 have
been omitted, as they do not directly bear upon the present study.

It has been shown in this chapter that the parametric array makes use
of the second-order sound field generated by nonlinear interaction of a low

frequency signal wave and a locally generated pump wave. A second-order
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wave equation [Eq. (2.6)] was presented, the solution to which is dependent
upon the geometry of the interaction region. Solutions to the wave equation
for the cases of the nearfield and farfield parametric receiver were dis-
cussed. It was seen from these solutions that the parametric receiver has
the same directivity characteristics of an end-fire array of equal length,
realized by continuous elements. Thus the advantages of directivity offered
by the end-fire array are achieved by the parametric receiver, which re-
quires only two transducers for its construction. Finally, practical con-
siderations regarding signal processing, shadowing, finite amplitude effects,
and the effects of noise were discussed briefly. It was noted that one re-
maining topic for study regarding practical application of the parametric
receiver is the effects of medium inhomogeneities; this is the topic for

this thesis.

PRy




CHAPTER 3. ACOUSTIC WAVE PROPAGATION IN AN INHOMOGENEOUS MEDIUM

3.1 1Introduction

The discussion of the parametric receiver in the previous chapter
implicitly assumed that the acoustic medium is homogeneous. This assumption
is usually unrealistic in practice. The ocean, for example, may contain one
or more of a variety of inhomogeneities: fish, bubbles, algae, thermal
microstructure, and turbuleunt eddies. These inhcmogeneities scatter the
energy of an acoustic wave and, as they move about in the medium, produce
random fluctuations in the amplitude and phase of the transmitted wave. In
many instances the effects of fish, bubbles, and algae can be ignored be-
cause these kinds of scatterers occur in small quantities. More widespread
are thermal inhomogeneities and turbulent eddies which can cause significant
fluctuations in a transmitted signal.14 Both of these inhomogeneities can
be modelled as regions or 'patches' of variable refractive index.

Thermal putches are usually the principal cause of scattering in the
ocean.14 The dimensions of these patches are generally large compared to the
acoustic wavelength, in which case, as a first approximation, they may be
tresated as spherical sound sources of radius a, where a is the mean radius

14,17 Scattered sound from the patches will prepa-

of the thermal patches.
gate in the same direction as the incident wave, and with a farfield beam
angle of 1/ka radians, where k is the acoustic wavenumber17 {seec Fig. 3.1).
The region in front of the patch out to a distance ka2 is taken to be
the 'ray region' of the scattered radiation.17 In this region the patch will
behave like a lens, focusing or defocusing the scattered rays according to
whether the sound velocity in the patch is smaller or larger than the aver-
age value, respectively.17 In 1946, a 'ray theory' was develeped by
Bergmanl5 which predicted that a wave propagating over a distance less than

ka2 would undergo amplitude fluctuations proportional to the three-halves

power of the range.

31
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The region beyond a distance ka2 from the patch is the /'wave reginn'
of the scattered radiation. At ranges greater than ka2 from a source, inter-
ference will occur between waves scattered by various patches in the medium.
For these ranges the theory of Mintzerl6 predicts mean square amplitude
fluctuations in the acoustic signal which increase linearly with range.
Mintzer's prediction of range dependence is in good agreement with the ex-
perimental data of Sheehy,66;who measured fluctuations in a 24 kHz pulsed
signal transmitted over ranges of approximately 30 to 3000 meters. Further
verification of this theoretical range dependence was given by the model
tank experiments of Stone and Mintzer.67‘ Chernov18 reproduced the Bergmann
and Mintzer results and in addition calculated the transverse and longitudi-
nal spatial correlation of the fluctuations. Chernov's analysis of fluctua-
tions and their correlation was extended to the case of spherical waves by
Karavainikov.68

All of the theoretical studies ﬁentioned above assumed that the
refractive index field in the acoustic medium could be described by an ex-
ponential or Gaussian spatial correlation function. Measurements of thermal
microstructure in the Pacific Ocean were reported by Liebermann69 i 1951,
and his results agreed reasonably well with the exponential function, e—x/a’
where a is the mean radius of the thermal patches. (Liebermann measured a
mean patch size of 0.6 meters.) When Whitmarsh et 31.14 made simultaneous
measurements of acoustic fluctuations and thermal microstructure in 1957,
however, they found that the Kolmogorov theory of turbulence provided a
more accurate description of the thermal structure of the sea than did the
exponential or Gaussian functions. Whitmarsh et al. suggest that the agree-
ment of the Kolmogorov theory with their experimental results was a conse-

quence of the 'freezing' of the thermal patches after their turbulent motion

has been damped out. They reason as follows:
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Since the static heat conductivity is almost 1000 times
smaller than the turbulent conductivity, the patches continue
to exist, even after the turbulent motion has disappeared.
This stability seems to lead to excellent statistical condi-
tions and to a temperature distribution that agrees with the
experimental results....

19 and :

This 'Kolmogorov' model of the medium has been used by Tatarski
Medwin70 to predict sound phase and amplitude fluctuations in a turbulent
medium. The Kolmogorov model will be used in the present study, so a brief
description of turbulence theory, and some of the results of Tatarski and
Medwin, will be presented later in this chapter.

The research cited above all deals with situations in which the total
fluctuations imposed on the propagating wave are sufficiently small that
only single scattering is involved. By the end of the 1960s, work had be-
gun on the more difficult problem of multiple scattering, where fluctuations
in the wave parameters can become large. Multiple scattering is discussed

73

at some length in the books of Tatarski,7l Uscinski,72 and Ishimaru. In

this thesis we will be concerned only with single scattering. More detailed ‘ :

surveys of theoretical work for both single and multiple scattering, in-

cluding extensive bibliographies, may be found in Ishimaru74 and Barabanenkev

75

et al.

3.2 Methods of Describing the Inhomogeneous Medium

A theoretical analysis of the propagation of linear acoustic waves in
an inhomogeneous medium requires statistical methods for describing the
medium. The medium may be modelled as a randomly varying field of refrac-

tive index, or equivalently, of sound speed. The sound speed is then given .

by

¢ = c(x,y,2z,t) ’

and the refractive index is




c
0 . ,
n(x,y,Z,t) = E—(m'_tj‘ =1+ p(x,y,z,t:) ’ (3-1) K |
] ? ’ |
where {f
; e, = <¢> is the mean sound speed, L

< > denotes ensemble averaging, and
u{x,v,z,t) is the deviation from unity in the refractive index.

Variations in the'refractive index are usually very small; for example, Urick

6 -
and Searfoss7 measured a value of <u2> =8 x 10 10 at a depth of about 6

meters in a mixed layer off Key West, Florida. Liebermann69 observed mean

square refractive index variations of <u2> =5 x 10_9 at a depth of 50 meters

off the coast of California. Because the quantities ¢ and n are random

variables, a description of their spatial dependence requires statistical
parameters such as the coirelation function and its Fourier transform, the
spatial wavenumber spectrum. Both tﬂe correlaticn function and the wave-

number spectrum are used frequently in what follows, so we will define each

e

of these parameters.

If u(x,y,z,t) may be assumed to be an ergodic process, then the

fluctuations may be characterized by the correlation function77

le = u(xl’ yll Zl, t) u(xz, yZ! 229 t) b (3'2)

where the overbar denotes time averaging. Because of the ergodic hypothesis,
ensemble averaging and time averaging are equivalent. If it is further re-
quired that the process be spatially homogeneous, then the correlation func-
tion depends only upon the separations Ax, Ay, and Az, where Ax = Xy = Xp»
Ay = ¥y ~ yl’ and Az = zy, = 23- When points (xl, Yy Zl) and (xz, Yg» 22)
3 are the same, so that Ax = Ay = Az = 0, then the correlation function has a

| P

f maximum value of u2. As the separation between the two points is increased,
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P A
the correlation function decreases in value until, at infinite separation,

N becomes zero.
12
If the variations in refractive index are isotropic as well as

homogeneous, then the correlation function will depend only upon the mag-

nitude of the separation between points. This condition may be written as

Nyp = Npp(ed s

where

p = /{Ax)z + (Ay)2 + (AZ)2

It is useful to normalize the correlation function by dividing le by pz.

This results in the correlation coefficient R, given by
2
R = lelu .

Two correlation coefficients frequently used to describe the refractive

index variations in the ocean are the exponential function, 3

R(p) = exp(-p/a) s (3.3)
and the Gaussian function,
2
R(p) = exp(-p°/a®) (3.4)

where a is a constant corresponding to the mean patch radius. It should
77

be noted that the derivative of the exponential function, which may be

found from Eq. (3.3) to be

dR _ 1
- " a exp(-p/a)

it b garne S eug gy e
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has a nonzero value at p = 0. This implies a discontinuity in the

correlation function at p = 0, which is possible only if the variation in
refractive index, u(p), is discontinuous, a condition which is unrealistic
in the ocean.17 The Gaussian function, Eq. (3.4), does not exhibit this
discontinuity, and in this respect is a more realistic representation of the
refractive index fluctuations than is the exponential function.

An alternate way to describe spatial variations in refractive index is
to use a spatial wavenumber spectrum. Physically, this spectrum character-
izes the distribution of patch sizes that are present in an inhomogeneous
medium. As mentioned in Section 3.1, the distribution of thermal patches

in the ocean is a result of turbulent mixing. Similarly, the thermal micro-

structure in a model tank such as used in the present study is generated by i
turbulent mixing. Before returning to our discussion of acoustic wave
propagation in an inhomogeneous medium, we will consider some basic concepts i

of turbulence theory.

3.3 Turbulence

19,71,78,79 is used, in general, to describe

The theory of turbulence

viscous fluid flow for large Reynolds numbers. The Reynolds number, Re, is

defined as

where
L is the characteristic scale of flow,
v is the characteristic flow velocity, and
v is the kinematic viscosity of the fluid.
For small values of Re, the fluid flow is orderly or laminar. When the

Reynolds number exceeds a critical value, Recr’ the flow becomes unstable

and breaks up into turbulent eddies. Each eddy of size % will have
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associated with it a local Reynolds number, Rei. If Re2 also exceeds Recr’
the eddy will further break down into smaller eddies, This process will
continue until the eddies are small enough that viscous dissipation balances
out the energy being supplied to the eddies from the external source. When

this occurs, the turbulence reaches steady state, and a range of eddy sizes

exists such that

where

Lo is the outer scale of turbulence, and

lo is the inner scale of turbulence.
The outer scale, LO, is determined by the boundary conditions of the fluid
flow. 1In an acoustics application, Lo may generally be taken to be the
dimension from the acoustic source or receiver to the nearest boundary of

the medium. The inner scale, 10, is shown by Tatarskiso to be

4
1 = /e , (3.5)

where

€ is the energy dissipated as heat per unit mass per unit time.
This qualitative description may be summarized in terms cf energy as follows:
an external energy source supplies energy to eddies of size L0 which trans-
fer this energy down a chain of successively smaller eddies, the energy
finally being dissipated as heat due to the viscous losses associated with
the smallest eddies.

In describing turbulence it is often convenient to deal with the

wavenumber, k, associated with an eddy rather than use its characteristic

dimension, £. The wavenumber is inversely proportional to the eddy size
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and may be written asSl

K = ——— . (3.6)

It can be seen that large wavenumbers correspond to small eddy sizes, and
vice versa. Because the kinetic encrgy of the flow is distributed through-
out a spectrum of eddy sizes, it is possible to define a power spectral
density for the flow. The average kinetic energy of the flow is then the

sum of the energy associated with all the eddies; i.e.,82

o]

T =/'~I>V(K)rh< ,

(o]
where

T is the average kinetic energy per unit mass per unit time,
¢V(K) is the one dimensional power spectral density, and

the flow is assumed to be homogeneous and isctropic.

The quantity ¢V(K) is related to the velocity fluctuations in the flow,
but because temperature may usually be treated as a passive additive to the
turbulence, the spectra of the temperature and refractive index variations
are usually assumed to have the same shape as @v(z).70

A spectrum proposed by Medwin70 for describing refractive index

variations is shown in Fig, 3.2, 1In the figure, the range of wavenumbers

corresponding to large, anisotropic eddies is labelled the 'source' sub-

T T AT " e

range, as these eddies supply energy to the entire spectrum. The energy of :
the source eddies gradually becomes less anistropic (directional) in the

transition subrange, until, in the inertial subrange, the energy is
isotropic and homogeneous. 1In the inertial subrange, the spectral density

is given by the simple relation:70

o, (k) = b 73 , (3.7)
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where

b is a function of the viscosity, v, and the energy dissipation rate,

€.

The -5/3 power law expressed by Eq. (3.7) was originally proposed by
Kolmogorov,83 and has been experimentally verified in a number of
studies.70’71’78 The turbulent energy of the {low is finally lost to heat
in the 'dissipation' subrange, where viscous forces become dominant.

The various subranges of the spectrum in Fig. 3.2 are bounded by the

wavenumbers K Ko and Ko. Medwin defines these boundary wavenumbers as

t
7
follows:
_ T _
T where D = depth, (3.8)

;‘ Kg = (E/v3)1/4 , and (3.9)

X
- _ 1/2

o Ke = O.S(KoKm) . (3.10)

The wavenumber Ko defined by Eq. (3.8), depends only upoun the depth
of the acoustic experiment. In the upper ocean, the sea surface will be
the nearest physical boundary to the acoustic experiment, so it seems rea-
sonable that this boundary will determine the maximum significant eddy size.
The effect on the acoustic experiment of eddy sizes corresponding to wave-
numbers less than Ky may be assumed to be negligible.70

The lower limit of the inertial subrange, Ko is an empirical value
that is shown by Medwin to obey the relation expressed in Eq. (3.10). The
upper limit of the inertial subrange is the Kolmogorov wavenumber, Ko given
by Eq. (3.9). Medwin assumes that the spectrum can be truncated at Ko and
that the effects of the dissipation subrange upon an ccoustic experiment

84
can be ignored.70 However, the results of Chotiros and Smith ~ suggest that




for the model tank used in the present investigation it is more reasonable

to assume that the truncation wavenumber of Pao85 is valid. Pao's theory
assumes that the spectrum of the thermal microstructure in the dissipation
subrange departs from that of turbulence and is controlled by the diffusiv-
ity. Pao suggests that the -5/3 power law continues to be valid in the
dissipation subrange, with a truncation wavenumber given by
1/4

Kp = (e/D3) / (3.11)

where
D is the diffusivity.

When Kp is used to truncate the spectrum rather than Ko» the wavenumber Ke

will become:84
_ - 1/2
Ke = O'S(Kme) . (3.12)

In this section and the previous section, two alternative methods of
describing an inhomogeneous medium have been presented: the method of the
correlation function and that of the spectral density function. The two
methods are not independent, however; they are related bv the Fourier
transform theorem. In three dimensions, for a homogeneous medium this re-

lation may be written as:

le(Ax, Ay, Az) =fff Su (Kl, Ky o<3)

x exp[j(Kle + Ksz + K3AZ)]dK1dK2dK3 .

(3.13)

where

Su(Kl, Kys K3) is the three dimensional spectrum of the refractive

index variations, and
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, and k, are wavenumbers in the x, y, and z dimensions,

1* 2 3
respectively.

For an isotropic medium Eq. (3.13) becomes70

@x

Ny, (0 =/§%ﬁ o ()dk (3.14)

(o]

where the one-dimensional spectral density is related to the isotropic three-

dimensional spectral density by
o (k) = 4me’s. (k)
H n

3.4 The Wave Equation for an Inhomogeneous Medium

In the preceding sections we have discussed some of the causes of
acoustic signal fluctuations and have presented two methods that are useful
in describing the inhomogeneous mediﬁm in which these fluctuations occur.
Now we will consider in more detail the way in which medium inhomogeneities
produce variations in the amplitude and phase of a propagaring wave. -The
acoustic wave equation for an inhomogeneous medium has been derived by a
number of people, including Rayleigh.86 The discussion in this section will
be based on Chernov'ss7 development.

It is assumed that the medium is lossless and is in a state of
equilibrium so that, ignoring the force of gravity, the ambient pressure P,
is constant throughout the medium. The only inhomogeneities present in the
medium are those in temperature and density; the effects of bubbles, bio-
logical matter, etc., are neglected. Temperature and density variations
are not independent quantities. In order for the pressure to remain con-
stant, the changes in temperature at any point in the medium will be accom-

panied by a related change in density. In the ocean, it would be expected ;

that the temperature inhomogeneities would be moved about in the medium by
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current flow and convective motion. It . assumed that these types of
motion are slow compared to the velocity of sound so that the inhomoge-
neities can be regarded as fixed during the time required for an acoustic
wavefront to propagate through a patch of diameter 2a. This condition

is what Chernov calls the 'quasi-static' condition.

The wave equation for the situation described above is

2
]
22 9%, 4 Vlog op TP =0, (3.15)

1
c2 acz
{ where

c = c(x,y,2) = ¢, + Ac is the sound speed,

¢ = <¢> is the mean sound speed,

Ac = Ac(x,Y,2z) is the random variation in sound spced,

/, p is the acoustic pressure,
i p. = pT(x,y,z) =0, + Ap is the total density,
p = <pT> is the mean density, and

Ap = Ap(x,¥,2) is the random variation in density.

This equation differs from the homogeneous wave equation in two
respects: (1) the sound velocity is not constant, but varies spatially in
a random manner; and (2) there is an additional term, Vlog pT. Vp, which
arises as a result of the random variations in density. It is assumed that
the variations in sound speed and density are small; i.e., Ac<<co and Ap<<po.

When some 'primary' acoustic wave is transmitted through the inhomo-
geneous medium described above, each element of the medium becomes a source -
of 'secondary' scattered waves. For example, suppose a harmonic plane wave |

propagates in the x direction. This primary or incident wave can be de-

scribed by

Py = By exp[j(wt - kx)] , (3.16)




where
w is the angular frequency, and

k = fL is the wave number.
o

If the scattering elements are associated with the coordinates (£,n,Z) and
the observation point is designated by (x,y,z), then the distance from a

scattering element to the observation point will be

r = »/(x - 6)2 + (y - n)2 + (z - c)2 . (3.17)

The total scattered pressure at the observation point will be given by the

solution to Eq. (3.15), which Chernov expresses as:

.

sc 4m c o g

p . 3 (bp.,)
p. =- -+ {21(2 Ae _ Jk ——i-} %—exp[-jk(r +£)] av (3.18)
[o] (o]

where

J{Lenotes integration over the volume of scatterers.
v

[In Eq. (3.18) and hereafter the factor ejwt is dropped.] The first term in
curly brackets [Eq. (3.18)] is associated with scattering of sound by spatial

variations in the sound velocity, while variations in the density give rise to
the second term. In the ocean, the density fluctuations may be assumed to be

negligible in comparison to the sound speed fluctuations, so the second term
in curly brackets [Eq. (3.18)] can be omitted in approximating the scattered
pressure,

One further modification of Eq. (3.18) can be made as follows. From

Eq. (3.1) we can write the refractive index variations as

1 ’ (3.19)




where ¢ = <, + Ac. Some algebraic manipulation of Eq. (3.19) gives
-— (3.20)

where, as mentioned above, Ac << 5 Substitution of this result for %E in i
o
Eq. (3.18) leads to the following expression for the scattered pressure:

K2p
= 1.[ XLz O] (g, n, ) av . (3.21)

Pse 2n T

The physical significance of this result can be summarized as follows: A
scattering element with volume dv and refractive index variation p is lo-
cated at point (£, n, ). Due to the influence of an incident wave P;» the
scattering element acts as a secondary sound source which radiates a pres-
sure wave dpsc' The total scattered pressure, Poos received at the obser-
vation point (%x,y,z) is the sum of tﬁe contributions from all scattering

elements in the volume V. The result expressed by Eq. (3.21) can be used

to calculate the amplitude and phase fluctuations of the pressure wave at

the observer, as will now be discussed.

3.5 Fluctuations in the Amplitude and Phase of the Observed Pressure

The total pressure at the observation point will be the sum of the
primary pressure and the scattered pressure,
3¢

p=Pe =p +p_ .

where

P and ¢ are the amplitude and phase of the total pressure, p.
As the inhomogeneities move about in the medium, the amplitude and phase of

the observed pressure will vary randomly about their mean values. It is

NI KR U W L. 3 Uy W ..1..4.“—'4__‘ KT
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convenient to define the fluctuation in observed pressure amplitude and

phase about their mean values as

P
B m Zn(—:P—>—) , and (3.22)
Sam ¢ - <¢> , (3.23)

where
B is the logarithmic fractional variation of the instantaneous pressure
amplitude, P, from its mean value, <P>, and
S is the variation of the instantaneous phase, ¢, from its mean value,
<¢>.
The &n operator in Eq. (3.22) is a comnsequence of using Rytov's method, also
known as the method of smooth perturbations, in calculating the fluctua-
tions.88 In this thesis we will be concerned with amplitude fluctuations

sufficiently small to make the approximation

P . P - <p>
B—Qn(————)——TP;—,B<<1 .

The average values of B and S are zero, so it is necessary to use the mean
square fluctuations, <Bz> and <Sz>, to characterize the level of fluctua-
tions caused by the inhomogeneities. There are a variety of analytical ex-

pressions in the literature that relate the mean square fluctuations to the

statistical parameters used to describe the inhomogeneous medium. In the
f next two sections we consider expressions for <B2> and <52> when the medium

& is described by a Gaussian correlation function, and when the medium is de-

scribed by a spectral density function.
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3.5.1 Fluctuations in a Medium Described by a Correlation Function

In the case of plane waves propagating through a statistically isotropic
inhomogeneous medium, Chernov89 obtained solutions for <B2> and <Sz> in

terms of a wave parameter, D, given by

4L
D=—

ka
where
L is the propagation distance of the acoustic wave through the medium.
Chernov's analysis assumes that the inhomogeneities are large compared to
an acoustic wavelength (ka >> 1), and that the propagation distance is large
compared to the scale of the inhomogeneities (L >> a).
For large values of the wave parameter, which corresponds to the

wave region of the patches, Chernov obtains:

@

<B2> = <Sz> = <u2> kZLJ/pR(p) dp s D>>1 . (3.24)

o
If the correlation coefficient is Gaussian, given by Eq. (3.4), then Eq.

(3.24) becomes

<u2> k“alL . D>>1 . (3.25)

16,67

Mintzer has shown that these same results, Egqs. (3.24) and (3.25), are

valid for a spherical wave in the wave region when

2

k2<p >al << 1 .

For small values of the wave parameter, corresponding to the

ray region of the patches, Chernov shows the mean square amplitude
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fluctuations for a plane wave to be

©

2 1 2 3 2_2
B> = £ > L f VU R(p)dp . D<<] R (3.26)
o

which, for a Gaussian correlation coefficient, becomes 1

<B > = >

3 2 _8/m _2
-3 < s D<<1 . (3.27)

’r‘
W w

]

The phase fluctuations for D<<l have been shown89 to be twice their

values when D>>1 (i.e., double the results in Eqs. (3.24) and (3.25)).

Finally, when the wave parameter is of the order of unity, Chernov obtains

’ 2 _ /v 2 2
<B>‘—2‘<u>kaL(l—%arctanD) s (3.28)

2, _V/mo_2 2
<§™> = 3 w>ka L(l + %-arctan ?) s (3.29)

where a Gaussian correlation coefficient has been assumed. For small and
large values of D, these last two results become equivalent to the ray and
wave region solutions, respectively.

Using the same conditions and assumptions as Chernov, Karavainikov90

obtained a similar set of results for the amplitude and phase fluctuations
in a propagating spherical wave. For the wave region of the inhomogeneities,

D >> 1, Karavainikov's result is identical to Eq. (3.25).

3.5.2 Fluctuations in a Turbulent Medium

In the case of a medium whose random refractive index field is

19,71

determined by turbulence, Tatarski has found expressions for amplitude

fluctuations in terms of a turbulence parameter, Cn' For propagation dis-
tances L such that Lo >> AL >> 10, where 1o and L° are the inner and outer

scales of turbulence, respectively, and A is the acoustic wavelength, _
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Tatarski shows

<% = 0.13 cn2 k7/6 L11/6 (3.30)
for spherical waves, and
<Bz> = 0.31 an k7/6 Lll/6 (3.31)

for plane waves. The quantity Cn is related to the spectral function Su(K)

by91

= .2 -11/3
Su(K) = 0.033 ¢ yoKp SR <K

An assumption made in deriving Eqs. (3.30) and (3.31) is that only the
inertial range of the spectrum contributes to the acoustic fluctuations.
If the spectrum is of the form shown in Fig. 3.2, so that there is an ap-
proximately flat transition region, then there is an additional contribu-
tion from the transition region to the amplitude fluctuations of an

amountsz'

2 . W 3, 4 4
<B."> = 780 ¢ L (Kt -k ) (3.32)

for spherical waves, and

2, . T
“Be > % %8

4

n) (3.33)

3, 4
¢m L (|<t - K

for plane waves. As shown in Fig. 3.2, ¢, 1s the maximum value of the

spectral density function ¢u. The total mean square amplitude fluctuations,
2
>,

when there 1is a contribution due to the transition region, is <BZ> + <Bt

L

S e e
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Often the amplitude fluctuations are expressed in terms of the

coefficient of amplitude variation, CAV, because this parameter is easy to
calculate from a record of pulsed data. The coefficient of amplitude varia-
tion, which is essentially the standard deviation of the pressure amplitude,

is defined as67

2 2
CAV = ————— s (3.34)

where P is the amplitude of the observed pressure. For small amplitude

fluctuations, <B2> and CAV2 are approximately equal.

3.6 Correlation of Fluctuatiouns

In addition to the mean-square fluctuations, it is useful to know the
spatial correlation of the fluctuations, As will be seen in Chapter 4,
these correlations are important quantities in developing a theory of para-
metric reception in a random medium. In this section, we present some of
the correlation functions that will be useful in this study. There are two
types of spatial correlations that are of interest: longitudinal correla-
tion, which is the correlation of fluctuations between two point receivers,
separated a distance AL, and both located on the axis of the propagating
wave; and transverse correlation, which is the correlation of fluctuations
between two point receivers separated a distance Ap in a direction trans-
verse to the acoustic axis.

For a plane wave in a Gausslan medium, the longitudinal correlation

coefficients for the amplitude and phase fluctuations are given by92

2

2~-1
RE = g o [} 4 20 D o>> 1 (3.34)
ka

93

for the wave region of the inhomogeneities, and by

D

et s v
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R, = (l + %3— 1+ ?! , bl (3,45,
B 'l ‘l
L IAI 2q-1 -1/2

R = |1+ [—= 1 + AL , ho<< 1 (3.36)

in the ray region. 1In these expressions L1 refers to the propagation dis-

tance to t.e receilver nearest the signal source. Similar expressions for

the transverse correlation coefficients for a plane wave in a Gaussian

med ium are:92

RI=R

b= Rg - expl-(3p)2/a%] , b o> 1 : (3.37)

It

(= expl-(80)%/a%] - {1 - 20 /a7 §[<aﬁ>2/a212(, D << 1
‘ (3.38)

exp[-(Ao)Z/aZ], D<< 1 . (3.39)

w -~
]

There are also published results describing the correlation of

19,94 These re-

fluctuations for spherical waves90 and for turbulent media.
sults in general involve complicated expressions from which it is difficult

to gain a physical understanding, and we will not reproduce them here.

3.7 Summary

In this chapter, a review of the basic theory of acoustic wave
propagation in an inhomogeneous medium has been presented. The material
has been selected on the basis of its relevance to the theoretical analysis
of parametrically received signal fluctuations to be discussed in the fol-
lowing chapter.

It was seen in Section 3.1 that the principal cause of scattering in

the ocean is the thermal nicrostructure. Thermal patches can be treated as

sound sources of radius a. The scattered radiation from these patches has
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a nearfield extending to a distance kaz; from that distance onward the
radiation is spherically spreading with a beamwidth of 1/ka radians. At
any point in the medium the observed pressure is the sum of the unscattered
pressure Py and the scattered pressure Poee Due to random changes in the
characteristics of the scattered pressure field, the observed pressure is a
randomly fluctuating quantity.

In Section 3.2 two methods were discussed that can be used to describe
an inhomogeneous medium. One method uses a correlation function for the D
variations of refractive index, and the other method uses a spatial wave-
number spectrum. Because the spectral composition of the inhomogeneities
is determined by turbulence, Section 3.3 gave a brief summary of some con-
cepts from the theory of turbulence.

The wave equation for an inhomogeneous medium and its integral solution
were discussed in Section 3.4. A summary of expressions for the amplitude
and phase fluctuations of the observed pressure, as well as for the corre-
lation of these fluctuations, was presented in the remainder of the chapter.

The background material discussed in Chapters 2 and 3 will now be. used

to develop a theory of parametric reception in an inhomogeneous medium.
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CHAPTER 4. THEORETTCAL ANALYSITS

4.1 Introduction

In Chapter 2, expressions were given for the second-order pressure
associated with both nearfield and farfield parametric receivers. The
results assumed the parametric receiver to be operating in a medium
containing no inhomogeneities. Tn this chapter, some effects of medium
inhomogeneities will be taken into account, and an expression will be
derived that describes amplitude fluctuations in the second-order
pressure wave of a parametric receiver.

Before beginning a formal analysis, it may be helpful to consider
sonie general aspects of the problem. There are three separate signals
which will be affected by the inhomogeneities. One is the low-frequency
signal that is to be detccted by the receiver. 1In practice this signal
may be expected to propagate a significant distance through the ocean,
and as a result of scattering, it will arrive at the receiver as a
randomly varying signal. The pump wave will also be scattered as it
travels through the interaction region, so nonlinear interaction will '
be occurring between two fluctuating first-order signals. The resulting
second-order signal can be expected to vary in a manner that is related
to the first-order fluctuations. Also, the second-order signal will
be scattered as it propagates from each source point to the observer,
and further fluctuations will result.

Analyses have been reported by Smithgs’96

84’gﬂ‘describing the performance of a parametric transmitting array

and by Chotiros and
Smith
in a random medium but, to date, there is no similar study for receiving
arrays. 1In this chapter, the methods developed by Smith and Chotiros
are used to study the effects of medium inhomogeneities on parametric
reception. 1Tt will be assumed in this analysis that the signal source

is located in the main beam of the parametric receiver. Expressions
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predicting the amplitude fluctuations for the second-order pressure will

be developed for both collimated and spherically spreading pump waves.

4.2 Amplitude Fluctuations for a Nearfield Receiving Array

We will begin our analysis with the simple case of the nearfield
parametric receiver shown in Fig. 4.1. A signal wave originates at
a source located on the acoustic axis of the parametric receiver at
z = —ZS; the source is sufficiently far removed from the pump transducer
that its radiation may be treated as being planar in the vicinity of the
parametric receiver. 1In rectangular coordinates, the signal wave may

be represented by

_ -Qgz
P (z,t) = PS[1 + Bs(x,.v,z,t)]e

X exp{j[wst - ksz —¢O - Ss(x,y,z,t)]}, (4.1)

ja-}
]

Ps(t) is the mean pressure amplitude at the pump transducer,

P (t) -P
s = S( ) s is the amplitude fluctuation,
P

S

wn
1]

o(t) - ksz 1s the phase fluctuation,

o is the attenuation coefficient at the signal frequency,
is the phase of the wave at z = 0, which may be
set to zero, and
rhe overbar indicates time averaging.

Now assume that the hydrophone is situated in the nearfield of

the pump transducer; i.e., that
2
< 4b°/A
L < p

where

z = L is the location of the hydrophone,
2b x 2b are the dimensions of the pump transducer, and
Xp is the wavelength of the pump wave.
For this case the pump radiation in the interaction volume of the

parametric receiver may be assumed to be approximatcly planar and may

be written as
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pp(z,t) = Pp[l + Bp(x,y,z,t)]e-qpZ
X exp{j[mpt - kpz - Sp(x,y,z,t)]}, (4.2)
where

Pp is the mean pressure amplitude,

Bp represents the amplitude fluctuations,

ap is the attenuation coefficient at the pump frequency, and

Sp represents the phase fluctuations.

The source density for the second-order radiation can be found by
substituting the total first-order pressure field, Py = ps + pp, into
the equation,

B3

>
q(ro’t) T2 4,

D¢ dt
o o

[py (7, 0)%1,

where
-> 3 . . : -
r, glves the location of a source point, as shown in Fig. 4.1,
and the remaining terms are defined in Section 2.2.

The result, using Egqs. (4.1) and (4.2) for P and pp, is

> . igP_P w -(ag + ap)z
q(ro,t) s 941 a1+ BS)(l + Bp)e
SN
o] o
x exp{jlu,t - k,z - (5 ¢ sp)]}, (4.3)
where
; w, =W W, and
; = p s
' k, = kp t k.

Inclusion of the attenuation coefficients as constant terms as in
Eq. (4.3) requires that the time fluctuations in amplitude and phase are
slowly varying when compared to the signal frequencies. This require-

ment ensures that frequency broadening of the signals due to the

fluctuations is negligible, so that the approximation of the attenuation
coefficients as constants is valid.

t The stipulation that B and S be slowly varying also permits their
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time derivatives to be neglected when calculating the source density.
Such an approximation is reasonable in situations where the signal
frequencies involved are much higher than any frequency component
in the fluctuation spectra.

The interaction frequency pressure produced at the observation

point, ;; due to radiation of the virtual source, qdv, will be given by

)e—jSt e—atr'
4mr’ *

dp,(r,t) = - Po (1 + B

3 > .
57 a(r,,1)] dv, (4.4)

B, and S, are the amplitude and phase fluctuations produced in
the interaction frequency wave as it propagates from

source point to observation point, and

r' L
T=¢t - = is the retarded time.
o

- '
An attenuation term, e O+T , has been included ad hoc in Eq. (4.4)

to account for attenuation of the interaction frequency wave. Substi-
tution of Eq. (4.3) for the source density in Eq. (4.4), and integration

over the interaction volume, V, gives the following expression for the

second-order pressure at the observer:

2
BP_P_k (e tadz _ o
p+(¥,t)=_i_P_2_’—l/e s P ot
oo v

x (1 + Bs) 1+ Bp)(l + Bi) e—j(ss * Sp + sz)

"jktz -jki.r' 1
X @ e L dv. (4.5)
This expression for p, can be simplified in the following way.

First, assume that the amplitude and phase fluctuations are small

compared to unity; i.e.,

B_<<1, S_<<1,
) S

L NP TP LN I U SRR ST
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B << 1, S <<1,
p

P
B, <<'1, 5, << L

Then the amplitude fluctuation terms can be expanded and, retaining
(4.6)

only terms of first order in fluctuations,
(1+B)(A+B)A+B) =148,

where
B=ZB +B + B, .
s P *
Similarly, the phase fluctuation term can be approximated as
- + Y
ISy £ Sp 8 2y g (4.7)

Sp + Si'

where
S S =
s
Next, assume that the signal frequency is much lower than the pump

frequency, and that the pump and interaction frequencies are approximately

equal;
wg << wp’ and
wp = w, -
It may then be expected that the absorption coefficients corresponding’
to these frequencies will obey the relations
<< a_, and (4.8)
(4.9)

ol
S

P
ap a, .
Furthermore, if the transverse dimensions of the interactlon region

(L = Z),

' =

remain small compared to the longitudinal dimension, then
r

(4.10)

e-ai(L - z)‘

so that
e-afr !

Using these approximations [Eqs. (4.8) - (4.10)], the attenuation

(4.5) can be written as

terms in Eq.




s toaadaid

—(i_qL

- - 1 - - — o
e (g + ap)z o T Oz (ap a+)z e

= e

2 o %l (4.11)

Now Eqs. (4.6), (4.7), and (4.11) can be used to rewrite the

expression for the second-order pressure [Eq. (4.5)] as
> -1 '
p,(¥,t) = A/(l +B)(1 - js) e dkez T ) rl—, dv, (4.12)
v

where, for convenience,
2
A - Bpsppkt e_atL .

4my jcq

In addition to Eq. (4.12), we can also write p, explicitly in terms
of the fluctuations of the second-order pressure. Thus, if BPR and
SPR are the amplitude and phase fluctuations of the interaction frequency

pressure at the observation point, then p, can be written as

2y = ~JSpRr
p,(r,t) = p (1 + By) e , (4.13)

—jke(z + ") 1
pH = A;/; - Py dv

\
is the second-order pressure that would be produced at the observation

where

point if the medium were homogeneous. For phase fluctuations small
compared to unity, the exponential term in Eq. (4.13) can be approxi-
mated by

-4S.-

e JPPR 21 ISpge
so that the interaction frequency pressure becomes

p,(F,t) # py (1 + By = 3Spp), (4.14)

where only terms to first-order in fluctuations are retained.

It is now possible to solve for the amplitude and phase fluctuations,

BPR and SPR’ as follows. First we equate Egqs. (4.12) and (4.14)

Pyl + Byp = 3Spp) = Aﬁ1+ B - jS) e
v

- ' 1
Pal ) La ) 4.15)
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where only terms to first order in fluctuations have been retained from
Eq. (4.12). Next the homogeneous component of the pressure, Py is

subtracted from both sides of Eq. (4.15), leaving

o _1 s -jk+(z + ') 1
BPR JSPR =4 V(B is) e o dv, (4.16)
-~ ' 1
where 0= o jkr(z + r )4;7 dv.
\'

The amplitude and phase fluctuations of the interaction frequency
wave at the hydrophone may now be found by equating the real and imaginary

parts of Eq. (4.16); i.e.,

P 1]
B = Re{lf(s - 4s) e dkez ¥ L gy (4.17)
PR H v r
- _ 1 s -jks(z + ') 1
and SPR = -Im{ H'/’;B is) e r.dv} .
V

In this analysis we will be concerned only with the amplitude

fluctuations, given by Eq. (4.17). Since BPR is a random variable, it will

be useful to find its mean-square value, <B 2>. By assuming that B

PR PR

is ergodic, it will be possible to take the (spatial) ensemble average

rather than a time average. Thus, we form the average of the product,

BPRIBPRZ, where
~ik, (z, + r!
_ 1 - ez )
Bor1 = Re{ﬁﬁBl - 38p e r) dvy ¥,
Vv
=ik _(z, + r!)
_ 1 . +2%9 2/ 1
BPRZ = Re{HA(‘(B2 352) e ré dv2 } ,

and the geometry of Fig. 4.2 applies. The mean-square amplitude

fluctuation, <BPR2>, is given by*

* .
In forming the product BPRlBPRZ the following relation
between complex numbers a and b is used:
1
Re{al}l*Re{b} =§Re{a(b+b*)},

where the asterisk denotes the complex conjugate.
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= < B >
“Bpr 7 T “Bpri°pr2

Re{_—;/Z/ﬂ(B - 18 Y(B, - iS,)

. ' '
—-V]l\'»(zl + z, + r) + r2)

1
ol

dv dv - (4.18)

This result is not easy to use as it will require numerical integra-
tion for its evaluation. However, Eq. (4.18) can be simplified considerably

if it is assumed that the amplitude and phase fluctuations have complete

transverse correlation in the interaction volume. With this assumption,

Bl’ BZ’ Sl’ and 82 become independent of the variables x and y, and
the expressions for <BPR2> become
-ik (z, + z,)
2 1 1 . . +71 2
= =Re{—= - - - I,1 d
<Bop > 2Re{H2d/l’:(BlB2 iB,S, Jstl SlSZ)> e . 1 2dz1 z,
ik, (z) - 29)p o7 ,dz dz,)
fof«ss + jBiS, - jB,S; + 5;S))> e 1 12
(4.19)
2 2 2.4 2 2 2.4
where I = exp{—jk+[(L - zZ) T+ xT+ Yy - 2)T x4y dxdy .
-b -b

An approximate expression for I, valid in the nearfield of the pump

transducer, is shown in Appendix 1 to be

in -ik, (L - 2)
L2-g—e 7 (4.20)

(£

A similar result is obtained in Appendix 1 for H; namely,

- -jk L
TR L (4.21)




s Dl g e

y—

4

z? f\/
Fi
b
P
; Substitution of Fgs. (4.20) .and (4.20) into b (5.19) Teads to the result
' L
: <B 2> = l’Re{4L /:(B B, - jB,S, - jB,S. - $.S.)> dz.dz
PR 272 ST T IR T IBRy T 55,0 dzydzy
0 0
1
+ = < iB.S. - iB.S, + S >
L2 (B 5 + JBIs 13291 1S2) dzldzz]
= l —7 {2 < BB, > =32 < B,S. >) dz dz }.
2 271 2
Because <BlB7> and <B o > are real numbers, this expression reduces to
<Bpg > = ~//Bn>dz dz, (4.22)
This result for the mean-square amplitude fluctuations of the
' second-order pressure wave can he evaluated by developing an expression

for the correlation term, <B182\, as a function of 21 and 22, and
performing the integration. We will return to the matter of evaluating
and interpreting Eq. (4.22) below, but first a similar expression for

<BPR2> will be developed assuming that the pump wave is spherically

spreading rather than collimated and planar.

4.3 Amplitude Fluctuations for a Farfield Receiving Arrav H

An analysis similar to that in the previous section can be i

developed for a parametric receiver with spherically spreading pump
waves. The geometry used is shown in Fig. 4.3. As for the nearfield
analysis, the signal source is located on the axis of the parametric
receiver and is sufficiently far from the pump that its radiation may
be assumed to be planar in the vicinity of the parametric receiver.

The signal wave may be represented as

= -0gz S T - -
Pq Ps[l + Bs(z + Zs)] e exp { 3[wst ksz Ss(z + ZS)]} ,

| and the pump wave is

P, = J(PL/T)D(YV) (1 + B (r)] e PT exp j[wpt -kt - Sp(r)]

r e e g
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i
where
P; is the mean pump wave pressure amplitude at y = 0, r = 1 m, and ;
# D(y¥) is the directivity function for the pump transducer.

In writing the signal wave fluctuation terms, B and SS, as ‘ndependent

of y, complete transverse correlation of BS and SS in the interaction 1
volume has been assumed. Similarly, it is assumed that the pump wave

fluctuation terms, Bp and Sp’ are completely correlated along the

spherical wavefronts within the pump beam so that Bp and Sp are

independent of Y. These assumptions are discussed in more detail in

f Appendix 2.

The source density function at point (r,y) can be found in the same

way as in the nearfield case [Eq. (4.3)]; the result is

_BPSP;) W, Tz ax
i q=——"% 4 ¢ e ' oo
o] [od r
i o] (o]
! -j(s_t Ss) -j(k r £ ksz) jw, t
! “@+B)A+Be T e P e T .(4.23)

This expression can be used to find the second-order pressure at the

observer in the same way as in the previous section. In the case of

i spherically spreading pump waves, however, a solution can be obtained

more simply by adopting a procedure developed by Berktay and Shooter.4

Tt e 3 i

They assume that the sphericity of the pump wave within the beam is small
compared to the wavelength at the signal frequency, so that, for the
signal source located on the Z axis, the source functions q _ can be

assumed to be cophasal on the spherical wavefronts. The frequency of the

second-order radiation is nearly equal to the pump frequency, so the

second-order waves will radiate spherically, with the same beam pattern as

! for the pump wave. These assumptions are used to calculate the second-order

pressure at the observer as follows.




The elemental particle velocity at r due to a spherical shell of

sources of thickness Sr is

. 1

Our = 5 q(r) or,
where the source density function is given by Eq. (4.23). The contri-

bution of these sources to the particle velocity at (L,0) will be

_jS
ﬁuL = (v/L) Cur(l + Bu) e " eapl = (s + jk:)(L - )],
where
1 -

B = uce) - U(e) is the amplitude fluctuation,
u —

U(e)
Su = ¢u(t) - k,r is the phase fluctuation, and

U(t) and ¢U(t) are the amplitude and phase of the particle

velocity, respectively.

The total particle velocity at (L,0) is the sum of contributions from

all scurces in the interaction region, i.e.,
L

U, (L,0) = (2L)"1 exp [ ~ (o, + jk+)L1/r (1+38)
B ) ) 0

-js
x e U q(r) r expl(x, +jk,)r] dr. (4.24)

The second-order pressure at the point (L,0) can now be found by
using the far-field relation, p = pocu, in connection with Eq. (4.24).

The result is

-BPQP‘w+
p,(L,0) = —~—L—%~; exp[-(a, + jk,)L]
- 2c ¢ L - -
QO 0
L -j(S_ ts_+8S,)
S *
*J (1L +B)@Q +B)(1 + B.)e P
: s p +
0
x exp[—((xS + ap - ai)r]dr, (4.25)

where B, and S, are amplitude and phase fluctuations, respectively,

for the interaction f{requency pressure wave.*

*It may be shown that the amplitude fluctuations in the pressure
and particle velocity are equal: i.e., B = B, . Similarly,

u
Su = St'
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For small fluctuations this result becomes

p+(L,0) = AJ(l + B)( - jS)dr, (4.26)
0
where
-R LI - + jk L
A = LP§EPmi e (at ! i)
s . C 3L

0 0

B =

BS + Bp + Bt’ and
S =S_*S +38,
In obtaining Eq.(4.26), the attenuation terms have been approximated
by Eq.(4.11).
As in the case of the nearfield parametric receiver, the second-
order pressure can be written in terms of a homogeneous and fluctuating
component,

p, = pH(l + BPR) e , 4.27)

L
Py = Asj);r = ASL.

Eqs. (4.26) and (4.27) may be equated, and if the fluctuations are

where

small compared to unity, we obtain
+ -] = - i . .2
Pyl + By - S50 Asfo(l + B - jS)dr (4.28)

The homogeneous component is subtracted from both sides of Eq. (4.28),

and the real and imaginary components of the result are equated to

1 1.
BPR =1 Bdr, and
0
L
__1.f
SPR =1 0Sdr.

The mean-squared amplitude fluctuations, <BPR2>, for the farfield

give

receiver are therefore

1.
2. 1
< By > = ?—4/< BB, > dridr,. (4.29)

This result differs from the solution for the nearfield receiver

[Eq.(4.22)]) only in that < Ble > here is the correlation function for
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spherically spreading waves rather than plane waves. In form the ﬁ
solutions are identical.
In the next section we will examine the components of the corre-

lation term, < B_B, >, in Eqgs.(4.22) and (4.29) so that these results

12

may be evaluated.

4.4 Approximating the Spatial Corrclation Functions

The evaluation of Egs.(4.22) and (4.29) requires the calculation

of nine correlation terms; viz.,

< Ble > = <[BS(21) + Bp(zl) + Bi'(L - 21)][BS(22) + Bp(Zz) + Bt(L - 22)]>
= <Bs(z,)Bs(z2)> + <Bs(zl)Bp(22)> + <B_(z7)B,(L - z29)>
+ <Bp(zl)BS(zz)> + <Bp(zl)3p(zz)> + <Bp(zl)Bi(L - 22)>
+ <Bi(L - zl)BS(22)> + <Bt(L - zl)Bp(zz)>

+ <B,(L - 2)B, (L ~ z,)>. (4.30)

These correlation terms fall into fhree categories: (1) cross
correlation between the low frequency signal fluctuations and
fluctuations in the pump or interaction frequency waves; (2) cross
correlation between pump fluctuations and interaction frequency
fluctuations; and (3) autocorrelation of the pump, low frequency, and
interaction frequency amplitude fluctuations. These categories are
discussed separately below. i
(1) The signal wave and pump wave traverse different perts of
the medium, which implies that the volume of scatterers associated
with these waves will be significantly different. Also, it has
been assumed that wp > Wy which implies that there will be little 3
frequency correlation between signal and pump wave. For these reasons
it may be assumed that the signal and pump amplitude fluctuations will

be uncorrelated in the interaction region; i.e.,

o e




<Bs(zl)Bp(22)> = <Bp(zl)Bs(22)> =0, (4.31)

A similar argument can be applied to the signal and interaction
frequency fluctuations, so that

<Bs(z1)Bi(L - 22)> % <B, (L - zl)Bs(z2)> i 0. (4.32)

(2) The term <Bp(zl)Bi(L - zz)> represents cross correlation
between pump pressure amplitude fluctuations at the point (zl) and
interaction frequency amplitude fluctuations at (L - 22). The
frequencies of the two waves are approximately equal (wp = wi) so we
may assume that complete frequency correlation exists between Bp
and Bi'

The propagation paths associated with the pump and interaétion
frequency waves are shown in Fig. 4.4. The term Bp(zl)
is due to scattering of the pump wave as it propagates from the
origin to z = zy. The fluctuations in the interaction frequency wave,
Bi(L - 22), are due to scattering of the second-order radiation as
it propagates from a source at point 22 to the hydrophone at z = L.
Both 2y and z, may vary between 0 and L, so there will be situations

in which the two propagation paths overlap (z1 > 22) and situations

in which they are separate (z1 < 22)'

v

An exact evaluation of Eqs. (4.22) and (4.29) would require an

expression for the correlation term, <BpB+>, for all values of z, and

A g e e

z,, and for both nearfield and farfield receiving arrays. This is
essentially a problem of calculating the correlation of amplitude
fluctuations at two receivers when there are two sources generating -
separate waves. The solution to this problem is not available in the
literature, nor is it readily obtained, so we will resort to the

following simplified approximation.
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We will consider two conditions, one in which the array length
L is much less than the longitudinal correlation distance lp, and
the other in which the array length is much greater than the pump cor-
relation distance. First assume that L << lp. In this case the
separation between the 'receivers' at z and L is less than the pump

correlation distance; 1i.e.,

L -2z, <<1, (4.33)
where lp is the distance at which the correlation coefficient
for the pump wave amplitude fluctuations equals 1/e. When Eq.(4.33)
applies, the amplitude fluctuations of the pump wave at zy and the
interaction frequency wave at z < L will be highly correlated. We
approximate their correlation coefficient by unity; i.e.,
<Bp(zl)Bi(L - 22)>

R =
p,* [<B§(zl)> <Bi(L - 22)>]

vE 1, L<<1 -
1 p
From this expression the cross correlation between pump and interaction
frequency fluctuations can be written as
2 2 4
- = - . 4,

<Bp(zl)Bt(L z,)> [<Bp(21)> <B (L - 2,)>] (4.34)
This equation is in terms of mean-squared amplitude fluctuations, and
can be calculated using the results discussed in Chapter 3. A
similar approximation can be made for the remaining cross correlation
term in Eq.(4.30), namely

i

p,3’

I3

2 2 )
<B_(z,)B, (L - 2;)> <Bp(22)Bi(L - 2)>

1.
[<82(2)> <BL(L - 20717 (4.35)

Again we note that Eqs.(4.34) and (4.35) apply only for short array
lengths (L << lp). In general, if the array length is not sufficiently

short that L << 1p’ then Rp is less than unity, and we have the

+

less restrictive approximations

B et i i e




L A A S St D

73

" \Bp(zz)Bi(L - zl)> = [<Bi(22)> <B§(L - zl)>]% R o (4.36)
<Bp(zl)Bi(L - 22)> S [<Bi(zl)> <Bi(L - 22)>]'é Rp,:‘ (4.37)
Now consider the situation when the array length is much greater
than the pump longitudinal correlation distance (L >> lp)' Most

separations, L - z will be greater than the correlation distance

l’
lp, and therefore the fluctuations will (on the average) have very
little correlation. For L >> 1p we therefore approximate the corre-

lation coefficient by zero and obtain

<Bq(zl)BI(L -z, =0, (4.38)

and

<Bp(22)B:(L -—u)>20 Lo 1p . (4.39)
These results are used in Eq.(4.30) for long array lengths.

(3) The third category of correlation terms in Fq.(4.30) are
autocorrelation functions for the signal, pump, and interaction
frequency fluctuations.

The pump autocorrelation function will be given by

<Bp(zl)Bp(z2)> = [<B§(zl)> <B§(22)>]lé RP . (4.40)

where Rp is the longitudinal correlation coefficient for pump wave
fluctuations at zq and Zy- For short lengths (L <X lp)’ Rp can be
approximated as unity. For longer array lengths the results of
i8 . . 94 ,
Chernov or Eliseevnin can be used to estimate Rp.
Similarly, the autocorrelation function for the signal wave will
be
B (2. +z.)B (2 + 20> = (<BE(2_ + z,)> <B2(z_ +2,)>] PR, (4.41)
s s 1""s" s 2 s'’s 1 s s 2 s?
where RS is the longitudinal correlation coefficient for signal
wave fluctuations at zy and Zy- Here again the correlation coefficient

can be approximated as unity for short array lengths (L << ls; ls

is the signal wave correlation distance). For L > 15, theoretical




"

8,94

results available in the literature1 can be used to predict RS.

The autocorrelation function for the interaction frequency wave is
somewhat different from that for the pump or signal wave. Rather than
origipating at a common source point and being received at different obser-
vation points, as are the signal and pump waves, the interaction frequency
waves originate at different source points and are received at a common
observation point. This is sketched in Fig. 4.5. The waves originate at
zy and 22, and are both received at z = L. While there is no explicit

91,97

analysis of this situation in the literature, Chotiros and Smith have

demonstrated that the principle of reciprocity applies as follows. If a

wave of frequency w, is projected from the transducer at z = L, then the

correlation of amplitude fluctuations received at points zy and z, will be

<Br(L - zl)Br(L - 22)>. By the reciprocity principle, this correlation

will be identical to that for waves originating at 2y and z,, and received i'

at z = L; i.e., A ) i
<§t(L - zl) Bi(L - zz)> = <Br(L - Zl) Br(L - 22)>,

where the subscript r indicates that the positions of sources and

receivers have been interchanged. This result is useful because it allows

us to write

_ 2 2 i
By (L - 2,) By(L - 2)> = [<B NOEERES SN 22)>] R, (4.42)

where Rr is the longitudinal correlation coefficient for interacticn

e b

frequency waves originating at z = L and received at points z, and z,.

1 2
When the array length is short (L<<lp), the correlation coefficient is

Rr = 1. For longer array lengths, the results of Chernovlsor Eliseevnin94

may be used to calculate Rr' Because complete frequency correlation has
been assumed for the pump and interaction frequency waves, the coefficient
R, will be equal to the longitudinal correlation coefficient for a wave at

frequency wp received at ranges L - z1 and L ~ 2,3 i.e.,

Rr = RP(L -z L - zz).
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The mean-squared fluctuation terms in Eq. (4.42) are for waves of frequency

w, traversing paths of lengths L - N and L - z, and may be calculated

using Tatarski's formulae.l9

4.5 Evaluation of Results :

In the previous section we examined the nine correlation terms that
are required in the evaluation of Eqs. (4.22) and (4.29). Now we will
develop expressions for the amplitude fluctuations of the second-order wave
for specific types of nearfield and farfield receiving arrays. Before
proceéding, we recall that for small fluctuations the rms amplitude fluc-
tuations are approximately equal to the coefficient of amplitude variation.
Therefore, it is possible to rewrite Egqs. (4.22) and (4.29) in terms of the

coefficient of amplitude variation as follows:

L

2 .1 (4.43)
CAVPR Lz‘/:/; BlB2> dzldz2
[e)

for the nearfield receiving array, and
L

2 .1
cAvy 5 ff<51132> dr,dr, (4.44)

(¢] i

for the farfield receiving array, where CAVPR is the coefficient of amplitude

variation for a parametric receiver.

4.5.1 Nearfield Receiving Array

The coefficient of amplitude variation for the nearfield receiver can

be evaluated by substituting Eq. (4.30) for <BIB > in Eq. (4.43), and then

2
making the approximations given in Eqs. (4.31), (4.32), (4.36), (4.37), and

(4.40) - (4.42). The result is

CAVI?‘R ;ﬂ;[wpz(zlb <Btz(L - zz)>]!‘ Rp + [<Bp2(z2)> <312(L - 21)>]!5Rp
(o)

15 2 2 %
+ [<Bp2(zl)> <Bp2(22)>]2 Rp + [<Bs @g + zl)> <B,"(zg + z,)>| ° Ry

+ I<B,._2(L - Z,)> <B.2(L - z")>]15 R_l dz, dz,. (4-45)
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where, due to the high frequency correlation of the pump and interaction
frequency waves, we have assumed that Rp + = Rp. ]
An example of the evaluation of Eq. (4.45) will now be given for the
restricted condition that the array length is much less than either cor- O
relation length 1 or 1 (L<<l_ and L<<l ). For this case R and R are )
p s s p p s ]
approximated by unity. TIf the pump and interaction frequency waves are
planar, and if

L > VXA L > 1 s
p 0

(V]

then the amplitude fluctuations will be of the form

U 2. 7/6 11/6
<Bp 0.31 Cn kp z . (4.46)
and
2 2 .7/6 11/6
<Bi> 0.31 C, kS (L - 2) - (4.47)

We further stipulate that, for purposes of illustration, the signal i

source propagates a distance ZS + z that obeys the relation

> +
L0 > ¥ AS(Zs z) >> 10 s

where Lo and lo are outer and inner scales of turbulence, respectively.
Then the signal wave amplitude fluctuation will be of the form

2 _ 2, 7/6 11/6 u 3, 4 4.48)
<B> = 0.13 C_ k 'TO(z + 2) + 780 "nZg + 2) (k. “my. (

It may be noted that Eq. (4.48) is for a spherical wave. This is because

the low frequency signal wave will propagate as a spherical wave, although it
is assumed to be sufficiently far from the parametric receiver that the
wavefront curvature and spreading loss are negligible in the interaction
region. Making use of Eqs. (4.46)-(4.48) and assuming that kp 2 k+, we

write Eq. (4.45) as




2l . i\ /o 11/12 11/1?2 11/12 11/12
: = U, : - » - o
G )/[{ 31 v l\P [.4‘ (L - z.,) + 7y (1. Ll)

1.4

) "t
PR SV2EAR SV R

11/12 11/12
. ,2 ) (- 21

2 *)

) L2 7/6 . o 11/6 1
4[0.1} (,n kS (/S + z) + ng

, . 3 4 4 o1
1 ¢m (és + Zl) (Kt - Km)J

L2 7/6 . 11/6 7 3, 4 4.k
xp.13 ¢ Tk P+ zy) Y TR AR M CHEe) }dzldzz_

This expression appears somewhat unwieldy, but the integration is

straightforward and gives

" cavZy 2 0.3375 ¢ % k 7o e L Lz[(a + oy 3/2 Q3122
P L 9b ’
(4.49)
- 2, 7/6 11/6 | 3w 4 4
where a=0.13 Cn ks Zg + 780 ¢ (Kt - N m) Z2, and
11 2 7/6y,5/6  3n. . 4 4 2
b= 2(0.13 C Tk Ty 2P+ 2R (¢t -k Mz

This result will be useful in Chapter 5, where we will comparc Eq. (4.49)
to data from an experiment that approximates the conditions assumed in

deriving this equation.

i 4.5.2 Farfield Receiving Array

An expression similar to Eq. (4.45) can be derived for the farfield
receiving array by substituting Eq. (4.30) for <B1B2> in Eq. (4.44),
and then making the approximations given in Eqs. (4.31), (4.32), (4.38),

(4.39), and (4.40) - (4.42). The coefficient of amplitude variation

obtained is
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1.
2 1 2 0 1
(o)

+ |8 2 )> <B 2(z » B [<32 (2,)> < B (L2 )>I%R
p 1 p ‘2 p p 1 + 2 Pyt

-

+
»

2 2 ) 2 2 L
+ N - > - -
[ Bt(L Zl) Bp (Zz) , Rp + [<Bi (L zl)> <Bi(L 22)>, Rp 'dzldzz ,

(4.50)

where dz = dr on the axis of the array. We will examine the restricted
case where the pump and interaction frequency fluctuations are completely
correlated in the interaction region so that Rp = Rp . =1 ; we

,t
assume that the range of the signal source is much greater than the array

length so the ZS>>z1 and ZS>>22. This allows us to make the

approximation
2 2
< vy ;
Bs (45 + z)> = <BS (ZS)>, z<<zs.

In computing the pump and interaction frequency fluctuations, it is

assumed that

o}

L >> VF};—ET‘>> 1

so that the amplitude fluctuations are of the form
<B 2(z)> = 0.13 C 2 k 7/6 211/6, and
p n P

<B+2(L ~2)>=0.13¢c 2k /8
T n +

L - z)ll/é.

The signal source is assumed to be at a sufficiently long range that

9\ >> LO ,

Z
s 8

so that the signal wave amplitude fluctuations are given by
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2 Vi 2 2
< / > = - 7
BS (75) 2 <yo> kS ZS a ,
, . 4 70 . N . . . .
where a is Medwin's effective Gaussian refractive index correlation

distance.
Finally, we approximate the correlation coefficient, Rs’ by Chernov's

result

2y1-1
R = [1 +(___2AL>J
s 2 ’
ka
where AL is the separation between receivers.

With these approximations the coefficient of amplitude variation

becomes
— L 2(z, -z 2,1
2 . im 2 2 -2 2 1
0 s

+ 0.1415 an kp7/6 Lll/6

By making the change of coordinates, z = Z, =2y and integrating, we obtain

. /T - ‘
cavi 2 w3 23 2%z ran 1 2h V4 0.1415 2 i /6 1176
PR 2L s s K a2 np
s

(4.51)
As a numerical example, consider a parametric receiver with pump frequency
f = 100 kHz used to detect a distant signal source in the ocean. For the
medium parameters, we will use the values <u2> =5 x 10-9, as measured by
LiebermanGg, and a = 0.25 m and Cn = 9,30 x 10—5 as computed by Medwin's
methods70. A plot of CAVPR as a function of array length is shown in Fig.
4.6, It can be seen from the figure that there is little difference in
the value of CAVPR for the 1 kHz signal when the range, ZS, is
extended from 10 km to 100 km. Also, at the longer array lengths (L>50m),
there is little difference in CAVPR when the signal frequency 1is increased

from 1 kHz to 5 kHz, with ZS = 10 km. These results indicate that CAVPR is

independent of fs and Zs at the longer array lengtis, at least for the

Juadeiil NN L T O
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values considered in this example. [t can be seen from Fig. 4.6 that CAVPR
is greater than 0.1 only at array lengths longer than about 200 m. This
means that an rms variation in amplitude of approximately 107 is expected
for the sideband signals of a 200 m long parametric receiver operating in
the ocean. This is greater than the level of amplitude fluctuations for a
1 kHz signal received by a point hydrophone, which would have, ignoring the

effects of multipath signals, rms amplitude variations of approximately

1.4% at ZS = 10 km and 4.47% at ZS = 100 km.

4.6 Summary and Discussion

In the preceding sections an analysis has been developed for the
parametric receiver operating in an inhomogeneous medium. The principal
assumptions used in'the analysis are: (1) the signal source is located on
the main beam of the parametric receiver, (2) there is complete transverse
correlation of amplitude and phase fluctuations in the interaction region
of the parametric receiver, and (3) the amplitude and phase fluctuations are
small compared to unity (i.e., the medium is weakly scattering). With

these assumptions we were able to derive integral expressions for the

coefficient of amplitude variation for the nearfield receiver [Eq. (4.22) 1

and the farfield receiver [Eq. (4.29)]. By making a number of assumptions

regarding the spatial correlation functions contained in these expressions,
it was possible to obtain results in terms of the parameters of the medium

in which the parametric £eceiver operates. In this section we will discuss
the results of the apalysis from a qualitative viewpoint.

For purposes of discussion, the coefficient of amplitude variation for

both nearfield and farfield receivers can be written in the following torrm
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wel - L . /
LAVPR = L3 J/:/~(xBlBZ>H + <BIBZ>S) dzl dzz, (4.52)
o
where <B!B_,> = <Rp(z])Bp(z2)> + <Bp(zl)Bi(L - z2)>
+ <Bt(L - zl)Bp(22)> + <Bi(L - zl)Bi(L - 22)>, and
<BlB2>s = <Bs(zl)Bs(22)>°
Here the correlation functious have been divided into high frequency com-
ponents, <BlBZ>H’ that are due to scattering in the interaction region of

‘,‘ the parametric receiver, and signal frequency components, <B1B2>s’ that are i
due to scattering of the signal wave.

The high frequency components increase with fp and L, and the signal

11 frequency component increases with fs and ZS. For sufficiently long ranges
and short array lengths, the high frequency components, <BlB2>H, will be

negligible compared to <B1B7> , and the coefficient of variation becomes

& 8

I3
DU RU R

L

2 .1
CAVPR— LZ ff<BS(zl)BS(22)> dzldzz. (4.53)
o

It can be shown that Eq. (4.53) is also the coefficient of variation for a
continuous end-fire array of length L. Thus it can be concluded that, in an
inhomogeneous medium the parametric receiver performs like an end-fire
array if the correlation terms due to pump and second-order waves are neg-
ligible. It can also be shown that, if the array length is very short,

then the coefficlent of variation becomes identical to that for a point

hvdrophone; viz.,

¢
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CAV_ = <Bb > (L £ 0).

In a practical example, such as the one discussed in Section 4.5.2, the

high frequency components, <B1B2>H, may not be negligible, and may even

; dominate the value of CAVPR. In this case the parametric receiver will

. not perform as well as a continuous end-fire array, inasmuch as the para-

metric receiver will have a higher coefficient of amplitude variation.
Having developed a theory for predicting the performance of a

parametric receiving array in an inhomogeneous medium, we will discuss in

the next chapter some experiments that were conducted to test the theory.
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CHAPTER 5. EXPFRIMENTAL STUDY

67,84,91,98-101 the effects of medium

Several experimental studies
inhomogeneities on acoustic wave propagation have been conducted using
modelled acoustic and thermal conditions. An advantage of model experiments
(i.e., experiments at small acoustic wavelengths) is that the properties of
the acoustic medium can be carefully controlled. It is possible in a model
experiment to minimize the effects of time-varying surface reflections and
transducer movement, which produce fluctuations in an acoustic wave that are
extraneous to the study. Also, the characteristics of the medium in a model
tank may be assumed to be essentially constant from day to day, so that dif-
ferent experiments can be conducted under similar conditions.

In the present investigation, model experiments were conducted to
measure the effect of medium inhomogeneities on parametric reception. The
investigation will be described in this chapter as follows. First, a des-
cription is given of the experimental medium and of the apparatus used.
Measurements made of the coefficient of amplitude variation
for the signal, pump, and upper sideband waves of a model parametric acous-
tic receiving array are then discussed. These measurements are compared to
theoretical predictions using the analysis developed in Chapter 4. Finally,

the experimental results are summarized and discussed.

5.1 The Experimental Medium

A water tank with a width of 0.9 m, length of 1.8 m, and a depth of
0.8 m was used in this experimental study. The thermal microstructure was
generated by an array of immersion heaters located along the bottom of the
tank (see Fig. 5.1), the total heating power of the array being 4.5 kW. The
flow of rising heated water was broken up into patches by a perforated

aluminium sheet mounted about 5 cm above the heated array.
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The model tank just described has been used as a research tool for a
number of years, and the characteristics of its thermal microstructure are

’

well documented. During the course of this study, measurements of the
rate of temperature increase and the standard deviation of temperature were
made to insure that the tank was operating as in previous studies. The
rate of temperature increase was measured using a mercury thermometer sus-
pended in the water at mid-depth. The result, 1.1 x 10—3 °Cs_l, agrees to
within 10% of the results of Smith and \;w.'est:cm—Bart:holomewg5 and Chotiros and
Smith.84 A measurement of temperature variations was made using a thermis-
tor placed in the center of the tank. Measurements were begun 1 hour after
turning on the tank heaters. This permitted thorough mixing of the water
so that the thermal activity would be uniform throughout the tank. The
standard deviation of temperature computed from nine such measurements is

0.023 °C, which is less than the value, 0.032 °C, measured by Chotiros and

84 but is of the same order of magnitude. The results of these mea-

Smith,
surements of heating rate and standard deviation of temperature allow us to
conclude that the tank is operating essentially as reported previously.
Consequently, we will adopt the methods developed by Chotiros and Smithgl’84
for describing the field of inhomogeneities in the tank.

As discussed in Chapter 3, an inhomogeneous medium can be described by
a turbulent power density spectrum. The magnitude of the spectrum, ¢m’ is
a function of the mean-squared refractive index change, <u2>. Each of these
parameters depends upon the standard deviation of the temperature, and hence
will be calculated from the measurements of temperature variations made in
this study. The boundary wavenumbers, K Kp, and « P’ depend upon the physi-
cal dimensions of the tank, the diffusitivity, and the rate of kinetic
encrgy dissipation per unit mass. We will assume that these parameters are

unchanged since the investigation of Chotiros and Smith,84 and will use

their values of ¥ , x_,
m t

and «k .
p




A list of parameters used to describe the inhomogeneous medium in the
model tank is given in Table 5.1. These parameters varied with position
throughout the tank; their values at the center of the tank are shown in the
table. These values will be used as discussed below in making theoretical

predictions for the acoustic waves propagating in the tank.

5.2 Description of Apparatus

A model parametric receiver was constructed by placing a pump transducer
and a hydrophone at mid-depth in the tank, as shown in Fig. 5.1. The array
length was varied by changing the separation, L, between the two transducers.
A source of acoustic signals to be detected with the parametric receiver was
located on the main axis of the parametric receiver, and at a distance, Zs’
from the pump transducer.

The apparatus used to generate and receive the acoustic waves for this
study is shown in the block diagram of Fig. 5.2. To minimize the problems
of electronic feedover and acoustic multipaths, both the signal and pump
waves were pulsed, the pulses being typically 100 usec in duration. There

was a time delay, =t in the generation of the pump frequency wave; this

q’
was to synchronize the pulses so that they occur simultaneously in the
interaction region of the array. The pump and signal frequencies were main-
tained at 10 MHz and 1 MHz, respectively, throughout the experimental study.
Details of the transducers used to generate the signal and pump waves are
given in Appendix 3.

The pressure detected by the hydrophone was separated into three
components (fu, fp, and fs) by the arrangement of filters and tuned ampli-
fiers shown in Fig. 5.2. A signal processing unit sampled a 10 usec segment
of each pulse and detected the peak value of this segment. The amplitude

of each sampled pulse was then recorded by a data logging unit for later

off-line computer processing. Further details of the receiving apparatus

may be found in Appendix 4.




Value and Units
Paraneter at 30° C
s 3.54 x 107 (dimensionless)
o 2.80 x 102 o
m
C 1.96 x 10”4 n72/3
n
K % 22.9 m-1
m
€, * 179 m ¥
ok 5600 m )
P
*From reference 91
L1 sc 2L
2 _ = Y+ <
Wt s c oT <)
<y >
¢m = ?5?2)K
t
2 <u>
C =
n (0.33m) « 2/3
TABLE 5.1

PARAMETERS DESCRIBING THE INHOMOGENEOUS MEDIUM
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5.3 Experimental Results

In this section we will discuss some experiments conducted in the model
tank using the apparatus just described. Since we are particularly interested
in the behavior of the upper sideband component, pu, of the second-order

‘ pressure field, we will first measure the amplitude of P, in a homogeneous
medium to verify that it is being gencrated as predicted by theory. Then we
will examine the amplitude fluctuations in the punp, signal, and upper side-
band waves for a varietv of experimental coud:tions and compare the results

to theoretical predictions based on the analysis of Chapter 4.

5.3.1 Measurements of Upper Sidcband Pressure

‘ Aside from nonlinear acoustic interaction, there are four ways in which
voltages at the upper cideband frequency may appear at the input of the sig-
nal processor. When two pressure waves are incident on the face of the
hydrophone, mechanical mixing occurs and an upper sideband voltage is gen-

erated by the hydrophone. (This c¢xtraneous sipnal is called pseudosound.)

P oo B S

Also, the pressure waves may be received by the hydrophone and then mixed in

L

the electronic receiving apparatus. Another possibility is that the two
signals may be transmitted electromagncetically and then mixed in the elec-
tronic receiving system. Finally, a harmonic of the signal source may be
radiated which is at the upper sideband frequency.

Tests were conducted to ensure that the 11 MHz signal detected by the
hydrophone was being generated by acoustic nonlinear interaction. The sig-
nal disappeared when either the signal or pump transducer was blocked off,

indicating that it was not produced bv electromagnetic pickup or by har-

monic radiation of the signal source.
A measurement of mixing in the electronic receiver was conducted using i
the arrangement shown in Fig. 5.3, Witl oscillator 2 set to zero output

voltage, oscillator 1 was adjusted to provide a voltage Vin that was of the

order of the hydrophone output voltage when receiving the pump wave directly., ¢
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Similarly, oscillator 2 was adjusted to simulate the hydrophone output when
receiving the 1 MHz signal. The 68 & resistors served to decouple the os-

, was

cillators. With both oscillators on, the upper sideband voltage, Yout

more than 50 dB below the level observed when the input voltages were gen-
erated azoustically. This test contirmed that the upper sideband signal de-
tected by the hydrophone was not produced by mixing in the electronic
receiver.

The interaction frequency pressure component of pseudosound produced by
two collinear plane waves incident at the hydrophone surface has a pressure

amplitude, P', given by

2
P' = Ple/poco s (5.1)

where Pl and P2 are the pressure amplitudes of the two waves. As the upper
sideband pressure amplitude measured in the present experimoents was four
orders of magnitude greater than the level predicted bv Eq. (5.1), it was

demonstrated that the contribution of pseudosound was negligible in these

experiments.

The tests and measurements described in the previous three paragraphs
assure us that the upper sideband pressure wave measured in this study was
generated by nonlinear interaction of the pump and signal waves, and not by
extraneous effects. Next we will discuss the amplitude of this wave. The
on-axis pressure amplitude of the interaction frequency wave of a nearfield
parametric receiver is given by Eq. (2.17), and is

wPPSBL

Po= "t

N exp(—\l+ L) . (5.2)

20 ¢ -
(O]

1.0 x lO4 Pa at the

e

This expression predicts a pressure amplitude of Pu

hydrophone of the parametric receiver for the following conditions:

f = 11 MHz, Pp = 7.01 x 10A Pa, P, = 3.85 x 1()4 Pa, and L = 0.5 m. This
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result, however, does not take into account the shadowing cffect of the
pump transducer, which may be expected to reduce the effective array length

47,51
by an amount

4 = Le2sb?
»
A 1
where b is the radius of the pump transduccer housing. Also, the presence

of the pump transducer was obscrved to reduce the pressure of the 1 MHz sig-

nal wave at the hydrophone by 3.3 dB, to P = 2,63 x 1()4 Pa. Taking these
>

effects of shadowing into account, and using a measured value of attenuation
of a, = 3,79 neper/m, the upper sideband pressure theoretically should be
Pu = 6.27 x lO3 Pa. The upper sideband pressure amplitude was measured to
be Pu = 6.11 x 103 Pa, which is in good agreement with the predicted value.
Similar results were obtained fer a 10 cm array length,.

We have determined by the measurements discussed in this section that
the parametric receiver is functioning as expected in a hcmogeneous medium.

Now we will proceed to a discussion of some experiments conducted to deter-

mine the effects of inhomogeneitics on its operation.

5.3.2 Procedure for Obtaining Data

The procedure used in measuring amplitude fluctuations in the signal,
pump, and upper sideband waves may be described as follows. The trans-
ducers shown in Fig. 5.1 were aligned in the desired geometry at mid-depth
in the tank. Using the apparatus described in Section 5.2, and with the 4
tank heaters turned off, recordings werc made of the amplitudes of the sig-

nal, pump, and upper sideband pulses. These measurements obtained with the

heaters off are amplitude fluctuations produced by the electronic ap-
paratus and by any 'ambient' inhomogeneities in the tank such as those due

to microbubbles, biological matter, or residual thermal patches. Typically,

_ - B L L O R Y S it ot
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three sets of data were recorded with the heaters turned off, and
approximately 150 samples per data set were taken at a sample rate of about
0.25 Hz. After recording these data, the heaters were turned on and allowed

to warm up for 1! hour so that the turbulent mixing could reach steady state.

Then an additional five sets of data, similar to those just described, were

pope—rery

recorded with the tank heaters turned on. The water temperature was mea-
sured at the beginning and end of each data set. When the mean water tem-
perature in the tank reached about 30° C, the heaters were turned off and
the tank was allowed to cocol until the following day. The reason for stop-
ping the experiments at 30° C is that the level of amplitude fluctuations

decreases as the temperature increases; thus poor 'fluctuation-to-noise'

ratios usually occurred at temperatures above 30° C. We will discuss this
point in more detail below.

The measurements made with heaters on and off were analyzed off-line
by a PDP-11 computer, using the compdter programme AFLUCT, which is listed
in Appendix 5. The quantities calculated by this program are the mean,
standard deviation, and coefficient of variation for the amplitude of each
wave associated with the parametric receiver. A high-pass filter with cut-
off frequency of 0.02 Hz is incorporated in the program to minimize the
effects of slow drifts in amplifier gains and changes in received signal

amplitude with temperature.84

5.3.3 Signal Wave Amplitude Fluctuations

As an example of how amplitude fluctuations of the acoustic waves were
measured and analyzed, we will consider data obtained for the 1 MHz signal
wave. Data were taken over a five day period using the procedure described
in Section 5.3.2. 1In all, 25 sets of data were taken with the heaters turned
on, and 15 sets were taken with the heaters off. For all of these measure-

ments, the separation between projector and hydrophone was ZS + L= 0.75m.

Results of the measurements are shown in Table 5.2. The coefficients of




‘ [ Data | Temperarure | cav_ Ceav % | OFNR T CAV
Set °C on oft di b
‘ R it i pe——"
1 23.5 0.0077 0.0030 8.2 0.7303 0.0052
2 24.2 0.0133 0.0030 12.9 0.7554 0.0098
3 25.0 0.0088 0.0030 8.5 0.7852 0.0058
4 25.7 0.0090 0.0030 9.5 0.8123 0.0069
5 26.5 0.0069 0.0030 7.2 0.8443 0.0052
6 25.6 0.0081 0.0033 7.8 0.8084 0.0060
7 26.2 0.0075 0.0033 7.1 0.8321 0.0056
8 27.2 0.0251 0.0033 17.6 0.8734 _—
9 27.9 0.0071 0.0033 6.7 0.9034 0.0057
10 28.06 0.0072 0.0033 6.8 0.9345 0.0060
11 25.1 0.C112 0.0043 8.3 0.7890 0.0081
12 25.8 0.0111 0.0043 8.2 0.8162 0.0083
13 26.5 0.0088 0.0043 6.2 0.8443 0.0065
| 14 27.2 0.0077 0.0043 5.1 0.8734 0.0056
;@ 15 27.8 0.0120 0.0043 8.9 0.8991 0.0101
: 16 28.1 0.0089 0.0052 4.7 0.9122 0.0066
. 17 28.8 0.0110 0.0052 6.5 0.9436 0.0092
18 29.3 0.0094 0.0052 5.1 0.9667 0.0075
19 30.1 0.0091 0.0052 4.9 1.0048 0.0075
20 30.6 0.0103 0.0052 5.9 1.0294 0.0092
21 27.9 0.0065 0.0036 5.1 0.9034 0.0059
22 28.6 0.0060 0.0036 4.4 0.9345 0.0045
23 29.3 0.0057 0.0036 4.0 0.9667 0.0043
24 30.0 0.0052 0.0036 3.2 1.0000 0.0038
25 30.7 0.0059 0.0036 4.3 1.0344 0.0048
*CAVOff is the average of 3 data sets. Range = 0.75 m

TABLE 5.2

DATA OBTAINED FOR 1 Milz SIGNAL WAVE
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amplitude variation for the ] MHz wave for heaters on and off are labelled in

the table as CAV and CAV » respectively. CAV is a measure of amplitude
on off on

fluctuations in the voltage recorded by the data logging unit shown in Fig. 5.2.

However, these fluctuations may be produced by a number of causes. Both thermal

inhomogeneities in the medium and other inhomogeneities such as microbubbles

and biological matter will produce amplitude fluctuations in a propagating

pressure wave. Further amplitude fluctuations will be produced if there

are gain variations in the electronic system that generate and detect a

pressure wave. Therefore we can say that the measured amplitude fluctuatiomns

comprise (1) an effect which we wish to measure, a signal, which is caused

by thermal inhomogeneities; and (2) extraneous effects, or noise, which is

caused by nonthermal inhomogeneities and system gain variations. It is rea-

sonable to assume that the noise is present whether the tank heaters are on

or off, so CAVoff is a measure of the noise. If the signal and noise are

uncorrelated, then they will add on a mean-squared basis, and the desired

. 5
signal will have a coefficient of amplitude variation given by9
.C\Vz C'V2 1/2 3
CAV = Y0/ on oV Off . (5.3)

Values of CAV for the present experiment are shown in Table 5.2, and
are plotted as a function of water temperature in Fig. 5.4. In making this
plot, some of the data have been omitted. Specifically, data with a fluc-

tuation-to-noise ratioc (FNR) less than 4.5 dB have been omitted, where

CAVon
FNR = 20 loglo v .

off

Low values of FNR generally occur at higher values of temperature; this is

demonstrated by comparing data sets 21-25 in Table 5.2 to data sets 1-5.
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A theoretical prediction for the variation of CAV with temperature may

be obtained from the sum of Eqs. (3.30) and (3.32), which is:

4

2 2., 7/6 1l/6 n 3, 4 _
cav® = 0.13 ¢ "k Uz + L) + 280 n t L) (x, Koo) . (5.4)

It may be seen from the equations given in Table 5.1 that Cn and ¢m are

functions of the mean =squared refractive index, which in turn is given by

1/2

2 _1/2 _ 1 3¢ 2
<o =757 <(AT) "> , (5.5)
where
2 3

¢ = 1403 + 5T - 0.06T" + 0.000377, (5.6)
2 -5 -o02m+ 0.00972, - (5.7)
T = mean temperature in oC, and
AT = deviation from mean temperature.

Substitution of Eqs. (5.5)-(5.7) into Eq. (5.4), and use of the equations
defining Cn and @m in Table 5.1, gives the theoretical curve plotted in Fig.
5.4, In order to make a comparison between the experimental and measured
results, a regression line for the measured data is also shown in the figure.

102 and is based upon

This line is plotted using the formulae in Crow et al.
the method of least squares. It can be seen that there is good agreement
in both magnitude and slope between the regression line and the theoretical
curve.

The agreement between theory and experiment indicates that the
temperature dependence of <u2>, as cxpressed by Eqs. (5.5)-(5.7), is valid.
By knowing this temperature dependence, we are able to compare measurements
of CAV taken over a range of temperatures simply by normalizing all the

.\ . 104
measurements to the same temperature. Chotiros has shown the factor,

fu, for normalizing measurements to 30° C to be, approximately,
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2.2

. -1 o
£,% Togq 10,0211 - 30)]).

As an example, we calculate the coefficient of amplitude variation for the

1 MHz signal wave at the range 0.75 m as follows. For each data set in

Table 5.1, a value of CAV is calculated by compensating for ambient noise

with Eq. (5.3), and then normalizing the result to 30° C with multiplication

by £ . Thus,

e g2 2 |1/2 ,
CAV = f“{vAvon CAVOFJ (5.3)

is calculated for each data set. The mean and standard deviation of CAV is
then calculated for all data sets, with the results plotted in Fig. 5.5.
Similar results at other ranges are also shown in the figure, along with
some curves that show the theoretical range dependence of CAV.

The nearfield theoretical curve shown in the figure is calculated from
Eq. (5.4), where the range is defined to be ZS + L, and values of the medium
parameters at the center of the tank are taken from Table 5.1. This equa-

tion is strictly valid only for ranges much less than R0 where

o A Ak

12\
R 2 -11> .
s\ t

For ranges much greater than Ro, the farfield result [Eq. (3.24)] applies.
For the data in Fig. 5.5, R0 £ 0.8 m, so some of the data are in a region
where the nearfield theory is only an approximation. However, as comparison
between theory and experiment indicates, the nearfield approximation is in

reasonable agreement with the measured results.

5.3.4. Pump Wave Amplitude Fluctuations

Measurements of the coefficient of amplitude variation for the 10 MHz
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pump wave (CAVP) were made a5 a function of separation [ between pump
transducer and hvdrophone. The results, shown in Fig. 5.6, were obtained
using the procedure described in Section 5.3.2. The data were adjusted for
ambient noise and normalized to 30° C using Eq. (5.8).

In making a theoretical prediction for CAVp there are two factors that
need to be taken into account. One is that the mean-squared temperature
variations, <AT2>, near the hydrophone were measured to be different from
<AT2> in the center of the tank. This is due to the tact that the hydro-
phone was located near the edge of the heater array and perforated screen

which produced the thermal microstructure. Because CAVp is a function of

turbulence parameters which depend upon <AT2>, this change in mean-squared

i ‘ temperature will affect CAVP. Another factor that affects the value of CAVp
is due to the finite cross sectional area of the hydrophone. (‘.hotiroslr)5

has shown that for a square transducer of dimension b on each side, a re-

duction occurs in the coefficient of amplitude variation of the amount

2
CAVh .

.
5~ 51 -0.61b (AL) 2 . (5.9)
CAV

RO RN S

where CAVh and CAV are the coefficient of amplitude variation for an
acoustic wave received with a square hydrophone and a point
hydrophone, respectively,
A 1is the acoustic wavelength, and
L is the separation between the source of the wave and the
hydrophone.
Physically, this reduction in CAV is due to the lack of correlation in
amplitude fluctuations across the face of the hydrophone. Thus, the hydro- -

phone measures the average level of fluctuations across its aperture. Equa-

tion (5.9) can be taken to be the definition of an 'aperture factor',

f ; 1.e.,
a
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f o= 1 - 0.0l b(O1) (o
a

The coevfficient of amplitude variation tor the pump wave can be
predicted by multiplying Eq. (3.31) by Eq. (5.10), and is

2 2 kp7/() Lll/b

CAVp = 0.31 fa Cn . (5.11)

The value of Cn in Eq. (5.11) is determined from the defining equations in

Table 5.1, wusing the measured value of <AT2> in the region between pump

transducer and hydrophone. The dependence of CAVp upon separation L, as ]
given by Eq. (5.11), is plotted as the solid line in Fig. 5.6. It can be

seen from the figure that there is reasonable agrecement between theory and

experiment.

5.3.5 Amplitude Fluctuations in the Upper Sideband Wave

In this section we will discuss an experimental study of the effects
of medium inhomogeneities on the upper sideband wave of a nearfield para-
metric receiver. Three types of results were obtained in this study.
First, measurements were made of the coefficient of amplitude variation for J
the upper sideband wave (CAVUSB) with the array length fixed and with vari- J
able range, ZS + L. Second, measurements were made of CAVUSB with the range
fixed and with variable array length. Third, a comparison was made between
the amplitude fluctuations in the signal wave and in the upper sideband wave.
All data discussed in this section were obtained by following the ex-

perimental procedure described in Section 5.3.2. Results were normalized

to 30° C and adjusted for ambient noise using Eq. (5.8).
The first set of results we will consider is shown in Fig. 5.7. For
this data, the array length was 0.1 m and the range, ZS + L, was varied from

0.25 m to 1.55 m. As above, circles in the figure indicate mean values of
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CAVUSH obtained from several data sets and the vertical bars indicate the

standard deviation of CAVUSB tor the data sets. In making theoretical .
predictions for the experiment, two different methods were used. One pre-
diction, shown as the dashed line in Fig. 5.7, is based on Eq. (4.49). It
can be seen from the figure that Eq. (4.49) gives values of CAVUSB that are
significantly lower than the measured values for most ranges. However, the
development leading to Eq. (4.49) was based on the assumption that the pump
wave can be approximated as a plane wave of infinite extent. A more ac-
curate theoretical model, which takes into account the effects of the finite
apertures of the pump transducer and hydrophone, has been developed by

106

Chotiros. It is shown in Appendix 6 that the coefficient of amplitude

variation, CAVPR, for the nearfield parametric receiver can be written as

L L

cav? = | v ]‘2 Re (K, )Re (K, )<B. B, >

PR H 1 2777172
[oTie]

+ Im(Kl)Im(K2)<SlS > + Re(Kl)Im(K2)<BlS >

2 2

+ IM(Kl)Re(K2)<SlB2>£ dzldz2 , (5.12)

where vy = At,’C'E dz is the normalized voltage at the terminals of the

o 172
. hydrophone,
A e ié
K = —
1]
)
k k, k 22 k2 n?
C=j—P—+ — + P + , }
1 2z 2(L - 2z) . 2 . 2
2( Jkpb > 2 Jk+h
h201 + —— 4L - 2|1+ o =—
! 2z ) [ 2(L—2J )

€ is the phasc angle of the second order pressure,
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. )
ik bz jk+h“ N
C, = 4z(L - z)(l FR—_ - [1». ,j—-;-,v]-f-,-; , and

2 22

h and b are characteristic radii of the pump transducer and hydrophone,
respectively.

This result requires numerical integration for its evaluation. The pro-
gram CAVNUM, listed in Appendix 5, is used to evaluate Eq. (5.12) for the
experiments discussed in this section. Results obtained by the program
are plotted as the solid line in Fig. 5.7. It can be seen from the figure
that the numerical results based on Eq. (5.12) are generally in better
agreement with the data than the analytical result, Eq. (4.49).

A similar set of results, shown in Fig. 5.8, was obtained for a fixed
range of Zs + L = 0.75 m, and a variable array length. In this case, there

is less difference between the numerical and analytical results, although

the numerical results are generally in better agreement with the data.

FoR N ATV

Another useful way of studying the parametric receiver in an inhomo-
- geneous medium is to compare the coefficients of amplitude variation for
the upper sideband (CAVygp) and signal (CAVS) waves. The ratio, CAVUSB/CAVS,
compares the 'noise level' of the parametric receiver in an inhomogeneous
medium to the noise level of a point hydrophone in the same medium. Here
'noise level' refers to the random amplitude variations appearing at the
output terminals of either the hydrophone of the parametric receiver or the
point hydrophone.

Measurements 6f CAV|;gp and CAVS were made simultaneously for parametric
receiver array lengths of 0.1 m and 0.5 m. The hydrophone of the para-
metric receiverrwas used to detect both upper sideband and signal waves, as

shown in Fig. 5.2. A mean value, <CAVUSB/CAVS>, was calculated for several

' data sets taken at each range, with the results shown in Fig. 5.9. The .i

!
h
¢
{

theoretical curves shown in the figure are based on values of CAVyq, obtained
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from Eq. (4.49) {the dashed lines] or by numerical integration of Eq. (5.1.),

and on values of (‘.AVS obtained from Eq. (5.4). Discussion of the physical
meaning of these results, as well as those shown in Figs. 5.6 and 5.7, will

be given below.

5.3.6 Results for Spherically Spreading Pump Waves

The experiments described in the preceding section were conducted with
the bhydrophone placed in the nearfield of the pump transducer. Some data
were also obtained with the hydrophone in the farfield of the pump, so that
the pump waves were spherically spreading. The pump transducer used in the
present experiment was of a smaller cross sectional area than that used in
the experiments described in Sections 5.3.4 and 5.3.5 (see Appendix 3 for
a description of the transducers). The experimental apparatus and the
procedure used to obtain the data were similar to those described in
Sections 5.2 and 5.3.2; however, amplitude fluctuations in the lower
sideband wave (CAVLSB) were measured rather than those in the upper side-
band wave., Details of the electronic receiving system used for this

experiment are given in Appendix 4.

Measurements of CAVL were made for a fixed range, ZS + L =1.4m,

SB

and a variable array length., Data from the experiment are plotted in Fig.
5.10. Each open dot in the figure represents a mean value of CAVLSB ob~
tained for a set of approximately 150 samples. These experimental values
of CAVLSB have been compensated for temperature and ambient noise using
Eq. (5.9). The theoretical curve shown in the figure is obtained from Eq.

(4.44), which for the present experiment can be written as

L
CAV2 21 <B .B >+ <B .B ,> + <B .B, .>
LsB I2 sl s2 pl p2 pl +2
o

192, s (5.13)

+17p2 +1 +2

4+ <B B .> + <B _B >)dz dz
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BB, = [U.I&L“ks (ry + 7)) i e g et »mi
7/6 C\1/6 | om ) N 4)]5
+ [P 13C k (.,s + nz) + g0 | (”s zi) (:L o s
_ 2.7/6 ooJ11/12
<B1Bp7 = 0-13C Tk TTV(z)z,) ,
. s 2. 7/6 11/12 11/12
BplBiZ> O.l3Cn Lp 2y (L - 42) s
‘ . 2.7/ o \11/12 11/12
_ ’ <By1Bpp” 0413 ¢ Tk 6 (1L - 2)) 7y , and
. L2 7/6 Lo 11/12 L W 11/12
| <Bil§i2> 0.13 ¢ kp (A (L= =)
. Integration of Eq. (5.13) gives
i
4
3 . 7/6 ll/h
CAVLSB = (0.,1415 L k
1 2
1 _ézvﬁa +p1)3/2 33/2] , (5.14)
ab
where
_ 716, 11/6 - 3n 4 4.3 )
a=0.13¢C k Z 780 “m e T N4 » and
_ 11 2. 7/6 5/6 | 3m 4 4 __2
b 6 (O'IBans )zs * %80 480 m(’ m)zs
It can be seen from Fig. 5.10 that values of CAVLSB predicted by Eq. (5.14)
are in reasonable agreement with the data.
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5.4 Discussion

There are a few simple, but useful, conclusions that can he drawn from
the results presented in Figs. 5.4-5,10.

Theoretical values of the coefficient of amplitude variation for the
linear waves are in fairly good agreement with measured values (Figs. 5.4-
5.6). This agreement between theory and experiment allows us to conclude
that the theoretical model for the acoustic medium discussed in Section 5.1
is a reasonable omne.

Examination of Figs. 5.7, 5.8, and 5.10 shows that CAVUSB tends to
increase with either increasing array length or increasing range. This re-
sult seems reasonable if we recall the physical considerations discussed in
Section 4,6. It was noted there that the coefficient of amplitude variation
for both nearfield and farfield parametric receivers depends upon two con-
tributions: one from the high frequency waves in the interaction region
and a second from the signal wave. As the range between signal source and

parametric receiver is increased, the contribution to CAVU from the signal

SB
wave is increased. This is simply because more scatterers are present in
the propagation path of the signal wave as the range is increased. Simi-
larly, as the array length increases, there is an increase in the contribu-
tion to CAVUSB due to the pump and upper sideband waves, because they
propagate through an increased volume of scatterers.

Similar considerations apply to the results shown in Fig. 5.9. It can
be seen in the figure that, for an array length of 0.1 m, the amplitude
fluctuations in the upper sideband wave and in the signal wave are approxi-
mately equal; i.e., CAVUSB/CAVS = 1 for long ranges. It can be shown theo-
retically that this is also true for the 0.5 m array length, although CAVUSB
and CAVS become approximately equal at larger ranges for the 0.5 m

long array than for the 0.1 m long array. This result is reasonable, be-

cause as the range of the signal source is increased, the fluctuations in

B ol ek abef il s ot € T .J
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the signal wave will increase while the high frequency fluctuations in the
interaction region will remain constant. At sufficiently long ranges, the
contribution to CAVUSB due to scatterers in the interaction region will be-

come negligible, and only scattering of the signal wave will contribute sig-

nificantly to CAV . For array lengths greater than the cspatial correlation

UsSB
distance of the signal wave fluctuations, it may be expected that CAVUSB
would become less than CAVS at sufficiently long ranges. This effect would
occur if the parametric receiver summed uncorrelated 'moise' throughout the
interaction volume, thus 'averaging out' some of the fluctuations. The size
limitation of the model tank and choice of signal frequency prevented a

demonstration of this effect; it would be an interesting point to pursue in

future research.

5.5 Summary

The experimental study described in this chapter investigated some
effects of medium inhomogeneities on the parametric receiver. The experi-
ments were conducted in a model tank in which an array of immersion heaters
and a perforated screen produced a thermal microstructure. Measurements
were made of the coefficient of amplitude variation for the signal, pump,
and upper sideband waves associated with a nearfield parametric receiver,
the measurements being made as functions of array length and of range from
signal source to hydrophone. It was found that the amplitude fluctuations
in the signal and pump waves were reasonably well predicted by the theo-
retical work reviewed in Chapter 3. It was found that predictions of
amplitude fluctuations in the upper sideband wave required a theory which

takes into account the phase variations of the pump radiation in the near-

RSN

field of the pump transducer. Some simple conclusions were drawn from the

experimental results and from physical conslderations: CAVUSB increases

RN RN T

with range and with array length; and for sufficiently large ranges, signal
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wave fluctuations i1 easured by 4 point hydrophone will approximately equal

the sideband fluctuations measured by the parametric receiver.
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6.1 Summary ot the Thesis

The aim of the investigation reported in this thesis was to determine
the effects that medium inhomogeneities have on the performance of a para-
metric receiver. An introduction to the study was given in Chapter 1,
where the topics of nonlinear acoustics and wave propagation in an inhomo-
geneous medium were briefly discussed.

In Chapter 2, the basic principles of parametric receiving arrays were
reviewed. It was shown that nonlinear interaction between an incoming
'signal' wave and a locally generated 'pump' wave produces an array of vir-
tual sources in the region in front of the pump transducer. For a homo-
geneous acoustic medium, this array has the same directivity characteristics
as a conventional end-fire array realized from elements operating at the
frequency of the wave to be detected. Expressions were given which describe
the interaction frequency pressure field when the hydrophone of the para-
metric receiver is placed in the nearfield and in the farfield of thne
pump transducer. Practical considerations regarding processing of the
difference frequency signal, shadowing, and finite amplitude attenuation
were discussed briefly.

A discussion of acoustic wave propagation in an inhomogeneous medium
was given in Chapter 3. Brief consideration was given to the historical
development of the subject. It was seen that acoustic scattering in the
ocean is primarily due to the thermal microstructure, which produces random
variations in the refractive index of the acoustic medium. Two functions

were discussed that can be used to describe an inhomogeneous medium: the

spatial correlation function, and the spatial wavenumber spectral density.
Because the spectral composition of an inhomogeneous medium may be deter-

mined by turbulence, some basic concepts from turbulence theory were
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presented. A summary of expressions was given for amplitude and phase
fluctuations and their correlation.

In Chapter 4, the analytical methods discussed in the two previous
chapters were used to develop a theory predicting fluctuations in the inter-~
action frequency pressure wave for both nearfield and farfield parametric
receivers. It was assumed in developing the analysis that (1) the medium is
weakly inhomogeneous, so that the amplitude and phase fluctuations are small
compared to unity; (2) there is complete transverse correlation of amplitude
and phase fluctuations in the interaction region of the array; and (3) the
signal source is located on the main beam of the parametric receiver. By
approximating the pump wave as being planar and collimated, it was shown
in Eq. (4.22) that meanesquared amplitude fluctuations for the nearfield

parametric receiver may be vw~iiten as

L
<32 S <B.B.,> dz_dz (6.1)
PR L2 172 1772 i )

o]

where <BlBZ> 1s a convenient notation for the nine correlation terms
specified by Eq. (4.30). A similar expression was derived for the farfield
parametric receiver [see Eq. (4.29)]. These integral expressions, Egs.

(4.22) and (4.29), were evaluated by making a number of assumptions regarding
the spatial correlation of the various amplitude fluctuations. The following
results were obtained. For the nearfield parametric receiver, the coef-

ficient of amplitude variation is given by Eq. (4.49), which is

CAV 2 . 0.3375 ¢ 2 k 7/6 Lll/6 + Lo s (a + bL)3/2 - a3/2-|2 s (6.2)
PR nop 1.2 912 J
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- L2 7/6 _ 11/5 3n 4 4 3
where a=20.13 Ln kS ZS + Z§B-¢m( . K_) Zs ,
] _ 11 oo 2 7/6.. 5/6 3n 4 4 2
and b = 6(O.lj Ln k )Z + %80 ¢m(Kt Kn YZ .

2./, 3 3 2 -1 2L
2L

k 7 a” <u"> Z _ tan + 0.1415 C 2 k 7/6 _11/6 s
s s n p L

k a2
s (6.3)

where a 1s the correlation distance of the refractive index variations.

The experiments discussed in Chapter 5 were conducted in a model tank
in which an array of immersion heaters and a perforated screen produced a
thermal microstructure. Measurements were made of the coefficient of ampli-
tude variation for the pump, signal, and upper sideband waves associated
with a nearfield parametric receiver. It was found that the amplitude fluc-
tuations in the signal and pump wuves were reasonably well predicted by the
theoretical results reviewed in Chapter 3. Amplitude fluctuations in the
upper sideband wave were compared to theoretical predictions based on the
analysis of Chapter 4, and to numerical results based on a theory which
uses a more exact model for the pump radiation than that of Chapter 4. Both
theoretical models gave predictions which were in reasonably good agreement
with the experimental results, although the numerical results were generally

in better agreement.

6.2 Discussion of Results

The coefficients of amplitude variation for the nearfield and farfield
parametric receiver each contain a high frequency component due to scattering
of the pump and interaction frequency waves, and a low frequency component
due to scattering of the signal wave.

If the array is sufficiently long, and if the pump frequency is much

higher than the signal frequency, then the low frequency contribution will
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be negligible, and the coefficients of amplitude variation for the para-
metric receivers will be approximately equal to their high frequency com-
ponents. This point is demonstrated by the experimental results shown in
Fig. 5.7, where, at shorter array lengths, CAVPR tends to 'level out' at a
value determined by the high frequency contribution. Also, it can be seen
from Fig. 5.8 that CAVPR tends to increase with increasing array length.
In the numerical example for the farfield receiver (see Fig. 4,6), it was
seen that, for longer array lengths, the high frequency contributions were
dominant.
If the array length is sufficiently short, and if the range of the

signal source is large, then the high frequency contribution to CAV will

PR

be of the form

L
2 .1
CAVPR = Lz /[<Bs(zl)BS(22)> dzldz2 ,
o)

which is identical to the coefficient of amplitude variation for a continuous
end-fire array of length L. Therefore, it is only when the low frequency
component of the fluctuations is dominant that the parametric receiver per-
forms like an end-fire array in an inhomogeneous medium. Otherwise the value
of CAV is greater for the parametric receiver than that for the end-fire
array by an amount determined by the scattering of the high frequency waves
in the interaction region. For very short array lengths, the parametric

receiver and the end-fire array will behave like point hydrophones, so that

- 2
CAV,. = CAVZ = <B_*> (L0 . }
This conclusion is supported by the experimental results shown in Fig. 5.9,

where it is shown that the coefficients of amplitude variation for the

parametric receiver and for the 'point' hydrophone tend to become equal at

longer ranges.




Ferarras denprhs preater than the spatial corvelation 4 face 0! 4o

Pl e Lluctuations, but i satticiently short that ghae Wi b e -
Thactuations ave negligible, 11 man be expected that AT wonld £ e o

PR
3

rhan 'Bﬁ"*. This etyoct wouly oveur it the parametric recciver sumred
ancorrelated "noise' throughout the interaction volume, thus ‘ave raving oot
some of the fluctuations. In this wav the parametric receiver woild exbibil
the array gain of a conventional c¢nd-tfire array having an array 1:.avth piete
than the correlation distance of the signal wave fluctuations. lnis ctic:s
was not demonstrated in the experimental study, due to the sice limittive
the model tank and the choice of siypnal frequencys: it would be ap interest i,
topic for future research.

6.3 tonclusions

The purpose of the investivation reported in this thesis has been achilo- b,
that purpose being to determine the ctiocis that thermal inhonoponceitien b
upon the performance ot the paramet. ic receiver. 1t was Jdetermined bot
theoretically and experimentall  that the thermal microstructare gencratod in o
model tank produced a negligibly small level of fluctuations in the sidehand
waves of both nearfield and farrfield parametric receivers. ‘The maximun 1o !
of sideband fluctuations measur ed was 0,05, or five percenl. ' was shown
theoretically that the effects of a typically encountered thermil micrest: nctur:
fn an ocean application are also likelv to be small. Only at arrvav length-
sreater than about 125 m (for o 100 kHz pump frequency) are the flucteataov. i
sideband pressure likely to exceed 0.1, or ten percent. The main condlnsion
of this work, therefore, is that the thermal microstructure will generally hav, .
4 negligible effect upon parametric reception.

There are several other conclusions that can be drawn fron the studv. N

reconciliation of experimental and theoretical results provides ovidence (hat
o

the spectral description of the medium, as formulated bv Chotireo~ and Smith,
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is correct. Furthermore, as this spectral description is based upon Pao's

model of the dissipative subrange, the present results provide further evidence
to support Pao's model.

In comparing results for the nearfield and farfield parametric receivers,
it may be concluded that the thermal microstructure will, with all other
conditions being the same, have less effect on the farfield receiver than the
nearfield one. This assumes that the condition L0f>vf7;1 is satisticd, so
that the results in sections 4.5.1 and 4.5.2 apply.

It was determined that varying the array length of a param:tric receiver
has two effects upon its performance in an inhomogeneous medium. Firstlyv, if
the array is long compared to the correlation distance of the signal wave that
is to be detected, then the array will tend to reduce the level of the signal
wave fluctuations by ‘'averaging them out' over the array. In this regard, the
parametric receiver performs like a conventional end-fire array of the same
length. Secondly, the fluctuations of the pump and interaction frequency waves
increase with array length, so the performance of the parametric receiver will
be degraded in comparison to that of the end-fire array at very long array
lengths. 1If the randomizing effect of the medium on the incoming signal has
already been large by the time the signal reaches the parametric receiver,
then the signal wave fluctuations will dominate the medium effects, and there
will be little difference between the performance of the parametric receiver

and the end-fire array.
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APPENDIX 1. DERIVATION OF EQUATIONS (4.20) and (4.21)

i S T T k5 S e i

The integral we wish to evaluate is the transverse component of the

second order pressure in the interaction region and is given by

b b
1 .
I = T exp(—Jk+r)dxdy, (Al.1)

~b b

1
where r = [(L - 2)2 + x2 + y2]2 .
107

Using a procedure developed by Berktay, we will find an approximate
expression for I, cast that expression into the form of Fresnel integrals,
and then use asymptotic values of the Fresnel integrals to obtain a final
result.

In Eq. (Al.1) make the fo'lowing approximations: in the 1/4 term, use

r =L - z; and in the argument of the exponential term, use

[anll BN N
i
N
[h]

Making use of the symmetry in x and y, Eq. (Al.l) can then be written as

-jk, (L - 2) b b
1= Ze / exp[-jktxz/(L - Z)]dx/‘eXP[‘jkiYZ/(L - z)]dy .

L -2z
(o) o (Al.2)

This expression contains two integrals of the form

b
F =f exp[—jkiu2 (I. - 2z)]du . (A1.3)

o}

Making the change of variable,




Eq. (Al.3) becomes

b
F = m (L _—z>—/exp[—j1 v2]dv , (Al.4)
k, 2
- ]
k, =
where »'' =b [;Yi—f—;y] . The integral in Eq. (Al.4) is the Fresnel

integra® and in the nearfield of the pump transducer the following asymp-

totic value ray be used93’47

1im exp[—j%-vz]dv = %(l - 1) . (Al.5)
b
o

Substitution of Eq. (Al.5) into Eq. (Al.4) and using the result in Eq.

(Al.2) gives

) =ik, (L - 2) ?
. 2e - 1 ./ (L - 2)
I = (L — Z) [E).-(l - J) k+ ] ’
or
_ -jk, (L - 2)
1= * ) (A1.6)
+

This appears in the text as Eq. (4.20). A similar result can be obtained
for the normalized homogeneous component, H, of the observed pressure.

The definition of H is given in Eq. (4.16) and is.

-ik,(z + ') 1
H"fe - ?,—dv .

\Y

This can be written in terms of I as

L

—jk+z
H=[e - I dz . (Al1.7)

[o}




Substitution of Eq. (Al.6) for I gives

~jrL e—lkiL

k

*

H =

which appears in the text as Eq. (4.21).

da IS PO N . . .




APPENDIX 2. TRANSVERSE CORRELATION OF FLUCTUATIONS

One of the assumptions made in the theoretical analysis of Chapter 4
was that there is complete transverse correlation of amplitude and phase
fluctuations in the interaction region of the parametric receiver. We will
discuss this assumption for both the nearfield and farfield parametric re-

ceiver in this appendix.

A2.1 Transverse Correlation for the Nearfield Case

For a plane wave, the volume of inhomogeneities that contribute to the
scattered pressure is a cone with its vertex at the observation point and
an aperture angle of 1/ka radians, where a is the radius of the inhomogenei-

81f the medium contains a distribution of various sizes of inhomo-

ties.!
geneities, there is a cone associated with each size, the largest cone being
associated with the smallest inhomogeneities. At each point in the inter-
action region of a nearfield parametric receiver, therefore, only the
scatterers contained within their associated cone contribute to the ob-
served scattered pressure. Furthermore, only scatterers insonified by the
collimated pump beam contribute to the observed pressure. The volume over
which the fluctuations are assumed to be transversely correlated is the
intersection of the cone and the insonified region, as shown by the diag-
onal lines in Fig. A2.1.

As an example, for the model tank used in the present study, mest
patches contributing to the acoustic fluctuationms will be larger than
a-= Zﬂ/Ko = 4.19 x 10-3m. This means that the largest cone will have, for
pump waves of 10 MHz, an aperture angle of 5.7 x 10_3rad. For an array
length of L = 0.5 m, it can be shown that the width of the significant
scattering volume in the middle of the array (at z = 0.25 m) is 1.43 x 10_3

m. It can be found from Tatarski's results (Fig. 13 of Ref. 19) that the

correlation coefficient for the maximum transverse separation, 1.43 mm, is
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RT = 0.65. The transverse correlation coefficient for a 9 MHz plane wave

B
at a range 0.255 was measured in the model tank to be84 Rg

ration of 1.4 mm. These results indicate that the assumption of complete

£ 0.7 at a sepa-

transverse correlation of the pump amplitude fluctuations is reasonable for

array lengths L < 0.5 m. A comparison of the correlation coefficients RT

B
and Rg [see Eqs. (3.38) and (3.39) or their plot in Fig. 3.3.1 of Ref. 91]
indicates that, for 0 < (Ap/a) < z, RT > RT. This means the phase fluctua-

S$— B

tions will be correlated over a larger volume than the amplitude fluctuations.

A.2.2 Transverse Correlation for the Farfield Case

For a spherical wave, the significant scattering volume is an
ellipsoid with foci at the points where the source and receiver are lo-
cated.68 The maximum transverse dimension of the significant scattering
volume for a scatterer of radius a is given by Aiken108 to be equal to
L tan[(AKa)-I]. For a point source, the condition of having complete

transverse correlation of fluctuations is therefore approximately given by

K
Lt 9 1< ,
an [8ﬂk] t

where 1: is the correlation distance of the fluctuations; i.e., the

separation at which R; equals l/e.

For a source having a finite aperture and, hence, directivity, the volume of

scatterers which contribute to acoustic fluctuations is the intersection of
the significant scattering volume and the volume insonified by the source

beam-

et Rl

o

-

——arramn
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APPENDIX 3. TRANSDUCERS
The transducers used in the experimental study are described in this

appendix. .

A.3.1 Signal Source

The signal source transducer consisted of a 2.0 cm square ceramic plate
mounted on a backing made from a mixture of flyash and epoxy resin. The
transducer was operated at its resonant frequency of 1 MHz. 1Its efficiency
was measured with a radiation balance, and found to be 37%. The 3 dB beam-

width was measured as 3.2°.

A.3.2 Pump Transducer for the Nearfield Receiver

} ‘ The pump transducer used with the nearfield parametric receiver
consisted of an air-backed 1 cm circular ceramic plate, resonant at 10 MHz,
and mounted in a brass housing. The diameter of the housing was 2.0 cm.

A radiation balance was used to measure the transducer efficiency, which

f .
- —ien

P

L e whean, X

was found to be 3.4%. Excess attenuation of the pump wave at ranges of

10 em and 50 cm was shown to be negligible by demonstrating that the pump
pressure increased linearly as a function of driving voltage applied to the
pump transducer. The 3 dB width of the pump column was measured to be

0.38 cm at 10 ¢m range, and 0.75 cm at 50 cm range.

A.3.3 Pump Transducer for the Farfield Receiver

For the farfield parametric receiver, the pump transducer was a 0.5 cm
square ceramic plate backed by epoxy resin. The efficiency was determined
from admittance measurements made in air and water, and was measured to be

3%.

A.3.4 Hydrophone

The hydrophone used in the experiments was a 2 mm square ceramic plate

backed with epoxy resin. Its sensitivity at the frequencies of interest are
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given in Table Al.1. The sensitivity was determined by placing the hydro-

phone in a pressure field of known amplitude and measuring the voltage ap-

129

pearing at the hydrophone terminals.

£ s
MHz wv/Pa

1 8.37 x 107>

9 3.7 x 1073

10 1.31 x 1073

11 1.15 x 1073

f = frequency

w
[}

TABLE Al.1

receiving sensitivity

HYDROPHONE SENSITIVITY
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APPENDIX 4. ELECTRONIC RECEIVING SYSTEM

A block diagram of the electronic receiving system used with the
nearfield parametric receiver is shown in Fig. A4.1. The hydrophone is
transformer coupled to the filters and tuned amplifiers that are used to
separate the various signals.

A single channel of the signal processing unit is sketched in block
form in Fig. A4.2. For the 'upper sideband' (USB) and 1 MHz 'signal' chan-
nels, a peak detector based on Knott's deSign109 was used. For these two
channels, a sample and hold circuit was constructed that uses a National
Semiconductor LF398 integrated circuit. The peak detector and sample and
hold circuits used for the 'pump' channel had been used in previous
studies and are described in Ref. 110. The data logger was a commercial
unit made by Solartron.

The gain of each chanmel at the frequencies of interest is shown in
Table A4.1. The voltage transfer characteristic of the receiving system
was determined by replacing the hydrophone with a voltage source and mea-
suring the output voltage for each channel of the signal processing unit
as a function of input voltage. Each channel was determined to be linear
over the voltage ranges used in the experiments.

A block diagram of the receiving system used with the farfield
parametric receiver is shown in Fig. A4.3. An inductor Lo was placed in
parallel with the hydrophone to tune out the static capacitance of the
ceramic plate at the lower sideband frequency, 9 MHz. The low-pass filter
shown in the figure attenuated the pump frequency voltage by approximately
40 dB, and attenuated the 9 MHz voltage by about 11 dB. The variable-gain
tuned amplifier was operated typically at a gain of 50 dB, with a bandwidth
of approximately 70 kHz, centered about 9 MHz. The signal processing unit
was that described in Ref. 110. It selected a 10 to 35 psec section of the

received pulse, the section being sampled about 40 psec after the beginning
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of the pulse. The sampled pulse was peak-detected and converted to digital

form by the data logger.

Frequency Gain
Channel MHz 4B
1 + 48
1 MHz 10 - 48
Signal
i 11 - 45
{
|
X 1 - 32
4
' 10 MHz 10 + 11
N Pump .
11 - 12
1 - 60
11 MHz 10 ~ 49
USB
11 + 24
TABLE A4.1

FREQUENCY RESPONSE OF SIGNAL PROCESSING UNIT

e




APPENDIX 5. COMPUTER PROGRAMS

This appendix contains listings of the computer programs used in this
study. All programs are written in the FORTRAN language. The program
AFLUCT was written for a PDP 11 computer. Program CAVANA and CANVUM were

written for a CDC Cyber 171 computer.




1o

ConevdgaattaadbanavanrooaannpbRovigpapsaftotadinecatavacpontaese

C Proasresm AR LY

CRRAaRRad oo 0atadalacndanadtadtgnagdadaetndtaeondaconndatade
C THIS PROORAM CALLYL ATFSs THF MFaf, STANUCARD UFYTATION,
COFFFICIENT UF AMPLITUDE VAKTIATICONe AND

AUTOCORRELATION FOR DATA WEAD FirM PAPER TaAPF.
PROVISION IS Mabt ¢0R | = 5 CHANEL S OF DATA,

A HIOH PASS FILTEPD wWiITk Varlan p CUTUFF FREQUENMCY

Is PROVIDED

OOOOONO G

SET UP ARRAYS,

DIMENSIUN
DIMENSTIOUN
DIMENSIOUN
DIMENSIUN

RLABEL (g) o JLABEL (4) o ADY (3) 9 ADD ()
DATA(S9s5) sCRUS(5) «CPRUISeS) s COVIReS)I]X(S)
RMEAN(B545) ¢SUSIG) «CVS(S) g RMX (&)
SUX(G) o cVXI(B) 4STN (D)

o ENTER DATA INTO AWRAYS,
DaTAa RLABEL/ZMEANZs2SUVNZ 42 UVAZYZAUCO#42rRCOZ/
DATA ILABFL/2  292F 212S 2ezRF#/
DATA ADI/#1%) 242192 2921083 #/
DATA ADZ/#1%) #4#283 20230 #/

¢ STaART HERE AT HEGINNING OF tacH TAPLe

| CONTINUE
REWLIND

C Keap InN FLILTER COHSTANT
WRITE (by 340}

3900 FORMATY (/7% tuMBER POINTS I~ FILTERZ/)
READ (693 1) JFLTR

301 FORMAT (1)

IFLI=IFLTR=1
In NUMHER OF CHANNELS wiTy (FATA
WRITE (by302)
FORMAT (//72NUNRER GF CHANNFLA
READ (6903 3) MNCH
303 FORMAT (11}
c SET ARRAY (LEMENTS = g
DO 3 I=1enNCH
SDS(1)=s o
CVS(I)='0
CrOS(IVy=n,
DO 3 J=ielFLTE
DATA(TsJ) =0
RMEANI(Ts J) =0,

C READ

302 wlTh DATAZ,)

3 COViledl=De
ENZ) o
N=0
ENF=IFLIR
C
¢ READ IN TAPE ID AMD NUMBER OF POINTS TO BE ANAIYZED
C
WRITE (697 )
T0 FORMAT (//2 1D #/)
READ(6989)
80 FORMAT (X)
¢ WRITE (69T
T1 FORMAT (/7% NiMAER OF POINTS (udSk 13)#/)
REAU(6981) INSP

8l FORMAT ({3}




c
c
C
5

101

O 000

100
16

14

15

1R

SHIFT pATA THROUGH ARRAYs READ In NLw DATA

CONTIHUE
DO 7 Ixly4nNCH
DO 7 J=l,1FL T

K=IFLTR=J

DATA(IgsKe1)=PATA(TIK)

READ(Se1019END=19,ERR=19) DaTA(lel) o IX(1)aDATA(R20]),
2 X(2)9DATA(391)0IX(3) sDATA (419 IX(4)eDATA(S,1)9]X(5)

FORMAT(FS v [3¢FT7430130FT7,39134F7e3013)

TEST FOR END OF TAPF,
DO 8 I=l,NCH
IF(LATA(1 1) ,EQ.0,) GO TO 13
TEST FOR wAD DATA
IFCIX (L) gNEG6- ) Go TO B9
IF(DATA(TI+1),.6T41,98) 6O TO 5
IF(DATA(T L 4)  |.T.0,065) GO Tr &Y
CONTINUE
IFIN,GT«0) GO TO 16
PRINT FIRST DATA
WRITE(69100) (DATA(Is1)wI=)oNCH)
FORMAT (L1H FIRST DATAsIXe5F7e3)
N=N+]
IF(NJLESIFLTY) GO TO B

COLLECT DATA INTO SUMS AND SUMS CF SWUARES AND PRODUCTS

ENSEN®]

DO 15 I=]1sNCH

RMX{I)=0,

SPDX{(I)=L,

NG L4 JS19IFLTR

RMEAN (T J) =R AN(T9J) *DATA (T J)
SDX{1)=S5DX ()« (DATA(Tod) #0p)

RMXUI)=RMX (IY+DATA LTI}
COVIIod)=COV(ToJ)s(DATA(T,1)*DATA(IsJ))
CPRU(1eJ)=CPRN(19J)*DATA (19 ) #UATA(20J))
CPRO{292)=CPRO(29y) * (DATA (29 J)PDATA (3, U))
CPRO(34)=CPRO(A9J) ¢ (DATA (9 ) #DATA(Yy )
CONTI1MNUE

RMX(I)sRMX{]) /ENF

RMS=RMX (1) ##)>

SOX (1) =SpX 1) /ENF

SOX(])=SpX(])=RMS

spS{1)=SpsStIy+sSuX(1)

IF (RMS.tQe.Ce) GO TO 15

cvS{II=LVSIT)« (SDX(T)/HMS)

CONTINUE

IF(NJLTSINSP) GO TO &

6o To 2

INSP=y




c PROCESS DATA
20 CONTINUE
wrRITE ey )y
102 FORMAT (L ReInyie SaMPLES/ )
DO 3 L=
C CALCUL a Tk THE ME L OF AL MUY TH FIRST TwO nara PNINTS
C 39 JEY e lFL TR
RMEAN (L) =Rty AN{]9J) /LN
CONTINUIE
CaLCuULATE STANDARD DEVIATION Fov ALL BUY
THt FIRST FOUR UATA POINITS
STUUII=(COVIIWVI)/ZEN) = (KMFATI{lol) ®®2)
STOCI) =SURT(STN (L))
CALCULATE COLFFICIUNT oF vAR, w/" FILTER FNR
AL BUT FIRST FOUR POINTS
RMX(I)I=STDO L) /RMEANTT 9 1)
FILTERED STANDARD DEVIATION
SOX (I =SaRrY(SnS L) Z7E)
FILTERED COEFFICIFNT OF VARIATION

23 CVX(I)=2SQRTICVS (1) /7E)
WRITE (60204
104 FORMAT (8H CHAMNEL 96Xe2H 148x82H 298X92H 3.8X
2 2H 448X y2H 5/7)
WRITE(62153) RLABEL (Y)Y s TLAHI L (L) 9 (RMEAN (T4 ) o I=19NCH)
WRITE (69133) RLABEL(2) o TLANIL (L (STD(1) o121 4NCH)
WRITE(E6) 33) RLABFL(IY o TLAM L3} o (RMX(I)oT=y9NCH)
wWRITEL69) " 3) RLABEL(2)YsTLA L(2) 9 (SDX(I)eT=)9NCH)
WRITE{6e]1 3) RLABEL(3) o TLABYL(4) s (CVX(I)oT=}eNCHI]
103 FORMAT (LX A5, A245F 1,41
c CalLCULATE AUTOCORRILATION FUNCTICN X(Is1)®X{Te 1)
DO 24 J31elF{ TR
DO 25 I=1eNCH
RMXCE) =00V (L) SENY={RMEAN (TOL)*RMEAN(T &} ))
e 7{STD (L)Y n¥2)
25 CONTIHUL
WRITE (691 3) RLABEL (4 eIl A" L {3) e RMX[]aNr-)
CONTINUL
IFIINSPeFRen) GO TOU 1
GO TO 4
c IF ERRORS ARE PRESFENT IN DAVAy CONTROL COMES HFRE
50 WRITE(H92 1IN
WHITE(O699GIDATA(L 1) o IX (1) 9y ATA(291) 4 IX(2V9DATA(3r])
2 vIX(3)GUATA(Ge ) 01X L&) JLATAISIL) 0IX(S)
REAV (P Z0PTUATA(L 1 o IX(1) o lATA(201) s IX(2)Y9DATA{39])
2 2IX(3)yDATA(49)9IXE4) 4DATA(DIL) 9 IX(5)
G0 TO &
99 FORMAT {1XFS o343 13,F7,3913,F7e39139FT7.3913.F743¢137)
202 FORMAT(FS 39 130FT7,39139F7,3¢030FTe30139F7,.3,11)
201 FORMAT (6H ERPORIS)
END

O0OW
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c000000000.900.0000.09000QQQO0.QQQQ.Q.G..00000.00.000.00.00.

PROGRAM CAVANA (INPUT,OUTPUT)
CQOOOQQQQOQQQOQOQOQnOQQouounﬁooaﬁooﬁuacgooaoaoocoooobooooooo
C

REAL KPIKSIPHIoKTyKMoL o .F ¢MUPoMUS

COMMONZA/ KPoKSvPHIOKTvKM.L.LF'MUPQMUSoZS-RNGoPI

COMMON/B/ CAV,CSIGsCPUMP

KP24,1691€E4 {

KS34,1691€3

DATA PHIyKTokM /2,8E=124179,002249/

PI = 3,14159265

THIS PROGRAM CALCULATES THE CQEFFICIENT OF ampL1TUDE
VARIATION FOR SIGNALsPUMPs AND USH WAVES USING ANALYTICAL
EXPRESSIONS DISCUSSED IN CHAPTERS 3 AND 4.

THE TURBULENCE PARAMETERS ARE VARIED WITH
POSITION IN THE TANK, v A

AN APERTURE CORRECTION FACTOR IS USED To COM=-
PENSATE FOR THE FINITE SIZE OF THE HYUROPHONE.

SET RANGE AT RNG=0,75M AND VARy THi ARRAY LENGTM,

RNG=0,75
PRINT HEADING FOR RESULTS OBTAINED WITH FIXED RANGE o
PRINT 12 ,
10 FORMAT (/+16X92THE FOLLOWING ARE FOR RANGF=.,75 M#)
PRINT 2"
20 FORMAT (/422X 02 #2910X9#CPUMP#s1yXe2CAVUSRS)
C VARy ARRAY LENGTH IN INCREMENTS ofF 0,05M.
DO 30 I=1914

O O0O00O0OOOOOOO0

o -

RI = 1|
L= RI’ 5.05
ZS = RNGe|

2 C CALCULATE CAV FOR PUMPsUSBsAND SIGNAL WAVES,
CALL CAVSyB
PRINT 21,L9CPUMP,CAV

21 FORMAT (/916X4FB,292F15,6)
30 CONTINUE
Cc
C SET ARRAY LENGTH AT [ =20,1M AND VARY RANGE,
c
PRINT 11 )
11 FORMAT (///74¢ THE FOLLOWING ARE FOR L = n.] M#)
C PRINT HEADINGS FOR THESE RESULTS,
PRINT 25
25 FORMAT (/920X ¢2RANGE#98X 205162 012Xs2CAVE)
L s 0.1

C VARY RANGE IN INCREMENTS OF 0.1M,
DO 31 I=)1,24
RI = 1
RNG= RI® n.leg,l
2SS ® RNGe|

C CALCULATE CaV FOR PUMP,USBs»AND SIGNAL WAVES,
CALL CAVsys
PRINT 21¢RNGoCSIG,CAYV

31 CONTINUE

i C SET ARRAY LENGTH AT _=n,5M AND VARY RANGE,
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C
PRINT 111
1il FORMAT (////4% THE FOLLOWING ARE FOR L s p,5 M#2)
C PRINT HEADINGS FOR THESE RESULTS,
PRINT 125
125 FORMAT (/920X +s2RANGE#s8BX2¢SIG%912Xe2CAVE)
L 3 0.5

C VARY RANGE IN INCREMENTS OF (elM,
DO 131 I=1920
Rl = I
RNG= RI® jeleg,5
1S = RNG=L

C CALCULATE CAV FOR PUMP,USB9AND SIGNAL WAVES,
CALL CAvsud
PRINT 21sRNGeCSIG,CAV

131 CONTINUE

END

CRRBO QNN R RONaRRRRRtaRaRRRaRRtERtaaedtatalatlaRenbadtasdadtatets

SUBROUTINE CAvsuB
CROBRPaaRRandiatatastatanstantdtattsaadotatitlateatatonntateds

C
C THIS SUBROUTINE CALCULATES THE COEEFICIENT OF amMpLITHDE
C VARIATION FOR PUMP,SIGNAL +AND USR wAVESes AND RETIIRNS
C THEIR VALUES TO PROGRAM CAVANA,
Cc
REAL KPsKSIPHT oKT o KMyL o LF 4MUP4MUS
COMMON/A/ KPoKSIPHIWKTIKML LFIMUP9IMUSIZSsRNGP ]
COMMON/B/ CAV,CSIGCPUMP
C VARY TURBULENCE PARAMETERS WITH pOSITION IN TANK,
C AUXP1l,AUXP2+AUXP3 ARE BOOK=KEEPING VARIABLES, KM
C AND KT ARE SPATIAL WAVENUMBERS, PrI IS A TURBULFNCE
C PARAMETERs AS ARE CNS ANpD CNPs wHICH ARE FOR SIGMAL
C AND PUMP WAVESe RESPFCTIVELY.
C
C VARY MU WITH POSITION IN TANK

MUP= (1452499 (L /24¢0e1)%0,8323)%2.1E~5
MUSZ (11,5249 ((2S¢L)724%0,1)+0,8323)%2,1F=5
AUXP120¢105¢ (RNG/24)
AUXP2%1¢695={RNG/2.) )
AUXPIZ(12,44¢ (1,/AUXPL) ¢ (1,7AUXP2))
KM3 (P1/2,)*AUXP3
PHI1=PMHI® (4,7854) 4KM8# (2 5)
KT1=KT®#SQRT (kM/22,9)
CNS=MUS/SQRT (4 334PI*KT %8 (=2,7/34)) .
AUXP1=0e]105%(L/24)
AUXP2%3]4695=(L/2,) )
AUXP3= (12,444 (1,/AUXP1) ¢ (],.7AUXP2))
KM3(PI/2.) *AUXP3
KT1=KT#SQRT (KM/22,9)
CNPEMUP/SQRT (" ,334PI#KT1®8(=2,7/3.))
C CALCULATE COEFFICENTS FOR FLUCTUATION TERMS,
Al = 0,31°CNP®e2 axKPe® (7, /6,)
A2 = 0,13%CNS##2 8KSO® (7 /6 .)
A3 = (P1/480,)epHIL® (KTl #ad ~KM*®4,)
C CALCULATE THE LOY FREQ COMPONENTy LFe OF THE
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C AMPLITUDE FLUCTUATIONS IN THE USR wAVEe
T1wA2%2Se8(11,/6,)
T233,#A3875083,
AaT]eT2
T3¥(11e/64)%A2%258%(S,/6,)
Ta=s3.fA3#7See>,
B=T3+T4
TS (A+BRL)##(3,/2, )=A% (3, /%)
LF3(1e/L082,)#(4,/(9,%50ap ) )aT5%%2,
C CALCULATE CAV FOR THE PUMP WAVE, AN APERTURE FaCTOR
C 1S USED TO ACCOUNT FOR FINITE SIzE OF HYDROPHONE ,
CPUMP = (,31%CNP#a2,9KPa# (7 /6e)®L0%(1]1,/4,)
HF3(0492270,31) *CPUMP
CAVSQ = (F ¢ HF
APFACY = 1o = (9,9613E~2/sQRT (L))
APFAC2 = Je = (1,0447E=1/SQRT (L))
CAV = SART(CAVSQ#APFAC2)
CPUMP = SQRT(CPUMP*APFACY)
CSIG = 04,13%CNS*#2,%KSu# (7 ,6,)*RNG*#(11,/6,)
CSIG = CSIGH ((PI1/480,)*PHTII4(KT100g axMang,,)
= 2 ®RNG*#34)
‘ cs16 = SQRT(CSIG)

RETURN
END
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CQQQOQQQQO.Q.QQ........0...Q.QQ.'QOQ.Q.QQO..QQQ.'....Q......

PROGRAM CAVNUM (INPUTSsOUTPUT)

CROUR BB EpUBIRBERRORLPROORABRINNIRIRANIRRBROBRNRUARQRRRAREES

OO0 ONOOOOHOODOOOO

c

c
c

THIS PROGRAM CALCULATES THF MFaAlN SQUARE AMPLITUDE
FLUCTUATIONS IN THE STDEBAND PRESSURE FOR A PARAMETRIC
RECEIVER, WHERE THE HYDROPHQNE 3s IN THE NEARFIE| D OF
THE PUMP TRANSDUCER. A NUMERICAL INTEGRATION IS USEDNe

THIS VERSION OF THE PRQGRAM IS USED TO COMPUTE CaAVPR
FOR AN ARRAY LENGTIH L=0.]M AND VARTABLE RANGEes SIMILAR
VERSIONS OF CAVNUM ARE USED FOR L= «5M AND VARTARLE
RANGE, AND FOR FIXED RANGE AND VARIARLE ARRAY LENGTH,

SET Up INITIAL VALUES ANp CONSTANTS. KSyKP4AND x11Sg aARE
SIGNALsPUMP, AND USB WAVENUMBERS, AL IS ARRAY LFNGTHe
CNP AND MUP ARE TURBULENCE PARAMETFRS IN THE INTFRACTION
REGIONe CNSeMUykMykTy AND PHI ARE TURBULENCE PARAMETERS
IN THE CENTRE OF THF TANK.

REAL L’KS’RP'KUSB,KM’KT’MU’NUP
REAL IMKIjsIMKIZ
COMPLEX C19CPyVUSRKZ9AUXT 4 AUX29AUXISRINT
COMMON/AZAL(27 ) o2 G 0Z2¢1 )
COMMON/B/CNP yKP s CNS*KSIPHT ok ToKMIP T oMU ZSe A4 AP
COMMON/C/KT14PHIL4A) 9A29A39A@sAS L eI o JoKeMeNIMUPIRBL
COMMON/D/KUSB9A119AUSBIAS,A64+B1B2¢S1524H1S2s5182
DIMENSION Y1(10)9SUMZ1(10)9sSUMRI(10)sSRL(10)sSIM(10)
DIMENSION Z(1 )eRNG(1")
DATA CNP,KP /1,162E=494,1691E4/
DATA CNSsKS /1,9594E=444,1601F3/
DATA PHIKTykM /2,8E«124179,0,2249/
PI = 3.14159265%
KUSB=4 ,586E 4
FILL ARRAYS WITH ZEROCS AS INITIApL vALUES.
DATA SUMR1#AL .2 /30%0.0/
DATA Z19229Y1,SUMZ174 *0,/
AR AND HR ARE THE CHARACTERISTIC RaDI1l OF THE Puwp
TRANSDUCER AND HYDROPHONE *RESPECTIVELY,
AR=0,005
HR®1,128€-3 )
LeRLIM IS THE UPPER LIMIT OF INTFGRATION,.
RLIM=0,001

AP 1S THE EFFECTIVE PATCwH SIZE,
AP=]1,41E-?
2(0)921(1)922(1) ARE LOWER LIMITs nF INTEGRATION,
21113l ,E=8
Z1(1)=1.E-8
22(1)=214E-8
PRINT MEADING FOR RESULTS. -
PRINT 30
FORMAT (/ 48Xy 2CPRE, 12X 9 BRANGF 2o 15X 9272529151 2L 8)

VARY RANGE wITH ARRAY LENGTH CONSTANT AT 0,1M]
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DRNG.O [ 2
AL({1)=00]
RNG{1)s .2

DO 97 N=1ly1ln

CALCULATE HOMOGENEOQUS USB SIGNAL ,VUSBAT THE
HYDROPHONE OUTPUT.

M= {AL(1)=RLIM) /8,
L=AL (1)
ZSSRNG(N) =L

VARY TURBULENCE PARAMETERS WITH pOSITION IN TANK

MUS (1652499 ((ZSe()/2,%0s1) ¢, 08323)#2,1E-5
MUPZ (1,5269% (1L/2,4001)90,8323)%2.1E=5
AUXPLI=0e10Se(2S*L) /2,
AUXP221¢695~(2SeL )72,

AUXP3E (12,4441 ,/AUXP1*1,/7aUXP?)
KMF(PI/2.)#AUXP3

PHI1=PHI® (4,7854) #KM#® (o ,5)
KT12KT#SQRT (KM/22,9)
CNSSMU/SQRT (0, 33#pI*KT10% (<24/3,))
AUXPLl=0e105+L /2,

AUXP22]4695=1 /2,
AUXP3=(12,44¢1,/7AUXP1+1,/7aUXP?)

KM (P1/2,) #AUXP]

KT1=KT#SQRT (KkM/22,9)
CNP=MUP/SQRT (7 ,334P1oKT )08 (=2,/3.))

CALCULATE COEFFICENTS FOR FLUCTUATION TERMS,

Al = 0,319CNp*a2 aKPe®(T7,/6,)
A2 = 0,130CNS*#2 ,#KSe#*(7,/6,)
A3 = (P1/6480,)#PHI1*(KT1eas =KMP®4,)

AGS2SE-24Kpaeey Pe2
ASE] (2SE~2%KSHN2eMUSR2

INTEGRATE HOMOGENEOUS PRESSURE USING SIMPSONeS RilLE,

DO 50 I=1,9

CALCULATE Cl AND C2, AXoAUX ARE AUXILARY VARIABLFS,

AX1= (KP# (AR®®#2,)) /(2,%2(1))

AUX1=CMPLX (1,00AX])

AX23 (KUSB® (HR#*#2,)) /(2% (L =2(1)))
AUX2eCMPLX(1,00AX2)

AXIZ (4,2 (1) (LeZ(I))V/((HR#®D)*(AR®#2 )
C2=AX3®AUX1®*AUX2

AXIS ((KP##2 ) # (ARG®2 ) ) /(4,0 (Z2(])%e2,))
AUX1=AX1/AUX]

AX2B ((KUSB®#2 )% (HR*82,)) /(40 (L=2(]))¥*92,)
AUX2EAX2/AUX?

AXIZ(KP/ (2e%Z (1)) )¢ (KUSR/ (2,%(L=Z(]))))
AUX3=CMPLX (04 9AX3)

C18AUX3*AUX]1 +AUX2

€ CALCULATE REAL AND IMAGINARY PARTS OF INTEGRANDeRINT

RINT=1,/7(Ccl®*C2)
SRL(I)=REAL(RINT)
SIM(])=AIMAG(RINT)

INCREMENT Z(I) BY H,

2(1¢1)32(]1)em
CONTINUE




L;.

C PERFURM INTEGRATION, (a CULATE rEal AND IMAGINARY PARTS
C SEPARATFLY.

1 frht e s st il (RYe @SRRI (Theg oS50 (B1¢SRL(9))

1 el 1519, 04 IM (A e o ®SIM(T)e4,9STM(BI*SIM(Q))
VHSHEIME | 4] GRT vy

DETERMINE MAGNITOUE yoMan, AND PHaSr NF VUSB,

OO0

RMAG=CABS (VLIS
PHASE=ATAN. {ATMAGIVUSE) yRFAL (VUSB))

INTEGRATE OVER THE ARKRAYY LV eZ223n T0 21922 (L~RLTM)
IN STEPS OF W,

OO0O0O0O0

PO 100 Jz1e9
DO 10} I=1l.9

CALCULATE ARGUMENT,x (Z)y UF HOMOGENEOUS PRESSURF

OO0

CALCULATE C1¢C2 FUK /1,
AXLIZ(KP® (aAR®mp ) /(2,221 (1))
AUXLISCMPL X 1), 98X])

AX22 (KUSB® (HR®82 ) )/ (2e® (=21 (1))
AUX23CMPL X {1, 9AX2)

AxS:“..Z‘ (I’O(L-Zl(l)))/( (HR..Z.,.(AR..?.,)
C2=AX38AyuX]®AyX2
Ax1=(!KP°'2.1'(AR0“2."/(4.“‘2‘(1)'.20”
AUX1sAX1/AUX]

AXDE ( (KUSB®®2 ) # (KR®824)) /(4o iL=21 (]} )ae2,,
AUX2=AX2/AUX?

AX32 (KP/ (Pe®Z1 (1) ))* (KUSB/(2e®iloZ2V L))}
AUX3=CMPLX (D, 4AX3I)

CisAUXI*AUAL e AUXZ

C CALCULATE K(ZY FOR 71,

KZBCMPLX (COS (PHASE) »=SINIPHASE) )

KZ¥i{K2) /7 (cLeac?)

{ REXI)I=REAL (KZ) [
' IMKI13AIMAG(KZ) -
, C CALCULATE CleC2 FOR 22. i

AX1E (KPR (AR®®> 1) 2 (2,%22(4)) 1

AUXIECMPL X 11,  0AX])

AX23 (KUSB® (HR##2,) )/ (2e% (L =22(J)))
AUX22CMPL X (1. 9AX2)

AX3E (4,222 18 (L=22(0) 1)/ ((HRe®24)® (AR #2,))
C22AXICAUX]1®AUX2 j
AX12((KPR®2 )0 (ARGR2,) )/ (4,012c10)%2,)) :
AUX1ZAX]1/AUX] 1
AX2% ( (KUSH®#2 ) # (HR%#2,4) )/ (4e®(L=Z21J))0%2,)
AUX22AX2/AUX2

AXIZ(KP/ (2e%22(J))) ¢ (KUSR/LPe®(L=T21U) 1))

. AUX3sCMPLX{0,9AXI)

l C1SAUX3*AUX]+AUX2
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C CALCULATE K(2) FOR Z2,
K2=CMPLX (COS(PHASE) 9=SIN(PHASE))
K73 (KZY/Z(C1*C2)
REKI2=REAL (KZ)
IMKI2=AIMAG (R 7)

c
c
C CALCULATE CONTRIBUTION OF AMPLITUDF FLUCTS
(
CALL B1B2SR
BBsB)1B2YREK]I 1 #REKT2
C
C CALCULATE CONTRIBUTION OF PHASE FLLCTS
C
CALL S1S2SR
SSSSIS?'IMﬁllulMKIZ
c
C CALCULATE CONTRIBUTION OF AMP=PHASF CORR
c
CALL B1S2SR
BSFREKI14IMK]I2#B1S2
c
C CALCULATE CONTRIBUTION OF PHASE.aAMP CROSS CORR
c

CALL S1B2SR

SB=REKI2#IMK]1#S182
C COMPUTE INTEGRAND.

Y1{1)=BB«BS+SR+SS

C INCREMENT Z1 BY He.
103 CONTINUE
Zr(Ie)) = L1(]) ¢ H
101 CONTINUE
c
C INCREMENT 22,
| SYI(S)M2,44,8Y1(6) 60, 0Y1(T)eb,0Y](R)ey1:!9))
221Je11322(U) ¢ H
100 CONTINUE

INTEGRATE OVER VARIABLE 22¢STORF RrSULT IN SuMz2,

OO0

SUMZ2=(H/3)® (SUMZ1 (1) +4%SUMZ) (2) +2%SUMZ1 (3) +64eSUMZ1 (&) e
1 €4 ,%SUMZ1(B) eStIMZ1(9))

CALCULATE RESULT OF NUMERICAL INTEGRATION
SUMZ22SUMZ2/RMAG##2,
CALCULATE THE CONTRIBUTION OF SOURCE WAFERS FROM

2l =RLIM) TO Zsi ¢« THE HYDROPHONE 1S IN THE EXTREME
NEARFIELD OF THESE WAFERSs SO THFIR RADIATION IS APPROX-
IMATED BY PLANE WAVES OF INFINITE EXTENT,
T18A2%(ZSel)®®(1]1,/6,)
T23A3% (2Ssl)8e],
B1S(RLIMeaZ / #0828 (T1eT2)
TIsL®®(23,/12,)=(L=RLIM)®#e(23,/12,)

OO0 OO OO0

PP BpTp——
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T4n0,27229713422,473,2722%R1 ]v**1234/6)
TonT#¢2%q, 2T728R.IMY0(23,/100)%TI%42,
B2z (Al/Lo®#2,)10T4
BSQG3B1+82

SUM THE NUMERICAL AND ANALYTICAL RrSULTS,
CPRSG=SUMZ2+850Q

CORRECT FOR TME EFFECT OF FINITE APERTURE AT TWE HyROPHONE,

OO0 [e]

APFAC =1.-(0,10423/5QRY(Ls2.))
CPRSQ=CPRSU#APFAC

CALCULATE THE MEAN=SQ AMPLITUDE FLUCTSsCPRyIN THF
SIOEBAND PRESSURE AT 7=L, PRINT THE RESULT,

OO0

CPR=SQRT (CPRSQ)
PRINT 31s CPR,RNG({N) ZSsL
31 FORMAT(/4E12,4sF 14049 TXeF17;,49F1648)
C INCREMENT THE RANGE,
79 CONTINUE
RNG (N+]1)=RNG (N) *DRNG
97 CONT INUE
END
C
c

co..co.oob’o.Qnooonobooooﬂﬂncioc0##90«'¢¢0.¢0660000000¢0000l

C END OF MAIN PROGRAM
CORattntetaettalataintssssntottentenstndaltiosssasedosasndate

CONTRIBUTIONS FROM THE CORRELATION TERMS B1B2sR1s2,S51B2¢S182,

OoOOO0OD

CRORRean s asRRalatnadanssscat iadtsapnatadetionastonnaenibets

SUBRQUTINE B1B2SR
coo.od.aooo..ooaoaconooaoaoq0»00¢¢oo000000""6000'000"""

c
C CALCULATE B1B2+THE AMPLITUDE FLUCT CORR TERM,
c
REAL L oKSyKPokUSB KM KT yMI)yNUP
REAL LCORY*LCOR2s1{ COR3ILCORSG
COMMON/A/AL (20)9Z1(1F)sZ2 (1)
COMMON/B/CNP oKPoCNSIKSIPHTI oK ToKMIPTI o MUS2Z2Se Ay AP
COMMON/C/KT19PHI1 A pA29A39849ASLeTsJoKoMeNIMUPIRBL
COMMON/D/KUSBsA11,AUSBIAS,A44+B1B295152+81S29S18B2
Al = 0,31%CNP*e2 aKPa® (7, /¢,)
AUSB=0 .31 *CNP*®#2 eKUSB%® (7,/6,)
A112SORT (Al®aysSB) 4
(2101 * (AL (1y~22(Jd) ) »e()1e/12,) 3
(Z2(J) (AL (1) =23(1) ) ®a(11e/124)
(Z1(IV®22(J))**(11e/12,)
((AL(D)=Z1(1))®(AL())=22(J)) )08 (1] ,/12,)
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ACCOUNT FOR LONGITUDINAL CORRELATION OF HIGH FREO FLUCTS
THERE ARE FOUR SFPARATE TERMS FOR THE DIFFERFENT
GEOMETRIESe ALSO THERE ARE Twp VERSIONS OF EaCH

TERM FOR Z1 6T 22 OR 22 GT 2y,

IF12210),6T7,Z1(1))60 TO 24}

DELZ1=Z1(]1)e22())

LCORIE(1.43,%DELZL)/(2e%22( ))

LCORI=LCORL/ ((1oeDELZY/22(J)) 8% (34/2.))

DEL228 AL (1l)=221Y)

LCOR22 (1,43 ,4DFLZ2)/(2+%22(y))

LCOR2=LCOR2/ ((1,+DELZ2/22(J))#®*(34/2,))

DEL23=Z1(1)=22(J)

LCOR3=(1,43,9DELZI) 7 (2e%(aL (1) =21

LCOR3=LCOR3/ ()¢ +DELZ3/ (AL (}) =211

DELZ&4=AL (1) =21(1)

LCOR4=(1,+3,4DELZ4)/ (2e%27 (1))

LCOR4=LCORA/ ((1,+DEL24/721 (1)) 0% (34/2,))

60 To 2 2

CONTINUE

DELZ1=Z2(J)=21(1)

LCORI=(1,+3,%DELZ])/(2+%2]

LCORI=LCORI/ ((1+¢DELZI/ 21 ¢(

DELZ2= AL())=21(])

LCOR23(1,43,#DEL22)/12.%27(1))

LCOR2®LCOR2/ ((14¢DELZ2/27(]))#*(34/2,))

DELZ3=Z2(J) =21 (1)

LcOR33(1.‘30“DFLZ3)/‘2"‘AL‘1"22(J’)’

LcoR3=LCOP3/((l.ogELZJ/(AL(i)-ZZCJ)))'“(3./3.!)

DELZ4sAL (1) =22(J)

LCORGE(1,43,#DELZ4)/ (2e222(J))

LCOR4=LCORS/ ( (1+¢DELZ4/Z22(U) ) 8" (30/2,))

CONTINUE

DELZ=ABS(Z1(])=22(J))

RBLEL1e/ (14*((2.*DELL)/ (KSRAPSRZ,) ) 082,)

TB13A11* (T1#_COR2+T28LCOR4) +AT#TI®L CORL+AHSR*T4#LCORI
CALCULATE LOw FREQ AMP FLUCTS

A2 = 0.13¢CNSH##2 aKS#®(7,/6,)

1)
,))..(3./2.),

(1))
[1)#%(3e/2,.))

A3 = (PI/6480,)%PHI1®*(KT1ens =kM*®s,)
T1 = A2%(2SeZ1(1))*%(11,./6,)

T2 = A3%(2SeZ1(1))%**3,

T3 = A2%(7Se22(J))1*%(11,/6,)

T4 = AI®(2S¢22(J))*%"3,

TB2 = SQRT((T1eT2)%(T3+74))
TB2=TB2*RBL

8182=TBl+T1B2

RE TURN

END

B Ryove SN
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CoORROBQRERRQRtRaRevandtRaadttedttattaaatatetadttaenadatannbadtats
SUBRQUTINE S{S2SR
CoONRRBRRRtandRatatantaaattRagdRatRaeanatatofessaedadtaantadons
Cc
C CALCULATE S1S2¢ THE PHASE FLUCTUATION CORR, TERM,
C
REAL L!KS'KP'KUSBQKMOKTOMU’NUP
REAL LCORloLCORZogC083oLc0R4
COMMON/A/AL (20)921(10)022(17)
COMMON/B/CNP o KPosCNSIKSIPHT ok ToKMoPTI 9MUSIZSsA, AP
COMMON/C/KTIQPHII'AI $A29A34844ASIL s e JoKoMyNIMUPSIRBL
COMMON/D/KUSH9A119A: 5BeAS,A44,81B2,S152,815295182
A4=2 SE=28#KPan2oMyP e
ASZ2 SE=20KUSR#4D SMypRey
A443SQRT (AGeAS)
TI1sSQRT(Z2y (Iy#(L=22(N)))
T2sSQRT(Z2(uye(L=-21(1) 1)
T3IaSQRT(Z1(1)#Z22(y))
T4sSQRT((L=Z1 (1)) #(LeZ2(U)))

c ACCOUNT FOR LONGITUDINAL CORRELATION OF HIGH FREQ FLUCTS
IF(22(J) «6T421(1)16G0 TO 243
DELZ21=Z21(1)=22(J)

LCORLI=1e¢ ((2,4DEL21)/ (KPuppat®p) ) #ap
LCORY=E 1,/(LCORI®SART(1,epELZ2Y1/22(J)))
DELZ23L~-22())
LCOR221 s+ ((2,0DEL22)/ (KP#aAPa%D) ) 002
LCOR2= 1,/ (LCOR2*SQART (1,enEL 22/22(J)))
DELZ3=Z1(1)=Z22(J)
LCOR3=1e¢ ((2,2DELZ3) /7 (KP#APa®>) ) *ep
LCOR3=® 1,/ (LCORI®SART(1,epEL 237 (L=21(T) 1)
DELZa=L=211(1)
LCOR4=1e¢ ((2,2DELZ24)/ (KP#pAPa®D) ) #eD
LCOR4z 1,/ (LCORG®SART(1,epELZ4/2Z1(1)))
Go To 204

203 CONTINUE
DEL21=Z2(J)=Z1 (1)
LCORI=1+4 ((2,9DELZ1)/ (KP®aPa®p))*e?
LCOR]I= 1,/7{(LCORI*SART (1,enELZYV/Z1(])))
DELZ2=L=~Z1 (1)
LCOR2=1¢¢ ((2,8DELZ22) /7 (KP®APa®>) ) %ep
LCOR2= 1./ (LCOR2#*SART (1 ,enELZ2/721(1)))
DELZ3=22(J)=211(1])
LCOR3E]1 o0 ({2,8DELZ3) /(KP#pAPat>) ) Be)
LCOR3A= 1,/ (LCORI*SART (1, ,enELZ3/(L=22(J))))
DELZe=L=22 ()
LCOR4=]Joeo ((2,9DELZ4) /(KPR pPa®y) ) #85
LCOR4= 1,/ {LCORA®SART (1 ,enELZ4/22()))

204 CONTINUE
SSHI=A4A® (T1# COR2¢T2#LCORG) *A4*T34LCOR)

1 +AbL®TIeLCOR]

C CALCULATE LOW FREQ PMASE FLUCTS

ASE] 25E=2"KSan28pU* w2
TSSAS#SART( (25621 (1)) *(2Se27(U)))
TSsTS*RBL

DI1S(4.%2S¢2)1(1))/ (KS®APRe> )
D2%(4.%2Se22(J) )/ (KS®APSNS )

e R - e ek N~ 13 P VNI ST TP AN
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TSSSART ((1eeDI®ATLNI(DLY )@ (] 4N2®ATAN(D2) )1 ®T5
§152=S58mT+T18

RE TURN

END

CRRBRtRaateRetatttandaacstontRattansea® teRRadandodtansetabans

-

OO0

c

c
¢

SUBROUTINE B]$2SR

ARG RRGUANBROIRBRRORR LR IR RN RBRDsBeRer  HERBO IRGARIARABRORD

CALCULATE B1S2+THE AMPLITHDE=FHASE Fp i &AL 0npPR

REA’- LOKSQKP"SUSB'KM’KtQMH'NU‘J

COMMON/AZAL (PG)eZit2AYsZ2(17)
COMMON/B/CNP yKPoaCANS oK SIPHI sk T EMoF Ty vije SeA AP
COMMON/C/KTY4PHIL oA 3ACsA3y 08, ADsL a1 Toramyr s MUPIRRL
COMMON/L/KUSBe AL AUSHsAS, n04 . E1B2,5152,81¢7,<]1B2
TBI=SORT (A28 (7S¢, 1 (1)) 0()],/0s)*A3B (IS 71 . 1)) ®03,)
TSI=SART(AS® (78472 ()
N23(8,01S5+L2( ) )/ (RSoAPAND
TS1=TS1®SQRT{1,eDa"ATANIDY);

TisTBl#1S)

TR2=SQRT (al®2) (1) aalylare, ;)

T52=SART (848, 2( ) )

123T81*TH7

TBISSQRT(p2P71 (1 8% (Y28,
153=SQRT(ASE ([ =70 ()}

T3=TB34Ts53

TR4=SART (AUSE# (L =21(1)) 8 (1]1e b))

TS4=SQRT (A%®7Z2(U))

T4zTH4# TS

TRS2SQRT (AUSRe (L=l {J))na(11a/6e})
T55=SQRT (AS® (| =Z2(u)))

T65=2TB5#T7s5

B1S2=T1¢T2+T3+T44+75

ACCOUNT FOR LONGITUDINAL CORRELATICN OF FLueTs

B1S2=81S5290,6
RE TURN
END

Cooooooo.oo000.000000000000n.000¢00.ooicoooaoooclouoooOOOOOO

SUBROUTINE S1R2SR

c....q...g..g..ooooplonnﬁoogqonecuounu‘cﬂO.ﬁti¢¢¢¢'¢¢.0§0000

c e
C CALCULATE S1B2sTHE AMPLITUDE=PHASE F(.UCT ZROSS-CNRR

c

REAL L.KS.KP.gusa!KM!nI.MH.yUp
COMMON/AZAL(26) 921t 10 922017 )




c

ACCOu ¥

COMMON/H, NP G KP  CNSIKS T ) gu S o KM P T uMi 6 2S e Ay AP

CRMMON/ z’."~“‘!”“‘HIlgAlQﬁx‘:‘.f\‘vg poh sl Te s oaMgr s MUP YRR
COMMONZU/ZR ISR AT L p A Gl A 0 vy RV TR B3-S N - 74
TBI=SIRT (A28 (2521 d)y i 8a > R R s T R RAETY)

TS1=SORT (aAS® (254211111

D13 (aa®LSeZY (1)) / (KS@APBE L
TSISTSINSART(1,oD)RATAN ([
T1=Tpl®TS])
TR2=SART(AL®Zo (e (Y Veve i
TS2=SART (A4®2V (1))

TezsTglete,
TRIZSART{AUSRHB (L= 220 1 2 jr, .t 4}
TS3IsSART (44971 (1))

T33TR3*T<
TR¢3SORT Az () ed iy e,
TSH=QORT LASR (=701 ()}

Tasra®Ty
TRS=SART 1AUSHa (L2l 1Vt P v 6Lt
V8= QRT ¢ ASR{ | =/ (1!t

fesTpteTcs

S182xT1¢T29T34Tae7S

FOR L ONGITUD{NAL CORKREL &Y A
S{B2s81b2R0 .6
wE TuRN
RNV




AP, INDIX 6. ANALYSIS OF THE NEARFIELD PARAMETRIC RECEIVER

In developing a theoretical analysis for the nearfield parametric
receiver, it was assumed in Section 4.2 that the pump wave could be approxi-
mated as a collimated plane wave. In evaluating the integrals arising from
this assumption (see Appendix 2), no account was made of the effect of the
finite radius of the pump transducer. Consequently, the phase of the inte-
grand of Eq. (4.19) was such that only the amplitude correlation term <BlB2>
contributed to the amplitude fluctuations <B§R> of the second-order pressure
wave, as shown in Eq. (4.20). A more detailed analysis, based on the work
of Chotiros,lo6 is presented in this appendix. It will be shown that there
are additional contributions to <B2 * when the finite radius of the pump

PR

transducer is taken into .ccount.

A6.1 Second-Order S»lution ror a Homogeneous Medium

The geometry for thi- analysis is shown in Fig. A6.1. As in the
analysis of Chapter &4, tl. source of the signa: to be detected by the para-
metric receiver is located at z =—Z§ The signal source is situated suf-
ficiently far from the pump that the signal pressure wave, Ps is assumed
to be planar in the vicinity of the parametric receiver. Omitting the time
dependence, the signal wave muy be represented by

—ijz
ps(z) =P_e . (A6.1)

where the symbols are defined in connection with Eq. (4.1).
The pump transducer is approximated by a plane wave having a Gaussian
shaded transverse amplitude function; i.e., the pressure amplitude at a

point (D,Gp) on the face »f the pump transducer is assumed to be given by

-2 /b%)
Pp(o,Op) =P e . (A6.2)

(o}
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where

p and OP are coordinates on the face of the transducer, as shown in
Fig. Ab.1,
Po is the pressure amplirude at the center of the transducer, and
b is the characteristic radius of the transducer.
The pump signal at some point (r,Of,z) in the interaction region is the sum
of contributions from all elemental surfaces con the face of the piston, and

2aa be shown to be

9
. Lo (2N o oy BN g
pp(r,e*,z) = Po[/z exp[(b) _]}\P<.< 4 22)] dup rdy (A6.3)
0O 0

where R = rz + pz - rpcos(@+ - ep), and it is assumed that R << 2z,

The second-order pressure at a point (u,eh,L) out the face of the

hydrophone can be found from Eq. (2.7) to be

w 21
.—jw—.w\‘
P+(0,eh,L) = 2’?('1:._ z) q+(l v _,2)
o o0 o
R
x eXP{—jkI[L -z + E’(—I:L——‘_Z—)‘j))rdl‘ d@idz s (A6.4)
where 21 @
jBP P w = ~-jk,z 2 -jk R
s 0 t -0 /b .
qi = 2 4 e o/ exp _Tifﬂ} dHi pdp , and
DO Co o 0 p
' = 2 2 - -
R r- + o 2rocos(8h 61)

It is also assumed that the voltage response of the hydrophone has

Gaussian shading in the transverse dimension, so that

_ 2,2
M(o,Oh) = Mo exp(-o“/h7) s

where M is the voltage response in V/Pa, and




Mo is the voltage response at the center of the hydrophone.

The voltage produced at the hydrophone by the second~order pressure at

z = L will therefore be

w 27
" 2,2
vy T Mo fj pi(o,eh,L) exp(~-0~/h”) odo deh . (46.5)
o o

Substitution of Eq. (A6.4) for p, allows the hydrophone voltage to be

written as

v, = —Li I.I, exp —jr2 0 A - }rdr d6 dz ;
H z(L - 2) 172 2z 2(L - z) § + ’ ;
‘ ©0 o ) (A6.6) -
2
w, M BPSP ~-jk.L
where A=s—2 =20, = s §
4 ;
4mp ¢
Zn o 9
Y i, = exp[-(g>2 -jk p_= Ztpcosy pdp dy
. 1 1 b p 22
! o 20
T .
1 2 2
‘ _ (SN o~ - 2rogcos?
' L, = /f exp[ (h) ik, Sae ] odo d&
o o

¢=0_ -06_.
Equation (A6.6) can be greatly simplified with the aid of tabulated

integrals, and by using the definition of the Bessel function. The angular

integration of I. and 12 may be written in the form

1
20

I =fej6cosu du s (46.7)

(o]

where

kprp/z for I1

B =
i k,rof/(L - z) for L.




3 . The definition of the Bessel function of the first kind is111

n

< 1 j(Bsinx - nx)
Jn(B) 57 f e dx . (A6.8)
-7
Using the change of variables, u = x - % , and taking the case for which
n = 0, Eq. (A6.8) becomes
L
2
J () -1 ejdcosu du (46.9)
o 2n : .

3n
2

From Eqs. (A6.7) and (A6.9) we can write

I= ZnJO(B)

so that I, and I, become

1 2
< /k_rp
= P ~ 25k 2y .
I, 2an0( —Jexpl-@ %517 221 pan
and °
k. ro
+ g, 2 , 2
I, = ZNJ/-JO(Ejj;)exp[—CE) -ik,6%/2(L = 2)] odo
o

o]
Now I1 and 12 are in the form of a tabulatedllh integral, viz,

_[xv +1 e-ax2 3, (Bx)dx = 89 20) YV T D axp(-8%/4a) - (A6.10)
(o]

Evaluation of I1 and 12 using Eq. (A6.10) gives

2

b k r 2 2

et (2 2t (46.10)
jk_b
1+ 3%

2z

z jk_.
\ A(L +_2)
b2 2z
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By substituting Eqs. (Ab.ll) and (A6.12) into Eq. (A6.6), the hydrophone

voltage can be expressed as

L = 1 —Clr2
VH=A+/IE—— e 2rdr dz (A6.13)
- 2

2 o 0

nw, 8P P M -ik.L

where A =*. 8 Z © e * ,

ZOOCO

ER K, kibz k+2h2

Gt -t ) * 3 T
Jkpb k,h )
4+ ] ————— -
Lt Wrisgmo/t -2

k b2 k+h2 1
and C2 = 4z(L - 2z) [1+ ] —2—22 >(l ] -2—(I-_—*Z—)‘> ?h—?j

As C, and C, are independent of r, the integration with respect to

1 2

r can be done by the change of variable, u = r2.

1
v, = A dz .
H ir‘/.ClC2

Equation (A6.14) represents the hydrophone voltage produced by the second-

order pressure field in a homogeneous medium.

The result is

(A6.14)

In the next section this

result will be used to determine the amplitude fluctuations in the second-

order pressure when inhomogeneities are present in the medium.

A6.2 Amplitude Fluctuations in an Inhomogeneous Medium

In an inhomogeneous medium the hydrophone voltage will fluctuate in

amplitude and phase, and may be written in a form similar to Eq. (4.14), viz,

v, = VH(l + b

PR = jSPR) . (A6.15)

where B and SPR are the amplitude and phase fluctuations, respectively,

PR
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of the interaction frequency pressure at the hydrophone. A development
similar to that in Section 4.2 gives the following expression for v, in

terms of the total amplitude and phase fluctuations, B and S:

L

v, =a, fa+B-js) —az . (46.16)
+ * Cl 9

(o]

Following the methods used in Section 4.2, we substitute Eq. (A6.16) for v_

in Eq. (A6.15), and at the same time write v, in terms of its magnitude and

H

phase:

L
j6 aa _ . dz
|vH|e (1 + Byp = 35pp) Atf(l +B - 38) -¢ . (A6.17)

172
o}

Subtracting the homogeneous solution, Eq. (A6.14), from both sides of Eq.

(A6.17), and dividing by the hydrophone voltage v, we obtain

H
L
A .
s - * s -j6 dz
Bpr = I5pg [v lj(B js) e c.cC
H 172
° L
= |vH|'1f(B - jS) K(z) dz , (46.18)
o]
A+e-je
where K(z) = 6 C
172

The amplitude fluctuation term can be found by taking the real part of Eq.

(A6.18), and is

L
Bpog = |vH|‘1/[B Re(K) + S Im(K)] dz .
o

The mean-squared amplitude fluctuations of the second-order pressure at the

hydrophone are therefore

- ——s v e

b el it i o




L L
<BZR> - lvu'—z B, R + S, Im(K
p <{ 1 e(Kl) Sy m(hl)]
[S 6]

X [82 Re(Kz) + 82 Im(K2)1> dzldz2

Writing this result in terms of the coefficient of amplitude variation, and

expanding the terms in angular brackets, we obtain

L L
cav> -2 Re(K,) Re(K,) <B.B_ >
Vbr = Ivyl (k) Re(K,) <B,B,

[o 2N

Im(Kl) Im(Kz) <SlSZ> + Re(Kl) Im(Kz) <B1$2>

+

+

Im(Kl) Re(Kz) <SlB2{} dzldz2 ,

which appears in the text as Eq. (5.12).
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