
THlE PERFORMANCE OF A PARAMETRIC RECEIVER IN AN INHOMOGENEOUS ME-ETClU)
AUG 80 C Rt CULBERTSON NO0024-79-C-6350

UNCL7ASSIFIED ARL-TR-80-44 NL;uuuuuuuu



ARL-TR-80-44 r No.

THE PERFORMANCE OF A PARAMETRIC
RECEIVER IN AN INHOMOGENEOUS MEDIUM

C. Robert Culbertson

APPLIED RESEARCH LABORATORIES
THE UNIVERSITY OF TEXAS AT AUSTIN

POST OFFICE BOX 3029, AUSTIN, TEXAS 78712

18 August 1980

Technical Report

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED. % FEB j .i 9Bt

CPrepared for:

NAVAL SEA SYSTEMS COMMAND
DEPARTMENT OF THE NAVY

WASHINGTON, DC 20362

OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY

ARLINGTON, VA 22217

b

8 1 2 11046



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) TYPE OF REPORT & PERIOD COVERED

,7HE YERFORMANCE OF A PARAMETRIC ,RECEIVER IN AN 1'technical report
* INHOMOGENEOUS MEDIUM, - .-

,- A J T- 0-44'
7. AUTHOR(.) -- -CONTRACT OR GRANT NUMBER(s)

C Robert/Culbertson . N00024-79-C-6358 and• r! ..... ,.. N00014-75-C-016r /

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASKAREA & WORK UNIT NUMBERS

Applied Research Laboratories
The University of Texas at Austin -

Austin, TX 78712 ..
11 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Sea Systems Command 18 Augi489
Department of the Navy 13. NUMBER OF PAGES

Washington, DC 20362 165
15. SECURITY CLASS. (of this report)

and
UNCLASS IF IED

Office of Naval Research
Department of the NavyIS. DECLASSIFICATION DOWNGRADINGDepatmen ofthe avySCHEDULE
Arlington, VA 22217 SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. AEY ORACT (Continue on reverse side if necessary and identify by block number)

This thesis describes a theoretical and experimental study of
the effects of medium inhomogeneities on the performance of a parametric
receiver.

A review is made of the basic principles of parametric receiver operation
and of wave propagation in an inhomogeneous medium.

A theoretical analysis is presented for the case of a signal wave source
located on the axis of the parametric receiver in a weakly inhomogeneous medium.
Expressions are developed that predict the level of amplitude fluctuations in

DD I JAN73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED I

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

- . -- - . - . .. ".



FOREWORD.

This report is an adaptation of a dissertation submitted to the

Faculty of Science and Engineering, University of Birmingham, England,

for the degree of Ph.D. The work was supervised by Professor H. 0. Berktay

and Dr. B. V. Smith. The author expresses his appreciation to

Professor H. A. Prime for facilities made available at Birmingham for

this work and for permission to publish the dissertation in the present

form.

Financial support for the author was provided primarily by the

Office of Naval Research. Additional support was provided by the

Defense Advance Research Projects Agency, Naval Electronic Systems Command,

and Naval Sea Systems Command.

Acces5;'o 7mr

1 II

DTIC TAB

Distribltic1n/

i A- -

D i " -

e ____



SYNOPSIS.

This thesis describes a theoretical and experimental study of the

effects of medium inhomogeneities on the performance of a parametric

receiver.

A review is made of the basic principles of parametric receiver

operation and of wave propagation in an inhomogeneous medium.

A theoretical analysis is presented for the case of a signal wave source

located on the axis of the parametric receiver in a weakly inhomogeneous

medium. Expressions are developed that predict the level of amplitude fluc-

tuations in the second-order pressure at the hydrophone of the parametric

receiver. Both collimated and spherically syreading pump waves are

considered.

The experimental study reported in this thesis was conducted in a model

tank in which an array of immersion heaters and a perforated screen produced

a thermal microstructure. Measurements were made of the coefficient of

amplitude variation for the signal, pump, and interaction frequency waves

associated with both a nearfield and a farfield parametric receiver.

Results are compared to theory and discussed.

I,



TABLE OF CONTENTS.

Page

LIST OF FIGURES vii

LIST OF SYMBOLS ix

CHAPTER 1. INTRODUCTION 1

1.1 Nonlinear Acoustics and Parametric Arrays 1

1.2 Effects of Medium Inhomogeneities 4

1.3 An Overview of the Thesis 5

CHAPTER 2. THE PARAMETRIC ACOUSTIC RECEIVING ARRAY 7

2.1 Introduction 7

2.2 Basic Theoretical Concepts 7

2.3 The Parametric Array 11

2.3.1 The Nearfield Receiving Array 13

2.3.2 The Farfield Receiving Array 18

2.4 Practical Consideration 20

2.4.1 Signal Processing 20

2.4.2 Shadowing 22

2.4.3 Finite Amplitude Effects 25

2.4.4 Sources of Noise that Affect Parametric Reception 27

2.4.5 Effect of Turbulence and Medium Inhomogeneities 29

2.5 Summary 29

CHAPTER 3. ACOUSTIC WAVE PROPAGATION IN AN INHOMOGENEOUS MEDIUM 31

3.1 Introduction 31

3.2 Methods of Describing the Inhomogeneous Medium 34

3.3 Turbulence 37

3.4 The Wave Equation for an Inhomogeneous Medium 43

3.5 Fluctuations in the Amplitude and Phase of the
Observed Pressure 46

3.5.1 Fluctuations in a Medium Described by a
Correlation Function 48

iii



Page

3.5.2 Fluctuations in a Turbulent Medium 49

3.6 Correlation of Fluctuations 51

3.7 Summary 52

CHAPTER 4. THEORETICAL ANALYSIS 54

4.1 Introduction 54

4.2 Amplitude Fluctuations for a Nearfield Receiving Array 55

4.3 Amplitude Fluctuations for a Farfield Receiving Array 64

4.4 Approximating the Spatial Correlation Functions 69

4.5 Evaluation of Results 76

4.5.1 Nearfield Receiving Array 76

4.5.2 Farfield Receiving Array 78

4.6 Summary and Discussion 82

CHAPTER 5. EXPERIMENTAL STUDY 85

5.1 The Experimental Medium 85

5.2 Description of Apparatus 88

5.3 Experimental Results 91

5.3.1 Measurements of Upper Sideband Pressure 91

5.3.2 Procedure for Obtaining Data 94

5.3.3 Signal Wave Amplitude Fluctuations 95

5.3.4 Pump Wave Amplitude Fluctuations 100

5.3.5 Amplitude Fluctuations in the Upper Sideband
Wave 104

5.3.6 Results for Spherically Spreading Pump Waves 110

5.4 Discussion 113

5.5 Summary 114

iv

____I ______



Page

CHAPTER 6. SUMMARY AND DISCUSSION 116

6.1 Summary of the Thesis 116

6.2 Discussion of Results 118

6.3 Conclusions 120

APPENDIX 1. DERIVATION OF EQUATIONS (4.20) and (4.21) 122

APPENDIX 2. TRANSVERSE CORRELATION OF FLUCTUATIONS 125

A.2.1 Transverse Correlation for the Nearfield Case 125

A.2.2 Transverse Correlation for the Farfield Case 127

APPENDIX 3. TRANSDUCERS 128

A.3.1 Signal Source 128

A.3.2 Pump Transducer for the Nearfield Receiver 128

A.3.3 Pump Transducer for the Farfield Receiver 128

A.3.4 Hydrophone 128

APPENDIX 4. ELECTRONIC RECEIVING SYSTEM 130

APPENDIX 5. COMPUTER PROGRAMS 135

AFLUCT 136

CAVANA 139

CAVNUM 142

APPENDIX 6. ANALYSIS OF THE NEARFIELD PARAMETRIC RECEIVER 151

A.6.1 Second-Order Solution for a Homogeneous Medium 151

A.6.2 Amplitude Fluctuations in an Inhomogeneous Medium 156

REFERENCES 159

v



LIST OF FIGURES.

Figure Title Page

2.1 Radiation from an Elemental Source 12

2.2 The Nearfield Parametric Receiving Array 14

2.3 Elemental Wafers in the Interaction Region 16

2.4 Sketch of the Filtering Problem 21

2.5 Band Elimination Receiver 23

2.6 Phase-Locked Loop Receiver 24

3.1 Modelling an Inhomogeneity as a Spherical Source 32

3.2 Turbulent Power Density Spectrum 40

4.1 Geometry for Analyzing Nearfield Receiver 56

4.2 Scattering Geometr 62

4.3 Geometcy for Analy:ig Farfield Receiver 65

4.4 Propagation Paths of Pump and Second-Order Wave 71

4.5 Geometry for Autocorrela ion of Second-Order Wave 75
Fluctuations

4.6 CAV for Farfield Parametric Receiver Operating in 81

the Ocean

5.1 Model Tank 86

5.2 Experimental Apparatus 90

5.3 Arrangement for Measuring Mixing in the Electronic 92

Receiver

5.4 Temperature Dependence of 1 MHz Signal Wave Fluctuations 98

5.5 Signal Wave Amplitude Fluctuations 101

5.6 Pump Wave Amplitude Fluctuations 103

5.7 CAVusB for Fixed Array iength and Variable Range 105

5.8 CAVusB for Fixed Range and Variable Array Length 108

vii



Figure Title Page

5.9 Comparison of Upper Sideband and Signal Wave 109
Fluctuations

5.10 CAV for Spherical Pump Waves ill

A2.1 Significant Scattering Volumes in Nearfield of Pump 126

A4.1 Electronic Receiving System 131

A4.2 One Channel of Signal Processing Unit 132

A4.3 Receiving System for Farfield Receiver 133

A6.1 Model of the Nearfield Parametric Receiver 152

viii



I

LIST OF SYMBOLS.

Latin Symbols

a patch radius

B total amplitude fluctuation (sum of Bs, Bp, and B±)

b a dimension of the pump transducer, which is usually

square with sides 2b x 2b

Bp amplitude fluctuations of 'pump', 'signal', and 'inter-

action frequency' waves, respectively

BPR amplitude fluctuation of 'interaction frequency' wave

at the hydrophone

Bt amplitude fluctuations produced by transition region

B/A parameter of nonlinearity

CAV coefficient of amplitude variation

C turbulence parameter
n

c sound speed

c 0small signal sound speed

c = <c> mean sound speed (Chapter 3)

Ac random variation in sound speed from mean value

D wave parameter

D(e) directivity function

d shadow length

dx propagation speed
dt

EXDB excess attenuation

e pump excessx

f frequency

f aperture factora

f normalizing factor

ix



FNR fluctuation-to-noise ratio

tunit vector in the x direction

k acoustic wavenumber

kp'ks'k± acoustic wavenumber at frequencies wi, W5s and w,

respectively

L characteristic scale of flow (Chapter 3)

L array length

L outer scale of turbulence
0

1 inner scale of turbulence0

Z eddy size

AL separation

M parameter used in describing the angular response of a

parametric receiver (Chapter 2)

M voltage response (Appendix 6)

N correlation function

n refractive index

p acoustic pressure

PF pressure of the 'interaction frequency' wave for the

case of spherical pump waves, with the detector in the

pump farfield

PN pressure of the 'interaction frequency' wave when the

detector is in the nearfield of all elemental wafers

PO equilibrium pressure

PT total pressure

Pn nth- order pressure

q source density

R correlation coefficient

x

4o



unit vector in the propagation direction of the 'signal'

wave

Re(x) real part of x

Re Reynolds number (Chapter 3)

R nearfield limit
0

RB' RS  longitudinal amplitude and phase correlation coefficient,

respectively

T T
RB, RS  transverse amplitude and phase correlation coefficient,

respectively

+ radius vector of observer
r

r' vector from source point to observer

r radius vector of source point

S total phase fluctuation (sum of Sp, Ss, and S )

s entropy (Chapters 1, 2)

Sp Ss ± phase fluctuations of 'pump', 'signal', and 'interaction

frequency' wave, respectively

SPR phase fluctuation of 'interaction frequency' wave at

hydrophone

S three-dimensional spectral density of refractive index

variations

t time

T average kinetic energy

To 0mean temperature

AT deviation from mean temperature

u particle velocity

V volume

x shock formation distance

Z distance from low frequency signal source to pumpS

transducer

xi



Greek Symbols

a attenuation coefficient

a pas,± a+ attenuation coefficient at frequencies w, Ws and w+,

respectively

a parameter of nonlinearity

r Gol'dberg number

e acoustic mach number

E energy dissipated as heat per unit mass per unit time

(Chapter 3)

TI effic Lcy

e phase of 'signal' wave at z =0

K spatial wavenumber

KmKtK0 wavenumbers that are upper boundaries of source, transi-

tion, and inertial subranges, respectively

Xacoustic wavelength

X acoustic wavelength at frequency w

variation in refractive index from unity

v kinematic viscosity

P excess density

Po = <pT >  mean density (Chapter 3)

P0 equilibrium density

bT total density

Ap variation in density from mean value

a normalized range parameter

T retarded time

Pmagnitude, or maximum value, of the refractive index spectrum
m

v one-dimensional power spectral density

xii

iRoom



phase angle

W angular frequency

w ps angular frequencies of 'pump', 'signal', and 'interaction

frequency' waves, respectively

Units

C degrees Centigrade

cm centimeters

h hours

m meters

MHz megahertz

mV millivolts

mW milliwatts

Pa Pascals

p-p peak-to-peak

rms root-mean-square

V volts

Miscellaneous

< > ensemble average

-- (overbar) time average

x* complex conjugate of x

f volume integral

V

V vector differential operator del

2
El the D'Alembertian operator

xiii



CHAPTER 1. INTRODUCTION

The subject considered in this thesis is the performance of

a parametric acoustic receiving array in an inhomogeneous medium. Develop-

ment of this subject requires the synthesis of two branches of acoustics:

(1) nonlinear acoustics, from which the concept of the parametric receiver

has been developed, and (2) wave propagation in an inhomogeneous medium.

Both of these topics have received considerable study in recent years, and

it is reasonable to introduce the topics separately before considering

their interrelation. In this chapter an introduction is given to nonlinear

acoustics and to the effects of medium inhomogeneities. Following this is

an introduction to the present investigation, including a description of

the aims and the organization of this investigation.

1.1 Nonlinear Acoustics and Parametric Arrays

It has been known theoretically since Stokes' analysis in 1848 that

an acoustic wave distorts as it propagates through a fluid. This distor-

tion occurs because the propagation speed of a sound wave is a function of

the particle velocity; that is, 2

dx I x B

dx - 1 + u(x,t) + u(x,t) (1.1)

where

dx is the propagation speed,
dt

c is a constant equal to the sound speed for waves of infinitesimalamplitude,

is a constant that characterizes the nonlinearity of the pressure-
A density relation, [defined in Eq. (1.2)], and

u is the particle velocity in the x direction.

It can be seen from Eq. (1.1) that there are two effects which contribute

!'1

* .
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to the variability of the propagation speed. one e lect is 'convection'

which arises because the particles of the supp,,rting medium arc i lo.'ing in

the same direction as the propagating wave. tonvection is taken into ac-

count in Eq. (1.1) by the term u(x,t), which indicates that the propaga-

tion speed is linearly dependent on the particle, velocity. A second

caust of variations in propagation spved is d to nonlinearity in the

3
pressure-density relation. The rul,t ion hL..,.n acoustic pressure and

excess density in a liquid ma' be tri:t, as

2
p =c - + (1.2)

0 - .
0

where

P= PT - PO is acoustic pressure,

P= T PO is excess density,

B o
A = 2I2) 0,S

C C

S is entropy, and

the subscripts zero and T denote equilibrium and total values,

respectively.

The quantity B/A is a measure of the nonlinearity of a fluid. In Eq. (1.1)

the effect of this nonlinearity on the propagation speed is accounted for

l B
by the term I ! u(x,t). For water, B/A has a value of the order of 5.2

while for air, B/A approximately equals 0.4.3 It can be seen by substitu-

ting these values of B/A into Eq. (1.1) that convection is the dominant ef-

fect in distorting airborne sound waves, while fluid nonlinearity domi-

nates in the distortion of sound waves in water.

As a result of the nonlinear character of acoustic wave propagation,

when two waves propagate simultaneously in a fluid, interaction-frequency

components are generated. 5 Difference frequency tones have been observed
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6-8
by musicians since 1745, and it was the observation of a difference

frequency sound beam 9that led Westervelt 10to formulate the concept of the

parametric array in 1960. This concept can be summarized as follows. If

pressure waves* of frequencies f 1 and f 2 insonify a common region of fluid,

there arise in that region secondary sound sources of frequency If 1 + f 21.
These secondary sources act as an array which can be used to transmit or

receive directive beams of sound.

In the transmitting application, the 'primary waves' (i.e., the waves

of frequency f1 and f ) are launched from a common transducer, and the ef-

fective array length is controlled by attenuation in the medium. Such a

parametric transmitter can be used to generate a directive beam with negli-

gible sidelobe levels 11 at frequencies If 1 ± f 21.

In the receiving application, one primary wave is usually a low

frequency acoustic signal arriving at the parametric receiver from some dis-

tant source. This signal interacts with a locally generated 'pump' wave to

form sum and difference frequency sources in the region common to both

waves. The radiation from these sources is detected by a hydrophone placed

in the pump beam. The array length in this instance is determined by the

separation, L, between the pump transducer and hydrophone. The parametric

receiver acts as a conventional end-fire linear array of length L, operating

at the frequency of the signal to be detected. The advantages of direc-

tivity offered by an end-fire array (i.e., reduction of interference due to

ambient noise and multipath signals) are achieved by the parametric receiver,

but only two transducers are required to 'construct' the array.

Further discussion of the basic principles of the parametric acoustic

receiving array, as well as an outline of the history of its development,

is given in Chapter 2.

*The waves are assumed to be such that their propagation vectors are at
angles of less than 90' to one another.
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1.2 Effects of Medium Inhomogeneities

The variability of sound transmission in the sea is a topic that has

received a great deal of study in the last 30 years. There is a variety of

mechanisms that can cause fluctuations in the amplitude and phase of an

12acoustic signal. For example, if an aIcoustiC source or receiver is

mounted on a ship, then irregular motion of the platform can give rise to

fluctuations. If surface reflections contribute to the received signal,

then changes in the surface due to wave motion will cause phase and amnpli-

tude variations. Even when the source and receiver are fixed and there

are no surface reflections involved, signal fluctuations will still occur.

Fluctuations having frequencies of the order of cycles per hour to cycles

per day will result from internal waves and internal tides, 13while fluc-

tuations with frequencies in the range of cycles per second to cycles per

14
minute will result from scattering by random inhomogeneities in the sea.

Although these inhomogeneicies may he due to turbulence, thermal micro-

structure, air bubbles, or biological matter, they may all be treated as

variations in the sound velocity (or refractive index) of thle medium. The

sea can then be crudely modelled as a medium containing 'patches' of vari-

able refractive index which scatter a propagating acoustic wave. Usually

the principal cause of scattering is the thermal microstructure, as we will

see in Chapter 3.

Numerous theoretical studies have appeared that predict the amount of

amplitude and phase fluctuations in an acoustic wave when the statistical

nature of the thermal microstructure is known (see, for example, refer-

ences 15 1 9 ). Some results of these theoretical studies which are pertinent

to the present investigation will be discussed in Chapter 3.

As discussed in the previous section, there are three acoustic waves

b associated with the parametric receiver: the incoming 'signal' wave, the

pump wave with which the signal interacts, and the interaction frequency
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wave which arises from the nonlinear interaction. It is reasonable to

expect that each of these waves would be scattered in an inhomogeneous me-

dium, and consequently, there would be three components of fluctuation in

the output* of the parametric receiver. These fluctuations can have a

significant effect on the performance of A parametric receiver in detecting

and resolving low-level acoustic signals. In anticipating practical appli-

cations in the ocean, it is therefore desirable to know the effects that

medium inhomogeneities have on the performance of a parametric receiver.

It is the aim of the investigation reported in this thesis to determine

these effects.

1.3 An Overview of the Thesis

These introductory considerations of the parametric receiver and of

the effects of medium 'inhomogeneities are extended in Chapters 2 and 3, re-

spectively. Both of these chapters contain a literature survey and a review

of basic principles for their respective topics.

In Chapter 4, the analytical methods described in Chapters 2 and 3 are

used to develop a theory which predicts amplitude fluctuations in the inter-

action frequency pressure at the hydrophone of the parametric receiver. It

is assumed in this analysis that the amplitude and phase fluctuations are

small compared to unity, and that the signal source is located on the main

beam of the parametric receiver. With these assumptions, integral expres-

sions are derived for the coefficient of amplitude variation for the cases

of collimated planar and spherically spreading pump waves. Approximate so-

lutions to these integral expressions are obtained by making a number of

assumptions regarding the spatial correlation functions contained in these

expressions.

*The parametric receiver 'output' may be taken to be the sum or difference

frequency pressure at the hydrophone.
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An experimental investigation is reported in Chapter 5. The

experiments were conducted in a model tank in which an array of immersion

heaters and a screen mesh were used to generate a thermal microstructure.

Measurements are discussed in Chapter 5 that were made to determine the

coefficient of amplitude variation for the signal, pump, and interaction fre-

quency waves of a model parametric receiver. These results are then compared

to theoretical predictions based on the analysis developed in Chapter 4.

In the final chapter, Chapter 6, the results of this study are

summarized and discussed.



CHAPTER 2. THE PARAMETRIC ACOUSTIC RECEIVING ARRAY

2.1 Introduction

The purpose of this chapter is to explain the basic principles of the

parametric acoustic receiving array, and to outline the history of its de-

velopment. The theoretical development of the parametric acoustic array was

based upon Lighthill's study 2 0 ,21 of sound generated aerodynamically.

Westervelt applied Lighthill's results to the problem of scattering of

sound by sound2 2 ,23 and laterI 0 extended this work to the parametric array.

In formulating the theory of the parametric array, Westervelt developed an

inhomogeneous wave equation that describes the second-order sound field. A

brief sketch of the development of this wave equation, as well as a discus-

sion of the physical significance of Westervelt's results, will be given in

the next section of this chapter. Solutions of the second-order wave equa-

tion for various configurations of the parametric receiving array will then

be discussed. Finally, practical matters such as signal processing, shad-

owing, finite amplitude effects, and the effects of noise on the performance

of the parametric receiver are considered.

2.2 Basic Theoretical Concepts

We will begin discussion of the parametric acoustic array by turning

briefly to some of the first principles of acoustics. Acoustic wave propa-

gation in a lossless medium is governed by the following equations of fluid

24
mechanics:

Continuity Equation

aPT (2.1)
a-- + V• (PTU) =0

7

-- , , .,." .I
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Momentum Equation

a -P(22(PT +u) + ) + (u.V)Pru + Vp 0 (2.2)

.sentropic Equation of State

P = P(P)s

where

PT is the total density,

V is the vector differential operator del,

u is the particle velocity,

p is the acoustic pressure, and

the subscript S denotes constant entropy.

The isentropic equation of state may be expanded in a Taylor series about

the ambient density of the fluid, giving

2
2 1 co 2P T = P +  C o (P T P o + 2 - o A (M o (2 .3 )

T O 0 T o 2 p 0  A / T (2.3

where the terms higher than second-order have been neglected. It may be

noted that Eqs. (2.3) and (1.2) are identical, except for a change of

variables.

The field variables pT' u, and p appearing in these fundamental

equations can be expanded in series such that

PT =  Po + + n

u u + u I + u 2 + + U and (2.4)

I' = PO + P1 + 1)2 +2 + Pn
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The physical meaning of, for example, the various pressure terms in Eqs.

(2.4) is as follows. The zeroth-order, or static component, p, is the

pressure of the fluid in the absence of a sound wave. The first-order term,

Pl, is the pressure associated with a wave propagating linearly through the

fluid. The higher order components are due to the nonlinear nature of acous-

tic wave propagation, as discussed in Section 1.1. Under the limitations of

perturbation theory for which the acoustic signals are sufficiently small

that

Po >> P> 2 >> .. >> P
0 22n

terms higher than second order are neglected. 25Neglecting 
these terms

is effectively the same as assuming that no no linear interactions 
occur

beyond those which give rise to the second-order field; i.e., the second-

order radiation is assumed to propagate linearly.

First and second-order wave equations can be derived by substituting

the series expressions in Eq. (2.4) into the fundamental equations, Eqs.

(2.1)-(2.3), and then retaining only terms of first or second order, re-

spectively. The parametric acoustic array utilizes the second-order field

variables, so the second-order wave equation is of particular interest, and

is given by
10 '26

2  i 22(2.5)

11 P2 2

where
[2= 2 1 22

2 t is the D'Alembertian operator, and

1 Bs +2A
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This inhomogeneous wave equation has a source term on the right hand side

that is a function of the first-order pressure field and some constants.

Apparently to emphasize the physical meaning of this wave equation,

Westervelt rewrote Eq. (2.5) in terms of the source strength density, q, as

follows:

2

P.) - " ' (2.6)

where q 24 t

Equation (2.6) has the same form as the linear (first-order) wave equation

in which there are real mass souIres present, the sources having source

strength density, q. By analogy with such a linear wave equation, Eq. (2.6)

describes the propagation of second-order acoustic waves that are generated

by the nonlinear interaction of first-order acoustic waves. The sources

that generate the secondary pressure field are not real, but are 'virtual'

sources produced by the nonlinear properties of acoustic wave propagation.

These sources are distributed throughout the region of space in which the

nonlinear interaction of the primary field occurs. The general solution for

the pressure P2 in Eq. (2.6) is27

p2(rt) = -0 q(roT)dv 9 (2.7)
2' 4,;fr' Dt

V

where

r is the observation point,

is the source point,0 
"

rr0

r = Ifr~'I ,



r'
T = t - - is the retarde'd tilt.,

C
0

V is the int.ract ion vol umc , and thef g.omutry of Fig. 12.1

applies.

This result can be summarized qualitatively as follows. Whenever some

first-order pressure p1 is present at a point in the medium, a second-order

virtual source will arise at that point having a source strength qdv. The

second-order pressure at an observation point r will be the sum of all

sources in the interaction volume; this pressure is given by Eq. (2.7). In

the next few sections, we will discuss specific solutions for P2 for given

first-order pressure fields.

2.3 The Parametric Array

Two practical applications for the second-order sound field described

10
by Eq. (2.7) were proposed by Westervelt. He noted that if two plane

harmonic waves of frequencies wl and w2 are projected by a common trans-

ducer, an array of virtual sources will be established in the beam of the

transducer, radiating at sum and difference frequencies 1± W 2' The array

would be phased in an end-fire manner, and its radiation pattern would have

negligible sidelobe levels. This concept of a parametric transmitting array

28
was confirmed experimentally by Bellin and Beyer, and led to further

29 30 31
studies of this application by Berktay, Berktay and Smith, Hobaek,

Zverev and Kalachev,
3 2 Muir and Blue,

33 Muir,1 1 and Smith.
2 5 ,34

In addition to its use as a transmitter, Westervelt also suggested

using the parametric array as an acoustic receiver. In this application

some distant signal would interact nonlinearly with a locally generated

signal. The second-order pressure arising from this interaction would

then be detected by a hydrophone placed in the vicinity of the locally gen-

erated wave. Several studies were also prompted by this possibility.
35 4 4

The findings of some of these studies will be discussed in the following

sections.



12

qdv

ro Pr

x

z

FIGURE 2.1
RADIATION FROM AN ELEMENTAL SOURCE

ARL - UT
AS-77- 1091
CRC - GA
10 -6 -77



13

2.3.1 The Nearfield Receiving Array

As an illustration of the parametric receiving array, consider the

arrangement shown in Fig. 2.2. A pump transducer of dimensions 2b x 2b is

situated at the origin and radiates a wave of frequency w along the x-axis.
p

A signal wave with frequency w propagates in a direction given by the unit

vector

= i cos.) + j sino , (2.8)

where i and 3 are unit vectors in the x and y directions, respectively.

The second-order pressure produced by interaction of the pump and

signal waves is detected by a hydrophone placed at x = L. It is assumed

that the detector is in the nearfield of the pump Lransducer, so that the

pump radiation may be approximated by a plane wave. The signal source is

assumed to be located so distantly that the signal wave is planar in the

vicinity of the pump. With these considerations, the pump and signal pres-

sures are described by

j (w t - kpx) -a x

Pump: p (x,t) = P e P p e p (2.9)

j(wst- kx) -a R
P sP

Signal: Ps(x,t) = Ps e e (2.10)

where P is the pressure amplitude of the pump wave in the nearfield
p

of the pump transducer,

P is the pressure amplitude of the signal wave at the origin,S

a and a are attenuation coefficients for the pump and signalp s

waves, respectively, and

R= x cose + y sine

In writing Eqs. (2.9) and (2.10), it has been assumed that the attenuation

coefficients are constants because the waves are each of single frequency.
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Also, the phase of the signal wave has arbitrarily been set to zero at the

origin.

The total first-order pressure at any point in the pump column (i.e.,

the region indicated by dashed lines in Fig. 2.2) is

Pl = Pp +p s (2.11)

The second-order pressure detected by the hydrophone at x = L can be

calculated by substituting Eq. (2.11) into Eqs. (2.7) and (2.8). If only

the sum and difference frequency terms are retained, the result is

= ±[[ e- j ( k p x ± ksR) -(a x + a R)

p+(L)- ± -P 4 e P s
- 4 ip c o--

0 0 o -b -b

Jek ((Lz +Y +z2 dxdydz , (2.12)
(L-z 2  2 2/ - z) 2 + y 2+ z2

where W, =W ±

p s

a+ is the attenuation coefficient at frequency w+ (a constant),

k+ is the acoustic wavenumber at frequency w+ , and the time de-

pendence has been suppressed.

46This integral is not easy to evaluate directly, but Berktay has

devised a method for simplifying the integration which will now be adopted.

The interaction region in front of the pump transducer can be regarded as a

series of elemental wafers of thickness dx and cross-sectional dimensions

2b x 2b (see Fig. 2.3). Each of these wafers is insonified by the first-

order sound field and will radiate at the frequency w+. These wafers will

produce nearfield, planar radiation at a range less than R from the wafer,

and farfield, spherically spreading radiation at ranges greater than R
0

Using Freedman's45 description of radiation from a square piston, Berktay
and Al-Temimi 3 8

and l-Teimf choose R to be1~0

_____________________
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R 1.3 b/A3  , (2.13)

where Xs is the acoustic wavelength at frequency s .

The detected second-order pressure may be considered to have two

components: (1) nearfield radiation from wafers within a distance R of the0

detector and (2) farfield radiation from wafers at a distance greater than

R from the detector. For this illustration assume that L < R so that
0 0

all wafers are in the nearfield of the detector. With the further assump-

tion that absorption along the y-axis is negligible compared to that in the

x direction, so that a R can be approximated by a x cos6, Berktay ands s

Ai-Temini3 8 evaluate Eq. (2.12) with the result

P (L,P) = -(a+ + jk±)L] exp[jM] M

(2.14)

where

the subscript N indicates that the result is valid only when the

detector is in the nearfield of all elemental wafers, and

M ksL(l - cose). (2.15)

The pressure detected by the hydrophone can be expressed in terms of

the on-axis pressure amplitude, P N(L,O), and the directivity, D(O), as

follows:

PN(L,8) = P N(L,O) D(O) , (2.16)

where P N (L O ) = 3  exp(-x±L) , (2.17)

2p 0 c0

andsin M (2.18)
M

an d..........
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Experimental confirmation of the validity of Eqs. (2.17) and (2.18) is

reported by Berktay and Al-Temini.
37'38' 4 7

The directivity function is identical to that of a continuous end-fire

array of length L, realized from elements operating at frequency W . It iss

this directional property of the parametric receiver that makes it an at-

tractive device for the reception of underwater signals. It offers the same

capabilities as the conventional end-fire array as regards directional de-

tection of signals; yet the parametric device requires only two transducers

in its construction.

These conclusions have been based on results obtained assuming that

the hydrophone is placed iiL the nearfield of the pump transducer. In appli-

cations requiring high directivity, and consequently large values of L, it

is likely that the hydrophone will be placed well in the farfield of the

pump. The next section extends the discussion to this situation.

2.3.2 The Farfield Receiving Array

39
In 1972, Barnard et al. considered a case in which the hydrophone is

placed in the farfield of the pump transducer. Their analysis assumed

interaction between a plane signal wave and a spherical pump wave produced

by a baffled circular piston. Prediction of the interaction frequency pres-

sure was given by a numerical solution to Eq. (2.12). The results of the

integration were tested against experiment for the sum frequency, with good

agreement between theory and experiment.

A closed-form solution for parametric reception with spherically

43
spreading pump waves is given by Berktay and Shooter. The analysis is

similar to that for the nearfield receiving array, but rather than having

planar elemental wafers, the interaction frequency sources are assumed to

be cophasal along the spherical wavefronts. The received pressure at the

interaction frequency w± can be written
4 2'4 3



1L)

P = 3 exp (a + jk)LL- j D(O) , (2.19)
F2p 0 c 0  ex + + +

where

PF(L,O) is the pressure of the interaction frequency signal at x L,

for the case of spherical pump waves,

P' is the on-axis farfield pump pressure amplitude referred to 1 meter,

p

D(O) = sin M/M is the directivity function, and

1
M = 1 k L(l - cosO).

In comparing results for the collimated pump [Eq. (2.14)] and the

spherically spreading pump [Eq. (2.19)], it can be seen that the directivity

patterns for the two cases are identical. The pressure amplitude for the

case of the spherically spreading pump is, with the exception of absorption,

independent of array length, whereas for the collimated pump, the pressure

amplitude increases with L.

The directivity function of the pump transducer does not enter into the

result for the farfield parametric receiver, but it has been assumed in the

analysis that the pump beamwidth is less than the beamwidth of the parametric

43
receiver. The directivity function of the parametric receiver for both

the collimated and spherically spreading pump is independent of pump fre-

quency, and is the same whether the sum or difference frequency signal is

used.

Berktay and Shooter 43 compared the closed-form solution [Eq. (2.19)]

to results obtained by the numerical integration of Barnard et al. 39 and

found that agreement between the predictions was good. Computed results of

Eq. (2.19) were also found to be in good agreement with experimental mea-

surements. 4 2'43 These results show that the amplitude of the interaction

frequency signal component can be made approximately equal to the original

signal amplitude by proper choice of pump source level and array length so

that no loss in signal level is experienced in parametric reception.

0 i2
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Truchard 3 6 ,4 4 solved the problem of a parametric receiving array with

an arbitrarily shaped planar piston pump as follows. He first analyzed the

interaction of a high frequency spherical wave from a point source and a

low frequency plane wave. The solution for pump transducers of two or three

dimensions was then obtained by summing the point source solution over the

active face or volume of the pump transducer. In this manner Truchard

analyzed the following situations: (1) a point pump source with a line

hydrophone, (2) a rectangular pump with a point hydrophone, and (3) a cir-

cular piston pump with a point hydrophone. Truchard also studied these sit-

uations experimentally and obtained very good agreement between his theoret-

ical and experimental results.

2.4 Practical Considerations

2.4.1 Signal Processing

In practical applications there are factors which make detection of the

interaction frequency signal difficult. Since w < w , the interaction
s p

frequency w ± w is very close to the pump frequency w . Also the pumpp s p

amplitude P is generally much greater than either of the amplitudes, P and
p s

P±. This situation is illustrated by the sketch of Fig. 2.4. The quantity

e shown in the figure is the 'pump excess,' defined by Berktay and Muir4 2

to be the ratio of the pump pressure at the hydrophone to the amplitude of

the interaction frequency signal. For the case of spherical pump waves42

ex c 20oCo3 /(w ± w s)LP s (2.20)

The signal processing problem is to reject the high amplitude pump signal

and retain one or both of the interaction frequency signals. Since a pump

excess on the order of 160 dB may be encountered in practice, careful de-

sign of the signal processing system may be required in applications of the

parametric receiver.
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There are three basic types of signal processing systems that have

been used with the parametric receiving array: the band pass receiver, the

carrier rejection or band elimination receiver, and the phase-locked loop

receiver. The band pass receiver is relatively simple to design and con-

struct and is adequate in applications where the pump excess is low and

the interaction frequency is well separated from the pump frequency. This

type of receiver was used in the present study, and is described in Chapter

5.

For applications involving a high pump excess and low signal frequencies,

the band elimination receiver is suitable. This type of receiver may be

described using the block diagram of Fig. 2.5. The design uses a cascade of

two crystal notch filters and two preamplifiers to reduce the level of the

carrier, and to amplify the interaction frequency (i.e., sideband) compo-

nents. The signal is then split into its in-phase and quadrature components,

and these components are processed to give the upper and lower sideband sig-

48
nals. Rohde et al. report this method of signal processing to be useful in

a parametric receiver with carrier to sideband ratios approaching 180 dB.

A third type of signal processing system is the phase-locked loop (PLL)

receiver, shown in Fig. 2.6. This system operates as a closed loop servo

system with phase as the controlled variable. 49The input of the PLL re-

ceiver is connected to the hydrophone of the parametric receiving array.

With the voltage controlled oscillator operating nominally at the pump fre-

quency, and with the loop bandwidth less than the lowest modulation frequency

of interest, the error voltage r(t) contains the demodulated signal. This

type of receiver is useful in minimizing the effects of low frequency noise,

such as due to transducer vibration. 4,0This point will be further dis-

cussed in Section 2.4.5.

2.4.2 Shadowing

Any time that an obstacle significantly large with respect to wavelength

V I
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is placed in the path of a propagating wave, shadows may form in the region

behind the obstacle. In the case of the parametric receiver, the pump

transducer and its mounting obstruct the incoming signal wave and form a

shadow in the array interaction region. This shadow has the effect of trun-

cating the array length, with consequent effects on the sensitivity and the

directivity function of the array.

Al-Temimi 47 ,5l has done a theoretical and experimental study of the

effects of shadows on the performance of parametric receivers. One impor-

tant result of his work is a description of the condition for which acoustic

shadows cause no appreciable deterioration of array performance and hence

may be neglected. This condition is that the shadow length d be kept below

5% of the array length L; i.e.,

d < 0.05 L, (2.21)

where

d A1.25 b AX , (2.22)

and 2b is the length of each side of a square transducer.

2.4.3 Finite Amplitude Effects

It was noted in Chapter 1 that a finite amplitude acoustic wave distorts

as it propagates, this distortion being due to the dependence of the phase

velocity on the particle velocity; i.e.,

dt 0 ux~t)(2.23)

where

c 0is the sound speed with respect to the fluid particles,

0
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( ) is the phase (or propagation) velocity of a given point on a

sound waveform, and

u is particle velocity.

The distortion of an initially sinusoidal acoustic wave gives rise to

harmonic components. Energy is transferred from the fundamental component

of the wave to the harmonics as the wave is progressively distorted, so the

fundamental is attenuated by this effect. If the wave experiences enough

distortion for a discontinuity or 'shock' to develop, the situation becomes

more complex. When the acoustic wave is 'weak,' i.e., u /c < 0.1, then a

method known as 'weak-shock theory' can be used to describe the wave propa-

gation. 52 ,5 3 We will not discuss this theory in any detail, but merely note

that when a shot:k forms, dissipation may be assumed to occur at the shock

front to the degree that the waveform never becomes multivalued.
5 2

In general, there are three mechanisms that attenuate an acoustic wave:

geometrical spreading, absorption by the medium, and the 'excess attenuation'

due to energy transfer from fundamental to harmonic components as the wave

is distorted. The spreading and absorption mechanisms, by reducing the amp-

litude of an acoustic wave, tend to reduce the nonlinear distortion process

considerably. For example, a spherically spreading wave will have a value

1
of u that reduces as -, so that the importance of the second term in Eq.

(2.23) diminishes with range. Absorption will similarly reduce the effects

of nonlinearity. It can be seen, thertfore, that excess attenuation will

only be significant in the case of waves with initially large amplitudes.

The excess attenuation for a plane wave propagating through a lossy

medium is calculated by Blackstock5 4 in terms of the Gol'dberg number, r,

and the normalized range parameter, o. These quantities are:

r k , (2.24)
Ct
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where
U

0
C

u being the particle velocity at the transducer face,

and

X
= -- (2.25)

The value of the excess attenuation EXDB in the fundamental component can

be read from curves given in reference 54. An approximate solution, said

to be accurate to within 1 dB of Blackstock's results, is given by55 ' 56

E XDB 1 10 log )l 4 ( [)2Ll - exp(-2a/F)] 2 (2.26)

Some effects of finite amplitude attenuation on the performance of a

38,47
parametric receiver have been studied by Berktay and Al-Temimi. They

found that for the case of the nearfield array, excess attenuation of the

pump wave can bring about saturation in the sensitivity of the parametric

receiver.

It was found by Al-Temimi47 that finite amplitude attenuation had little

effect on the parametric receiver directivity. The combination of shadowing

and finite amplitude attenuation, both dependent on frequency, can reduce

the bandwidth of the receiver. The effect is particularly significant when

a great deal of extra attenuation occurs in the shadow region of the pump,

so that the pump wave is well attenuated before entering the interaction

volume.

2.4.4 Sources of Noise that Affect Parametric Reception

Any noise in the acoustic environment at frequencies w and w ± ws p s

will be detected by the parametric receiver. The signal frequency noise

component (at w s) will be up-converted along with the desired signal, and
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the interaction frequency noise component (at p w will be detected
p S

directly by the receiving transducer. The parametric receiver, by virtue of

its directivity at ws, discriminates against the low frequency noise. Some

rejection of the interaction frequency noise is provided by the receiving

trinsducer directivity. An analysis of the effects of ambient noise on

parametric reception ma be found in Berktay's papers. 3 7 5 7 ,58 Effects of

ambient noise were an important consideration in the parametric receiver de-

sign described by Goldsberry, 59 ,6 0 who discusses in Ref. 61 an extensive ex-

perimental program which studied the performance of the parametric receiver

in a fresh water lake.

In addition to noise in the acoustic environment, electronic noise in

the pump signal source will contribute to the overall noise level of the

parametric receiver. This noise is due to the fact that the pump transducer

does not radiate at a single frequency, but over a frequency band, and if

W<< , then there is very likely to be energy radiated by the pump at

WP ± s, which will be detected by the hydrophone. This radiation depends

primarily on the sideband noise produced by the pump oscillator, and must

be minimized if low-level, low frequency signals are to be detected bv the

parametric receiver. A crystal oscillator developed for the purpose of

minimizing the noise of the pump source is reported to have a sideband noise

level (measured in a 1 Hz band) of -160 dB referenced to the carrier level,

measured at 100 Hz from the carrier frequency.
61'6 2

Another kind of noise may arise due to transducer vibration. If the

pump transducer and hydrophone are mounted such that they move relative to

one another because of vibration, then the array length will be varied by

this motion. As a result the pump and interaction frequency signals will

be phase modulated. This modulation produces undesirable sidebands in the

hydrophone output which may appear as spurious low frequency signals that

61
are indistinguishable from acoustic signals. The response of a parametric

-t .
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receiver to transducer vibration has been studied analytically and
63,64 49

experimentally by Reeves et al. and by Lamb. Lamb has dumonStrat!d

the usefulness of the phase-locked loop receiver, discussed in Section 2.4.1,

in minimizing the noise due to transducer vibration.

2.4.5 Effect of Turbulence and Medium Inhomogeneities

Another factor which may affect receiver performance is the signal

fluctuation due to turbulence and medium inhomogeneities. Both turbulence

and inhomogeneities in the medium produce random scattering of an acoustic

signal. The various scattered components interfere at an observation point

to produce amplitude and phase fluctuations in the observed signal. For

the parametric receiver there are three signal components which undergo

fluctuations: the incoming low frequency signal, the pump signal, and the

interaction frequency signal. In a severely inhomogeneous or turbulent

medium, the composite effect of these fluctuations could prove prohibitive

to the detection of low-level signals. This is a problem that has received

little attention to date, and it is the principal topic with which this

thesis will be concerned.

2.5 Summary

In this chapter, the basic concepts of the parametric receiver have

been discussed and an outline of the historical highlights of its develop-

ment presented. Of necessity, topics have been treated briefly. Some
42

topics, such as the use of arrays of parametric receivers, the phase mod-
41

ulation model of the parametric receiver, and the effects of having the
65

signal source located in the nearfield of the parametric receiver, have

been omitted, as they do not directly bear upon the present study.

It has been shown in this chapter that the parametric array makes use

of the second-order sound field generated by nonlinear interaction of a low

frequency signal wave and a locally generated pump wave. A second-order
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wave equation tEq. (2.6)] was presented, the solution to which is dependent

upon the geometry of the interaction region. Solutions to the wave equation

for the cases of the nearfield and farfield parametric receiver were dis-

cussed. It was seen from these solutions that the parametric receiver has

the same directivity characteristics of an end-fire array of equal length,

realized by continuous elements. Thus the advantages of directivity offered

by the end-fire array are achieved by the parametric receiver, which re-

quires only two transducers for its construction. Finally, practical con-

siderations regarding signal processing, shadowing, finite amplitude effects,

and the effects of noise were discussed briefly. It was noted that one re-

maining topic for study regarding practical application of the parametric

receiver is the effects of medium inhomogeneities; this is the topic for

this thesis.

- I



CHAPTER 3. ACOUSTIC WAVE PROPAGATION IN AN INHOMOGENEOUS MEDIUM

3.1 Introduction

The discussion of the parqmetric receiver in the previous chapter

implicitly assumed that the acoustic medium is homogeneous. This assumption

is usually unrealistic in practice. The ocean, for example, may contain one

or more of a variety of inhomogeneities: fish, bubbles, algae, thermal

microstructure, and turbulent eddies. These inhomogeneities scatter the

energy of an acoustic wave and, as they move about in the medium, produce

random fluctuations in the amplitude and phase of the transmitted wave. In

many instances the effects of fish, bubbles, and algae can be ignored be-

cause these kinds of scatterers occur in small quantities. More widespread

are thermal inhorogeneities and turbulent eddies which can cause significant

14
fluctuations in a transmitted signal. Both of these inhomogeneities can

be modelled as regions or 'patches' of variable refractive index.

Thermal patches are usually the principal cause of scattering in the

14
ocean. The dimensions of these patches are generally large compared to the

acoustic wavelength, in which case, as a first approximation, they may be

treated as spherical sound sources of radius a, where a is the mean radius

14,17
of the thermal patches. Scattered sound from the patches will prcpa-

gate in the same direction as the incident wave, and with a farfield beam
17

angle of 1/ka radians, where k is the acoustic wavenumber 7(see Fig. 3.1).

The region in front of the patch out to a distance ka2 is taken to be

the 'ray region' of the scattered radiation.1 7 In this region the patch will

behave like a lens, focusit.g or defocusing the scattered rays according to

whether the sound velocity in the patch is smaller or larger than the aver-

age value, respectively.1 7 In 1946, a 'ray theory' was developed by

15
Bergman which predicted that a wave propagating over a distance less than

ka2 would undergo amplitude fluctuations proportional to the three-halves

power of the range.

31
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The region beyond a distance ka2 from the patch is the 'wave reginn'

of the scattered radiation. At ranges greater than ka2 from a source, inter-

ference will occur between waves scattered by various patches in the medium.

For these ranges the theory of Mintzer 16 predicts mean square amplitude

fluctuations in the acoustic signal which increase linearly with range.

Mintzer's prediction of range dependence is in good agreement with the ex-

perimental data of Sheehy, 66'who measured fluctuations in a 24 kHz pulsed

signal transmitted over ranges of approximately 30 to 3000 meters. Further

verification of this theoretical range dependence was given by the model

67 18
tank experiments of Stone and Mintzer. Chernov reproduced the Bergmann

and Mintzer results and in addition calculated the transverse and longitudi-

nal spatial correlation of the fluctuations. Chernov's analysis of fluctua-

tions and their correlation was extended to the case of spherical waves by

Karavainikov.
6 8

All of the theoretical studies mentioned above assumed that the

refractive index field in the acoustic medium could be described by an ex-

ponential or Gaussian spatial correlation function. Measurements of thermal

microstructure in the Pacific Ocean were reported by Liebermann69 in 1951,

-x /a
and his results agreed reasonably well with the exponential function, 

e

where a is the mean radius of the thermal patches. (Liebernmann measured a

mean patch size of 0.6 meters.) When Whitmarsh et al. 14 made simultaneous

measurements of acoustic fluctuations and thermal microstructure in 1957,

however, they found that the Kolmogorov theory of turbulence provided a

more accurate description of the thermal structure of the sea than did the

exponential or Gaussian functions. Whitmarsh et al. suggest that the agree-

ment of the Kolmogorov theory with their experimental results was a conse-

quence of the 'freezing' of the thermal patches after their turbulent motion

has been damped out. They reason as follows:
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Since the static heat conductivity is almost 1000 times
smaller than the turbulent conductivity, the patches continue
to exist, even after the turbulent motion has disappeared.
This stability seems to lead to excellent statistical condi-
tions and to a temperature distribution that agrees with the
experimental results.... 14

This 'Kolmogorov' model of the medium has been used by Tatarski1 9 and

Medwin 70 to predict sound phase and amplitude fluctuations in a turbulent

medium. The Kolmogorov model will be used in the present study, so a brief

description of turbulence theory, and some of the results of Tatarski and

Medwin, will be presented later in this chapter.

The research cited above all deals with situations in which the total

fluctuations imposed on the propagating wave are sufficiently small that

only single scattering is involved. By the end of the 1960s, work had be-

gun on the more difficult problem of multiple scattering, where fluctuations

in the wave parameters can become large. Multiple scattering is discussed

at some length in the books of Tatarski, 71 Uscinski, 72 and Ishimaru.7 3 In

this thesis we will be concerned only with single scattering. More detailed

surveys of theoretical work for both single and multiple scattering, in-

74
cluding extensive bibliographies, may be found in Ishimaru and Barabanenkev

et al.
7 5

3.2 Methods of Describing the Inhomogeneous Medium

A theoretical analysis of the propagation of linear acoustic waves in

an inhomogeneous medium requires statistical methods for describing the

medium. The medium may be modelled as a randomly varying field of refrac-

tive index, or equivalently, of sound speed. The sound speed is then given

by

c = c(x,y,z,t) 0

and the refractive index is
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C0

n(x,y,z,t) c + P(x,y,z,t) (3.1)

where

a = <c> is the mean sound speed,
0

< > denotes ensemble averaging, and

i(x,y,z,t) is the deviation from unity in the refractive index.

Variations in the'refractive index are usually very small; for examt'le, Urick

76 2 -10
and Searfoss measured a value of <p > = 8 x 10 at a depth of about 6

69
meters in a mixed layer off Key West, Florida. Liebermann observed mean

square refractive index variations of < 2> = 5 x 10- 9 at a depth of 50 meters

off the coast of California. Because the quantities c and n are random

variables, a description of their spatial dependence requires statistical

parameters such as the coirelation function and its Fourier transform, the

spatial wavenumber spectrum. Both the correlaticn function and the wave-

number spectrum are used frequently in what follows, so we will define each

of these parameters.

If (x,y,z,t) may be assumed to be an ergodic process, then the

fluctuations may be characterized by the correlation function
7 7

N1 2 = (Xl' YI9 Z1' t) P(x2, Y29 z2 9 t) , (3.2)

where the overbar denotes time averaging. Because of the ergodic hypothesis,

ensemble averaging and time averaging are equivalent. If it is further re-

quired that the process be spatially homogeneous, then the correlation func-

tion depends only upon the separations Ax, Ay, and Az, where Ax - x2 -X

Ay = Y2 - y1, and Az = z2 - z . When points (xl, yl, zl) and (x2, Y2 . z2 )

are the same, so that Ax = Ay = Az = 0, then the correlation function has a

maximum value of U2 . As the separation between the two points is increased,
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the correlation function decreases in value until, at infinite separation,

NI2 becomes zero.

If the variations in refractive index are isotropic as well as

homogeneous, then the correlation function will depend only upon the mag-

nitude of the separation between points. This condition may be written as

NI2 = N12(p)

where

p = (Ax) 2 + (Ay)2 + (Az) 2

It is useful to normalize the correlation function by dividing N 12 by i 2

This results in the correlation coefficient R, given by

R N 12NP2

Two correlation coefficients frequently used to describe the refractive

index variations in the ocean are the exponential function,

R(p) = exp(-p/a) (3.3)

and the Gaussian function,

R(p) = exp(-p 2/a) (3.4)

where a is a constant corresponding to the mean patch radius. It should

be noted 7 7 that the derivative of the exponential function, which may be

found from Eq. (3.3) to be

dR i
= a. exp(-p/a)dp a



has a nonzero value at p 0. This implies a discontinuity in the

correlation function at p =0, which is possible only if the variation in

refractive index, pJ(p), is discontinuous, a condition which is unrealistic

in the ocean. 17The Gaussian function, Eq. (3.4), does not exhibit this

discontinuity, and in this respect is a more realistic representation of the

refractive index fluctuations than is the exponential function.

An alternate way to describe spatial variations in refractive index is

to use a spatial wavenumber spectrum. Physically, this spectrum character-

izes the distribution of patch sizes that are present in an inhomogeneous

medium. As mentioned in Section 3.1, the distribution of thermal patches

in the ocean is a result of turbulent mixing. Similarly, the thermal micro-

structure in a model tank such as used in the present study is generated by

turbulent mixing. Before returning to our discussion of acoustic wave

propagation in an inhomogeneous medium, we will consider some basic concepts

of turbulence theory.

3.3 Turbulence

19,71,78,79
The theory of turbulence is used, in general, to describe

viscous fluid flow for large Reynolds numbers. The Reynolds number, Re, is

defined as

Re = Lv
V

where

L is the characteristic scale of flow,

v is the characteristic flow velocity, and

v is the kinematic viscosity of the fluid.

For small values of Re, the fluid flow is orderly or laminar. When the

Reynolds number exceeds a critical value, Re ,the flow becomes unstable

and breaks up into turbulent eddies. Each eddy of size Z will have
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associated with it a local Reynolds number, Re ~.If Re also exceeds Re cr,

the eddy will further break down into smaller eddies. This process will

continue until the eddies are small enough that viscous dissipation balances

out the energy being supplied to the eddies from the external source. When

this occurs, the turbulence reaches steady state, and a range of eddy sizes

exists such that *

I <QZ< L
0 0

where

L 0is the outer scale of turbulence, and

1 is the inner scale of turbulence.
0

The outer scale, L., is determined by the boundary conditions of the fluid

flow. In an acoustics application, L may generally be taken to be the
0

dimension from the acoustic source or receiver to the nearest boundary of

the medium. The inner scale, 1., is shown by Tatarski 80 to be

4
10 =,V/ (3.5)

where

e is the energy dissipated as heat per unit mass per unit time.

This qualitative description may be summarized in terms of energy as follows:

an external energy source supplies energy to eddies of size L 0which trans-

fer this energy down a chain of successively smaller eddies, the energy

finally being dissipated as heat due to the viscous losses associated with

the smallest eddies.

In describing turbulence it is often convenient to deal with the

wavenumber, K, associated with an eddy rather titan use its characteristic

dimension, 2.. The wavenumber is inversely proportional to the eddy size



-T,

39

8]
and may be written 

as

27T= K (3.6)

It can be seen that large wavenumbers correspond to small eddy sizes, and

vice versa. Because the kinetic energy of the flow is distributed through-

outa spectrum of eddy sizes, it is possible to define a power spectral

density for the flow. The average kinetic energy of the flow is then the

sum of the energy associated with all the eddies; i.e.,8 2

T =f v (K)ItK

0

where

T is the average kinetic energy per unit mass per unit time,

¢ (K) is the one dimensional power spectral density, and
V

the flow is assumed to be homogeneous and isctropic.

The quantity 4 (K) is related to the velocity fluctuations in the flow,
v

but because temperature may usually be treated as a passive additive to the

turbulence, the spectra of the temperature and refractive index variations

700
are usually assumed to have the same shape as Dv (K). 7

A spectrum proposed by Medwin 70 for describing refractive index

variations is shown in Fig. 3.2. In the figure, the range of wavenumbers

corresponding to large, anisotropic eddies is labelled the 'source' sub-

range, as these eddies supply energy to the entire spectrum. The energy of

the source eddies gradually becomes less anistropic (directional) in the

transition subrange, until, in the inertial subrange, the energy is

isotropic and homogeneous. In the inertial subrange, the spectral density

70
is given by the simple relation:

4 (K) = bK- 5 / 3
, (3.7)
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where

b is a function of the viscosity, v, and the energy dissipation rate,

C.

The -5/3 power law expressed by Eq. (3.7) was originally proposed by

83
Kolmogorov, and has been experimentally verified in a number of

studies. 70'7 1'78 The turbulent energy of the flow is finally lost to heat

in the 'dissipation' subrange, where viscous forces become dominant.

The various subranges of the spectrum in Fig. 3.2 are bounded by the

wavenumbers K , Kt. and K . Medwin defines these boundary wavenumbers as

70
follows:

K =T where D = depth, (3.8)
m 2D

3 1/4
K 0 (E/V ,and (3.9)K0

1/2
K = 0.5(K K ) (3.10)

The wavenumber K defined by Eq. (3.8), depends only upol the depth
m

of the acoustic experiment. In the upper ocean, the sea surface will be

the nearest physical boundary to the acoustic experiment, so it seems rea-

sonable that this boundary will determine the maximum significant eddy size.

The effect on the acoustic experiment of eddy sizes corresponding to wave-

numbers less than Km may be assumed to be negligible.
70

The lower limit of the inertial subrange, Kt, is an empirical value

that is shown by Medwin to obey the relation expressed in Eq. (3.10). The

upper limit of the inertial subrange is the Kolmogorov wavenumber, K0 , given

by Eq. (3.9). Medwin assumes that the spectrum can be truncated at K0, and

that the effects of the dissipation subrange upon an .coustic experiment

70 84
can be ignored. However, the results of Chotiros and Smith suggest that
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for the model tank used in the present investigation it is more reasonable

to assume that the truncation wavenumber of Pao 85 is valid. Pao's theory

assumes that the spectrum of the thermal microstructure in the dissipation

subrange departs from that of turbulence and is controlled by the diffusiv-

ity. Pao suggests that the -5/3 power law continues to be valid in the

dissipation subrange, with a truncation wavenumber given by

3 1/4
Kp (c/D )I /4 (3.11)

where

D is the diffusivity.

When Kp is used to truncate the spectrum rather than Ko, the wavenumber Kt

will become:
84

K= 0.5(K K) . (3.12)Kt

In this section and the previous section, two alternative methods of

describing an inhomogeneous medium have been presented: the method of the

correlation function and that of the spectral density function. The two

methods are not independent, however; they are related by the Fourier

transform theorem. In three dimensions, for a homogeneous medium this re-

lation may be written as:

NI2 (Ax, Ay, Az) = K , K)

12 3

(3.13)

x expfj(IAx + K 2 Ay + K3 Az)]dKid 2 d 3  ,

where

Si (Ki' K 2 , K 3 ) is the three dimensional spectrum of the refractive

index variations, and

U
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K1 , K 2 , and K 3 are wavenumbers in the x, y, and z dimensions,

respectively.

For an isotropic medium Eq. (3.13) becomes
70

Nl 2 (P) - sinKp ( K
)d

K  
, (3.14)12 J KQ 11

0

where the one-dimensional spectral density is related to the isotropic three-

dimensional spectral density by

P(K) 
= 
4T2 S (K)

3.4 The Wave Equation for an Inhomogeneous Medium

In the preceding sections we have discussed some of the causes of

acoustic signal fluctuations and have presented two methods that are useful

in describing the inhomogeneous medium in which these fluctuations occur.

Now we will consider in more detail the way in which medium inhomogeneities

produce variations in the amplitude and phase of a propagating wave. -The

acoustic wave equation for an inhomogeneous medium has been derived by a

number of people, including Rayleigh.8 6 The discussion in this section will

be based on Chernov's8 7 development.

It is assumed that the medium is lossless and is in a state of

equilibrium so that, ignoring the force of gravity, the ambient pressure po

is constant throughout the medium. The only inhomogeneities present in the

medium are those in temperature and density; the effects of bubbles, bio-

logical matter, etc., are neglected. Temperature and density variations

are not independent quantities. In order for the pressure to remain con-

stant, the changes in temperature at any point in the medium will be accom-

panied by a related change in density. In the ocean, it would be expected

that the temperature inhomogeneities would be moved about in the medium by
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current flow and convective motion. It i., assumed that these types of

motion are slow compared to the velocity of sound so that the inhomoge-

neities can be regarded as fixed during tie time required for an acoustic

wavefront to propagate through a patch of diameter 2a. This condition

is what Chernov calls the 'quasi-static' condition.

The wave equation for the situation described above is

2 2 V2p + Vlog PT Vp = 0 (3.15)
c2 at

2

where

c = c(x,y,z) = c o + Ac is the sound speed,

c = <c> is the mean sound speed,0

Ac = Ac(x,y,z) is the random variation in sound speed,

p is the acoustic pressure,

PT = PT(xYz) = Po + Ap is the total density,

PO = PT> is the mean density, and

Ap = Ap(x,y,z) is the random variation in density.

This equation differs from the homogeneous wave equation in two

respects: (1) the sound velocity is not constant, but varies spatially in

a random manner; and (2) there is an additional term, Vlog pT" Vp, which

arises as a result of the random variations in density. It is assumed that

the variations in sound speed and density are small; i.e., tc<<c and Ap<po .o

When some 'primary' acoustic wave is transmitted through the inhomo-

geneous medium described above, each element of the medium becomes a source

of 'secondary' scattered waves. For example, suppose a harmonic plane wave

propagates in the x direction. This primary or incident wave can be de-

scribed by

Pi= Pi exp[j(wt - kx)] , (3.16)
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where

w is the angular frequency, and

k = .-- is the wave number.
C

0

If the scattering elements are associated with the coordinates (Er, ) and

the observation point is designated by (x,y,z), then the distance from a

scattering element to the observation point will be

r = (x - E)2 + (y _ n)2 + (z - .)2 (3.17)

The total scattered pressure at the observation point will be given by the

solution to Eq. (3.15), which Chernov expresses as:

Psc 4 12k 2 Ac -k '(4OT)) i exp[-jk(r + C)] dv (3.18)

where

fdenotes integration over the volume of scatterers.
V

[In Eq. (3.18) and hereafter the factor ej t is dropped.] The first term in

curly brackets [Eq. (3.18)] is associated with scattering of sound by spatial

variations in the sound velocity, while variations in the density give rise to

the second term. In the ocean, the density fluctuations may be assumed to be

negligible in comparison to the sound speed fluctuations, so the second term

in curly brackets [Eq. (3.18)] can be omitted in approximating the scattered

pressure.

One further modification of Eq. (3.18) can be made as follows. From

Eq. (3.1) we can write the refractive index variations as

c c
S(3.19)

c (c + Ac)

.- -
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where c = c + Ac. Some algebraic manipulation of Eq. (3.19) gives

Ac . Ac

- (c + Ac) c ' (3.20)
0 0

Ac
where, as mentioned above, Ac << c . Substitution of this result for - in0 c

0

Eq. (3.18) leads to the following expression for the scattered pressure:

k k2pi exp[-j (r + C)](, n, ) dv . (3.21)
Psc 2 r

The physical significance of this result can be summarized as follows: A

scattering element with volume dv and refractive index variation p is lo-

cated at point ( , n, ). Due to the influence of an incident wave pi, the

scattering element acts as a secondary sound source which radiates a pres-

sure wave dp . The total scattered pressure, psc' received at the obser-

vation point (x,y,z) is the sum of the contributions from all scattering

elements in the volume V. The result expressed by Eq. (3.21) can be used

to calculate the amplitude and phase fluctuations of the pressure wave at

the observer, as will now be discussed.

3.5 Fluctuations in the Amplitude and Phase of the Observed Pressure

The total pressure at the observation point will be the sum of the

primary pressure and the scattered pressure,

p P p Pi + Psc

where

P and * are the amplitude and phase of the total pressure, p.
As the inhomogeneities move about in the medium, the amplitude and phase of

the observed pressure will vary randomly about their mean values. It is
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convenient to define the fluctuation in observed pressure amplitude and

phase about their mean values as

B £Mn( and (3.22)

S-p -<p> , (3.23)

where

B is the logarithmic fractional variation of the instantaneous pressure

amplitude, P, from its mean value, <P>, and

S is the variation of the instantaneous phase, 4, from its mean value,

<4)>.

The In operator in Eq. (3.22) is a consequence of using Rytov's method, also

known as the method of smooth perturbations, in calculating the fluctua-

88
tions. In this thesis we will be concerned with amplitude fluctuations

sufficiently small to make the approximation

B = n P ) P <P> ; B <<

The average values of B and S are zero, so it is necessary to use the mean

square fluctuations, <B2> and <S 2> , to characterize the level of fluctua-

tions caused by the inhomogeneities. There are a variety of analytical ex-

pressions in the literature that relate the mean square fluctuations to the

statistical parameters used to describe the inhomogeneous medium. In the

2 2
next two sections we consider expressions for <B > and <S > when the medium

is described by a Gaussian correlation function, and when the medium is de-

scribed by a spectral density function.
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3.5.1 Fluctuations in a Medium Described by a Correlation Function

In the case of plane waves propagating through a statistically isotropic

inhomogeneous medium, Chernov 89 obtained solutions for <B 2> and <S 2> in

terms of a wave parameter, D, given by

4L

ka

where

L is the propagation distance of the acoustic wave through the medium.

Chernov's analysis assumes that the inhomogeneities are large compared to

an acoustic wavelength (ka >> 1), and that the propagation distance is large

compared to the scale of the inhomogeneities (L >> a).

For large values of the wave parameter, which corresponds to the

wave region of the patches, Chernov obtains:

<B2> = <$2> = <2> k2 LJR p dp D>> . (3.24)

f
0

If the correlation coefficient is Gaussian, given by Eq. (3.4), then Eq.

(3.24) becomes

<B2 > = <S2> = - > 2> k2 aL D>>1 . (3.25)

16,67
Mintzer has shown that these same results, Eqs. (3.24) and (3.25), are

valid for a spherical wave in the wave region when

k2<p2>aL << 1

For small values of the wave parameter, corresponding to the

ray region of the patches, Chernov shows the mean square amplitude
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fluctuations for a plane wave to be

2 1 2L3f 2

<B > <p2> L VVR(p)dp , D<<l , (3.26)
6o

0

which, for a Gaussian correlation coefficient, becomes

<B2> f 8W < 2 L 3

B 3 --. , D<<l (3.27)
a

The phase fluctuations for D-1 have been shown89 to be twice their

values when D>>l (i.e., double the results in Eqs. (3.24) and (3.25)).

Finally, when the wave parameter is of the order of unity, Chernov obtains

<B > F-IT < 
2  - arctan D , (3.28)

2 > 1 2> k2 /a 1 +D i

<S 2 < a L + arctan , (3.29)

where a Gaussian correlation coefficient has been assumed. For small and

large values of D, these last two results become equivalent to the ray, and

wave region solutions, respectively.

Using the same conditions and assumptions as Chernov, Karavainikov
9 0

obtained a similar set of results for the amplitude and phase fluctuations

in a propagating spherical wave. For the wave region of the inhomogeneities,

D >N 1, Karavainikov's result is identical to Eq. (3.25).

3.5.2 Fluctuations in a Turbulent Medium

In the case of a medium whose random refractive index field is

determined by turbulence, Tatarski1 9 ' 71 has found expressions for amplitude

fluctuations in terms of a turbulence parameter, C . For propagation dis-

tances L such that L o>> A >> 10, where 1 and L are the inner and outer
0 0 0 0

scales of turbulence, respectively, and )X is the acoustic wavelength,I

I
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Tatarski shows

<B2> 0.13 C 2 k7/6 11/6 (3.30)
n

for spherical waves, and

<B2> 0.31 Cn 2 k7/6 11/6 (3.31)
n

for plane waves. The quantity C is related to the spectral function S (K)
n

by
91

S (K) = 0.033 c 2 K K <K
n t p

An assumption made in deriving Eqs. (3.30) and (3.31) is that only the

inertial range of the spectrum contributes to the acoustic fluctuations.

If the spectrum is of the form shown in Fig. 3.2, so that there is an ap-

proximately flat transition region, then there is an additional contribu-

tion from the transition region to the amplitude fluctuations of an

amount
8 4

<B 2 > " 8 t L 3
(K 

4 
- K 4) (3.32)

t 480 m t m

for spherical waves, and

<Bt2> L 3 (K3 4 _ Km
4  (3.33)

t 48 m t m

for plane waves. As shown in Fig. 3.2, tm is the maximum value of the

spectral density function t The total mean square amplitude fluctuations,
2 2>

when there is a contribution due to the transition region, is <B 2> + <B >.
t

S **i
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Often the amplitude fluctuations are expressed in terms of the

coefficient of amplitude variation, CAV, because this parameter is easy to

calculate from a record of pulsed data. The coefficient of amplitude varia-

tion, which is essentially the standard deviation of the pressure amplitude,

67
is defined as

C2 =p2> _p2

CAV 2= < 2 (3.34)
<p>2

where P is the amplitude of the observed pressure. For small amplitude

fluctuations, <B 2> and CAV2 are approximately equal.

3.6 Correlation of Fluctuations

In addition to the mean-square fluctuations, it is useful to know the

spatial correlation of the fluctuations. As will be seen in Chapter 4,

these correlations are important quantities in developing a theory of para-

metric reception in a random medium. In this section, we present some of

the correlation functions that will be useful in this study. There are two

types of spatial correlations that are of interest: longitudinal correla-

tion, which is the correlation of fluctuations between two point receivers,

separated a distance AL, and both located on the axis of the propagating

wave; and transverse correlation, which is the correlation of fluctuations

between two point receivers separated a distance Ap in a direction trans-

verse to the acoustic axis.

For a plane wave in a Gaussian medium, the longitudinal correlation

coefficients for the amplitude and phase fluctuations 
are given by

92

L L [ 2 L 2 -

RB = R L + -A-) 2 - D >> 1 (3.34)
B S= (a2

for the wave region of the inhomogeneities, and by
9 3
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(+ 3 1 AL

R L + /2AL) +, A) << 1 (3.36)

in the ray region. In these expressions L1 refers to the propagation dis-

tance to td receiver nearest the signal source. Similar expressions for

the transverse correlation coefficients for a plane wave in a Gaussian

92
medium are:

'= exp[_(- p)2a I) >> 1 (3.37)B = S

22 1x ( 2 2[ 2~ 2 -1 2 2 2 D << 1
I fa (3.38)

'F 2 2
R= exp[-(AP) /a ], << 1 (3.39)

S

There are also published results describing the correlation of

90 19,94fluctuations for spherical waves and for turbulent media. These re-

sults in general involve complicated expressions from which it is difficult

to gain a physical understanding, and we will not reproduce them here.

3.7 Summary

In this chapter, a review of the basic theory of acoustic wave

propagation in an inhomogeneous medium has been presented. The material

has been selected on the basis of its relevance to the theoretical analysis

of parametrically received signal fluctuations to be discussed in the fol-

lowing chapter.

It was seen in Section 3.1 that the principal cause of scattering in

the ocean is the thermal Lricrostructure. Thermal patches can be treated as

sound sources of radius a. The scattered radiation from these patches has

A
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a nearfield extending to a distance ka ; from that distance onward the

radiation is spherically spreading with a beamwidth of 1/ka radians. At

any point in the medium the observed pressure is the sum of the unscattered

pressure p1 and the scattered pressure psc" Due to random changes in the

characteristics of the scattered pressure field, the observed pressure is a

randomly fluctuating quantity.

In Section 3.2 two methods were discussed that can be used to describe

an inhomogeneous medium. One method uses a correlation function for the

variations of refractive index, and the other method uses a spatial wave-

number spectrum. Because the spectral composition of the inhomogeneities

is determined by turbulence, Section 3.3 gave a brief summary of some con-

cepts from the theory of turbulence.

The wave equation for an inhomogeneous medium and its integral solution

were discussed in Section 3.4. A summary of expressions for the amplitude

and phase fluctuations of the observed pressure, as well as for the corre-

lation of these fluctuations, was presented in the remainder of the chapter.

The background material discussed in Chapters 2 and 3 will now be used

to develop a theory of parametric reception in an inhomogeneous medium.
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4.1 Introduction

In Chapter 2, expressions were given for the second-order pressure

associated with both nearfield and farfield parametric receivers. The

results assumed the parametric receiver to be operating in a medium

containing no inhomogeneities. In this chapter, some effects of medium

inhomogeneities will be taken into account, and an expression will be

derived that describes amplitude fluctuations in the second-order

pressure wave of a parametric receiver.

Before beginning a formal analysis, it may be helpful to consider

some general aspects of the problem. There are three separate signals

which will be affected by the inhomogeneities. One is the low-frequency

signal that is to be detected by the receiver. In practice this signal

may be expected to propagate a significant distance through the ocean,

and as a result of scattering, it will arrive at the receiver as a

randomly varying signal. The pump wave will also be scattered as it

travels through the interaction region, so nonlinear interaction will

be occurring between two fluctuating first-order signals. The resulting

second-order signal can be expected to vary in a manner that is related

to the first-order fluctuations. Also, the second-order signal will

be scattered as it propagates from each source point to the observer,

and further fluctuations will result.

Analyses have been reported by Smith 95 ,9 6 and by Chotiros and

Smith 8 4 '9 describing the performance of a parametric transmitting array

in a random medium but, to date, there is no similar study for receiving

arrays. In this chapter, the methods developed by Smith and Chotiros

are used to study the effects of medium inhomogeneities on parametric

reception. It will be assumed in this analysis that the signal source

is located in the main beam of the parametric receiver. Expressions

0 -

L6 mom
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predicting the amplitude fluctuations for the second-order pressure will

be developed for both collimated and spherically spreading pump waves.

4.2 Amplitude Fluctuations for a Nearfield Receiving Array

We will begin our analysis with the simple case of the nearfield

parametric receiver shown in Fig. 4.1. A signal wave originates at

a source located on the acoustic axis of the parametric receiver at

z = -Zs; the source is sufficiently far removed from the pump transducer

that its radiation may be treated as being planar in the vicinity of the

parametric receiver. In rectangular coordinates, the signal wave may

be represented by

PS (z,t) = P s[1 + B s(Xyz,t)]e
-Csz

× exp{j[w st - ks z -1 - S s(x,y,z,t)]}, (4.1)

where

Ps = P (t) is the mean pressure amplitude at the pump transducer,

P (t) - P
B = s s is the amplitude fluctuation,

S p
s

S = (t) - k z is the phase fluctuation,

s s

a is the attenuation coefficient at the signal frequency,

o is the phase of the wave at z = 0, which may be

set to zero, and

t-he overbar indicates time averaging.

Now assume that the hydrophone is situated in the nearfield of

the pump transducer; i.e., that

L ! 4b2 ,AP

where

z = L is the location of the hydrophone,

2b x 2b are the dimensions of the pump transducer, and

X is the wavelength of the pump wave.P

For this case the pump radiation in the interaction volume of the

parametric receiver may be assumed to be approximately planar and may

be written as

& _ __-.



56

Nu

-a>

L 1 .L

WI Z

z

00 _

a. I-

0

ww

SI ARL:UT
AS-80-1 122
CRC -GA
4.28-80



57

p (z,t) P p[1 + Bp (x,y,z,t)]e-Pz

x exp{j[,,p t - kp z - S p(X,y,z,t)]}, (4.2)

where

P is the mean pressure amplitude,P

B represents the amplitude fluctuations,
P

CL is the attenuation coefficient at the pump frequency, andP

S represents the phase fluctuations.
P

The source density for the second-order radiation can be found by

substituting the total first-order pressure field, p1 = ps + p , into

the equation,

-~ 2
q(ro't) = 

2 c 4 -[pl(ro 't) 1,
0 c at

where

r0 gives the location of a source point, as shown in Fig. 4.1,

and the remaining terms are defined in Section 2.2.

The result, using Eqs. (4.1) and (4.2) for p and p , is
s p

q('rt) = JBp sP± (1 + B )(1 + B )e
- ( s + ap)Z

2 4 s p
P c

0 0

x exp{j[w+t - k+z - (S ± S )]} (4.3)
s p

where

W+ + , and
p

k= k ±k.
k p s

Inclusion of the attenuation coefficients as constant terms as in

Eq. (4.3) requires that the time fluctuations in amplitude and phase are

slowly varying when compared to the signal frequencies. This require-

ment ensures that frequency broadening of the signals due to the

fluctuations is negligible, so that the approximation of the attenuation

coefficients as constants is valid.

The stipulation that B and S be slowly varying also permits their
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time derivatives to be neglected when calculating the source density.

Such an approximation is reasonable in situations where the signal

frequencies involved are much higher than any frequency component

in the fluctuation spectra.

The interaction frequency pressure produced at the observation

point, r, due to radiation of the virtual source, qdv, will be given by

dp±(r,t) = - _o (1 + B)e
-jS+ e-a+r'

x [-- q(rot)] dv, (4.4)

where

B+ and S+ are the amplitude and phase fluctuations produced in

the interaction frequency wave as it propagates from

source point to observation point, and

rl
= t -- is the retarded time.c

I 0

-ct+r'
An attenuation term, e- , has been included ad hoc in Eq. (4.4)

to account for attenuation of the interaction frequency wave. Substi-

tution of Eq. (4.3) for the source density in Eq. (4.4), and integration

over the interaction volume, V, gives the following expression for the

second-order pressure at the observer:

PPPpkt =e -(a s +a p)z -a+r'
p±(r, t) = 2- j

0 0 V

x ( + B) (1 + B )(l + B±) ej(Ss ± Sp +S)

x 4jk z -jk+r' 1 dv. (4.5)

This expression for p± can be simplified in the following way.

First, assume that the amplitude and phase fluctuations are small

compared to unity; i.e.,

B 1<< , S << J,5 s
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B << 1, S << 1,
p p

B << 1, S+ << I.

Then the amplitude fluctuation terms can be expanded and, retaining

only terms of first order in fluctuations,

(1 + B s)(l + B )(l + B,) 1 1 + B, (4.6)

where

BEB +B +B+.

Similarly, the phase fluctuation term can be approximated as

-J(S ± S + S+) _ 1 - jS (4.7)

where

S -S ± S +S+.-S - p ±

Next, assume that the signal frequency is much lower than the pump

frequency, and that the pump and interaction frequencies are approximately

equal;

W << w and

op+

It may then be expected that the absorption coefficients corresponding,

to these frequencies will obey the relations

a<< a , and (4.8)

a = a+. (4.9)

Furthermore, if the transverse dimensions of the interaction region

remain small compared to the longitudinal dimension, then

r= (L- z),

so that

-ca~r' •-OC+(L -z)e e (4.10)

Using these approximations [Eqs. (4.8) - (4.10)], the attenuation

terms in Eq. (4.5) can be written as
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-(as + ap)Z -- r' - sz-C - CX4)z e-
e ~ )zea e e~~

-re L (4.11)

Now Eqs. (4.6), (4.7), and (4.11) can be used to rewrite the

expression for the second-order pressure [Eq. (4.5)] as

) -- A f l + B)( - j ) e jk+(z + r') 1
p r t 0 = A l +-- jS) e dv, (4.12)

V

where, for convenience,

A PsPPk 2 e -a+L
A E 2

41T, o o

In addition to Eq. (4.12), we can also write p+ explicitly in terms

of the fluctuations of the second-order pressure. Thus, if BPR and

SPR are the amplitude and phase fluctuations of the interaction frequency

pressure at the observation point, then p+ can be written as

p+(r,t) = pH(l + BPR) e j SPR, (4.13)

where

f-jk(z + r') 1
PH e

V
is the second-order pressure that would be produced at the observation

point if the medium were homogeneous. For phase fluctuations small

compared to unity, the exponential term in Eq. (4.13) can be approxi-

mated by

e-JSPR --- 1 JSPR'

so that the interaction frequency pressure becomes

p ( r ,t) p H (1 + B - PR(4.14)

where only terms to first-order in fluctuations are retained.

It is now possible to solve for the amplitude and phase fluctuations,

BPR and SPR as follows. First we equate Eqs. (4.12) and (4.14)

Ar -jk+(z + r') i

P(I + BpR - SpR) = A l + B - JS) e r dv , (4.15)

V
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where only terms to first order in fluctuations have been retained from

Eq. (4.12). Next the homogeneous component of the pressure, pH' is

subtracted from both sides of Eq. (4.15), leaving

B - l( e jk±(z + r') 1 dv, (4.16)
PR 5 PR HJV(B S '(.6

where H= f - j k±(z + r') ,

le r'dv.

V

The amplitude and phase fluctuations of the interaction frequency

wave at the hydrophone may now be found by equating the real and imaginary

parts of Eq. (4.16); i.e.,

B = Re{- f(B - jS) e-Jk+(z + r') !,dv} , (4.17)

and S = -Im{' B - jS) e - j k + ( z + r') 1 ,dv}

PR H r

In this analysis we will be concerned only with the amplitude

fluctuations, given by Eq. (4.17). Since BPR is a random variable, it will

be useful to find its mean-square value, <B PR 2>. By assuming that BPR

is ergodic, it will be possible to take the (spatial) ensemble average

rather than a time average. Thus, we form the average of the product,

BpRIBpR 2 , where Pl PR2, -jk (z + r') i

B I = Re{ (B - jS1 ) e 1 rl dvI }PRl , 1 1cV

B - -jk (z 2 + r;) 1 dv
PR2 Re{ B 2  JS 2 ) r dv2-

2

and the geometry of Fig. 4.2 applies. The mean-square amplitude

fluctuation, <BPR 2>, is given by*

*In forming the product BPRI BPR2 the following relation

between complex numbers a and b is used:

Re { a Re{b} = Re {a(b + b*)},

where the asterisk denotes the complex conjugate.

442
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<B 2 = <BpR1 BPR2

PR Re PR2 [i i (1,
2 i-ff I L

V

-jk (z + z + r{+r) 1
× e rl dvd

X2 1 2vd

±. 1 12
H_ !<-jk+(z I  z2  rj r.)

+ ij<B - jS i ) S, + jS,)> - - +
+ f

I IV- d (4.18)

This result is not easy to use as it will require numerical integra-

tion for its evaluation. However, Eq. (4.18) can be simplified considerably

if it is assumed that the amplitude and phase fluctuations have complete

transverse correlation in the interaction volume. With this assumption,

B1, B2, S1, and S2 become independent of the variables x and y, and

2,
the expressions for <B > become

2OL -jk+ (z + z9)

<B 2> Re f <(BB 2 - BS -BS - SIS2)> e ± lldzdz
PR 2 H 2 J J( 1 2  1 2 1 1 2 1 12 1 2H f

0
L -jk+(z -9) ldzd2

<(BJ B + JB1 S2 - jB 9S1 + SS )> e 1 2 1
o f(4.19)

b bbfe 2 y 2]b - 2 x2± + 2- 1

where I exp-jk [(L - z)2 + X2 + y 2 [(L z) 2 + x dxdv

-b -b

An approximate expression for I, valid in the nearfield of the pump

transducer, is shown in Appendix I to be

I "- " -!  - j k ,(t -z)

k -(4.20)

A similar result is obtained in Appendix 1 for 1-; namely,

-j
IT (4.21)



SubstituLion of EcIs. (4.20) 
tnd (.21 ilt( iw. (4.10) 1 .. Jt, no Lhu result

<B > = Re f (B 1 B, - jBS JB2S _ SS)> dz dz
PR 2 L2 12 1 I- 1 2 1 2

+ <(BIB2 + jB S, - jBS I + SIS2 dz ldz1 }

- e fRe
1 

< 1B > -j2 < B S >) dz dz

0
Because <B B > and <B 2 Sa > are real numbers, this expression reduces to

L

<BP 2 > - 1 2 fJ~B 1B > dz dz? (4.22)
0

This result for the mean-square aMplitude fluctuations of the

second-order pressure wave can he evaluated b\' dCIOV-loping an expression

for the correlation term, <B1 B 2, as a function of z and z2) and

performing the integration. We will return to the matter of evaluating

and interpreting Eq. (4.22) below, but first a similar expression for

<BPR 2> will be developed assuming that the pump wave is spherically

spreading rather than collimated and planar.

4.3 Amplitude Fluctuations for a Farfield Receiving Array

An analysis similar to that in the previous section can be

developed for a parametric receiver with spherically spreading pump

waves. The geometry used is shown in Fig. 4.3. As for the nearfield

analysis, the signal source is located on the axis of the parametric

receiver and is sufficiently far from the pump that its radiation may

be assumed to be planar in the vicinity of the parametric receiver.

The signal wave may be represented as

P. = Ps(1 + Bs(z + Z)] e-Z exp{ j[w t - k z - S (z + Z) }.3 S S S s

and the pump wave is

j(P'/r)D(y)[1 + B (1 eCp exp j[ t- kr - S(r)],
p p I pj [w p
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where

P' is the mean pump wave prss ire omplitlidu It y = O, I m, and
p

I)(y) is the directivity function for the pump tranLducer.

In writing the signal wave flctuation terms, B and S as Tdependent
adS inteiteato

of y, complete transverse correlation of Bs and S in the interaction

volume has been assumed. Similarly, it is assumed that the pump wave

fluctuation terms, B and S , are completely correlated along theP p

spherical wavcfronts within the pump beam so that B and S areP P

independent of y. These assumptions are discussed in more detail in

Appendix 2.

The source density function at point (r,y) can be found in the same

way as in the nearfield case [Eq. (4.3)]; the result is

-rPsP'p w. -CtsZ -,x r

q = 2 D(Y)

p0 c0 r

-j(Sp ± Ss ) -j(kpr ± ksz) jw+t

x (1 + B )(l + B )e e e .(4.23)

This expression can be used to find the second-order pressure at the

observer in the same way as in the previous section. In the case of

spherically spreading pump waves, however, a solution can be obtained
43

more simply by adopting a procedure developed by Berktay and Shooter.

They assume that the sphericity of the pump wave within the beam is small

compared to the wavelength at the signal frequency, so that, for the

signal source located on the Z axis, the source functions q+ can be

assumed to be cophasal on the spherical wavefronts. The frequency of the

second-order radiation is nearly equal to the pump frequency, so the

second-order waves will radiate spherically, with the same beam pattern as

for the pump wave. These assumptions are used to calculate the second-order

pressure at the observer as follows.
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The elemental particle velocity at r due to a spherical shell of

sources of thickness r is

r1 21- q(r) 'r,

where the source density function is given by Eq. (4.23). The contri-

bution of these sources to the particle velocity at (L,O) will be
-iS

u= (r/l.) ui (1 + B ) e e.,) - ( jk)(L- r)

where

Bwe U(t) - U(t) is the amplitude fluctuation,
U(t)

S = u (t) - k r is the phase fluctuation, and

U(t) and u(t) are the amplitude and phase of the particle

velocity, respectively.

The total particle velocity at (L,O) is the sum of contributions from

all sources in the interaction region, i.e.,

U+(L,O) = (2L) - I exp [ - (rt, + jk+)C_ (I + Bu

x u q(r) r exp[(ct+ +jkt)r] dr. (4.24)

The second-order pressure at the point (L,O) can now be found by

using the far-field relation, p = pocu, in connection with Eq. (4.24).

The result is

p+(L,O) = 'w± exp[-(+ + jk+)L]
-2oC ° L - -

0 0

0 L  -j(S ± S + S+)
x (i + Bs)(l + B p)(l + B+)e P s

0

x exp[-(ms + O - cx+)r]dr, (4.25)p -

where B+ and S+ are amplitude and phase fluctuations, respectively,

for the interaction frequency pressure wave.*

*It may be shown that the amplitude fluctuations in the pressure

and particle velocity are equal: i.e., B = B+. Similarly,
UUS S.

u +
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For small fluctuations this result becomes

p (L,O) A (I + B)(1 - jS)dr, (4.26)

J0
where

-pp'p -(a+ + jk+) L
A_ +- w t L - -

A =e

2. c 3L
0 0

B =B + B + B+, and
s p -

S + S+.

In obtaining Eq.(4.26), the attenuation terms have been approximated

by Eq.(4.11).

As in the case of the nearfield parametric receiver, the second-

order pressure can be written in terms of a homogeneous and fluctuating

component,
-J SPR

P+ = PH(1 + BPR) e , (4.27)

where

= A dr = A L.:PH =sf

Eqs.(4.26) and (4.27) may be equated, and if the fluctuations are

small compared to unity, we obtain

PH(1 + B PR - JSPR) = Asf0(l + B - jS)dr. (4.28)

The homogeneous component is subtracted from both sides of Eq.(4.28),

and the real and imaginary components of the result are equated to

give fL

BP JBdr, andBPR (Io

S R -_ Sdr.

The mean-squared amplitude fluctuations, <BPR >, for the farfield

receiver are therefore

< RB 2 > L < BB > dr dr (4.29)
P1R fJ 12 12

This result differs from the solution for the nearfield receiver

[Eq.(4.22)] only in that < BIB 2 > here is the correlation function for
121
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spherically spreading waves rather than plane waves. In form the

solutions are identical.

In the next section we will examine the components of the corre-

lation term, < BIB 2 >, in Eqs.(4.22) and (4.29) so that these results

may be evaluated.

4.4 Approximating the Spatial Correlation Functions

The evaluation of Eqs.(4.22) and (4.29) requires the calculation

of nine correlation terms; viz.,

< B1B 2 > = <[Bs (z ) + Bp(zl) + Bi(L - z1)][Bs(z2) + Bp(z2) + B,(L - z2)]>

= <Bs(z 1 )Bs (z2 )> + <Bs (z1 )B p(z 2 )> + <Bs (z)B!(L - z2)>

+ <Bp(Z1)Bs(z2)> + <Bp (z )Bp (z2)> + <Bp (z )B+(L - z2

+ <Bi(L - z 1 )Bs (z2 )> + <Bi(L - z1)Bp(z2)>

+ <B(I - z )B (L - z2 (4.30)

These correlation terms fall into three categories: (1) cross

correlation between the low frequency signal fluctuations and

fluctuations in the pump or interaction frequency waves; (2) cross

correlation between pump fluctuations and interaction frequency

fluctuatlons; and (3) autocorrelation of the pump, low frequency, and

interaction frequency amplitude fluctuations. These categories are

discussed separately below.

(1) The signal wave and pump wave traverse different parts of

the medium, which implies that the volume of scatterers associated

with these waves will be significantly different. Also, it has

been assumed that w p >> , which implies that there will be little

frequency correlation between signal and pump wave. For these reasons

it may be assumed that the signal and pump amplitude fluctuations will

be uncorrelated in the interaction region; i.e.,
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<Bs(l()Bp(z2)> <Bp(zl)Bs(z2)> (4.31)

A similar argument can be applied to the signal and interaction

frequency fluctuations, so that

<BS(z1 )B+(L - z2 )> = <B+(L - z1 )Bs(z2)> 0 O. (4.32)

(2) The term <Bp (z1)B±(L - z2)> represents cross correlation

between pump pressure amplitude fluctuations at the point (z I ) and

interaction frequency amplitude fluctuations at (L - z2). The

frequencies of the two waves are approximately equal (ap W+) so we

may assume that complete frequency correlation exists between B

and B+.

The propagation paths associated with the pump and interaction

frequency waves are shown in Fig. 4.4. The term Bp (z )

is due to scattering of the pump wave as it propagates from the

origin to z = zI. The fluctuations in the interaction frequency wave,

B±(L - z2), are due to scattering of the second-order radiation as

it propagates from a source at point z 2 to the hydrophone at z = L.

Both z and z2 may vary between 0 and L, so there will be situations

in which the two propagation paths overlap (z1 > z2 ) and situations

in which they are separate (zI < z2).

An exact evaluation of Eqs. (4.22) and (4.29) would require an

expression for the correlation term, <B B >, for all values of z and

z29 and for both nearfield and farfield receiving arrays. This is

essentially a problem of calculating the correlation of amplitude

fluctuations at two receivers when there are two sources generating

separate waves. The solution to this problem is not available in the

literature, nor is it readily obtained, so we will resort to the

following simplified approximation.
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We will consider two conditions, one in which the array length

L is much less than the longitudinal correlation distance 1 , andP

the other in which the array length is much greater than the pump cor-

relation distance. First assume that L << 1 . In this case the
p

separation between the 'receivers' at z and L is less than the pump

correlation distance; i.e.,

L - z1 << 1p (4.33)

where 1 is the distance at which the correlation coefficient
p

for the pump wave amplitude fluctuations equals l/e. When Eq.(4.33)

applies, the amplitude fluctuations of the pump wave at zI and the

interaction frequency wave at z < L will be highly correlated. We

approximate their correlation coefficient by unity; i.e.,

<B (z )B±(L - z )>
[<B (Zl)> <B_(L - )>O,

From this expression the cross correlation between pump and interaction

frequency fluctuations can be written as

<B (z )B (L - z2)> > <B (L - z 2 (4.34)

This equation is in terms of mean-squared amplitude fluctuations, and

can be calculated using the results discussed in Chapter 3. A

similar approximation can be made for the remaining cross correlation

term in Eq.(4.30), namely

<B (z )B (L- z B)> <B2(z )B2(L- z)> ;1R
p2+ p 2 ± 11) 1< 2p

p 2
[<B 2 (z2 )> <B_(L - z1)>]

2. (4.35)

Again we note that Eqs.(4.34) and (4.35) apply only for short array

lengths (L << 1 p). In general, if the array length is not sufficiently

short that L << Ip, then Rp,± is less than unity, and we have the

less restrictive approximations
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p 2~ tB~ 92 B2NB (z )B,(L - zl)> (L[<B Z )>]z R (4.36)

and 9 1 )

<B (z )B,(], - z )> I<B (z )> <B(L - z R(437)
p 1 2 p) 1 z 2 RP+ (-7

Now consider the situation when thL array length is much greater

than the pump longitudinal correlation distance (L >> 1 ). Most
p

separations, L - z1 , will be greater than the correlation distance

1p, and therefore the fluctuations will (on the average) have very

little correlation. For L >> 1 we therefore approximate the corre-
p

lation coefficient by zero and obtain

<B (z )B (L - z2 )> 0, (4.38)

and
<B (z)B+(L - )> 0 L >> 1. (4.39)

These results are used in Eq.(4.30) for long array lengths.

(3) The third category of correlation terms in Eq.(4.30) are

autocorrelation functions for the signal, pump, and interaction

frequency fluctuations.

The pump autocorrelation function will be given by

22<Bp(zI)Bp(z2 )> = [<B (zl)> <B (z2 )>]'2 R (4.40)

where R is the longitudinal correlation coefficient for pump waveP

fluctuations at z and z2. For short lengths (L << 1 ), Rp can be

approximated as unity. For longer array lengths the results of

Chernov 1 8 or Eliseevnin9 4 can be used to estimate Rp.

Similarly, the autocorrelation function for the signal wave will

be
<Bs(Z + zl)Bs(Z + z 2 )> = 2 (Z + z 2)> <B (Z + z2)> 2 Rs, (4.41)

where R is the longitudinal correlation coefficient for signals

wave fluctuations at z1 and z2. Here again the correlation coefficient

can be approximated as unity for short array lengths (L << 1s; 1

is the signal wave correlation distance). For L > l theoretical

it s
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results available in the literature 18 ,94 can be used to predict Rs.
S

The autocorrelation function for the interaction frequency wave is

somewhat different from that for the pump or signal wave. Rather than

originating at a common source point and being received at different obser-

vation points, as are the signal and pump waves, the interaction frequency

waves originate at different source points and are received at a common

observation point. This is sketched in Fig. 4.5. The waves originate at

zI and z2 , and are both received at z = L. While there is no explicit

analysis of this situation in the literature, Chotiros and Smith 9 1 ,97 have

demonstrated that the principle of reciprocity applies as follows. If a

wave of frequency w + is projected from the transducer at z = L, then the

correlation of amplitude fluctuations received at points z and z2 will be

<Br(L - Z )Br(L - z2 )>. By the reciprocity principle, this correlation

will be identical to that for waves originating at zI and z2, and received

at z = L; i.e.,

<B+(L - z1) B+ (L - z2 )> = <Br (L - z1) Br(L - z2

where the subscript r indicates that the positions of sources and

receivers have been interchanged. This result is useful because it allows

us to write

<B+(L - zI ) B! (L - z2)> = [<B2 (L - z1 )><B
2+(L - z2 )>] "Rr , (4.42)

where R is the longitudinal correlation coefficient for interacticn

r

frequency waves originating at z = L and received at points z1 and z2.

When the array length is short (L<<l p), the correlation coefficient is

Rr A 1. For longer array lengths, the results of Chernov1 8 or Eliseevnin9 4

may be used to calculate R . Because complete frequency correlation has
r

been assumed for the pump and interaction frequency waves, the coefficient

Rr will be equal to the longitudinal correlation coefficient for a wave at

frequency wp received at ranges L - 1 and L - z2 ; i.e.,

Rr = R p(L - z1, L - z2).
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The mean-squared fluctuation terms in Eq. (4.42) are for waves of frequency

w+ traversing paths of lengths L - zI and L - z2 and may be calculated

using Tatarski's formulae.
19

4.5 Evaluation of Results

In the previous section we examined the nine correlation terms that

are required in the evaluation of Eqs. (4.22) and (4.29). Now we will

develop expressions for the amplitude fluctuations of the second-order wave

for specific types of nearfield and farfield receiving arrays. Before

proceeding, we recall that for small fluctuations the rms amplitude fluc-

tuations are approximately equal to the coefficient of amplitude variation.

Therefore, it is possible to rewrite Eqs. (4.22) and (4.29) in terms of the

coefficient of amplitude variation as follows:
1.

CAV R
2  L (o< B B > dz dz (4.43)
PR L2 JJ 1 2 1 2

for the nearfield receiving array, and

L
P l-- J 2 drldr 2

LAp J1(4.44)

for the farfield receiving array, where CAVPR is the coefficient of amplitude

variation for a parametric receiver.

4.5.1 Nearfield Receiving Array

The coefficient of amplitude variation for the nearfield receiver can

be evaluated by substituting Eq. (4.30) ior <B1B2> in Eq. (4.43), and then

making the approximations given in Eqs. (4.31), (4.32), (4.36), (4.37), and

(4.40) - (4.42). The result is

CAV 111 I<B 2(z)> <B 2 (L - )> 1 R + [<B.4 B +2 (L - zl>] R

+ I[<B (zl <B p2 (z)>2 R + [< 2,s+ 1l) <B 2 z2 ).J R8

+ [<B,2 (L - z,)> <B '2(L - z,)>] R-1 dz, dz~, (4.45)



77

where, due to the high frequency correlation of the pump and interaction

frequency waves, we have assumed that R + R
P,+ p

An example of the evaluation of Eq. (4.45) will now be given for the

rcstricted condition that the array length is much less than either cor-

relation length 1 or I (L<<I and L<<l ). For this case R and R arep s s p p s

approximated by unity. If the pump and interaction frequency waves are

planar, and if

L >> 4 >> 1
o p o

then the amplitude fluctuations will be of the form

2 7/6 11/6
<B > =0.31 C n k z (4.46)p n p,

and
<B = 0.31 C 2 k7/6 (L - z)ll/6

+ n + (4.47)

We further stipulate that, for purposes of illustration, the signal

source propagates a distance Z + z that obeys the relation
s

L >> / Xs(Zs + z) >> I '
0 sS 50

where L and 1 are outer and inner scales of turbulence, respectively.

Then the signal wave amplitude fluctuation will be of the form
<B2> = 0.13 C2 k 7/6 Z )l1/6 K 4 (4.48)2>s 0.1 s ( + + -n- Cm(Z + z) 3 4s n s S480m s t -m).

It may be noted that Eq. (4.48) is for a spherical wave. This is because

the low frequency signal wave will propagate as a spherical wave, although it

is assumed to be sufficiently far from the parametric receiver that the

wavefront curvature and spreading loss are negligible in the interaction

region. Making use of Eqs. (4.46)-(4.48) and assuming that k = k+, we
P

write Eq. (4.45) as
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2' 1 1 1 ' l . z11/1" 11/1" z 1 1 /112

0

+ 111/12 11/12 + , 1 12( 11/12

+0.13 C 2 k7/o (X + z(I 11/6 + 7L I (Z + z) 3 (K 4 K4- 1
2

2 716 + z I( 1 /6 i 3 4 4 m  2

X-0.13 C k (Z + 11/ D ( + z ) - K )]dzdZ
" s S 2 40 m S 2zm

This expression appears somewhat unwieldy, but the integration is

straightforward and gives

2 0.3375 C 2 k7/6 11/6 + 3 4[(a + bL)3/2 - a3/212
PCAV R n p L [2 9b 2

(4.49)

where a = 0.13 C 2 ks76 zl/6 + 3-, - K 4) z, and

b= (0.13C 2 k 7/6) 5/6 +.3, Cm(K 4 4Z 2
b n s s 480 m t m s.

This result will be useful in Chapter 5, where we will compare Eq. (4.49)

to data from an experiment that approximates the conditions assumed in

deriving this equation.

4.5.2 Farfield Receiving Array

An expression similar to Eq. (4.45) can be derived for the farfield

receiving array by substituting Eq. (4.30) for <B1B2> in Eq. (4.44),

and then making the approximations given in Eqs. (4.31), (4.32), (4.38),

(4.39), and (4.40) - (4.42). The coefficient of amplitude variation

obtained is

- -"-~. L-
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l,
2R B2( s + z2)H Rs

CAy2 R l [ _F2. + <B (/ )1Lf' ), Ss s s 2
L

+ [1B2Zl)> <BP(z 2 ) Rp + I<B2 (Zl)> < B 2 (L-Z2 >

+- 1,B 2 LZ B ' (Z )> JR 4 + !<B~ 2CL -Z )> <B 2(L - z )>j 2R, dzldz

(4.50)

where dz = dr on the axis of the array. We will examine the restricted

case where the pump and interaction frequency fluctuations are completely

correlated in the interaction region so that R -1 R we

assume that the range of the signal source is much greater than the array

length so the Z >>z I and Z s>>z 2. This allows us to make the

approximation

<B (Z + z)> = <B (
<B (Zs)>' z<<Z s

b 5 S S ss

In computing the pump and interaction frequency fluctuations, it is

assumed that

L 0>> A L >> °o p

so that the amplitude fluctuations are of the form

2() 2 /6 11/6

<B (z)> = 0.13 C 2 k 7/6 z , andp n p

2 2 7/6 11/6
<B+2(L - z)> = 0.13 C k (L z)

The signal source is assumed to be at a sufficiently long range that

s s- >> L ,

so that the signal wave amplitude fluctuations are given by

.................................................. _ .: r
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2 7 2 2
<B s (Zs)> =- <11 > k Z a

70
where a is Mcdwin's effective Gaussian refractive index correlation

distance.

Finally, we approximate the correlation coefficient, Rs, by Chernov's

92
result

R s  [1 , (2AL)21
- 1

where AL is the separation between receivers.

With these approximations the coefficient of amplitude variation

becomes

2-i

2A.2 2 2 2 a - 2f L r 2 (z 2 -zl1 - zd
CAV R ii>__ aZ L> kdz dz

PR 2 s1s > [k a k 2  dz1 20ks a

2 7/6 11/6
+ 0.1415 C k Ln p

By making the change of coordinates, z = z2 -zl, and integrating, we obtain

2 V1T3 3  2 Cl2\2 7/6 1/6
CAV k a <p2>Z tan-1g 212+ 0.1415 C k LI/PR 2L s s ka 2 ! n p

(4.51)

As a numerical example, consider a parametric receiver with pump frequency

f = 100 kHz used to detect a distant signal source in the ocean. For the
p

medium parameters, we will use the values <U 2> = 5 x 10- 9 , as measured by

Lieberman 69 , and a = 0.25 m and C = 9.30 x 10- 5 as computed by Medwin's

methods 70 . A plot of CAVPR as a function of array length is shown in Fig.

4.6. It can be seen from the figure that there is little difference in

the value of CAVPR for the 1 kHz signal when the range, Zs, is

extended from 10 km to 100 km. Also, at the longer array lengths (L>50m),

there is little difference in CAVPR when the signal frequency is increased

from I kHz to 5 kHz, with Zs = 10 km. These results indicate that CAVPR is

independenL of f and Z at the longer array lengths, at least for the5 5

j i_ __ _ _ _
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values considered in this example. It can be seen from Fig. 4.6 that CAVpR

is greater than 0.1 only at array lengths longer than about 200 m. This

means that an rms variation in amplitude of approximately 10% is expected

for the sideband signals of a 200 m long parametric receiver operating in

the ocean. This is greater than the level of amplitude fluctuations for a

1 kHz signal received by a point hydrophone, which would have, ignoring the

effects of multipath signals, rms amplitude variations of approximately

1.4% at Z = 10 km and 4.4% at Z = 100 km.
S S

4.6 Summary and Discussion

In the preceding sections an analysis has been developed for the

parametric receiver operating in an inhomogeneous medium. The principal

assumptions used in the analysis are: (1) the signal source is located on

the main beam of the parametric receiver, (2) there is complete transverse

correlation of amplitude and phase fluctuations in the interaction region

of the parametric receiver, and (3) the amplitude and phase fluctuations are

small compared to unity (i.e., the medium is weakly scattering). With

these assumptions we were able to derive integral expressions for the

coefficient of amplitude variation for the nearfield receiver [Eq. (4.22)1

and the farfield receiver [Eq. (4.29)]. By making a number of assumptions

regarding the spatial correlation functions contained in these expressions,

it was possible to obtain results in terms of the parameters of the medium

in which the parametric receiver operates. In this section we will discuss

th2 results of the analysis from a qualitative viewpoint.

For purposes of'discussion, the coefficient of amplitude variation fcr

both nearfield and farfield receivers can be written in the following t,,rn
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CAV21 (-B1B2>H + <B1B2>s ) dz1 dz2 ,  (4.52)

L
0

where <B,B,>> <B (z )Bp(z2> + <B (Zl)B+(L z2>

+'pI 2z 1 + 2

+ --B+(1, z )Bp(z 2 )> + <B+(L - z )B (L - z )>, and

<BI B 2> <B (Z )B (Z2)>.

Here the correlation functions have been divided into high frequency com-

ponents, <B B 2>H that are due to scattering in the interaction region of

the parametric receiver, and signal frequency components, <BIB 2>, that are

due to scattering of the signal wave.

The high frequency components increase with f and L, and the signal
p

frequency component increases with f and Z . For sufficiently long rangesS S

and short array lengths, the high frequency components, <BlB 2 >H, will be

I2

negligible compared to <B B2>, and the coefficient of variation becomes

L

CAVPR 2 <Bs (z)B (z2)> d 1 z2  (4.53)
L

It can be shown that Eq. (4.53) is also the coefficient of variation for a

continuous end-fire array of length L. Thus it can be concluded that, in an

inhomogeneous medium the parametric receiver performs like an end-fire

array if the correlation terms die to pump and second-order waves are neg-

ilgible. It can also be shown that, if the array length is very short,

thin the -- ,.ffic Lent of variiion becomes identical to that for a point

hdrophone; 
viz.,

W ,b - a.
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CAV 2 <B "> (L& 0).
PR

In a practical example, such as the one discussed in Section 4.5.2, the

high frequency components, <B1B 2 H, may not be negligible, and may even

dominate the value of CAVPR. In this case the parametric receiver will

not perform as well as a continuous end-fire array, inasmuch as the para-

metric receiver will have a higher coefficient of amplitude variation.

Having developed a theory for predicting the performance of a

parametric receiving array in an inhomogeneous medium, we will discuss in

the next chapter some experiments that were conducted to test the theory.

4



CHAPTER 5. EXPIERIMENTAL STUDY

Several experimental studies 6 7 '8 4 '9 1 '9 8 - 1 0 1 of the effects of medium

inhomogeneities on acoustic wave propagation have been conducted using

modelled acoustic and thermal conditions. An advantage of model experiments

(i.e., experiments at small acoustic wavelengths) is that the properties of

the acoustic medium can he carefully controlled. It is possible in a model

experiment to minimize the effects of time-varying surface reflections and

transducer movement, which produce fluctuations in an acoustic wave that are

extraneous to the study. Also, the characteristics of the medium in a model

tank may be assumed to be essentially constant from day to day, so that dif-

ferent experiments can be conducted under similar conditions.

In the present investigation, model experiments were conducted to

measure the effect of medium inhomogeneities on parametric reception. The

investigation will be described in this chapter as follows. First, a des-

cription is given of the experimental medium and of the apparatus used.

Measurements made of the coefficient of amplitude variation

for the signal, pump, and upper sideband waves of a model parametric acous-

tic receiving array are then discussed. These measurements are compared to

theoretical predictions using the analysis developed in Chapter 4. Finally,

the experimental results are summarized and discussed.

5.1 The Experimental Medium

A water tank with a width of 0.9 m, length of 1.8 m, and a depth of

0.8 m was used in this experimental study. The thermal microstructure was

generated by an array of immersion heaters located along the bottom of the

tank (see Fig. 5.1), the total heating power of the array being 4.5 kW. The

flow of rising heated water was broken up into patches by a perforated

aluminium sheet mounted about 5 cm above the heated array.

85
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The model tank just described has been used as a research tool for a

number of years, and the characteristics of its thermal microstructure are

well documented. 8 4 ,9 5 During the course of this study, measurements of the

rate of temperature increase and the standard deviation of temperature were

made to insure that the tank was operating as in previous studies. The

rate of temperature increase was measured using a mercury thermometer sus-

pended in the water at mid-depth. The result, 1.1 x 10 0Cs , agrees to

within 10% of the results of Smith and Weston-Bartholomew 9 5 and Chotiros and

Smith. 84 A measurement of temperature variations was made using a thermis-

tor placed in the center of the tank. Measurements were begun . hour after

turning on the tank heaters. This permitted thorough mixing of the water

so that the thermal activity would be uniform throughout the tank. The

standard deviation of temperature computed from nine such measurements is

0.023 'C, which is less than the value, 0.032 'C, measured by Chotiros and

Smith, 8 4 but is of the same order of magnitude. The results of these mea-

surements of heating rate and standard deviation of temperature allow us to

conclude that the tank is operating essentially as reported previously.

Consequently, we will adopt the methods developed by Chotiros and Smith
9 1 ,8 4

for describing the field of inhomogeneities in the tank.

As discussed in Chapter 3, an inhomogeneous medium can be described by

a turbulent power density spectrum. The magnitude of the spectrum, ' is

a function of the mean-squared refractive index change, <p2 >. Each of these

parameters depends upon the standard deviation of the temperature, and hence

will be calculated from the measurements of temperature variations made in

this study. The boundary wavenumbers, Km, Kp, and K P, depend upon the physi-

cal dimensions of the tank, the diffusitivity, and the rate of kinetic

energy dissipation per unit mass. We will assume that these parameters are

84
unchanged since the investigation of Chotiros and Smith, and will use

their values of K , K and K .

LL
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A list of parameters used to describe the inhomogeneous medium in the

model tank is given in Table 5.1. These parameters varied with position

throughout the tank; their values at the center of the tank are shown in the

table. These values will be used as discussed below in making theoretical

predictions for the acoustic waves propagating in the tank.

5.2 Description of Apparatus

A model parametric receiver was constructed by placing a pump transducer

and a hydrophone at mid-depth in the tank, as shown in Fig. 5.1. The array

length was varied by changing the separation, L, between the two transducers.

A source of acoustic signals to be detected with the parametric receiver was

located on the main axis of the parametric receiver, and at a distance, Z.,
s

from the pump transducer.

The apparatus used to generate and receive the acoustic waves for this

study is shown in the block diagram of Fig. 5.2. To minimize the problems

of electronic feedover and acoustic multipaths, both the signal and pump

waves were pulsed, the pulses being typically 100 psec in duration. There

was a time delay, Td' in the generation of the punp frequency wave; this

was to synchronize the pulses so that they occur simultaneously in the

interaction region of the array. The pump and signal frequencies were main-

tained at 10 MHz and 1 MHz, respectively, throughout the experimental study.

Details of the transducers used to generate the signal and pump waves are

given in Appendix 3.

The pressure detected by the hydrophone was separated into three

components (fus f . and f s) by the arrangement of filters and tuned ampli-

fiers shown in Fig. 5.2. A signal processing unit sampled a 10 psec segment

of each pulse and detected the peak value of this segment. The amplitude

of each sampled pulse was then recorded by a data logging unit for later

off-line computer processing. Further details of the receiving apparatus

may be found in Appendix 4.

_21~ ~ - -
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Value and Units

Paraiieter at 300 C

2 > 3.54 x 10- (dimensionless)

-12
2.80 x 10 m

m

C 1.96 x 10
- 4 m- 2/

3

n

K 22.9 m
m

K * 179 m

r * 5600 m
-I

p

*From reference 91

< 2> 1c <(AT)2 >c 3T

2>= <p

m (5/2)K t

2 <p 2>
C =-21
C n 2 1 >-2/3

(0.337T) K

TABLE 5.1

PARAMETERS DESCRIBING THE INHOMOGENEOUS MEDIUM
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5.3 Experimental Results

In this section we will discuss some experiments conducted in the model

tank using the apparatus just described. Since we are particularly interested

in the behavior of the upper sideband component, p , of the second-order
U

pressure field, we will first measure the amplitude of p in a homogeneous

medium to verify that it is being gencrated as predicted by theory. Then we

will examine the amplitude fluctuations in the purIp, signal, and upper side-

band waves for a variety of experimtntaL coud-tLons and compare the results

to theoretical predictions based on the analysis of Chapter 4.

5.3.1 Measurements of Upper Sidcband Pressure

Aside from nonlinear acoustic interaction, there are four ways in which

voltages at the upper sideband frequency may appear at the input of the sig-

nal processor. When two pressure waves are incident on the face of the

hydrophone, mechanical mixing occurs and an upper sideband voltage is gen-

erated by the hydrophone. (This extraneous si :nal is called pseudosound.)

Also, the pressure waves may be received by th,. hydrophone and then mixed in

the electronic receiving apparatus. Another possibility is that the two

signals may be transmitted electromagnetically and then mixed in the elec-

tronic receiving system. Finally, a harmonic of the signal source may be

radiated which is at the upper sideband frequency.

Tests were conducted to ensure that the ii MHz signal detected by the

hydrophone was being generated by acoustic nonlinear interaction. The sig-

nal disappeared when either the signaL or pump transducer was blocked off,

indicating that it was not produced bv electromagnetic pickup or by har-

monic radiation of the signal source.

A measurement of mixing in the electronic receiver was conducted using

the arrangement shown in Fig. 5.3. With oscillator 2 set to zero output

voltage, oscillator 1 was adjusted to provide a voltage Vin that was of the

order of the hydrophone output voltage whenW1 receiving the pump wave directly.
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Similarly, oscillator 2 was adjusted to simulate the hydrophone output when

receiving the 1 MHz signal. The 68 resistors served to decouple the os-

cillators. With both oscillators on, the upper sideband voltage, V o was

more thaai 50 dB below tLic lUVl uhsvVed wht-n the input voltagcs wc.re gcn-

crated a _'oustically. This test confirmed that the upper sideband signal de-

tected by the hydrophone was not produced by mixing in the electronic

receiver.

The interaction frequency pressure component of pseudosound produced by

two collinear plane waves incident at the hydrophone surface has a pressure

amplitude, P', given by10,

P = P P / -o o , 
(5.1)

9

where P1 and P2 are the pressure amplitudes of the two waves. As the upper

sideband pressure amplitude measured in the present experiments was four

orders of magnitude greater than the level predictL-d by Eq. (5.1), it was

demonstrated that the contribution of pseudosound was negligible in these

experiments.

The tests and measurements described in the previous three paragraphs

assure us that the upper sideband pressure wave measured in this study was

generated by nonlinear interaction of the pump and signal waves, and not by

extraneous effects. Next we will discuss the amplitude of this wave. The

on-axis pressure amplitude of the interaction frequency wave of a nearfield

parametric receiver is given by Eq. (2.17), and is

PN = + P P s L
N 3 - exp(-C+ L) (5.2)

2o c

0 0

This expression predicts a pressure amplitude of P " 1.0 x 104 Pa at the
u

hydrophone of the parametric receiver for the following conditions:

4 4
f = 11 MHz, P = 7.01 x 10 la, P = 3.85 x 10 Pa, and L = 0.5 m. This

u p
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result, however, does not take into account the shadowing effect of the

pump transducer, which may be exppcted to reduce the effcctive array length
47,51

by an amount

1.25b
2

d I

S

where b is the radius of the pump transducer housing. Also, the presence

of the pump transducer was observed to re.duce' the pressure of the 1 MHz sig-

nal wave at the hydrophone by 3.3 dB, to P = 2.63 x 104 Pa. Taking these

effects of shadowing into account, and using a measured value of attenuation

of a+ " 3.79 neper/m, the upper sideband pressure theoretically should be

P = 6.27 x 103 Pa. The upper sideband pressure amplitude was measured to

be P = 6.11 x 103 Pa, which is in good agreement with the predicted value.
u

Similar results were obtained for a 10 cm array length.

We have determined by the measurements discussed in this section that

the parametric receiver is functioning as expected in a homogeneous medium.

Now we will proceed to a discussion of some experiments conducted to deter-

mine the effects of inhomogeneities on its operation.

5.3.2 Procedure for Obtaining Data

The procedure used in measuring amplitude fluctuations in the signal,

pump, and upper sideband waves may be described as follows. The trans-

ducers shown in Fig. 5.1 were aligned in the desired geometry at mid-depth

in the tank. Using the apparatus described in Section 5.2, and with the

tank heaters turned off, recordings were made of the amplitudes of the sig-

nal, pump, and upper sideband pulses. These measurements obtained with the

heaters off are amplitude fluctuations produced by the electronic ap-

paratus and by any 'ambient' inhomogenvities in the tank such as those due

to microbubbles, biological matter, or residual thermal patches. Typically,
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three sets of data were recorded with the heaters turned off, and

approximately 150 samples per data set were taken at a sample rate of about

0.25 Hz. After recording these data, the heaters were turned on and allowed

to warm up for 1 hour so that the turbulent mixing could reach steady state.

Then an additional five sets of data, similar to those jt1~t described, were

recorded with the tank heaters turned on. The water temperature was mea-

sured at the beginning and end of each data set. When the mean water tem-

perature in the tank reached about 300 C, the heaters were turned off and

the tank was allowed to cool until the following day. The reason for stop-

ping the experiments at 300 C is that the level of amplitude fluctuations

decreases as the temperature increases; thus poor 'fluctuation-to-noise'

ratios usually occurred at temperatures above 30' C. We will discuss this

point in more detail below.

The measurements made with heaters on and off were analyzed off-line

by a PDP-l1. computer, using the computer programme AFLIJCT, which is listed

in Appendix 5. The quantities calculated by this program are the mean,

standard deviation, and coefficient of variation for the amplitude of each

wave associated with the parametric receiver. A high-pass filter with cut-

off frequency of 0.02 Hz is incorporated in the program to minimize the

effects of slow drifts in amplifier gains and changes in received signal

amplitude with temperature. 
84

5.3.3 Signal Wave Amplitude Fluctuations

As an example of how amplitude fluctuations of the acoustic waves were

measured and analyzed, we will consider data obtained for the 1 MHz signal

wave. Data were taken over a five day period using the procedure described

in Section 5.3.2. In all, 25 sets of data were taken with the heaters turned

on, and 15 sets were taken with the heaters off. For all of these measure-

ments, the separation between projector and hydrophone was Z s+ L = 0.75 m.

Results of the measurements are shown in Table 5.2. The coefficients of
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Data Tempe uratrerL CAV C:AVo F* NR P CAV

Sot c on of _ d__

1 23.-) 0.0077 0.0030 8.2 0.7303 0.0052

2 24.2 0.0133 0.0030 12.9 0.7554 0.0098

3 25.0 0.0088 0.0030 8.5 0.7852 0.0058

4 25.7 0.0090 0.0030 9.5 0.8123 0.0069

5 26.5 0.0069 0.0030 7.2 0.8443 0.0052

6 25.6 0.0081 0.0033 7.8 0.8084 0.0060

7 26.2 0.0075 0.0033 7.1 0.8321 0.0056

8 27.2 0.0251 0.0033 17.6 0.8734

9 27.9 0.0071 0.0033 6.7 0.9034 0.0057

10 28.b 0.0072 0.0033 6.8 0.9345 0.0060

11 25.1 0.C112 0.0043 8.3 0.7890 0.0081

12 25.8 0.0111 0.0043 8.2 0.8162 0.0083

13 26.5 0.0088 0.0043 6.2 0.8443 0.0065

14 27.2 0.0077 0.0043 5.1 0.8734 0.0056

15 27.8 0.0120 0.0043 8.9 0.8991 0.0101

16 28.1 0.0089 0.0052 4.7 0.9122 0.0066

17 28.8 0.0110 0.0052 6.5 0.9436 0.0092

18 29.3 0.0094 0.0052 5.1 0.9667 0.0075

19 30.1 0.0091 0.0052 4.9 1.0048 0.0075

20 30.6 0.0103 0.0052 5.9 1.0294 0.0092

21 27.9 0.0065 0.0036 5.1 0.9034 0.0059

22 28.6 0.0060 0.0036 4.4 0.9345 0.0045

23 29.3 0.0057 0.0036 4.0 0.9667 0.0043

24 30.0 0.0052 0.0036 3.2 1.0000 0.0038

25 30.7 0.0059 0.0036 4.3 1.0344 0.0048

*CAVoff is the average of 3 data sets. Range = 0.75 m

TABLE 5.2

DATA OBTAINED FOR 1 Mllz SIGNAL WAVE
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amplitude variation for the I M1z wave for heaters on and off are labelled in

the table as CAVon and CAVoff' respectively. CAVon is a measure of amplitude

fluctuations in the voltage recorded by the data logging unit shown in Fig. 5.2.

However, these fluctuations may be produced by a number of causes. Both thermal

inhomogeneities in the medium and other inhomogeneities such as microbubbles

and biological matter will produce amplitude fluctuations in a propagating

pressure wave. Further amplLitude fluctuations will be produced if there

are gain variations in the electronic system that generate and detect a

pressure wave. Therefore we can say that the measured amplitude fluctuations

comprise (1) an effect which we wish to measure, a signal, which is caused

by thermal inhomogeneities; and (2) extraneous effects, or noise, which is

caused by nonthermal inhomogeneities and system gain variations. It is rea-

sonable to assume that the noise is present whether the tank heaters are on

or off, so CAVof f is a measure of the noise. If the signal and noise are

uncorrelated, then they will add on a mean-.squared basis, and the desired

95signal will have a coefficient of amplitude variation given by

CAV [AVo CA ff] (5.3)

Values of CAV for the present experiment are shown in Table 5.2, and

are plotted as a function of water temperature in Fig. 5.4. In making this

plot, some of the data have been omitted. Specifically, data with a fluc-

tuation-to-noise ratio (FNR) less than 4.5 dB have been omitted, where

CAV
FNR = 20 log 10  on

AVoff

Low values of FNR generally occur at higher values of temperature; this is

demonstrated by comparing data sets 21-25 in Table 5.2 to data sets 1-5.
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A theoretical prediction for the variation of CAV with temperature may

be obtained from the sum of Eqs. (3.30) and (3.32), which is:

CAV2  2 k7/6(Z L +L)3l 4_

0.13 C k (Z + )/6 (Z + L) (Kt - K .(5.4)

n t m

It may be seen from the equations given in Table 5.1 that C and 4 aren m

functions of the mean-squared refractive index, 
which in turn is given by

9 5

2 1/2 1 3c 2 1/2
.... <(AT)-> (5.5)

where

2 3
c = 1403 + 5T - 0.06T + 0.0003T3

, (5.6)

9c 5 - 0.12T + 0.009T2 (5.7)

T = mean temperature in 0C, and

AT = deviation from mean temperature.

Substitution of Eqs. (5.5)-(5.7) into Eq. (5.4), and use of the equations

defining C and D in Table 5.1, gives the theoretical curve plotted in Fig.
n m

5.4. In order to make a comparison between the experimental and measured

results, a regression line for the measured data is also shown in the figure.

This line is plotted using the formulae in Crow et al. 10 2 and is based upon

the method of least squares. It can be seen that there is good agreement

in both magnitude and slope between the regression line and the theoretical

curve.

The agreement between theory and experiment indicates that the

2
temperature dependence of < 2 >, as expressed by Eqs. (5.5)-(5.7), is valid.

By knowing this temperature dependence, we are able to compare measurements

of CAV taken over a range of temperatures simply by normalizing all the

104
measurements to the same temperature. Chotiros has shown the factor,

f , for normalizing measurements to 30' C to be, approximately,
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" 1 0.021(T - 30)].
S 010. 2

As an example, we calculate the coefficient of amplitude variation for the

1 MHz signal wave at the range 0.75 m as follows. For each data set in

Table 5.1, a value of CAV is calculated by compensating for ambient noise

with Eq. (5.3), and then normalizing the result to 30 ' C with multiplication

by f . Thus,

CAV = fAV2 _ off 1/2 (5.8)

is calculated for each data set. The mean and standard deviation of CAV is

then calculated for all data sets, with the results plotted in Fig. 5.5.

Similar results at other ranges are also shown in the figure, along with

some curves that show the theoretical range dependence of CAV.

The nearfield theoretical curve shown in the figure is calculated from

Eq. (5.4), where the range is defined to be Z + L, and values of the medium
5

parameters at the center of the tank are taken from Table 5.1. This equa-

tion is strictly valid only for ranges much less than R where

?0

For ranges much greater than Ro, the farfield result [Eq. (3.24)] applies.

For the data in Fig. 5.5, R L 0.8 m, so some of the data are in a region

where the nearfield theory is only an approximation. However, as comparison

between theory and experiment indicates, the nearfield approximation is in

reasonable agreement with the measured results.

5.3.4. Pump Wave Amplitude Fluctuations

Measurements of the coefficient of amplitude variation for the 10 MHz

..... 4_
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pump wave (CAV ) were made as a function of separation I, btweoii pump

transducer and hydrophone. The results, shown in Fig. 5.6, were obtained

using the procedure dtescribed in Section 5. 3.2. The data were adjusted for

ambient noise and normalized to 30' C using Eq. (5.8).

In making a theoretical prediction for CAV there are two factors that
P

need to be taken into account. One is that the mean-squared temperature

2
variations, <AT 2, near the hydrophone were measured to be different from

<AT 2> in the center of the tank. This is due to the tact that the hydra-

phone was located near the edge of the heater array and perforated screen

which produced the thermal microstructure. Because CAV is a function of
p

turbulence parameters which depend upon <AT 2>, this change in mean-squared

temperature will affect CAV • Another factor that affects the value of CAVP p
105

is due to the finite cross sectional area of the hydrophone. Chotiros

has shown that for a square transducer of dimension b on each side, a re-

duction occurs in the coefficient of amplitude variation of the amount

2
* CAV

h 2

CA 2  1 - 0.61 b (AL) -
2 (5.9)CAV 2

where CAVh and CAV are the coefficient of amplitude variation for an

acoustic wave received with a square hydrophone and a point

hydrophone, respectively,

X is the acoustic wavelength, and

L is the separation between the source of the wave and the

hydrophone.

Physically, this reduction in CAV is due to the lack of correlation in

amplitude fluctuations across the face of the hydrophone. Thus, the hydro-

phone measures the average level of fluctuations across its aperture. Equa-

tion (5.9) can be taken to be the definition of an 'aperture factor',

fa; i.e. ,

fa

- A-
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a

The coefficient of amplitude variation for the pump wave can he

predicted by multiplying Eq. (3.31) by Eq. (5.10), and is

2 = .1~ 2 7/0 11/6
CAV = 0.31 f C k L (5.11)p an, p

The value of C in Eq. (5.11) is determined from the defining equations inn :

Table 5.1, using the measured value of <AT 2> in the region between pump

transducer and hydrophone. The dependence of CAV upon separation L, asP

given by Eq. (5.11), is plotted as the solid line in Fig. 5.6. It can be

seen from the figure that there is reasonable agreement between theory and

experiment.

5.3.5 Amplitude Fluctuations in the Upper Sideband Wave

In this section we will discuss an experimental study of the effects

of medium inhomogeneities on the upper sideband wave of a nearfield para-

metric receiver. Three types of results were obtained in this study.

First, measurements were made of the coefficient of amplitude variation for

the upper sideband wave (CAV sB ) with the array length fixed and with vari-

able range, Z + L. Second, measurements were made of CAV with the ranges USB

fixed and with variable array length. Third, a comparison was made between

the amplitude fluctuations in the signal wave and in the upper sideband wave.

All data discussed in this section were obtained by following the ex-

perimental procedure described in Section 5.3.2. Results were normalized

to 300 C and adjusted for ambient noise using Eq. (5.8).

The first set of results we will consider is shown in Fig. 5.7. For

this data, the array length was 0.1 m and the range, Zs + L, was varied from

0.25 m to 1.55 m. As above, circles in the figure indicate mean values of

Nor"I" II I
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CAV obtained from several data sets and the vertical bars indicate theUSB

standard deviation of CAVusB for the data sets. In making theoretical

predictions for the experiment, two different methods were used. One pre-

diction, shown as the dashed line in Fig. 5.7, is based on Eq. (4.49). It

can be seen from the figure that Eq. (4.49) givtes values of CAV that are

significantly lower than the measured values for most ranges. However, the

development leading to Eq. (4.49) was based on the assumption that the pump

wave can be approximated as a plane wave of infinite extent. A more ac-

curate theoretical model, which takes into account the effects of the, finite

apertures of the pump transducer and hydrophone, has been developed by

106
Chotiros. It is shown in Appendix 6 that the coefficient of amplitude

variation, CAVpp , for the nearfield parametric receiver can be written as

L L

CAV = -2 e(K )Re(K2) <BI B2>

0 0

+ Im(KI)Im(K2 )<SS2 > + Re(KI)Ii(K2)<BIS2
>

+ IM(K 1)Re(K2)<S 1 B2 >1 dzldz, (5.12)

L

where v A A dz is the normalized voltage at the terminals of the

0

A e- j o hydrophone,
+

K= CC

1C2

j)k k 2b2 2 h 2

C j __R+ + Pb + +
4z 2  + b) 4(L z)2 +

e is the phase angle of the second order pressure,
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C2, =4z(L - z) (1 2 b 2 F , and

h and b are characteristic radii of the pump transducer and hydrophone,

respectively.

This result requires numerical integration for its evaluation. The pro-

gram CAVNUM, listed in Appendix 5, is used to evaluate Eq. (5.12) for the

experiments discussed in this section. Results obtained by the program

are plotted as the solid line in Fig. 5.7. It can be seen from the figure

that the numerical results based on Eq. (5.12) are generally in better

agreement with the data than the analytical result, Eq. (4.49).

A similar set of results, shown in Fig. 5.8, was obtained for a fixed

range of Z + L = 0.75 m, and a variable array length. In this case, thereS

is less difference between the numerical and analytical results, although

the numerical results are generally in better agreement with the data.

Another useful way of studying the parametric receiver in an inhomo-

geneous medium is to compare the coefficients of amplitude variation for

the upper sideband (CAVUSB) and signal (CAV ) waves. The ratio, CAVUSB/CAVs,s

compares the 'noise level' of the parametric receiver in an inhomogeneous

medium to the noise level of a point hydrophone in the same medium. Here

'noise level' refers to the random amplitude variations appearing at the

output terminals of either the hydrophone of the parametric receiver or thu

point hydrophone.

Measurements of CAVuIsB and CAV were made simultaneously for parametric
S

receiver array lengths of 0.1 m and 0.5 m. The hydrophone of the para-

metric receiver was used to detect both upper sideband and signal waves, as

shown in Fig. 5.2. A mean value, <CAVusB/CAVs>, was calculated for several

data sets taken at each range, with the results shown in Fig. 5.9. The

theoretical curves shown in the figure are based on values of CAVjsB obtained
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from Eq. (4.49) [the dashed lines) or by numerical integration of Eq. (5.12),

and on values of CAV obtained from Eq. (5.4). Discussion of the physical
S

meaning of these results, as well as those shown in Figs. 5.6 and 5.7, will

be given below.

5.3.6 Results for Spherically Spreading Pump Waves

The experiments described in the preceding section were conducted with

the hydrophone placed in the nearfield of the pump transducer. Some data

were also obtained with the hydrophone in the farfield of the pump, so that

the pump waves were spherically spreading. The pump transducer used in the

present experiment was of a smaller cross sectional area than that used in

the experiments described in Sections 5.3.4 and 5.3.5 (see Appendix 3 for

a description of the transducers). The experimental apparatus and the

procedure used to obtain the data were similar to those described in

Sections 5.2 and 5.3.2; however, amplitude fluctuations in the lower

sideband wave (CAVLsB) were measured rather than those in the upper side-

band wave. Details of the electronic receiving system used for this

experiment are given in Appendix 4.

Measurements of CAVLSB were made for a fixed range, Zs + L = 1.4 m,

and a variable array length. Data from the experiment are plotted in Fig.

5.10. Each open dot in the figure represents a mean value of CAV ob-
LSB

tained for a set of approximately 150 samples. These experimental values

of CAVLs B have been compensated for temperature and ambient noise using

Eq. (5.9). The theoretical curve shown in the figure is obtained from Eq.

(4.44), which for the present experiment can be written as

L

CAV 2  +ff (BlB 2 > +<B 1 2B + <B B
LSB B>p p +2>

0

+ <B+iBp2
> + <B+1B+2> dZld 2  (5.13)

4
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sl s2 1 /( + +l) 480 in S M

+ [0 13C2 k s7 / h ( Z  2 + +11/ +m (i + -)-( 4 4 )t

<B plB p2> = O.13Cn 2 kp7/6 (Z1Z/2)112

12 7/ /1 2 11

<B PB +> 0.13C k 7/k 11/12 (L - 1/12
p2+ 2  

1 p 12 2

<B+IB p2> 0.13 C 2k p/6 ( - z)l/12 11d/12

<B B > 0.13 C 2k 7/6( )11/12 11/12
+1 +2 n p 2

Integration of Eq. (5.13) gives

2k 7/6 11/f
CAVLSB n p

1 -4 (a + bL)3/2 3/2 (5.14)L ab2

where

a = 0.13 C 2k 7/6 / + 3 4 ( 4 K 4)Z 3  andn s s 480 m t M an

b = 1 (0.13C2 k 7/6 ) z 5/6 + 3T0 m4 _ 4 z2
6ns s m Km)s

It can be seen from Fig. 5.10 that values of CAVLs B predicted by Eq. (5.14)

are in reasonable agreement with the data.

t1
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5.4 Discussion

There are a few simple, but useful, conclusions that can be drawn from

the results presented in Figs. 5.4-5,10.

Theoretical values of the coefficient of amplitude variation for the

linear waves are in fairly good agreement with measured values (Figs. 5.4-

5.6). This agreement between theory and experiment allows us to conclude

that the theoretical model for the acoustic medium discussed in Section 5.1

is a reasonable one.

Examination of Figs. 5.7, 5.8, and 5.10 shows that CAVus B tends to

increase with either increasing array length or increasing range. This re-

sult seems reasonable if we recall the physical considerations discussed in

Section 4.6. It was noted there that the coefficient of amplitude variation

for both nearfield and farfield parametric receivers depends upon two con-

tributions: one from the high frequency waves in the interaction region

and a second from the signal wave. As the range between signal source and

parametric receiver is increased, the contribution to CAVus B from the signal

wave is increased. This is simply because more scatterers are present in

the propagation path of the signal wave as the range is increased. Simi-

larly, as the array length increases, there is an increase in the contribu-

tion to CAVus B due to the pump and upper sideband waves, because they

propagate through an increased volume of scatterers.

Similar considerations apply to the results shown in Fig. 5.9. It can

be seen in the figure that, for an array length of 0.1 m, the amplitude

fluctuations in the upper sideband wave and in the signal wave are approxi-

mately equal; i.e., CAV usB/CAVs 1 1 for long ranges. It can be shown theo-

retically that this is also true for the 0.5 m array length, although CAVUSB

and CAV become approximately equal at larger ranges for the 0.5 m

long array than for the 0.1 m long array. This result is reasonable, be-

cause as the range of the signal source is increased, the fluctuations in
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the signal wave will increase while the high frequency fluctuations in the

interaction region will remain constant. At sufficiently long ranges, the

contribution to CAVus B due to scatterers in the interaction region will be-

come negligible, and only scattering of the signal wave will contribute sig-

nificantly to CAVUSB. For array lengths greater than the spatial correlation

distance of the signal wave fluctuations, it may be expected that CAVUSB

would become less than CAV at sufficiently long ranges. This effect woulds

occur if the parametric receiver summed uncorrelated 'noise' throughout the

interaction volume, thus 'averaging out' some of the fluctuations. The size

limitation of the model tank and choice of signal frequency prevented a

demonstration of this effect; it would be an interesting point to pursue in

future research.

5.5 Summary

The experimental study described in this chapter investigated some

effects of medium inhomogeneities on the parametric receiver. The experi-

ments were conducted in a model tank in which an array of immersion heaters

and a perforated screen produced a thermal microstructure. Measurements

were made of the coefficient of amplitude variation for the signal, pump,

and upper sideband waves associated with a nearfield parametric receiver,

the measurements being made as functions of array length and of range from

signal source to hydrophone. It was found that the amplitude fluctuations

in the signal and pump waves were reasonably well predicted by the theo-

retical work reviewed in Chaptet 3. It was found that predictions of

amplitude fluctuations in the upper sideband wave required a theory which

takes into account the phase variations of the pump radiation in the near-

field of the pump transducer. Some simple conclusions were drawn from the

experimental results and from physical considerations: CAVUSB increases

with range and with array length; and for sufficiently large ranges, signal



wave flucru-ations ieasured by a point flydrophone will approximatel-y equal

the sideband fluctuation.; measured by the parametric receiver.

-A 0,



The aim of the investigation reported in this thesis was to determine

the effects that medium inhomogeneities have on the performance of a para-

metric receiver. An introduction to the study was given in Chapter 1,

where the topics of nonlinear acoustics and wave propagation in an inhomo-

geneous medium were briefly discussed.

In Chapter 2, the basic principles of parametric receiving arrays were

reviewed. It was shown that nonlinear interaction between an incoming

'signal' wave and a locally generated 'pump' wave produces an array of vir-

tual sources in the region in front of the pump transducer. For a homo-

geneous acoustic medium, this array has the same directivity characteristics

as a conventional end-fire array realized from elements operating at the

frequency of the wave to be detected. Expressions were given which describe

the interaction frequency pressure field when the hydrophone of the para-

metric receiver is placed in the nearfield and in the farfield of the

pump transducer. Practical considerations regarding processing of the

difference frequency signal, shadowing, and finite amplitude attenuation

were discussed briefly.

A discussion of acoustic wave propagation in an inhomogeneous medium

was given in Chapter 3. Brief consideration was given to the historical

development of the subject. It was seen that acoustic scattering in the

ocean is primarily due to the thermal microstructure, which produces random

variations in the refractive index of the acoustic medium. Two functions

were discussed that can be used to describe an inhomogeneous medium: the

spatial correlation function, and the spatial wavenumber spectral density.

Because the spectral composition of an inhomogeneous medium may be deter-

mined by turbulence, some basic concepts from turbulence theory were

116
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presented. A summary of expressions was given for amplitude and phase

fluctuations and their correlation.

In Chapter 4, the analytical methods discussed in the two previous

chapters were used to develop a theory predicting fluctuations in the inter-

action frequency pressure wave for both nearfield and farfield parametric

receivers. It was assumed in developing the analysis that (1) the medium is

weakly inhomogeneous, so that the amplitude and phase fluctuations are small

compared to unity; (2) there is complete transverse correlation of amplitude

and phase fluctuations in the interaction region of the array; and (3) the

signal source is located on the main beam of the parametric receiver. By

approximating the pump wave as being planar and collimated, it was shown

in Eq. (4.22) that mean-squared amplitude fluctuations for the nearfield

parametric receiver may be vr'i1iten as

L
2 1

<B > [[<B B> dz dz (6.1)
PR L2 .f] 112 1 2(61

0

where <B B 2> is a convenient notation for the nine correlation terms

specified by Eq. (4.30). A similar expression was derived for the farfield

parametric receiver [see Eq. (4.29)]. These integral expressions, Eqs.

(4.22) and (4.29), were evaluated by making a number of assumptions regarding

the spatial correlation of the various amplitude fluctuations. The following

results were obtained. For the nearfield parametric receiver, the coef-

ficient of amplitude variation is given by Eq. (4.49), which is

CAVp2 0.3375 C 2 k 7/6 11/6 + 4 bL) 3/2 3/212
PR-----a + - a , (6.2)nA O. 5 p L 2 9b 2
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2 7/6 11/5 3Tt 4 4 3
where a = 0.13 C n k / Z s + -8 m(K - K 4) Z sn s S 48m s

It. 2 7/6) 5/6 3T0 ¢mK4 4 4s2

and b =  L(0.1i C2 k )Z + (K K

n s s m s

For the farfield receiver, the result is [Eq. (4.51)]

2 An 3 3 2 -1 2 2
CAVPR 2L s a 3 a3  tan (- + 0.1415 C k 7/6 Ll1 (/6

(k s (6.3)

where a is the correlation distance of the refractive index variations.

The experiments discussed in Chapter 5 were conducted in a model tank

in which an array of immersion heaters and a perforated screen produced a

thermal microstructure. Measurements were made of the coefficient of ampli-

tude variation for the pump, signal, and upper sideband waves associated

with a nearfield parametric receiver. It was found that the amplitude fluc-

tuations in the signal and pump wzves were reasonably well predicted by the

theoretical results reviewed in Chapter 3. Amplitude fluctuations in the

upper sideband wave were compared to theoretical predictions based on the

analysis of Chapter 4, and to numerical results based on a theory which

uses a more exact model for the pump radiation than that of Chapter 4. Both

theoretical models gave predictions which were in reasonably good agreement

with the experimental results, although the numerical results were generally

in better agreement.

6.2 Discussion of Results

The coefficients of amplitude variation for the nearfield and farfield

parametric receiver each contain a high frequency component due to scattering

of the pump and interaction frequency waves, and a low frequency component

due to scattering of the signal wave.

If the array is sufficiently long, and if the pump frequency is much

higher than the signal frequency, then the low frequency contribution will



be negligible, and the coefficients of amplitude variation for the para-

metric receivers will be approximately equal to their high frequency com-

ponents. This point is demonstrated by the experimental results shown in

Fig. 5.7, where, at shorter array lengths, CAVPR tends to 'level out' at a

value determined by the high frequency contribution. Also, it can be seen

from Fig. 5.8 that CAVpR tends to increase with increasing array length.

In the numerical example for the farfield receiver (see Fig. 4.6), it was

seen that, for longer array lengths, the high frequency contributions were

dominant.

If the array length is sufficiently short, and if the range of the

signal source is large, then the high frequency contribution to CAVPR will

be of the form

CAV 2 L2  <Bs(z)Bs (z 2)> dz 1dz 2

0

which is identical to the coefficient of amplitude variation for a continuous

end-fire array of length L. Therefore, it is only when the low frequency

component of the fluctuations is dominant that the parametric receiver per-

forms like an end-fire array in an inhomogeneous medium. Otherwise the value

of CAV is greater for the parametric receiver than that for the end-fire

array by an amount determined by the scattering of the high frequency waves

in the interaction region. For very short array lengths, the parametric

receiver and the end-fire array will behave like point hydrophones, so that

2. 2
CAV PR -<B > (L O)

This conclusion is supported by the experimental results shown in Fig. 5.9,

where it is shown that the coefficients of amplitude variation for the

parametric receiver and for the 'point' hydrophone tend to become equal at

longer ranges.
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is correct. Furthermore, as this spectral description is based upon Pao's

model of the dissipative subrange, the present results provide further evidence

to support Pao's model.

In comparing results for the nearfield and farfield parametric receivers,

it may be concluded that the thermal microstructure will, with all other

conditions being the same, have less effect on the farfield receiver than the

nearfield one. This assumes that the condition >; IL is sati iid, so
p

that the results in sections 4.5.1 and 4.5.2 apply.

It was determined that varying the array length of a param-tric receiver

has two effects upon its performance in an inhomogeneous meditim. Pirstlv, if

the array is long compared to the correlation distance of the signal wave that

is to be detected, then the array will tend to reduce the level of the signal

wave fluctuations by 'averaging them out' over the array. In this regard, the

parametric receiver performs like a conventional end-fire array of the same

length. Secondly, the fluctuations of the pump and interaction frequency waves

increase with array length, so the performance of the parametric receiver will

be degraded in comparison to that of the end-fire array at very long array

lengths. If the randomizing effect of the medium on the incoming signal has

already been large by the time the signal reaches the parametric receiver,

then the signal wave fluctuations will dominate the medium effects, and there

will be little difference between the performance of the parametric receiver

and the end-fire array.



APPENDIX 1. DERIVATION OF EQUATIONS (4.20) and (4.21)

The integral we wish to evaluate is the transverse component of the

second order pressure in the interaction region and is given by

b b

I fJ exp(-jkr)dxdy, (Al.l)

-b -b

where r = [(L - z) 2 + x2 + y2
107

Using a procedure developed by Berktay, we will find an approximate

expression for I, cast that expression into the form of Fresnel integrals,

and then use asymptotic values of the Fresnel integrals to obtain a final

result.

In Eq. (Al.l) make the following approximations: in the 1/4 term, use

r L - z; and in the argument of the exponential term, use

I x 2 2

r "1 L - z + 2 Lx -

Making use of the symmetry in x and y, Eq. (A1.l) can then be written as

21-jkx(LI- z) b 2 b 2
I L 2e exp[-jk+x2/(L - z)]dxfexp[-jk+Y2 /(L z)]dv

0 0 (Al.2)

This expression contains two integrals of the form

b

F exp[-Jkiu 2 (L - z)Jdu (Al.3)

0

Making the change of variable,

r(L - z)

1 k
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Eq. (Al.3) becomes

F = pf-j! v jd2 (Al.4)

0

where b =~~k b) The integral in Eq. (Al.4) is the Fresnel

integra' and in the nearfield of the pump transducer the following asymp-

totic value r-y be used 
93 ,47

li Jexp[-Yj v 2 dv = -1(1 - j) (Al.5)

0

Substitution of Ej. (Al.5) into Eq. (Al.4) and using the result in Eq.

(A1.2) gives

-ik+(L - z) (l1L

(L - z) [ - k

or

-jk+(L - z)
-3 Te (Al.6)

This appearo in the text as Eq. (4.20). A similar result can be obtained

for the normalized homogeneous component, H, of the observed pressure.

The definition of H is given in Eq. (4.16) and is.

f-jk,(z + r')1
H j e r ,

V

This can be written in terms of I as

L

H fe I dz .(Al.7)

0
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Substitution of Eq. (Al.h)) for Ii gives

H "- L _ jk -+L

k
+

which appears in the text as Eq. (4.21).

;.1
-

* ,



APPENDIX 2. TRANSVERSE CORRELATION OF FLUCTUATIONS

One of the assumptions made in the theoretical analysis of Chapter 4

was that there is complete transverse correlation of amplitude and phase

fluctuations in the interaction region of the parametric receiver. We will

discuss this assumption for both the nearfield and farfield parametric re-

ceiver in this appendix.

A2.1 Transverse Correlation for the Nearfield Case

For a plane wave, the volume of inhomogeneities that contribute to the

scattered pressure is a cone with its vertex at the observation point and

an aperture angle of 1/ka radians, where a is the radius of the inhomogenei-

ties. 18 If the medium contains a distribution of various sizes of inhomo-

geneities, there is a cone associated with each size, the largest cone being

associated with the smallest inhomogeneities. At each point in the inter-

action region of a nearfield parametric receiver, therefore, only the

scatterers contained within their associated cone contribute to the ob-

served scattered pressure. Furthermore, only scatterers insonified by the

collimated pump beam contribute to the observed pressure. The volume over

which the fluctuations are assumed to be transversely correlated is the

intersection of the cone and the insonified region, as shown by the diag-

onal lines in Fig. A2.1.

As an example, for the model tank used in the present study, mo'st

patches contributing to the acoustic fluctuations will be larger than
a 2 / o  4.1 x 1-3

a = 2w/K = 4.19 x 10 m. This means that the largest cone will have, for

pump waves of 10MHz, an aperture angle of 5.7 x 10-3rad. For an array

length of L - 0.5 m, it can be shown that the width of the significant

scattering volume in the middle of the array (at z = 0.25 m) 
is 1.43 x 10

-3

m. It can be found from Tatarski's results (Fig. 13 of Ref. 19) that the

correlation coefficient for the maximum transverse separation, 1.43 mm, is

125
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R T = 0.65. The transverse correlation coefficient for a 9 Miz plane wave
B

84 T
at a range 0.255 was measured in the model tank to be RB 0.7 at a sepa-

ration of 1.4 mm. These results indicate that the assumption of complete

transverse correlation of the pump amplitude fluctuations is reasonable for

array lengths L < 0.5 m. A comparison of the correlation coefficients RT
B

and R [see Eqs. (3.38) and (3.39) or their plot in Fig. 3.3.1 of Ref. 91]

indicates that, for 0 < Ap/a) < zRT > RT  This means the phase fluctua-indcaes ha, or <(A/a)< , S _ B"

tions will be correlated over a larger volume than the amplitude fluctuations.

A.2.2 Transverse Correlation for the Farfield Case

For a spherical wave, the significant scattering volume is an

ellipsoid with foci at the points where the source and receiver are lo-

68
cated. The maximum transverse dimension of the significant scattering

108
volume for a scatterer of radius a is given by Aiken to be equal to

L tan[(4Ka)-l. For a point source, the condition of having complete

transverse correlation of fluctuations is therefore approximately given by

L tan < It

where It is the correlation distance of the fluctuations; i.e., the

separation at which R equals l/e.
B

For a source having a finite aperture and, hence, directivity, the volume of

scatterers which contribute to acoustic fluctuations is the intersection of

the significant scattering volume and the volume insonified by the source

beam.



APPENDIX 3. TRANSDUCERS

The transducers used in the experimental study are described in this

appendix.

A.3.1 Signal Source

The signal source transducer consisted of a 2.0 cm square ceramic plate

mounted on a backing made from a mixture of flyash and epoxy resin. The

transducer was operated at its resonant frequency of 1 MHz. Its efficiency

was measured with a radiation balance, and found to be 37%. The 3 dB beam-

width was measured as 3.20.

A.3.2 Pump Transducer for the Nearfield Receiver

The pump transducer used with the nearfield parametric receiver

consisted of an air-backed 1 cm circular ceramic plate, resonant at 10 MHz,

and mounted in a brass housing. The diameter of the housing was 2.0 cm.

A radiation balance was used to measure the transducer efficiency, which

was found to be 3.4%. Excess attenuation of the pump wave at ranges of

10 cm and 50 cm was shown to be negligible by demonstrating that the pump

pressure increased linearly as a function of driving voltage applied to the

pump transducer. The 3 dB width of the pump column was measured to be

0.38 cm at 10 cm range, and 0.75 cm at 50 cm range.

A.3.3 Pump Transducer for the Farfield Receiver

For the farfield parametric receiver, the pump transducer was a 0.5 cm

square ceramic plate backed by epoxy resin. The efficiency was determined

from admittance measurements made in air and water, and was measured to be

3%.

A.3.4 Hydrophone

The hydrophone used in the experiments was a 2 mm square ceramic plate

backed with epoxy resin. Its sensitivity at the frequencies of interest are

128



129

given in Table Al.l. The sensitivity was determined by placing the hydro-

phone in a pressure field of known amplitude and measuring the voltage ap-

pearing at the hydrophone terminals.

f S

MNz mV/Pa

1 8.37 x 10 - 5

9 3.7 x 10
- 3

10 1.31 x 10

11 1.13 x 10

f = frequency
S = receiving sensitivity

TABLE A1.1

HYDROPHONE SENSITIVITY
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APPENDIX 4. ELECTRONIC RECEIVING SYSTEM

A block diagram of the electronic receiving system used with the

nearfield parametric receiver is shown in Fig. A4.1. The hydrophone is

transformer coupled to the filters and tuned amplifiers that are used to

separate the various signals.

A single channel of the signal processing unit is sketched in block

form in Fig. A4.2. For the 'upper sideband' (USB) and 1 MHz 'signal' chan-

nels, a peak detector based on Knott's design10 9 was used. For these two

channels, a sample and hold circuit was constructed that uses a National

Semiconductor LF398 integrated circuit. The peak detector and sample and

hold circuits used for the 'pump' channel had been used in previous

studies and are described in Ref. 110. The data logger was a commercial

unit made by Solartron.

The gain of each channel at the frequencies of interest is shown in

Table A4.1. The voltage transfer characteristic of the receiving system

was determined by replacing the hydrophone with a voltage source and mea-

suring the output voltage for each channel of the signal processing unit

as a function of input voltage. Each channel was determined to be linear

over the voltage ranges used in the experiments.

A block diagram of the receiving system used with the farfield

parametric receiver is shown in Fig. A4.3. An inductor L was placed in

parallel with the hydrophone to tune out the static capacitance of the

ceramic plate at the lower sideband frequency, 9 MHz. The low-pass filter

shown in the figure attenuated the pump frequency voltage by approximately

40 dB, and attenuated the 9 MHz voltage by about 11 dB. The variable-gain

tuned amplifier was operated typically at a gain of 50 dB, with a bandwidth

of approximately 70 kHz, centered about 9 MHz. The signal processing unit

was that described in Ref. 110. It selected a 10 to 35 psec section of the

received pulse, the section being sampled about 40 psec after the beginning

130
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of the pulse. The sampled pulse was peak-detected and converted to digital

form by the data logger.

Frequency Gain
Channel d

1 + 48

1 MHz 10 - 48
Signal

11 - 45

1 - 32

10 MHz 10 + 11
Pump

11 - 12

1 - 60

11 MHz 10 - 49
USB

11 + 24

TABLE A4.1

FREQUENCY RESPONSE OF SIGNAL PROCESSING UNIT



APPENDIX 5. COMPUTER PROGRAMS

This appendix contains listings of the computer programs used in this

study. All programs are written in the FORTRAN language. The program

AFLUCT was written for a PDP 11 computer. Program CAVANA and CANVUM were

written for a CDC Cyber 171 computer.
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C AF il),

TII ,~t'~MCLUAF THF MF~rj, SJANUARL) UFVJ1ATI Nq

c C.F ic IC tNf r F AmrA -I TfUBE VAfHTAT Ni AND
C AkIuO(OHRF1LA IION1 PI)w ATA P~EAf F~rM PAPER TAPF.

C A HIjC PASS 1LlE; WITH- VtARIARI L Cii]UFF FPFQtJJ-AICY
C Is PROVIoEt..

C SET UP ARRAYb.
DIMENSION HLtE~;tLRL1)AI3OD(4

DIMENSION )ATA(595)oCPUS(c,).CPRO(5.5),CCV(r)5)IIx(5)
DIMENSION RMUlAN(5,5),SVS(cl).CVS(5),Rmx( )

DIMENSION SOXU5)9CVX(5)-oST)(5)
C E.NTEN DATA INTO APPAYS,

DATA PLABEL/$*MEAN* , $SLVN* ,sCOVA$ -tA(iCO$,$*rRCO*/
DATA ILAF3FL/* *,*F *VOS *91HFO/
DATA Afl/$1 0 1 **$j02 atg**3 't
DATA ADe/1I*, t,* 2 03 *f*3*[ $/

C STAkT HEHE AT HEGINNIN3 OF LACH rAPLe
I CONTINE.

REWliql I.
C HEAD IN FIL TER COtfl.TANT

wPITE. (69,101O
300 FORMAT (/'* h''MHE PO)INTS I,\. FILTER*/)

REALD (693I1) IFLTp
301 FORMAT (Ii)

[FL IIFLTP-1
c HEAD IN NUMSEIN OV CHANNELS wITH I'ATA

W141TE (6930i2)
302 FoRMATj//*NutiHER CF CHANWFL'7 wITH DATA*/)

REAL) (693-3) PJtCi
303 FORMAT (Ii)

C SET ARRAY i.LLMENT
Do 3 1,1NCH

CVS(I) .
CROS (I11
00 3 J=i ,jFLTrp
DATA (I J) =O.
RMEAN I I'J) =.

3 cov(IqJ)=,l
ENZ0 .
N=O
ENF= IFLI R

C RE~AD IN TAPE ID All) NUw8tEp OF POTNTS TO HE ANAl YZEf)

WRITE (L-97'
TO FORMAT(//$ I[)

so FORMATIA)
4 WwITE(697i)
71FnRMAT(//* NI~klRER OF POINTS (t'SE 1110/1

61REAU(bod1) INSPFnRMAT(131



1'37

C SHIFT DATA THROUJGH ARRAY$ READ) It, NLw DATA

5 CON II NJL
Do 7 I121r\CH
Do 7 J=19IFLui
K=IFLTR-J

7 DATA (I ,~. =PATA (I ,K)
REAU(59ll9ENDl19,EHPNI9) [LOiTA(191 ) IX(l I*DATA(2tI)9

2 X (2) ,OATA (3,1) IX (3) ,DATA(4', 1) IX (4) ,DATA S, 1) ,X (5)
101 FORMAT(F5.,I3,F7.,I1,3F7.3,T3,F 7.3913)

C TEST FOR END OF TAPF.
6 DO 8 I1 9NCH

c TEST FOR uAD DATA
IF(IX(l),NE.4'1) GC To 5()
IF(UATA(I,1).(T.1.,98) (30 TO 5,
!F(0ATA(Iql)-LT.O.0 65j) ro r 5Uj

8 CONTINUE)
IF(N.GT.O) 60 TO 1b

C PRINT FIRST DATA
WRITE(69100) (OAT0A(I,1 ,=INCI)

100 FORMAT(IIH FIRST fATAIX,c3FT.3)
16 N=N4'I

IF(N*LE.IFLT1) GO TO 5
C
C COLLECT DATA Ir,'0 SUMS AND SUMS CF SUIUARES AND PRODUCTS
C

EN:LN. I
Do 15 I=19NC~i
PMX (I) =0.
SnX (I)=L.
r'O 14 J=19IFLTR
RMEAN (IOJ)= Ni)AN Cx J) *iJATA ( T J)
SOX (I ) SbDX ( I ) (DATA ( I lJ)*0)
RMX (1) fMX (I) .DATA (I J)
COy (I J) =COV (I J) ,(DATA (1,1 ODATA (I J))
CPRU(1,J)=CPPn(lj)+DATA(1 ,j)*UATA(2,J))
CPRO ( dl :CPR)(2,j) G( DATA (2, J) UATA (3, J)
CPRO(3,)=CPRO(3,J),(UATA(9,J)*OATA(lJl))

14 CONTINUE
RM (1) =HMX(I) /ENF
RMS=RMX CI) *0,
S[oX CI)=DX (1)/ENF
SOX CI)=SDX (I) -RMS
SOS (1) 25[)S C I ) +SUX ( 1)
IF(RMSotQ.G.) GO TO 15
CVS (i) LVS CI 4.(SDX (I) /HMS)

i5 CONTINUE
IFCN*LT*INSP) GO TO S
GO) To 2-

14 INSP3LD



C PROCESS DATA
P0 CONT I Ntl

C CALCUI AIt ftlht YE,,Ih tt AI HUT T1- FIRST TWO nATA POINTS

RMEA0 I J) =RfiIA 9,J) /LN
30 co4T I NiiL
C CALCULATFE STANDAHO DEV IA TION F 0 ALL bI~i
C 1*t FIwST FOUR UATA POINTS

STI)(I)=(COV'(1,1)/EN) -(RMFrj ,I.L ) **2)
STD) (I ) =SUR I (STl ( I) )

C CALCULATE C0LF~1Clj'riT C)F VAN. W/." FILTER FOR
C ALL oUIT FIRST FOUUP POINTS

RMA (j) STl) (I) /RMEAN (j1 
C F ILTERED STANDAHD IEV IA fI ON

SOX ( I ) zRICSs( I )/E )
C FILTERED COEFFICIENT OF VARIATrO,
23 CVx (I) SQRT (Cvs (I)/E'-i)

WRITE (6, 1C4 )
104 FORMAT(tOH CtIAIJNFL96) 2ti Itj,?M 2,8X,?H 3-8X9

2H 4,9iX,2m r-/)
wNjrF(bS1..3) PLAIIEL(I ) 'LaR! L(i) '(PMEANU.,I I *1.NCH)
wHITE(691)3) PLAREL(2?)9IL~tlL(I,(STD(1),1,1NCH)
WRITE (691 )3) RLARiEL(3) 'ILAW !L(3) ,(RMX(I) 9T=1,NCHI
wRI Tt 16 v! 3) PLA8EL (2) 9ILhr~(L(?-) 9(SDX (I) oTgNCH)
wRLTt(6tI 3) PLAHFL(3),ILAHFL(4) ,(CVX(I).TtlNCH)

103 FORfMAT(lX9A59A?,5F11.41
C CALCUL ATE AUI11OCONRf LATION FUNCT I rN A(I 1 )*X 9 o)

DO 24 J=1 FI TN
Do 25 1=1NCi

25 ~CONT I fit-
WRITE(69I 3) PLAREL(4),ILArvL1j),(RMXI=Nr,.)
CONT INuL
IF C INSP-F(4-) , U, GO T 1
670 T0 4

C IF EHRORS ANI PRESr7NT IN I)AIA9 CO'NTRUL COM1ES '4FRF

so WRIftE (b 92 i I) N
WRI TLi6999)D)ATA (I) ,j(IA 1,IATA(2, I) ,X(2i ,DATA(391)
? ' U ci) UATA(4, )# IA 1 4) ,L)0~A 1591) 91X (9;)
READ (6,20?) LIATA (I, I) , I.i1HtATA (2.i)1) X (2 ,ATA (391)
2 ,I1X (.J) , DATA (4, j 1 ) 91X f4 ) D0i A (5, 1 ) , IX (51
Go To b

202 FoRMAT (P5.3, 13,F7,3' 13'F7.3 I,F7.oit39F7.3,Il')
201 FORMAl (tH EwRoptig)

END
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PROGRAM CAVANA (INPUT9OUTPIJT)

C
REAL KP9KS9PHIqKTqKM,L9LF.MUlPMUS
COMMON/A/ KPKSPHI IKTKM,LLF.MUPMUSZS.RNGPI
COMMON/8/ CAVqCSIG9CPUMp
KPm4. 169 1E4
KS=4ol 69 1E3
DATA PHI ,KTKM /2*8E.12 1 79.0,22.9/
PI 3.14159265

C
C THIS PROGRAM CALCULATES THE CoEFFICIENT OF AMPLITUDE
C VARIATION FOR SIGNALPUMP9 ANDI USH WAVES USING ANALYTICAL
C EXPRESSIONS DISCUSSED IN CHAPTERS 3 AND 4.
C THE TURBULENCE PARANETERS ARE VARIED WITH
C POSITION IN THE TANK~.
C AN APERTURE CORRECTION FACTOR IS USED To COM-
C PENSATE FOR THE FINITE SIZE OF THE HYLJROPHONE.
C
C SET RANGE AT RNG=O,75M AND VARY THr ARRAY LENGTH.
C

RNG=0. 75
C PRINT HEADING FOR RESULTS OBTAINED WITH FIXED RANGE@

PRINT 1:1
10 FORMAT (/tlbxt$THE FOLLOWING ARE FOR RANGFU'.75 M$)

PRINT 2"
20 FORMAT (/922X.*L*, l0X,$CPIJMP# 10X,*CAVUSS*)
C VARY ARRAY LENGTH IN INCREMENTS OF 0.05M*

Do 30 1=1914
RII
La Rj* -'..05
Z= RNG-L

C CALCULATE CAy FOR PUMPUSBvAND SIGNAL WAVES,
CALL CAVSU8
PRINT 21#L9CPUMPCAV

21 FORMAT (/v16XqF8.2q2rl5.6)
30 CONTINUE

C
C SET ARRAY LENGTH AT LzO.1M ANU VARY RANGE.

PRINT It
11 FORMAT (////,* THE FOLLOWING ARE FOR L a * ~I

C PRINT HEADINGS FOR THESE RESULTS.
PRINT 25

25 FORMAT (/P 20X0*RANGE*,8x,*CSIG#, 12x,*cAv*i
L 8 0.1

C VARY RANGE IN INCREMENTS OF 0.1m.
Do 31 181924
RI a I
RNGx RI* ool.ooi
Za RNG-L

C CALCULATE CAy FOR PUMP9USB9ANJ SIGNAL WAVES.
CALL CAVSUd
PRINT 21,RNG*CSIGCAV

31 CONTINUE
C SET ARRAY LENGTH AT L8095M AND VARY RANGE.
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C
PRINT III

III FORMAT (////#* TH'E FOLLOWING ARE FOR L a0.5 MO)
C PRINT HEADINGS FOR THESE RESULTS.

PRINT 125
125 FORMAT (/,20X,$RANGE$,RX,*CSIG$, I X,*CAV*)

L = 0.5
C VARY RANGE IN INCREMENTS OF o.Im.

Do 131 1=1920
RI x I
RNGx RI* 391*0*5
ZS =RNG-L

C CALCULATE CAV FOR PUMPUSBIANU SIGNAL WAVES,
CALL CAVSUb
PRINT 219RNG9CSIG9CAV

131 CONTINUE
END

SUBROUTINE CAVSU8

C
C THIS SUBROUTINE CALCULATES THE COEEFICIENT OF AMPLITIUDE
C VARIATION FOR PUMPtSIGNALAND USR wAVES, AND RETiiRNS
C THEIR VALUES TO PROGRAM CAVANA.
C

REAL KPKS9PHI9KTqKMLLFsMUP9MUS
* COMMON/A/ KPKSPHIKTKM.LLFOMUPMUSZSRNGPI
- i COMMON/B/ CAVCS1GCPUMP

C VARY TURBULENCE PARAMETERS WITH POSITION IN TANK.
C AUXP1,AUXP2,AUXP3 ARE BOOK-KEEPING VARIABLES. KM
C AND KT ARE SPATIAL WAVENUMBERS. PHI IS A TURBtJLFNCE
C PARAMETER, AS ARE CNS AND CNP, WHICH ARE FOR SYGM'AL
C AND PUMP WAVES9 RESPECTIVELY.
C
C VARY mu WITH POSITION IN TANK

MUPE 1. 5249*(CL/2. .0.1) #0 *3? 3 ) *2. 1E-5
MUS=(l.5249 *((ZS.L)/2.*0.j),O.8323)*2.1E-%
AUXP1'0,105* (RNG/2.)
AUXP2=1.695 ;RNG/2*.
AUXP3u (12.44. 1 ./AUXPI) * j */ALjXP2))
KNI (P1/2.) AUXP3
PHII6PHI*(4.7854)*KM0* (..,5)
KT1UKT*sGRT (KM/22,9)
CNSuMUS/SRT(l.33*PIKT**(2/3.)I
AUXP180.105*(L/2.)
AUXP2u1 .695-n(L/2.)
AUXP3U (12.44. (1 /AUXPI ) .11./AuXP2))
KM*(P1/2.*OAUXP3
KTIUKT*SQRT (KM/22.9)

CNPUMUP/SQRT(-.33*PI*KT1*C(-2./3.))
C CALCULATE COEFFicENTS FoR FLUCTUATION TERMS.

Al a0.31*CNP**2.*KP**(7./6.)
A2 a0e13*CNS*2sKS*f7./6.)

A3 x (PI/48n. )*PHI1*(KT**4.-KM**4.)
C CALCULATE THE LOW FREQ COMPONENT, LF9 OF THE
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C AMPLITUDE FLUCTUATIONS IN4 THE USp WAVE*
Ti uA2*ZS** (1 j/6*)
T2a3o*A3*ZS*039

T3* (jj./6.)*A2*ZS* (5./6*)
T4=3*A3*ZS**29
BuT3*T4

C CALCULATE CAV FOR THE PUMP WAVE. AN APERTURE FACTOR
C IS USED TO ACCOUNT FOR FINITE SIZE OF HYDROPHONE.

CPUMP = oo3l*CNP*2.*KPOT,/6e)*L*(11./A.)
HFu (0.4922/0.31) *CPU'P
CAVSQ x LF *HF
APFACI = 1.t (9,9613E-2/SQRT(L)l
APFAC2 x 1. -(l. 0 447E1I/SRT(L))

CAY a SQRT(CAVSQ*APFAC2)
CPUMP uSQRT(CPUMP*APFACI)
CsIG = .13*CNS**2o*KS**(7,6.)*RNG*4(1.6.)
CSI%3 a CSIG*((PI/480.)*PH11..KTl**4.-KM*.4.,

2 ORNG**3o)
CSIG = SQRT(Cs!G)
RETURN
END

mo--
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PROGRAM CAVNUM INPUTgUUTPJT)

C
C THIS PROGRAM CALCULATES THF MjFAW SQUARE AMPLITUiDE

C FLUCTUATIONS IN THE SIDEBAND PRESSURE FOR A PAPAMETRTC
C RECEIVER, WHERE THE HYOROPHONE IS IN THE NEARFIE, 0 OF
C THE PUMP TRANSU~CER. A N~,UMERICAL INTLGRATION IS UsEn.
c
C THIS VERSION OF THE PROGRAM is USED TO COMPUTE CAVPR
C FOR AN ARRAY LENGIH L=0.1M AN() VARIABLE RANGE SqIMILAR
C VERSIONS OF CAVNUM APE USED FOR L=;.cM AND VARIARLE

C RANGE, AND FOR FIXED RANGE AND VARIABLE ARRAY LEfNGTH.
C
C SET Up INITIAL VALUES AND CONSTANTS. KSKP9AND KIdSFB ARE
C SIGNALPUMPq AND USS WAVENUMBERS. AL IS ARRAY LFNGT4.

C CNP AND MUP ARE TURBULENCE PARAMETFRS IN THE INYFRACTION

C REGION*. CNSOMUoKMKT, AND PHI ARE TURBULENCE PAPAMETERS
C IN THE CENTRE OF THE TANK.
C

REAL LqKSVKPtKUSBtKM,KTmutp~UPI REAL IMKII9IMKI2
COMPLEX Ci ,C?,VUSBKZAUX,,AUX2,AUX3,RINT
COMMONAAL(?j9Zjfl:)#Z?(1')
CoMMON/b/CNPKPCNS9KSPHy,#<T,KMPIMt~IZSeAAP
COMMON/C/KT1,PHII,AIA2,A3,A4,A5,LIJKmNmUPtRBL
COMMON/D/KUSbAI1,AUS8,ASA44,B182,SIS2H1S2SI3

2

DIMENSION Yl(1o),SUMZI(Il),SUmRI(Ie1),SRL(1O).SIM(lI.1 DIMENSION Z(1-) RNG(l')
DATA CNPKP /1.162E-4v,i6qlE4/
DATA CNS9KS /i.95g4E-4*,bq1E3/
DATA PHI1,KIKM /2,8Ew1l, 17q.0,22q9/
P1 z 3.14159265

KUSB*4.586E4
C FILL ARRAYS WITH iEROS AS INITIAL vALUES@

DATA SUMRIAI9Z /3006.0/
DATA ZIZOY1,SUMZl/4 *0./

C AR AND HR ARE THE CHARACTERISTIC RADII OF THE PUmP
C TRANSDUCER AND HYOROPHONERESPECTivELY&

ARaO.005
HRU1.*12BE-3

C L-RLIM IS THE UPPER LIMIT OF INTFGRATION.
RLIMUO.OOI

C AP IS THE EFFECTIVE PATC4 SIZE.
AP=1 41E-?

C Zli)tL1(l)tZP(l) ARE LOWER LIMITS, rF INTEGRATION.

ZI (1)3I.E-8
Z2(I)in1*E-8

C PRINT HEADING FOP RESULTS.
PRINT 30

30 FORMAT(/,5X,*CPR*, 12X,*RANGr$,l5X,*ZS*,15x,*L*I

C VARY RANGE WITH ARRAY LENGTH CONSTANT AT lol
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C
DRNGwO.2
ALI 1)r0. I
RNG(1'23 -?

D0 97 Nx1lt

C CALCULATE HOMOGENEOUS USS SIGNAL.VUSE3,AT THE
C HYDROPHONE OUTPUT.
C

Mu (AL (1 RLIM) /S.
LUAL (l)

ZSSRNG(N) -L
C VARY TURBULENCE PARAMETERS WITH POSITION IN TANK

MUPU(1.5249*(L/2,Oo1)0.A323 )'*2 01E-5

AUXPIZO@105*I(ZS#L)/2 .
AIUXP2=1 .695- tZS#L)/2.
AUXP3U( 12.44*1 ./AUXP1 .1./AUXPP)
KMI (P1/2*)*AIJXP3
PHI13PHI*(4784)M**Ifl.5)
KTIZKT*SQRT (KM/22 9)
CNSSMU/SQRT (O.330pI*KTlI* (2/3)
AlJXPlmo105+bL/2#
AUXP2ZXI 695-L/2.
AUXP3=(l2.4 4,1 ./AUXP1 .1./AUP)

KMI (PI/29) AUXP3
K711%T*SQRT (Km/22 :9)

CNPZMUP/SQRT(.33 PIKT1*(-2/
3 )

C CALCULATE COEFFICENTS FOR FLUCTUATION TERMS,
Al =O.31,CNP**2.*KP*4ET./6.)
A2 O .13*CNS**2.*KSO*(7./6.)
A3 c (PI,48O.)*PHI1*(KTl*#4.hEKM**4q)

A482*SE-2*KP**2*MUP**2
ASxl .25E-2*KS**2*mU**2

C INTEGRATE HOMOGENEOUS PRESSURE USIN~G SIMPSON+S RIILE.
DO SO I=199

C
C CALCULATE Cl AND C2o AXAUX ARE AUXILARY VARIAOLFS,

AXl1(KP*(AR**2.))/(2.*Z(I))
AUXlaCMPLX (1.r'AXj)
AX23(KUSB*(HR**2.))/(2.*(L-Z(T)))
AUX29CMPLX (I1,AX2)

C2=Ax3*AUX 1*AUX2
AXlS((KP**2.)*(AR**2.)I/(4.4(Z(I)**2.))
AUXlwAXl/AUXj

AUX2UAX2/AUX?

Aux3xCMPLX (0. AX3)
Cl UAUX3*AUX1 'AUX2

C CALCULATE REAL AND IMAGINARY PARTS OF INTEGRAN090INT
RINT=1./ (CI*C2)
SRL (II EREAL (RINT)
SIM( I)xAlMAGCRINTh

C INCREMENT ZII) BY H,
Z(Iol )*Z(I) *H

so CONTINUE



C PERFRuM INTEGRArION. (A CULAIE REAL AND IMAGINIARY PARTS

C SFPARAF0,

.~1 1L *PI

C
C LETENmlNE MAGNIT'UIormA'19 ANOL PHASr nF VUSB,
C

PMAGaCAbS fVist fr)

PHASEAA,".'(ATMAGIVUS3).RFIAL(VUSB))
C
C
C INTEGRATE OVER THiL APHAYJ Zg.Z2*n TO ZIZZ:(L-QLTM)
C IN STEPS OF H,
C

DO 100 J=109
00 101 jul,'a

C
C
C CALCULATE ARGJMENr,K.(Z), (IF HOMOGLNEOUS PRESSJRF

CCALCULATE C19C2 Ft~f. !I*

AXI=(KP*(AR**2eHf(2*.Zl(TH
AUXlSCMPIX ( I. , AXI )

AIiX2=CMPLX( I-..*2)

C2*AX3*AUIXIAtJX2

ALIXI = I /AU~i

AUX2uAX?/AUX?

AtJX3=CMPLX (0, AX3)
CIS AU X34 AtU X14A U X2

C CALCULATE K(ZI FOR Zis
KZSCMPLX(COS(PHASE) ,-StN(PHASF))
KZU(KZ)/ (rk*Cz)
REKII-REAL (KZ)
U4KI 1SA1MAG~(KZ)

C CALCULATE CisC2 FOR Z2.
AXIsK*A*?)/2*2,)
AIIX1BCMPLX'I.'.AXI?

AUX2mCI4P X9I.,9AX2)

C2*AA3*Aux I*AIJX2

AUXImAXI /AUXAi

AUJX2xAX2/AUX2

AUX3wCMPLX (Q..AX3)
Ci uAUX3#AIA1 *AUX2
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C CALCULATE K(Z) FOR Z29
KZ=CMPL.X(COS(PHASE) ,-SIN(PHASE))
K79(Z)/ CI*C2)
RFKI2=REAL (1Z)

IMK12RAIMAG (tZ)
C I
CCALCULATE CONTRIBUTION OF AMPLITtJDF FLUCTS

CALL B182SR
B838182*REKli *REK12

C
C CALCULATE CONTRIBUTION OF PHASE FLLCTS
C

CALL SIS2SR
SS*SlS2*IMKII.IMKI2

C
C CALCULATE CONTRIBUTION OF AMP-PHASr CORR
C

CALL BIS2SR
BS*REKI 1*IMKI2eB1S2

C
C CALCULATE CONTRIBUTION OF PHASE-.AMP CROSS CORR
C

CALL S182SR
SB=REKI20IMKI 1'S182

C COMPUTE INTEGRAND.

Vi I) =BB+BS*SB+SS
C
C INCREMENT ZI By H.
103 CONTINUE

ZI(Io1I = LI(1) + H
101 CONTINUE

C
C INCREMENT Z2o 5 2 4Y 6 'oj()*.y R ~3~)

100 CONTINUE
C
C INTEGRATE OVER VARIABLE Z2eSTORF RFSULT IN SUM72.
C

SUMZ2U(H/3)*(SUMZfl1),4*SUMZIU2)*?*SUMZI(3).4*SUMZI(4)*
I *4.*SUPJZI(8)+S(IMZI( 9))

C
C CALCULATE RESULT OF NUMERICAL INTEGRATION
C

C SUMZ2=SUMZ2/RMAG*.2e

C CALCULATE THE CONTRIBUTION OF SOURCE WAFERS FROM

C ZxIL-RLIM) TO ZzLo THE HYDROPHONE IS IN THE ExTaEmE
C NEARFIELD OF THESE WAFERS9 SO THFIR RADIATION IS APPROX-
C IMATED BY PLANE WAVES OF INFINITFE XTENT*

TiUA2*(ZS*L)** (11,/6.)
T2sA3*(ZS*L) **3.
SIU(RLIM**2,/L**ZI '(TI *T2i
T3SL@*(23./1? )w(L-RLIM)**(23./12e)



T4aO.2722*73**2.Q 0.2722*R1 Iw*t23./6)
T43144*1272*i. ,M*0(23.,t '2. T3*?.

82*(Al/L'*2.) *T4

C SUM THE NUMERICAL ANI) ANALYTICAL RFSULTSo
CPR SQ =SUM Z2#BSO

C CORRECT FOR THE EFFECT OF FINITE APERTURE AT THE HYROPHONE.

C
APFAC =I.-(O,1O423/SQR1(L/2.))
CPRSOaCPRSU*APFAC

C
C CALCULATE THE MEAN-SQ AMPLITUDE FLUCTS.CPRIN THF

C SIOE8ANo PRESSURE AT ?zL, PRINT TH-E RESULT.

C
CPR=SCJRT (cPRSo)
PRINT 31# CPRoRNGIN),ZS*L

31 FORMAT(/,E1Z.4,F14.4,7XFi ;.4,Fl6.4)
C INCREMENT THE RANGE.
79 CONTINUE

RNG (N* ) =PNG (N) .DRNG
97 CONTINUE

END
C
C

C ENO OF MAIN PROGRAM

C
C
C CONTRIbUTIONS FROM THE CORRELATION TERMS 8lB29R~v-?qSIBZ9SlS2.
C
C

SUBROUTINE BI-B2SR

C
C CALCULATE 0829THE AMPLITUDE F'LUrT CORR TERM*
c

REAL L#KStKP#XUSB#KMKTMlq'UP
REAL LCORIOLCOR29LCOP3tLCOR4
COMMON/A/AL (2vp) 'Zi(lF) 'Z~ (w-

COMMON/8/CNPOKPOCNSKSPH!,KTKMPI ,MUZS.A.AP
CoMMON/C/KTI oPHIl ,A1 .AiA3,A4,A5,LI,4.KMNMUP9RBL
COMMON/D/KUSB, AlIAUSBUAS,A44,BIBZ,5152.BI S2,SlbZ
Al 2Oo3l*CNP**2.oKP*#(7.'6.)
AUSm3o.31*CNP*2s*KUS8**(7,/b,)
Al isSORT (AlOAUSO)
TI 2~ Ii~~-2J~)~~l.1.
T2 tZ~)(Ll-lI),u1.1.
T3 a(Z1(l)*Z2(Jfl**(l./j29i
14 a £IAL(l)-ZI (1 )AL( 1 )-Z2(J) ) 1(11,/12.l
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c
C ACCOUNT FOR' LONGITUDINAL CORRELATION OF HIGH FPEG FLUCTS
C THERE ARE FOUR SEPARATE TERMS FOR THE OIFFERFNT
C GEOMETRIES- ALSO THERE ARE TWO VERSIONS OF EACH
C TERM FOR ZI GT Z2 OR Z2 flT Z'.

IFfZ2(J).GT*Zj(I))GO TO 261~
DELZZZ1 I)-Z2(J)
LCQRlz(1*63**DELZj)/(2*oZ?(jl)
LCORI=LCOPI/((IOELZI/Z2(j))**(3e/2.))
DELZ28 AL(I)-72(J))
LCOR2=(lo+3o*DfLZ2)/(2OzC~j)l
LCOR2=LCOR2/'U1..DELZ2/Z2(J))*3o/2.fl
DELZ3=Z (I)-Z2(J)
LCOR3(1.3.oDEL3/(2e*(AL()-ZI(I)))
LCOR3=LCOR3/ctJ.,DELZ3/cALfl)-Z1(I)))*ec3./2 o))
DELZ4=AL (1)-ZI (I)
LCOR4x(le+3o*DELZ41/(2o*Zj(1 )j
LCOR4ZLCOR4/( (1 .DELZ4/Z (I) )**(3o/2I))
Go To 2 2

201 CONTINUE
DELZl=Z2(j)-Z1 1'
LCORjx(l*+3e*DEL~l)/t29ezj-(l)
LCOR13LCORI/((1e.OELZI/Zl(r)4.(3/2:))
DELZ2= AL(I)-ZI(I)
LCOR20(1.#39*DELZ2)/t2.**Zj())
LCOR2ULCOR2/U(I..OELz2/zi(l))**(3s/2.))

DELZ3sZ2(J)'Zi (I)

LCOR3=LCOP3 / ((I ..OELz3/ (AL (j)-ZZ IJ) ) ) *(3./?..))
DELZ4=AL(1 )-ZP?(J)
LCOR4w(l*+3.OELZ)/(29*Z?(j))
LCOR4=LCOR4/((1e*OELZ4/Z2(J))*( 3 /2 .))

202 CONTINUE
OELZxASS(ZI (I )Z2 (J))

TBl3AI1*(T1*LCOR2,T2*LCOR4)*A *T31LC)RZ*AIISB*T 4*LCOR3

C CALCULATE LOW FREQ AMP FLUCTS
A2 8O0*3CNS*2*KS*(7./6.)
A3 =(PI/4bO.)*PHII(KTl*04.-KM**4*
Ti s A2*(ZSZ1(I)[*0(11./6.)

T2 A3*(ZS*ZIJ))**3*
T3 2 A2*(ZS*Z2(J))**(119/.)

TB2 xSOPT(crl*T2)*(T3#T4))
T2zZTf32*RBL
8iB2vTB1.TB2
RETURN
END

C
C
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SUBROUTINE S1jS2SR

C
C CALCULATE SIS29 THE PHASE FLUCTUATION CORR, TERm.
C

REAL L#KSoKP*KUSBoKMgKTomUtiUP
REAL LCOR1 ,LCOR2gLCOR3tLCoR4
COMMON/A/AL (28)9 1(lo) ,Z2 (1-)

COMMON/d/CNPKPOCNSKSOPHI,,KTKM.PiMUOZS.AAP
COMMON/C/KT1,PHIl1,lAAAL4,A5,LIJKMNMUPRSL
COMMON/D/KUSHAi A' 3SBASA44,aB2,SIS2,biS2,SIB2
A4=2.5f-2*KP@*2*MUP**2
ASu2o5E-2*KUSRe*2.*MUP*?2.
A44=sQRT (A4*A5)
TI USQRT CZIC I)* (L-Z2 C )I
T2xSQRT(ZP(J)*(L-ZI(l)))
T3=SQRTCZ1 (II*ZZ(J))
T4xSQRTC CL-ZnT) )*(L-Z2Cjf)

C ACCOUNT FOR LONGITUDINAL CORRELATION OF HIGH FREQ FLUCTS
IFIZ2(J).GT*ZlCI))GO TO 2-03
DELZI=Z (J) -Z2 (J)
LCORll.,(C2.aDELZI)/(KP*AP.*?fl**2
LCORis 1./CLCOPI*SQRT(1.,DELZi/22(J)))
DELZ2=L-Z?(Ji
LCOR2u1.+ (2.*DELZ2)/(VKP*AP*P))**2

K LCOR~z 1./CLCOR2*SQRTCI..flELZP/Z2CJ)))
OELZ3=ZJ ()-Z?(J)
LCOR3zlo.(C2.*DELZ3)/(KPAPOP))**2

61; LCOR38 leICP*QT1#EZ/LZ())
DELZ4=L-ZI1)
LCOR4=1..( 2*EZ4/K AOP)**2
LCOR4= 1./(LCOP4eSQRT(I**DELZ4/Zl(I)))
Go TO 204

203 CONTINUE
DELZl:Z2(J)-Z, CI)
LCORlule,((2..DELZI)/(IKP*AP*))*02
LCOR1= I./(LCORl*SQRT(1..DELZ/Z11I'fl
DELZ2=L-Z1 (I
LCOR2I..*( 2..DELZ2)/C(P*AP*.P) )*?
LCOR2= I*/(LCnR2*SQRT(1.onELZP/Z1(I)))
DELZ3=Z2CJ)-Zi CI)
LCOR331e.((2.*OELZ3)/(IKP*AP**,))**2
LCOR32 I./(CcOR3*SQRT(1..nELZ3/(L-Z2(j),)
DELZ4L.Z7(J)
LCOR4mlo.(C2o*DELZ4)/(KP*APP*P))**?
LCOR4U 1-/(LCOR40SGRT(1..OELZ4/Z2 (J3)))

204 CONTINUE
SSlA4(ILCR 2LO4*A4*T3*LCORI

#A4*T3*LCORI
C CALCULATE LOW F'REG PHASE FLUCTS

A58 .?5E-2*KS**2*MU**2
T58A5*SQRT( CZS4ZI (I) )'CZS.Z?(J)))
TST5*RBL
O1C(4**ZS+LI Clfl/tKS*AP**P,
D23(4.*ZS*Z2(J))/(I(SAP**p,)



L49

T5S(JORT((1..OlOAT4N(Dl,)*,.1,naATAN(OZn,.rIS
Si S2=SSr, I +T5
RE TUR N
FNO)

C
C

C
C CALCULATE 8152*THE AMPI T''OPfHASF Flj.l. '

REAL. L9,PS,9KUtSBtKM,tKT pmjIUP

COMMON/b/CNPtKPCrAc,K3,PH,.1tTMPF~o'u,:SoAAP
COMMON/L/Ktri,PHJ 1 A1 ,A,A3, 4, A5EL, I, i ,uN,9MUPRPL

TSIZSQRT(A*(75*!?2{jH,

TSl=TS1*SQRTli.*D?oA[ANrn!:,;

T231H1 'TH7

TB4:SQRT (AUSb* (Liii 1)) * ilo *e)
7S4*SQRT(A4*Z2(J)l
T4zT84*TS4
TH5BSQRT(AUS58i.(L-.1(fl)**(11.,b.i)
TsS5SGRT(AS*CL-Z2(J))
T53T85*TS5
R1S2=T I T?*T3+r4+75

CACCOUNT FOR LONGI UDINAL CoRREI.ATICN VF Ft ic(f

RE tUJRN
END

C

SUBROUTINE SiR2SR

C
C CALCULATE S1829THE AMPLITUDE-PHASE F(.uCT ewoSSCflRR

PEAL LqiKSqKPqKUS8,\Mqt'T MlII"UP



f.(f (ION/ C/!-, I! V I A I 9. , ' MUlP 9RAI
(br~ LU 115P.A I VAW-Iiit, , I, .t - . f4l fp 9 ti
T81=SJRTA2*Z5,'2lJ0 Q%, I~ . - #.J P , ,I.. Ip ,

TSXSR IA~CSZ ~

TS I3=T S1 *SRT I, C I*A T V4
Tl*Tkj*TSI

Ts2=SORI(A4*Z1 iI))

T83=SQRT ( tUSRw' (L -2 z 2'*
Ts3xSGPT(A4*71 (1I
T,3=TH 3* T c3

TFAIzSOI T I AUSH (L-1iL2 J)
1 1;5r- ,R T ' (,
i c.*T5*TIs5
jB2=Ti+TT3T.T5

C AC CO:V F OR I ONC.-I TuD NAL C Ofv I *i

.F



AP..ENDIX 6. ANALYSIS OF THE NEARFIELD PARAMETRIC RECEIVER

In developing a theoretical analysis for the nearfield parametric

receiver, it was assumed in Section 4.2 that the pump wave could be approxi-

mated as a collimated plane wave. In evaluating the integrals arising from

this assumption (see Appendix 2), no account was made of the effect of the

finite radius of the pump transducer. Consequently, the phase of the inte-

grand of Eq. (4.19) was such that only the amplitude correlation term <B B 2>

contributed to the amplitude fluctuations <B 2> of the second-order pressure
PR

wave, as shown in Eq. (4.20). A more detailed analysis, based on the work

106
of Chotiros, is presentcd in this appendix. It will be shown that there

are additional contributions to <B2 when the finite radius of the pump

transducer is taken into ccount.

A6.1 Second-Order S[ution for a Homogeneous Medium

The geometry for thi.- analysis is shown in Fig. A6.1. As in the

analysis of Chapter 4, tl. source of the signai to be detected by the para-

metric receiver is located at z =-Z. The signal source is situated suf-

ficiently far from the pump that the signal pressure wave, Ps, is assumed

to be planar in the vicinity af the parametric receiver. Omitting the tire

dependence, the signal wave may be represented by

-jk sz
Ps (z) :_ P e 9 (A6.1)

where the symbols are defined in connection with Eq. (4.1).

The pump transducer is approximated by a plane wave having a Gaussian

shaded transverse amplitude function; i.e., the pressure amplitude at a

point (p,O p) on the face of the pump transducer is assumed to be given by

-(P2 /b )

P p(p,0) P e (A6.2)
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where

p and 0 are coordinates on the face of the transducer, as shown inP

Fig. A6.1,

P is the pressure amplitude at the center of the transducer, and0

b is the characteristic radius of the transducer.

The pump signal at some point (r,O+,z) in tho interaction region is the sum

of contributions from all elemental surfaces on the face of the piston, and

*aa be shown to be

2r

p p(r,O ,z) A P exp [ ' )( 4 dup -d, (A6.3)

0 0

where R = r2 + P2 _ rpcos(O+ - 0p), and it is assumed that R << z.

The second-order pressure at a point (i:,6h,L) ou the face of the

hydrophone can be found from Eq. (2.7) to be

P+(J'OhL) 4 L - (r,6_,z)

0 0 0

R' [rrdz(64
x exp jkfr - z 4- 2(Lr- z dr ddz (A6.4)

where 2n 

j+PsPo w+ -jk z(f ep 2 /b 2 expf - jk
q= 2 4 e - e p - d + pdp ,and

p c o o
0 0
2 2 z

R' = r2 + o - 2racos(O - 0+)

It is also assumed that the voltage response of the hydrophone has

Gaussian shading in the transverse dimension, so that

M(o , O) = 0 exp(- 2/h )

where I is the voltage response in V/Pa, and
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M0 is the voltage response at the center of the hydrophone.

The voltage produced at the hydrophone by the second-order pressure at

z - L will therefore be

CO 2 i

V( = g 0p_(O,OhL) exp(-2/2 ) ado dOh (A6.5)

0 0

Substitution of Eq. (A6.4) for p, allows the hydrophone voltage to be

written as

27T L
fff I I k )-]rdr dO dz

VH z(L- z) 1112 exp(r - )
2(L z

0 0 o (A6.6)
2

where A = - Me p -k+

exp[_()2-jkp P 2rpco si pdp d'P
00 2z

44

2exp 2) - 2racds4
12 -kp 2(Lz do d

0 0

e+ = - 6 , and
-+ p

4D 0+ - 0 h '

Equation (A6.6) can be greatly simplified with the aid of tabulated

integrals, and by using the definition of the Bessel function. The angular

integration of I and 12 may be written in the form

271

I f e j cosu du , (A6.7)

0

where

kprp/z for I

{k+ro/(L - z) for 12*
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The definition of the Bessel function of the first kind is

f eJ(Wslnx - nx) dxJn 2 r 2f (A6.8)

-IT

Using the change of variables, u = x and taking the case for which

n 0, Eq. (A6.8) becomes

11

2

f ei r Me du (A6.9)0oB  2T f-

3T
2

From Eqs. (A6.7) and (A6.9) we can write

I = 27J ()

so that I1 and 12 become

* /k rp\ 2 _ 2

1=2Tr JJ(---)exp(_p_) 2-jk il 2 2!j pd

and 0

12 27fJ Ji )exp[-( ) 2jko2/2(L - z)j adu

0

Now I and 12 are in the form of a tabulated 1 12 integral, viz,

fx + 1 -ax2 Jv( X)dx = v(2,)-(v + 1) exp(-62 /4a) (A6.10)

0

Evaluation of II and 12 using Eq. (A6.10) gives

rb 2  k r 2 b 2  ]

2= /

and = -- exp ( -) (A6.12)

2z h2 2,
F"1

2) 
4 ( L
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By substituting Eqs. (Ab.11) and (A6.12) into Eq. (A6.6), the hydrophone

voltage can be expressed as

L -Cr 2

V= A± 1 e- e 2rdr dz (A6.13)

2 00
7T±ABPPo - JkiL

where A! + 4 e

± 2pc 0
4

k)) k2b 2  k 2h2
CI  + -+ P +

2 2(L- z k +11

4( + 2+ J 2(L - (L - )

22 h
and 2 4z(L- z) + kpb2kh2

As C1 and C2 are independent of r, the integration with respect to

2
r can be done by the change of variable, u = r . The result is

L

H = A C 1  dz (A6.14): vH  J CIC 2

0

Equation (A6.14) represents the hydrophone voltage produced by the second-

order pressure field in a homogeneous medium. In the next section this

result will be used to determine the amplitude fluctuations in the second-

order pressure when inhomogeneities are present in the medium.

A6.2 Amplitude Fluctuations in an Inhomogeneous Medium

In an inhomogeneous medium the hydrophone voltage will fluctuate in

amplitude and phase, and may be written in a form similar to Eq. (4.14) , viz,

V+ = vH(l + bPR - JSPR) , (A6.15)

where BPR and SPR are the amplitude and phase fluctuations, respectively,PR P
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of the interaction frequency pressure at the hydrophone. A development

similar to that in Section 4.2 gives the following expression for v± in

terms of the total amplitude and phase fluctuations, B and S:

L

v+ A+ (I + B - jS) 1 dz (A6.16)

0

Following the methods used in Section 4.2, we substitute Eq. (A6.16) for v±

in Eq. (A6.15), and at the same time write vH in terms of its magnitude and

phase:

LveJ(1 Af(I dz

BPR - JPR - + B - jS) C2 (A6.17)

0

Subtracting the homogeneous solution, Eq. (A6.14), from both sides of Eq.

(A6.17), and dividing by the hydrophone voltage VH. we obtain

S- dz
B PR - PR (B - jS) e CIC

iTii f1 1 2

L

- VHI ~f(B- jS) K(z) dz (A6.18)

0

where K(z) = C1C 2
1 2

The amplitude fluctuation term can be found by taking the real part of Eq.

(A6.18), and is

L

B PR = IvHIlf [B Re(K) + S Im(K)j dz

0

The mean-squared amplitude fluctuations of the second-order pressure at the

hydrophone are therefore
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BPR JVH - ff <[B Re(K + S Im(K)]

0 0

[B2 Re(K 2) + S2 Im(K 2) > dzIdz 2

Writing this result in terms of the coefficient of amplitude variation, and

expanding the terms in angular brackets, we obtain

L L

CAV PR f e( R(K' <B B >

0 0

+ Im(K1 ) Im(K2) <S S2> + Re(K1 ) Im(K2) <B1 S2 >

+ Im(K1 ) Re(K 2) <SIB 2> dzdz2

which appears in the text as Eq. (5.12).
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