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FOREWORD

As part of the on-going research program in "Decision Control
Models in Operations Research,” Mr. Richard Ehrhardt has investigated
the structure of an inventory model with stochastic replenishment de-
livery lead times. The existing literature on this topic has been
corrected and extended to encompass myopic optimal policies for finite
planning horizons and optimal stationary (s,S) policies for infinite
planning horizons. Efficient methods for computing infinite-horizon
(s,S) policies are also given. An adaptation of the Power Approximation
(Technical Report #7) is found to provide excellent performance relative
to optimal policies. Several sections of this report parallel similar
findings in earlier reports. Other related reports dealing with the

research program are listed on the following pages.

Harvey M, Wagner
Principal Investigator

Richard Ehrhardt
Co-Principal Investigator




MacCormick, A. (1974), Statistical Problems in Inventory Control, ONR

and ARO Technical Report 2, December 1974, School of 0rgan17at1on
and Management, Yale University, 244 pp.

[stey, A. S. and R. L. Kaufman (1975), Multi-Item Inventory System

Policies Using Statistical Estimates: Negative Binomial Demand-

(Variance/Mean = 9), ONR and ARG Technical Report 3, September

1975, School of Organization and Management, Yale University,
85 pp

Chrhardt, R. (1975), Variance Reduction Techniques for an Inventory

S1mulat70n, ONR and ARO Technical Report 4, September 1975,

School of Organization and Management, Yale University, 24 pp.

Kaufman, R. (1976), Computer Programs for (s,S) Policies Under lnde}vn—

dent or Filtered Demands, ONR and ARO Technical Report 5, School

of Organization and Management, Yale University, 65 pp.

Kaufman, R. and J. Klincewicz (1976), Multi-Item Inventory System

Policies Using Statistical Estimates: Sporadic Demands (Variance/

Mean = 9), ONR and ARQ Technical Report 6, Schocl of Organization
and Management, Yale University, 58 pp.

thrhardt, R. (1976), The Power Approximation: Inventory Policies Based

on Limited Demand Information, ONR and ARO Technical Report 7,

June 1976, School of Organization and Management, Yale University,
106 pp.

Klincewicz, J. G. (1976), Biased Variance Estimators for Statistical

Inventory Policies, ONR and ARD Technical Report 8, Auqust 1976,
School of Orqanization and Management, Yale University, 24 pp.

Flincewicz, J. G. (1976), Inventory Control Using Statistical [stimates:

The Power Approximation and Sporadic Demands (Variance/Mean - 9),

ONR and ARO Technical Report 9, November 1976, Schoel of Organira-
tion and Manaqgement, Yale Un1vors1ty, 52 pp.

Elincewics, J. G. (1976), The Power Approximation: Control of Multi-
Item Inventory Systems with Constant Standard-Deviation-To-Mean
Rn?ln For Demand, ONR and ARO Technical Report 10, November 197¢,

“chool of Fusiness Administration and Curriculum in Operations
Focparch and Systems Analysis, Univer«ity of North Carolina at
thapel Hi11, 47 pp.

Paufuan, =00 (19777, (5.5) Inventory Policies in a Nonstationary
bemand Environment | ONR and ARQ Technical feport 11, April 1977,
School of Business Administration and Currviculum in dperations

Fesearch and “ystess Analysis, iniversity of Horth Carolinag at
Chapel Hill, 155 pp.




Ehrhardt, R. (1977)

Analysis of (s,S) Inventory Systems, ONR and ARO Technical Report

Operating Characteristic Approximations for the

12, April 1977, School of Business Administration and Curriculum

in Operations Research and Systems Analysis, University of North
Carolina at Chapel Hill, 109 pp.

Schultz, C. R., R. Ehrhardt, and A. MacCormick (1977), Forecasting

Ope)ating Characteristics of (s,S) Inventory Systems, ONR and ARO
Technical Report 13, December 1977, School of Business Administra-

tion and Curriculum in Operations Research and Systems Analysis,
University of North Carolina at Chapel Hill, 47 pp.

Schultz, C. R. (1979)

(s Sl,lnventory Policies for a Wholesale Ware-

School of Business Adm1n1strat1on and Curr1cu]um in Operat1ons

Research and Systems Analysis, University of North Carolina at
Chapel Hill, 75 pp.

Schultz, C. R. (1980), Wholesale Warehouse Inventory Control with

Statistical Demand Information, ONR Technical Report 15, December
1980, School of Business Administration and Curriculum in Operations

Research and Systems Analysis, University of North Carolina at
Chapel Hill, 74 pp.

Chrhardt, R. and G. Kastner (1980), An Empirical Comparison of Two
Approximately Optimal {s,S) Inventory Policies, Technical Report
16, December 1980, School of Business Administration and Curricu-

lun in Operations Research and Systems Analysis, University of
, 22 pp.

North Carolina at Chapel Hill




(s,S) POLICIES FOR A DYNAMIC INVENTORY MODEL

WITH STOCHASTIC LEAD TIMES

Richard Ehrhardt
The University of North Carolina at Chapel Hill
{August 1980)

- Abstract -

A stochastic lead time inventory model is analyzed under the
assumptions that (1) replenishment orders do not cross in time and (2)
the lead time distribution for a given order is independent of the num-
ber and sizes of outstanding orders. This study corrects errors in the
existing literature on the finite-horizon version of the model and
yields an intuitively appealing dynamic program that is nearly iden-
tical to one that would apply in a transformed model with all lead
times fixed at zero. Hence, many results that have been derived for
tixed Tead time models generalize easily. Conditions for the opti-
mality of (s,S) policies are estabiished for both finite and intinite
planning horizons. The infinite-horizon model analysis is extended by
adapting the fixed lead time results for the efficient computation of

optimal and approximately optimal /s,S) policins.
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(s,S) POLICIES FOR A DYNAMIC INVENTORY MODEL

WITH STOCHASTIC LEAD TIMES

We consider a periodic review, single-item inventory systew where
unfilled demand is backlogged, demands during review periods are inde-
pendent, and the lead time between placement and delivery of an order
may vary randomly. We require the joint distribution of lead times to
have the properties that (1) replenishment orders do not cross in tiume
and (2) the marginal lead time distribution of each order is indepen-
dent of the number and size of outstanding orders. These assumptions
could be appropriate in practice when, for example, only a single sup-
plier 15 used and when the stocking organization places orders that
are small and infrequent from the supplier's point of view. Replenish-
mwent costs are comprised of a setup cost and a cost that is linear in
the amount ordered; holding and shortage costs are incurred in each
period as a function of period-end inventory. Our criterion of opti-
mality is minimization of the expected discounted cost incurred during
a planning horizon which may be finite or infinite. Alternatively,
when we consider an undiscounted, infinite-horizon model, our criterion
is minimization of the expected cost per period.

A finite-horizon model of this system was analyzed by kaplan [4]
under the additional assumptions of stationarity of all model para-
meters and continuously distributed demand. The principal results were
(1) that optimal policies can be computed using a4 dynamic program having
orly o scalar state variable, representing inventory on hand plu, on

order before ordering and (7) sufficient conditions can be found ‘or




the optimality of base stock policies and (s,S) policies. Although

the findings in [4] represent a breakthrough in the study of stochas-
tic lead time systems, the results had two complicating features that
are not present in fixed Tead time models. First, the parameters of
the dynamic program were not simply related to the marginal lead time
distribution. Second, sufficient conditions were not found for the
optimality of myopic ordering policies.

In this paper we correct two technical flaws existing in [4],
allowing an intuitively appealing analogy with a zero-lead-time model.
Then we establish conditions for the optimality of myopic base stock
policies and present generalized conditions for the optimality of
(s.5) policies. We also extend the model to encompass infinite plan-
ning horizons and show that optimal (s,S) policies exist under standard
conditions on the cost functions. Finally, we present efficient alqo-
rithms for computing optimal and approximately optimal (s,S) policies

in the infinite-horizon setting.
1. MODEL SPECIFICATION

We initially consider a finite planning horizon ¢f N periods,
numbered backwards from the end of the horizon; that is, the final
period is given number 1, and the initial period is given number N.
Demands ir successive neriods are independently, but not necessarily
identically, distributed. Specifically, let the demand in period n
be represented by the random variable Dn with mean My and cumula-
tive distribution function hn' Also, let %, ., 3 - i, be the

1,]
be the convolution of *i""’¢j‘ We assume complete backlogqging of




unsatisfied demand, so negative inventory levels are permitted. Also,
there are no losses from the system other than through demand satisfactior.
Costs in different periods are related by the single period discount

factor . Let cn(z) be the cost of ordering 2z wunits in pericd 1,

with
cn(z) = KnH(z) + cZ >
where
0, z=20
H(z) =
1, z>0

le assume that both the setup cost Kn and the linear portion of the
replenishment cost are paid upon delivery of the order. This assumption
does not entail a loss of generality, since payment of either portion
at the time of ordering can be described via scating Kn or- ¢ by the
expected value of »L, where L is the random lead tine.

Let L (x) represent the holding and shortage costs in period n,
where x is the ending inventory level in that period. Also we detinoe

the function

de specify replenishment lead times as identically distributed
randorn variables which can take on values from zero up to a fixed mari-
cwme vt Let a qiven lead time be represented hy the random variable |,

having the probability distribution




Ry = P{L=}, i=0,...,m .

The joint distribution of lead times is characterized by our assumptions
that (1) replenishment orders do not cross in time and (2) the lead time
of an order is independent of the number and size of outstanding orders.
Following the development in [4], we focus on a single ordering
decision, and let V be the number of outstanding orders immediately
after the current order and before deliveries are received. Let
U (- V) be the number of outstanding orders after the current delivery.
Now if V is less than U 1in a given period, we know that only the
oldest orders (U-V of them) must have been delivered. This is a
consequence of our assumption that orders do not cross in time. Fur-
thermore, our second lead time assumption {the lead time of an order
is independent of the number and sizes of outstanding orders) implies
that the dynamics of order deliveries are specified by a sequence of

m + 1 non-negative numbers {po,p],...,pm}. It is shown in [4] that

pj’ J=0 or J<i

P{U=j[v=i} =

i-1
]-Zpk’j=i’
k=0

where

m
2 p =1
k=0

The analysis in [4] is conducted entirely in terms of the pj's,

as opposed to the Qj's. An expression relating the pj's to the




mj‘s is given on p. 495 of [4], but it is incorrect. We derive the
correct relationship by noting that the probability zi that {L = i}
is given by the product of probabilities that it is not delivered ir
each of i delivery epochs (0,1,2,...,i-1 periods after ordering)

and the probability that a delivery is made i periods after ordering.

We have

f
o

Py » ]

0., =

1 . .
i-1 i
1-p )<1-p -p) (1 - p.) Dy 151,2,...,m .
( o/\ "o j=0 9/ j=0 I

ATthough our derivation of (2} is original, we note that it also
appears in Nahmias [5, p. 913). Since the substantive results of [4]

do not depend upon the relationship between the pi's and LTS,
they remain valid. We will show, however, that the interpretation ot
the dynamic program in [4] is simplified by (2).

The final aspect of model specification concerns the costs which
must be included in computing optimal policies. We include all cost-
that are incurred during periods N through 1, plus those that occur
in the following m periods due to orders placed during the planning
horizon. A terminal reward (or salvage value) is also applied to the
inventory level at the end of the horizon. This differs from [4],
which only considers costs incurred in periods N through 1, and
sets the terminal reward arbitrarily at zero for all terminal states.
He regard this to be another flaw in [4]. Also, we will show that our
change in cost accounting allows us to derive conditions for the

optimality of myopic base stock policies.




2. FINITE PLANNING HORIZONS

The central finding in [4] is that all policy-dependent costs
can be included in a dynamic program that has inventory on hand plus on
order as its only state variable. Let hn(x) be the minimum expected
discounted cost when x is the inventory on hand plus on order inme-
diately before ordering in period n. We have

m

min{ u121[KnH(y—x) + (y-x)cn + gn(i,Y)]
y=x1i=0

hy (%)

+ aEhn_](y—Dn)€ (3)

m .
_ i
ho(x) = -coX ggg ag

Recursion (3) differs significantly from those given in [4] only in that
our cost accounting includes additional terms at the end of the horizon,

as described above at the end of Section 1. Now let

m .
kn(¥) = 5%% a'eg (1.y)/8

and

Fo(x) = h (x)/8 .




Recursion (3) can be rewritten in terms of this notation as

Fn(x) = giggKnH(y-x) + (y-x)cn + kn(y) + u[Fn_](y—Dn)z
(4)
Fo(x) = -CpX

Notice that (4) is of the same form as a recursion for a zero-lead-time
system with kn(-) representing the single-period expected holding and
shortage costs.

Following the approach of Veinott [8], we establish sufficient
conditions for the optimality of myopic base stock policies. Consider
the zero-lead-time analogy for recursion (4), and let Fn(xn|Y) he
the expected discounted cost in periods n through 0 when following
a particular ordering policy Y and *n is the starting inventory in
period j. Also let {yi, i=1,...,N} be the sequence of inventory on

hand after ordering and before demand. Then one can show that

n . n-1 .
: _ oy~ n-i _ ¥ n-1 - '
[n(xn'v) = 1'2__] Y [[K'iH(y‘i X].) + Gi(yi)] + [1-__,0 « c‘i“i*] Cn)xn]

(

[(Sa
~—

where

k {y) . (6)

G (y) = (e~ ac )y + k.

n n

The functions Gn(-) are composites of expected holding and shortane
costs and the linear purchase costs. They can be interpreted (Veinott
and Yagner [10]) as the conditional expected holding and shortage cost

functions of an equivaient model with unit purchase costs 4 set equal




to zero. We shall use this interpretation, and hereafter refer to

Gn(-) as a conditional expected holding and shortage cost function,
Consider the case of Kn =0 for all n. It follows that if

—Gn(y) is unimodal with a minimum at yn, and if

y, -D <Yy

n n s N=2,...,N

n-1

with probability one, then it is optimal to order max(yn - X 0) in
period n. For alternative conditions that ensure the optimality of
myopic base stock policies, see [8].

An interesting parallel to the fixed lead time problem 4arises in

the solution for the base-stock values {y;, i=1,...,N} when demand has

a density and the single-period holding and shortage costs are given by

Ln(x) = h max(x,0) + p max(-x,0), n=-m+1,...,N . (7)

Then one can show that yn is a solution to
0 (5’ ) = (p-cn+K‘LCn_])/(h+p) y
where

m

6 (y) = 2 (11Q.®

n : i 1-1
i< n,

(y)/i .

Notice that the functions ﬂn(y) are linear combinations of convoluted
demand distributions and are legitimate distribution functions in theiy
own right,
\
Nhen the model does not possess an optimal mvopic bdse-stock

pulicy, we consider the function




. , n-i ,
fn(xnlY) - Fn(xnIY) B [2_: R Cn)\n]

n .
_ - n-1 _ \
- ;éi M E[%iH(yi x.) Gi(yi)]

Notice that all policy-dependent costs are included in fn(xn!Y).

Therefore, an optimal policy can be found by computing

fn(x) = min fn(x|Y)

using the dynanic progranming recursion

F(x) - yjz{KnH(y-x) +6 (y) + wEF(y-D ), n=l,. N
(4)
fO(x) = (.

Expression (8) is easily recognized as a standard form in inventory
theory. Therefore, conclusions about the structure of optimal policices
are immediate. For example, if Kn = (0 for all n, one can show [!]
that a base-stock policy is optimal when Gn(y) is convex for all n,
The base stock levels are given by the values {y:, n=1.....N} that
minimize the expression in braces on the right-hand side of (&),

For models having Kn > 0 for at Teast one value of n, we

o —— &

¢ite two theorems from Denardo [1] which guarantee the optimality of

(~,%) nolicies. Let

Jply) = 6 (y) + aEf ((y-D ) .




and define

and

Theorem 1.

Theorem 2.

10

Sn and Sy as solutions to

J (S) = min{Jn(y)} , (9)
Yy

s, = infly = S [J (y) = K+ Jn(Sn)} . (10)

Suppose the following three conditions are ctinfiol:

(w) i () Lo convex when n > 1, and 7 i
{

contd fHnous el A’I—('omwr.

(L)} ak for n=l,...,N-1.

! H
() j'” s g xo+ o for n=l,.00 N, and

1'._,"}, (_;/-f’)z is fintte for n=i,,..,N-!.

+l)

Thon
K +d (5 ), x - &
v n non %
j“(.r., =
J (x) , &2 8,
n
W and o are gioen b () oel (100, i
" ) > : '

Phe coredaadons of Theorem Vo pemain ocd D070 Tl onin o
L3 poplood L the following three conillone:
fa} There cefot Gty e oy el $liot SR

Le non=lreveasing for gy o< I8 AR HOM= iCcpean D

Fov o0 Mapeoner, ,‘,'V(.,) T cont Tiiaoes,

R S 77"’!{’/”(.'/)}-

14 ¥




o

!
li
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i
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N

foh TOA for n= o =1
1 e (1.’\” _/(Y ) 7’. .3

Other sets of conditions for the optimality of (s,S) policies exist.

See, for example, Veinott [9] and Schdl [7].
3. INFINITE PLANNING HORIZONS

tie consider an infinite horizon version of our model in which all
data are stationary. Our notation is simplified in this setting by wup-
nressing subscrints that denote period numbers whenever the quantity of

interest does not vdry with time. Hence, recursion (8) becomes

f (x) = min{KH(y—x) + G(y) + off (y-D){, n -1
oy n-1 f

whoere
G(y) = (T-x)cy + k(y) , (1
and

m

AL i .
k(y) = 22 «e.q(i,y)/m
“ i
=0
Recursion (11) is just like one for a fixed-cad-time model,

with G(y) renresenting the conditional expected holding and <hortage
costs. lence, we know that if fG(y) is convex, a stationary (<.,%)
nolicy is ovtimal in (11) as n approaches infinity. The conclusion
is supported by the arqument in Iglehart [3], which also entablishe:

thee nxigtence of




12

f(x) = 1im fn(x) .

n -0
Also from [3], we know that f(x) satisfies the functional equation

f(x) = min{KH(y—x) + Gly) + aEf(y-D)} . (13)
yX
The only difference between (13) and a fixed-lead-time model is
in the function G(-). 1In fact, G(-) can be expressed jn the save
form as the conditional expected holding and shortage cost function of

a fixed-lead-time model with a transformed demand distribution. e have

Hi

G(y) = (T-a)cy + k(y)

m .
(1-a)cy + :Eé o'e.9(i.y)/8
1=

i

- i, (7 *(i+1)
(T-a)ey + 3« Qis L(y-u)de (u)/e
1=0 0

o
where « 3 is the j-fold convolution of the demand distribution

Hence, G(+<) can be expressed in the form

78]

Gly) = {T-a)cy + S L(y-u)dy (u) , (14) :
0 | l

vhere

m : :
v (x) = ;Eé q121¢*(1+])(x)/8 : (1)
]:

Hotice that the function Wu(-) has all the properties of a distribution

function. Therefore, we call ?l(-) the discounted lead time demand

distribution.
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When demand is discrete and G(-) is convex, expressions (14} und
(15) allow a simple adaptation of the efficient Veinott-Wagner procedure
[10] for computing optimal (s,S) policies. In [10] a fixed lead time
is assumed, and the conditional holding and shortage cost function is
computed using the convoluted lead time demand distribution 4*()+1).
To adapt [10] for our stochastic lead time model, we merely substitute

*(#1) in any computation related to G(»). Specifi-

W” in place of ¢
cally, the important expressions in [9] that require modification are
(20), (21), (22), (23), (26), (27), and the two unnumbered expressions
immediately preceding (21).

He have performed computations using the procedure described
above. HWe summarize the results below, in Section 4.

We conclude this section with a discussion of approximately
optimal (s,S) policies for the infinite horizon model. We have just
shown how to compute optimal (s,S) policies by modifying a fised-
lead-time procedure. Basically the same kind of modification can be
used to compute approximately optimal (s,S) policies as well,

for example, consider the common assumptions of « = 1 .«nd
linear holding and shortage costs [as given by (7)]. This moiel was
analyzed by Roberts [6], who used asymptotic renewal theory to charac-
tervize the limiting behavior of an optimal policy (s*,S*) as the
parvameters K and p grow large. He obtained the following expres-

* * A

. . . . * *
sions tor optimal policy parameters s and D S -9, as D

qrows large:

— .. *
v2Ki/h + o(D ) ,

fowj
i

*

D'/(14p/h) + o(n’) .

™™™
al
»
ey
]
wv
*
~
a
—
=g
~—
H




M

where A is the fixed lead time, u 1is the single period demand mear.

and n(D*)/D* converges to zero as D* becomes infinite. These ex-
pressions were used by Ehrhardt [2] to construct an approximately optinal
policy (the Power Approximation) that is easy to compute and requires for
demand information only the mean and variance of demand. Specifically,
the Power Approximation requires the single-period demand mean and

. 2 . (V]
variance, u and o°, as well as the mean and variance of 4 ( ).

We suggest modifying the Power Approximation for our stochastic

lead time model by replacing My and oi with the mean and variance

of Yoo Moo and Oi' Specifically, expressions (13) - (16) in []

require this change. [n computing Mo and c?,

implies that ¢ = 1 also. Therefore

we note that + = |

Wy = S udy, (u)
¢ 0 1
m © s
= 22918 ade (1) ()
i=0 0
m
“Ql = -Zp/i(i‘*‘,)“ = (EL*}‘])“ R (]{y)
i=0
and
' 2 _ ¥ 2 ' 2
JQ = S u dl{](u) - U‘\

0

i"

(EL+1)u2 + uZVar(L) . 17




Mo and oi are merely the mean and variance of demand

during (L+1) periods. The use of (16) and (17) in place of 5, and

Motice that

03 is a familiar heuristic approach for modifying a fixed lead time
policy. Until now, however, this approach has not been theoreticallv
justified for periodic review systems,

e assess the effectiveness of the modified Power Approximation

ia Section 4, below, where it is compared with optimal policies for a

variety of parameter settings.
4. NUMERICAL RESULTS

We have performed computations using the procedures described
above for infinite horizon problems. In this section we consider a
set of twelve inventory items under a variety of assumptions about the
distribution of lead time. First, we show how optimal expected costs
vary with the variance of the lead time distribution. Then we compare
Lhe performance of optimal policies with that of the Power Approximation
as modified by (16) and (17).

Consider a system of 12 inventory items, each having a negative
binomial demand distribution with a variance-to-mean ratio of 3.
Mean demand 1y has three values, 2, 4, and 8. F[Fach item has
linear holding and shortage costs as given by (7). Since the total
cost function is linear in the parameters h, p, and K, the valu-
of the unit holding cost is a redundant parameter which is set at
unity. The unit shortage costs are 4 and 9, and the setup cost
values are 32 and 64, A1l combinations of these parameter settings

are included, yielding 12 items.
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We consider the four lead time distributions displayed in
Table I. Each is a symmetrical triangular distribution over the ranqe
[0,4], with a mean value of 2. The variance of lead time ranges fron
a minimum of 0 for the deterministic case to a maximum of 2 for the
uniform distribution. We also list the coefficient of variation y of
each lead time distribution, which is defined as the ratio of the

standard deviation to the mean.

TABLE 1

Lead Time Distributions

TS ST TS T T o T T e AT “‘-'_\[’Q‘_""" - “"[v
Probability Mass Qi’ i=0,...,4 1 i
. f
i: 0 1 2 3 4 EL Var L Y
- ————— 4» —_——— - —— ———— - --——T—w» -
0 0 ] 0 0 2 0 0
0 .250 .500 .250 0 2 .50 .354 {
L0667 | .2333 | .4000 | .2333 | .0667 2 1.00 .500
.2 2 2 2 .2 2 | 2.00 | .707 |
[N SRR SR . I & Y SR S, ‘

Table 11 shows optimal total cost per period as a function of
parameter values for each of the four lead time distributions given
in Table I. Notice that the total aggregate cost of the 12 items,
increases monotonically with lead time variance. The largest lead
time variance yields an optimal total cost of 327 for the 12 items,
17.. higher than the deterministic lead time cost of 280. When costs
are aqgqreqated by parameter values, we see that the larger lead time

variances produce slightiy larger cost increases for items with a
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penalty cost p of 9 than for those with p equal to 4. Slightly
larger cost increases are also displayed for items with a setup cost
K of 32 as opposed to those with K equal to 64. The bulk of the
cost increase, however, can be attributed to items with the largest
value of mean demand. Notice that items with u equal to 8 shows a
24" increase in total cost from 126 for the deterministic lead time
system to 156 for the high lead time variance system. The corres-

pondina percentage increase for items with u equal to 2 1is merely

8. This fact is not surprising, since we have held the demand variance-

to-mean ratio constant. Therefore, items with the largest mean demand
also have the largest variance of demand, yielding especially large
values of 05 in (17).

TABLE 11

Optimal Total Cost per Period of 12 Items for

4 Different Lead Time Distributions

_‘w—‘i o ’_‘_1“ Costs AggregatéQ-B&.;;;gﬁéief Value

Lead Time Agggzggte “Penalty Cost | Setup Cost | Mean Demand
Mean Variance Cost 4 9 32 64 2 4 b
2 o | 280 |29 150 | 124 156 | 64 90 126
2 1/2 293 135 159 | 131 162 | 65 93 134
2 1 306 140 166 | 137 168 | 66 96 143
GO A K L S R
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Table IIl lists percentage increases in expected total cost per
period when Power Approximation policies are compared with optimal
policies. The Power Approximation yields costs within a few tenths of
a percent of optimal for all parameter settings. This level of per-
formance is comparable with the data in [2], where only deterministic

lead times were considered.

TABLE III

Percentages Above Optimal Total Cost per Period for
12-Item Systems Under Approximately Optimal Control

) Costs Aggregated by Parameter Va]uenc-h-
Lead Time Agggzglte Penalty Cost | Setup Cost | Mean Demand
Mean Variance Cost 4 9 32 64 2 4 8
2 0 0.1 0.2 0.1 ] 0.1 0.3 1 0.2 0.2 0.1
2 1/2 0.2 0.2 0.1 ] 6.1 0.2 { 0.3 0.1 0.2
2 1 0.2 0.3 0.1 1 0.2 0.1 ] 0.2 0.2 0.1
2 2 0.3 0.3 0.2 | 0.4 0.2 1 0.0 0.3 0.4
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