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1.  INTRODUCTION 

Two methods for distinguishing between aerosol- and legitimate 
target-return signals in pulsed, pencil-beam active optical fuze (AOF) 
systems have been investigated. The methods are based on the fact that 
aerosol-return pulses are distorted relative to legitimate returns; 
aerosol returns are generally more stretched out in time than legitimate 
target returns. One of the methods, which involves the approximate 
mathematical differentiation of the return signal by electronic means, 
has been rather thoroughly investigated and is emphasized in this re- 
port. The other, basically a signal integration or low-pass filter 
scheme, has had only a preliminary investigation, but will be pursued 
further because superior noise performance is expected with it. 

The use of a relatively fast differentiation circuit in the receiver 
has been investigated on the basis of modeled cloud returns and also of 
cloud backscatter data. In the latter case, cloud-return pulses re- 
corded during helicopter flight tests were used as test signals. Thus 
far, the data used have been limited to a small number of test pulses 
(10) and to returns obtained with an 11-ns full-width-at-half-maximum 
(FWHM) GaAs laser pulse. Now that data are available for GaAs laser 
pulses as short as 5 ns and are in a form permitting automatic process- 
ing and analysis, it will be possible to test discrimination schemes 
with a great deal of measured data. The importance of pulse width for 
discrimination is that shorter pulses are distorted more than longer 
ones, so that discrimination can be more effectively accomplished with 
shorter pulses. 

The low-pass filter scheme investigated involves normalizing each 
received pulse and passing it through a low-pass filter. This process 
tends to make cloud returns larger relative to legitimate target re- 
turns; the process thus provides a basis on which discrimination can be 
made, without degrading the input signal-to-noise ratio (SNR). In fact, 
an improved SNR is expected. This technique was tested for various 
filter cutoffs using the same data sample employed to test the differen- 
tiation scheme. This method has not yet been analyzed with modeled 
cloud returns. 

This report discusses and summarizes the results of the foregoing 
investigations. Section 2 is concerned with the differentiation method 
as applied to modeled cloud-return pulses. Questions of implementabi- 
lity, SNR degradation, and the validity of the modeled cloud-return 
pulses are considered. Section 3 summarizes the results of applying the 
differentiation scheme to measured cloud-return pulses, and section 4 
does the same for the low-pass filter method. Finally, section 5 is an 
overall discussion indicating the current lines of the research on the 
discrimination problem. 



2.  AEROSOL DISCRIMINATION BY DIFFERENTIATION 

A pulsed, pencil-beam AOF operating at some convenient repetition 
rate is assumed; individual pulses are assumed to have an FWHM in the 
neighborhood of 5 ns. The receiver system is assumed to have a 
photodetector-amplifier combination that can detect 5-ns return pulses 
with reasonable fidelity. The discriminator is a simple differentiation 
circuit connected to the output of the receiver amplifier, as shown in 
figure 1. The output signal e(t) from the differentiator will have a 
positive and then a negative-going peak. One or both of these peaks 
will be detected by subsequent circuitry, and a decision reached by 
comparison of the peaks to a preselected threshold; figure 2 illustrates 
this idea. Note that the resistance R may be the input resistance of an 
amplification stage. 

c 

i i   i  
AMPLIFIER OUTPUT DIFFERENTIATOR 

«(t) Figure 1.  Schematic of discriminator. 

MINIMUM TARGET 
SIGNAL 

POTENTIAL CLOUD 
SIGNAL 

DIFFERENTIATION 

PROCESSED TARGET ANO CLOUD 
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Figure 2.  Illustration of idea of derivative discrimination. 



Typical values of the amplifier output resistance, Rg, can be ex- 
pected to lie in the 30 to 50 ohm range. Although it is true that Rq 
and R will have some stray capacitance associated with them, and that 
similar parasitic capacitance can arise from active circuits in parallel 
with these resistances, we think that, by careful design, it would be 
possible to implement the differentiator of figure 1, for R in the 30 to 
50 ohm range, with an effective C of 1 to 2 pF. What kind of 
performance would such a differentiator have for 5-ns pulses? Answering 
this question requires the analysis of the circuit of figure 1. 

2.1  Circuit Analysis of Differentiator 

The basic differential equation governing the circuit dynamics 
is 

di   i   1  dv 
dt   x   R  dt 

T 

where i is amplifier output current, T = RTC, Rp = Rg + R, and v is the 
amplifier source voltage. The general solution of equation (1) can be 
written as 

i(t) = a exp(-t/T) + i (t)   , (2) 
P 

where ip(t) is a particular solution and a is an arbitrary constant. A 
particular solution can be obtained in terms of a Fourier analysis of 
v(t).  Let 

A 
oo 

(OJ) sin [art + a(u)] du)   . (3) 

Then it can be shown that a particular solution of (1) is 

1   /      MM)    . f      , > -i/1 \ = — /     sin a)t + a(a)) + tan M — 1 RT -U    r |   i L W 
V   a)2T2 

i (t) 
p da)  .     (4) 



The combination of equations (2) and (4) is not particularly 
convenient for determining the performance of the circuit as a differen- 
tiator. It is however possible to express the i of equation (4) in a 
form more suitable for our purposes. 

It can be shown (see app A) that 

R i (t) = T ^- T2 ^+ T3 ^Z- T4 ^v+ ...   ,        (5) 
T P       dt     dt2     dt3      dt^ 

which provides a computational basis for determining how close to an 
actual differentiator the circuit in question is, depending on the 
circuit time constant T and the input pulse v(t). 

The infinite series of equation (5) can be summed in a particu- 
larly convenient form when 

v(t) = VQ COS2 g (6) 

for -T < t < T, and vanishes otherwise.  One finds in this case (see app 
A) that" 

. , .     dv 
R i (t) = T —. 
T P        dtVl + qZ/      dt2 Vl + q2 

. T2^V/__L_\   , (7) 

where 

T 

A plot showing the comparative size of the terms on the right-hand side 
of equation (7) is given in figure 3 for R = Rg = 50 ohms, C = 1 pF, and 
T = 5 ns (T is the FWHM of v(t) as given by equation (6)). As can be 
seen, for these parameters our circuit is indeed a good differen- 
tiator. An analysis of the effect of the transient term in the solution 
(see eq (2)) shows that the effect is negligible. 
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Figure 3.  Comparative size of two terms on right of equation (7) for 
R = Rs = 50 ohms, C = 1 pF, and T = 5 ns. 

2.2  Aerosol-Return Pulses 

An AOF in the presence of aerosol will receive backscattered 
signals which might be mistaken for legitimate target signals. In this 
section, a general and effective method for calculating such return 
signals is outlined. This method has been computerized for a certain 
class of aerosol distributions and used to calculate aerosol-return 
signals, which have in turn been used to test the discriminator being 
discussed. 

Let P(t) and V(t) denote the instantaneous transmitted power 
and aerosol-return signal, respectively, and let x denote range from the 
transceiver measured along its pencil-beam influence pattern. Define 
the function of range C(x) by 

C(x) = y(x) exp -2 /  a 

. Jo 
(s) ds (9) 

11 



where y(x) and a(x) are, respectively, the volume backscatter and ex- 
tinction coefficients of the aerosol at range x. Finally, let R(x) 
denote the range sensitivity function of the AOF. Then V(t) can be 
expressed as 

V(t) = KJ" P(t - x) c(f) R(|I) dx  , do) 

assuming that signal-distortion effects in the receiver amplifiers are 
negligible. The factor K is a constant depending on the normalization 
chosen for R(x) and the units of V(t); c is the speed of light. This 
result, originally derived by Burroughs,1 has great generality. It 
applies to virtually all pencil-beam active optical-detection systems 
where transmitter and receiver are approximately colocated. Multiple- 
scattering effects are, however, ignored in deriving equation (10); this 
is its principal limitation. When aerosol densities are sufficiently 
high that multiple-scattering effects are appreciable, very 
sophisticated calculations are needed to determine aerosol-return 

signals.2 

A computer program has been written to calculate the integral 
in equation (10), for various types of P, C, and R; a listing is pro- 
vided as appendix B. The model chosen for P was the cosine-squared 
shaped pulse; its pulse width is a variable input parameter in the pro- 
gram. The model chosen for C arises from equation (9) when the extinc- 
tion and backscatter profiles shown in figure 4 are used. The distance 
x to the aerosol edge, the length i of the buildup region, as well as 
the constant values of \i and a characterizing the aerosol interior, are 
all input parameters in the program. Two types of range-response char- 
acteristics R can be used. One type arises when the transmitter field 
and receiver field of view are uniform, collimated intersecting pencil 
beams of very small divergence. The other type corresponds to systems 
which image both the source laser and its photodetector at a common 
finite range from the transceiver, where peak response is desired. The 
program also calculates the derivative of the aerosol-return pulse it 
determines. 

1H. H, Burroughs, Computation of Cloud Backscatter Power as a 
Function of Time for an Active Optical Radar (U), Naval Weapons Center, 
NWC  TP   5090   (April   1971).      (CONFIDENTIAL) 

2R. E. Bird, Calculations of Multiple-Scattering Effects on Active 
Optical Sensors in Cloud Environments, Naval Weapons Center, NWC TP 5667 
(August   1974). 
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Figure 4.  Model profiles of aerosol backseatbee and extinction 
coefficients. 

Typical results obtained with the program are shown in figures 
5 and 6. Figure 5 shows the calculated aerosol-return pulse in arbi- 
trary units for a 5-ns FWHM transmitter pulse; in this calculation, the 
AOF is fully immersed in a uniform aerosol having a = 0.15 m"1 and y = 
0.008 m str-1. The range response of the AOF is that due to uniform 
pencil beams which are fully overlapped from 5.89 m to infinity and 
partially overlapped from 2.67 to 5.89 m. The a and y values used 
correspond to a rather dense water cloud. Figure 6 shows the derivative 
of the cloud-return pulse of figure 5. Notice the rather large amount 
of pulse stretching evident in the cloud-return pulse compared to the 
transmitter pulse, which has a 5-ns FWHM and a 10-ns width at its 
base. The return pulse frcm a legitimate target for this AOF would be 
expected to be a very close replica of the transmitter pulse. Notice 
also that the peak value of the derivative of the cloud pulse on its 
trailing edge is substantially less than that on its leading edge. This 
asymmetry is caused by the pulse stretching and is a general feature of 
the calculated results. It suggests that derivative discrimination will 
be more effective if based on the trailing-edge derivative, at least for 
symmetrical transmitter pulses. 

13 



Figure 5. 
FWHM cos 
uniform 

Calculated cloud-return signal in arbitrary units for a 5-ns 
ine-squared transmitter pulse, with system fully immersed in 
cloud, having a = 0.15 m"1 and y = 0.008 itf^tr  . 

y    0.05 

Figure   6. 

-0.05 
10 20 30 

TIME (ns) 

Derivative of calculated cloud-return signal of figure 5. 

2.3  Evaluation of Derivative Discrimination without Noise 

The basic gauge chosen to evaluate the discrimination scheme is 
the improvement in target/aerosol contrast produced by the discrimi- 
nator. Suppose that the AOF without the differentiator receives a 
signal VT(t) from some legitimate target in its field of view. This is 
to be compared with the aerosol signal VR(t) that the same AOF could 
receive from some distribution of aerosol. Assuming peak detection, the 
decision^ circuitry would be presented with either of two peak signal 
values, V-, and V-, and would determine to fire on the basis of how large 

14 



the peak signal values happen to be in relation to the predetermined 
threshold. ^ The function of the discriminator is to reduce VA in 
relation to VT. If the AOF had a differentiation circuit and was peak 
detecting the differentiated signal, then the decision circuit would be 
presented with two different peak signal values, say Vi^ and V^' (assume 
for specificity that the peak derivative on the trailing edge of the 
pulse is being detected). A measure of the efficacy of the discrimina- 
tor is then provided by the ratio 

V'/V^ 

FT = * «-   , (11 ) 
vT/vA 

which we call the target/aerosol contrast-improvement factor. 

^It is easy to see that Fj is independent of the amplitudes 
VT and VA of the return signals VT(t) and VA(t).  Let 

vT(t) = vTuir(t) 

and (12) 

Vt) = W*)     ' 

where UT and UA give the shape of the return signals and are normalized 
to unit amplitude.  Then 

VT(t) = VTUT(t) 

and (13) 

\{t)   = VA(t)    ' 

15 



where the dot denotes time ^differentiation. Let t and t denote the 
times at which V (t) and V (t) achieve their peak values, respect- 

ively.  Then 

v^ = vTuT(t0) 

and (14) 

so that 

uT(to) 
F  = —    . (15) 
I 

uA(ti) 

Equation (15) shows that the same value of Fj is obtained if it is 
assumed that VT(t) and VA{t) both have unit amplitude. 

The effect of the discriminator on the SNR is not included in 
the factor F,.  This effect is considered in section 2.4. 

To evaluate the discrimination scheme, a unit-amplitude target 
pulse UT(t) having the same width and shape (cosine-squared) as the 
transmitter pulse is assumed. Then aerosol-return pulse shapes are 
calculated for various modeled aerosol distributions giving UA(t). 
Finally, U (t) and U (t) are computed, their peak values noted, and F-,- 
is determined. 

Some results of the foregoing evaluation are given in figure 7, 
where U (t^ for the trailing edge of the aerosol return was used. For 
these results, a uniform density aerosol with an abrupt leading edge was 
assumed to extend from the in-range cutoff to infinity. The approximate 

relationship 

- - 0.05 sr"1   , (16) 
a 

valid for not-too-dense water clouds at the GaAs laser wavelength, was 
used to eliminate a variable.  Two range-response characteristics were 

16 



used: the one used for the illustrations of figures 5 and 6, which has 
a 2.67-m in-range cutoff, and another differing only in that its in- 
range cutoff is 1.67 m. The figure plots the . contrast-improvement 
factor Fj versus the extinction coefficient, a, for several cases of 
transmitter pulse width. 

CLOUD EXTINCTION COEFFICIENT (m 

Figure 7.  Target/cloud contrast improvement factor versus cloud 
extinction coefficient for several cases of transmitter pulse width and 
two range-response characteristics.  Solid curves:  range law same as 
in figures 5 and 6, with 2.67-m in-range cutoff.  Dotted curve: in- 
range cutoff is 1.67 m, and beams are fully overlapped from 5.89 m to 
infinity.  FWHM of cosine-squared shaped transmitter pulse is shown 
next to curves.  For all results, uniform-density aerosol with abrupt 
leading edge assumed to extend from in-range cutoff to infinity. 

17 



Extinction coefficients much above the range from 0 to 0. 1 m 1 

are unlikely. For this range of extinction coefficients, figure 7 shows 
that improvement factors ranging from 3.5 to about 10 can be expected 
for the systems considered. Improvement decreases with increasing 
extinction coefficient and transmitter pulse width, as would be ex- 
pected. The figure also shows that improvement decreases as the in- 
range hole in the influence pattern gets smaller. This effect is due to 
the increased length of the aerosol that returns signal from the near 
ranges, which ranges make the largest contribution to the return sig- 
nal. The effect could be minimized by reducing the near-range sensitiv- 
ity of the system to be sufficient for target detection but no 
greater. Such range-response tailoring is possible through several 
techniques. 

2.4  Noise Degradation 

In this section, the effects of noise on the performance of the 
derivative discriminator are analyzed, subject to certain reasonable 
assumptions concerning the noise process at the input to the differen- 
tiator. The analysis results in a relationship between the mean-square 
noise voltages at the input and output of the discriminator, and pro- 
vides an estimate of the output SNR in terms of the input SNR. 

Sztankay3 has discussed the significant noise sources present 
in direct optical detection systems. Virtually all such sources are of 
the Johnson or shot noise type, except possibly the avalanche multipli- 
cation noise which arises when avalanche photodiodes are used for detec- 
tion. It therefore seems reasonable to assume that the noise voltage at 
the output of the receiver amplifier is a stationary Gaussian process 
with a uniform band-limited power spectral density. 

Let n(t) denote the effective noise voltage in series with v(t) 
and Rq in figure 1, where Rs is assumed noiseless. Since n(t) is as- 
sumed to be band-limited white noise, its power spectral density, Sn(f), 
i s given by 

S (f) = A for |f | < B   , 
n - 

and (17) 

S (f) = 0 for |f| > B   , 
n 

3Z. G.   Sztankay,   Analysis  of  a  Slant-Range  Optical   Proximity   Sensor, 
Harry Diamond Laboratories,  HDL-TR-1625   (July  1973). 
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where f is the frequency, A is a positive constant, and B is the noise 
bandwidth. In equation (17), the noise band has been assumed to have a 
sharp upper-frequency cutoff (namely B) and no lower-frequency cutoff. 
It therefore follows that the autocorrelation function, R (x), of the 
noise n is given by 

-.   _   sin 2T]'BT 
R (T) = 2AB  —-=  
n 2TrBT (18) 

Since 1^(0) = <n2>, the mean-square noise voltage, it can be seen that 

A = 
<n2> 
2B (19) 

Now let N(t) denote the noise voltage at the output of the 
discriminator. By standard results from the theory of random signals 
and noise,4 N(t) is a stationary Gaussian process, and its power 
spectral density SN(f) is given by 

SN(f) = |Hl2 S (f) + S,(f) 
n       J (20) 

where H is the system function of the differentiator (including the 
source resistance Rg) and SJ(f) is the contribution of the Johnson noise 
arising in the resistor R. The system function is given in good approx- 
imation by 

H(j(jj) = jcoR C = /=T (21) 

^Wilbur B. Davenport, Jr., and William L. Root, An Introduction to 
the Theory of Random Signals and Noise, McGraw-Hill Book Co., Inc., New 
York   (1958). 
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where ui = 2-nf, because the discriminator is very nearly a perfect .dif- 
ferentiator for frequencies in the signal band, and consequently for 
frequencies in the noise band. Since it would be a matter of good 
engineering practice to arrange that Sj(f) be a negligible part of 
SN(f), we ignore it.  Thus 

sN(f) = Kc)2l#for ,f| <-* 
and (22) 

S   (f)   =  0  for   |f|   >  B 
N 

so  that  the  autocorrelation   function  of  N(t)   is 

2Tr2R2C2<n2>     TB „   ,-" 
R   (T)   =    / fze df        . (23) 

N B J-B 

The  main   interest   lies   in   RN{0)   =   <N2>,   the  mean-square   output 
noise  voltage.     By  equation   (23), 

2 
<N2>   =   r'2TrRrT,C

N\2<n2>  |-     , (24) (2TrRTCy 

which relates the rms output noise voltage to the input rms noise 
voltage. Using equation (24), it is not diffcult to obtain a 
corresponding relation between the input and output SNR. Assuming that 
v(t) is given by equation (6), the peak values of e(t) are, in very good 
approximation, iirV RpC/^T.  Thus, 

/3~ 
(SNR)       = ~~r   (SNR).   .    , (25) 

output   4BT      xnput 

where SNR is taken to mean the ratio of peak signal to rms noise. 

20 



For the situation of interest, a reasonable estimate of the 
coefficient in equation (25) is obtained by putting B = 150 MHz and T = 
5 ns. Then (SNR)0 ut - 0*57 (SNR)inpUt / so that the output SNR de- 
grades to something like 60 percent of the input SNR. The SNR reduction 
occurs because, basically, differentiation is a noise-enhancing 
process. In a complete evaluation of the discrimination scheme, both Fj 
and the SNR reduction must be considered; however, the latter effect 
would be unimportant if a sufficiently high input SNR were obtainable. 

2.5  Evaluation of Derivative Discrimination with Noise 

The results of sections 2.3 and 2.4 can be combined to provide 
an overall analysis of derivative discrimination for various realistic 
situations. In this section, the general outline of such an analysis is 
discussed and illustrated with concrete examples. 

Basic for an evaluation is knowledge of the kinds of aerosol 
distributions which are likely to be encountered in a given applic- 
ation. This knowledge can take various forms. For a relatively simple 
analysis, it might be assumed that it is sufficient to consider only 
uniform aerosol distributions and the maximum signals that they will 
produce. In this instance, the scope of aerosol conditions could be 
simply characterized by a range of extinction coefficients or, less 
simplistically, by a probability distribution of extinction coeffi- 
cients. A working probability distribution function could be obtained, 
for example, from an analysis of helicopter flight test data on clouds, 
obtained by the Harry Diamond Laboratories (HDL). There are, of course, 
less simple and more realistic ways to proceed. Such procedures would 
include the effects of bulk aerosol nonuniformities, cloud edge 
variations, and the encounter geometry. 

Another basic element in the evaluation is a specification of 
the sensing system in terms of generic parameters (such as field of 
view, range cutoffs, peak output power, and output pulse shape, etc) and 
a specification of minimum detectable target conditions (minimum target 
size, maximum target range at which detection is desired, etc). This 
information, together with some estimation of the significant noise 
sources in the system, will allow a determination of the minimum target 
signal that is to be detected and of the probabilities of detection and 
false alarm with no aerosol present. In addition, using the probability 
distribution of aerosol extinction levels, the probability distribution 
of aerosol signals could be determined, and the effect of detection 
noise then included. 

The result of the foregoing would be two probability-distribu- 
tion curves, one for the detected minimum target signal and one for the 
detected aerosol signal, assuming for example peak detection.  These 
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curves would be similar to those in figure 8, where the relative loca- 
tion of the peaks of the probability distributions would depend on the 
specific details in the indicated analysis. 

MINIMUM TARGET SIGNAL 
PROBABILITY DISTRIBUTION 

DETECTED SIGNAL 

Figure 8.  Qualitative appearance of probability distribution curves 
for detected minimum target and aerosol signals when discriminator is 

not used. 

The effect of introducing the derivative discriminator and, for 
example, peak detecting the derivative along the trailing edge of the 
received pulse would be twofold. Both probability distributions would 
be broadened in accordance with the noise enhancement produced by the 
discriminator, and the peak of the probability distribution for the 
detected minimum target signal would be shifted to the right in relation 
to that for the detected aerosol signal, in accordance with the 
contrast-improvement factor Fj. The desired final result would be as 
shown in figure 9, with no overlapping of the tails of the 
distributions. In general, however, some overlap would occur, and the 
final step of the analysis would be to determine, for various placements 
of a threshold level, the probabilities of target detection and false 
firing on aerosol. In carrying out this last step, additional knowledge 
about the encounter scenario would be introduced. For example, it may 
be known that aerosol will be present in only some fractional part of 
all the possible encounters, or for only some fraction of the time 
during one mission, so that a scaling down of the aerosol probability 
distribution is indicated. 
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DETECTED SIGNAL 

Figure 9.  Desired appearance of probability distribution curves for 
detected minimum target and aerosol signals after discriminator 
processing. 

To make the foregoing outline more concrete, we now analyze a 
generic example and give numerical results for specific cases. In what 
follows, the sensing system is assumed to have a transmitter pulse of 
the form 

P0(t)   =  Pg  cos 2 JLt 
2T 

= 0  otherwise 

for -T < t < T 
(26) 

where is P0(t) 
PQ  is the peak power, and T is the FWHM of the pulse. 

the transmitted optical power as a function of time. 
The system's 

range response, R(x), is assumed to arise from uniform pencil beams 
which are fully overlapped from the range RF to infinity and partially 

(R„ < R^).  The normalization for R{x) is overlapped between R  and RF 
chosen so that R(x) = x"2 where the beams are fully overlapped. 

23 



If a Lambertian diffuse reflector of diffuse reflectivity p0 
intersects the system's pencil-beam influence pattern at range x in the 
full-overlap region, then the peak received signal power PT will be 

Po cos 6 

PT = PQA 
TTX'' 

(27) 

where A is the area of the receiving aperture and 9 is the angle between 
the reflector normal (at the point of illumination) and the direction of 
the influence pattern. Minimum detectable target conditions are defined 
by a minimum reflectivity p , a maximum range \laK at which detection is 
desired, and a target orientation 9. Taking the latter as 9 = 0, the 
minimum peak received signal power PT(min) becomes 

PO 
P (min) = PgA (28) 

TTX' 
max 

To obtain the signal levels connected with aerosol backscatter, 
equations (9) and (10) can be used. Assuming that a uniform aerosol 
with an abrupt leading edge extended from R to infinity (a condition 
that gives the highest peak aerosol return signals for given y and a), 

we get 

t+T 
2aR0 -  I       o Tr(t - T) -acx ^/CTN 

Pa(t) ■= -e PQA I    cos2 —^  e   VK[—) dx (29) 

max 
2Ro 

t-T, 

for the instantaneous received aerosol signal power, 
note the maximum value of P=(t). 

Pa(t). Let P= de- a. 

Assume that p = 0.05a as in equation (16) and let W(CT) denote 
the probability distribution of extinction coefficients: that is, when 
aerosol is encountered, the probability that its extinction coefficient 
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lies between a  and a + da is given by W(a) da.  The corresponding proba- 
bility distribution P (Pa) for Pa is then given by 

<h)'^m^ (30) 

provided the inverse function a(Pa) is uniquely well-defined; equation 
(29) defines the function Po(a) , which must define a one-to-one corre- 
spondence between the a's and the Pa's for a (Pa) to be uniquely well- 
defined. This qualification on the validity of equation (30) points out 
a complication in the analysis which will be avoided here by making a 
somewhat unrealistic assumption; namely, that W(a) = 0 for all a > o „, 
where a    is a fixed maximum extinction coefficient.   This is done max /v 
because, qualitatively, the graph of Pa versus a has the appearance of 
figure 10, which implies that o(Pa) is two-valued for some range 
of Pa values. This feature could be incorporated into equation (30) by 
using both branches Oi(Pa) and a2(Pa) of Pa  (a), namely 

dP 

da- 

dP 
(31) 

however, this would unnecessarily complicate the illustration being 
developed. Accordingly, a is chosen as in figure 10 and the effects 
of equation (31) are left for a more refined analysis. 

Let k denote the overall conversion factor for the receiver 
that gives the receiver output V for received optical power P through V 
= kP. Then, if the mean-squared noise voltage at the receiver output is 
<n2>, the probability distribution Pn(va) 0^ detected peak aerosol 
signals Va is given by 

■*« " 
/2ir<n2>  0 

/ 

max 
w(a) exp 

kP (a) 
a 

da 
2<n2> 

(32) 
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where the noise has been assumed Gaussian.  The corresponding probabil- 
ity distribution about the minimum target signal kPmCmin) is 

PT fT) /2Tr<n2> 
exp 

VT - kPT(min) 

2<n2> 
(33) 

Equations (32) and (33) describe the detection situation regarding 
aerosol signals and the minimum target signal without the use of the 
derivative discriminator. The same equations continue to describe the 
situation after processing by the discriminator, provided that the 
quantities kP (a) , kPT(min) , and <n2> are replaced by the appropriate 
postprocessing values. 

EXTINCTION COEFFICIENT o 

Figure 10.  Qualitative variation of peak received aerosol signal power 
P. with aerosol extinction coefficient a,   showing (?„„„ where a iriax 
probability distribution of extinction coefficients is cut off. 

Following section 2.4, since the noise at the discriminator 
output is Gaussian, the appropriate replacement for <n2> is <N2>, which 
is given by equation (24). Since the peaks of the processed minimum 
target signal are given in good approximation by ±T;RTCkPT(min)/2T, the 
replacement for kPT(min) is very nearly irRTCkPT(min)/2T.  Finally, if 
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peak detection of the derivative along the trailing edge of the return 
pulse is assumed, the replacement for kPa(a) is (to the approximation 
just used) 

k max 
dP (t) 

T    dt 

where the maximum is evaluated along the negative-going part of 
dPa/dt. Let P (a) denote this maximum for |dPa(t)/dt|, considered as a 
function of a. 

In order to reach numerical conclusions for specific values of 
the parameters T, pQ, xmax, RF, etc, we must evaluate the integral in 
equation (32) (and its correspondent for the processed signals) and 
furthermore be able to integrate over the resulting probability 
distributions to determine probabilities of detection and false alarm. 
This can be done without a great deal of numerical integration if two 
approximations are made, one of which is unfortunately rather crude. 

First we approximate Pa(a) by a linear variation, that 
is, Pa(a) " ma, where m > 0. That this is reasonable can be seen from 
figure 11, which plots Pa versus a (computed from eq (29) using the 
computer program discussed in sect. 2.2) for several values of T, using 
the range-response parameters R0 = 2.67 m and RF = 5.89 m (the ones used 
most often in sect. 2.3) and equation (16). Next, we estimate the 
contrast-improvement factor Fj by its minimum value in the range of a 
being considered (fig. 7), thus neglecting its a-dependence (the T- 
dependence is, however, retained). Although this approximation is 
rather crude, it has the convenient effect of estimating ^a(a) by a 
linear variation in a  because 

2T    • 
Pa(a) K-Fl Pa(a)   ' (34) 

as can be readily verified.  As a final simplification we assume that 
the probability distribution of extinction levels a is 

w(a) = wn for 0 < a < a 
- max 

= 0 i for a > a 
- max 
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where W is a constant such that W amax = 1. With these simplifica- 
tions, the probability distribution pA of equation (32) can be evaluated 
in terms of error functions, which in turn have well-known indefinite 

integrals. 

f2 

CO    r- 

cc    >< 

g 

EXTINCTION COEFFICIENT u (m  1) 

Figure 11.  Normalized maximum aerosol-return signal power versus 
extinction coefficient for several values of the transmitter pulse 
width.  Curves computed from equation (29) using range-response 
parameters R = 2.67 m and Rp = 5.89 m.  Transmitter pulse-width values 
are full widths at half maximum. 

Define the function p(y) by 

P(y) = 
Wr f 

JQ 

max 
exp 

-1 
(y - Xa)2 

2s^ 
da (36) 

which depends parametrically on s2 and X. The probability distribution 
of equation (32) and its correspondent for the processed aerosol signals 
are both of the form p(y), and can be obtained explicitly with the 
parameter identifications given in table 1. 
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TABLE 1.  PARAMETER IDENTIFICATIONS 
FOR EQUATION (36) 

Aerosol signals s2 X 

Unprocessed 

Processed 

<n2> 

<N2> 

km 

kmirRjC 

2TFJ 

Evaluating the integral in equation (36) one obtains 

P(y) =Tx 

y - Xa      y 
_  y      ,| *            max 

erf — erf I  
_   /2s \  /2s   J 

(37) 

A sketch of the graph of p(y) is given in figure 12, which also shows 
what p(y) would look like if noise had been ignored. Notice that p(y) 
has a single maximum at 

y = y   = — \a , (38) max   2  max 

and that the graph is symmetrical about ymax• 

The probability of false firing on an aerosol signal for a 
given detection threshold level yt, can now be calculated. The desired 
probability PF is given by 

w =/; Myth) = /     p(y) dy    • 09) 
yth 
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/_  

-•     p (y) WITHOUT NOISE 

t  w. 
\/   p(y) 2 A^ 

y 
% * <w iom« v 

i y 

Figure 12.  Basic probability distribution of equation (37) 
is what P(Y) would be without noise. 

Also shown 

The integral is readily evaluated, and one finds that 

BPF(yth) exp(-xi)- exp^-xa) -c x„ erf x„ 2     2 
x erf x 

i) 
2y, max 
^2s- 

(40) 

where 

xi = 

y , - 2y 
-^th    max 

x2 
'th 

r2s' 

(41) 

(42) 

B = 
1  2X 

r2s 2 
w0 

(43) 
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Since p(y) is normalized so that its integral over all y is unity, P_ 
gives the probability that when aerosol is encountered a false firing 
will occur for a single return pulse. To convert PF into a total 
mission probability of false alarm on aerosols, one would need to know 
the average number, N, of transmitted pulses per mission that are 
returned from aerosols. Then the desired false-alarm probability could 
be determined as 1 - (l - PF^

N« 

To complete the analysis, we need formulas for the probability 
of detecting a minimum target signal. Let S denote the signal-to-noise 
ratio associated with the minimum target signal kPT(min), i.e., 

S = 
kP (min) 

/<n2> 
(44) 

Suppose that no discriminator is being used, and express the peak detec- 
tion threshold for target signals as ekPT(min), where 0 < e < 1. Then 
the probability, PD, of detecting a minimum target signal is 

(1 - e) ll- (45) 

If, instead, we are peak detecting the differentiator-processed signal, 
then the probability, Qp, of detecting a minimum target signal is 

Q  = — 1 + erf ■ (1 - ^ i£ 
l/2 4TB. 

(46) 

wljere the detection threshold is taken as e [irRpCkPp (min)/2T] , with 
0 < £ < 1. Equation (46) is obtained by integrating equation (33) (with 
<n2> replaced by <N2> and kPT(min) replaced by irRTCkPT(min)/2T) from the 
detection threshold to infinity, and by using equations (24) and (44). 

Equations (45) and (46) and the equations for PF can be used to 
numerically evaluate the discrimination scheme for various specific 
conditions. For example, suppose that the available signal-to-noise 
ratio S is 10 to 1 and that the desired single-pulse probability of 
detecting a minimum target is 0.999.  By using the estimate /3/4TB = 
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0.57, obtained following equation (25), we find from equations (45) and 
(46) that e = 0.691 and e = 0.458. Let us take p = 0^1 and xmax = 10 
m for the minimum target conditions. Let cJmax = 0.1 m , which corre- 
sponds to a dense water cloud. For T = 11 ns, figures 7 and 11 give the 
estimates Pj - 3.5 and m = 2.5 x 10~3 PQA. For the preprocessing values 
of xi, x2, and B, we get xl = -0.944//2", x2 = 6.91/VX and B - 
15.7/v^T These values lead to PF = 0.13, which would lead to an 
unacceptably high false-alarm rate if, on the average, only one pulse 
per mission were returned by an aerosol. For the postprocessing values 
of xl, X2, and B, we get xi = 1.33//27 X2 = 2.61//2; and B = 
2.56//T. These values lead to PF = 0.03, which is a significant 
improvement but is still unacceptably high. A similar computation for T 
= 9 ns gives PF = 0.04 before processing and PF = 0.01 after processing. 

The foregoing examples indicate the potential severity of the 
aerosol problem for the 10-m system considered, and show what level of 
improvement can be expected from derivative discrimination.  For the two 
cases considered, the single-pulse probability of false alarm after 
processing is approximately 1/4 that before processing.  It should be 
noted, however, that the method of treating the improvement factor, Pj, 
in the analysis was such as to underestimate its favorable effect.  A 
more refined analysis should therefore give somewhat better results for 
the postprocessing PF.  It may also be noted (fig. 7) that for T = 5 ns, 
the FT at a =,  is roughly twice that for T = 9 and 11 ns.  One would 

J.     nicix , , 
therefore expect a greater level of improvement from the discrxminator 
for the 5-ns case.   Calculations for the 5-ns case were not done, 
because the error-function evaluation accuracy needed to compute the 
corresponding  difference  in  equation  (40)  could  not  be  readily 
established for this case using the standard mathematics tables.  Such 
computations could be done readily by computer, if necessary.  At any 
rate, a postprocessing PF of about 0.001 would be the expected result, 
and such a value could provide satisfactory aerosol rejection for some 
systems if multiple-pulse detection logic is used. 

2.6  Validity of Aerosol-Return Pulse Model 

The basic limitation of the model for calculating aerosol- 
return signals is that it takes no account of multiple-scattering 
effects. In general, such effects are negligible for sufficiently low- 
density aerosols, but the precise low-density range can depend signifi- 
cantly on the beam patterns which characterize the optical transceiver. 

The experimental determination of multiple-scattering effects 
is made difficult by the need for removing the single-scatter intensity 
from the measurement with fairly high precision. In a great many cases 
of practical interest, the single-scatter component is dominant, so that 
a measurement of a small difference between two relatively large numbers 
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is required. For the backscatter configuration of primary interest for 
fuzing, use can be made of the differing polarization properties of the 
single-scatter component as compared to the multiple-scatter component, 
provided the aerosol consists of approximately spherical particles. For 
this situation, Mie theory predicts that the single-scatter component 
retains the polarization of the incident beam, which one can arrange to 
be highly polarized; on the other hand, the multiple-scatter component 
will be unpolarized. Indeed, most of the available data (which are 
sparse) measure the extent of depolarization of the backscattered return 
for a highly polarized transmitter beam.-* ''* 

Theoretical calculations of multiple-scattering effects have 
been considerably more effective and useful than measurements, for most 
purposes. The calculations are extremely complex, however, and, in 
their most highly developed form, use Monte Carlo techniques to trace 
the three-dimensional photon trajectories as they experience multiple- 
scattering events within the aerosol. 

Bird, Blattner, and Collins2 have developed a Monte Carlo 
computer code for the investigation of multiple-scattering effects in 
optical fuze configurations. The code has been subjected to a respect- 
able degree of experimental verification, as well as a comparison of its 
results with several existing quantitative theories of second-order 
scattering. Generally, good agreement is seen, although there are 
discrepancies in some of the theoretical comparisons.2 

Because multiple-scattering effects can depend significantly on 
the transceiver optical configuration, especially when the transceiver 
is near the scattering medium (the situation of most concern with an 
AOF), it is difficult to form general conclusions which are valid for a 
wide class of systems. Case-by-case evaluation thus seems indicated; 
however, an alternative might be an ambitious exploration of multiple- 
scattering effects in various generic optical configurations, using the 
Bird-Blattner-Collins computer code. 

2R. E. Bird, Calculations of Multiple-Scattering Effects on Active 
Optical Sensors in Cloud Environments, Naval Weapons Center, NWC TP 5667 
(August   1974). 

5£. Reisman and J. Pope, Final Report, Laser Polarization Scattering 
Studies, prepared by Philco-Ford Corp., under contract No. N00123-72~ 
0244,  for  Naval   Weapons  Center  (November   1972). 

6J. Manz, A Ladar Cloud/Target Polarization Discrimination Technique, 
Air  Force  Systems  Command,  AFWL-TR-70-76   (October   1970). 

7Z. G. Sztankay and D. W. McGuire, Backscatter in Clouds at 0.9 \m 
and its Effects on Optical Fuzing Systems, Proc. of Seventh DoD 
Conference on  Laser Technology   (November   1977). 

*D. A. Giglio discusses multiple scattering in a fuzing context in an 
internal HDL report R-930-74-2, January 1974, entitled Some Comments on 
Multiple Scattering in Aerosols and the Depolarization of Backscattered 
Light. 
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At the request of HDL, Bird has exercised the Monte Carlo code 
to determine the effects of multiple scattering for a system configura- 
tion similar to that used to evaluate derivative discrimination (sect. 
2.3).  In what follows, the results of this analysis are highlighted. 

The system configuration analyzed used uniform pencil beams 
which were fully overlapped from 3.5 m to infinity and partially over- 
lapped between 2.0 and 3.5 m. The transmitter output (0.9-pm 
wavelength) was variously taken to be cw or pulsed; when pulsed, both 
rectangular and half-sine-wave pulse shapes were used; the pulse widths 
(FWHM) employed were 6.5 and 9.0 ns. For an aerosol model, the well- 
known Deirmendjian model C  fair-weather cumulus cloud was selected.8 

Several aspects of the multiple-scattering effects that occur 
were investigated as a function of the extinction level. For a cw 
source, the relative contributions of the first three orders _of scat- 
tering to the total were calculated for 0.01 m"1 < a < 0.3 m *. These 
results are summarized in figure 13, which plots the total received 
backscatter and the contributions just mentioned versus a. Calculations 
of the return pulse shapes for the several pulsed cases were also per- 
formed, and the resulting pulse widths (FWHM) were compared with those 
obtained from single-scatter calculations. Very little difference was 
observed in this comparison. In addition to calculating return pulse 
shapes, the depolarization characteristics of the received pulses were 
determined assuming a linearly polarized transmitter output. This was 
done by calculating both the total return and that part of it polarized 
perpendicularly to the transmitter polarization direction. The cross- 
polarized return ranged from approximately 3 to 20 percent of the total 
as a ranged from 0.05 to 0.3 m"1, indicating a generally significant 
multiple-scatter component in spite of the negligible effect on the 
pulse width. 

The results shown in figure 13, together with the results on 
the cross-polarized returns, show that multiple-scattering effects 
become significant in the system analyzed for extinction coefficients of 
around 0.1 m-1. However, the results connected with return pulse widths 
suggest that multiple scattering may not play much of a role in deter- 
mining pulse shapes. 

8D.   Deirmendjian,        Electromagnetic        Scattering       on       Spherical 
Pol ydispersions,  American Elsevier Publishing  Co.   (1969). 
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Figure 13.  Total received backscattered power and contributions from 
first three orders of scattering versus extinction coefficient for a 
0.9-ym continuous-wave pencil-beam active optical-detection system 
fully immersed in a uniform Deirmendjian model C  fair-weather cumulus 
cloud (curves calculated using Monte Carlo multiple-scattering computer 
code; error bars indicate standard deviations of computations). 

Another view can be taken of the validity of the aerosol-pulse 
return model used for the derivative discrimination analysis. If the 
model can accurately replicate the shapes of actual measured aerosol- 
return signals, then it is certainly a useful tool for analyzing pulse- 
shape discrimination techniques. To see how to achieve the desired 
replication, consider equations (9) and (10). After having chosen 
functions P(t) and R(x) to model the transmitter pulse shape and range 
response of the AOF, one then seeks to find functions a(x) and p(x) that 
make the computed return signal (from eq (10)) fit the measured return 
signal.  If the model described by equations (9) and (10) is accurate. 
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then the foregoing procedure will lead to a good fit of the measured 
signal, with a(x) and y(x) being the actual extinction and backscatter 
profiles of the aerosol. 

The fitting procedure just described, athough in general diffi- 
cult to carry out, becomes a relatively simple two-parameter fitting 
problem, if the aerosol is assumed to be uniform over the extent of the 
system's influence pattern. Then \i and a are constants, and the problem 
is to find values for them that minimize, say in a least-square sense, 
the difference between V(t) in equation (10) and the measured return 
signal. It is, of course, assumed that the measured signal was returned 
by a uniform aerosol. 

To evaluate the return pulse model along the foregoing lines, 
10 samples of measured fair-weather cumulus cloud-return signals were 
selected from an HDL data collection using the following criteria: 

a. The measured return signals should correspond to full 
immersion of the measurement system in uniform aerosol. 

b. The extinction levels (a-values) of the clouds for the 
selected sample should span a wide range, including both low- and high- 
density clouds. 

The measurements in question were made by HDL personnel during 
instrumented helicopter flight tests through water clouds. Two separate 
instruments were used to collect the data. A pulsed GaAs laser probe 
furnished the pulse return measurements, and a dual-channel nephe- 
lometer, using a filtered xenon arc-lamp source, provided an independent 
characterization of the cloud environment by measuring the extinction 
and backscatter coefficients. This measurement program is discussed in 
detail by McGuire, Smalley, and Sztankay.9 The nephelometer 
measurements are valid only when the cloud being measured is uniform 
over the region probed by the nephelometer beams, a region roughly the 
same as that probed by the GaAs laser pulser. Several operational 
criteria are applied to the raw nephelometer data to validate cloud 
uniformity; although not foolproof, these criteria are considered 
generally reliable. A detailed description of the use of the 
nephelometer for cloud measurements, including some data analysis and 
validation, is given by Giglio, Rod, and Smalley. u 

9D. W. McGuire, H. M. Smalley, and Z. G. Sztankay, Measurements of 
Backscatter Effects in Clouds at 0.9 \m, Proc. of JTCG/MD/WPFF Tri- 
Service  Optical   Fuze  Technology  Symposium  (October   1976) . 

10D. A. Giglio, B. J. Rod, and H. M. Smalley, Nephelometer Mapping of 
Backscatter and Attenuation Coefficients of Clouds, Harry Diamond 
Laboratories,   HDL-TR-1660   (February   1974). 
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The 10 sample return signals were then subjected to a weighted 
least-square fitting procedure, using the aerosol-return pulse model and 
assuming cloud uniformity. The squared deviations of the theoretical 
pulse from the measured pulse were weighted by the value of the measured 
signal. This procedure tends to make the theoretical pulse fit the 
measured one better where the signal level is high, thus deemphasizing 
the effect of measurement noise. Typical results are shown in figures 
14 through 16. The solid curves in these figures are the best-fit model 
pulses, while the dots show the sampled values of the measured return 
used in the fitting procedure. The quality of the fits can be seen to 
be quite good. Figure 16 shows the least impressive fit obtained (pro- 
vided that results with two of the sample pulses, which were found to 
actually have been produced by decidedly nonuniform cloud distributions, 
are not considered). 
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0.86 

T?    0,74 

I 0.62 

3 0.50 

0.38 

0.26 

0.14 - 

0.02 

"i r 

-0.10 I 
0.00 

J_ 
16.66 33.33 66.66 83.33 100.00 50.00 

TIME (ns) 

Figure 14.  Sampled values of measured cloud-return pulse (dots) and 
weighted (by sample values) least-squares fit (solid curve) according 
to equations (9) and (10) for a uniform cloud (measured cloud pulse 
sample No. 1). 
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Figure 15.  Sampled values of a measured cloud-return pulse (dots) and 
weighted (by sample values) least squares fit (solid curve) according 
to equations (9) and (10) for a uniform cloud (measured cloud pulse 
sample No. 6). 

A disturbing feature of the foregoing results is that the best- 
fit extinction coefficients are consistently lower (by about a factor of 
2.5) than those given by the nephelometer. A possible explanation for 
the discrepancy lies in the fact that the received cloud signals 
obtained with the laser probe are only approximately due to direct 
backscatter. Because of the finite separation between the transmitter 
and receiver (typically about 7 cm) , the received power arises from 
scattering over a small range of angles near the backscatter 
direction. Since the cloud scattering function (the ratio of the volume 
scattering coefficient as a function of angle to the extinction coeffi- 
cient) can vary substantially with angle near the backscatter direction, 
it may be that the discrepancy in question is due to the simple inter 
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pretation given to the shape of the cloud-return pulse, namely, that it 
results from direct backscatter with no variation in the scattering 
function. Further discussion of this question will be given in a future 
publication, where the fitting procedure and all the results obtained 
with it will be described in detail. 

1.10 

100.D0 

Figure 16.  Sampled values of a measured cloud-return pulse (dots) and 
weighted (by sample values) least-squares fit (solid curve) according 
to equations (9) and (10) for a uniform cloud (measured cloud pulse, 
sample No. 7). 

3.  DERIVATIVE DISCRIMINATION APPLIED TO MEASURED CLOUD-RETURN PULSES 

A main objective of the overall research on aerosol discrimination 
techniques is to use the growing HDL data bank of measured aerosol- 
return signals to evaluate discrimination schemes directly. Now that 
the capability has been developed for automatically processing and 
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analyzing such data with a computer, it will be possible to realize this 
objective. As an illustration of the kinds of evaluation' we are 
speaking of, this section and the next evaluate derivative discrimina- 
tion and a low-pass filter scheme, respectively, using the measured 
cloud-return pulses that were considered in section 2.6 for the vali- 
dation of the aerosol-return pulse model. Only the eight return signals 
which were found to be well-modeled (from the standpoint of pulse shape) 
by equations (9) and (10) for a uniform aerosol distribution were 
considered for these evaluations. 

The eight cloud-return pulses and eight simulated target-return 
signals were differentiated and then low-pass filtered at various band- 
widths to simulate the bandpass characteristics of potential receiver 
amplifiers. This was done numerically with a computer using digitized 
representations of the signals. The upper-frequency cutoffs (defined as 
the frequency at which the filter's response is 3 dB down) used were 
17.5, 35, and 52.5 MHz, and the filters were digital simulations of the 
simple single-pole type. The target signals were chosen to have the 
same amplitude as the corresponding cloud returns, and to have the shape 
shown in figure 17, which was obtained from an accurate measurement of 
the shape of the transmitter pulse of the laser probe used to obtain the 
cloud-return pulses.* A random number generator was used to simulate 
target-signal noise. The noise bandwidth and rms noise level were 
arranged to be approximately the same as for the cloud-return signals. 
(The noise bandwidth was about 200 MHz and the typical SNR was about 
15:1.) 

Examples of the processed signals are shown in figures 18 through 
23. A complete summary of the peak values of these signals is given in 
table 2. Both the positive- and negative-going peaks are compared, and 
the ratios of the target peaks to the corresponding cloud peaks are 
given. Although indicative of target/cloud contrast improvement, the 
ratios do not give the contrast-improvement factor Fj defined in section 
2.3, because F-,- is independent of the noise levels. We also give, in 
the last two columns of the table, the extinction levels associated with 
the cloud-return pulses. Notice the previously mentioned difference 
between the measured extinction coefficients (as determined in flight 
with a nephelometer) and those determined by curve fitting the measured 
return pulse with a uniform cloud model via equations (9) and (10). 

*The shape referred to is that which is seen at the output of the 
probe's receiver amplifier upon reflecting the transmitter pulse from a 
standard  target. 
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Figure 17.  Temporal shape of target signals chosen for analysis in 
section 3. 
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Figure 18.  Filtered derivative of measured cloud-return signal (sample 
No. 1) .  Filter is of low-pass single-pole type with 17.5-MHz cutoff 
frequency. 
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Figure 19.  Filtered derivative of measured cloud-return signal (sample 
No. 1).  Filter is of low-pass single-pole type with 35-MHz cutoff 
frequency. 
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Figure 20.  Filtered derivative of measured cloud-return signal (sample 
No. 1).  Filter is of low-pass single-pole type with 52.5-MHz cutoff 
frequency. 
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Figure 21.  Filtered derivative of simulated target signal whose peak 
amplitude equals that of cloud-return sample No. 1.  Filter is of low- 
pass single-pole type with 17.5-MHz cutoff frequency. 
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Figure 22.  Filtered derivative of simulated target signal whose peak 
amplitude equals that of cloud-return sample No. 1.  Filter is of low- 
p^ss single-pole type with 35-MHz cutoff frequency. 
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Figure 23.  Filtered derivative of simulated target signal whose peak 
amplitude equals that of cloud-return sample No. 1.  Filter is of low- 
pass single-pole type with 52.5 MHz cutoff frequency. 
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Several features of the tabulated results should be noted. First, 
there is a general decline in the target/cloud ratio as the filter 
cutoff frequency diminishes from 52.5 to 17.5 MHz, with virtually all 
contrast improvement vanishing at 17.5 MHz for the negative-going 
peaks. This occurs because the relative speed difference between the 
target and cloud pulses tends to disappear as the reception bandwidth 
decreases. Increasing the bandwidth beyond 52.5 MHz (which should be 
feasible since good quality photodetector-amplifier combinations with 
150-MHz bandwidths have been developed) should give better contrast 
ratios; however, the consequent increased effect of noise would then 
cause greater scatter in the results. The reader has probably noticed 
that there is no general superiority in the contrast ratios for the" 
negative-going peaks; in fact, there is indication of the opposite, 
especially for the 17.5-MHz results. This occurs because the trans- 
mitted (and assumed target return) pulse is asymmetrical, having a 
faster leading than trailing edge. Finally, if the target/cloud ratio 
is plotted versus the extinction level, one finds no discernible corre- 
lation between the two. The four possible plots of this kind for the 
52.5-MHz results are shown in figure 24. Although one would expect to 
find a correlation indicating greater contrast ratios for lower extinc- 
tion levels, it may be that for the range of extinction levels concerned 
the FT-versus-a curve shows little variation (see, for example, fig. 7). 

O POSITIVE-GOING PEAKS 

X NEGATIVE-GOING PEAKS 
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Figure 24.  Plots of target/cloud peak signal ratios given in table 2 
versus corresponding measured and curve-fitted extinction coefficients, 
for 52.5-MHz filter cutoff case. 
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To analyze the performance of a fuze system that functions in re- 
sponse to a threshold crossing, one wants to determine, for a given 
threshold level, the probabilities of (a) functioning in response to a 
cloud signal and (b) failing to function on a legitimate target 
signal. These probabilities can be determined from the distribution of 
cloud and target signals about their respective means. Were the data in 
table 2 of statistically significant proportions, the needed probability 
distributions could be estimated reasonably accurately with standard 
statistical methods. Since our data sample is so small, we have chosen 
as a computational expedient to assume that the peak target and cloud 
signals are normally distributed about their means. 

For each filter cutoff, the means and variances of the four cate- 
gories of peak signals were estimated in the standard manner. The 
results are given in table 3.  Let y  and Ei  denote the mean and vari- 

1 fi- 
ance of a particular group of peak cloud signals, and let y  and E| 
denote the like quantities for the corresponding group of peak target 
signals.  If the threshold T is set by 

T = 
Vl^2 +  Vl^l 

(47) 

then functioning on a cloud and failing to function on a target will be 
equally probable. These probabilities were computed from the data in 
table 3, and the results are given in table 4. 

TABLE 3.  ESTIMATED MEANS AND VARIANCES OF VARIOUS GROUPS OF CLOUD AND TARGET SIGNAL PEAKS 
FROM TABLE 2 VERSUS FILTER CUTOFF FREQUENCY 

Filter Cloud signal peak Target signal peak 

(MHz) Positive peak Negative peak Positive peak Negative peak 

Mean Variance Mean Variance Mean Variance Mean Variance 

52.5 0.435 0.00398 -0.302 0.00159 0.698 0.00424 -0.472 0.00358 

35 0.511 0.00298 -0.347 0.00190 0.763 0.00762 -0.458 0.00251 

17.5 0.656 0.00403 -0.367 0.00308 0.856 0,01080 -0.370 0.00159 
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TABLE 4.  PROBABILITY OF FAILURE VERSUS FILTER 
CUTOFF FREQUENCY'2 

Filter cutoff Probability of failure 

(MHz) Positive peak Negative peak 

52.5 
35 
17.5 

0.02 
0.038 
0. 12 

0.045 
0.19 

0.5 

Faiiure = functioning on a cloud = missing a 
target.     Values calculated from data in   table  3. 

The foregoing analysis should be considered only as illustrative of 
how a large, statistically significant data sample would be analyzed. 
To the extent that the results in table 4 can be taken seriously, it 
must be admitted that at their best (52.5-MHz filter cutoff) they are 
unspectacular. Spectacular improvement in target/cloud contrast is not, 
however, predicted theoretically for the relatively broad 11-ns trans- 
mitter pulse considered in the evaluation; decidedly better results are 
expected for narrower pulses of around 5-ns FWHM, and also especially 
for pulses with faster falling edges. 

A fully realistic evaluation would have to consider overall mission 
probabilities of false alarm, which would require an accounting of the 
probabilities of receiving sequences of cloud pulses. While such ac- 
counting would place further demands on the single-pulse false-alarm 
probability, the use of multiple-pulse detection logic, if consistent 
with the desired probability of detection, could significantly improve 
the overall picture. 

4.  A LOW-PASS FILTER DISCRIMINATION SCHEME APPLIED TO MEASURED CLOUD- 
RETURN PULSES 

The basic idea of the low-pass filter method to be considered is as 
follows. All received signals are first subjected to a threshold test 
which rejects those signals with amplitude below some level determined 
by minimum detectable target conditions. If the signal is not rejected, 
it is normalized to some convenient fixed amplitude and low-pass fil- 
tered. The filtering results in the approximate integration of the 
normalized signal, so that relatively wide pulses give higher filter 
outputs than narrower ones. A second threshold test is then performed 
that rejects peak filter outputs above some level between the mean 
levels for legitimate targets and clouds. A signal not rejected at this 
stage is considered a legitimate target return and the firing sequence 
is initiated. 

48 



The foregoing scheme is essentially the inverse of derivative dis- 
crimination. Since signal integration is a smoothing process, it is 
expected that noise will have a smaller effect in the second threshold 
test than it does in derivative discrimination. However, two threshold 
test performed in sequence are required in the low-pass scheme, and the 
first one cannot be avoided because without it there would be a very 
high probability of firing on narrow, low-level noise pulses. Thus, 
overall probabilities of detection and false alarm will be determined by 
the series combination of possible detection errors in both threshold 
tests, and noise performance comparisons of derivative and low-pass 
filter discrimination must be made in view of this. 

The main question of implementability with the low-pass scheme lies 
in the signal normalization function. Good signal integrators could be 
made easily and cheaply with a simple resistor/capacitor combination 
whose time constant is large compared to the signal pulse width. It 
would be relatively easy to implement a crude version of signal normal- 
ization, namely, clipping at a predetermined level. Such an approach 
could have difficulty with large-amplitude target pulses having a large 
base width; however, this difficulty might be overcome by introducing a 
relatively high-level threshold test to identify large-amplitude target 
signals. Better quality signal normalization might be achieved with an 
amplifier whose gain could be controlled by an external signal. Such an 
amplifier and a delay device could be placed at the input to the 
integration channel. By then using fast peak detection in a parallel 
channel, a gain-control signal could be developed that might also be 
used for the first threshold test. This alternative will be 
investigated. 

As a preliminary test of the low-pass method, the method was applied 
to the measured cloud returns and corresponding simulated target signals 
used for the similar test of derivative discrimination (sect. 3). The 
normalized signals were passed through several single-pole low-pass 
filters (cutoffs at 17.5, 12.5, and 7 MHz), and the peak values of the 
filter outputs were noted. Typical waveforms of the filter outputs are 
shown in figures 25 though 30. A summary of the peak values and 
contrast ratios is given in table 5. 
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Figure 25.  Cloud-return signal, sample No. 1, after passing through 
17.5-MHz single-pole low-pass filter. 
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Figure 26.  Cloud-return signal, sample No. 1, after passing through 
12.5-MHz single-pole low-pass filter. 
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Figure 27.  Cloud-return signal, sample No. 1, after passing though 7- 
MHz single-pole low-pass filter. 

Figure 28.  Simulated target signal (whose peak amplitude equals that of 
cloud return sample No. 1) after passing through 17.5-MHz single-pole 
low-pass filter. 
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Figure 29.  Simulated target signal (whose peak amplitude equals that of 
cloud return sample No. 1) after passing through 12.5-MHz single-pole 
low-pass filer. 

Figure 30.  Simulated target signal (whose peak amplitude equals that of 
cloud return sample No. 1) after passing though 7-MHz single-pole low- 
pass filter. 
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TABLE   5.      RESULTS   OF  APPLYING  THE   LOW-PASS   FILTER  DISCRIMINATION   SCHEME  TO 
MEASURED   CUMULUS   CLOUD-RETURN   SIGNALS   AND   SIMULATED   TARGET-RETURN   SIGNALS 

Compared  are  the  peak  filter outputs  for  cloud  and  target  signals 
versus  the   filter  cutoff   frequency 

Filter cutoff Cloud pulse Cloud peak Target peak Cloud/target 
(MHz) No. ratio 

17.5 1 11.8 7.72 1.53 
2 9.51 6.68 1.42 
4 11.4 7.90 1.44 
5 11.0 6.96 1.58 
6 12.0 8.10 1.48 
7 11.4 7.88 1.45 
8 14.2 9.16 1.55 

10 13.1 8.48 1.54 
12.5 1 13.9 8.39 1.66 

2 11.2 7.32 1.53 
4 13.6 8.66 1.57 
5 13.0 7.66 1.70 
6 14.3 8.93 1.60 
7 13.2 8.66 1.52 
8 16.7 10.0 1.67 

10 15.6 9.38 1.66 
7 1 17.4 9.33 1.86 

2 14.0 8.06 1.74 
4 17.0 9.66 1.76 
5 16.5 8.49 1.94 
6 17.9 9.95 1.80 
7 16.8 9.52 1.76 
8 20.5 11.1 1.85 

10 19.4 10.5 1.85 

The contrast ratios are roughly the same as obtained with the deriv- 
ative method (but the ratio is inverted), and there is a consistent 
improvement in the contrast as the cutoff frequency diminishes. As with 
the derivative scheme, the probabilities of failure to distinguish 
between targets and clouds can be determined by assuming normal statis- 
tics and estimating the means and variances for the target and cloud 
signal distributions. The estimates are given in table 6, and the 
ratios of the means to the square roots of the variances are indicated, 
these giving a kind of signal-to-noise ratio. The latter are seen to be 
roughly constant versus the filter cutoff frequency when targets and 
clouds are considered separately; there is little variation even when 
target and cloud data_ are considered together. If a threshold is set in 
accordance with equation (47), the two types of failure probability are 
again equal. These are given for the several cutoff frequencies in 
table   7.     Note   again   that  only  single-pulse  probabilities  are   given. 

53 



TABLE   6. ESTIMATED   MEANS   AND   VARIANCES   OF   LOW-PASS   FILTERED   CLOUD   AND   TARGET 
SIGNAL   PEAKS   FROM   TABLE   5   VERSUS   FILTER  CUTOFF   FREQUENCY 

Filter Cloud signal peaks Target signal peaks 
cutoff (MHz) 

Mean Variance Mean Variance Mean//variance Mean//variance 

17.5 
12.5 
7 

11.8 
13.9 
17.4 

1.72         9.01 
2.46         8.85 
3.42          9.41 

7.86 
8.63 
9.57 

0.546       10.6 
0.654        10.7 
0.848        10.4 

TABLE   7.      PROBABILITY OF   FAILURE 
VERSUS   FILTER  CUTOFF 
FREQUENCY  CALCULATED 
FROM   DATA   IN   TABLE   6 

Filter  cutoff 
(MHz) 

Probability of 
failure 

17.5 
12.5 
7 

0.0256 
0.0126 
0.0023 

The failure probabilities indicated in table 7, although still not 
spectacular, are about an order of magnitude better than those obtained 
in section 3 for the derivative scheme. The potentiality for further 
improvement can be partially analyzed using the easily derived re- 
lationship 

PF(f) = 2 

/,   R (f) 
1 - erf ^ 

V/2 
X2 + A.Rjf) 1 c 

(48) 

which gives the failure probability P for cutoff frequency f in terms 
of the contrast ratio Rc(f) (as a function of the cutoff frequency) and 
the approximately frequency-independent ratios X = ^i/^i and ^o = 

S0/y ; erf denotes the standard Gaussian error function. Since erf 
monotonically increases from zero and tends asymptotically to unity as 
its argument runs from zero to +00, the failure probability is a strictly 

decreasing function of /RC - ^/(^o 
+ ^lRc)'  Mo^ov^' since 

R - 1 
c 

Xi + \'. 

dR Xo   +  AiR 
C  *     c (x2 + x^y 

>   0 (49) 
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for all values of the contrast ratio, it follows that P is a strictly 
decreasing function of Rc. Thus, the minimum achievable failure proba- 
bility will occur when Rc(f) is maximum as a function of f. To apply 
this result to a frequency range bigger than the 7 to 17.5 MHz range 
used in the computations, one must assume that X and X continue to be 
approximately frequency-independent in the larger range. If this as- 
sumption is correct, then the unequivocal trend to higher contrast 
ratios as the cutoff frequency decreases (table 5) shows the potential 
for improvement. Were a contrast ratio of 2 achievable, the failure 
probability would be 0.00075, which would be acceptable for some systems 
if multiple-pulse detection logic could be used. If a 2.5 contrast 
ratio could be reached, the probability of failure would be down to 
0.00005. 

In judging the significance of the foregoing, the size of the data 
sample and the assumptions made in the analysis (e.g., normal statis- 
tics) must be remembered. Also not to be forgotten are the error prob- 
abilities associated with the first threshold test of the discrimination 
scheme. If the potentiality for improvement connected with using less 
simple low-pass filter characteristics is added to the picture, we judge 
that the discrimination scheme is sufficiently promising to warrant 
further investigation. There is a significant difference between this 
scheme and the derivative discriminator: while the derivative discrimi- 
nator would fail to properly identify an aerosol signal if its amplitude 
were too high, the low-pass scheme, which basically senses pulse width, 
works essentially independently of aerosol (and target) signal levels. 

5.  SUMMARY AND DISCUSSION 

Both aerosol discrimination techniques discussed in this report have 
potential usefulness for aerosol-resistant optical fuze systems, as 
indicated by the evaluations presented. The evaluations were, however, 
limited to pencil-beam influence pattern systems. Such systems are of 
interest mainly for ground-target applications, although azimuthally 
sweeping a pencil beam could provide an approach to air-target applica- 
tions, where 360-deg coverage of the target space is ordinarily 
required. 

For the derivative technique (that is, processing received signals 
with an RC-differentiator circuit), the general area of system applica- 
bility is indicated by the analytical and numerical results presented in 
this report. Systems that have only a marginal aerosol problem, because 
of a combination of moderate desired detection ranges and not too severe 
expected aerosol environments, can be made to effectively reject aerosol 
signals by using a derivative discriminator and sufficiently short 
transmitter pulses (on the order of 5-ns wide).  Care must be taken in 
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the design to ensure a relatively high preprocessing SNR, however, 
because the derivative discriminator will always degrade the SNR. This 
report discusses the general methods and gives many of the specific 
analyses needed to design and evaluate such a system. Some further 
validation of the analysis through comparison with experimentally meas- 
ured aerosol-return signals is needed and planned. 

The low-pass filter scheme discussed, which consists of initial 
threshold detection followed by signal normalization to a predetermined 
fixed amplitude, subsequent low-pass filtering, and a final threshold 
detection, is judged to be superior in several respects to the deriva- 
tive technique, in spite of the preliminary nature of the evaluation 
given to the scheme. The low-pass filter scheme is inherently superior 
from a noise standpoint, since the process tends to smooth received 
signals. The scheme is also essentially independent of the absolute 
levels of aerosol and target signals, and therefore could provide effec- 
tive discrimination in severe aerosol environments. Moreover, the 
scheme is inherently less sensitive, compared with the derivative tech- 
nique, to changes in return-signal pulse shape that do not significantly 
alter the overall pulse width, because the filter is essentially inte- 
grating a normalized pulse, and so is sensing pulse width. For the 
derivative technique, any alteration of pulse shape that affects the 
maximum slope on the leading or trailing edge, whichever is being 
detected, will directly affect the detected discriminator output. These 
facts are important if one intends to apply the discrimination schemes 
to systems with wide-angle, mainly fan-beam, influence patterns. For 
such systems, return-pulse shape alterations (relative to the trans- 
mitter pulse shape) will occur because of the angular extension of the 
illuminated regions of target and aerosol. 

The use of fan-beam influence patterns is the most direct approach 
to air-target fuzing applications. In the Navy and Mr Force Sidewinder 
missiles, the optical fuze employs four 90-deg fan-beam systems to 
obtain full 360-deg coverage. A similar multisector approach is a basic 
design feature for a short-range, aerosol-resistant air-target optical 
fuze being designed at HDL. Because return-pulse shape-distortion 
effects not envisioned for pencil-beam systems will occur with fan 
beams, it is necessary to determine these effects and their impact on 
the aerosol-discrimination schemes that might be used, before 
intelligent design of aerosol-resistant fan-beam systems can be 
accomplished.  Work along these lines is in progress. 

A modeling capability for calculating target- and aerosol-return 
signals in fan-beam systems has been developed. This capability is now 
being used to determine the efficacy of the low-pass filter discrimi- 
nation scheme for systems with various fan angles. The results of this 
work will appear in several future publications. 
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APPENDIX A.—SERIES REPRESENTATION OF OUTPUT OF DIFFERENTIATION CIRCUIT 

This appendix derives a useful series expansion formula for the 
output of the differentiation circuit shown in figure 1 in the body of 
the report, and then applies the formula to a particular shape of the 
input voltage pulse to get a closed-form estimate of the departure of 
the output from the derivative of the input. 

The series expansion formula is 

R i (t) = T ^_ T2 d!z+ T3 ^_ ^ d^v + _ (A_1) 
T P       dt     dt2     dt3     dt1* 

where it will be recalled that T (which equals RTC) is the overall 
circuit time constant, Kr, (which equals Rs + R) is the total resistance, 
i is the nontransient part of the current i, and v(t) is the driving 
voltage signal.  To derive equation (A-1) we use the result 

r+oo 
i   (t)   =  ^-      / ■    ■ sinLt  +  o(a)   +   tan"1 (1/a)T)Ida) (A-2) 

R
T ./-co  / r J P ^7 

2   2 

(eq (4) of the main text), which expresses i in terms of the amplitude 
and phase spectra, A(a)) and a((ii)) , of v(t) (see eq (3)). Equation (A-2) 
is easily verified by substitution into the basic differential equation 
governing the circuit. We will assume that A(a)) vanishes outside some 
bounded interval J = f^i'^u] an<^ that U^T^ < 1 for all w in this 
interval. Thus we are assuming that v(t) is band limited in a 
particular way. 

To obtain the desired result, we first use the fact that 

sin la)t + a(a)) + tan ^M/WT)! = cos (a)t + a)   sin tan ^I/UT) + 

(A-3) 

sin (ait + a) cos tan M I/COT), 
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and that 

lin tan'^l/WT) = 1/(l + a)2T2)l/2 (A-4) sm 

cos tan ̂ (l/OJT) =  MT/(l + a)2T2) 1/2 , (A-5) 

which show that equation (A-2) can be written as 

j^yt) =  | - ""«"""  cos [a)t + a{U)] da) 
Ju a)TA(a)) 

(0.  1 + a)2T: 

/"^    9 9, I u ai^T^ACco 

%/a):.  1 + a)2T 

(A-6) 

- sin [cot + a(a))] da) 
2 

Since a)2T2 < 1 over the indicated integration range (by assumption), it 
is valid to introduce the expansion 

(l + a)2!2)"1 = 1 - a)2T2 + (D'+T'
4
 - a)6T6 + ... (A-7) 

in the above integrals and do the integrations term by term.  Thus 

T p r     n=0 

-1  /u  2n+1 
I   0)   2 

00 

R i (t) = Y,   (-■')nT n   / U a)'2n+lA(a)) cos [bit +  a(a))] da) + 

(A-8) 

n+1 2n I ~u 2n •1T2n r\ E, „. n-i-1 ^n i u  iin , v  .  ,      , ,, 
(-1)   T   /   a) A(a)) sin [a)t + a(a))] da) 

n=1 

It is now easy to see that the desired result follows by noting that 

2n 
= (-1)  /   a) nA(a)) sin [art + a(a))] da)  ,       (A-9) 

. 2n 
dt 

fa) 
(n / u 

A 
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and 

2n+1 
d v        , ^ > n / u  2n+1 

dt2n+ 

pa 
co   A(a)) cos [art + a(u)] daj  .    (A-10) 

It should be pointed out that for R = Rg = 50 ohms and C = 1 pF we 

have T = 10~10 s, so that if v(t) has the reasonable (for a 5-ns pulse) 

band limits fu = -t^ * 200 MHz (co = 2irf) , the requirement that OJ^T
2
 < 1 

is satisifed with a good margin. 

We now argue the validity of equation (A-1) when v(t) is not band 

limited as was assumed. We will, however, need another assumption. 

Sufficient conditions for equation (A-1) to give a particular solution 

of the basic differential equation are (a) the series on the right of 

equation (A-1) converges, and (b) the time derivative of the function to 

which it converges is given by the term-by-term derivative of subject 

series. If these conditions hold for the v(t) in question, then direct 

substitution of equation (A-1) into equation (1) can be used to verify 

that the former is indeed a particular solution. Thus, equation (A-1) 

is valid if its right-hand side can be legitimately differentiated 
termwise. 

The termwise differentiability of function series is ordinarily a 

delicate analytical question; however, in the case at hand it can be 

shown to be legitimate if the series on the right of equation (A-1) 

converges uniformly in a neighborhood of each fixed te(-00,00).  This will 

be our new assumption about v(t).  The proof depends on the particular 

form of the series in question and on a standard result from advanced 

calculus.^   We state the latter in a weakened form suitable for our 

purposes, for a series Ef (t) where each f^ft) is defined for a < t < b. 
n n 

Proposition: Suppose that If (t) converges uniformly to a function 
f(t) on (a,b) and that Ef'(t) (where the prime denotes differentiation 
with respect to t) converges uniformly to a function g(t) on (a,b). 
Then f'(t) = g(t) for each te(a,b). 

1r. M.   Apostol,  Mathematical   Analysis,   Addison-Wesley  Pub.   Co.,   Jnc. 
(1957),   pp 401-403. 
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We apply the foregoing proposition to our problem by putting fn(t) = 
(_-|)n+l Tn(dnv/dtn) and assume that Zfn(t) converges uniformly in a 
neighborhood of each fixed toe (-00,00) . One readily sees that the derived 
series 

Zf'(t) = ^7 - :L f(t)   , (A-11) 
n      dt   T 

so that it has the same uniform convergence property as Efn(t) = f(t) on 
the neighborhood in question. It therefore follows from the proposition 
that 

Zf (t) = f'(t) (A-12) 
n 

for all t in the neighborhood. 

Because of the foregoing, equation (A-1) can be applied to the v(t) 
given by equation (6) in the body of the report even though this v(t) is 
not band limited.  This can be seen as follows. 

It is readily verified that 

2n , , .2n-2  2 

dt dt 

for n = 1, 2, 3 ..., and that 

.2n+1 , . 2n ^ 

at2n+ 

for n = 0, 1, 2, .... Denote the right-hand side of equation (A-1) by 
D(t). Upon substitution of the above results into the right-hand side 
of equation (A-1), one gets 

D(t) =   T — - T   r  L (-1) q     ' (A-15) 
\ dt      dt2/n=0 
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where 

ITT 

Therefore, 

rw^      1   / dv   2 d v . 
D(t) = T—T (T ^ " T   —2)    ' (A-16) 

1 + q  \ dt 

provided TTT/T < 1, because the series in equation (A-15) is a geometric 
series. Since the proviso certainly holds for T = 5 ns and T = 10~10 s, 
equation (A-16) gives the uniform limit of the right-hand side of 
equation (A-1). Thus equation (A-1) applies to the v(t) in question, 
and we have 

Vp(t) = Tf I i—A - 

Equation (A-17), which is equation (7) of the main text, gives an 
estimate of the departure of the differentiator output from the 
derivative of the input. 
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APPENDIX B.—FORTRAN LISTING OF PROGRAM FOR CALCULATING AEROSOL-RETURN 
SIGNALS 

This appendix contains a listing of the computer program discussed 
in section 2.2 of the main body of the report. The main part of the 
program handles the computation of the integral in equation (10), sets 
up plotting arrays, and provides various other computational and 
outputting options. The range-response functions are provided by the 
two subroutines named RANGER and RANGES. The function C(x) of equation 
(9) is provided by the function subprogram CLOUD; the time variation of 
the transmitter pulse is provided by the function subprogram P(X,W). 

The subroutine RANGER gives the range-response function for systems 
where the transmitter optics focuses the optical source at a definite 
range (R1 in the program) from the system, and similarly the receiver 
optics focuses the active photodetector surface at the same range. The 
analysis which leads to the subroutine is unpublished. It takes into 
account finite separation distances between transmitter and receiver 
optics, and assumes rectangular-shaped lenses for simplicity. A 
published analysis for circular lenses where transmitter and receiver 
are assumed coaxial is given by Humphrey. ■'■ 

The subroutine RANGES gives the range response obtained with uniform 
overlapping pencil beams, as discussed in the body of this report. The 
approximate formulation of such range laws is straightforward. 

The program variable name for the aerosol extinction coefficient a 
is ALPHA. Both the symbols a and a are routinely used to designate the 
extinction coefficient. There is now an attempt afoot to standardize 
the use of a  for this purpose. 

1R. G. Humphrey,    Properties    of    an    Active    Optical    System,    Harry 
Diamond Laboratories,  HDL-TR-1281   (April   1965). 
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C 
C 
C 
C 

c 
c 

c 
c 

c 
c 

c 
c 

c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

DIMENSION V(1002),DV(1001),CR(1002),RR(1002),DRR(1001),BASE(4) 
DIMENSION N0TE1(14),NOTE2(14),N0TE3(10),NOTE4(20),NOTE5(14) 
REAL MU 
DATA C, IYTXT, BASE/. 299776,' Y' , -.1. , 3*0. /, DRR(2),DV(2)/2*0./ 

DEFINE ASCII-DECIMAL-EQUIVALENT TEXT FOR PLOTTING 

RELATIVE RANGE 
DATA N0TE1/82,69,76,65,84,73,86,69,32,82,65,78,71,69/ 

RTN PWR(.ITGT) 
DATA NOTE2/82,84,78,32,80,87,82,40,46,49,84,71,84,41/ 

DERIVATIVE 
DATA NOTE3/68,69,82>73,86,65,84,73,86,69/ 

CLOUD SIG*RANGE RE 
DATA N0TE4/67,76,79,85,68,32,83,73,71,42,82,65,78,71,69,32,82,69, 

S    P 
*      83,80/ 

RANGE RESPONSE 
DATA NOTE5/82,65,78,71,69,32,82,69,83,80,79,78,83,69/ 

PROGRAM VARIABLES 

V AEROSOL RETURN POWER SAMPLED AT PERIOD T 
(REL TO STD TARGET OF .1 AT Rl) 

DV DERIVATIVE OF CONVOLVED RESPONSE 
CR PRODUCT OF THE CLOUD AND RANGE RESPONSES 
RR RANGE RESPONSE 
DRR DERIVATIVE OF RANGE RESPONSE 
BASE TIME BASE ARRAY FOR PLOTTING 
C SPEED OF LIGHT IN METERS/NANOSECOND 
W FULL BASE WIDTH OF THE SOURCE PULSE 
X0,X1 BOUNDARY DISTANCES FOR THE CLOUD MODEL IN METERS 
ALPHA,MU ABSORPTION AND BACKSCATTER COEFFICIENTS FOR CLOUD 
T SAMPLING PERIOD IN NANOSECONDS 
NPTS NUMBER OF SAMPLES TO BE CALCULATED 

CALL TPUTASCBAUD RATE'^.IER) 
READ MTERM 
CALL INITT(ITERM/10) 
CALL ANMOOE 
WRITE (6,5005) 

6005 FORMAT (' IS THE LARGE SCREEN BEING USED?1) 
CALL TPUTASCENTER Y OR N: 
READ (5,5000) ITERM 
IF (ITERM.NE.IYTXT) GO TO 5 
CALL TERM(3,4096) 
CALL CHRSIZ(l) 

,14,IER) 

00000010 
00000020 
00000030 
00000040 
00000050 
00000060 
00000070 
00000080 
00000090 
00000100 
00000110 
00000120 
00000130 
00000140 
00000150 
00000160 
00000170 
00000180 
00000190 
00000200 
00000210 
00000220 
00000230 
00000240 
00000250 
00000260 
00000270 
00000280 
00000290 
00000300 
00000310 
00000320 
00000330 
00000340 
00000350 
00000360 
00000370 
00000380 
00000390 
00000400 
00000410 
00000420 
00000430 
00000440 
00000450 
00000450 
00000470 
00000480 
00000490 
00000500 
00000510 
00000520 
00000530 
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5   CALL NEWPAG 
CALL ANMODE 

C 
C  READ IN PROBLEM PARAMETERS 
C 

WRiTECe.yooo) 
7000 FORMATC IS SIMPLE WANTED?1) 

CALL TPJTASCENTER Y OR N: '.U.IER) 
READ(5,5000) IANS 
IF(IANS.NE.IYTXT) GO TO 10 

11 CALL RANGES(R1,D,RX,RY,Q) 
GO TO 12 

10   CALL RANGER(R1,D,RX,RY,Q) 
12 WRITE(6,6000) 
6000 FORMAT (' DO YOU WISH TO CALCULATE CLOUD RESPONSE?1) 

CALL TPUTAS('ENTER Y OR N: '.U.IER) 
READ (5,5000) ICLD 

5000 FORMAT (Al) 
IF (ICLD.NE.IYTXT) GO TO 20 
CALL TPUTASC'PULSE BASE WIDTH (NANOSECONDS)',30,IER,1) 
READ * W 
CALL TPUTASCCLOUD BOUNDARY RANGES - XO AND XI (METERS)',42, 

IER,1) 
READ *,X0,X1 
CALL TPUTASCALPHA AND MU1 ,12 , IER, 1) 
READ *,ALPHA,MU 

20   CALL TPUTASCSAMPLING PERIOD (NANOSECONDS)',29,IER,1) 
READ *,T 
CALL TPUTASCNUMBER OF SAMPLES (1001 MAX)',28,IER,1) 
READ *,NPTS 

22 
23 

30 
C 
C 
c 

SET UP ARRAYS FOR PLOTTING 

BASE(2)=NPTS 
RR(1)=NPTS 
DRR(1)=NPTS-1 
CR(1)=NPTS 
V(1)=NPTS 
DV(1)=NPTS-1 
BASE(4)=C*T/(2.*R1) 
NPT=NPTS+1 

CALCULATE RR AND DRR ARRAYS.  RNORM IS A NORMALIZING FACTOR SO 
THAT THE RESPONSE AT Rl FOR ANY RX,RY IS 1. 

RNORM=RX*RY*-D**5/(2. *R1**4) 
DO 30 1=2,NPT 
IF(IANS.NE.IYTXT) GO TO 22 
CALL RANGES(C*T*FLOAT(I-2)/2.,RR(I)) 
GO TO 23 
CALL RANGE(C*T*FLOAT(I-2)/2.,RR(I)) 
RR(I)=RR(I)/RNORM 
IF (I.GT.3) DRR(I-l)=(RR(I)-RR(I-2))/(2.*T) 
CONTINUE 

IF RESPONSE IS DESIRED, CALCULATE CR, V AND DV ARRAYS 

IF (ICLD.NE.IYTXT) GO TO 60 
DO 35 1=2,NPT 
CR(I)=CLOUD(C*T*FLOAT(I-2)/2.,X0,X1,ALPHA,MU)*RR(I) 

00000540 
00000550 
00000560 
00000570 
00000580 
00000590 
00000600 
00000610 
00000620 
00000630 
00000640 
00000650 
00000660 
00000670 
00000680 
00000690 
00000700 
00000710 
00000720 
00000730 
00000740 
00000750 
00000760 
00000770 
00000780 
00000790 
00000800 
00000810 
00000820 
00000830 
00000840 
00000850 
00000860 
00000870 
00000880 
00000890 
00000900 
00000910 
00000920 
00000930 
00000940 
00000950 
00000960 
00000970 
00000980 
00000990 
00001000 
00001010 
00001020 
00001030 
00001040 
00001050 
00001060 
00001070 
00001080 
00001090 
00001100 
00001110 
00001120 
00001130 
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35 

40 

C 
C 
C 
C 
C 

50 
C 
c 
c 
60 

C 
C 
c 
70 

c 
c 
c 
80 

c 
c 
c 
90 

CONTINUE 
DO 50 1=2,NPT 
N=I-3 
I0=MAXl(0.,2.*X0/(C*T),FLOAT(N)-W/T)+l 
V(I)=0. 

LOOP THROUGH CONVOLUTION^SUM 

DO 40 J=I0)N 
V(I)=V(I)+P(FL0AT(N-J+l)*T>W)*CR(J+2) 
CONTINUE 
V(I)=V(I)*T*(3.14159267*C/(2.*.l)) 

V IS THE AEROSOL RETURN POWER AS A FUNCTION 
OF TIME, RELATIVE TO THE PEAK RECEIVED POWER 
FROM A 0.1 REFLECTIVITY DIFFUSE TARGET AT THE 
IMAGE PLANE DISTANCE Rl 
IF (I.GT.3) DV(I-l)=(V(I)-V(I-2))/(2.*T) 
CONTINUE 

PLOT RESULTS 

CALL NEWPAG 
CALL ANMODE 
CALL MENU(I,ICLD) 
IF (I.EQ.O) GO TO 130 
CALL NEWPAG 
CALL BINITT 
CALL SLIMY(IFIX(COMGET(IBASEY(13))),IFIX(.9*(COMGET(IBASEY(14))- 

* COMGET(IBASEY(13)))+COMGET(IBASEY(13)))) 
CALL TITLECRl.D.RX.RY.Q.XO.Xl.ALPHA.MU.W.T.NPTS.ICLD) 
CALL N0TATE((IFIX(COMGET(IBASEX(13))+COMGET(IBASEX(14)))- 

* LINWDT(14))/2,40,14)NOTE1) 
GO TO (70,80,90,100,110),I 

PLOT RETURN SIGNAL 

CALL MOVABS(LINWDT(2)> 
* (IFIX(COMGET( IBASEY( 13))+COMGET(IBASEY(14)))+LINHGT(14))/2) 
CALL VLABEL(14,N0TE2) 
CALL CHECKCBASE.V) 
CALL DSPLAY(BASE,V) 
GO TO 120 

PLOT DERIVATIVE OF RETURN SIGNAL 

CALL MOVABS(LINWDT(2), 
* (IFIX(C0MGET(IBASEY(13))+C0MGET(IBASEY(14)))+LINHGT(25))/2) 
CALL VLABEL(14,NOTE2) 
CALL MOVABS(LINWDT(2), 

* (IFIX(COMGET(IBASEY(13))+COMGET(IBASEY(14)))-LINHGT(5))/2) 
CALL VLABEL(10,NOTE3) 
CALL CHECK(BASE,DV) 
CALL DSPLAY(BASE,DV) 
GO TO 120 

PLOT CLOUD RESPONSE 

CALL MOVABS(LINWDT(2), 
* (IFIX(COMGET(IBASEY(13))+C0MGET(IBASEY(14)))+LINHGT(20))/2) 

00001140 
00001150 
00001160 
00001170 
00001180 
00001190 
00001200 
00001210 
00001220 
00001230 
00001240 
00001250 
00001260 
00001270 
00001280 
00001290 
00001300 
00001310 
00001320 
00001330 
00001340 
00001350 
00001360 
00001370 
00001380 
00001390 
00001400 
00001410 
00001420 
00001430 
00001440 
00001450 
00001460 
00001470 
00001480 
00001490 
00001500 
00001510 
00001520 
00001530 
00001540 
00001550 
00001560 
00001570 
00001580 
00001590 
00001600 
00001610 
00001620 
00001630 
00001640 
00001650 
00001660 
00001670 
00001680 
00001690 
00001700 
00001710 
00001720 
00001730 
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C 
C 
c 
100 

c 
c 
c 
no 

c 
c 
c 
120 

c 
c 
c 
130 
5010 

139 

140 

CALL VLABEL(20,NOTE4) 
CALL CHECKCBASE.CR) 
CALL DSPLAY(BASE,CR) 
GO TO 120 

PLOT RANGE RESPONSE 

CALL MOVABS(LINWDT(2), 
* (IFIX(C0MGET(IBASEY(13))+C0MGET(IBASEY(14)))+LINHGT(U))/2) 
CALL VLABEL(14,NOTE5) 
CALL CHECK(BASE,RR) 
CALL DSPLAYCBASE.RR) 
GO TO 120 

PLOT DERIVATIVE OF RANGE RESPONSE 

CALL MOVABS(LINWDT(2)> 
* (IFIX(COMGET(IBASEY(13))+COMGET(IBASEY(14)))+LINHGT(25))/2) 
CALL VLABEL(14,N0TE5) 
CALL MOVABS(LINWDT(2), 

* (IFIX(COMGET(IBASEY(13))+COMGET(IBASEY(14)))-LINHGT(5))/2) 
CALL VLABEL(10,NOTE3) 
CALL CHECKCBASE.DRR) 
CALL DSPLAYCBASE.DRR) 

PLOT DONE - PAUSE 

CALL BELL 
CALL TINPUT(I) 
GO TO 60 

PROBLEM FINISHED - ASK FOR ANOTHER 

WRITE (6,6010) 
FORMAT (' DO YOU WANT ANOTHER PROBLEM?') 
CALL TPUTASCENTER Y OR Ni'.U.IER) 
READ (5,5000) I 
IF (I.NE.IYTXT) GO TO 139 
IF((I.EO.IYTXT).AND.(IANS.NE.IYTXT)) GO TO 10 
GO TO 11 
CALL NEWPAG 
IF (ITERM.NE.IYTXT) GO TO 140 
CALL CHRSIZ(4) 
CALL FINITT(0,3080) 
CALL FINITT(0,757) 
STOP 
END 

00001740 
00001750 
00001760 
00001770 
00001780 
00001790 
00001800 
00001810 
00001820 
00001830 
00001840 
00001850 
00001860 
00001870 
00001880 
00001890 
00001900 
00001910 
00001920 
00001930 
00001940 
00001950 
00001960 
00001970 
00001980 
00001990 
00002000 
00002010 
00002020 
00002030 
00002040 
00002050 
00002060 
00002070 
00002080 
00002090 
00002100 
00002110 
00002120 
00002130 
00002140 
00002150 
00002160 
00002170 
00002180 
00002190 
00002200 
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c 
c 
c 
c 

c 
c 

c 
c 

c 
c 

c 
c 

c 
c 

c 
c 
c 

10 

c 
c 
c 

SUBROUTINE TITLECRl.D.RX.RY.Q.XO.Xl.ALPHA.MU.W.T.NPTS.ICLD) 
REAL MU 
DIMENSION ITXT1(53),11X12(46),11X13(47) 
DATA lYTXT/'YV 

DEFINE ASCII-DECIMAL-EQUIVALENT TEXT FOR TITLES 

R (SUB)l   =     D =     Q =     R (SUB)X 
DATA ITXT1/82,-2,49,-1,51,7*32,58,61,7*32,81,51,7*32,82,-2,120 

R (SUB)Y 
* 51,7*32,82,-2,121,-1,51,6*32/ 

X (SUB)O   =     X (SUB)l   =     A L P H 
DATA ITXT2/88,-2,48,-1,61,7*32,88,-2,49,-1,61,7*32,65,76,80,72 

M    U    = 
* 61,7*32,77,85,51,6*32/ 

PULSE WIDTH= SAM 
DATA ITXT3/80,85,75,83,59,32,87,73,68,84,72,61,7*32,83,55,77, 

PLING=      POINTS 
* 80,76,73,78,71,51,13*32,80,79,73,78,84,83/ 

ENCODE TITLE INFORMATION 

CALL FF0RM(R1,6,3,ITXT1(6),32) 
CALL FF0RM(D,6,4,ITXT1(15),32) 
CALL FF0RM(Q,6,3,ITXT1(24),32) 
CALL FFORM(RX,6,3,11X11(36),32) 
CALL FF0RM(RY,5,3,ITXT1(48),32) 
IF (ICLD.NE.IYTXT) GO TO 10 
CALL FF0RM(X0,6,3,ITXT2(6),32) 
CALL FF0RM(X1,5,3,ITXT2(18),32) 
CALL FFORM(ALPHA,6,3,ITXT2(31),32) 
CALL FFORM(MU,6,4,ITXT2(41),32) 
CALL FFORM(W,5)2,ITXT3(13),32) 
CALL FF0RM(T,6,4,ITXT3(29),32) 
CALL IFORM(FLOAT(NPTS),4,ITXT3(37),32) 

DISPLAY TITLES 

CALL SEETRM(IA,IB,IC,ID) 
ITOP=780 
IF (ID.EQ.4095) ITOP=3120 
CALL N0TATE(IFIX(C0MGET(IBASEX(13))),IT0P-LINHGT(1),53,ITXT1) 
IF (ICLD.NE.IYTXT) GO TO 20 
CALL N0TATE(IFIX(C0MGET(IBASEX(13))), 

* IT0P-LINHGT(2)-LINHGT(l)/2,46,11X12) 
CALL N0TATE(IFIX(C0MGET(IBASEX(13)))) 

IT0P-LINHGT(4),47,ITXT3) 
RETURN 
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20        CALL NOTATECIFIXCCOMGETCIBASEXCIS))), 
IT0P-LINHGT(2)-LINHGT(l)/2,28,11X13(20)) 

RETURN 
END 
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C 
c 
c 
10 

6000 

SUBROUTIME MENUO.ICLD) 
DATA lYTKT/'Y'/.IPTR/O/ 
DIMENSION IARRAY(5) 
IF (IPTR.NE.0) GO TO 40 

DISPLAY APPROPRIATE MENU 

20 
6010 

30 

5000 
C 
c 
c 
40 

IF (ICLD.NE.IYTXT) GO TO 20 
WRITE (6,6000) 
FORMAT (' THE FOLLOWING OPTIONS ARE AVAILABLE:1// 

"  BX,'! - AEROSOL RETURN'/ 
"  BX.'Z - AEROSOL RETURN DERIVATIVE1/ 

5X,,3 - CLOUD*RANGE RESPONSE1/ 
* 5X,I4 - RANGE RESPONSE1/ 
* 5X,I5 - RANGE RESPONSE DERIVATIVE'/) 
GO TO 30 
WRITE (6,6010) 
FORMAT (' THE FOLLOWING OPTIONS ARE AVAILABLE:'// 

SX.'l - RANGE RESPONSE1/ 
* 5X,'2 - RANGE RESPONSE DERIVATIVE'/) 
CALL TPUTAS('ENTER LIST OF OPTIONS: ',23,IER) 
READ (5,5000,ERR=30) IARRAY 
FORMAT (5(11,IX)) 

C 
c 
c 
50 

GET NEXT OPTION FROM LIST 

IPTR=IPTR+1 
IF (IPTR.GT.5) GO TO 50 
I=IARRAY(IPTR) 
IF (I.EQ.0.OR..I.GT.5) GO TO 50 
IF (I.GT.2.AND.ICLD.NE.IYTXT) GO TO 50 
IF (ICLD.NE.IYTXT) 1=1+3 
RETURN 

NO MORE LEGAL OPTIONS - END PROBLEM 

IPTR=0 
1=0 
RETURN 
END 
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FUNCTION P(X,W) 
P=0. 
IF (X.GT.O..AND.X.LT.W)  P=SIN(3.1415926536*X/W)**2 
RETURN 
END 
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♦♦♦♦♦♦♦♦<M><»#*#<0»><M^#*<^#****#*#«««**#*#**»*###**C»*#**»###<M^#**l>*****'>**#»*****<^ 

FUNCTION CLOUOCX.XO.Xl.ALPHA.MU) 00000010 
REAL MU 00000020 
CLOUD=0. 00000030 
IF (X.GE.X0.AND.X.LT.X1) CL0UD=MU*(X-X0)*EXP(-ALPHA*(X-X0)**2/   00000040 

*  (X1-X0))/(X1-X0) 00000050 
IF (X.GE.X1) CLOUD=MU*EXP(-ALPHA*(2.*X-XO-Xl)) 00000060 
RETURN 00000070 
END 00000080 

x-':-^-;..;..:..:-.;..;..:..^.;..:..*..;.^ 

SUBROUTINE REXPCX.R.D.Rl.RX.RY) 
COMMON/LLINE/ SL.YINT 
R=0. 
IF (X.LT.0..OR.X.GT.R1) RETURN 
R=SL*X+YINT 

R MULTIPLIED BY FACTOR TO NULL RNORM IN MAIN 

R=R*RX*RY*(D**6)/(2.*R1**4) 
RETURN 
END 

00000010 
00000020 
00000030 
00000040 
00000050 
00000060 
00000070 
00000080 
00000090 
00000100 
00000110 

72 



APPENDIX   B 

C 
C 
C 

6000 

SUBROJTINE RANGERCRl.D.RX.RY.Q) 
DIMENSION ENDX(8))ENDY(3) 
REAL INFNTY/1.E50/ 
COMMON/LLINE/ SL.YINT 
DATA lYTXT/'YV 
Xl(X)=D*(2.+Q-X*(2.+Q+RX)/Rl)/2. 
X2(X)=D*(2.+Q-X*(2.+Q-RX)/Rl)/2. 
X3(X)=D*(Q-X*(Q-RX)/Rl)/2. 
X4(X)=D*(Q-X*(Q+RX)/Rl)/2. 
Y2(X)=D*(l.-X*(l.-RY)/Rl)/2. 
Y3(X)=D*(-l.+X*(I.+RY)/Rl)/2. 

INPUT PARAMETERS FOR FSOS RANGE MODEL 

WRITE (6,6000) 
FORMAT (' INPUT RANGE RESPONSE PARAMETERS:') 
CALL TPUTASCRl (METERS)', 11, TER, 1) 
READ ".Rl 
CALL TPUTASCD (METERS)' ,10,lER.l) 
READ *,D 
CALL TPUTASCQ'.l.IER.l) 
READ '.Q 
CALL TPUTASCRX'.a.IER.l) 
READ *,RX 
CALL TPUTASCRY'.Z.IER.l) 
READ *,RY 
R0=0. 
SL=0. 
YINT=C. 
WRITE(6,7000) 
FORMATC DO YOU WANT TO MODIFY THE IN RANGE HOLE'1) 
CALL TPUTASCENTER Y OR N: ,,14,IER) 
READ(5,7001) IANS 

7001 FORMAT(Al) 
IF(IANS.NE.IYTXT) GO TO 5 
CALL TPUTASCRANGE TO BEGIN USING THEORETICAL RANGE 

*  IER,1) 
READ *,R0 
CALL TPUTASCENTER SLOPE AND Y-INT',21 ,IER 1) 
READ *, SL,YINT 

CALCULATE X TERM INTERVAL END POINTS 

S=R1*Q/(Q+RX) 
ENDX(1)=R1/(1.+RX) 
IF (Q.GT.l.) ENDX(1)=S 
ENDX(2)=R1*(1.+Q)/(1.+Q+RX) 
ENDX(3)=Rl*(2.+Q)/(2.+Q+RX) 
ENDX(4)=R1 
ENDX(5)=INFNTY 
IF (RX.LT.Q+2.) ENDX(5)=Rl*(2.+Q)/(2.+Q-RX) 
ENDX(6)=INFNTY 
IF (RX.LT.Q+1.) ENDX(6)=R1*(1.+Q)/(1.+Q-RX) 

7000 
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C 
C 
c 
10 
c 
c 
c 

20 

30 

40 

50 

60 

70 

80 
C 
c 
c 
90 

ENDX(7)=INFNTY 
IF (Q.LT.1..AND.RX.LT.1.) ENDX(7)=R1/(1.-RX) 
ENDX(8)=INFNTY 
IF (RX.LT.Q) ENDX(8)=R1*Q/(Q-RX) 
IF (Q.GT.l.) ENDX(7)=ENDX(8) 

CALCULATE Y TERM INTERVAL END POINTS 

ENDY(1)=R1/(1.+RY) 
ENDY(2)=R1 
ENDY(3)=INFNTY 
IF (RY.LT.l.)  ENDY(3)=R1/(1.-RY) 
RETURN 
ENTRY RANGECX.R) 

CALCULATE RETURN 

R=0. 
IF (X.GE.RO) GO TO  10 

GET RANGE RESPONSE FROM USER SUPPLIED ROUTINE 'REXP' 

CALL REXPCX.R.D.Rl.RX.RY) 
RETURN 

USE THEORETICAL RANGE RESPONSE FORMULA 

IF (X.LE.S.0R.X.GE.ENDX(8)) RETURN 

CALCULATE X TERM OF THEORETICAL RESPONSE 

IF (X.GT.ENDX(l)) GO TO 20 
XTERM=((RX*D/(R1-X))**2)*(-4.*X4(X)**3/(3.*(X3(X)-X4(X))**2)) 
GO TO 90 
IF (X.GT.ENDX(2)) GO TO 30 
XTERM=((D/X)**2)*(-4.*X4(X)**3/(3.*(X1(X)-X4(X))**2)) 
GO TO 90 
IF (X.GT.ENDX(3)) GO TO 40 
XTERM=((D/X)**2)*((-4.*X4(X)**3+(X1(X)+X4(X))**3)/ 

* (3.*(X1(X)-X4(X))**2)) 
GO TO 90 
IF (X.GT.ENDX(4)) GO TO 50 
XTERM=((D/X)**2)*(-X1(X)-X4(X)) 
GO TO 90 
IF (X.GT.ENDX(5)) GO TO 60 
XTERM=((D/X)**2)*(X2(X)+X3(X)) 
GO TO 90 
IF (X.GT.ENDX(6)) GO TO 70 
XTERM=((D/X)**2)*((4.*X3(X)**3-(X2(X)+X3(X))**3)/ 

* (3.*(X2(X)-X3(X))*'<2)) 
GO TO 90 
IF (X.GT.ENDX(7)) GO TO 80 
XTERM=((D/X)**2)*C4.*X3(X)**3/(3.*(X3(X)-X2(X))**2)) 
GO TO 90 
XTERM=((RX*D/(R1-X))**2)*(4.*X3(X)**3/(3.*(X3(X)-X4(X))**2)) 

COMPUTE Y TERM OF THEORETICAL RESPONSE 

IF (X.GT.ENDY(l)) GO TO 100 
YTERM=((RY*D/(Rl-X))**2)*((Y2(X)-2.*Y3(X))/3.) 
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GO TO 130 
100      IF (X.GT.ENDY(2))  GO TO  110 

YTERM=((D/X)**2)*((Y2(X)+2.*Y3(X))/3.) 
GO TO 130 

110  IF (X.GT.ENDY(3)) GO TO 120 
YTERM=((D/X)**2)*((Y3(X)+2.*Y2(X))/3.) 
GO TO 130 

120  YTERM=((RY*D/(Rl-X))**2)*((Y3(X)-2.*Y2(X))/3.) 
C 
C  COMPUTE THEORETICAL RESPONSE 
C 
130  R=XTERM*YTERM 

RETURN 
END 
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SUBROUTINE RANGES(RO,RF,RX(RY,Q) 
C 
C  INPUT PARAMETERS FOR SIMPLE RANGE MODEL 
C 

WRITE (6,6000) 
6000 FORMAT (' INPUT RANGE RESPONSE PARAMETERS 

CALL TPUTASCRO (METERS): '.IS.IER.l) 
READ *,R0 
CALL TPUTASCRF (METERS):   '.IS.IER.l) 
READ *,RF 
C=1.-R0/RF 

SIMPLE MODEL1) 

RX,RY SET TO 1. TO NULL RNORM IN MAIN 

RX=1. 
RY=1. 
Q=0. 
RETURN 
ENTRY RANGES(X,R) 

CALCULATE RETURN 

R=0. 
IF (X.GE.RO.AND.X.LE.RF)  R=(l.-RO/X)/(X*X*C) 
IF (X.GT.RF)  R=1./(X*X) 

R MULTIPLIED BY FACTOR TO NULL RNORM IN MAIN 

R=R*(RF**6/(2.*R0**4)) 
RETURN 
END 
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ADMINISTRATOR 

DEFENSE TECHNICAL INFORMATION CENTER 
ATTN DTIC-DDA (12 COPIES) 
CAMERON STATION, BUILDING 5 
ALEXANDRIA, VA  22314 

COMMANDER 
US ARMY RSCH & STD GP (EUR) 
BOX 65 

ATTN CHIEF, PHYSICS & MATH BRANCH 
FPO NEW YORK  09510 

COMMANDER 

US ARMY ARMAMENT MATERIEL 
READINESS COMMAND 

ATTN DRSAR-LEP-L, TECHNICAL LIBRARY 
ATTN DRSAR-ASF, FUZE & MUNITIONS 

SUPPORT DIVISION 
ROCK ISLAND, IL  61299 

COMMANDER 

US ARMY MISSILE & MUNITIONS 
CENTER S SCHOOL 

ATTN ATSK-CTD-F 
REDSTONE ARSENAL, AL  3580 9 

DIRECTOR 
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ATTN DRXSY-MP 

ABERDEEN PROVING GROUND, MD  21005 

DIRECTOR 
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ATTN DRDAR-TSB-S (STINFO) 
ABERDEEN PROVING GROUND, MD  21005 

TELEDYNE BROWN ENGINEERING 
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HQ USAF/SAMI 
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AND DEVICES LABORATORY 

ATTN DELET-DD 
FORT MONMOUTH, NJ  07703 

COMMANDER 

US   ARMY   ARMAMENT   RESEARCH 

& DEVELOPMENT COMMAND 

ATTN DRDAR-FU, ARMY FUZE MANAGEMENT 
PROJECT OFFICER, LTC GRADY COOK 

DOVER, NJ  07801 

US ARMY ELECTRONICS RESEARCH 
& DEVELOPMENT COMMAND 

ATTN TECHNICAL DIRECTOR, DRDEL-CT 

HARRY DIAMOND LABORATORIES 
ATTN CO/TD/TSO/DIVISION DIRECTORS 
ATTN RECORD COPY, 81200 
ATTN HDL LIBRARY, 81100 {3 COPIES) 
ATTN HDL LIBRARY, 81100 (WOODBRIDGE) 
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