THREE DIMENSIONAL ORBITAL STABILITY ABOUT THE EARTH-MOON EQUILIBRIUM POINTS
THREE DIMENSIONAL ORBITAL STABILITY
ABOUT THE EARTH-MOON EQUILATERAL
LIBRATION POINTS.

THESIS

AFIT/GA/AA/80D-4

Howard A. Tilton, Captain USAF

Approved for public release; distribution unlimited
THREE-DIMENSIONAL ORBITAL STABILITY
ABOUT THE EARTH-MOON EQUILIBRIUM
LIBRATION POINTS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University (ATC)
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science

by
Howard A. Tilton, B.S.
Captain USAF
Graduate Astronautics
December 1980

Approved for public release; distribution unlimited
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>III</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>IV</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>Chapter I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Problem and Scope</td>
<td>3</td>
</tr>
<tr>
<td>Chapter II. Problem Analysis</td>
<td>5</td>
</tr>
<tr>
<td>Equations of Motion</td>
<td>5</td>
</tr>
<tr>
<td>Coordinate System</td>
<td>8</td>
</tr>
<tr>
<td>Ephemeris Generation</td>
<td>9</td>
</tr>
<tr>
<td>Constants</td>
<td>14</td>
</tr>
<tr>
<td>The Wheeler Model</td>
<td>15</td>
</tr>
<tr>
<td>Solar System Effects</td>
<td>19</td>
</tr>
<tr>
<td>Four Body Problem</td>
<td>21</td>
</tr>
<tr>
<td>Chapter III. Results and Discussion</td>
<td>23</td>
</tr>
<tr>
<td>Selected Ephemeris</td>
<td>23</td>
</tr>
<tr>
<td>The Wheeler Orbit</td>
<td>24</td>
</tr>
<tr>
<td>Four Body Analysis</td>
<td>30</td>
</tr>
<tr>
<td>Conclusions and Recommendations</td>
<td>86</td>
</tr>
<tr>
<td>Bibliography</td>
<td>89</td>
</tr>
<tr>
<td>Appendix A</td>
<td>90</td>
</tr>
<tr>
<td>Appendix B</td>
<td>91</td>
</tr>
<tr>
<td>Appendix C</td>
<td>92</td>
</tr>
<tr>
<td>Appendix D</td>
<td>93</td>
</tr>
<tr>
<td>Appendix E</td>
<td>94</td>
</tr>
<tr>
<td>Appendix F</td>
<td>95</td>
</tr>
<tr>
<td>Vita</td>
<td>96</td>
</tr>
<tr>
<td>List of Table</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>I. General Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. State Vector of 5.0 Jan 1979</td>
<td>26</td>
</tr>
<tr>
<td>III. State Vector of 28.263888 Jan 1979 Including Wheeler Elements</td>
<td>51</td>
</tr>
<tr>
<td>IV. State Vector of 28.263888 Jan 1979 with Wheeler Elements Plus (\pm)</td>
<td>53</td>
</tr>
<tr>
<td>V. State Vector of 28263888 Jan 1979 with Wheeler Elements minus (\pm)</td>
<td>43</td>
</tr>
<tr>
<td>VI. State Vector of 23.25333 Jan 1979 Including Stable Orbit Elements</td>
<td>52</td>
</tr>
<tr>
<td>VII. State Vector of 28.263888 Jan 1979 Including Stable Orbit Candidate</td>
<td>62</td>
</tr>
<tr>
<td>VIII. Sensitivity Test State Vector</td>
<td>63</td>
</tr>
<tr>
<td>IX. State Vector of 180° Out of Phase Orbit</td>
<td>73</td>
</tr>
</tbody>
</table>
Diurnal unit, the Lunit.

MD \cos absolute time unit

dv small increment

Vectors

\mathbf{r} position

\mathbf{u} acceleration

$\mathbf{\beta}, d\mathbf{\beta}, d\mathbf{\beta}$ ephemeris position vectors

A work matrix

Subscripts

i,j,k summation indices

e earth

s sun

m moon

c satellite

J Jupiter

em earth-moon

es earth-sun

ec earth-satellite

eJ earth-Jupiter

ms moon-sun

iv
Restricted heeler Orbit--Three Months

Restricted Wheeler Orbit--Twelve Months

Table III Wheeler Orbit--One Month

Table III Wheeler Orbit--Three Months

Table III Wheeler Orbit--Twelve Months

Table III Wheeler Orbit--Sixty Months

Table IV Modified Wheeler Orbit--One Month

Table IV Modified Wheeler Orbit--Three Months

Table IV Modified Wheeler Orbit--Twelve Months

Table IV Modified Wheeler Orbit--Sixty Months

Table V Modified Wheeler Orbit--One Month

Table V Modified Wheeler Orbit--Three Months

Table V Modified Wheeler Orbit--Twelve Months

Table V Modified Wheeler Orbit--Sixty Months

Cross Section of Orbit of Fig 11

Cross Section of Orbit of Fig 15

Cross Section of Orbit of Fig 19

Table VI Stable Orbit Candidate--One Month

Table VI Stable Orbit Candidate--Three Months

Table VI Stable Orbit Candidate--Twelve Months

Table VI Stable Orbit Candidate--Sixty Months
Table VIII Sensitivity Orbit—Twelve Months
Table VIII Sensitivity Orbit—Sixty Months
Cross Section of Orbit of Fig 34
Sensitivity Orbit 60-120 Months
Cross Section of Orbit of Fig 36
Sensitivity Orbit 120-180 Months
Cross Section of Orbit of Fig 38
180° Out of Phase Orbit—One Month
180° Out of Phase Orbit—Three Months
180° Out of Phase Orbit—Twelve Months
180° Out of Phase Orbit—Sixty Months
Cross Section of Orbit of Fig 43
180° Out of Phase Orbit 60-120 Months
Cross Section of Orbit of Fig 45
180° Out of Phase Orbit 120-180 Months
Cross Section of Orbit of Fig 47
180° Out of Phase Orbit 180-228 Months
180° Out of Phase Orbit 180-240 Months
Cross Section of Orbit of Fig 50
A proposed two dimensional very restricted orbit is used to supply the initial conditions required for the search. An ephemeris of high accuracy is generated from a specific date and time using actual positions for the sun and moon. The generated sun and moon position and velocity vectors are used in the integration of the system's equations of motion. A stable orbit is found and is tested for its length of stability. The orbit is found to have a stable lifetime in excess of six hundred lunar synodic months. The sensitivity of the orbit to the sun's and moon's position is tested and found to be only slightly sensitive for an error in position of one quarter day. Finally, a predicted 180° out of phase orbit is found and is determined to be only marginally stable.
1. INTRODUCTION

Background

In recent years, there has arisen a great deal of interest in the orbital analysis of the earth-moon Lagrangian points. Both the civilian and military space programs have produced studies and proposals about the use of the Lagrangian points as orbital areas for satellites now under consideration for future missions. The areas of common interest in both the military and civilian space programs, lie in both manned and unmanned vehicles. Current proposals have included platforms for the industrialization and colonization of space. Such platforms have included Solar Power Satellites for beaming power back to the Earth, large space manufacturing facilities that are able to use the "zero gravity" environment for the production of materials that are currently extremely difficult or impossible to produce on Earth. A side effect of these manufactories would be the colonization of the moon and cis-lunar space. The military
Studies undertaken so far have largely dealt with two dimensional analysis of the very restricted four body problem. Some of the restrictions have been circular orbits for both the moon and sun, an unrealistic mass for the sun, and planar motion for all bodies. Some analysis has been undertaken in the past to study the three dimensional problem, but these have always been restricted in their scope and lead to a vague conclusion about the existence of three dimensional orbital stability in the Lagrangian vicinities. This report will attempt to show actual stability about L4 for a period of at least fifty years, and to set conditions for further studies that follow this report.

Most recently, at the Air Force Institute of Technology, where this report was written, two studies were completed, one by Major William Beekman (Ref 3), and the other by Captain John Wheeler (Ref 7). Each did a study of two dimensions of orbital stability about L4. Both also lacked an analysis of the moon and sun’s actual positions and
Capt. Wheeler’s report was a critical element in a proposed orbit. His orbit was limited by the various constraints that were imposed on the problem. The major limitation came about by assuming the moon and sun to be in circular orbits about their respective system barycenters. Capt. Wheeler’s conclusions at the end of his study indicated linear stability exists for his system.

Major Beekman’s study was based on three reports, one of them being Capt. Wheeler’s. The other reports were by Kolenkiewicz and Carpenter, in 1968, (Ref 6), and by Barkham, Modi, and Soudack in 1975, (Ref 2). In his investigation, Major Beekman confirmed the Wheeler model’s stability, for a period of at least twenty years, by removing the restriction of circular orbits. He also showed the other orbits studied were marginally stable in the same time frame, even though the planar restriction was still in force.

Problem and Scope

The search for a three dimensional stable orbit about L4 and L5 is a problem of increasing importance in the evolution of space exploration. For any serious long term
"zero orbit" calculations to take place in the earth-moon

orbits without them. As such, the results of
this study should be valid for the development of hardware to
control motion precisely. In an effort, the
problem must address realistic conditions except in the four
body problem. Consideration must also be given to the effect
of the remainder of the solar system on the motion of the
colony and the Earth. The sun and Earth's position in this
study should be known at all times to allow planners a
reasonable starting point for their mission. In the final
analysis, the orbit described must have the restrictions of
the previous analyses removed, specifically two
dimensionality and the unperturbed circular orbits of the
moon and sun.
In the analysis of the problem, the equations of motion of the moon and the colony are those given by T. A. Heppenheimer, in an article published in 1978, (Ref 5). His equations are given in rectangular nonrotating Earth-centered inertial coordinates for two dimensions. These equations are then simply expanded to three dimensions. The sun’s motion is then described in the same coordinate system as a two body problem. Since the equations, are given in only two dimensions the expansion to three dimensions follows the derivation of the two dimensional case.

The equations of motion for a general "n-body" problem, in rectangular coordinates is given by:

\[\ddot{r}_{ij} = - \sum_{j \neq i}^{n} \frac{GM_j (\vec{r}_i - \vec{r}_j)}{r_{ij}^3} \]

\[\text{EQ 11-1} \]

where \(r_{ij} = |r_j - r_i| \). Letting \(i=1 \) be the reference body, the Earth, \(i=2 \) the body whose motion we wish to study, and \(i=3 \) and \(i=4 \) be the indices of the two other bodies in the system.

For the Earth-Sun system:
\[
\frac{\mathbf{u}}{r_{12}^3} \sum_{j \neq 1}^n \psi_{1j} \frac{r_{1j} - r_{2j}}{r_{1j} r_{2j}^3} - \sum_{j \neq 2}^n \psi_{2j} \frac{r_{1j} - r_{2j}}{r_{1j} r_{2j}^3}
\]

Expanding and combining terms:

\[
\frac{\mathbf{u}}{r_{12}^3} = -\frac{G(m_1 + m_2)}{r_{12}} \bar{r}_{12} - \sum_{j=3}^n Gm_j \left(\frac{r_{2j} - r_{1j}}{r_{2j}^3} \frac{r_{1j} - r_{1j}}{r_{1j}^3} \right)
\]

Realizing the moon and the satellite have only a negligible effect on the motion of the sun, EQ II-3 reduces to:

\[
\frac{\mathbf{u}}{r_{12}^3} = -\frac{G(m_1 + m_2)}{r_{12}^3} \bar{r}_{12}
\]

or

\[
\frac{\mathbf{u}}{r_{es}^3} = -\psi_{13} \frac{r_{es}}{r_{es}^3}
\]

From EQ II-3, the equations of the motion of the moon are written, also realizing the satellite has no effect on the moon’s motion:
Using the Earth as a convenient reference frame, the equations finally become:

\[\frac{u}{r} = -G_m \frac{r}{r_s} - G_m \left(\frac{r - r_s^2}{r_s^3} \right) - C_m \left(\frac{r - r_m}{r_m^{3/2}} \right) \]

EQ II-6

The equations of motion for analysis purposes are then represented in state vector form for ease in handling. See Appendix A for the subroutine pertaining to the equations of motion.
As mentioned previously, the coordinate system used in the study is a non-rotating, rectangular coordinate system centered with the Earth. The position vectors associated with the moon and the sun in this frame are developed from Ref 8. Since the moon vector given by Ref 8 is described in right ascension, \(a \), declination, \(d \), and Earth radii, \(r \), it must be transformed to the frame we wish to use. The rectangular coordinates are given by:

\[
\begin{align*}
x &= r \cos(a) \cos(d) \\
y &= r \sin(a) \cos(d) \\
z &= r \sin(d)
\end{align*}
\]

EQ II-10

and the velocity vector elements are:

\[
\begin{align*}
\dot{x} &= \dot{r} \cos(a) \cos(d) - \dot{a} \sin(a) \cos(d) - r \dot{d} \sin(a) \sin(d) \\
\dot{y} &= \dot{r} \sin(a) \cos(d) - \dot{a} \cos(a) \cos(d) - r \dot{d} \sin(a) \sin(d) \\
\dot{z} &= \dot{r} \sin(d) + r \dot{d} \cos(d)
\end{align*}
\]

EQ II-11

The vectors are still not in the proper frame and need to be rotated to the ecliptic. If \(e \) is the obliquity of the ecliptic, then the transformation matrix for this is:
The sun's position vector is already in Earth-centered rectangular coordinates and only needs to be rotated to the proper frame by the use of the above transformation matrix.

The frame for the analysis of the problem will be an Earth-centered ecliptic nonrotating rectangular system. The X-axis will point toward the vernal equinox and the Z-axis will be perpendicular to the ecliptic having the XY-plane coincident with the ecliptic plane. The frame for the presentation of the output of the analysis will be a rotating frame with the x-axis through the center of mass of the moon. It also will be an Earth-centered rectangular ecliptic frame. See Fig 1 and Fig 2 for a pictorial representation of each coordinate system.

Ephemeris Generation

Ref 8 provides the position vector for both the moon and sun, but does not provide a velocity vector for each appropriate time step. In order to integrate the equations of motion, the velocities must be known at any given time. Since Ref 8 provides position at a known time, a central difference velocity can be determined. This velocity is
Fig 1. Earth-Centered Nonrotating Frame
Fig 2. Earth-Centered Rotating Frame
Using the position and velocity vectors as initial conditions, the equations of motion are integrated forward to a reference time, \(t_0 \), where the position vector, \(\vec{p}_0 \), was known. The reference time selected was a function of the time step available from Ref 8, ten days for the sun and one half hour for the moon. The corrector was first applied only to the sun’s velocity and, after repetition at longer reference periods, the corrector was applied to the moon’s velocity. The outcome of the corrector, the velocity vectors of the moon and sun at the initial time, was substituted for the crude velocities of Ref 8.

The start date for the ephemeris generation was chosen as 5 Jan 1979, of the Equinox of 1950. This particular date was chosen because the moon was relatively near the equatorial plane of the Earth. Using a time when the \(z \)-component of the moon’s velocity vector approaches zero will give highly inaccurate velocities when computed by central differences and will require more repetitions of the velocity corrector to achieve the velocity desired.
The first step in computing the velocity corrector is to integrate the equations of motion forward to the appropriate reference time, t_0. The integrated position, \vec{p}_{1}, is compared to the reference position, \vec{p}_{0}, and this vector, $d\vec{r} = \vec{p}_{1} - \vec{p}_{0}$, is stored for later use. The equations of motion are then integrated forward three more times from the initial conditions with the initial position vectors and the following velocity vectors in turn:

\[
\vec{v} = \begin{bmatrix}
x + dv \\
y \\
z
\end{bmatrix}, \begin{bmatrix}
x \\
y + dv \\
z
\end{bmatrix}, \begin{bmatrix}
x \\
y \\
z + dv
\end{bmatrix}
\]

EQ II-13

where dv is a small velocity increment. It should be noted that two of the velocity components are the original initial velocity conditions for each integration. Each time the equations are integrated forward a new columnar position vector, \vec{p}_{1}, is formed. Subtracting \vec{p}_{0} from \vec{p}_{1}, one obtains the vector $d\vec{p} = \vec{p}_{1} - \vec{p}_{0}$, where $i=1,2,3$. After the three integrations these position vectors may be combined into matrix form, $A = [d\vec{p}_1 : d\vec{p}_2 : d\vec{p}_3]$. Dividing this matrix by the delta velocity that was added to the initial velocity vectors, a differential matrix is obtained of the form:
Noting that \(d\mathbf{r} = \mathbf{A} d\mathbf{r} \), and since the initial vector \(\mathbf{r} \) is known, the velocity vector correction is obtained by inverting \(\mathbf{A} \) and postmultiplying by \(d\mathbf{r} \), \(\mathbf{d}\mathbf{v} = \mathbf{A}^{-1}d\mathbf{r} \). This velocity correction vector is then added to the initial conditions velocity vector. This procedure is then repeated using a new reference time, until the velocity vector yields a position vector at the end of the ephemeris span to within the accuracy desired. See Appendix B for a subroutine pertaining to these calculations.

Constants

The primary constants used for the problem analysis were obtained from Ref [8:529]. All secondary constants were derived from these values. The accuracy of the constants in Ref 8 is on the order of six digits or less for masses and distances but this will be shown to be adequate for the problem analysis. The use of constants other than those obtained in Ref 8 are used only in the duplication of the Wheeler model and are obtained from Ref's 3 and 7.
The Wheeler Model

The Wheeler orbit should be obtainable from the method of analysis. In order to achieve this, the equations of motion are modified to place the moon and sun in circular orbits about the Earth. Wheeler's constants are then corrected to the unit constants described in the preceding section. The initial conditions are then transformed to the frame coordinates being used, and the equations of motion are then integrated forward for the appropriate time span, one lunar synodic month. See Fig 3 for a representation of the Wheeler system and Fig 4 for the predicted Wheeler orbit.

The initial conditions are selected from the restrictions of the Wheeler model. The sun and moon are in circular orbits and they are also initially on the frame's negative X-axis. The sun is placed at one A. U. with a circular velocity at that point solely in the negative Y-direction. The sun's X-component is transformed into the correct units and the same with the velocity. The moon's position is also on the negative X-axis at one moon distance
Fig 3. The Wheeler Frame
Fig 4. The Predicted Wheeler Orbit
with the velocity component also totally in the negative Y direction. The moon's position and velocity vector is:

\[
\begin{bmatrix}
-3.2885244 \\
0. \\
0.
\end{bmatrix} = \begin{bmatrix}
0. \\
0. \\
0.
\end{bmatrix} \quad \text{EQ II-16}
\]

The moon's position and velocity vector are also given by:

\[
\begin{bmatrix}
-1. \\
0. \\
0.
\end{bmatrix} = \begin{bmatrix}
0. \\
0. \\
0.
\end{bmatrix} \quad \text{EQ II-16}
\]

The colony's initial position and velocity vectors are given by Ref [7:62]. However, Ref [3:31] provides the vectors in an earth-centered frame. The correction that Beekman made is sufficient for the position vector, but the velocity vector has the wrong units. The units used are in MD/TU, mean moon distance per absolute time unit, while the units required are in MD/DAY, mean moon distance per day. Ref [3:22] provides the TU relationship and this is used in the correction. Finally the position and velocity vectors are given by:

18
The effect of the remainder of the solar system on the satellite's motion needs to be investigated. Since the motion of the sun and moon are known, the only terms that need to be considered in the "n-body" equation are the motion of the Earth and that of the satellite. Even though this is an "n-body" problem most of the mass of the solar system is at such a distance that the effects are going to be minimal. With that in mind, the problem can be reduced to the effect of Jupiter's tidal acceleration on the Earth's and satellite's motion. Jupiter is the closest of the massive planets and would reflect the largest effect on their motion. As a comparison, the tidal acceleration of Jupiter can be related to the sun's tidal acceleration. The tidal acceleration equation can be written as:

\[\ddot{r}_{cJ} = -Gm_J \left(\frac{\dot{r}_{eJ} r_{cJ}^{-3}}{r_{cJ}} - \frac{\dot{r}_c r_c^{-3}}{cJ} \right) \]

EQ II-18

where \(\dot{r}_{cJ} = \dot{r}_{eJ} + \dot{r}_c \). Expanding the cubic term of the colony:
r^{-3} = \left[\bar{r} \cdot \bar{r} + \bar{r} \cdot \bar{F} + \bar{r} \cdot F \right]^{-1/2}

where \(\bar{r}, \bar{F} \) can be regarded as terms. The remaining terms can then be binomially expanded to form:

\[
\bar{r}_{cJ} = \bar{r}_{eJ} - 3 \bar{r}_{eJ} (\bar{F} \cdot \bar{r}_{eJ}) + 0 \quad \text{EQ II-20}
\]

Substituting this back into EQ II-18 to form:

\[
\frac{\ddot{r}_{cJ}}{\ddot{r}_{eJ}} = -Gm \left[\frac{\bar{r}}{eJ} \frac{1}{eJ} - (\bar{r} + \bar{r}_{eJ})(\bar{r} - 3 \bar{r}_{eJ}(\bar{F} \cdot \bar{r}_{eJ})) \right]
\]

Collecting terms finally gives:

\[
\frac{\ddot{r}_{cJ}}{\ddot{r}_{eJ}} = -Gm \left[3(\bar{r}_{eJ} \cdot \bar{r}_{cJ})(\bar{r} + \bar{r}_{eJ}) - \bar{r}_{eJ} \right] \quad \text{EQ II-21}
\]

Ref [2:360] provides a relative value of Jupiter's mass and distance from the selected frame. These can be converted into values relative to the sun for the comparison. Replacing \(m_J \) with its equivalent, \(.001 \text{M}_\odot \), and \(\bar{r}_{eJ} \) with \(4.20 \bar{r}_s \), into EQ II-21 will allow a numerical evaluation of the acceleration. Noting that \(\bar{r}_{eJ} + \bar{r}_c = \bar{r}_{eJ} - 4.20 \bar{r}_s \), EQ II-21 can be reduced to:

20
which demonstrates the tidal acceleration due to Jupiter or the remainder of the solar system is approximately 10^{-7} less than that of the sun's tidal acceleration. Therefore, we need not concern ourselves with any solar system perturbations other than the sun's.

The Four Body Problem

The initial conditions of the four body problem are the basis on which the whole stability question lies. If the wrong initial conditions are chosen the search for stability will be long and tedious. Capt Wheeler's model however, demonstrates linear stability in his frame. Therefore the initial conditions selected should have a greater chance of three dimensional stability than any selected by random. Using the position and velocity vector determined in the analysis of the Wheeler model will provide the needed vectors in two dimensions. Since the velocity and position vectors are only in two dimensions we need to add the third dimension
As noted in the introduction, the initial conditions now selected are only an initial set. If stability does not exist in the Lagrangian vicinity for these starting conditions, therefore it will become necessary in the analysis to modify these conditions in the search for stability. The manner in which the modification is made does not matter and therefore can be done by any method available. Once the modification is made the equations of motion can then be integrated forward for a relatively short period of time. If the colony is still in the vicinity of L4, they can be integrated forward for a greater length of time. This can be repeated until the period of stability reaches that as desired. Using short integration time spans in the initial search for stability will greatly reduce the amount of execution time required for the integration of the eighteen equations of motion.
The span of the ephemeris was selected to be approximately one year. This particular length was chosen due to its amount of integration necessary for the generation. Longer time spans would be nice but the execution time increases linearly for the integrations required. The span does allow a sufficient number of starting points, new moons, for the analysis. The addition of the dynamic differential corrector for the velocity vectors of the moon and sun produced a positional error related to time of approximately six hours for both the moon and sun for the slightly less than one year generation span. This error is slightly less than .07 percent, or less than the error required at the outset of the problem. If the error were cumulative throughout the study, then the total error for a fifty-day period would approach .07 percent, or 12.5 days. This total error would have little, if any, effect on the question of stability.

The sun's velocity was corrected three times, the first time for a period of one day, then ten days, twenty days, and finally fifty days. The moon on the other hand,
required near corrections of the velocity, probably due to
the initial conditions used in its generation. For a
period of twenty to forty days, this was by twenty
and then fifty as in the case of the sun. For times longer
than fifty days, it was by fifty, and for times less than
fifty days, the error decreased in the overall search for
accuracy. The reason for this was not investigated because
the fifty day reference period produced the accuracy required
and such an investigation is beyond the scope of this report.
The error in the resultant ephemeris is linear throughout the
entire span. The major cause for this would be a minor error
still existant in the initial conditions used in its
generation. The use of a tabulated ephemeris that contained
the entire span needed would be of some help, provided that
the accuracy is greater than that achieved by this method.
However, as this analysis indicates, such an ephemeris is not
needed. Table I provides selected portions of the moon and
sun ephemeris in ephemeris coordinates which can easily be
compared to Ref 8 to note their accuracy. Table II is the
state vector of the sun-moon conditions on 5.0 Jan 1979.

The Wheeler Orbit

The initial conditions derived from Ref [3:31] were
initially integrated forward for a period of one lunar
synodic month. The data obtained in the nonrotating frame
was transformed into a rotating frame in which the moon
Table 1. Generated Moon and Sun Ephemeris

SUN COORDINATES IN A.U.

<table>
<thead>
<tr>
<th>Time Elapsed</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

MOON POSITION IN EPHEMERIS COORDINATES

<table>
<thead>
<tr>
<th>Geocentric Distance</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Time Elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 121 121 121</td>
<td>32.1 121 121 121</td>
<td>-1 121 121 121 121</td>
<td>0</td>
</tr>
</tbody>
</table>

SUN COORDINATES IN A.U.

<table>
<thead>
<tr>
<th>Time Elapsed</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

MOON POSITION IN EPHEMERIS COORDINATES

<table>
<thead>
<tr>
<th>Geocentric Distance</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Time Elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 121 121 121</td>
<td>2.1 121 121 121</td>
<td>3 121 121 121 121</td>
<td>100</td>
</tr>
</tbody>
</table>

SUN COORDINATES IN A.U.

<table>
<thead>
<tr>
<th>Time Elapsed</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

MOON POSITION IN EPHEMERIS COORDINATES

<table>
<thead>
<tr>
<th>Geocentric Distance</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Time Elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 121 121 121</td>
<td>12.0 121 121 121</td>
<td>-5 121 121 121 121</td>
<td>3.6</td>
</tr>
</tbody>
</table>

SUN COORDINATES IN A.U.

<table>
<thead>
<tr>
<th>Time Elapsed</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

MOON POSITION IN EPHEMERIS COORDINATES

<table>
<thead>
<tr>
<th>Geocentric Distance</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Time Elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 121 121 121</td>
<td>25.1 121 121 121</td>
<td>-25 121 121 121 121</td>
<td>25</td>
</tr>
</tbody>
</table>
Table II. State Vector at 7.0 Jan 1979

Initial Conditions Vector

- \(X(1) = 90.262^\circ \)
- \(X(2) = -371.8793^\circ \)
- \(X(3) = -.0177276746 \)
- \(X(4) = 6.61597474739 \)
- \(X(5) = 1.60285058302 \)
- \(X(6) = .0000744396464064 \)
- \(X(7) = .9690805 \)
- \(X(8) = .1392251 \)
- \(X(9) = -.0272228 \)
- \(X(10) = -.02055542857908 \)
- \(X(11) = .2301949796881 \)
- \(X(12) = -.0198582010047 \)
Fig 5. Restricted Wheeler Orbit--One Month
Fig 6. Restricted Wheeler Orbit--Three Months
Fig 7. Restricted Wheeler Orbit—Twelve Months
remains on the negative x-axis. Thus, produced data in a
table would be easily plotted. Appendix C provides a
subroutine for calculation of the motion and Appendix D
contains the subroutine used in the plotting of the data.
The orbit was also integrated for longer periods and the
plots of all the periods are contained in Figs. 5, 7, and 8.
The slight disturbance in the orbit as the period increased
is due to small errors in the integrator selected.

Four-Body Analysis

The selection of the initial conditions were highly
influenced by the periodic orbit developed by Capt Wheeler in
Ref 7. If a stable orbit does exist, then the initial
conditions of such an orbit should be close to those given by
Ref [7:62]. The third dimension of the vector can be related
to the moon’s vector by giving the satellite the same z and z
magnitudes as the moon. The moon and sun’s initial
conditions are obtained from ephemeris generation techniques
discussed earlier. However, Ref [7:62] requires the moon and
sun both be on the negative x-axis for these particular
initial conditions. This condition occurs once every new
moon. Ref [8:3] provides a list of dates of new moon
occurrences accurate to the nearest minute. The first
occurrence after 5 Jan 1979 is that of 28.263888 Jan 1979.
The equations of motion are then integrated to this date,
neglecting the satellite’s motion. Once the integration is
complete the initial conditions of the satellite are added to
the state vector.

The velocity components are in m/s, and the initial
velocities are on the order of 1 to 10 m/s. This is
equivalent to 10 to 100 m/day. If stability is expected
one velocity components close to those of the initial
conditions, then adding or subtracting delta velocities on
the order of 4.5 meters per second or .001 MD/DAY should have
the desired effect.

A main program was written which allowed the user to
add these delta velocities and specify the length of the
integration. The integration period should be variable in
length to aid in the search for stability. The length of
execution time of the integration requires short integration
spans until a likely candidate for stability is found. The
program was written for an interactive user which allowed
quick observation and interpretation of results. Appendix E
contains the main program used in this effort. Appendix F
contains the subroutine used in the addition of the delta
velocities to the state vector. First, the state vector
elements of the satellite are rotated to the rotating frame.
Then the delta velocities are added to the rotated elements
and these are then transformed back into the nonrotating
frame. Once the initial conditions are those which are
desired, the integration is executed for the desired time
span. The time span is split into time steps which are
The state vectors for 1978 and 1979 including the satellite elements used in the Wheeler model are contained in Table III. Fig's 5, 9, 10, and 11 are trajectories obtained for periods of one, three, twelve, and sixty synodic months. Adding a delta velocity of .001 MD/DAY to all of the satellite's velocity components of Table III, produces the state vector contained in Table IV. The trajectory plots for one, three, twelve, and sixty synodic months are contained in Fig's 12 through 15. Adding a delta velocity of -.001 MD/DAY to each of the velocity components in Table III, produces the state vector contained in Table V. The resultant trajectory is plotted for the same periods as before and are shown in Fig's 16 through 19.

The question of stability is of paramount importance to the problem. Linear or periodic stability does not exist in the three dimensional model, but stability must be determined and in an easily observable fashion. To that effect, a cross section of the orbit is obtained by slicing through the Lagrangian point, using the yz-plane. For long term stability to occur, the cross sections should fill in separate, but definite, areas on the plane. The reasoning behind this is if an orbit is stable then after a reasonable
Table III. State Vector of 28.26388 Jan 1979
including Sheeler Elements

INITIAL CONDITIONS VECTOR

\[\begin{align*}
X(1) &= 29.0408131923 \\
X(2) &= -0.0317906129472 \\
X(3) &= -0.01457367354732 \\
X(4) &= 5.433476266665 \\
X(5) &= 4.687553482214 \\
X(6) &= 0.0001923591601845 \\
X(7) &= 0.5701945487225 \\
X(8) &= -7.312694719864 \\
X(9) &= 0.05406587955571 \\
X(10) &= 0.1940024128416 \\
X(11) &= 0.1502478807353 \\
X(12) &= -0.01690467092801 \\
X(13) &= -0.1904858617353 \\
X(14) &= -1.032237274618 \\
X(15) &= 0.05406587955571 \\
X(16) &= 0.2008356132464 \\
X(17) &= -0.059826122177 \\
X(18) &= -0.01690467092801
\end{align*} \]

ROTATING FRAME COLONY POSITION AND VELOCITY

\[\begin{align*}
X &= -7.363274298999 \quad X D O T &= -0.1706730983 \\
Y &= 0.8156863968899 \quad Y D O T &= -0.121592771 \\
Z &= 0.05406587955571 \quad Z D O T &= 0.01690467092801
\end{align*} \]
Fig 8. Table III Wheeler Orbit--One Month
Fig 9. Table III Wheeler Orbit—Three Months
Fig 10. Table III Wheeler Orbit— Twelve Months
Fig 11. Table III Wheeler Orbit—Sixty Months
Table IV. State Vector of 28.20.3883 Jan 1979

with Wheeler Elements sign as

<table>
<thead>
<tr>
<th>INITIAL POSITION VECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x(1)$: 230.4122019799</td>
</tr>
<tr>
<td>$x(2)$: 230.4122019799</td>
</tr>
<tr>
<td>$x(3)$: 4.083553402214</td>
</tr>
<tr>
<td>$x(4)$: 4.083553402214</td>
</tr>
<tr>
<td>$x(5)$: 4.083553402214</td>
</tr>
<tr>
<td>$x(6)$: 4.083553402214</td>
</tr>
<tr>
<td>$x(7)$: 4.083553402214</td>
</tr>
<tr>
<td>$x(8)$: 4.083553402214</td>
</tr>
<tr>
<td>$x(9)$: 4.083553402214</td>
</tr>
<tr>
<td>$x(10)$: 4.083553402214</td>
</tr>
<tr>
<td>$x(11)$: 4.083553402214</td>
</tr>
<tr>
<td>$x(12)$: 4.083553402214</td>
</tr>
<tr>
<td>$x(13)$: 4.083553402214</td>
</tr>
<tr>
<td>$x(14)$: 4.083553402214</td>
</tr>
<tr>
<td>$x(15)$: 4.083553402214</td>
</tr>
<tr>
<td>$x(16)$: 4.083553402214</td>
</tr>
<tr>
<td>$x(17)$: 4.083553402214</td>
</tr>
<tr>
<td>$x(18)$: 4.083553402214</td>
</tr>
</tbody>
</table>

ROTATING FRAME COLONY POSITION AND VELOCITY

- $x = -0.7363274298999$ \(X\dot{} = -0.1696730983\)
- $y = 0.8156863968899$ \(Y\dot{} = -0.120592771\)
- $z = 0.05406587955571$ \(Z\dot{} = -0.01590467092801\)
Fig 12. Table IV Modified Wheeler Orbit--One Month
Fig 13. Table IV Modified Wheeler Orbit—Three Months
Fig 14. Table IV Modified Wheeler Orbit--Twelve Months
Fig 15. Table IV Modified Wheeler Orbit—Sixty Months
<table>
<thead>
<tr>
<th>Index</th>
<th>Value</th>
<th>Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7363274298999</td>
<td>11</td>
<td>0.05406587955571</td>
</tr>
<tr>
<td>2</td>
<td>-1.7363274298999</td>
<td>12</td>
<td>0.01690467092801</td>
</tr>
<tr>
<td>3</td>
<td>-0.8156063968099</td>
<td>13</td>
<td>0.1904859617353</td>
</tr>
<tr>
<td>4</td>
<td>-1.082237274618</td>
<td>14</td>
<td>-0.05999982616972</td>
</tr>
<tr>
<td>5</td>
<td>0.05406587955571</td>
<td>15</td>
<td>0.05406587955571</td>
</tr>
<tr>
<td>6</td>
<td>0.0012391184736</td>
<td>16</td>
<td>-0.01790467092801</td>
</tr>
<tr>
<td>7</td>
<td>0.5701945487225</td>
<td>17</td>
<td>0.01790467092801</td>
</tr>
<tr>
<td>8</td>
<td>-0.7312694719864</td>
<td>18</td>
<td>-0.01790467092801</td>
</tr>
<tr>
<td>9</td>
<td>0.05406587955571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.1940024128416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.1502478807353</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ROTATING FRAME COLONY POSITION AND VELOCITY

X = -0.7363274298999 XDOT = -0.1716730283
Y = 0.8156063968099 YDOT = -0.122572771
Z = 0.05406587955571 ZDOT = -0.01790467092801
Fig 16. Table V Modified Wheeler Orbit--One Month
Fig 17. Table V Modified Wheeler Orbit--Three Months
Fig 18. Table V Modified Wheeler Orbit—Twelve Months
Fig 19. Table V Modified Wheeler Orbit—Sixty Months
The state vector contained in Table VI is not coincident with a new moon. Indeed, it is 5.01 days prior to the new moon, but an important point is the initial position is precisely the initial position of the Wheeler orbit. The velocities differ only in the third decimal place. The state vector is integrated forward to the new moon to find the set of initial conditions required for a stable orbit. This
Fig 20. Cross Section of Orbit of Fig 11
Fig 21. Cross Section of Orbit of Fig 15
Fig 22. Cross Section of Orbit of Fig 19
<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X(1)</td>
<td>0.123456789</td>
</tr>
<tr>
<td>X(2)</td>
<td>987654321</td>
</tr>
<tr>
<td>X(3)</td>
<td>-0.123456789</td>
</tr>
<tr>
<td>X(4)</td>
<td>9.876543210</td>
</tr>
<tr>
<td>X(5)</td>
<td>6.543210987</td>
</tr>
<tr>
<td>X(6)</td>
<td>0.001234567</td>
</tr>
<tr>
<td>X(7)</td>
<td>-0.98765432</td>
</tr>
<tr>
<td>X(8)</td>
<td>8.765432109</td>
</tr>
<tr>
<td>X(9)</td>
<td>7.654321098</td>
</tr>
<tr>
<td>X(10)</td>
<td>6.543210987</td>
</tr>
<tr>
<td>X(11)</td>
<td>5.432109876</td>
</tr>
<tr>
<td>X(12)</td>
<td>4.321098765</td>
</tr>
<tr>
<td>X(13)</td>
<td>3.210987654</td>
</tr>
<tr>
<td>X(14)</td>
<td>2.109876543</td>
</tr>
<tr>
<td>X(15)</td>
<td>1.098765432</td>
</tr>
<tr>
<td>X(16)</td>
<td>0.987654321</td>
</tr>
<tr>
<td>X(17)</td>
<td>-0.876543210</td>
</tr>
<tr>
<td>X(18)</td>
<td>-0.765432109</td>
</tr>
</tbody>
</table>

INITIAL CONDITION:

\[
X(0) = 0.123456789
\]

ROTATING FRAME:

\[
X = -0.7363274299
\]

Y:

\[
0.81568639689
\]

Z:

\[
0.07847315514708
\]
Fig 23. Table VI Stable Orbit Candidate--One Month
Fig 24. Table VI Stable Orbit Candidate--Three Months
Fig 25. Table VI Stable Orbit Candidate—Twelve Months
Fig 26. Table VI Stable Orbit Candidate--Sixty Months
Fig 27. Cross Section of Orbit of Fig 26
Fig 28. Stable Orbit Candidate -- 60-120 Months
Fig 29. Cross Section of Orbit of Fig 28
Fig 30. Cross Section of Stable Orbit-- 600+ Months
VIII contains the state vector of 23.8 Jan 1973 with the stable orbit elements. The subsequent plots and cross sections are contained in Fig's 31 through 39. These plots are essentially the same as the plots that are produced from Table VI, and the conclusion can be reached that the state vector is at least marginally stable. Further investigation of this state vector does indeed show marginal stability for the system, but the results are inseparable from those produced from Table VI, and are therefore not reproduced here.

Finally, Ref [3:54] refers to a 180° out of phase orbit as proposed by Ref 6. To search for this orbit the state vector from Table VI was integrated forward for fifteen time steps, or half the period. The satellite's position and velocity vector is then recorded for use in the system analysis. The state vector of Table VI is then combined with this position and velocity vector and tested for stability. The vector produces a similar orbit to that produced in Table VI and is reproduced in Table IX. The orbits and their cross section for a period of sixty months are produced in
Table VII. State Vector of 22.263983 Jan 1979 Including Stable State Effects

Initial Conditions Before

<table>
<thead>
<tr>
<th>Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X(1)</td>
<td>2.32 @ 112.6015398</td>
</tr>
<tr>
<td>X(2)</td>
<td>-0.475047023747</td>
</tr>
<tr>
<td>X(3)</td>
<td>-0.018572072523</td>
</tr>
<tr>
<td>X(4)</td>
<td>5.433425236665</td>
</tr>
<tr>
<td>X(5)</td>
<td>-4.984555482214</td>
</tr>
<tr>
<td>X(6)</td>
<td>0.00999291601845</td>
</tr>
<tr>
<td>X(7)</td>
<td>0.5701945487225</td>
</tr>
<tr>
<td>X(8)</td>
<td>-0.7312694719064</td>
</tr>
<tr>
<td>X(9)</td>
<td>0.05406587955571</td>
</tr>
<tr>
<td>X(10)</td>
<td>0.1940024128416</td>
</tr>
<tr>
<td>X(11)</td>
<td>0.1502478807353</td>
</tr>
<tr>
<td>X(12)</td>
<td>-0.01690467092801</td>
</tr>
<tr>
<td>X(13)</td>
<td>-0.5646495963434</td>
</tr>
<tr>
<td>X(14)</td>
<td>-0.9507939452589</td>
</tr>
<tr>
<td>X(15)</td>
<td>0.1214735632235</td>
</tr>
<tr>
<td>X(16)</td>
<td>0.1815202065839</td>
</tr>
<tr>
<td>X(17)</td>
<td>-0.09474670225174</td>
</tr>
<tr>
<td>X(18)</td>
<td>-0.002393534068482</td>
</tr>
</tbody>
</table>

Rotating Frame Colony Position and Velocity

- **X** = -0.4025971030472
 - **D** = -0.1863345732598
- **Y** = 1.029929058532
 - **D** = -0.08488786601906
- **Z** = 0.1214735632235
 - **D** = -0.002393534068482
Table VIII. Sensitivity Test State Vector

INITIAL CONDITIONS VECTOR

$X(1) = 2.69532365323$
$X(2) = 7.5270947063$
$X(3) = -0.155242696305$
$X(4) = 5.788942315224$
$X(5) = 7.5470947063$
$X(6) = 0.001682791094172$
$X(7) = -0.6116525585634$
$X(8) = -0.751139719598$
$X(9) = 0.7847315515033$
$X(10) = 0.1901730539485$
$X(11) = -0.1315409385366$
$X(12) = 0.008262800093982$
$X(13) = -1.096901223061$
$X(14) = -0.06580341132929$
$X(15) = 0.7847315514708$
$X(16) = -0.001915574420186$
$X(17) = -0.00673160606069$
$X(18) = 0.01826280010529$

ROTATING FRAME COLONY POSITION AND VELOCITY

$x = -0.7363274299$ $xdot = -0.162673098$
$y = 0.81568639689$ $ydot = -0.127592776$
$z = 0.07847315514708$ $zdot = 0.01826280010529$
Fig 31. Table VIII Sensitivity Orbit--One Month

64
Fig 32. Table VIII Sensitivity Orbit--Three Months
Fig 33. Table VIII Sensitivity Orbit—Twelve Months
Fig 34. Table VIII Sensitivity Orbit--Sixty Months
Fig 35. Cross Section of Orbit of Fig 34
Fig 36. Sensitivity Orbit 60-120 Months
Fig 37. Cross Section of Orbit of Fig 36
Fig 38. Sensitivity Orbit 120-180 Months
Fig 39. Cross Section of Orbit of Fig 38
Table IX. State Vector of 180° Out of Phase Orbit

INITIAL CONDITIONS VECTOR

<table>
<thead>
<tr>
<th>X(i)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X(1)</td>
<td>204.3194374608</td>
</tr>
<tr>
<td>X(2)</td>
<td>-324.0192778463</td>
</tr>
<tr>
<td>X(3)</td>
<td>-.01548148447034</td>
</tr>
<tr>
<td>X(4)</td>
<td>5.772936900824</td>
</tr>
<tr>
<td>X(5)</td>
<td>3.594798567616</td>
</tr>
<tr>
<td>X(6)</td>
<td>.000169497899237</td>
</tr>
<tr>
<td>X(7)</td>
<td>-.5624053126209</td>
</tr>
<tr>
<td>X(8)</td>
<td>-.7970584467333</td>
</tr>
<tr>
<td>X(9)</td>
<td>.08042470200617</td>
</tr>
<tr>
<td>X(10)</td>
<td>.198522285084</td>
</tr>
<tr>
<td>X(11)</td>
<td>-.12056023687</td>
</tr>
<tr>
<td>X(12)</td>
<td>.007137337369057</td>
</tr>
<tr>
<td>X(13)</td>
<td>-.8200582334128</td>
</tr>
<tr>
<td>X(14)</td>
<td>.4868110858079</td>
</tr>
<tr>
<td>X(15)</td>
<td>.0785</td>
</tr>
<tr>
<td>X(16)</td>
<td>-.07662306948368</td>
</tr>
<tr>
<td>X(17)</td>
<td>-.2249784474187</td>
</tr>
<tr>
<td>X(18)</td>
<td>.0213</td>
</tr>
</tbody>
</table>

ROTATING FRAME COLONY POSITION AND VELOCITY

<table>
<thead>
<tr>
<th>X</th>
<th>XDOT</th>
<th>Y</th>
<th>YDOT</th>
<th>Z</th>
<th>ZDOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.0750263</td>
<td>-.228</td>
<td>.950711099</td>
<td>-.0670999</td>
<td>.0785</td>
<td>.0213</td>
</tr>
</tbody>
</table>
Fig 40. 180° Out of Phase Orbit--One Month
Fig 41. 180° Out of Phase Orbit—Three Months
Fig 42. 180° Out of Phase Orbit—Twelve Months
Fig 43. 180° Out of Phase Orbit--Sixty Months
Fig 44. Cross Section of Orbit of Fig 43
Fig 45. 180° Out of Phase Orbit 60-120 Months
Fig 47. 180° Out of Phase Orbit 120-180 Months
Fig 48. Cross Section of Orbit of Fig 47
Fig 49. 180° Out of Phase Orbit 180-228 Months
Fig 50. 180° Out of Phase Orbit 180-240 Months
Fig 51. Cross Section of Orbit of Fig 50
The primary conclusion of the report is stable orbits do exist in the three dimensional system. These orbits are stable for at least fifty years and allow planners to select vehicles whose lifetimes compare with this period of stability. Additionally, the stable orbits are nominally insensitive to injection error and can be maintained with a small initial correction to the actual stable orbit. The addition of a marginally stable orbit 180° out of phase with the stable orbit increases the coverage available to remote sensing equipment stationed in the Lagrangian vicinities. Also, the 180° orbit is marginally stable for twenty years, which is a sufficient period for an unmanned satellite. The use of a controller would probably insure the stability of that particular orbit for an additional ten years.
THREE DIMENSIONAL ORBITAL STABILITY ABOUT THE EARTH-MOON EQUILIBRIUM

DECEMBER 80 H A TILTON

UNCLASSIFIED

AFIT/6A/AA/800-4

NL
The state vector producing the stable orbit was found completely by accident. The state of the new moon was read and the state vector produced for one day short of the actual new moon. This was a very fortunate error, because the stable orbit was found almost immediately. The state vector in Table VI has a position vector differing in magnitude by approximately .5 MD, or 200,000 kilometers. In hindsight, the problem has become much more rigorous than initially thought. The stable orbit would not have been found if the error had not occurred. Further, from an analysis of the pertinent figures, if a different ephemeris was selected, the orbit would not have been found either. Wheeler's initial conditions are only approximately matched in the first three months, and then again only after a period in excess of five years.

The error and ephemeris selection were tested to define the uniqueness of the stable orbit. The state vector of Table VI was integrated forward for a random length of time, where the Wheeler conditions were inserted in the prospect of reproducing the stable orbit. While not conclusive, the results indicated that the conditions were unique for a short time period, i.e. five years. The fact that a stable orbit using the Wheeler conditions at a new moon was not discovered, does not discount the possibility of one existing. The fact that the orbits are very ephemeris oriented should allow for the discovery of one using the correct ephemeris. The search for such an orbit was not
Further research in this area should include the use of controllers on all orbits described, to increase their period of stability. It should be noted that upon the orbit's setup date, initially, it should consist of an initial orbit using the Wheeler initial conditions, should be continued to prove or disprove the possibility of a stable orbit existing with a starting point as a new moon. Finally, the orbits described should be extended to the end of their stability in a search of the stable lifetime. The orbit in Table VI was actually integrated in excess of sixty years and showed no sign of decaying into instability.

Appendix A

Subroutine Containing the Equations of Motion

SUBROUTINE F(T, X, DX, NEQN)
COMMON/DFIL/GSUN, MDA, MS, MU, GE, PI
DIMENSION X(18), DX(18)
REAL MS, MDA, MU
RS=SQR((ABS(X(1))**2+(ABS(X(2))**2+(ABS(X(3))**2))
RM=SQR((ABS(X(7))**2+(ABS(X(8))**2+(ABS(X(9))**2))
RC=SQR((ABS(X(13))**2+(ABS(X(14))**2+(ABS(X(15))**2))
RC=SQR((ABS(X(13)-X(1))**2+(ABS(X(14)-X(2)))**2+(ABS(X(1 &5)-X(3))**2)
RM=SQR((ABS(X(13)-X(7))**2+(ABS(X(14)-X(8)))**2+(ABS(X(1 &5)-X(9))**2)
RMS=SQR((ABS(X(7)-X(1))**2+(ABS(X(8)-X(2)))**2+(ABS(X(9)- &X(3))**2)
DX(1)=X(4)
DX(2)=X(5)
DX(3)=X(6)
DX(4)=-GSUN*X(1)/RS**3
DX(5)=-GSUN*X(2)/RS**3
DX(6)=GSUN*X(3)/RS**3
DX(7)=X(10)
DX(8)=X(11)
DX(9)=X(12)
DX(10)=GE*(X(7)/RM**3-MS*(((X(7))-X(1))/RMS**3)+X(1)/RS**3)
DX(11)=GE*(X(8)/RM**3-MS*(((X(8))-X(2))/RMS**3)+X(2)/RS**3)
DX(12)=GE*(X(9)/RM**3-MS*(((X(9))-X(3))/RMS**3)+X(3)/RS**3)
DX(13)=X(16)
DX(14)=X(17)
DX(15)=X(18)
DX(16)=GE*-(1-MU)*X(13)/RCS**3-MS*(((X(13))-X(1))/RCS**3 &+X(1)/RCS**3)+MU*(((X(13))-X(1))/RCS**3)
DX(17)=GE*-(1-MU)*X(14)/RCS**3-MS*(((X(14))-X(2))/RCS**3 &+X(2)/RCS**3)+MU*(((X(14))-X(2))/RCS**3)
DX(18)=GE*-(1-MU)*X(15)/RCS**3-MS*(((X(15))-X(3))/RCS**3 &+X(3)/RCS**3)+MU*(((X(15))-X(3))/RCS**3)
RETURN
END
Appendix B

Subroutine For Determining the Velocity Correction Vector

_SUBROUTINE ENT(F,TOUT,I1,I2,A1,A2,A3,X)
COMMON /DFIL/GSUNMDAYMDIEPMS;MUYGEiFI
DIMENSION X(18),XC(18),XD(18)
DIMENSION R1(3),AC(3)
DIMENSION A(393),YB(3),YC(3r3)
DIMENSION WKAREA(800),IWORK(30)
REAL MS,MU,MDE,MBA
REAL LAT,PLON
DO 10 KK=1,3
DO 1 I=1,18
XC(I)=X(I)
XD(I)=0.
1 CONTINUE
IF(II.GT.1)G0109
AC(1)=A1
AC(2)=A2
AC(3)=A3
9 IF(II.LT.7)GOTO11
AC(1)=A1*COS(A2)*COS(A3)
AC(2)=A1*SIN(A2)*COS(A3)
AC(3)=A1*SIN(A3)
11 NEQN=18
ERR=1E-9
IFLAG=1
T=0.
CALL ODE(F,NEQN,XC,T,TOUT,ERR,ERR,IFLAG,WKAREA,IWORK)
DO 2 I=1,18
XD(I)=XC(I)
2 CONTINUE
I3=I4+2
DO 3 I=I1,I3
R1(I-(I1-I))=(XC(I)-AC(I-(I1-I)))
3 B(I-(I1-I))=XC(I)
DELTAV=1E-4
DO 4 I=1,3
DO 8 K=1,18
XC(K)=X(K)
XC(I+(I2-1))=XC(I+(I2-1))+DELTAV
IFLAG=1
T=0.
CALL ODE(F,NEQN,XC,T,TOUT,ERR,ERR,IFLAG,WKAREA,IWORK)
DO 5 J=1,3
A(J,I)=XC(J+(I1-I1))-XD(J+(I1-I))
A(J,I)=A(J,I)/DELTAV
5 CONTINUE
4 CONTINUE
IDGT=7
N=3
N1=1
CALL LINV2F(A,N,N,C,IDGT,WKAREA,IER)
CALL VMULFF(C,R1,N,N1,N1,N1,B,N11ER)
DO 7 I=1,3
X(I+(I2-1))=X(I+(I2-1))-B(I)
7 CONTINUE
Appendix C

Subroutine Used to Transform to the Rotating Frame

SUBROUTINE COLROT(I, N, T, X, PI)
DIMENSION X(18)
THETA = ATAN2(X(8), X(7)) + PI
IF (THETA .LT. 0) THETA = THETA + 2. * PI
A = X(13) * COS(THETA) + X(14) * SIN(THETA)
B = -X(13) * SIN(THETA) + X(14) * COS(THETA)
C = X(15)
AD = X(16) * COS(THETA) + X(17) * SIN(THETA)
BD = -X(16) * SIN(THETA) + X(17) * COS(THETA)
IF (I .NE. N) GO TO 1
PRINT*," '*
PRINT*," '*
PRINT*," ROTATING FRAME COLONY POSITION AND VELOCITY'
PRINT*," '*
PRINT*, "X = 'A, " XDOT = 'AD
PRINT*," '*
PRINT*, "Y = 'B, " YDOT = 'BD
PRINT*," '*
PRINT*, "Z = 'C, " ZDOT = 'X(18)
PRINT* *
1 WRITE(6), T, A, B, C
RETURN
END
Appendix D
Plotting Subroutine

A=X(I)
B=X(I+1)
IF((A-XL)*(B-XL).GE.0)GO TO 4
XIN=ABS(X(I)-X(I+1))
DX=XL-A
DX=DX/XIN
YIN=Y(I+1)-Y(I)
DY=DX*YIN
L=L+1
Y(L)=Y(I)+DY
ZIN=Z(I+1)-Z(I)
DZ=DX*ZIN
Z(L)=Z(I)+DZ
CONTINUE
CALL PLOT(0,0,-3)
PRINT*:"NUMBER OF PLOT?"
READ 15,HFD
CALL SYMBOL(0.,0.,25,HFD,0.,2)
FORMAT(1A2)
CALL PLOT(.5,.5,3)
CALL PLOT(9.25,.5,2)
CALL PLOT(9.25,6.5,2)
CALL PLOT(.5,6.5,2)
CALL PLOT(.5,.5,2)
CALL PLOT(1.,1.,-3)
CALL SCALE(YX,7.75,L,1)
CALL SCALE(ZX,5,L,1)
CALL AXIS(0.,0.,7HYX-AXIS,-7,7,75,0.,YX(L+1),YX(L+2))
CALL AXIS(0.,0.,7HZX-AXIS,7,5,90.,ZX(L+1),ZX(L+2))
CALL LINE(YX,ZX,L,1,-2,1)
CALL LINE(YX,ZX,L,1,-1,4)
CONTINUE
PRINT*:"HOW MANY TO PLOT?"
READ*,N1
DO 11 II=1,N1
XX(II)=X(II)
YY(II)=Y(II)
CONTINUE
CALL PLOT(15,0.,-3)
CALL PLOT(-.5,5,3)
CALL PLOT(8.25,-.5,2)
CALL PLOT(-.5,5,2)
CALL PLOT(-.5,-.5,2)
CALL SCALE(XX,7.75,N1,1)
CALL SCALE(YY,5,N1+1)
CALL AXIS(0.,0.,6HYX-AXIS,-6,7,75,0.,XX(N1+1),XX(N1+2))
CALL AXIS(0.,0.,6HZX-AXIS,6,5,90.,YY(N1+1),YY(N1+2))
CALL LINE(XX,YY,N1,1,30,2)
Appendix E

Main Interactive Program

PROGRAM MAIN(INPUT,OUTPUT,TAPE5,TAPE6,TAPE7,TAPE8)
DIMENSION X(18),WKAREA(800),IWORK(30)
COMMON /DFIL/GSUN,MDA,MDE,MS,MU,GE,PI
REAL MS,MU,MDA,MDE
REAL LAT,LON
EXTERNAL F
DATA GSUN,MDA,MDE,MS,MU,GE/1.7442438E4,2.5695187E-3,
& 0.268165,3.28912,.0121506683,5.2386349E-2/
PI=ACOS(-1.)

C INITIAL POSITION VECTOR

PRINT*,"#3 EQUINOX OF 1950.0"
REWIND 5
READ(5) T,X
REWIND 6
NEQN=18
I=1
N=1
DELTAT=29.530589/30.
TOUT=DELTAT
ERR=1E-9
PRINT*,"INPUT NUMBER OF DAYS TO INTEGRATE---1874 OR LESS"
READ*,NN
CALL COLROT(I,N,T,X,PI)
REWIND 6
CALL COLLOC(T,X,PI)
PRINT*
CALL COLROT(I,N,T,X,PI)
NN=NN+1
DO 2 I=2,NN
IFLAG=1
1 CALL ODE(F,NEQN,X,T,TOUT,ERR,ERR,IFLAG,WKAREA,IWORK)
T=TOUT
TOUT=TOUT+DELTAT
CALL COLROT(I,NN,T,X,PI)
CONTINUE
2 CONTINUE
REWIND 7
WRITE(7)T,X
STOP
END
SUBROUTINE COLLOC(T,X,PI)
DIMENSION X(18)
THETA=ATAN2(X(8),X(7))+PI
IF (THETA.LT.0) THETA=THETA+2.*PI
PRINT*,"INPUT NEW INITIAL CONDITIONS? 1=YES,0=NO"
READ*, N
IF(N.EQ.1)GOTO1
PRINT*,"INPUT DELTAS TO INITIAL CONDITIONS?"
READ*, N
IF(N.EQ.0)GOTO2
PRINT*,"INPUT DELTA VALUES"
READ*, A,B,C,AD,BD,CD
A1=X(13)*COS(THETA)+X(14)*SIN(THETA)
B1=-X(13)*SIN(THETA)+X(14)*COS(THETA)
AD1=X(16)*COS(THETA)+X(17)*SIN(THETA)
BD1=-X(16)*SIN(THETA)+X(17)*COS(THETA)
A=A+A1
B=B+B1
C=X(15)+C
AD=AD+AD1
BD=BD+BD1
CD=CD+X(18)
GOTO4
1 PRINT*,"INPUT NEW INITIAL CONDITIONS"
READ*, A,B,C,AD,BD,CD
CONTINUE
X(13)=A*COS(THETA)-B*SIN(THETA)
X(14)=A*SIN(THETA)+B*COS(THETA)
X(15)=C
X(16)=AD*COS(THETA)-BD*SIN(THETA)
X(17)=AD*SIN(THETA)+BD*COS(THETA)
X(18)=CD
2 PRINT*,"DO YOU WANT THE CONDITIONS ON FILE?"
PRINT*,""
READ*, N
REWRITE 8
IF(N.EQ.1)WRITE(8),T,X
PRINT*,""
PRINT*, "INITIAL CONDITIONS VECTOR"
DO 3 I=1,18
3 PRINT*, X("",I,"")= X(I)
CONTINUE
RETURN
END
In February of 1968, Capt. Tilton attended basic training at Lackland AFB, Texas. While enlisted he attended various technical training schools and was assigned to Nellis AFS, Nevada, Clark AB, Phillipine Islands, and Takhli RTAFB, Thailand, through July 1973. During this period, he attained sufficient college credit to be accepted to AFIT's Airman's Education and Commissioning Program and attended the University of Texas at Austin. He graduated in 1975 with a BS in Aerospace Engineering. Following Officer Training School, Captain Tilton was assigned to Sunnyvale, AFS, California where he performed duties as a Satellite Operations Director.

Captain Tilton married Theresa Tilton in August of 1970. They have one son, William, and currently reside in Dayton, Ohio. Following graduation from AFIT School of Engineering, Captain Tilton will be assigned to SAC Hqs., Offutt AFB, Neb. where he will work in the field of satellite survivability.
Three Dimensional Orbital Stability About The Earth-Moon Equilateral Libration Points

Howard A. Tilton
Captain, USAF

Air Force Institute of Technology (AFIT-EN)
Wright Patterson AFB, OH, 45433

12 Dec 1980

Approved for public release; distribution unlimited

A search for a stable three dimensional orbit for a satellite about L4 is performed. A proposed two dimensional very restricted orbit is used to supply the initial conditions required for the search. An ephemeris of high accuracy is generated from a specific date and time using actual positions for the sun and moon. The generated sun and moon position and velocity vectors are used in the integration of the system's equations of motion. A stable orbit is found and is tested for its length of stability. The orbit is found to have a
20. Stable limits in terms of six hundred lunar synodic months. The sensitivity of the orbit to the sun's and moon's position is tested and found to be highly sensitive to an error in position of one quarter day. Finally, a predicted 180° out of phase orbit is found and is determined to be only marginally stable.