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I.  INTRODUCTION 

A solution formulation and some numerical results are presented for beam 

motions subjected to moving loads.  Most of the work on this problem has been 

related to rail and bridge design (see, for example, reference 1 and many 

papers cited there from 1910 to 1971).  However, the application of the analy- 

sis can obviously be extended to tracks for rocket firing and to gun 

dynamics.^ 

In Section II of this report, a variational formulation for a moving 

force problem is described.  Also given are the procedures which lead to 

finite element matrix equation.  A detailed description of the treatment of a 

concentrated moving force is given in Section III.  The variational problem 

associated with a gun tube dynamics is presented in Section IV.  This gun-tube 

problem contains the moving mass problem as a special case.  Finite element 

solution can be derived from this formulation,' but the details of this more 

complicated problem is omitted from the present report.  Some of the numerical 

problem are reported in the last section and are compared with results 

obtained from series solutions. 

^■Fryba, L. , Vibrations of Solids and Structures Under Moving Loads, Noordhoff 
International Publishing Company, Groningen, 1971. 

2Wu, J. J., "The Initial Boundary Value of Gun Dynamics Solved by Finite 
Element Unconstrained Variational Formulations," Innovative Numerical 
Analysis For the Applied Engineering Science, R. P. Shaw, et al.. Editors, 
University Press of Virginia, Charlottesville, 1980, pp. 733-741. 



II.  SOLUTION FORMULATION FOR A MOVING FORCE PROBLEM 

In this section, the solution formulation will be described In detail for 

a moving force problem.  The moving mass problem will be Included as a special 

case of a more general problem of gun motions analysis given In a later 

section. 

Consider a vertical force P moving on an Euler-Bernoulll beam.  The 

differential equation Is given by 

Ely"" + pAy = P6(x-x) (1) 

where y(x,t) denotes the beam deflection as a function of spatial coordinate x 

and time t.  E, I, A, p denote elastic modulus, second moment of Inertia, area 

and material density respectively.  A Dirac function Is denoted by 6 , x = x(t) 

Is the location of P, a prime (') denotes differentiation with respect to x 

and a dot (•), differentiation with respect to t. 

Introducing nondimensional quantities 

A A A 

y = yM ,  x - x/A ,  t = t/T , (2) 

where H   is  the length of the beam and T is a finite time, within 0 < t < 

T, the problem is of Interest, Eq. (I) can be written as 

y"" + Y2y = QS(x-x) (3) 



The hats (*) have been omitted In Eq. (3) and 

C 
T 

T 
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El 
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(4) 
El 

Boundary conditions associated with Eqs. (1) or (2) will now be introduced in 

conjunction of a variational problem.  Consider 

61 = 0 (5a) 

with 
11 ••    -  - 

i = / J [y"y*" - Y2yy* - QS(x-x)]dxdt 
o o 

+ J dt{k1y(0,t)y*(0,t) + k2y'(0>t)y*
,(0,t)} 

+ Y2/ dx{k5[y(x,0) - Y(x)]y*(x,l)} (5b) 

where y*(x,t) is the adjoint variable of y(x,t).  If one takes the first 

variation of I considering y(x,t) to be fixed: 

(6l)6y=0 = 0 (5a') 

and consider 6y* to be completely arbitrary, it is easy to see that Eq. (5) 

is equivalent to the differential equation (3) and the following boundary and 

initial conditions. 



y-'CO.t) + kiy(0,t) - 0 

y"(0,t) - k2y,(0,t) - 0 
a < t < 1       (6a) 

y"'(l,t) - k3y(l,t) = 0 

y"(l,t) + k4y'(l,t) = 0 
• 
y(x.O) = 0 

and . 0 < x < 1       (5b) 
y(x,l) - k5[y(x,0) - Y(x)] = 0 

Taking appropriate values for k^, k2, k3, and k^,   problems with a wide range 

of boundary conditions can be realized.  The initial conditions in Eqs. (6b) 

are that the beam has zero Initial velocity, and, if one takes k5 to be * (or 

larger number compared with unity), 

y(x,0) = Y(x) 

The meaning for cases where k5 is not so, need not be our concern here. 

To derive the finite element matrix equations, one begins with Eq. 

(Sa*) and write 

(fiDfiy-O = 0 (7a) 

II . .    _  _ 
= /  /  [y'^y*" - Y2y6y* - Q6(x-x)6y*]dxdt 

+/  dt[k1y(0,t)6y*(0,t) + k2y
,(0,t)6y*(0,t) 

+ k3y(l,t)6y*(l,t) + k4y'(1,t)6y*'(1,t)] 

+/  dXY2k5[y(x,0) - Y(x)]6y*(x,l) (7b) 



Introducing element local variables 

(i) 
5=5   = Kx-i+1 

(8a) 

(1) 
n = n   = Lt-j+1 

or 
1 

x = - (5+1-1) 
K 

1 
t = - (5+j-l) 

L 

(8b) 

where K is the number of divisions in x and L, in t.  (A typical grid scheme 

is shown in Figure 2).  Equation (7b) can now be written as 

I    I  ll'llir y"(ij)6y*"(ij) - ~- y(ij)6y*(ij)]^dn 
i=l j=l  0  0 L K 

L  ,1    kl K2 
+ 1 / dn [— y(ij)(0,n)6y*(ij)(0,n) + k2 — y

,(ij)(0,n)6y*,(ij)(0,Ti) 
j-1 0   L 

K  1 d5 
+ I  / - [Y2k5(y(ij)(5.0)6y*(1:))(5,l))] 

1=1  0 K 

K  L Q i  ! _  _ 
=1  I -/ / 6(x-x)6y*(i1)(5.n)d5dn 

i-1 j=l L 0 0 

K Y2k5 i 
+ I      / d5 [i(i)(5)fiy*(iL)(5.l)l (9) 

1=1 K   0 

The shape function vector is now introduced.  Let 

y(ij)(5,n) = aT(5,n)Y(1j) 

y*(ij)(5,n) = aT(5,n)Y*(lj) = Y*
T
(i:j)a(5,n)        (10) 



Equation  (9)  then becomes 

L rK
3 T2L 

I       I     6Y*T(lj)   {-- A - --- B}   Y(lj) 

1-1  J-l L    ~ K    ~     ~ 

M ^2K2 

+ I   6Y*T(ij) ir Bl + "7" B2} K1^ 

L k3 k4K2 

+    I     SJ*T(Kj)   I- B3 + --" B4}   Y(ij) 

K Y2k5 
+    I     «Y*T(iL) {--- B5}   Y(iL) 

K       L Q K Y2k5 
I       I     5J*T - F(lj)  +    I     6Y*T(1L) G(1) (11) 

1=1   j=l     ' L 1=1     ~ K      " 

where,  as it  can be  seen easily,  that 

I     1 

0    0  -»"  -   ,%% 

.1   ,1 

and 

0    0 ~'n  ~  ,n 

Hi   = /     a(0,n)aT(0,n)dn     ,     B2 =  /     a  r(0,n)aT r(0,n)dn 
0~~ - 0  -' ~   ' 

B3 = /     a(l,Ti)aT(l,n)dn     ,     B4 = J     a  r(l,n)aT r(l,n)dn 
0~ ~, ~ O- ~ 

B5 = J a(5,l)aT(5,0)d5 
0 ~ 

F(ij)  - /0 /0 a(5,n)6(ij)(5-i)dCdn     ,     G(i)  -  /    a(5,1)Y(1)(C)d5 

(12) 



Now Eq. (11) can be assembled in a global matrix equation 

6Y*T K Y = 6Y* F (13) 

By virtue of the fact that 6Y* is not subjected to any constrained 

conditions, one has 
K Y = F (14) 

which can be solved routinely.  Numerical results of several problems in 

this class will be presented in a later section. 

III.  FORCE VECTOR DUE TO A MOVING CONCENTRATED LOAD 

We shall describe here the procedures involved to arrive at the force 

vector contributed by a moving concentrated load.  This force vector has 

appeared in Eq. (12) as 

F(ij) = /  / a(5,n)6(i;j)(5-C)d^dTi (15) 

The shape function a(5,Ti) is a vector of 16 in dimension.  In the present 

formulation we have chosen the form: 

ak(e.n) = b1(Obj(n)  ,     k = 1,2,3,... 16 (16) 
l,j = 1,2.3,4 

The relations between k and i,j are given in Table I.  These are the conse- 

quences of the choice of the shape function such that Y(:M\, the generalized 

coordinates of the (lj)th element, represent the displacement, slope, veloc- 

ity, and angular velocity at the local nodal points.  Thus 

S  -    P-i 
MO = I    bip5 (17) 

P-l 

The values of b^p are given in Table II. 



TABLE I.  RELATIONSHIP BETWEEN (l.J) AND k IN EQUATION (16) 

1 

2 

3 

4 

5 

6 

7 

8 

(l.j) 

(l.D 

(2,1) 

(1,2) 

(2.2) 

(3,1) 

(4,1) 

(3,2) 

(4,2) 

9 

10 

11 

12 

13 

14 

15 

16 

(l,j) 

(1,3) 

(2,3) 

(1,4) 

(2.4) 

(3,3) 

(4,3) 

(3,4) 

(4,4) 

TABLE II.  VALUES OF bip IN EQUATION (17) 

1 

2 

3 

4 

i 
1      1 2 3 4 

1       1 0 -3 1 

0 1 -2 1 

1      o 0 3 -2 

1      o 1     o I     -1 I     1 



Now, let us consider 6(ij)(£-0•  This "function" represents the 

effect of the Dlrac delta function 6(x-x) on the (lj)th element.  If the 

curve of travel x = x(t) does not go through the element (l,j), 6 (ij) (£-£;) 

= 0.  If It passes through that element, one has 

6(lj)(C K)  = 6(x-x) = K6(£-i) (18a) 

with 

5 = 5(n) (18b) 

The function £(ri) Is derived from x = x(t).  For example. If the force 

moves with a constant velocity, one has 

x = x(t) = vt (19a) 

It follows from Eqs. (8) that 

-  - vK 
5 - 5(n) = -i+i + — (n-t-j-D (19b) 

With Eqs.   (16),   (17),   (18),  and  (19),  one writes  (15)  as 

r1    r1 "       " F(li)k = Kj     J     aka,n)6U-Od5dTi (20a) J 0     0 

,1    .1   -     - p-1   q-1-       - 
F(ij)k - K/   /   bipbjq C     n     6(5-£)d5dTi 

0    0 (20b) 

Equation (20) can then be evaluated easily once the exact form of K   Is 

written.  For example. If 5 ■ H, Eq. (20) reduces to 



p=l q=l 
F(ij)k =  ^  ^ k bip biq /0 ^    d5 

4  4 kbipb^ 
);   I    —Li5 (21) 

p=l q=l  P+q-1 

IV.  A. GUN DYNAMICS PROBLEM AND THE MOVING MASS PROBLEM 

In this section, the solution formulation of a gun tube can be obtained 

as a special case to the gun tube motion problem. The differential equation 

of this problem can be written as:J 

(Ely")" + [PU.Oy']' + pAy 

= - P(x,t)y"(x,t)H(x-x) 

- mp[x2y" + 2xy' + y]6(x-x) 

+ (mp g cos a)6(x-x) + pA g cos a (22) 

The notations are the same as in the previous section if they have already 

been defined.  The "gun tube" is replacing the "beam" whenever appropriate. 

The new notations are defined here: 

P(x,t) = irR2(x)p(t) - axial force in the tube due to internal 

pressure alone 

R(x)  * inner radius of tube 

p(t)   = internal pressure 

3J. J. Wu, "A Computer Program and Approximate Solution Formulation For Gun 
Motions Analysis," Technical Report ARLCB-TR-79019, US Army Armament Research 
and Development Command, Benet Weapons Laboratory, June 1979. 

10 



o,      J0 pAdx 
P(x,t) = [-P(0,t) + g(sln a) J  pAdx]   (23) 

0      j1  pAdx 
o 

= recoil force Including tube inertia in axial direction. 

H(x)   = Heaviside step function 

x = x(t) = position of the projectile 

mp    = mass of projectile 

g     ■ gravitational acceleration 

a     = angle of elevation 

With similar nondimensionalization as before and assuming that the cross- 

section is uniform, ballistic pressure is not time dependent.  Equation can be 

written in dimensionless form 

y"" + [-P + g sin otHU-x^']' + Y2y 

= - P y"H(x-x) 

- Y2mp[x2y" + Zxy' + y]6(x-x) 

+ mp g(cos a)6(x-x) + g(cos a) 
(24) 

Where, now, everything is dimensionless and 

C2  1 pA*> 
T2     =     (25) 

T2  T2  El 

It is also clear that if one drops the second term on the left hand side and 

the first and the last terms on the right hand side in the above equation, the 

equation becomes that for a moving mass problem. 

11 



A varlatlonal  problem associated with the differential  equation of 

Eq.   (24)  can be  obtained through Integratlon-by-parts. 

12 3 

with 

and 

61 =  (6l)y =    I     (SI1)y -    I     (fijj)   » 0 (26a) 
1-1 j-1 

Ii   - J     J   y"y*"dxdt     ;     I2 =  (P-g  sin a)       J   y'y*'dxdt 
00 Z 00 

?fl   A" -A    A 
I3 " -1 i     J   yy*dxdt     ;     I4  = -PJ     J   y,y*,H(x-x)dxdt 

I5 = -P/     /  y'y*'6(x-x)dxdt     ;     I6 = -m32Y2/     J t2y'y*•6(x-x)dxdt 

I7 = -me2Y2/     /  ty'y*'6'(x-x)dxdt     ;     I8 =  2m3Y2/     / ty'y*6(x-x)dxdt 

ll**-- ll*-- 
I9 = -mY2/     /  yy*6(x-x)dxdt     ;     I^Q = -mY2/     / yy*6(x-x)dxdt 

111  = /0  {kiy(0,t)y*(0,t) + k2y(0,t)y*(0,t) + 

k3y(l,t)y*(l,t) + l^y'(l,t)y*«(l,t)fdt 

llZ - k7/    y(x,0)y*(x,l)dx (26b) 

r1   r1 
Ji   = -g cos a J     J   y*dxdt 

0     0 

r1   r1       " " J2 = -gm cos a J     J     y*6(x-x)dxdt 

.1 
J3  = kyj     Y(x)y*(x,l)dx (26c) 

12 



The varlational problem also produces the following initial and boundary value 

conditions in addition to the differential equation: 

y(x,o) = o 

- 1 
y(x,l)[l + mS(- g-x)] + kyEyU.O) - Y(x)] = 0        (27a) 

and 

y"(0,t) - k2y,(0,t) = 0 

y"(l,t) + k4y'(l,t) = 0 

y'^'CC^t) + kiyCO.t) + (-P+g cos a)y,(0,t) + Py,(0,t)H(- 3t2) 
2 

+ m32y'(0,t)6(- gt2) = 0 
2 

y"'(l,t) - k3(l,t) + Py'(l,t)H(- 0t2-l) + m32y,(1,t)6(- 3t2-l) = 0 
2 2 

(27b) 

Other than the fact that the present problem is much more complicated than the 

one associated with a moving force, the basic concept of solution used previ- 

ously does not change and we shall omit the details of solution formulation 

here. 

V.  NUMERICAL DEMONSTRATIONS 

Some numerical results obtained will now be presented.  Let us consider a 

simply-supported beam subjected to a unit moving force with a constant 

velocity 

i 
v = - 

T 

As T varies from " to 0, the velocity varies from 0 to o". 

13 



It  will be  helpful to compare v with some reference velocity which is a 

characteristic of the given beam.     It is known that  for a  simply-supported 

beam,  the  first  mode  of vibration has a  frequency  (see,   for example, 

reference  4) 

w 1       TT
2 ir 

f,   = — => — [—J   = —     (cycles  per  seconds) 
2ir      2ir    C 2C 

and the  period, 

2C 
Ti  = - 

TT 

where 

C2  =  
El 

Consider the vibration as  standing waves.     They travel  at  a  speed 

■ni, 
vi   = 2Afi   - — 

C 

Hence, the relative velocity 
-      v C        Tx 
v = — = — = — 

vi       iiT      2T 

IT 

We shall take C = 1.0 for the moving force problems.  Thus, fi = - 
2 

1.5708 Hz. Ti  '  0.6366 sec. and 

1 

nT 

^K. N. Tong, Theory of Mechanical Vibration, John Wiley, New York, 1960, p. 
257; p. 308. 

14 



Using a grid scheme of 4 x 4, Tables III, IV, and V show the deflections 

as the concentrated force Q = 1.0 moves from the left end to the right end of 

the beam.  Since we have defined that T Is the time required for the load to 

travel from one end to another, t = 0.5T, for example, denotes the point when 

the load is at the mldspan of the beam If v Is constant.  At t = 1.0 T, the 

force has reached the other end and the deflection should be zero In the 

static case. 

Solutions by Fouries series [1] are also obtained and they are also given 

In these tables (numbers in parentheses) for close comparisons. 

Table III shows that for T - 100 sec, v = 1/300 or more or T Is more than 

300 times the natural frequency T^, the deflections as P moves across the beam 

is nearly the static deflection. The dynamic effect of the load In the case T 

= 100, as indicated by the deflection curve at t -1.0 T is indiscernible. For 

v = 1/3 and v = 3.33, the dynamic effect is very much pronounced as indicated 

by Table IV and V. The agreement between the present results compared reason- 

ably well with the series solution in Tables II and III. It is extremely well 

In case of nearly static cases as shown in Table III. 

15 



TABLE III.  DEFLECTION OF A SIMPLY SUPPORTED BEAM UNDER A MOVING LOAD 
(T =■ 100 sec.) 

y(x,t)/i [x lO"1] 

t/T 
x/A 

0. 

0.25 

0.50 

0.75 

1.00 

0. 

0. 
(0.) 

0. 
(0.) 

0. 
(0.) 

0. 
(0.) 

0. 
(0.) 

0.25 

0. 
(0.) 

.1172 
(.1167) 

.1431 
(.1433) 

.0908 
(.0916) 

-.0047 
(-.0002) 

0.50 

0. 
(0.) 

.1432 
(.1426) 

.2082 
(.2085) 

.1427 
(.1438) 

-.0066 
(-.0003) 

0.75 

0. 
(0.) 

.0911 
(.0907) 

.1431 
(.1434) 

.1168 
(.1176) 

-.0046 
(-.0002) 

1.00 

0. 
(0.) 

0. 
(0.) 

0. 
(0.) 

0. 
(0.) 

0. 
(0.) 

TABLE IV.  DEFLECTION OF A SIMPLY SUPPORTED BEAM UNDER A MOVING FORCE 
(T = 1.0 sec.) 

cT* 
t/T 

0. 

0.25 

0.50 

0.75 

1.00 

0. 

0. 
(0.) 

0. 
(0.) 

0. 
(0.) 

- 0. 
(0.) 

0. 
(0.) 

y(x,t)/£ [x lO"1] -1- 

0.25 

0. 
(0.) 

.09489 
(.09795) 

.20542 
(.20802) 

.03869 
(.05829) 

-.10200 
(.01994) 

0.50 

0. 
(0.) 

.11349 
(.11414) 

.30402 
(.30257) 

.09522 
(.09397) 

(.05191) 
(.03148) 

0.75 

0. 
(0.) 

.07108 
(.06942) 

.21491 
(.21126) 

.09641 
(.08092) 

(.11574) 
(.02405) 

1.00 

0. 
(0.) 

0. 
(0.) 

0. 
(0.) 

0. 
(0.) 

0. 
(0.) 

16 



TABLE V.  DEFLECTION OF A SIMPLY SUPPORTED BEAM UNDER A MOVING FORCE 
(T = 0.1 sec.) 

y(x,t)/A [x lO"1] 

1   xM "1 
It/T 0. 0.25 0.50 0.75 1.00 i 

1 0. .0 .0 .0 .0 .0 
(.0) (.0) (.0) (.0) (.0)1 

I 0.25 .0 .0619 -.0148 .0043 .0 I 
(.0) (.0645) (-.0149) (.0033) (.0)1 

I 0.50 .0 .2002 .1228 -.0494 .o 1 
(.0) (.1952) (.1262) (-.0479) (.0)1 

I 0.75 .0 .3007 .3837 .0770 .0 1 
(.0) (.2929) (.3849) (.0801) (.0)1 

1 1.00 .0 .4601 .4912 .5767 .0 1 
(.0) (.4018) (.4880) (.5959) (.0)1 
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