COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH
COOLING TENDENCY IN THE SURFACE WATER OF THE NORTH ATLANTIC OCEAN--ETC(U)
NOV 80
UNCLASSIFIED CRREL-TL-751
COOLING TENDENCY IN THE SURFACE WATER OF THE NORTH ATLANTIC OCEAN
NOTICE

The contents of this publication have been translated as presented in the original text. No attempt has been made to verify the accuracy of any statement contained herein. This translation is published without copy editing or graphics preparation in order to expedite the dissemination of information. Requests for additional copies of this document should be addressed to the Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314.
Results from the water temperature measurements from 9 "meteorological ship" positions making up the North Atlantic Ocean Weather Stations (all together about 380,000 observations) over the last 15 years have revealed that the surface temperature of the outer tropical North Atlantic has dropped continuously since the five-year period (1951-55). This phenomenon is considered in detail.
COOLING TENDENCY IN THE SURFACE WATER OF THE NORTH ATLANTIC OCEAN

by

German Meteorological Service
Marine Meteorological Office, Hamburg

The results from the water temperature measurements from 9 "meteorological ship" positions making up the North Atlantic Ocean Weather Stations (abbreviated: OWS) taken over the last 15 years have been compiled, thus revealing - as a portion of all together about 380,000 observations - that the surface temperature of the outer tropical North Atlantic since the five-year period, 1951-1955, has dropped continuously (Figure 1). At the beginning of the present decade a slight recurrence did appear but this made up only 0.02°, whereas the previous drop loses an overall 0.34°.

Of course, in the development of the ocean surface temperature considerable regional variations exist. Figure 2 shows the regional distribution of the variations in water temperature. Only the European North Sea has become warmer and, above all, the Irminger Sea between Iceland and South Greenland. The greatest amount of cooling occurred in the waters of station D "Gulf Stream", off southern Newfoundland. However, in the western portion of the ocean the entire area between 35° and 55° North appears to have become more than 0.5° cooler.

A test at St. Andrews (St. A.) of the Canadian coastal waters shows that the coastal waters here were cooler by about the same amount (1.4°) as the ocean surface at OWS D, more than 1,000 nautical miles further east. The cooling in the abovementioned amount extends southward over the entire coast of the USA.

Therefore, it is necessary to consider the phenomenon in much greater detail. Since the 1949-53 five-year period in St. Andrews was the warmest
since the measuring started in 1921 and - according to the air temperature series reports back to 1874 from Halifax, New Scotland - the warmest five year period in at least 80 years, the recent cooling trend appears to be interrupting the "centennial warming" in the North Atlantic.

The trend curves from OWS N (Figure 3) and OWS A (figure 4) demonstrate the two extremes of development. The sharpest temperature drop and the most marked warming. These point to a type of vacillation action between the southwestern and the northwestern North Atlantic. This in fact was very pronounced in the 1951-60 decade.

These opposing regional developments were indeed connected to the formation of the atmospheric circulation over the North Atlantic. It begins an extension - climatically - of the Iceland depression to the south and the cooling results in the area of intense cyclic activity (intense westerly winds), while the warming boundary in the marine area occurs with increased formation of southeasterly winds.

The character of the vacillation of the variations in the water temperature is like that of a stationary vibration. However, it appears also to be an anomalous shift in the cycle. Namely, the dates of the temperature maximums according to the trend curves (5-year, overlapping average) of the individual stations, i.e., of the onset of cooling, on a chart, thus results in the illustration represented by Figure 5. In it the year number represents the middle year of the warmest five year period (e.g., 1953 = 1951-55); the value in the parentheses stands for a decade of almost the same temperature. Accordingly, the cooling has started in the west of the ocean and its beginning is delayed still further toward the east to the northeast.

This "cold wave" lasts at the individual stations - always established according to the overlapping five year average - on an average of 5 years (4 to 7) if a constant or increased temperature is regarded as the point in the curve. On the other hand, a new sharp cooling is evident in the west of the ocean at St. Andrews and OWS E in the 1961-65 five year period. Whether a large size oceanic "cold wave" recurs here, remains to be seen. In any case one may wonder thereupon whether in the initiated cooling trend of the North Atlantic surface waters (in stages) is advancing or not. Since Europe
is ventilated here from the west sea, a "circular cooling" of the North Atlantic Ocean would not persist without affecting the climatic conditions of the continent.

Figure 5: The year (= middle year of five year period) of maximum water temperature represents the onset of cooling — in the corresponding temperature pattern.