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PREFACE
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NOMENCLATURE

area of phase change interface
8/R

mass specific heat

volumetric specific heat
temperature gradient

thermal conductivity

latent heat, mass basis
volumetric latent heat

L-p+uCy
G(T-T)
exponent in polynomial expansion
1-62
o G (325)
2°\2 logb
q surface heat transfer rate
q

» I G , dimensionless heat transfer
2pk 8
Q  heat absorbed during phase change
Q, total heat flow from cylinder in time ¢
Q,* T,/2nr2p,%, dimensionless total heat flow
r¢  radius of fusion temperature for zero phase
change
r radial coordinate
ro  radius of cylinder
R radius of phase change location
Ci(T;-T)/p 2 freeze

3 [T o W o WA TS 2 NS

Q

51 Cy(T,-Ty)lp,2  thaw

t time

T  temperature

u T-T,

v (T-TIT-T,)

X dummy variable

Xxg  volumetric water content of soil
y space variable

Subscripts

LR I N SRR

thermal diffusivity

a; fay

effective thermal diffusivity for heat trans-
fer and phase change, respectively

R/ro dimensionless position

B

1-(¢/g+1)1/n

phase change parameter

radius of temperature disturbance

(5/r o) -1

refro -1

transformed phase change position
integrated temperature

density

at . . .
IS¢, dimensionless time

agtir

To-T
2" superheat parameter

Tf'Ts

2
f Lk 'R
1 x logx

8/R

initial

region 1

region 2

fusion or freezing
surface

thawed




PHASE CHANGE AROUND A CIRCULAR PIPE

V.J). Lunardini

INTRODUCTION

The question of freezing and thawing of soils is im-
portant for engineering design in permafrost regions.
For example, the support of buried pipes, utilidors,
and foundations often relies on the mechanical
strength of the permafrost and it is necessary to know
the extent of thaw endured in the permafrost by heated
structures, Thus solutions are sought to conduction
probiems with moving boundaries for analysis of these
questions and synthesis of solutions. Interest in these
types of problems has also been stimulated by the re-
quirements of latent heat storage in solar energy
systems.

For a homogeneous, semi-infinite slab, initially at a
temperature different than the fusion value, there
exists a general solution for a step change of surface
temperature (Neumann 1860). Recently, Lunardini
and Varotta {1980) have given an accurate, but approx-
imate, solution to this problem in convenient form by
using the heat balance integral technique. This solu-
tion is reproduced here since it will be used later for
the cylindrical probiem. The phase change depth, for
the semi-infinite medium, is given by

-b,-Vb?-4as?

2:
v 2

where

a= (ST+2+ M) (51+2)

az

ky ¢51) _4 (kg ¢57)?

by =-285;(Sy+2+
1 T(T 3 " ay

gy

ST =C](TS_ Tf)/Q

¢ = (Te-TNT,-T7).

The superheat parameter ¢ is a measure of the amount
the initial temperature differs from the fusion temper-
ature. Sy and ¢ are for the case of thawing. Freezing
relations are givén in the nomenciature. The Stefan
number ST is the ratio of the sensible to latent heat,
while ¢ is the superheat or subcooling parameter.

In contrast to the Neumann problem, there are no
general, exact solutions for phase change in cylindrical
coordinates. Since this is an important geometry for
practical applications, a significant effort has been ex-
pended upon analytical solutions limited to certain do-
mains or approximate solutions. The geometry of the
system (Fig. 1) is that of a cylinder surrounded by an
infinite, homogeneous medium. A review will be made
of several simple cases followed by new solutions of
the general problem.

ZERO SUPERHEAT,¢=0

A number of solutions are available for the case
when the temperature of the medium is initially uni-
form at the fusion temperatures. This condition greatly
simplifies the problem since only one phase need be
considered; that which is changing phase.

The energy condition at the phase change interface
is given by the same relation as in the cartesian case

cky 4k, 22 =4pqdR (3)

where the upper sign is for melting and the lower is for
freezing. This assumes that the interface motion is in
the positive direction of the coordinate r, and that the
density is constant.
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Figure 1. Geometry of cylindrical
system.

Constant phase change rate

A simple system which has an exact solution re-
quires that the temperature gradient at the phase change
interface be a constant. This case has been discussed by
Kreith and Romie (1955) for inward solidification. The
problem for outward solidification can be written as
follows:

Lo (). tar @

ror\ or/ a ot

TR t)=T¢ {4a)

L TR 1) - ,qdR (4b)
or dt

T{ry,0)=T;. (4¢c)

The temperature gradient at the phase change inter-
face is specified as

TR 1) - 6. (4d)

or

It is not necessary to solve eq 4 in order to find the
location of the freezing front. From eq 4b and 4d

dR .k ¢ (5)

Thus the rate of movement of the phase change inter-
face is a constant. The location is

R=’3£;t+ro
pR

or

°_r (6)

=R
r()

Kreith and Romie (1955} used an iterative-type series
solution for the temperature of the solid. This will not
be given here since the problem is not too practical due
to the necessity of imposing a complicated transient
temperature at the cylinder surface.

Zera sensible heat, 57 =0

If the sensible heat of the material is also neglected,
then particularly simple solutions are available. Since
the Stefan number is a2 measure of the sensible heat,
this situation is equivalent to assuming that the Stefan
number is zero. Carslaw and Jaeger {1959} presented
a thaw solution for the case using the quasi-steady ap-
proximation when the surrounding medium is at the
phase change temperature 7;. The quasi-steady method
is accurate if St << 1.0. The problem is as follows:

4 (r ‘.’I) =0 N
dar\ dr,

7= Tf, r=R (73)
T=T; r=r (7b)

o*

Equation 3, the interface balance, is now

_(kél)+(k QI) =pe 2R, (7¢)
ot 4 at / at

The solution for the phase change location is straight-
forward and is

12a2 mp—!i_zﬂz:r. (8)

Equation 8 will overestimate the thaw beneath the pipe
since all of the energy transfer from the pipe will go
into thawing. A correction can be made using an effec-
tive latent heat in place of 2. One example of an effec-
tive latent heat is

QC = Q(1+C2] ¢ST+-S?1)-
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The surface heat transfer is
q=-~Ry2nr (arl) .

or A
]

The heat transfer at the cylinder surface can then be
written

qcy ST

* =
q 21rk,2 InB

Finite sensible heat

The heat balance integral can also be conveniently
used for the no superheat problem and may also in-
clude large values of the Stefan number. The equa-
tions are

w5 i ®
TR t)=T; (9a)
T(ro, 1) =T, (9b)
T(h0)=T; (9)
k a_ré(/;e_r) = p2£’£ . (9d)

Integration of eq 9 once, over the space coordinate,
yields the heat balance integral equation

a[,aTa(R,t) aT(fo.f)] 40 _ gy, dR ZR
r

t
(16)

where the integrated temperature is

0= ferr. (11)

(<]

The solution method consists of guessing an approxi-
mation for the temperature which will satisfy all of
the conditions in terms of an unknown parameter
such as R (t). Lardner and Pohle (1961) noted that a
logarithmic temperature approximation is more appro-
priate than a polynomial in r since the area is varying
with 7. They suggest that T = (r) Inr be used as an
approximation. The temperature is thus assumed to
be a logarithmic relation, satisfying eq 9a and 9b.

In{r/r,)
In (R/ )

T=T,-(T-T) ——— (12)

i ARG < 1+ AN b

Equations 10-12 then yield a differential equation for
the phase change location

[(2 &= ﬁ)s +ﬁlnﬁ]dﬁ =dr. (13)

Equation 13 can be integrated to give

%[ﬁz-l -2(Ing)-(InB)? - ... 't"’(lnlti)"]+
nn!

L am o Sk

%zlnﬁ—g+%=r (14)

This equation reduces to the zero sensible heat solution
{eq 8) when the Stefan number is zero. Equation 14 is
comparable in accuracy to numerical solutions, valid
for ¢ = 0, with any value of S.

FINITE SUPERHEAT

The more practical problems, in which the initial
temperature is not at the fusion value, present signifi-
cantly more difficult analyses. Several methods have f
been utilized. All of the problems assume that the pipe 3
is buried at an infinite depth because a finite burial
depth will effect very severe restraints on the solution
methods.

Quasi-steady solution

A simple solution can again be obtained with the
quasi-steady state approximation. Khakimov (1957)
investigated this problem and introduced the concept
of a thermal layer of influence around the buried pipe.
Consider the case of thawing of a medium initially fro-
zenat 7 =17,. A hot cylinder with 2 surface tempera-
ture 7 is inserted in the medium at time zero. The
thaw effect {temperature change) is assumed to extend,
at any time ¢, to a finite distance 6. That is, the tem-
perature of the medium will be 7 at some location suf-
ficiently far from the hot cylinder (see Fig. 1). This
concept of a temperature penetration is also used in
the heat balance integral method and in boundary
layer theory.

From experimental evidence, Khakimov (1957) as-
sumed that the ratio b = (5/R) was a constant equal to
4.5. The assumption that b is a constant, for a given
St and ¢, is correct for the Neumann problem (Lunar-
dini and Varotta 1980}, but is invalid for a cylindrical
system. Nevertheless it does simplify the equations
and yields reasonable approximations.

The temperature will be the solution of




d (, @): 0 )
dr \ dr

for each region with the boundary conditions

Uy =uy = ug; r=R (15a)

uy=ug; r=rg {(15b)

u, =0, r=4% (15¢)
where

u=T-T

The soiutions for the temperatures are

(T:-T)
uy = l——n(;/ro) In{r/rg) +u, (16)
_ Yy
uy = R In(r/8) . (17)

The total energy added to the thawing medium wili
be the latent heat needed to thaw the layer between
Io and R and the sensible heat used to increase the
temperature of all the layers up tor = 8. Thus,

R
Q=n(R2-r2)L+2mC, / ruydr+
fo

277C2\f/'l/2dr. (]8)

Carrying out the integration yields

2 R2_ 2
(2=1r(/\>2_r§)1_+27rcl {(rf_rs{%_4('n(kf/<,r)1+
[+]

“_;(R2_rg) -nR%p (19)

where L = volumetric latent heat
C, C, = volumetric specific heat of thawed and
frozen layers
p= Czuf(] -b? + 1).
21Inb

During a small time increment the change in the energy
absorbed by the system must equal the energy added
to the system at the cylirnder surface.

d
g= -k, 2m-(,(ﬁ) -dQ. (20)
dr/, dt

=1y

Combining eq 19 and 20 yields

ky 4 2_1
—2'—/dt=fmxlnx+1—lx—' ax  (21)
6C1% d 2 4xinx

where

_ L-ptuCy
CI(Ts'Tf)

The solution to this equation is

47=2mSy % InB+S7(1-m)(B2-1)-Sy¥
(22)

where

1 1-52
m=—+¢|1-kya +1
Sy ¢[ 2! ‘2(2|nb )]
<2
d/=jx -1 dx.
x Inx

The universal function y has been numerically evalu-
ated and is plotted as Figure 2, allowing the thaw for
any soil to be approximated. The method is simple
but limited in application to first estimates of thaw
depth. When ¢ is small the method underpredicts the

phase change depth and the accuracy decreases with
time since b is not constant.

Heat balance integral solution

The heat balance integral method may be applied
to the problem of finite superheat but the labor is in-
creased considerably. The following analysis will allow
simple numerical technigues to be applied to systems
with typical soil parameters. The problem may be
stated for a melting system as follows:

a_(, ﬂ) -roh (23)
ar\ or a, ot

TR, #) = T¢ (23a)
Tilro, 1) =T, (23b)
(0 =17, (23c¢)
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Figure 2. Quasi-steady phase change parameter.

T (R, 1) aTL(R 1) dR o7, (R, t) d02 a5 dR
chy L e, 2220 = p g R (234 —apR—2 2 = 2.7 §R+TRIT
' o 2 7% peZ (23). 2% —%r ar dt ' ar
a ( 372)= r 24 (28)
or\ 3r/ ey or An approximation for 7, that satisfies eq 23a~23c is
HLR1)=T; (24a) ‘ T.-T:) In{r/r,
’ 1, = 7,- LT Inlriro) - (‘Z/r () o) (29)
T,6,0=T, (24b) °
T, (5, 1) A sir.nilar approximation for 7, that satisfies eq 24a-
= (24¢) 24cis
or s
The integrated temperatures are defined as usual. T2 =To* (Ts- 7o) (58 ./re)llt; ';/?8/6) (%0
9 = R Equations 25, 26, 29, and 30 applied to eq 27 and 28
1 f rTydr. (25) now lead to the following coupled system of equations.
fo
dF = 1 1
S —t 31
; M2 T ga e G1)
6,= [ rTydr. (26)
[ 8 _L_'_.) e - L
n T in
The heat balance integral equations are B apng)’ B
a 32
o |# TR 1) 7 2T (o) 1)) . B o RT, 4R k21 ¢( oot Q) (32).
ar ar ] dr dt
(27




Table 1. Frozen and thawed properties ratios used

with Figures 6 through 22.
Thaw Freeze
xg Ryp=kfky ap=adas Ryp=kelky ayp=agay
0 1 1 1 1
01 0873 0.792 1.1455 1.2626
02 07621 0.6326 13122 1.5808
03 06653 0.5091 1.5031 1.9642
04 0.5808 0.4121 1.7218 2.4266
05 05070 0.3354 1.9724 2,9815
0.6  0.4426 0.2742 2.2593 3.6470
0.7  0.3864 0.2252 2.5880 4.4405
08 03373 0.1855 2.9647 5.3908
09  0.2945 0.1533 3.3956 6.5231
1.0 0.2571 0.1271 3.8895 7.8685
8 82 Q (02
F(8,Q) = +-———[—_.(sz 1)+
2 (1-9) InQ2 4
(‘l il lnn+l(sz3-1)] (33)
2 3 9 '

where £2 = §/R. Equations 31-33 were solved numeri-
cally with a fourth order, Runge-Kutta, predictor-
corrector technique. Since the problem, as specified,

is initially singular at the origin, the Neumann solution
was used to start the calculation. Sparrow et al. (1978)
solved this problem numerically, with a;, =k, =1

for a range of Sy and ¢, also using the Neumann solu-
tion as a start. The results of the much simpler method
presented here are within 5% of the values reported by
Sparrow et al. The comparisons are shown in Figures
3-5. The calcul..tions have been generalized for a range
of a;,, k, whi:h are pertinent for soil systems, and
are presented in Figures 6-22. The property values
associated with cach value of x, are given in Table 1.
These property ratios are obtained using the method of
Lunardini and Varotta (1980). While the curves have
been developed particularly for soils, they are valid for
any medium with the same properties.

Tien and Churchill (1965) also numerically evalu-
ated freezing outside a cylinder. Their calculations are
more extensive than Sparrow et al. (1978) and the
numerical technique was entirely different but the re-
sults are essentially the same.

Approximate methods

The numerical solutions, while very good, are often
not as convenient as analytical solutions. Thus further
work will be carried out to obtain approximate solutions
which yield results with acceptable accuracy. The fol-
lowing analyses deal with approximate methods.

Coordinate transformation

A method suggested by Lin (1971) uses a coordinate
transformation to reduce a problem with a variable phase
change area, such as a cylinder, to one with a constant

2
O TIII T ' 'l"]'] T ] lll'l rl l r’rrll I T T l]lll‘ T T
Xy =0, Sy=0i
Fd o
(*) Heat Balance Integral -]
— Sparrow ('78)
6 .
B s .
q} .
3 —
2 .
1 - : abale o) alals d o ) l.l.l,l P
10 102 10" 10° 10' 10?
T

Figure 3. Accuracy of heat balance integral solution, phase change St = 0.1, a5 =

k12 =1.0.




phase change area—the semi-infinite solid. Since the
relations for the semi-infinite solid are well known (see
eq 1 and 2}, this is a useful procedure but, as will be
seen, is limited in accuracy.

The following transformation will reduce the cylind-
rical system to the constant area case.

y=ry In(rfr,). (34)

The phase change interface, which is the va'ue of y
when r = R, is related by

n=ro In(R/r,). (35)

The governing equations for the cylindrical system
then transform into the following system which is
valid near the phase change interface wherer ~ R,

2T . -k 3T(n,m) AT (36)
2 pla dy On

ay

T(,0)=T¢ (36a)
T(n,n)=T; (36b)
T(O,n)=Ts. (36¢)

The solutions of this system of equations are universal
functions for all cross-sectional areas. However, the
solutions are only valid near the phase change interface.
The system of eq 36 need not be solved to usc the
method. The phase change interface rate of movement

is given by
dn - & [Al) arin, n) (37)
dt pR|A(R) ay

For the constant area case A{r,)= A(R) and
dn - & 3T(n,1) - g(y). (38)
dt pf oy

Thus if the velocity of the phase change interface for
the constant area case is given by

ax -
Z‘it— g(x) (40)

then, the phase change interface vefocity for the cylin-
drical system is

R = To g0 10 RY. (41)
a O '"ro)

The plane or Neumann solution is given by eq 1 and
2. From these relations

272a|

g(x) = . (42)

Finally, the velocity of the cylindricai interface is

aR. o (43)
dt  RIn(RIry)

Equation 43 may be integrated to give

282 Inf-p2+1 = 8l21’. (44)
St

Equation 44 may be compared to the quasi-steady solu-
tion, eq 8, for the case of no superheat, i.e. 57 =0,
¢=0. Inthe limitas ¢ - 0,eq 2 is ¥? = (S;/2+S7)
and in this case eq 44 is identical to eq 8.

While eq 44 is in an extremely convenient form for
cylindrical systems, its accuracy is limited to certain
ranges of S, ¢ and 7. This can be seen by comparing
the phase change interface position § for a cylindrical
system, calculated with eq 44, and the values computed
numerically by Sparrow et al. (1978), given in Figures
23 and 24.

Equation 44 js accurate if 7/57 < 1.0, when ¢ = 4.
For smaller values of ¢ the time limit when eq 44 is
accurate will increase. Equation 44 is so simple that
it may be of value for quick, more or less crude, esti-
mates, especially when ¢ = 0.0. However a more accu-
rate closed form relation for cylinders with superheat
or subcooling will be evaluated in the next section.

Effective thermal diffusivity

Churchill and Gupta (1977) have introduced another
method which allows the Neumann solution to be used
for more complex geom:tries. The procedure involves
replacing the nonlinear phase change problem with its
linear analogue which does not include phase change.
The thermal diffusivity of the latter problem is then
replaced by an effective diffusivity which includes the
latent heat. Since many solutions are available for
non-phase change problems the method has potential
for application to numerous freeze/thaw problems.

The derivation of the effective diffusivity to use is
based upon the fact that the solution to the zero latent
heat analogue of the Neumann problem (simply transi-
ent conduction in the semi-infinite medium) canbe
forced to agree with the Neumann solution if an effec-
tive diffusivity replaces the actual diffusivity. If the
location of the freezing surface is important then one
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Figure 24. Phase change position vs time, St = 1.0; coordinate transformation
method.
value of effective diffusivity is used, while if the sur- where
face heat flux density is desired a second thermal dif-
fusivity is used. Qthawed for a thawing probiem
The following relations can be used for the heat flux ay =

density and the phase change location, respectively. Ofrozen for a freezing problem

Qg = @) [(9+1) erfy]? (45) and erf is the error function.
2 The method consists of first solving the linear con-
ay =y —--l'll—l— (46) duction problem and then finding the relation between
erf” (5"‘— the space coordinaie and the freezing {(or simply the




32°F) isotherm. In this relation one replaces the ther-
mal diffusivity by eq 46 to ob1ain the phase change in-
terface location for the phase change problem. It is
likely that numerical evaluation will be necessary be-
cause of the complex inverse relation between the
space coordinate and the freezing isotherm in the linear
problem. The method is powerful enough to handle
complicated problems but the range of validity is not
known. The method cannot take into account the dif-
ference in thermal properties of the regions for which
the temperature is above or below 32°F when finding
the no-phase change solution.

Churchill and Gupta (1977) applied the method to
cylinders and to freezing in a corner with good results.
They used the exact solution for the cylindrical, no-
phase change problem given by Carslaw and Jaeger
{1959). Thisrequired the use of tabulated, numerical
values. The followinig section will derive a convenient
approximate solution to the problem which yields
good results.

The first step in the solution of the phase change
problem is to solve for the temperature of the pure
conduction problem with zero latent heat. For the
case of a cylinder surrounded by an infinite medium,
an exact sotution for the surface step change situation
is given by Carslaw and Jaeger (1959). However, the
solution involves an infinite series of Bessel functions
which were approximated by error functions for small
values of time. The final results are in graphical form.
An approximate solution to this problem can be found
by using the heat balance integral methods and the
equations are given below, referring again to Figure 1.
The melting case will be examined but the resuits
apply to freezing also.

2 (, a_') =rar (47)
ar\ ar a Jd¢t

T®, =T, {47a)
T(re, t) =T, (47b)
T (s, 1) =0. (47¢)
or

The heat balance integral of eq 47 is a single integration
over space and reduces to

ovlrg t) g0
- —x = 48
o ar dt (48)
8
0= f rvdr (49)
o

14

where v = (T-T,)/(T,-T,). For simplicity, a polyno-
mial in r is assumed for the temperature

y=(8=r\' ;
8-r,
which satisfies eq 47a-47¢c and also the smoothness
relations

" v, 1) - o (51)

ar"!

ro<r<d (50)

Boundary layer theory has shown that the additional
smoothness relations of eq 51 may improve the accu-
racy of integral methods to a certain extent. The ini-
tial condition, v(r, 0) = 0, cannot be met but thss wiil
not seriously affect the final results.

Equations 40 through 50 lead to a differential equa-
tion for § as follows

(Z@i +A)d_é = n(n+1) (52)

n+2 dr St

where A = (§-r,)/r,. Equation 52 is easily integrated
to give

4 3,.A2 = T
A°+A° =2n(n+1) L. 53
) L (53)

Volkov and Li-Orlov (1970) noted that the accuracy of
the integral method could be improved by integrating
eq 42 twice over the space coordinate. El-Genk and
Cronenberg (1979) applied this idea to the Neumann
problem with apparent success. However, for the
cylindrical system this resulted in considerably poorer
results than the integral heat balance for any given value
ofn> 2.

Equations 50 and 53 complete the solution of the
no-phase change problem. These equations are accept-
able when compared to the exact results of Carslaw and
Jaeger (1959). The location of the phase change inter-
face is found by using the movement of the isotherm
with the fusion value. Thus eq 50 gives

- - n
Ve = T =(8 rf) . (54)
T-T, 8-r,

The location of the fusion value isotherm is then

ay=4 [1 - (39;_1)*/"] (55)

where Ay = (r;-r,)/r,. Finally, the effective thermal
diffusivity (eq 46) will replace the thermal diffusivity
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in eq 53. The solution for the actual phase change in-
terface location is then

4_px3=p%2_.2a(n+1)7*=0 (56)

3(n+2)

where

E 1‘=_a___t=a.if

ef T
2 S
rs a oy

pr= Bl
¢ 1/n
1. &£
o+1

The accuracy of the solution increases as n increases.
Above 7 = 20 the improvement is slight and thus 7 = 20
was used for the numerical evaluations. With » = 20 the
solution of eq 56, explicitly for 8 as a function of time,
is

8= ll _(;%)0.05],(a+d)1/3 +(a_d)1/3_5.5]+1
(57)

2=6930% T _166.375
a ST

d = (¢%-27680.6406) 12,

15

Equation 57, combined with eq 46 for the effective
thermal diffusivity and eq 2 for v, is a simple relation
for freezing or thawing about a cylinder which is accu-
rate enough for most engineering purposes. A compari-
son of eq 57 with previous numerical results is shown
in Figures 25 and 26. These figures are limited to
values of k1, = a;5 = 1.0 but eq 57 can be used for
any ratios of the frozen and thawed properties. It is
thus considerably more flexible than the numerical
results. For most cases it will be accurate to within
10% of the numerical results. This is felt to be satis-
factory for engineering calcuiations.

Heat transfer |

The instantaneous heat flow from the cylinder and
the total heat loss or gain during a given time are also
quantities of interest. The surface heat transfer rate is
given by

ar(ry, 1) 1

g=-k A (58)

Use of eq 50 and 57 leads tc the following nondimen-
sional heat flow

(59)

= ge; _205¢(1+9)
27k, 8 €

where e = (a+d) " + (@-d)"3 - 5.5 as before, and eq
45 (aq/ey) = [(6+1) erfy] 2 is used with g and d.
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. . 2
_ The integrated heat transfer at the cylinder surface Qr= Q = (1+¢) ﬁ(g_ +¢)' (61)
is 2,,,.3 PR 21\22
¢ In eq 59 and 61, the value » = 20 has again been used.
Q,= [ qdt. (60) Figures 27 and 28 show ¢* and Q{ plotted for S¢ =
0.1 and 1.0 with &y = k5 = 1.0. The results compare

fairly well with published numerical values. The effec-
This can be written in nondimensional form as tive diffusivity for heat transfer does not seem as accu-
rate as that for phase change location but it still gives

16
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reasonable results. Equations 59 and 61 can be applied
to any values of a;, and k;,. The method of this sec-
tion cannot be applied when the superheat parameter
¢ is zero but for this case there are sufficiently accurate
solutions available, as given earlier.

CONCLUSIONS

A number of procedures have been examined for the
problem of freezing or thawing about a cylinder. The
heat balance integral method was applied to the general
problem and yielded excellent results with a simple nu-
merical scheme. The phase change interface and the
cylinder heat flows can be evaluated from Figures 3-22
for certain values of the Stefan number, the superheat
parameter, and the property value ratios of the surround-
ing medium, as functions of the volumetric water con-
tent of a soil. These are essentially exact results using
numerical evaluation but are limited to specific values
of ST and ¢.

Simple, reasonably accurate, closed form solutions
have also been derived, given by eq 57 and 59. These

i be used for any combination of 51, ¢, ayg, £42
and will be accurate enough for most permafrost cal-
culations. These solutions are limited to cases for
which ¢ > 0. If the superheat is zero, then eq 14 or
€q 44 can be used with good results. The effective
thermal diffusivity method used here should be adapt-
able to many problems of freezing and thawing.

The problem of evaluating the effects of freeze/thaw
about a cylinder surrounded by a homogeneous, infinite
medium has been completed. The solutions, while not
exact (except for the straight numerical results), are
sufficiently accurate for engineering design.

LITERATURE CITED

Carslaw, H.S. and ].C. Jaeger (1959) Conduction of heat in
solids. Oxford: Clarendon Press,

Churchill, S.W. and J.P. Gupta {(1977) Approximations for con-
duction with freezing or melting. /nternational [ournal of
Heat and Mass Transfer, vol. 20,p. 1251-1253.

El-Genk, M.S. and A.W, Cronenberg (1979) Some improve-
ments to the solution of Stefan-like problems. /nternation-
al Journal of Heat and Mass Transfer, vol. 22, p. 167-170.

Khakimov, K.R. (1957) Voprosy teorii i praktiki isskusstvennogo
zamorazhivaniya grantov. lzdatel'stvo Akademii Nauk SSSR,
Moskva (TT 66-51051, U.S. Department of Commerce).

Kreith, F. and F.E. Romie (1955) A study of the thermal dif-
fusion equation with boundary conditions corresponding
to solidification or melting of materials initially at the
fusion temperature. Proceedings of Physical Society,
Section B, vol. 68, p. 277-291,

Lardner, T.]. and F.V. Pohle (1961) Application of the heat
balance integral to problems of cylindrical geometry. 7rans-
actions of the American Society of Mechanical Engineers,
Series E, vol. 83, no. 2, p. 310-312.

Lin, S. (1971) One-dimensional freezing or melting process in
a body with variable cross-sectional area. /nternational
Journal of Heat and Mass Transfer, vol. 14, p. 153-156.

Lunardini, V. and R. Varotta (1980) Approximate solution to
Neumann problem for soil systems. 80-PET-14, presented




at Energy Sources Technology Conference, ASME, New Tien, L.C. and S.W. Churchill (1965) Freezing front motion

Orieans, Louisiana. and heat transfer outside an infinite, isothermal cylinder.
Neumann, F, {ca. 1860} Lectures given in 1860’s, cf. Riemann- A.l.Oh.E, Journal, vol, 11, no0. 5, p. 790-793.

Weber, Die partiellen differentialgleichungen. Physik, Volkov, V.N. and V.K. LiOrlov (1979) A refinement of the

5th edition, 1912, vol. 2, p. 121. integral method in solving the heat conduction equation.
Sparrow, E .M., S. Ramadhyani and S.V. Patankar (1978) Ef- Heat Transfer—Soviet Research, vol. 2, no. 2, p. 4147,

fect of subcooling on cylindrical melting. fournal of Heat
Transfer, vol. 100, no. 3, p. 395-402.




A facsimile catalog card in Library of Congress MARC
format is reproduced below.

Lunardini, V.J.

Phase change around a circular pipe / by V.J. Lunar-
dini. Hanover, N.H.: U.S. Cold Regions Research and
Engineering Laboratory; Springfield, Va.: available
from National Technicai Information Service, 1980.

vV, 26 p., illus.; 28 cm. ( CRREL Report 80-27. .

Prepared for Directorate of Military Programs -
Office of the Chief of Engineers by Corps of Engin-
eers, U.S. Army Cold Regions Research and Engineering
Laboratory under DA Project 4A762730AT42.

Bibliography: p. 17.

1. Cold regions. 2. Cylindrical bodies. 3. Heat
transfer. 4. Permafrost. 5. Pipes. 1I. United
States. Army. Corps of Engineers. II. Army Cold Re-
gions Research and Engineering Laboratory, Hanover,
N.H. III. Series: CRREL Report 80-27.

*UY.5. GOVERNMENT PRINTING OFFICE: 1980—700-898/287







