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NOMENCLATURE

A area of phase change interface a thermal diffusivity
b 61R a12  ct1a 2
c mass specific heat ac, af effective thermal diffusivity for heat trans-
C volumetric specific heat fer and phase change, respectively
G temperature gradient 13 R/r 0 dimensionless position
k thermal conductivity P-1
£ latent heat, mass basis t3(/+1)In

L volumetric latent heat phase chan
Lp+ufC phase change parameter

m - Tf) 6 radius of temperature disturbance
C1 (Tr- Tf)

n exponent in polynomial expansion A (W/ro)-1

p C2uf I I-b 2 N A1  rf/ro -I

k2 logb) 1 transformed phase change position
q surface heat transfer rate 0 integrated temperature

* qCj p densityq dimensionless heat transfer aet
2pklQ -7 ST, dimensionless time

Q heat absorbed during phase change
Qt total heat flow from cylinder in time t r* aet/r.2
Qt* Ttl2fr2p, 9, dimensionless total heat flow T0 -Tf

rf radius of fusion temperature for zero phase Tf,- , superheat parameter

change s

r radial coordinate 2 _1 dx
r, radius of cylinder x logx
R radius of phase change location 1 B/R

ST C(Tf-Ts)IP12 freeze
C1 (Ts - Tf)/p 1  thaw Subscripts

t time o initial
T temperature 1 region 1
u T- To  2 region 2
V (T-T)I(Ts- To) f fusion or freezing
x dummy variable s surface
xe volumetric water content of soil t thawed
y space variable

v



PHASE CHANGE AROUND A CIRCULAR PIPE

V. Lunardini

INTRODUCTION

The question of freezing and thawing of soils is im- = (Tf- To)/(Ts- Tf).
portant for engineering design in permafrost regions.
For example, the support of buried pipes, utilidors, The superheat parameter 0 is a measure of the amount
and foundations often relies on the mechanical the initial temperature differs from the fusion temper-
strength of the permafrost and it is necessary to know ature. ST and 0 are for the case of thawing. Freezing
the extent of thaw endured in the permafrost by heated relations are given in the nomenclature. The Stefan
structures. Thus solutions are sought to conduction number ST is the ratio of the sensible to latent heat,
problems with moving boundaries for analysis of these while 0 is the superheat or subcooling parameter.
questions and synthesis of solutions. Interest in these In contrast to the Neumann problem, there are no
types of problems has also been stimulated by the re- general, exact solutions for phase change in cylindrical
quirements of latent heat storage in solar energy coordinates. Since this is an important geometry for
systems. practical applications, a significant effort has been ex-

For a homogeneous, semi-infinite slab, initially at a pended upon analytical solutions limited to certain do-
temperature different than the fusion value, there mains or approximate solutions. The geometry of the
exists a general solution for a step change of surface system (Fig. 1) is that of a cylinder surrounded by an
temperature (Neumann 1860). Recently, Lunardini infinite, homogeneous medium. A review will be made
and Varotta (1980) have given an accurate, but approx- of several simple cases followed by new solutions of
imate, solution to this problem in convenient form by the general problem.
using the heat balance integral technique. This solu-
tion is reproduced here since it will be used later for
the cylindrical problem. The phase change depth, for ZERO SUPERHEAT, 0 = 0
the semi-infinite medium, is given by

A number of solutions are available for the case
X = 2-y-,I/t (1) when the temperature of the medium is initially uni-

form at the fusion temperatures. This condition greatly
2 4S2 simplifies the problem since only one phase need be

72 = -bt- "I1 (2) considered; that which is changing phase.
2a The energy condition at the phase change interface

is given by the same relation as in the cartesian casewhere

a = (ST*2* 2 k21 OST (ST+ 2) -/ T1 a k 2 - - (3)
01 21 ) r ar d

b, + 21 =ST j 4 (k210 ST) 2  where the upper sign is for melting and the lower is for
freezing. This assumes that the interface motion is in

a021 3 a21 the positive direction of the coordinate r, and that the

S T = c1 ( T'- Tf)/Q density is constant.



Reo 2 + G (6)(Tf- TO

where

2

T=Too

Kreith and Romie (1955) used an iterative-type series
Figure 1. Geometry of cylindrical solution for the temperature of the solid. This will not
system. be given here since the problem is not too practical due

to the necessity of imposing a complicated transient
Constant phase change rate temperature at the cylinder surface.

A simple system which has an exact solution re-
quires that the temperature gradient at the phase change Zero sensible heat, ST = 0

interface be a constant. This case has been discussed by If the sensible heat of the material is also neglected,
Kreith and Romie (1955) for inward solidification. The then particularly simple solutions are available. Since
problem for outward solidification can be written as the Stefan number is a measure of the sensible heat,
follows: this situation is equivalent to assuming that the Stefan

number is zero. Carslaw and Jaeger (1959) presented
I a (r aTI- 1 (4) a thaw solution for the case using the quasi-steady ap-
r Cr 1 r a at proximation when the surrounding medium is at the

phase change temperature Tf. The quasi-steady method
T(R, t) = Tf (4a) is accurate if5 T << 1.0. The problem is as follows:

k a(R,t)= p R (4b) d rT 0 (7)
ar dt dr , dr)

T(ro, 0) = Tf. (4c) T= f; r=R (7a)

The temperature gradient at the phase change inter- T= Ts; r = ro . (7b)
face is specified as

Equation 3, the interface balance, is now
=Rtz G. (4d)

ar L~' + (k T =pQ
\at at
( t) =~ d-R (7c)

f dt

It is not necessary to solve eq 4 in order to find the
location of the freezing front. From eq 4b and 4d The solution for the phase change location is straight-

forward and is
dR: k G. (5) 1 2

dt pQ I12n- 1 = +r. (8)
d2 4 4

Thus the rate of movement of the phase change inter-
face is a constant. The location is Equation 8 will overestimate the thaw beneath the pipe

since all of the energy transfer from the pipe will go
into thawing. A correction can be made using an effec-

R E rtive latent heat in place of Q. One example of an effec-

tive latent heat is

or

Q(i 1  ST2

2



The surface heat transfer is Equations 10-12 then yield a differential equation for
the phase change location

= 412 irro -- 1 .

-a rST,) In dP=di. (13)

The heat transfer at the cylinder surface can then be
written Equation 13 can be integrated to give

q. = qC1 - ST2C 1 2 F£ -1 -2 (In)-(lInp)2 -... +n J

Finite sensible heat
The heat balance integral can also be conveniently ,Int- f- +_ (14)

used for the no superheat problem and may also in- 2 4 I
clude large values of the Stefan number. The equa-
tions are This equation reduces to the zero sensible heat solution

(eq 8) when the Stefan number is zero. Equation 14 is

a aT'l -r aT comparable in accuracy to numerical solutions, valid
r ) (9) for =0, with any value of ST.

T(R, t) = Tf (9a) FINITE SUPERHEAT

T(r., t) = T (9b) The more practical problems, in which the initial
temperature is not at the fusion value, present signifi-

T(r, 0) = Tf (9c) cantly more difficult analyses. Several methods have
been utilized. All of the problems assume that the pipe

-k g = dR (9d) is buried at an infinite depth because a finite burial
ar dt depth will effect very severe restraints on the solution

methods.
Integration of eq 9 once, over the space coordinate,
yields the heat balance integral equation Quasi-steady solution

aA simple solution can again be obtained with the
E r a TV., t) = RT dR quasi-steady state approximation. Khakimov (1957)

S r ar J t dt investigated this problem and introduced the concept
(10) of a thermal layer of influence around the buried pipe.

Consider the case of thawing of a medium initially fro-
where the integrated temperature is zen at T = T. A hot cylinder wilt, a surface tempera-
T he e ofnangrat)et me , ismp ttod ainte mdi anat iim e m -

ture Ts is inserted in the medium at time zero. The0 = rTdr. (11) thaw effect (temperature change) is assumed to extend,to at any time t, to a finite distance 6. That is, the tem-
perature of the medium will be T at some location suf-

The solution method consists of guessing an approxi- ficiently far from the hot cylinder (see Fig. 1). This
mation for the temperature which will satisfy all of concept of a temperature penetration is also used in
the conditions in terms of an unknown parameter the heat balance integral method and in boundary
such as R (t). Lardner and Pohle (1961) noted that a layer theory.
logarithmic temperature approximation is more appro- From experimental evidence, Khakimov (1957) as-
priate than a polynomial in r since the area is varying sumed that the ratio b = (5/R) was a constant equal to
with r. They suggest that T = f(r) Inr be used as an 4.5. The assumption that b is a constant, for a given
approximation. The temperature is thus assumed to 5T and 0, is correct for the Neumann problem (Lunar-
be a logarithmic relation, satisfying eq 9a and 9b. dini and Varotta 1980), but is invalid for a cylindrical

system. Nevertheless it does simplify the equations

T a T,- (T - n(rr) (12) and yields reasonable approximations.
T T ln(Rro) The temperature will be the solution of

3



dr =0 .. ( u 2, d dQ (20)
dr dr drr=f dt

for each region with the boundary conditions Combining eq 19 and 20 yields

rR (5a) dt - mx lnx+X- 1 X2 -1 dX (21)
u1 =us; rr o  (15b) r0 Clo, 1 2 4xlnx

u2 = 0 ;  r=6 (15c) where
wheree

where 
M L-p+ufC,

T- To . C1(T-T)

The solutions for the temperatures are The solution to this equation is

(Tf -T 5) 4"r=2reST/32 IOS( m(31-T

U1  = ( Rr-- - - In(r/ro)+u s  (16) 4 T 2 n 3+ST( _M )(3
2  -1 )-ST 4

ln(R/ro) (22)

U f In(r/6) . (17) where
2 ln(R/6)

The total energy added to the thawing medium will S

be the latent heat needed to thaw the layer between
ro and R and the sensible heat used to increase the 2

temperature of all the layers up to r = 6. Thus, =  xl- dx.
= x Inx

R

Q= r(R 2 r2)L +2C 1 fru 1 dr+ The universal function Vi has been numerically evalu-
ro  ated and is plotted as Figure 2, allowing the thaw for

any soil to be approximated. The method is simple
but limited in application to first estimates of thaw

2i C2  ru 2 dr. (18) depth. When 0 is small the method underpredicts the
phase change depth and the accuracy decreases with
time since b is not constant.

Carrying out the integration yields
22 Heat balance integral solution

Q =r(R 2 -r 2 )L+2ii I(T-T'!! (R2-r2)J1 The heat balance integral method may be applied
(1 (fs 2  4 ln(Rl/r to the problem of finite superheat but the labor is in-

creased considerably. The following analysis will allow
u (R2 r2)I-7rR2p (19) simple numerical techniques to be applied to systems
2 0; with typical soil parameters. The problem may be

stated for a melting system as follows:
where L = volumetric latent heat
C1, C2  volumetric specific heat of thawed and ara l = r 3TI (23)

frozen layers ar ar/ at
PCU 11 1-b 2 +
= + I). T, (R, t) = Tf (23a)

During a small time increment the change in the energy T1 (ro, t) = T (23b)
absorbed by the system must equal the energy added
to the system at the cylinder surface. T1 (r, 0) = To  (23c)

4
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FIgure 2 Quasi-steady phase change parameter.

- ar K(R t) . aT2 (Rt) - (23d) a2 RaT2(Rt)- d=02 r . TRd

ar ar dt ar dt dt dt

a'( T ra2(4 (28)
- ar2 (2ar An approximation for T1 that satisfies eq 23a-23c is

T2 (R, t) = Tf (24a) T= TS (T-Tf)In(r/ro)
T2 (8, t) = To  (24b) 1 - In (Rlro-. (9

a T2(8, t)= A similar approximation for T2 that satisfies eq 24a-
0.=~ (24c) 24c is

The integrated temperatures are defined as usual. T2 
=To T+ MT- To) (6-r)L n(r/6) (30)(8-R) In (IS)

R Equations 25, 26, 29, and 30 applied to eq 27 and 28

, J rT 1  (25) now lead to the following coupled system of equations.

12 STdF= 1 + 1 (31)
02 = r T2 dr. (26) d" 92-1 In,2

.ST(-L - 02-1 \ + g =n

The heat balance integral equations are [ 4'(ln' )2) i dr Ino

3RT, (R,t) Tro ,k(ro, t)]= dO1 RTdR k21Q3 I + i. ) (32).
ar ar j dt dt

(27)



Table 1. Frozen and thawed properties ratios used for a range of ST and 0, also using the Neumann solu-
with Figures 6 through 22. tion as a start. The results of the much simpler method

presented here are within 5% of the values reported by
Thaw Freeze Sparrow et al. The comparisons are shown in Figures

Xe h12 kt/kf 12 = atlaf k1 2 = kf/kt 012 = /*t 3-5. The calcul;,tions have been generalized for a range

of a 12 , k 12 whi.;h are pertinent for soil systems, and
0 1 1 1 1 are presented in Figures 6-22. The property values
0.1 0.873 0.792 1.1455 1.2626 associated with tach value ofx aregiveninTable1.
0.2 0.7621 0.6326 1.3122 1.5808 Q
0.3 06653 0.5091 1.5031 1.9642 These property rdtiOs are obtained using the method of
0.4 0.5808 0.4121 1.7218 2.4266 Lunardini and Varotta (1980). While the curves have
0.5 0.5070 0.3354 1.9724 2.9815 been developed particularly for soils, they are valid for
0.6 0.4426 0.2742 2.2593 3.6470 any medium with the same properties.
0.7 0.3864 0.2252 2.5880 4.4405
0.8 0.3373 0.1855 2.9647 5.3908 Tien and Churchill (1965) also numerically evalu-

0.9 0.2945 0.1533 3.3956 6.5231 ated freezing outside a cylinder. Their calculations are
1.0 0.2571 0.1271 3.8895 7.8685 more extensive than Sparrow et al. (1978) and the

numerical technique was entirely different but the re-
suIts are essentially the same.

2 (1-92) Inn 14 Approximate methods
The numerical solutions, while very good, are often

Inn+! (n3_.1)] (33) not as convenient as analytical solutions. Thus further
2 3 9!work will be carried out to obtain approximate solutions

which yield results with acceptable accuracy. The fol-
where 2 = S/R. Equations 31-33 were solved numeri- lowing analyses deal with approximate methods.
cally with a fourth order, Runge-Kutta, predictor-
corrector technique. Since the problem, as specified, Coordinate transformation
is initially singular at the origin, the Neumann solution A method suggested by Lin (1971) uses a coordinate
was used to start the calculation. Sparrow et al. (1978) transformation to reduce a problem with a variable phase
solved this problem numerically, with o12 = k12 1 change area, such as a cylinder, to one with a constant

XA6Oj Sr 01

() Heat Balance Integral
- Sparrow ('78)

6-

/3 5-

4-

2-L
i0-310 10 1 10 10't, 0

T
FIgure 3. Accuracy of heat balance integral solution, phase change ST = 0.1, a 1 2 =

k= 1.0.
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phase change area-the semi-infinite solid. Since the The plane or Neumann solution is given by eq 1 and
relations for the semi-infinite solid are well known (see 2. From these relations
eq 1 and 2), this is a useful procedure but, as will be
seen, is limited in accuracy. g(X) = 2  (42)

The following transformation will reduce the cylind- X
rical system to the constant area case.

Finally, the velocity of the cylindrical interface is
y =ro ln(r/ro). (34) d ____

dR=- 2,y2 I . (43)

The phase change interface, which is the value of y dt R ln(Rlro)
when r = R, is related by

Equation 43 may be integrated to give

77=r, ln(R/ro). (35)

2#2 In3-j2 +1 = 872-". (44)
The governing equations for the cylindrical system ST
then transform into the following system which is
valid near the phase change interface where r R. Equation 44 may be compared to the quasi-steady solu-

tion, eq 8, for the case of no superheat, i.e. ST = 0,
a2 T - -k aT( T (36) . In the limitas-*0,eq 2 is-y 2 = (ST/2+S T )

ay2 p~c ay at/ and in this case eq 44 is identical to eq 8.
While eq 44 is in an extremely convenient form for

T(y, 0) = Tf (36a) cylindrical systems, its accuracy is limited to certain
ranges of ST, 4 and T. This can be seen by comparing

T(1?, 7) = Tf (36b) the phase change interface position ( for a cylindrical
system, calculated with eq 44, and the values computed

T(O, 1/) = TS - (36c) numerically by Sparrow et al. (1978), given in Figures
23 and 24.

The solutions of this system of equations are universal Equation 44 is accurate if /5
T < 1.0, when 05 = 4.

functions for all cross-sectional areas. However, the For smaller values of 0 the time limit when eq 44 is

solutions are only valid near the phase change interface, accurate will increase. Equation 44 is so simple that
The system of eq 36 need not be solved to us,; the it may be of value for quick, more or less crude, esti-

method. The phase change interface rate of movement mates, especially when 0 - 0.0. However a more accu-

is given by rate closed form relation for cylinders with superheat

or subcooling will be evaluated in the next section.d7 = k [A (ro)12 L (37)

dt P [A (R)j ay Effective thermal diffusivity
Churchill and Gupta (1977) have introduced another

For the constant area case A (ro) = A (R) and method which allows the Neumann solution to be used

for more complex geomtries. The procedure involves
= A a =g('7). (38) replacing the nonlinear phase change problem with its

dt pQ ay linear analogue which does not include phase change.
The thermal diffusivity of the latter problem is then

Thus if the velocity of the phase change interface for replaced by an effective diffusivity which includes the
the constant area case is given by latent heat. Since many solutions are available for

non-phase change problems the method has potential

dX = g(X) (40) for application to numerous freeze/thaw problems.
dt The derivation of the effective diffusivity to use is

based upon the fact that the solution to the zero latent
then, the phase change interface velocity for the cylin- heat analogue of the Neumann problem (simply transi-

drical system is ent conduction in the semi-infinite medium) can be
forced to agree with the Neumann solution if an effec-

dR = r n..ro R. (41) tive diffusivity replaces the actual diffusivity. If the
t R olocation of the freezing surface is important then one

7
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I IT I 0

6- S, =0.1
-Eq 44

-- Sprrow ('78)

5-4

3-

10 C I' (JO 090

Figure 23. Phase change position vs time, ST =0. 10; coordinate transformation
method.

-Eq 44
-- Sparrow ('761

5-

4-

20

Figure 24. Phase change position vs time, ST =1.0; coordinate transformation
method.

value of effective diffusivity is used, while if the sur- where
face heat flux density is desired a second thermal dif-
fusivity is used. I th~awed for a thawing problem

The following relations can be used for the heat flux
density and the phase change location, respectively. *foe oI rezn rbe

Q =a J (0+1) erfv1l2  (45) and erf is the error function.
2 (4)The method consists of first solving the linear con-

def 1 11 '- ](6 duction problem and then finding the relation between
lerf (Lithe space coordinate and the freezing (or simply the
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32°F) isotherm. In this relation one replaces the ther- where v = (T-To)/(T s- To). For simplicity, a polyno-
mal diffusivity by eq 46 to obtain the phase change in- mial in r is assumed for the temperature
terface location for the phase change problem. It is
likely that numerical evaluation will be necessary be- v = 6r ; r r Q (50)
cause of the complex inverse relation between the \6-r.)
space coordinate and the freezing isotherm in the linear
problem. The method is powerful enough to handle which satisfies eq 47a-47c and also the smoothness
complicated problems but the range of validity is not relations
known. The method cannot take into account the dif-
ference in thermal properties of the regions for which an-, v(, t) .= 0. (51)
the temperature is above or below 32°F when finding 3rn-1
the no-phase change solution.

Churchill and Gupta (1977) applied the method to Boundary layer theory has shown that the additional
cylinders and to freezing in a corner with good results. smoothness relations of eq 51 may improve the accu-
They used the exact solution for the cylindrical, no- racy of integral methods to a certain extent. The ini-
phase change problem given by Carslaw and Jaeger tial condition, v(r, 0) = 0, cannot be met but this will
(1959). This required the use of tabulated, numerical not seriously affect the final results.
values. The followin'g section will derive a convenient Equations 40 through 50 lead to a differential equa-
approximate solution to the problem which yields tion for 6 as follows
good results.

The first step in the solution of the phase change (2A 2 + dA = n(n+)(52)
problem is to solve for the temperature of the pure \n+2 /dr S T
conduction problem with zero latent heat. For the
case of a cylinder surrounded by an infinite medium, where A = (6-ro)/ro . Equation 52 is easily integrated
an exact solution for the surface step change situation to give
is given by Carslaw and Jaeger (1959). However, the
solution involves an infinite series of Besset functions 4 A3 +A2 = 2n(n + 1)-L. (53)
which were approximated by error functions for small 3(n+2) ST
values of time. The final results are in graphical form.
An approximate solution to this problem can be found Volkov and Li-Orlov (1970) noted that the accuracy of
by using the heat balance integral methods and the the integral method could be improved by integrating
equations are given below, referring again to Figure 1. eq 42 twice over the space coordinate. EI-Genk and
The melting case will be examined but the results Cronenberg (1979) applied this idea to the Neumann
apply to freezing also. problem with apparent success. However, for the

cylindrical system this resulted in considerably poorer
0(r -' r aT (47) results than the integral heat balance for any given value

)r _r a t ofn > 2.
Equations 50 and 53 complete the solution of the

TJ5, t) = To  (47a) no-phase change problem. These equations are accept-
able when compared to the exact results of Carslaw and

T(ro, t) =T (47b) Jaeger (1959). The location of the phase change inter-
face is found by using the movement of the isotherm

b7 (6, t) = 0. (47c) with the fusion value. Thus eq 50 gives
r

r,-r = _f ( -rf n

The heat balance integral of eq 47 is a single integration T' T. 6r). (54)

over space and reduces to
The location of the fusion value isotherm is then

-a v(r t) - dO (48)
S dt = A 1 ,11 (55)

.I

0 Jrvdr (49) where A, = (rf-ro)/r o. Finally, the effective thermal
0r diffusivity (eq 46) will replace the thermal diffusivity

14
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- Eq 57
-- Sparrow ("8) /

(numerical) /
(*) Heat Balance Integral

Cylindrical System
3 /

/3/

0 
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2-r
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Figure 25. Phase change vs time, accuracy ST o 10, a1 2 = 12= 1.0 of ef-
fective diffusivity method.

in eq 53. The solution for the actual phase change in- Equation 57, combined with eq 46 for the effective

terface location is then thermal diffusivity and eq 2 for -f, is a simple relation
for freezing or thawing about a cylinder which is accu-

4 j*3 = p*2 -2n(n+l )T* = 0 (56) rate enough for most engineering purposes. A compari-
3(n+2) son of eq 57 with previous numerical results is shown

in Figures 25 and 26. These figures are limited to

where values of ki 2 
= a12 = 1.0 but eq 57 can be used for

any ratios of the frozen and thawed properties. It is
aef t -ef r thus considerably more flexible than the numerical

2  ST results. For most cases it will be accurate to within
10% of the numerical results. This is felt to be satis-
factory for engineering calculations./= fij-1

1- 11n Heat transfer
0+ 1 The instantaneous heat flow from the cylinder and

the total heat loss or gain during a given time are also
The accuracy of the solution increases as n increases, quantities of interest. The surface heat transfer rate is
Above n = 20 the improvement is slight and thusn = 20 given by
was used for the numerical evaluations. With n = 20 the
solution of eq 56, explicitly for P as a function of time, a r(r, t) (58)
is q = - kI A ar

=i I+] ( + (a-d)1 /3 -5.5 +1 Use of eq 50 and 57 leads t the following nondimen-

(57) sional heat flow

q*= qc. = 20ST(1+0) (59)a = 6930 a ef -_L - 166.375 2_v9k1Q e

a ST
2 _ where e = (a+d)113 + (a-d) 1 /3 -5.5 as before, and eq
(ad 2 76 80 .6 40 6 )/2 45 (ae/a 1) [(0+ 1) erfy] 2 is used with a and d.

15
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Sparrow ('79)
(numerical)

WTien and Churchill
()Hoot Balance 111te0g1 0

Cylindrical System
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2-

r--- |4

Figure 26. Phase change vstime, ccuracy 5 T *o al2=kl= 1.0 ofeffective
diffusivity methoid.

07 - IT'42

ST S0. 0

0,6 k,2 .a 2 *,lo -36
(e ) Heot Balance Integral

0 5 - - Eq. 59 or 61 0

04 Cylindrical System 040

CIA -24

CYS

101 I0 I0, 10z

T

Figure 27. Heat flux vs time, accuracy of = 1.0, 1  = 01, = l. effectIve dlffusiv-

Ity method .

71 T ' I IQ STi ,.4

The integrated heat transfer at the cylinder surface Q*.Qt = (1+0)L 2 (61)
is 2fr2p 21 22 +)

tIn eq 59 and 61, the value n =20 has again been used.

S0dt. (60) Figures 27 and 28 show and Qt plotted for ST =

0.1 and 1.0 with l2 = k = 1.0. The results compare

fairly well with published numerical values. The effec-

This can be written in norldimensiofial form as tive diffusivity for heat transfer does not seem as accu-
rate as that for phase change location but it still gives

16
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0112, k 12 -I

6 ST = 10
( Tien and Churchill ('65)
(o) Heat Balance Integral

5 Cylindrical System
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Figure 28. Heat flux vs time, accuracy ofa 12  k 12  1.0, ST 1.0; effective

diffusivity method.

reasonable results. Equations 59 and 61 can be applied The problem of evaluating the effects of freeze/thaw

to any values ofa 1 2 and k 12. The method of this sec- about a cylinder surrounded by a homogeneous, infinite

tion cannot be applied when the superheat parameter medium has been completed. The solutions, while not

0 is zero but for this case there are sufficiently accurate exact (except for the straight numerical results), are

solutions available, as given earlier, sufficiently accurate for engineering design.
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