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THE NUMERICAL SOLUTION OF COUPLED NONLINEAR
DIFFERENTIAL EQUATIONS OCCURRING IN

OCEANOGRAPHIC THERMOSTAD MODELING

I. INTRODUCTION

Traces of temperature as a function of depth show evidence of isothermal masses of water (ther-

mostads) embedded in an otherwise stratified ocean. These thermostads generally reside at depths of

400-1000 m, have thicknesses of approximately 100 m, and diameters no greater than 50 km (see also

Broome, Teague. and Hallock, 1979, and Rossby, 1980). To our knowledge, no theoretical work has

been done to model their shape and velocity fields; although, two recent Gulf Stream ring papers are of

related interest.

Csanady (1979) has constructed a two-layer model of warm core rings employing conservation of

potential vorticity and radial momentum. Flierl (1979) then expanded this work by including the

cyclostrophic term [(azimuthal velocity) 2/radius] which arises in the transformation to circular coordi-

nates. These principles are also incorporated in this work. We model the thermostad as an oblate oval

solid of constant density water (Fig. 1) which rotates anticyclonically relative to a stationary ocean hav-

ing a linear density stratification. We then seek steady, axisymetric solutions to the inviscid equations

of motion within the region of constant density, and ignore the 13 effect because of the small size of the

thermostad. The equilibrium shape then results from a balance between the pressure gradient, Coriolis

and cyclostrophic forces.

Manuscript submitted on December 10. 1980.
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MIGNEREY AND MIED

II. EQUATIONS OF MOTION

The inviscid Navier-Stokes and continuity equations in a rotating cylinderical coordinate system.

as simplified by the assumption of steady, axisymetric flow inside the region of constant density (p0)

are:

+ fv = P, (1)
r P0

fu - 0 (2)

P - -p og (3)

v - v(r) (4)

where (u. v) are the velocities in the (r. 0) directions and : is positive upwards. The existence of Taylor

columns can be shown by adding the quantities -L (1) and -r (3). Then +f v.

= _ - P. = 0 which proves that v is independent of :. The most natural way to remove the degen-
P0

eracy of (2) and (4) is to introduce the principle of conservation of potential vorticity, that is

T +.f = constant (5)
L

where

-L (rv) Lu(6)
r Or r ad

is the relative vorticity, f the Coriolis parameter, and L the length of a Taylor column.

To obtain a pair of equations for the velocity and column height it is necessary to express the
aPradial pressure gradient T in terms of the column height. Taking advantage of the vertical symmetry

Or

of the oval about a horizontal plane, we introduce the half-height Ihi L/2 so that ± h (r) defines the

surface of the thermostad. Since the external pressure field of the ocean is known, it is possible to find

the pressure at h (r). The vertical pressure gradient in a linearly stratified ocean is

OP - -Pog (1 - 8z).

The pressure may be obtained by integrating once:

P(z) - -pog (z - 1/2 8z 2) + P0

2
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where P0 is a reference pressure at: - 0. Likewise, the pressure field inside the thermostad is

P(r,z) - -p 0 gz + c(r).

Both pressure fields must match over the entire surface of the thermostad

P(h(r)) = - p0g (h - 1/2 8h 2 ) + Po= -pogh + c(r)

so that

c(r) = 1/2p oggh2 + Po.

Hence, inside the thermostad

-p - 1/2 pog8 a11 (7)

Or ar

Substitution of (7) into (1) produces

v2  1 dh2
2 + fv - g8 (8)
r 2 dr

We now have h and v in a single nonlinear equation. Another equation may be obtained from (5) and

(6):

dv+v + fjhl I] (9)
dr r HO

where 2Ho is the length to which a Taylor column must be stretched to bring the relative vorticity to

zero.* We look for a family of solutions corresponding to columns which have contracted, causing a

negative relative vorticity. For h = Ho there is very little contraction and only a small amount of rela-

tive vorticity. In the opposite extreme (h << H0 ), the contraction is large, as is the relative vorticity.

The boundary conditions for (8,9) are

v(0) - 0, (10)

h (ro) - 0. (11)

where r0 is the radius of the thermostad.

Equations (8,9) with boundary conditions (10.1 1) are nondimensionalized by letting

r- RP, v- VoO, h - H0  (12)

'It will emerge in Section VII that all observed solutions are clustered around h(0) Ho. In effect, then. 2Ho is very nearly the
thermostad height.

3
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so that

E2  + E 1 dh2  (13)r 2 dr,

L v+ =i l-1 (14)

-(0) . (15)

h (Po) - 0 (16)

where e - is the Rossby number and R i 7O w)1/ 2 is the radius of deformation.

Since the velocity scale is chosen as the velocity at the edge,

(P0) - 1 and Vo - ENHo; (17)

then the nondimensionalization (12) takes the form:

r- -N HO P, v= eNHo {', h = Hoi. (18)

The system of Eqs. (13-16) constitute an eigenvalue probelm for e. Because e and ' consistently occur

in each equation only as a product, the eigenvalue problem is greatly simplified. After introducing the

change of variables e' E e' the following initial value problem is solved:

-Si + 1/2 /L: (19)
P dr

dL, + 1. Ihi- 1 (20)
d

'(0) -0 (21)

0 < h (0) < 1. (22)

These equations are integrated beginning at the origin and continuing until Ii (r) - 0. This determines

P0 and T(r0). The corresponding eigenvalue is then given by e - R '(F0)j. Each initial value h(0) is

thus uniquely related to a particular io and e.

III. PROPERTIES OF THE SOLUTION

The system (19-22) has been solved in detail on the computer. However certain properties may

be deduced using analysis. Since both (19) and (20) are even in h, the surface of the thermostad is

dh
indeed symmetric about - 0. Furthermore at r - ro we expect the pressure gradient h to be

4

I I I I . . Ji o , - . . ..



NRL MEMORANDUM REPORT 4448

bounded. Since ii (?O) - 0 we anticipate 2h- 0; the solutions support this. Below, we obtain the
dr

shape in the limiting case h (0) << 1, and derive the properties of the thermostad for all Ii (0) in the

vicinity of - 0.

A. Solution for hi(0) << I

An analytic solution may be obtained for (19-22) in the limit h - 0. Then (20) becomes

which has the solution

- 12 + -.

The initial condition (21) forces c1 = 0 and

, (?) = - H/2. (23)

Using this expression in (19), we see that

dh2  _1 (24)a? 2

or

1( 1 -2 +C,.
4

1 '2

At the outer edge of the thermostad, P - P0 and/I - 0; thus c2  p2 r0 and

P) r - . (25)
2

The surface is thus given by 4/h2 + 2 _ F which shows the thermostad to be an oblate ellipsoid with

;o - 2/fi(0). Furthermore, differentiation of (25) verifies the conjecture L h -o. However

(24) shows that - is finite at P0. Although we have only shown that h- < 0o for /(0) << 1,
d; dr

the numerical solutions of section IV support the veracity of this assertion for all Ii(0).-

5
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B. Power Series Solution Near P -0

An analytic solution near the origin is needed for a successful implementation of the computer

solution in the following section. For small r the power series expansions

and

n-0

are introduced into (19) and (20). We may then group the terms according to orders of i.

01 1 _o -0 (26a,b)

0(1): 2H'o 't + 2o- h-h 2 0 = ho- I (27a,b)

0(i): 2i'o ' 2 + ' + 2 2 ,+ 1 2, 3Y'2 = 'I. (28a,b)

The importance of these equations lies in the implications to be drawn from the 0(l) terms.

Since 'o =- 0 and h0  0, Eq. (27a) implies 1 = 0 and (27b) yields ' - 2 while (28b) gives

, 0. Thus, for small il we may write

;,() - + 0 (PI) (29)

and

h(P) - ho + 0(2). (30)

We employ (29) and (30) in the computer solution below.

IV. COMPUTER SOLUTION

Equations (19) and (20) are a pair of first order nonlinear differential equations which may be

rewritten as:

+(31)

6
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d (32)

where

g=2

Two advantages accrue from this change of variables. Near the edge of the thermostad -L is well-
dr

behaved, and any standard scheme for solving a well-behaved first order system can be used.* We have

written a subroutine caided DIFF (see Appendix A) which evaluates (31) and (32) in a form usable by

the integration procedure DIFSYS. Two minor problems arise. The integratinn procedure begins at the

origin where the l/r terms in (31) and (32) are infinite. In order to begin the integration, we employ

the power series solution (28,29) at ? - 0 to obtain dg = 0 and -1

di o di 0  2

The other problem occurs at the edge of the thermostad. Resolution of the radius ?o is no better

than the step size Ai. On the other hand, the choice of a small Ai would increase the computer time

prohibitively. Fortunately the accuracy of DIFSYS is of order (A;) 2 (Bulirsch and Stoer 1966 b), so

that a small A is not needed to maintain accuracy of / and . Hence, a large A? is used until the edge

is detected (i.e., when j becomes negative). At this point the subroutines backtrack to the last known

point having j > 0. A; is then divided by ten and the integration proceeds in this manner until Ar is

less than the convergence tolerance. The evaluation of i0 is then considered to be finished.

Although the overall accuracy of the method is 0[(Ar) 2], a few sample calculations were made to

ensure the proper choice of Ar. The results summarized in Table I indicate a value of A = 10- is

Table I

Values for b () and '(i) at - 1
for various values of AP.

A? h(1) , l) # of computations
10- "  .22369 -. 30885 10
10-2 .22357 -. 30886 100
10-1 .22256 -. 30897 1000

'in this paper we use the routine DIFSYS which is available through the NRL Research Computation Division. It is an extrapo-
lation method based upon the works of Bulirsch and Stoer (1966 a.b).

7
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appropriate for three place accuracy in ii and '. The smaller value requires too many calculations and

the larger value produces too few data points. Accordingly the convergence tolerance for Ai was

chosen to be 10-3.

V. NUMERICAL RESULTS

The functions 4 (P). , (i) and the radius 0 were computed for values of ii (0) = .05, .10,.

.90, .95, 1.00, 1.05. The results are summarized in Figs. 2 and 3. Figure 2 shows h (i) for several

values of h (0); these curves correspond to different values of e. Closed surfaces exist when h (0) < 1;

note that no such surface exists for the curves h (0) = 1.00, 1.05. The associated velocity field (Fig. 3)

is negative and monotonically increasing in magnitude more rapidly than a linear function of i.

Although the radial velocity gradient is larger for small I (0), the large size of 0 for large /(0) pro-

duces a larger peak velocity.

For small values of E - the computer solutions approach the asymptotic solutions (23)

and (25). In particular, the aspect ratio a h(0)/ 0 -- approaches 0.5, as shown in Fig. 4.fro

For larger values of e the aspect ratio is smaller, which indicates the thermostad is more oblate when

the fluid has less relative vorticity. This raises the question as to how much the function I ( ) deviates

from the ellipsoidal limit (e =z 0) when E, h(0) and ?0 assume larger values. To answer this, the vari-

ables were normalized as follows:

r°- P/P0, h //(0), v

As a result of this normalization, all thermostads transform to shapes with unit radius and unit height.

Some normalized thermostads are shown in Figs. 5 and 6 for two different values of e. For the larger

value of e the surface of the thermostad is more square than elliptical, and the velocity is markedly

nonlinear.

As indicated above, two pathological cases were run. For i (0) - 1.00 the Taylor columns exist at

their initial (pre-collapse) height; thus there is no relative vorticity. Hence the velocity is zero every-

M O
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where and the bounding thermostad surface extends to infinity. When h (0) > 1, e.g., /(0) = 1.05.

the Taylor columns are stretched producing positive relative vorticity and corresponding positive

(cyclonic) velocities. The surface is again unbounded as it rises away from the origin.

VI. A METHOD FOR OBTAINING THE ROSSBY NUMBER AND HEIGHT SCALE

The shape and velocity field of a thermostad depend on the value of e. However f is not easy to

determine for a dimensional thermostad even if v(ro) is known. This is because the scale height H,

appears in all of the nondimensionalizations (18), and H0 is not directly measureable for a thermostad

in the ocean. Two measurements which are less difficult to make are h (0) and r0. Since each of these

quantities depends on the Rossby number, the aspect ratio a (- h (0)/;,)) is also a function of E,

a = a (e). This functional dependence is shown in Fig. 4. From the nondimensionalization (18), we

N h (0)
may express a as a - -r Since the depth h (0) and radius r,) can be estimated from the data. e

/ ro

may be found for and observed thermostad. Then the height scale is given by f-0 = h (0)/fh(O;e)

where hi (0:e) is shown in Fig 7a; the results for io as a function of e are shown in Fig. 7b. With E and

Ho thus obtained, Figs. 2 and 3 and the scaling (18) may be used to estimate the shape and velocity

field in dimensional form.

One further problem occurs when the data is reduced. The radius r0 is not precisely known- only

an upper bound can be established by examining contiguous XBT's. This leads to inequalities for a. E.

H0 and V,). In trying to establish the inequality for V0, Eq. (17) is needed. Unfortunately the inequali-

ties are such that e is less than some bound and H0 greater than another bound, leaving the product

indeterminate. Likewise ii(O;) = h(0)/Ho implies 4(0,e) is less than a bound. To avoid this prob-

V0
lem, a velocity/height ratio is introduced,3 -= (33). This ratio, which is a function

I(O;£'E Nh (0)

of e. is shown in Fig. 8. The slope of this curve in conjunction with the inequality for E implies 3 is I
greater than a bound. Likewise the equation V0 = /i (0) means the peak velocity can only be esit-

mated as exceeding some minimum value.

9
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VII. APPLICATION TO OBSERVED THERMOSTADS

Traces of temperature as a function of depth, obtained by several XBT's, show evidence of ther-

mostads (Figs. 9a-g). Aside from Figs. 9d and 9f, however, there is only a single trace through any of

the suspected thermostads. In no case is a velocity measurement available; consequently, an estimate

of the aspect ratio a N V h(O) J, peak velocity v(ro) and height scale h(O) is all that can be obtained.of te apec raIa- f r0

To accomplish this, the Brunt-Vaisild frequency must be evaluated. Based on historical temperature-

salinity data corresponding to the location o' the XBT, the salinity and o- r are computed as a function

of depth. The Brunt-Viisili frequency is then obtained using the central difference formula

= -L - P- at depth z = z0 . Since differentiation produces varying results due to fluctuations

in the data, we formed two averages for N: one actually within the thermostad. and the other over the

surrounding neighborhood.

The local value for f was found using the known latitude of the XBT. The vertical location of the

thermostad was obtained by drawing a straight line through the thermostad and subjectively determin-

ing where the temperature gradient changes slope. Then the thickness was measured from the plot and

halved to form h (0). Because of the sparseness of the data, only an upper bound can be set for r0 based

on the distance between contiguous XBT's. Using the data in conjunction with the theory allows

bounds to be pu! on e, a, H0 and V0.

As summarized in Table 2, the observed thermostads are oblate, having an aspect ratio in the

range .119 < a < .182. This low value of a is due to the thinness of the observed mass of water in

conjunction with the large upper bound on the diameter. Although the thermostads are thin, the

heights of their Taylor columns are not much less than the scale height. Indeed, / (0) which is a meas-

ure of this contraction is in the range .992 to .999. A significant result of this work is H0 approximately

equals half the thermostad height, with less than 1% error.

10
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Table 2
A Comparison of the Observed Parameters and Derived

Inequalities for Several Thermostads

Figure , 9a 9b 9c I 9d 9e 9f 9g

(0 km)< 26 '22 26 27 28 32 25
;,10) IM) ' )7 . 65 65 85 100 47 52

r ad
Vuts'de .385 10-2 .366 10-2 .403 10- 2  .373 .10-2 .407 10-2 .430 10-2 .379 10-,

- ,fsrdc - .310 10
-2 .190 10

-  .124 10-2 .093 10
- 2  

.244 10-
2  

.324 10-2 .317 I--

tad 10-t.)'d" .862 10-4 .885 10-4  .834 10-4  .794 10- 4  .800 10-4 899 10-4 .876 10-a

)o >/ .167 122 .121 .148 182 .070 .090
553 .561 .561 557 551 .566 .565i.559 .561 .561 .560 .559 .566 .65

0 <  6.04 8.232 8.232 6.930 5.472 11.294 10.680
, h < .992 .999 .999 .995 .987 .9999 9999

Ho (m) > 97.8 i 65.1 65.1 85.4 101.3 7 52
V0 IM/s) > .209 1 133 .147 .178 .228 114 III

The observed thermostads appear to have a weak relative vorticity. The Rossby number which is

obtained from Fig. 4 once a is known lies in the interval .551 to .561 and is large enough for significant

departures from geostrophic flow to occur. An estimate of the peak velocity may be obtained using

(33). Based on the bounds for e, Fig. 8 is used to obtain/3, which lies in the range .559 to .562. The

associated peak velocities are then .132 (m/s) to .228 (m/s). Although these velocities are large, we

believe they are reasonable in view of the theory's neglect of a Brunt-Vaisali frequency inside the ther-

mostad (see Table 2). An inclusion of non-constant N(z) would lead to smaller velocities.

Clearly, a measurement of the velocity field inside a thermostad would be a more stringent test of

the theory. Unfortunately such measurements may be difficult to make. A more fruitful approach

would entail dropping a sufficient number of XBT's to enable a comparison of the predicted and

observed shapes, along with a better determination of r0 .
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Fig. 1. - A constant-density thermostad embedded in a linearly stratified ocean has Taylor columns
of length L. shape hi Wr and a velocity distribution v(r)
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