HIGH RESOLUTION VACUUM ULTRAVIOLET SPECTROSCOPY OF SMALL MOLECULES \(\text{etc.} \) (U)

SEP 80 W H PARKINSON, D E FREEMAN, K YOSHINO AFOSR-80-0018

AFOSR-TR-81-0024
<table>
<thead>
<tr>
<th>REPORT DOCUMENTATION PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. REPORT NUMBER</td>
</tr>
<tr>
<td>2. GOVT ACCESSION NO.</td>
</tr>
<tr>
<td>3. RECIPIENT'S CATALOG NUMBER</td>
</tr>
<tr>
<td>4. TITLE (and Subtitle)</td>
</tr>
<tr>
<td>5. AUTHOR(S)</td>
</tr>
<tr>
<td>6. TYPE OF REPORT & PERIOD COVERED</td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME AND ADDRESS</td>
</tr>
<tr>
<td>8. CONTRACT OR GRANT NUMBER(S)</td>
</tr>
<tr>
<td>9. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</td>
</tr>
<tr>
<td>10. REPORT DATE</td>
</tr>
<tr>
<td>11. NUMBER OF PAGES</td>
</tr>
<tr>
<td>13. SECURITY CLASS. (OF THIS REPORT)</td>
</tr>
<tr>
<td>14. DISTRIBUTION STATEMENT (of this Report)</td>
</tr>
<tr>
<td>15. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)</td>
</tr>
<tr>
<td>16. SUPPLEMENTARY NOTES</td>
</tr>
<tr>
<td>17. KEY WORDS (Continue on reverse side if necessary and identify by block number)</td>
</tr>
<tr>
<td>18. ABSTRACT (Continue on reverse side if necessary and identify by block number)</td>
</tr>
</tbody>
</table>
have been photographed and interpreted as arising from transitions from bound
ground states to bound or free excited electronic states of these van der Waals
molecules; bound excited states have been found for XeKr and XeAr. The emission
spectrum of diatomic argon in the 100-150 nm region has been found to consist
of four band systems all terminating on the ground electronic state; the only
discrete band system, that emitted from the lowest excited state, has been
analyzed rotationally and characterized spectroscopically as a triplet state
for which the long range potential has been estimated. The absorption spectrum
of atomic krypton in the 84-124 nm region has been obtained, and excited Rydberg
states with principal quantum number as high as 60 have been assigned; the
lowest two ionization energies have been accurately determined.

High resolution absorption spectra of dipole allowed transitions in molecular
nitrogen; from the ground state to excited Rydberg and valence states have been
rotationally analyzed. Some large anomalies in frequency spacings and relative
intensities have been interpreted in terms of strong homogeneous perturbations
rather than predissociations.
HIGH RESOLUTION VACUUM ULTRAVIOLET SPECTROSCOPY OF SMALL MOLECULES

FINAL TECHNICAL REPORT

For the period October 1, 1979 to September 30, 1980

AFOSR-80-0018

1. STATEMENT OF WORK

In brief, a 6.65 metre vacuum spectrograph with extremely high resolution has been used to study (a) The spectroscopy of rare gas molecules that have potential use as lasers, and (b) Photoabsorption processes in N₂, which in the 80-100 nm region, are important sources of N²D in the upper atmosphere.

2. SUMMARY OF RESEARCH ACHIEVEMENTS

Significant research accomplishments in the spectroscopy of rare gas molecules and atoms relevant to the development of intense vacuum ultraviolet lasers and continuous radiation sources can be summarized under four headings:

(a) Vacuum Ultraviolet Absorption Spectra of Binary Rare Gas Mixtures and the Properties of Heteronuclear Rare Gas van der Waals Molecules. Vacuum ultraviolet absorption spectra of binary rare gas mixtures Xe/X (X = He, Ne, Ar, or Kr) and Kr/Y (Y = He, Ne, Ar, or Xe) near each of the first two resonance lines of Xe I and Kr I, respectively, have been photographed at high resolution by a 6.65 m spectrograph with a rare gas continuum as background source. The overall formation of spectral features near a resonance line is predominantly towards short wavelengths, and the degree to which discrete bands form near a resonance line generally increases with increasing atomic weight of X or Y. Partial interpretations of the absorption spectra are given in terms of transitions...
within the heteronuclear rare gas van der Waals molecule XeX or KrY, from the bound ground electronic state ($\Omega = 0$) to bound or free excited electronic states ($\Omega = 0,1$). Bound excited electronic states are found for KrXe near the first resonance levels of Xe I and Kr I, and for KrXe and ArXe near the second resonance level of Xe I. A complete account is given in Ref. (1).

(b) Emission Spectrum of Ar$_2$ at Low Resolution in the Vacuum Ultraviolet Region. Emission spectra of the argon dimer have been studied in the vuv region. Liquid nitrogen cooled argon was excited with a rf (Tesla coil) discharge. Four band systems, I, II, III, and x, were observed in the 1000-1500 \AA region and classified as transitions to the common ground state $X^1\Sigma_g^+ (0^+)$ from the upper states $A^3\Sigma_u^+ (1_u)$, $A^3\Sigma_u^+ (0_u^+)$, $B^5\Pi (0_u^+)$ and x, respectively. Except for band system I, they consisted entirely of diffuse bands. A complete account is given in Ref. (3).

(c) Rotational Analysis of the Emission Spectrum of Ar$_2$ at High Resolution in the Vacuum Ultraviolet Region. The emission spectrum of Ar$_2$ excited by a Tesla discharge has been photographed at high resolution in the region 1073.5-1081.5 \AA by a 6.65 meter spectrograph. Experimental conditions were chosen to produce only the band system emitted in the transition from the lowest excited state to the ground state. Rotational analyses of several bands indicate that the coupling scheme in the lowest excited state is closer to Hund-Mulliken case b than to case c, so that the excited state symmetry may be assigned approximately as $3\Sigma_u^+$ rather than 1_u, 0_u^-.

Rotational constants obtained for seven high-lying emitting levels with consecutively decreasing vibrational quantum numbers range
from 0.073 to 0.105 cm$^{-1}$. An attempt has been made to use spectroscopic results to depict the shapes and positions of the long range portions of the potential curves of the first two excited states ($^{3}_{1} \Sigma^+$ and $^{1}_{1} \Sigma^+$) of Ar$_2^+$ relative to each other and to that of the ground state $X^{1}_{1} \Sigma^+$. A complete account is given in Ref. (4).

(d) Absorption Spectrum of Atomic Krypton in the Vacuum Ultraviolet Region. The absorption spectrum of atomic krypton in the wavelength region 840-1240 \AA has been investigated with a 6.65 m vacuum spectrograph. The expected five ns and nd Rydberg series have been observed. The series have been extended as far as $n = 60$ for nd$(3/2)_1^0$ and $n = 59$ for nd'$'(3/2)_1^0$. The ionization energies obtained are 112914.6 ± 0.1 cm$^{-1}$ and 118284.6 ± 0.2 cm$^{-1}$ for $^{2p}_{3/2}^o$ and $^{2p}_{1/2}^o$ states of Kr II, respectively. Strong interactions have been observed as perturbation and autoionization. A complete account is given in Ref. (5).

Significant research accomplishments in elucidating the nature and mutual interactions among the excited states of molecular nitrogen formed by photoabsorption in the 80-100 nm region can be summarized under two headings:

(a) The Influence of Homogeneous Perturbation between the Rydberg Level $c'_4(0) \; \; ^{1}_{1} \Sigma^+_u$ and the Valence Level $b'(1) \; \; ^{1}_{1} \Sigma^+_u$ on the Photoabsorption Spectrum of N$_2$ near 95.8 nm. The first member of the $^{1}_{1} \Sigma^+_u$ Rydberg series of N$_2$, c'_4-X, has been studied in absorption using a 6.65 m vacuum spectrograph. Rotational analyses of the (0,0) band of the c'_4-X as well as the (1,0) band of the $b'-X$ are given. Mutual perturbation between $c'_4(0)$
and b'(1) levels has been studied as a homogeneous interaction. The results were compared with the previous work in absorption and in emission, and confirmed the identity of Worley's c state and Gaydon's p' state as the c'_4(0) 1Σ^+_u state. A complete account is given in Ref. (2).

(b) High Resolution Vacuum Ultraviolet Absorption Spectrum of N₂, c'_4 1Σ^+_u + X 1Σ^+_g Bands. Absorption spectra of the c'_4 1Σ^+_u + X 1Σ^+_g Rydberg bands of N₂ in the 885 to 995 ˚ region are photographed at high resolution by a 6.65 m vacuum spectrograph. Rotational analyses of the c'_4(v) + X(0) and c'_4(v) + X(1) bands with v = 1-4 are given, together with a preliminary discussion of the homogeneous perturbations c'_4 1Σ^+_u x b' 1Σ^+_u. Some abnormal frequency shifts and distributions of rotational line intensities previously observed in emission bands having c'_4 upper levels are attributed to the effects of perturbations rather than predissociations. A complete account is given in Ref. (6).

3. PUBLICATIONS

(7) "High Resolution VUV Absorption Spectrum of \(\text{N}_2 \), c\(_5 \) \(\text{I}_u^+ \) + X \(\text{I}_g^+ \) Bands," K. Yoshino and D.E. Freeman (in preparation).

4. INTERACTIONS (COUPLING ACTIVITIES)

The following spoken presentations of research have been given:

June 1977, Molecular Structure and Spectroscopy Symposium, Ohio State University, "Absorption spectrum of \(\text{N}_2 \) in the VUV region. The c\(_4 \) \(\text{I}_u^+ \) - X \(\text{I}_g^+ \) system."

June 1977, Zeeman-Laboratorium der Universiteit van Amsterdam, "High resolution VUV spectroscopy of small molecules."

October 1977, AFSR/FFGL Chemical Dynamics Conference, Hanscom AFB, "High resolution spectroscopy of small molecules."

April 1979, Physics Dept., University of Massachusetts at Amherst, "High resolution spectrum of \(\text{N}_2 \) in the VUV region."

May 1979, Osaka City University, Japan, "High resolution spectroscopy in the VUV region."

May 1979, Tsukuba University, Japan, "High resolution spectra of rare gas dimers."

June 1979, Molecular Structure and Spectroscopy Symposium, Ohio State University, "The emission spectrum of \(\text{Ar}_2 \) in the VUV region."

August 1979, Herzberg International Conference on van der Waals Molecules, Université Laval, Quebec, Canada, "Electronic spectra of rare gas dimers."

October 1979, AFSR/FJSRL Molecular Dynamics Conference, USAF Academy, Colorado Springs, Colorado, "High resolution VUV spectra of small molecules."
November 1979, University of Maryland, "High resolution spectra of rare gas dimers."

December 1979, National Research Council, Ottawa, Canada, "Emission spectra of rare gas dimers in the VUV region."

September 1980, Eidgenossiche Technische Hochschule, Zurich, Switzerland, "High resolution VUV spectrum of N₂."

October 1980, AFOSR/AFGL Molecular Dynamics Conference, Hanscom AFB, "High resolution VUV spectrum of N₂."
DATE
ILME