KALMAN FILTER TECHNIQUES FOR CONTROL OF REPEATED ECONOMIC SURVEY

SEP 80

W SMITH, Z BARZILY

N00014-75-C-0729

UNCLASSIFIED

SERIAL-T-428
STUDENTS FACULTY STUDY RESEARCH DEVELOPMENT FUTURE CAREER CREATIVITY COMMUNITY LEADERSHIP TECHNOLOGY FRONTIER ENGINEERING APPLIED SCIENCE GEORGE WASHINGTON UNIVERSITY
KALMAN FILTER TECHNIQUES FOR CONTROL OF REPEATED ECONOMIC SURVEYS,

by

Wray Smith
Zeev Barzily

Scientific rept.

SERIAL-N-

30 September 1980

The George Washington University
School of Engineering and Applied Science
Institute for Management Science and Engineering

Program in Logistics
Contract N00014-75-C-0729
Project NR 347 020
Office of Naval Research

This document has been approved for public sale and release; its distribution is unlimited.

405387
REPORT DOCUMENTATION PAGE

1. **REPORT NUMBER**
 - T-428

2. **GOVT ACCESSION NO.**
 - AD-A044-310

3. **RECEIPT'S CATALOG NUMBER**
 - T-428

4. **TITLE (and Subtitle)**
 - KALMAN FILTER TECHNIQUES FOR CONTROL OF REPEATED ECONOMIC SURVEYS

5. **TYPE OF REPORT & PERIOD COVERED**
 - SCIENTIFIC

6. **PERFORMING ORG. REPORT NUMBER**
 - T-428

7. **AUTHOR(s)**
 - WRAY SMITH
 - ZEEV BARZILY

8. **CONTRACT OR GRANT NUMBER(s)**
 - N00014-75-C-0729

9. **PERFORMING ORGANIZATION NAME AND ADDRESS**
 - THE GEORGE WASHINGTON UNIVERSITY
 - PROGRAM IN LOGISTICS
 - WASHINGTON, DC 20052

10. **CONTRACT OR GRANT NUMBER(s)**
 - N00014-75-C-0729

11. **DEPARTMENT OF THE NAVY**
 - PROGRAM IN LOGISTICS
 - WASHINGTON, DC 20052

12. **REPORT DATE**
 - 30 SEPTEMBER 1980

13. **NUMBER OF PAGES**
 - 24

14. **MONITORING AGENCY NAME AND ADDRESS (IF DIFFERENT FROM CONTROLLING OFFICE)**

15. **SECURITY CLASS. (OF THIS REPORT)**
 - NONE

16. **DISTRIBUTION STATEMENT (OF THIS REPORT)**
 - APPROVED FOR PUBLIC SALE AND RELEASE; DISTRIBUTION IS UNLIMITED.

17. **DISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)**

18. **SUPPLEMENTARY NOTES**

19. **KEY WORDS**
 - INVENTORY ANALYSIS
 - OPTIMAL CONTROL
 - MEASUREMENT ERROR
 - RANDOM-YIELD SAMPLING
 - COST OF OBSERVATION
 - SURVEY TIMING

20. **ABSTRACT**
 - In this paper we discuss the determination of sample sizes and intersurvey intervals in repeated economic surveys. Three models are discussed. The first two maintain the intersurvey intervals at a constant length while the third allows the intersurvey intervals to vary in length. In the first model we assume that the number of obtained observations in each survey is equal to the number of designated observations. The second and third models (continued)
20. Abstract (continued)

assume that the number of obtained observations is a random variable. The costs which are taken into account are the fixed and varying costs of surveying and a cost which is due to the use of estimates from the repeated surveys.
In this paper we discuss the determination of sample sizes and intersurvey intervals in repeated economic surveys. Three models are discussed. The first two maintain the intersurvey intervals at a constant length while the third allows the intersurvey intervals to vary in length. In the first model we assume that the number of obtained observations in each survey is equal to the number of designated observations. The second and third models assume that the number of obtained observations is a random variable. The costs which are taken into account are the fixed and varying costs of surveying and a cost which is due to the use of estimates from the repeated surveys.
1. Introduction and Background

Statistical data from household surveys and administrative records are widely used in formulas to allocate grant-in-aid funds or other governmental benefits to state and local jurisdictions. A review of U.S. programs appears in Gonzalez (1978). An explicit tradeoff between data collection costs in repeated surveys and an imputed cost of misallocation of resources due to the use of imprecise survey data in setting allocation levels was considered in Smith and Zalkind (1978) as a scalar problem in deterministic inventory theory. The present paper places such problems in a control theory framework accommodating vector linear models of nonstationary economic processes measured by noisy multi-item repeated surveys. Optimal rules are found for control of a sequence of surveys, where there is a fixed charge plus unit costs of

*An earlier version of this paper was presented at the 2nd Economics and Control Conference, Princeton University, Princeton, New Jersey, June 2-4, 1980.
surveying and an imputed quadratic loss associated with the imprecision of the resulting state estimates of the observed economic process.

In this paper we analyze one model in which the number of completed interviews in a survey is equal to the designated number of interviews and two models in which the number of completed interviews is a random variable. The models are analyzed with the aid of an equivalent sample size form of the Kalman filter that was derived in Smith (1979). A related inventory analysis of single-item repeated surveys under random-yield sampling is set forth in Smith and Zalkind (1980). Methods for time series analysis of repeated surveys are presented in Scott and Smith (1974). Problems of the choice of loss function for misallocation error are of practical importance, but they are not treated in the present paper, nor are problems of "distributive equity" in allocations across states or local jurisdictions, as discussed in Spencer (1979). In the models of this paper, we are estimating (tracking but not controlling) the state of the observed economic process, and we are controlling the survey measurement subsystem; see Meier, Peschon, and Dressier (1967). Also see Aoki and Li (1968), which discusses control problems with cost for observation, although not treating the fixed-plus-variable cost structure of the present paper.

2. Formulation of the Models

In this section we formulate the models to be discussed in the present paper. In the first two models (Sections 3 and 4) we are interested in the evolution of \(x(j) \), a multivariate socioeconomic process (e.g., money income or proportion of a population in poverty), through discrete time points \(j, j=0,1,2, \ldots \). Here \(x(j) \) is an \(m \times 1 \) state vector, and we assume that it evolves according to the vector random walk

\[
x(j+1) = x(j) + w(j+1),
\]

where \(w(j) \sim N(0,Q) \). That is, \(w(j) \) has a multivariate normal distribution with zero mean vector and known process disturbance covariance matrix \(Q \). Surveys of the process \(x(j) \) are taken once
every T units of time at $k = T, 2T, 3T, \ldots, rT, \ldots$. (In one of our stochastic models, T may vary.) We also assume that $x(0) \sim N(E[x(0)], C(0))$, where $E[x(0)]$ and $C(0)$ are known.

At each survey time $n_d(k)$ individuals are sampled, but only $N(k)$ completed interviews are obtained. We assume that $P[N(k) \geq 1] = 1$. The difference $n_d(k) - N(k)$ is due to refusals to respond or incomplete observations. We assume that $y(k)$, the m-dimensional survey measurement, is represented by the survey equation

$$y(k) = x(k) + (1/N(k)) \sum_{i=0}^{N(k)-1} u_1(k),$$

where each $u_1(k)$ is an $m \times 1$ vector that is distributed normally with a zero mean and measurement noise covariance matrix R. The matrix R is assumed to be known, time invariant, symmetric, and positive definite. Both $\omega(j)$ and the $u_1(k)$ are assumed to be serially uncorrelated.

We may find the best linear estimate of $x(rT+j)$, given $E[x(0)], C(0)$, and the r measurements $y^r = (y(T), y(2T), \ldots, y(rT))$, as a linear combination of the observations y^r. We define the estimation error $x_e(k+j|k)$ as

$$x_e(k+j|k) = x(k+j) - \hat{x}(k+j|k),$$

where

$$\hat{x}(k+j|k) = E[\hat{x}(k+j) | y^r].$$

We also define the j-step-ahead estimation error covariance matrix $C(k+j|k)$ as the conditional expectation of the outer product of the j-step-ahead estimation error vector given the r measurements; namely,

$$C(k+j|k) = E[\hat{x}_e(k+j|k) (\hat{x}_e(k+j|k))^\prime].$$

- 3 -
We now state a general optimal filter theorem for the vector random walk models. Related proofs and derivations of Kalman-type filters for vector models may be found in Jazwinski (1970), Melsa and Cohn (1978), or Sage and White (1977).

Optimal Filter Theorem for Vector Random Walk Models. The optimal (minimum variance) filter for the discrete system (1), (2) consists of difference equations for the conditional mean \(\tilde{x}(k+j|k) \) and the estimation error covariance matrix \(\tilde{C}(k+j|k) \), for \(T=1,2,...,T_{\text{max}} \):

- between surveys,
 \[
 \tilde{x}(k+j|k) = \tilde{x}(k|k), \quad \text{for} \quad k=T,2T,..., \text{and} \quad j=1,...,T, \tag{4}
 \]
 \[
 \tilde{C}(k+j|k) = \tilde{C}(k|k) + jQ;
 \]
- at surveys,
 \[
 \tilde{x}(k|k) = \tilde{x}(k|k-T) + K(k) \left[y(k) - \tilde{x}(k|k-T) \right], \tag{5}
 \]
 \[
 \tilde{C}(k|k) = \left[I - K(k) \right] \tilde{C}(k|k-T),
 \]

where \(K(k) \) is the Kalman gain

\[
K(k) = \tilde{C}(k|k-T) \left[\tilde{C}(k|k-T) + B(k) \right]^{-1}, \tag{6}
\]

and \(B(k) \) is the sample noise covariance matrix obtained from \(\tilde{R} \) by dividing each of its elements by \(N(k) \). The second equations in (4) and (5) are called the error covariance equations.

The first two models differ in the number of observations obtained. In Model A we assume that the number of observations in each survey is a known constant \(n_d(k) = n_d \). In other words,

\[
P[N(k) = n_d] = 1.
\]

Model B assumes that a constant scalar designated sample size \(n_d \) is to be used for all survey times, that the obtained sample size is a random variable with expectation \(\bar{n}_d \), where \(0 < \theta < 1 \) is known, and that the inter-survey intervals \(T \) are nonvarying.
The third model (Model C) involves a continuous-time process—a Brownian motion process. Here we assume that the sample sizes obtained are i.i.d. random variables and we allow the intersurvey periods to vary as a function of the sample sizes obtained. The remaining assumptions and the analysis parallel those of the first two models.

In all three models we are interested in determining \(n_d(k) \) or \(n_d \), the designated sample size to be used at time \(k \). We determine the \(n_d(k) \) that minimizes a cost per unit time function \(J \). We define \(J \) by

\[
J = E\left[\left(\frac{1}{T} \right) (c_0 + c_1 n_d(k) + c_2 N(k)) + L_{avg} \right],
\]

where \(c_0 \) is the fixed start-up cost of ordering a survey, \(c_1 \) is a unit cost per designated item-interview (for \(m \) items), and \(c_2 \) is the additional unit cost per obtained item-interview. Letting \(a_1 \) be a loss weighting coefficient set by the decision maker, \(L_{avg} \) is defined by

\[
L_{avg} = a_1 \text{trace} \left[\left(\frac{1}{T} \right) \sum_{j=0}^{T-1} C(k+j|k) \right]
\]

\[
= a_1 \text{trace} \left[C(k|k) + (T-1)/2Q \right].
\]

The \(L_{avg} \) is an imputed loss attributed to the use of survey estimates of the state of the process and is proportional to the sum of the estimation error variances. By (6), \(C(k|k) \) is dependent on the realization of \(N(k) \) through \(K(k) \).

J. Model A

We specify for Model A that there is a sequence of \(m \)-item surveys of one homogeneous population with obtained sample sizes \(N(k) = n_d(k) \). The filter gain \(K(k) \) of (6) may be written as

\[
K(k) = C(k|k-T) \left[C(k|k-T) + R/n_d(k) \right]^{-1}
\]
let us now introduce the concept of equivalent sample size and show how
the error covariance equations in the optimal filter theorem may be use-
fully analyzed using this concept. Let the matrix $N_0(k+j|k)$ be de-
defined by

$$\begin{equation}
N_0(k+j|k) = R^{1/2} C^{-1}(k+j|k) R^{1/2}, \quad j=0,1,...,T-1,
\end{equation}$$

(9)

where $R^{1/2} C^{-1} R^{1/2} = \Sigma$. The Kalman gain may then be written as

$$\begin{equation}
K(k) = R^{1/2} N_0^{-1}(k|k-T) \Sigma R^{1/2} \left[R^{1/2} N_0^{-1}(k|k-T) \Sigma R^{1/2} + \Sigma/n_d(k) \right]^{-1},
\end{equation}$$

(10)

and thus we obtain a recursive relation in $N_0(k|k)$,

$$\begin{equation}
N_0(k|k) = n_d(k) I + N_0(k-T|k-T) \left[I + T R^{-1} QR^{-1} N_0(k-T|k-T) \right]^{-1}.
\end{equation}$$

(11)

If only one item is surveyed ($m=1$), then Q and R (and K) are scalars, the matrix $N_0(k|k-T)$ is replaced by the scalar $N_0(k|k-T)$, and

$$\begin{equation}
K(k) = \frac{n_d(k)}{n_d(k) + N_0(k|k-T)}
\end{equation}$$

and

$$\begin{equation}
N_0(k|k) = n_d(k) + N_0(k|k-T).
\end{equation}$$

This development leads to equivalent sample size relations to replace
the error variance equations in the optimal filter theorem for the
scalar case of Model A:

between surveys,

$$\begin{equation}
N_0(k+j|k) = N_0(k|k) \left[1 + jQR^{-1} N_0(k|k) \right]^{-1};
\end{equation}$$

at surveys,

$$\begin{equation}
N_0(k|k) = n_d(k) + N_0(k-T|k-T) \left[1 + TQR^{-1} N_0(k-T|k-T) \right]^{-1}.
\end{equation}$$

Here $N_0(k+j|k)$ is the equivalent sample size remaining at time $k+j$,
j time units after ordering new stock. If the system is in steady
state, $N_0(k|k-T)$ or $N_0(k+T|k)$ may be interpreted in inventory terms
as the "reorder point." Since $n_d(k)$ is the sample size of the survey.
conducted at time \(k \), we may interpret \(N_0(k,k) \) as the size of a survey that would be required to obtain the same degree of precision of estimate at time \(k \) as that provided by an optimally combined data set of size \(n_d(k) + N_0(k|k-T) \).

Figure 1 depicts the pattern of deterministic decay and replenishment of equivalent sample size for the scalar case on \(\text{Supr} \, k \).

Returning to the case where \(Q \) and \(k \) are matrices, using (5), (9), and (10) in (7) we obtain

\[
J(N_0(k,k),T) = \frac{1}{T}[c_0 + c_1 \text{trace}[N_0^{-1}(k,k)]] + a_1 \text{trace}[N_0^{-1}(k,k)k + ((T-1)/2)Q] = \frac{1}{T} \left[c_0 + c_1 \text{trace}[N_0(k,k) - N_0(k-T|k-T) \cdot (1 + \frac{TQ}{2}R^{-1}N_0(k-T|k-T))^{-1} \right]
\]

(12)

The optimal pair \((n_d^*(k), T^*)\) or, equivalently, \((N_0^*(k,k), T^*)\), can easily be determined, since for our survey systems there always exists a \(T^* \), denoted \(T_{\text{max}} \), beyond which it is not possible to lengthen the intersurvey interval \(T \) without violating \(1 < \text{trace}[N_0(k+T|k)] \). Thus we calculate \((n_d^*(k), T^*)\) by setting \(T \) at successive integer values, \(T=1,2,\ldots,T_{\text{max}} \), and computing the value of the sample size \(n_d(k) \) which minimizes \(J \) for each \(T \). We then adopt the \(T^* \) corresponding to the minimum of \(J \) over \(T \).

It can be shown that when \(k \) is large the error covariance matrices \(C(k|k), C(k+T|k+T), \ldots \), will approach a limit, say \(C \). Equivalently, \(N_0(k|k) \) will approach a steady-state matrix \(N_0 \). If the system is nearing steady state, then \(C(k|k-T) \) will also approach a limit. From the covariance equation in (4), we then have
Figure 1.--Deterministic decay and replenishment of equivalent sample size for Model A with m=1.
The steady-state Kalman gain K will be

$$K = \frac{C + TQ}{(C + TQ) (C + TQ + R/n_d)^{-1}},$$

so that

$$C = (I - K) (C + TQ).$$

That is,

$$TQ = K(C + TQ)$$

$$= (C + TQ) (C + TQ + R/n_d)^{-1} (C + TQ),$$

or

$$C Q^{-1} C + T C - (T/n_d) R = 0. \quad (13)$$

We solve (13) for C, obtaining

$$C = -(T/2)Q + Q^{1/2} [(T/n)Q^{1/2} R Q^{-1/2} + (T^2/4)I]^{1/2} Q^{1/2}. \quad (14)$$

A numerical example of Model A

Suppose for $m=2$ the cost coefficients are

$$c_0 = \$10^6, \quad c_1 = \$67.50, \quad c_2 = 0, \quad \text{and} \quad a_1 = 2 \times 10^9,$$

and the Q and R noise covariance matrices have the following numerical entries:

$$Q = \begin{bmatrix} .00005 & .00004 \\ .00004 & .00007 \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} 0.10 & 0.05 \\ 0.05 & 0.25 \end{bmatrix}. $$

Let D be the matrix of eigenvalues of $Q^{-1/2} R Q^{-1/2}$,

$$Q^{-1/2} R Q^{-1/2} = \begin{bmatrix} 3140 & -1978 \\ -1978 & 5018 \end{bmatrix}; \quad \text{then} \quad D = \begin{bmatrix} 1889 & 0 \\ 0 & 6269 \end{bmatrix}. $$

We can construct an orthogonal matrix V whose columns are normalized eigenvectors of $Q^{-1/2} R Q^{-1/2}$, so that $Q^{-1/2} R Q^{-1/2} = V D \ V'$. We
will also have need of the matrix $S = V'QV$. For the numerical values above,

$$V = \begin{bmatrix} .8453 & -.5344 \\ .5344 & .8453 \end{bmatrix} \quad \text{and} \quad S = \begin{bmatrix} .00009184 & .00002619 \\ .00002619 & .00008216 \end{bmatrix}.$$

We will find it convenient to make the change of variable $z = T/n_d$, where $0 < n_d$ is the sample size at each survey time. We assume the loss function appropriate to the end-use allocation formula is a quadratic loss

$$l_{\text{avg}} = a_1 \text{trace} \left[(1/T) \sum_{j=0}^{T-1} (C+jQ) \right].$$

Using (14) we obtain

$$l_{\text{avg}} = a_1 \text{trace} \left[-Q/2 + (zD + (T^2/4)) \right]^{1/2} V'QV,$$

where we have used the property that $\text{trace}[ABC] = \text{trace}[BCA]$, that if U is an orthogonal matrix that diagonalizes the matrix A, then also diagonalizes $A^{1/2}$, or if $A = UBU'$, then $A^{1/2} = UB^{1/2}U'$, and that $\text{trace}[A] = \text{trace}[U'AU] = \text{trace}[B]$; see, for example, Bellman (1970).

We may now write our cost function J for the two-item repeated survey problem with scalar sample size n_d and sampling interval T as

$$J = \left(1/T \right) \left[c_0 + c_1 mn_d \right] + a_1 \text{trace} \left[-Q/2 + ((T/n_d)D + (T^2/4)) \right]^{1/2} S \right]$$

$$= c_0/T + c_1 m/z + a_1 \left[s_{11}(z d_{11} + T^2/4)^{1/2} + s_{22}(z d_{22} + T^2/4)^{1/2} \right]$$

$$- (q_{11} + q_{22})/2 \right].$$

It can be shown that J is convex in n_d given T and convex in T given n_d. In practice, (n_d^*, T^*) will be found in a region in which J is convex in (n_d, T). Fixing T successively at $T=1,2,\ldots,10$.

- 10 -
years, we solve \(\text{diff}(z) = 0 \) for \(z \), and hence for \(n_d = 1/z \), by a
umerical search procedure. We then compute \(J \) for each \(T \) using the
minimizing \(n_d \) and pick the \(T \) and \(n_d \) combination with lowest aver-
age annual cost \(J \). For the given cost coefficients, numerical results
are displayed in Figure 2. The \(T \) and \(n_d \) combination for which the
average cost is minimized is \(T = 3 \) years and \(n_d = 5.26 \). With \(J = \$875,473 \) per year. As Figure 2 makes clear, the average cost curve
is rather flat in the neighborhood of the optimal \(T^* \) and typically the
survey administrator will not incur major additional costs by choosing
\(T^* + 1 \) or \(T^* - 1 \) instead of \(T^* \). It may also be seen that sampling
too frequently is relatively more costly than sampling too seldom, assum-
ing the correctness of the underlying random walk process model for
the socioeconomic variables. An administrator who is concerned that
the underlying process parameters may take unexpected jumps or exhibit
turning points, which are not modeled by the simple time-invariant ran-
dom walk models, would presumably opt for sampling more frequently than
the optimal interval found by this method.

4. Model B

In this section we present a steady-state analysis of a vector
random yield model in which a fixed scalar designated sample size \(n_d \)
is used for all survey times, and \(T \) remains constant. In the use of a
fixed order size, the development resembles the treatment of random
supply in the inventory literature, but in our present analysis we have
level-dependent deterministic decay rather than the independent stochas-
tic demands of Karlin (1958). The stochastic nature of \(N(k) \) enters
the steady-state analysis in the case of a fixed \(n_d \) only through the
expected obtained sample size,

\[
E[N(k)] = \delta n_d
\]
Figure 2.—Average cost versus sampling interval: Model A with m = 1.
In a random yield model, an ordering rule that requires us to order a fixed amount at every survey time is an "open loop" approach in the sense that not all of the information available or to become available from the evolving history of the survey system is used in choosing the sampling interval T and the designated sample size n_d. In the special case treated here, we do not accommodate the general case of ordered random yield sampling where T may vary stochastically. Over the sampling interval T, the unconditional expectation $C(k)$ becomes, using (8),

$$ C(k) = c_t + c_2 + \ldots + c_n(k) + a_i \text{trace}(C(k)) + (C-1)/2 + \ldots. \tag{15} $$

Note that $c_i(k)$ is now stochastically dependent on $N(k)$.

Since we assume that the stochastic system is in steady state, we have $C = C(k) = C(1) = \ldots$, as the conditional expected error covariance

$$ C = E[C(k)|\ldots, n_d, T, Q, R] $$

where C is a known constant and $n_d = n_d(k)$ for all k. Since C and R are positive definite, so are C and C. For scalar sample size n_d, the C we seek is found by methods similar to those employed in Section 3 for Model A, which is a fixed-yield vector model with scalar sample size. The Kalman relations must now be expressed in the form of relations among expected error covariances, expected Kalman gains, and expected obtained sample size. We now have

$$ C = [I - K](C + TQ) $$

with

$$ K = \left(C + TQ \right) \left[C + TQ + E[R/N(k)] \right]^{-1}. $$

This leads to the matrix equation

$$ C Q^{-1} \dot{C} + T C - T R E[1/N(k)] = 0. \tag{16} $$

This equation is of the form of Equation (13) except that it involves expectations rather than deterministic quantities.
Solving (16) for \(\xi \) we obtain, strictly paralleling (14),

\[
\xi = -(T/2) Q + Q^{1/2} \left(T E[1/N(k)] Q^{-1/2} R Q^{-1/2} + (T^2/4)^{1/2} Q^{1/2} \right),
\]

so that, since \(E[\xi + ((T-1)/2)Q] = \xi + ((T-1)/2)Q \), we may substitute the value of \(\xi \) found above into the cost function \(J \) given by (15). The solution procedures for Model A may then be applied to find \((n^*_d, T^*) \).

5. Model C

Model C is an extension of random-yield Model B. We consider here a scalar process which evolves in continuous time \(t \) with survey measurements taken at time points \(t_k \), \(k=1,2,... \). Here we allow the intersurvey periods \(T_k \), \(k=1,... \) (\(T_k = t_k - t_{k-1} \)), to vary as a function of the obtained sample size \(N(t_{k-1}) \). We assume that the scalar process is represented by the linear stochastic differential equation

\[
dx(t) = x(t)dt + dB(t), \quad t_0 < t,
\]

where \(x(t) \) is a unidimensional Brownian motion process with

\[
E[(dB(t))^2] = Q dt.
\]

The survey equation (2) now becomes

\[
y(t_k) = x(t_k) + (1/N(t_k)) \sum_{i=1}^{N(t_k)} u_i(t_k),
\]

\[k=1,2,... \quad \text{and} \quad t_0 < t_k < t_{k+1},
\]

where \(y(t_k) \) and \(u_i(t_k) \) are defined as before. As set forth in

Jazwinski (1970, Theorem 7.1), the optimal filter for the system (17) and (18) becomes the continuous-discrete filter:

between surveys:

\[
d\hat{x}(t|t)/dt = \hat{x}(t|t),
\]

\[
d\hat{C}(t|t)/dt = 2\hat{C}(t|t) + Q, \quad t_k < t < t_{k+1}.
\]
at time

\[x(t_k | t_k) = x(t_k^-) + K(t_k) \left[y(t_k) - x(t_k^-) \right], \]

\[C(t_k | t_k) = \left[I - K(t_k) \right] C(t_k^- | t_k^-), \] (20)

where the Kalman gain \(K(t_k) \) is given by

\[K(t_k) = C(t_k, t^-) \left[C(t_k^- | t_k^-) + K(t_k) \right]^{-1}, \] (21)

and \(t_k^- \) represents the time instant just before the survey conducted (and instantaneously processed) at \(t_k \). As shown in Jazwinski (1970), if we integrate the process equation in (19) over intervals \([t_k, t_{k+1}] \), we may write

\[x(t_{k+1}) = x(t_k) + \int_{t_k}^{t_{k+1}} d\xi(t), \]

\[= x(t_k) + w(k+1,k), \]

where

\[w(k+1,k) = \int_{t_k}^{t_{k+1}} d\beta(t). \]

By Jazwinski (1970, Theorem 4.1), \(\{w(k+1,k)\} \) is a zero-mean, white Gaussian sequence with

\[E[(w(k+1,k))^2] = (t_{k+1} - t_k)Q, \]

and the continuous-discrete filter for Model C may be imbedded in a discrete filter paralleling Models A and B. The integrated form of (19) is

\[\hat{x}(t | t) = \hat{x}(t_k | t_k), \]

\[C(t | t) = C(t_k | t_k) + (t-t_k)Q, \quad t_k < t < t_{k+1}. \] (22)

We now analyze Model C with response rate \(\phi(k) \). Suppose that the equivalent sample size on hand at time \(t_0 \) is \(N_0(t_0) \). The
When \(N_0(t|t_0) \) just falls to a preselected value \(n_r \) (the reorder point), \(t < n_r \), a new survey of designated sample size \(n_d \) is ordered.

We now denote by \(v(t_k) \) the response rate for the survey conducted at \(t_k \). We assume that the \(v(t_k) \) are i.i.d. random variables with a known distribution and that \(0 < v(t_k) < 1 \). We thus obtain

\[
N_0(t_k|t_k) = n_r + v(t_k)n_d,
\]

and

\[
E[N_0(t_k|t_k)] = n_r + n_d,
\]

where \(E[1|v(t_k)] \).

In inventory terms, we thus have a problem of stochastic replenishment, with designated order size \(n_d \), delivered order size \(N(t_k) \), and updated equivalent sample size \(N_0(t_k|t_k) \). Given the realization \(N_0(t_k|t_k) \), we then have level-dependent deterministic decay from \(N_0(t_k|t_k) \) down to the reorder point \(n_r \). The time required for this decay to take place, \(t_{k+1} \), is found in terms of \(n_r, n_d \), and \(v(t_k) \) to be

\[
t_{k+1} = \frac{-\ln(1-n_r/n_d)}{v(t_k)}.
\]
\[t_{k+1} = \left(\frac{r}{q} \right) \frac{1/n_r - (n_r + \phi(t_k)n_d)^{-1}}{n_r} \cdot \quad (24) \]

We may also write

\[\begin{aligned} \frac{1}{k+1} &= QR^{-1} n_r \left[n_r + \phi(t_k)n_d \right] / \phi(t_k)n_d \cdot \end{aligned} \quad (25) \]

A typical pattern of level-dependent deterministic decay and stochastic replenishment is depicted in Figure 3.

The average ordering cost, \(C_{\text{avg}}(\phi(t_k)) \), over an interval of length \(T_{k+1} = t_{k+1} - t_k \), is

\[C_{\text{avg}}(\phi(t_k)) = \frac{1}{k+1} \left[c_0 + (c_1 + c_2 \phi(t_k))n_d \right] \]

\[= QR^{-1} n_r \left[n_r + \phi(t_k)n_d \right] \left[c_0 + (c_1 + c_2 \phi(t_k))n_d \right] / \phi(t_k)n_d \cdot \quad (26) \]

Since \(C(t; t_k) = R / N_0(t; t_k) \), we may write the average quadratic loss \(L_{\text{avg}}(\phi(t_k)) \) over the interval \(T_{k+1} \) as

\[L_{\text{avg}}(\phi(t_k)) = (a_1 T_{k+1}) \int_{t_k}^{t_{k+1}} C(t; t_k) dt = \frac{1}{k+1} \cdot \quad (27) \]

which yields

\[L_{\text{avg}}(\phi(t_k)) = (a_1 R/2) \left[1/n_r + 1/(n_r + \phi(t_k)n_d) \right] \cdot \quad (28) \]

Using (8) and (15), we obtain the cost function \(J \) as

\[J = \int_\phi C_{\text{avg}}(\phi(t_k)) + L_{\text{avg}}(\phi(t_k)) \cdot \quad (28) \]

It can be verified by taking second derivatives that \(J \) is convex in \(n_r, 1 < n_r \), for fixed \(n_d, 0 < n_d \), and in \(n_d, 0 < n_d \), for fixed \(n_r, 1 < n_r \). If we compute the determinant of the Hessian of \(C_{\text{avg}} + L_{\text{avg}} \), we find that for some (but not all) combinations of values of \(n_r, n_d \), and the cost coefficients the determinant is negative.

Therefore, \(J \) is not convex in general. Nonetheless, in practice there
is an optimal (a_r^*, a_d^*) pair in the interior of a region in which ϕ is convex and it may be found as an iterative solution to the pair of equations \(\frac{d}{du} = 0 \), \(\frac{d}{du} = 0 \).

Case of Uniform \(\phi \):

In the case of a uniform \(\phi \) on \((a, b) \),
\[a_r = \frac{a + b}{2}, \]
\[b - a = (b - a)^{-1} \log(b/a), \]
so
\[a_r (n_r + n_d) = \frac{(1/a_r)(b - a)^{-1} \log((n_r + n_d)/(n_r + n_d))}{a_r}, \]
so that
\[t = 0.5 \left| \frac{n_r}{\text{avg}(r)} + 0.5 \frac{n_d}{\text{avg}(d)} \right| \]
\[\frac{d}{dr} \left[c n_r^2 + 2d n_r + e_{1} n_r + e_{2} n_d + e_{3} n_r + e_{4} n_d \right] + (\frac{a}{2}) \left[\frac{1}{n_r} + \frac{1}{n_d} (b - a)^{-1} \log((n_r + n_d)/(n_r + n_d)) \right]. \]

Now \(t \) may be minimized over \((n_r, n_d) \) by standard iterative methods closely paralleling those used for \((s, q) \) inventory problems. A numerical example of Model C with a uniform \(\phi \) is portrayed in Figure 4. As shown in Smith (1980), a Markov chain set-up may also be used to find an optimal rule.

- 19 -
Figure 4. Designated sample size n_d versus reorder point n_r:
isocontours for example of Model C.
S. J. Chart

References

THE GEORGE WASHINGTON UNIVERSITY

Program in Logistics

Distribution List for Technical Papers

<table>
<thead>
<tr>
<th>The George Washington University</th>
<th>Army Logistics Mgt Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Sponsored Research Library</td>
<td>Fort Lee</td>
</tr>
<tr>
<td>Vice President H. P. Bright</td>
<td>Commanding Officer, UNALUSKA</td>
</tr>
<tr>
<td>Dean Harold Liebowitz</td>
<td>New Cumberland Army Nptmt</td>
</tr>
<tr>
<td>Dean Nancy Sokolno</td>
<td>Army Inventory Res Uc</td>
</tr>
<tr>
<td>Chief of Naval Research</td>
<td>Philadelphia</td>
</tr>
<tr>
<td>(Codes 200, 334)</td>
<td>Air Force Headquarters</td>
</tr>
<tr>
<td>Resident Representative</td>
<td>AFAGS-3</td>
</tr>
<tr>
<td>OPNAV</td>
<td>LEXY</td>
</tr>
<tr>
<td>OPNAV-40</td>
<td>SAF/LAC</td>
</tr>
<tr>
<td>DCMD, Logistics</td>
<td>Griffiss Air Force Base</td>
</tr>
<tr>
<td>Navy Dept Library</td>
<td>Reliability Analysis Center</td>
</tr>
<tr>
<td>NAVDATA Automation Cmd</td>
<td>Center Air Force Base</td>
</tr>
<tr>
<td>OP-964</td>
<td>AFML/AER</td>
</tr>
<tr>
<td>Naval Aviation Integrated Log Support</td>
<td>Maxwell Air Force Base Library</td>
</tr>
<tr>
<td>NARDAC Tech Library</td>
<td>Wright-Patterson Air Force Base</td>
</tr>
<tr>
<td>Naval Electronics Lab Library</td>
<td>Log Command Research Sch Log</td>
</tr>
<tr>
<td>Naval Facilities Eng Cmth Cm Tech Library</td>
<td>AFALD/68</td>
</tr>
<tr>
<td>Naval Ordnance Station</td>
<td>Defense Documentation Center</td>
</tr>
<tr>
<td>Louisville, Ky.</td>
<td>National Academy of Sciences</td>
</tr>
<tr>
<td>Indian Head, Md.</td>
<td>Maritime Transportation Res Board Library</td>
</tr>
<tr>
<td>Naval Ordnance Sys Cmth Library</td>
<td>National Bureau of Standards</td>
</tr>
<tr>
<td>Naval Research Branch Office</td>
<td>Dr H. R. Colvin</td>
</tr>
<tr>
<td>Boston</td>
<td>Dr Joan Rosenblatt</td>
</tr>
<tr>
<td>Chicago</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>New York</td>
<td>National Security Agency</td>
</tr>
<tr>
<td>Pasadena</td>
<td>Weapon Systems Evaluation Group</td>
</tr>
<tr>
<td>San Francisco</td>
<td>British Navy Staff</td>
</tr>
<tr>
<td>Naval Ship Eng Center</td>
<td>National Defense Uihqts, Ottawa</td>
</tr>
<tr>
<td>Philadelphia, Pa.</td>
<td>Logistics, OR Analysis Establishment</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>American Power Jet Co</td>
</tr>
<tr>
<td>Naval Ship Res & Dev Center</td>
<td>George Chernowitz</td>
</tr>
<tr>
<td>Naval Sea Systems Command</td>
<td>General Dynamics, Panama</td>
</tr>
<tr>
<td>PMS 30611</td>
<td>General Research Corp</td>
</tr>
<tr>
<td>Tech Library</td>
<td>Dr Hugh Cole Library</td>
</tr>
<tr>
<td>Code 013</td>
<td>Logistics Management Institute</td>
</tr>
<tr>
<td>Naval Supply Systems Command</td>
<td>Dr Murray A. Geisler</td>
</tr>
<tr>
<td>Library</td>
<td>MATHTEC</td>
</tr>
<tr>
<td>Operations and Inventory Analysis</td>
<td>Dr Elliot Feldman</td>
</tr>
<tr>
<td>Naval War College Library</td>
<td>Rand Corporation Library</td>
</tr>
<tr>
<td>Newport</td>
<td>Carnegie-Mellon University</td>
</tr>
<tr>
<td>BUPERS Tech Library</td>
<td>Dean R. A. Simon</td>
</tr>
<tr>
<td>PMSO</td>
<td>Prof G. Thompson</td>
</tr>
<tr>
<td>Integrated Sea Lift Study</td>
<td>Case Western Reserve Uiv</td>
</tr>
<tr>
<td>USN Amtr Depot Earle</td>
<td>Prof B. Y. Dean</td>
</tr>
<tr>
<td>USN Postgrad School Monterey Library</td>
<td>Prof H. Mesarevich</td>
</tr>
<tr>
<td>Dr Jack R. Horning</td>
<td>Prof L. Zucker</td>
</tr>
<tr>
<td>Prof C. R. Jones</td>
<td>Cornell University</td>
</tr>
<tr>
<td>US Marine Corps</td>
<td>Prof W. S. Rechholzer</td>
</tr>
<tr>
<td>Commandant</td>
<td>Prof W. J. Comerly</td>
</tr>
<tr>
<td>Deputy Chief of Staff, R&D</td>
<td>Prof Andrew Schultz, Jr.</td>
</tr>
<tr>
<td>Marine Corps School Quantico</td>
<td>Cowles Foundation for Research in Economics</td>
</tr>
<tr>
<td>Landing Force Dev Ctr</td>
<td>Prof Herbert Scarf</td>
</tr>
<tr>
<td>Logistics Officer</td>
<td>Prof Martin Shubik</td>
</tr>
<tr>
<td>Commanding Officer USNS Harlon (LPH-249)</td>
<td>Florida State University</td>
</tr>
<tr>
<td>Armed Forces Industrial College</td>
<td>Prof R. A. Bradley</td>
</tr>
<tr>
<td>Armed Forces Staff College</td>
<td>Harvard Uiv.</td>
</tr>
<tr>
<td>Army War College Library</td>
<td>Prof K. S. Arrow</td>
</tr>
<tr>
<td>Carlisle Barracks</td>
<td>Prof W. G. Forman</td>
</tr>
<tr>
<td>Army Cmnd & Cm Staff College</td>
<td>Prof Arthur Schleifer, Jr.</td>
</tr>
<tr>
<td></td>
<td>Princeton University</td>
</tr>
<tr>
<td></td>
<td>Prof A. W. Tucker</td>
</tr>
<tr>
<td></td>
<td>Prof J. W. Tukey</td>
</tr>
<tr>
<td></td>
<td>Prof Geoffrey C. Hageman</td>
</tr>
</tbody>
</table>
To cope with the expanding technology, our society must be assured of a continuing supply of rigorously trained and educated engineers. The School of Engineering and Applied Science is completely committed to this objective.