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PREFACE

The study reported herein was conducted during the period October
1978 to September 1980 by the Hydraulics Laboratory of the U. S. Army
Engineer Waterways Experiment Station (WES) under the general supervision
of Messrs. H. B. Simmons, Chief of the Hydraulics Laboratory, and M. B.
Boyd, Chief of the Hydraulic Analysis Division (HAD). The study was
funded by Departmeni of the Army Project 4AO61101491D, "In-House Labora-
tory Independent Research,"'sponsored by the Assistant Secretary of the
Army.

Dr. B, H. Johnson, HAD, conducted the study and prepared this
creport.. Special thanks are extended to Dr. Joe F. Thompson of the
Aerophysics and Aerospace Department of the College of Engineering at
Mississippi State University for his invaluable consultation throughout
the study. In addition, the typing of the report by Mrs. Elaine Seeley
and Mrs. Connie Johnson is gratefully acknowledged.

Commanders and Directors of WAiS during the conduct of this study
and the preparation and publication of this report were COL John L.
Cannon, CE;and COL Nelson P, Conover, CE. Technical Director was

Mr. Fred R. Brown.
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‘ CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)

5 UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be con-

verted to metric (SI) units as follows:

: Multiply By To Obtain

feet 0.3048 metres

' miles (U. S. statute) 1.609344 kilometres
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VAHM - A VERTICALLY AVERAGED HYDRODYNAMIC MODEL
USING BOUNDARY-FITTED COORDINATES

. PART I: INTRODUCTION

1. The mathematical modeling of the hydrodynamics of a body of j
water plus the transport and disp.'rsion of a conservative comnstituent
within that body involves the solution of a set of partial differential
equations expressing the conservation of mass, momentum, and energy of
the flow field along with a tramsport equation for the comstituent.

These equations involve derivatives with respect to time as well as three
spatial dimensions. However, a simplification that is often made in
treating relatively shallow bodies of water that are well mixed over the
depth is to vertically average the three-dimensional (3D) equations to

yield a two-dimensional (2D) set for nearly horizontal flows.

Numerical Techniques

2. Since the governing equations are nonlinear, analytic solutions
in general cannot be found and one is forced to resort to numerical tech-
niques to obtain solutions. The two most common such techniques are the
finite difference method (FDM) and the finite element method (FEM).

There are, of course, both =2dvantages and disadvantages to each of these

. approaches.

3. Perhaps the most often quoted advantage of the finite element
method is that with this approach physical boundaries coincide with
- computational net points. Therefore, the modeling of flow within an
' irregular domain can be more accurately handled than with the normal
b finite difference method where the approach is to construct a rectangular |
i grid over the domain, which forces the boundaries to be represented in
a "stair stepped" fashion. Howevec, a disadvantage of finite element

; methods is that they involve dense matrices rather than the sparse ma-

trices involved in finite difference methods. This results in more




computational time being required in a finite element model having

i

the same number of mesh points as a finite difference model. An ad-
ditional disadvantage is that the finite element method is more cumber-
some to code into a computer model than the finite difference method.
This can be a problem not only during the development of the model but
can also increase the level of effort required during later model

modifications.

Boundary-Fitted Coordinates Concept

4. Accepting that the finite difference method possesses an ad-
vantage in simplicity and perhaps computational costs, a logical question

is whether or not one can develop ways to circumvent the major disad-

f vantage of having to represent irregular boundaries in a "stair stepped"
i‘ fashion. One such technique which has been developed by Thompson,

‘ et al.l’z’3 involves the use of boundary-fitted coordinates. Thompson's
P‘ method generates curvilinear coordinates as the solution of two elliptic

fy partial differential equations with Dirichlet boundarvy conditions, one

coordinate being specified to be constant on the boundaries, and a dis-

P B eak >

tribution of the other specified along the boundaries. However, the
numerical computations to solve the governing flow equations, as well as
computations for the solution of the coordinate system, are not made in
the physical curvilinear coordinate system but rather are made on a

rectangular grid with square mesh spacing.

. Purpose and Scope

e ot ol U ek el s Tl

5. 8Since the early to mid 1960's, many finite difference, plus a
y ) ‘

few finite element, computational models for vertically averaged flows |

4,5,6,7

have been developed. The purpose of this report is to describe

the development of a new vertically averaged hydrodynamic model which is

fully coupled with the water salinity through its influence on the water
density. The finite difference method of solution is employed but,

unlike the previously developed models, solutions are obtained on a

“ PRI : - I 2
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boundary-fitted coordinate system to provide an accurate representation
of boundary geometry.

6. The first part of the report summarizes Thompson's method for
computing boundary-titted coordinates. A portion of this discussion has
been taken from a previous Independent Laboratory Inhouse Research (ILIR)
report by Johnson and Thompson.8 The second part of the report presents
the basic equations to be solved and a discussion of their transformation
in a fully conservative form from the physical plane to a transformed
rectangular plane, wherein computations are made. The third  -art then
deals with the numerical aspects of the solution scheme and presents the
difference equations to be solved, along with associated boundary con-
ditions. The final part of the report describes the computer model as
it is developed to date and presents results from three applications

that demonstrate, in a qualitative sense, that the model is behaving

properly.
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; PART II: ASPECTS OF GENERATING BOUNDARY-FITTED
- COORDINATE SYSTEMS

7. Thompson's work on the generation of boundary-fitted coordi-

nates con be found in References 1, 2, and 3. The discussion below is a

summary of the more important theoretical aspacts of the subject.

The Basic Idea

8. Suppose one is interested in solving a differential system

involving two concentric circles, such as shown in Figure 1, where

r = constant = n, on the inner circle and r = constant = n, on the

outer circle and © varies monotonically over the same range over both

the inner and outer boundaries, i.e., 0° to 360°.

S. A cylindrical coordinate system is the obvious choice since a

coordinate line, i.e., a line of constant radius, coincides with each

boundary. If one now pulls the interior region between the two circles

i apart at 6 = 0° (or 6 = 360°) and folds outward, it is easy to visu-

alize the region D1 becoming the rectangular region D, . i

2
10. The general boundary-fitted system is completely analogous

to the system discussed above. In Figure 2 the curvilinear coordinate,

PR )

n , is defined to be constant on the inner boundary in the same way that

the curvilinear coordinate, r , is defined to be constant on the inner

circle in the cylindrical coordinate system. Similarly, n

P

is defined
to be constant at a different value on the outer boundary. The other

curvilinear coordinate, £ , is defined to vary monotonically over the

et i - ek adamalt A ..

same range on both the inner and outer boundaries, as the curvilinear

coordinate, © , varies from O to 2n around both the inner and outer

circles in cylindrical coordinates. It would be just as meaningless to !

: have a different range for & on the inner and outer boundaries as it
?? . would be to have 0 increase by something other than 2n around one of

tlie circles in cylindrical coordinates. It is this fact that § has the _ '

same range on both boundaries that causes the transformed field to be

x; rectangular. Note that the actual values of the coordinates, n and
B
{

e

. P 4
BRI SN LT A




§ , are irrelevant, in the same way that r and © may be expressed in
different units in cylindrical coordinates.

11. Now that the values of the coordinates, n and § , have been
completely specified on all the boundaries of a closed field, it remains
to define the values in the intevior of the field in terms of these
boundary values. Such a2 task immediately calls to mind elliptic partial
differential equations, since the solution of such an equation is com-
pletely defined in the interior of a region by its values on the boundary
of the region. Thus if the coordinates, § and n , are taken as the
solutions of any two elliptic partial differential equations, say
L(§) =0, D(n) =0, where L and D represent elliptic operators,
tnen £ and 1 will be determined at each point in the interior of
the field by the specified values on the boundary. One condition
must be put on the elliptic system chosen since the same pair of values
(§£,n) must not occur at more than one point in the field or the co-

ordinate system will be ambiguous. This condition can be met by

choosing elliptic partial differential equations exhibiting extremum

principles that preclude the occurrence o¢ extrema in the interior of
the field. x

Mathematical Development

12. From the discussion above, a logical choice of the elliptic ‘
generating system is Poisson's equation. Thus, based upon Figure 2, the

basic problem is to solve

e
+
yre
[l
o~}

(1)

with boundary conditions,

LNy
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§ =& (x,y) onT,
i‘ n = constant = n, on Fl
b (2)
t £=§(x,y)onT,
?’ n = constant = n2 on FZ

Tue arbitrary curve joining rl and Fz in the physical plane specifies

o —————

a branch cut for the multiple-valued function, £(x,y) . Thus the values
of the coordinate functions x(&,n) and y(§,n) are equal along F3

% and FA , and these functions and their derivatives are continuous from
F3 to r4 . Therefore boundary conditions are neither required nor

3 4
13. The functions P aad {Q may be chosen to cause the coordi-

Cm e e

i
alloweda »n I, and I, . 1
n nate lines to concentrate as desired. As discussed in Reference 1, i
1N
negative values of Q result in a superharmonic solution and cause n 3
lines to move toward the n-line having the lowest vaue of 1) , while
positive values have the opposite effect. Considering the £ solution !
I to be superharmonic results in the interior of the & = constant lines
being rotated in a clockwise direction in the physical plane, whereas if
? the § equation is subharmonic, i.e., P 1is positive, the lines are

rotated in the counterclockwise direction.

] 14. The form of these functions incorporated by Thompson,2 based

OGP ]

e

upon much computer experimentation, is that of decaying exponentials.

For example, lat Q be taken as

e

Q=-aexp (- d|n - n])

where a and d are constants, and n; is some specified n-line.

o

This function reaches its maximum magnitude on the ni line and decays

away from that line on either side at a rate controlled by d

%

. . e . PR Or
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15. This function would cause n-lines to concentrate on one side
of the ni-linc and to move away from the other side. If, however, a

sign-changing function is incorporated so that
? Q=-asgn(n-n)exp (-dfn-n|)

f where sgn(x) is simply the sign of x , the n-lines will concentrate

on both sides o{ the ni-line. In a similar fashion, it is possible to

cause concentration of ni-lines near a point (§i,ni) with the function

Q=-asg (n-n) exp[ - d\/(g - gi)z t(n-n) : }

Yt T e

Finally, concentration near more than one line and/or point is achieved

by writing Q as a sum of functions of the above form. In this case

-

the attraction amplitude a and the decay factor d may be differeat
for each line or point of attraction. The decay factor should be large
enough to cause the effects of each attraction line or point to be com-
f : fined essentially to its immediate vicinity. Thompson has found that

attraction amplitudes of 100 are moderate, 10 is weak and 1000 is fairly i

strong. A decay factor of 1.0 causes the effects to be confined to

a few lines near the attraction source, while 0.1 gives a fairly wide-
spread effect. Control of £-lines is accomplished by an analogous

form of the function P . Such control is useful to improve grid spacing

and configuration when complicated geometries are involved.

remm = faim mmane Pl e e -

16. Since all numerical computations are to be performed in the

rectangular transformed plane, it is necessary to interchange the de-

r pendent and independent variables im Equation 1. Using the relations j
1 1’
; . 1
2 € = /Y
= =-x_/J
£, = -x./
nx = NYE’/J
= x./J
ny E/




[Taa)
|

wx = &gy * MY )/T = G + £,0,3)/3

yre
1l

- e 2
vy (nyxnn ¥ gyxﬁn)” (§ynan ¥ €YJ€)/J

=
!

xe =~ EVge * e )/ - (€T, ¢ qun)/J

2
= o+ J - J. + nJ)/J
n (rlyx.;n gyxgg)/ (Eyny E ny n)/
equation 1 becomes

] ] 2 :
orx'Eg ZBXEQ yxnn +J (ng + an) 0

(3a)
2
Wee = 2BV, ¥ W, + I (Bye 4 Qy ) =0
whre
a = x2 2
n i
= +
P = XgXy ¥ Ve¥y
Yy = XE + yz (3b)
J = Jacobian of the transformation = xgyn - xnyg

with the transformed boundary conditions

bt sinmr i, ol 25 i

P
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X = fl(g,nl) on T%
y = g,(&,ny) on T

(4
X = fz(g,nz) on Fg

v = 8,(&,n,) on T

Again considering Figure 2, the functions fl(g,nl) , gl(g,ql) ,
fz(g,nz) , and gz(i,nz) are specified by the known shape of the con-
tours I and T

1 2
though the new system of equations is more complex than the original i

and the specified distribution of § thereon. Al- ;

system, the boundary conditions are specified on straight boundaries and
the coordinate spacing in the transformed plane is uniform. Computa-
tionally, these advantages far outweigh any disadvantages resulting from

j Lhe extra complexity of the equations to be solved.

17. The boundary-fitted coordinate system so generated has a
constant n-line coincident with each boundary in the physical plane.
The &-lines may be spaced in any manner desired around the boundaries
by specification of x,y at the equispaced £-points on the F? and

Fg lines oi the transformed plane. i

S R L et s i,

18. The rectangular transformed grid is set up to be the size
desired for a particular problem. Since the values of & and n are
meaningless in the transformed plane, the 1 1lines are assumed to run
from 1 to the number of n lines desired in the physical plane. Like- ‘
wise, the § lines are numbered 1 to the number specified on the bound- ?
aries of the physical plane. The grid spacing in both the § and n
directions of the transformed plane is taken as unity. Second order
central difference expressions are used in Thompson's coordinate genera- |
tion code, TOMCAT,2 to approximate all derivatives in Equations 3a and

i 3b. The resulting set of nonlinear difference equations, two for each

point, are solved in TOMCAT by accelerated Gauss-Seidel (SOR) iteration
using overrelaxation. Some discussion of this technique is presented in

Reference 2.

12




19. The same procedure may be extended to regions that are more

than doubly connected, i.e. have more than two closed becundaries, or

equivalently, more than one body within a singl: outer body. A river

reach containing more than one islacd would be an example.

Types of Boundary-Fitted Coordinate Systems

{ 20. Previous discussion of the generation o1 boundary-fitted
coordinates has centered around the idea of using branch cuts to reduce
" multiply connected regions to simply connected ones in the transformed
plane. Thompson's TOMCAT code employs such branch cuts. The other type
] of coordinate system transformation available leaves the multiplicity of
g the region unchanged. In this case, bodies in the interior of the
physical field are transformed to rectangular slabs or even slits in the
transformed plane. In the case of slits, the physical coordinates and
solution variables generally have different values at points on the two

sides of the slit, even though such points are coincident in the trans-

formed plane. This does not introduce any approximations, but simply

adds a little more bookkeeping to the code. Fields with more than one

e Eiidie e\ i et A

body in the interior simply result in a like number of slabs and/or

slits in the transformed plane.

NPT e ]

21. Different types of transformation may be more appropriate for

iy

different physical configurations. Generalily, the slit/slab form is
more appropriate for channel-like physical configurations having bodies

in the interior, while the branch cut form works particularly well for

| ke tia

"unbounded" regions involving external flow about bodies and for regions
g, having an outer boundary that forms a continuous circuit without pro-

nounced corners around the field. The slab is generally superior to the

slit unless the boundary has a sharp point. The case of a single channel

without any interior bodies would be the same in either form.

e ARG el e i

Data Required for Generation of Boundary-Fitted Coordinates

22. The basic input or data required to generate a boundary-fitted

13
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coordinate system are the physical coordinates of points on the bound-
aries. This will be discussed in more detail in PART V in connection

with the applications presented.

Computer Time Required for Generation of
Boundary-Fitted Coordinates

23. The computing cost for generating a boundary-fitted coordinate
system is trivial. Approximately 3 sec of CPU time on a CRAY I computer
were required to generate the coordinate system shown in Figure 3. It
might be noted that no coordinate control was employed. The use of such

control would result in a slight increase in computaticnal time.

J———
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PART III: BASIC HYDRODYNAMIC EQUATIONS

PO

24. The Navier Stokes equations express the conservation of mass

and momentum of a flow field and are the basic governing equations for

the solution 2f any fluid dynamics problem. Written in tensor notation

these equations are

dpu,
. ... 9p i
Continuity: gt + Ty 0 (5)
apui a(puiuj) -5p aTi. E
: + = + - 25, . —1 ‘
Homentum: —g¢ Bx ax, * P& 265 5k Py * B (6) :
where
| p = water density
i t = time |
u, = tensor notation for velocity !
X, = tensor notation of spatial coordinate %
g; = acceleration of gravity ;
eijk = ¢yclic tensor , 1
Qj = Coriolis parameter 1
Tij = laminar stress tensor ;
H = molecular eddy viscosity 1
\ 61j = Kronecker delta 3
‘ 1
", and where 3
du agi 8u1
- ____+.__ - = ] e——
ij “Wlax, tax, |3 Y5, Oij (7
1 J
{
represents the viscous molecular stress arising as a result of the con- g
]

tinuum approach. All symbols used are defined in Appendix A. It will

15
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A A

be recalled from tensor theory that repected indicies imply a summation

and also that ¢, in the Coriolis term is the cyclic tensor defined

ijk
as

1 - for an even permutation of ijk
eijk = =1 - for an odd permutation of ijk
0 - otherwise

In addition, the Kronecker Delta, 6ij, is defined as

1-41if 1=
6,. = 0 - otherwise
1]
25. 1In addition to the above equations, a conservation of mass
equation must also be written for any constituent being transported.

Such an equation for the salinity becomes

Js
3(su,) a(Dij a_x‘j')

Salinity: ot + axi = axi (8)

This equation states that the salinity can change as a result of advec~
tion by the flow field and molecular diffusion.

26. Since the salinity is coupled to the flow equations through
its influence on the density, one additional equation remains to be
written in order to close the system. An equation of state expressing
the density as a function of the temperature and salinity must be

employed.

Equation of State: p = p(T,s) (9)

With the closure of the system, there exists six equations to be solved
for the six unknownsy density =-p , three velocity components -u,v,w ,

pressure -p , and salinity -s.

16
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Time Averaging for Turbulent Flows

27. The above equations written with molecular values of viscosity
and diffusivity are only applicable in a practical sense to laminar flow
fields where the flow does not exhibit random irregular fluctuations in
time. However, most fluids in motion exhibit such fluctuations and are
referred to as turbulent flows.

28. Tollowing Reynolds, the approach normally taken to make the
equations applicable to turbulent flows is to assume that the dependent
variables are composed of an average time-varying component plus a small
randomly varying component about the average value. This is illustrated

below.

Thus, one writes

ui(x)Y)z)t) = Gi(x,Yaz)t) + u;(x'Y9z’t)

where

t+At/2

- 1
u, =g f ui(x,y,z,t) dt
t-At/2

q
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and
t+At/2
Z—t- ] u'i(x,y,z,t) dt = 0
t-At/2
ui = deviation between instantaneous velocity and time-averaged
velocity
ﬁi = time-averaged velocity
At = time step

With all the dependent variables written in the form above, substitution
into Equations 5, 6, and 8 and then integration over the time increment
At  produces the same form of the previous equations, but now written

with the time-averaged ca.tgouencs as the dependent variables, plus the
additional terms

t+At/2

1 -
At [ uiu.j dt

t-At/2

and

t+At/2

_1__ 1 t
At [ suidt

t-At/2

where s'

= deviation between instantaneous and time-averaged salinity.
29.

The first term is referred to as the turbulent Reynolds stress,
since the high frequency turbulent fluctuations manifest themselves as
viscous stresses acting on the average component of flow.

Using
Boussinesq's concept of eddy viscosity, the

first term is written as

o . T Lo g g
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t+At/2
AL Jr u' uJ dt = 1j 5;} + 8xi (no summation over i)
t-At/2

In analogy with the laminar flow case, Eij is referred to as the
turbulent or eddy viscosity tensor.
30. In a similar fashion, the second term above, which arises

from the time averaging of the salinity equation, is commonly written as

t+At/2

1 , 9s
At f 8 u dt = A13 ax

t-At/2

where Aij is called the "eddy diffusivity tensor" and s is the time-

averaged salinity.

31, The equations commonly applied to turbulent flow problems can

now be written as

TR S L O
Continuity: §@ + o= =0 (10)

Momentum:
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Tt

9s . %% _ 3 95
Sa11n1t¥: 5{ + 3—}_(:- = 5;‘:(A1.] a—x—j'> (12)
Equation of State: p = p(T,s) (13)

where

time-averaged water density

Tl T

il

time-averaged pressure

and where the assumption has been made that the eddy coefficients are

much larger than the molecular values; i.e.,

>>
eij u

.. >> D,
1] 1]

Depth Averaging for Nearly Horizontal Flow

32. A solution of the above set of equations constitutes a fully
time varying, three-dimensional model of the flow and salinity fields.
However, when modeling nearly horizontal flow in relatively shallow and
well-mixed water bodies the usual approach is to employ a spatial averag-
ing to yield a two-dimensional model.

33. The basic assumption in the spatial averaging of the three-
dimensional equations is that the dependent variables can be represented
by an average value over one or more of the spa ial coordinates plus

some small random deviation; e.g., the velocity would be written as

(14)

where




xi-Axi/Z
X, +Ax. /2
1 oo
—_— ' =
Axi j. ug dxi 0
X.~Ax./2
i1
and
Ei = time- and space-averaged velocity
Axi = spatial step
u' = deviation betweer time-averaged velocity and time- and space-

averaged velocity
v Inan x, y, 2 coordinate system (with X referring to the longi-
tudinal; y , the lateral; and =z , the vertical), if i = 2 , the inte-
“q gration is over the width and a width-averaged model results. However,

o if i =3 , the integration is taken over the depth and a depth-averaged

model will result. Many depth-averaged models pave been developed since

Leendertse's5 work, whereas laterally averaged models have only been

[ TSR N

developed over the past five years or so. If the integration is per-

formed over the complete cross section, a one~dimensional model with

= S .

variations allowed only in the longitudinal direction results.

34. As was done in the time-averaging of the instantaneous equa-

. aindut

tions, expressions such as Equation 14 are substituted into the turbulent

5 time-averaged equations to yield a set of equations with the time- i
;? averaged and spatially averaged components of the flow and salinity as

r dependent variables plus the additional terms
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and
xi+Axi/2
L s'u! dx
Axi i i
x.-Axi/Z

1 x.+Axi/2 o aﬁl ?ﬁi
— t,,t =l ___+
Axi ]ﬁ uluJ dxl ij X, 3x1
X, -Ax,/2 J
i
and
X +Ax /2 ~
1 Yt - - , 9s
Bx; sTup g = Ay ek
xi-Axi/Z

where aij and Aij are referred to as "eddy dispersicn coefficients" by
Holley9 to distinguish them from the turbulent eddy diffusion coeffi-
cients avising from the time averaging, and 5 is the time~averaged and
and spatially averaged salinity.

35. The resulting spatially averaged equations take different
forms, depending upon whether the averaging is performed over the depth
or the width. For the depth averaged case, the equations below are
obtained. It should be noted that the Boussinesq approximation has becn
made which removes the effect of density variations in all terms except

those multiplied by the acceleration of gravity.

..., 9¢ , d(uh) . 3(vh) _
Continuity: 5t + 9% + dy =0

R T

edins & o h o




g
1
2
: - . 9(hu) _ 8(hu”) . 3(huv) _ _h 3P
il X-momentum: 5t + ox + 3y = - 6 3%
o 5u
' + a(thx Bx) + a(thy By)
! ox dy
E + L7 + fhv (16)
‘ % x
4
1 9(hv) d{huv) a(hvz) h 9P
i y-momentum: 5t + kax + By = - 5 oy
. ov v
b d(hD  — 9{hD  —
L + ( yX 9x )+ ( vy 32)
| 9x By
|
- tro-ty - fhu 17)
4 v y
ds ds 3
a(hE, 5=) o(hE, £
. .v... 9(hs) , dhus , d(hvs) _ ( X 9x ( y dy ;
: Salinity: 5t + 5 + oy - 5x + By (18) j
| 4
The equation of state relating the water density to the salinity and !'

1
water temperature (assumed constant) has been taken from Leendertse

and is given as

p(s,T) = 1000(% + ALO % PO ) (19)

where

1779.5 + 11.25T - 0.0745T% - (3.80 + 0.01T)s
0.6980
5899.0 + 38T - 0.375T% + 3s

AL
ALO
PO
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36. In the above equations the surface wind shear is

T At A an T




wc 2
T = —pv cos a (20)
s p Taw
x o
wc 2
T, = — pv sina (21)
Sy P, W
and the bottom shear is
T = gu u2 + vi/éz (22)
By
T, = gv u? 4 vj/; (23)
By

The coriolis parameter, f , is computed from

f = 2we sin A (24)

where w, = earth's angular velocity and A 1is the angle of latitude of
the center of the area being modeled.
37. In order to finalize the above system of equations it remains

to couple the salinity computations with those of the flow field. This

is accomplished in the fullowing manner. Assuming that the pressure is

hydrostatic,

one can determine the pressure at any depth z from

¢ ¢
f idz=-fpgdz
z z

ot ot g o A M, o Bl b sl Al _sailia .
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where the coordinate system is

K z= ¢(X,y}

\ '
F4 ————
Yy ===
x

Integrating the above eq one obtains

¢

P=Pa+fpgdz

¥4

where P_ is the atmospheric pressure. Differentiating with respect to

the =x-coordinate yields

As was done in the continuity and momentum equations above, one now
assumes that the pressure and density are composed of a depth averaged

plus a fluctuating component. The resulting equation is then integrated

over the depth to yield

oP
OF | h —2ihged® 4+ 12, 90
h ax h 9x +hgpax v 3 h™g ax (25)

25




Similarly,

apP
op_, Fa,, 20,1,2 2
h By - h 3y + hgpay ) h°g 3y (26)

Substituting Equations 20-26 into equations 15-18 yields the final form

of the equations in cartesian coordinates.

ortinnire. 90 4 8(uh) | 3(vh)
Continuity: 5t 9% 3y

=0 (27)

2 opP
. . 9(hu) _ 9(hu™) _ a(Chuv) _ _ h_ a 3¢ . hg 9p
Xomomentum: —oo== + S 4 ay  p t 8ogy ¥

du y du
8(thx 8x/ B(hD ) v 2 o
Ix oy 4] PaVy €08

- gu ‘[uz + vi/éz + fhv (28)

2 aP
_ . 9(hv) , 9(huv) ;2vT) _ _h a 9¢ _ hg 3p

9
+ a(hDyx 8;) a(hDyy ax)

ox 3y o p v sin @
- gv u? + vi/éz- fhu (29)
8(hs) , 8(hus) , 3(hvs) 8(hE, g%) a(nE, 5 )
Salinity: “po o By~ = T ok y Y (30)
Equation of state: p = p(s,T) (31)
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38. As previously discussed, the above set of equations must now
be transformed into a (£,n) boundary-fitted coordinate system such that
(£,n) are the independent variables. The resulting set of equations will
then be solved in a transfcvmed rectangular plane as discussed in PART II.

In order to accomplish the transformation, the following expressions de=-
rived by Thompson12 are utilized.

h
"

R CRIRRCTAN 2
- - 1r .
£, = J[ (£x )¢ + (fxg)n] (33)

It should be noted that these expressions are written in a fully conserva-
tive form which should result in a more accurate solution in highly ir-
regular coordinate systems.

39. Using the above expressions and assuming thal the coordinate

system is time invariant, one can transform Equations 27-31 into the set

below.

27
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% Transformed Equatilons

!1}4

] . 9 1 v - - \ -

i Continuity: vt g [ (uh,.n vhxn)F + (thE uhygln :l 0 (34)
r

: x-Momentum: _d_(p_ul_‘__l_ huzy - huvx + ( huvx,_ - huzy

r /=R R J n nJg g 3
o n
]

,

r

b

=




Salinity: -a—%ﬁl +-} [(husy - hvsx ) + (hvsx - husy )
n n/g £ £ n

(L) - )

hE_ [ | |

) (%L(Sy“)e ) <Sy5)n"] ”€>n 5+%
. hE

| xn>g + (—jl[ - ( an)g + (sxc

——

N’
=
]
]
oy
e
=3
7~~~
2
-~4
S’

Eq. of State: o = p[s(&;,n), T] (38)

40, The above set of equations constitute the set for which a
numerical solution is sought op a rectangular grid with square grid
gpacing (e.g., Af =A% = 1,0) . It remains, of course, to specify proper
boundary conditions along the sides of the rectangular grid. It {is
;;' obvious that the transformed equations are more complicated than the
M original cartesian forms; however, the advantage of being able to make
computations on a rectangular grid far outweighs any disadvantage result-

ing from the more complicated set of equations.
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PART IV: NUMERICAL ASPECTS

4]. In order to obtain a solution of the governing set of Equa-

tions 34~38, the method of finite differences is employed. There are

many different types of finite difference schemes that have been employed

in numerical solutions of partial differential equations.

These schemes
range from fully explicit to fully implicit, with a combination of an

explicit~implicit scheme being employed in some cases, e.g., Edinger and

Buchak.11 4 similar scheme is employed here. Basically, the computa-

tional cycle will consist of the following steps:

a. S8olve for the water surface from the continuity equation
in a fully dmplicit fashion.

b. Using the most recent values of the water surface eleva-
tions, solve for the u and v velocity components from
the x and y momentum equations in an explicit fashion.

c. Solve for the salinity from the salt transport equation
in an explicit fashion.

d. Compute the density from the equation of state, using the
most recently computed salinity field.

e,

e. ©Step forward in time and repeat the sequence.

Such a scheme as outlined above will have the stability criterion asso-

i
.3
%
1

ciated with the speed of a free surface gravity wave removed; although,

diffusive eriteria as well as the Torrence condition associated with the

speed of a water particle remain. However, these criteria are not

nornally overly restrictive.

Computational Crid

42. The grid upon which Equations 34-38 are solved is rectangular

with a grid spacing of Af{ = An =1 . The u and v velocity compo-

nents are computed at the corners of each cell with the water surface

30
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elevation, salinity, and density computed at the center of a cell. Such

a grid is illustrated below.

| 1 I |
- + + 4+ +-
!
i+ - o

/— u, v, (xy)
(x.y)
4o+ 4 \-—’/’
I

2

-
_+_._+_J_+_
+
1
|

— .+_ —

h,p,s, (x.y)

The (x,y) coordinates are specified at the corners, the center, and also
at the midpoint of each side of a cell.

43, One might think of the above grid as a global grid. A local
grid consisting of 25 points surrounding the (§,n) point at which compu-
tations are being made is utilized in writing the difference form of the
governing equations. This grid is as shown below when velocity computa-

tions are being made.

NNNWNN NN NNNENE

NWNW ~ NENE
7 ? 73 T ﬂ;‘
wwnwuwf-f-— .L’tﬂ“’_ an E’.iif_.ﬂ EENENE
1 120w 13 _14e 1| o
w 1 wIE ! &t
wwswsw [ — o — 'll#i — g — g st
[ |
swsw L 12 2 la 8 sese
SsSwEwW | 85 SSESE
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‘ With the above grid, when u and v are being computed at the point
E ’ labeled ¢ , velocities are defined at points NWNW, NN, WW, NENE, EE,
SESE, S8S, and SWSW, whereas the water surface and salinity are defined

. ey

at NW, NE, SE, and SW. When a value of one of the dependent varilables
is needed at some point where the variable is not defined, an averaging
is performed, e.g., u(W) = [u(c) + u(WW)]//Z .

44. Points in the local grid are assigned to their location iu

b Tl I
. e il

%0, i dmnd

the global grid through functions of the form

TR YR TR TR

IFCOR(L) = I + INFCOR(L)

(RS =S

JFCOR(L) = J + JNFCOR(L)

where the 25 values of INFCOR(L) are

g -1 00 0 1
B 0-1 0 0 0
- -1 0 0 0 1
f‘ 0-1 0 0 0
I\'.
L -1 00 0 1
and the values of JNFCOR(L) are
-1 0-1 0-1
0-1 0-1 0

0 0 0 0 O
0 0 0 0 O
+1 041 0 +1

Thus, as an example, if one considers the computation for u at (5,5)
then the value of u(WW) in the local grid should correspond to the
value at (4,5) in the global grid. Using the expressions above, with
WW =11 from the local grid, one obtains
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u(WW) = u(IFCOR(ww) , JFCOR(WW))
u(W) = u(IFCOR(ll) R JFCOR(II”

; where

v IFCOR(11) = 5 + INFCOR(11l) = 5 - 1 = 4
JFCOR(11) = 5 + JNFCOR(11) = 5+ 0 = 5 .

therefore

u(WW) = u(4,5)

T e s g e =

Similar functions relate the (x,y) coordinates, salinity, and water

surface elevations in the local grid to their proper values in the

global grid. It should be noted that the grid system described above

was suggested by Thompson.12

g Difference Equations

45, The basic difference equations are developed using forward
3 differences for all time derivatives. Centered differences are used in
3 all spatial derivatives except In the convectlve terms where one has the
option in VAHM of requesting the use of either centered or a form of

: Roache's second upwind differencing. Examples are presented below.

’ n+l 1
¢ - ¢
1‘ . ) L ¢
X Forward: (at - At
I n
EL) n . ¢E - ¢W - ¢n _ <bn
9E Ag E W
c
Centered:
n n
Mn:¢N—f§=¢n—¢n
an An N S
c
%
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46, As previously noted, the water surface elevations are to be

computed using an implicit scheme. Thus, in writing the difference form

of the continuity equation all spatial derivatives are taken at the new

time level (n+l) . Equation 34 becomes

¢n+1 _ ¢n
c - C 4 %_ (uhyT>n+1 _ (uhy )n+1 _ (vhx )n+1 + (vhx )n+l
¢ VE w NJw s

+ [ vhx ntl vhx ot uhy i + [ uhy wtl |. 0 (39)
€/ £/g £ N /g

47. In the x and y momentum equationsg, all terms are taken at

the old time step except the water surface slope term which is computed

at the new time step. Therefore, the difference form of the x and vy

momentum equations becomes

W

(hu)2+1 - (hu)n hgp . n+l n+l n+l n+l
—~ = -( > <¢yn> - (¢yn> - <¢y£>N + (beg)s

+ (40)

n
+ G, (41)
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F and G contain all other terms in Equations 35 and 36, respec-

where
tively. The difference forms of F and G are
Fc = - —ﬁ:{ (huzyn - huvxn)E - (huzyn - huvxn>w + (huvxg - huzyE)N
) (hwxg ) thyE)S]- (3‘%:> [ <Pay“>E i (Pay“>w -(Payg)u
c
+\P yE } < > (py )w - (pyg>N + (oyg>s]
y I'

+ ._1]—; / xx n ‘. uyn>c —(uyg) +(uyg>SE

-/Dxxhyn u -(u +(u :

\\ I (y > ( “)ww ( yﬁ)Nw ( yg)Sw
D _hy 3
- }; 2 ) L(uy“)NE - (uyn> - (uyE)NN + (uyg);
+ Dxxhyg uy )} - (uy - (uy + { uy + l~:

I s{ ( /SE n>sw E’)c ( 5>ss Je

- EEQEQ ) ux +<ux +(ux ;(ux +<-}2—%§z)—<ﬂ
T ( “>}:h >c E3>NE E>SE] Iy

hD__ x
[_ (ux ) * (u\ )ww ' (ux£>Nw i (ux5>sw ]+ 3 E N [ i <ux“>NE
hD__x ’
vy &
+ (ux )Nw + (ux£>NN (uxg)c ] - § s{f.(uxn)sﬁ +‘<uxn)sw
+(ux€)c - (uxg)ss]]s +|l-_zi pavfa cos «
- gu /:2‘_:\,_2_ /C2 + fhv]c (42)
and
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' G = - — (hvx-huvy)-(hvx-huvy)
[ ¢ c[ ¢ “/n ¢ :

+ (huvy - hvzx )
n n E

!

o (o), T (). [, - G, - ),
: * (Paxn)J (ZJp ) l (P, ) +(°xn)w +(‘”‘5)N "(‘”‘g)sq
' ?1]: { <3¥%)E [(vyn)EE i (vy”)c ) (vyg)NE () SE

_<?l§%)w [(70), = (), = (o) +(o)

SW
D xhy

_<_LJ—§)N [<vyn)mg B (vy”)Nw i (vyg)NN +(vy£)° ]

D _hy

| +<—y-3‘———§)s [(vyn) . (yyn)Sw -(vyg)c + (vyE)SS ] §+§—C

3 I D hx

& - LA [—(vx +(vx_) + (vx - {vx

3 { < J )E n )EE ( ”)c ( E)NE \ E)SE]
X +| LN [ - {vx + (vx + (vx - (vx +| X~
Lo , Vo ' ”)c ( n)ww ( E3)Nw ( é3)sw] I /n

D hx

- (vx VX VX - (vx B (5 AN - (vx
[~ Gy * )+ (o) = g)c]< 3 )S[ S

W 2
+ (vx + (vx - (vx = pvw sin a
n)sw E)C ( g)SS]}‘ lpo a

2
-gv /7, 2 /c - fhu:|c (43)
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48. Consider the cell below

thut™!, (!

T
bt it e

. From an inspection of Equation 39, it can be seen that one nceds (uh)

and (vh) on the cell faces at time level (n+l) in order to solve for

the water surface elevation at the center of the cell. From Equations 40

\n+1 n+l

* and 41, one can determine (hu and (hv) at the cell corners.

&: From these values one can determine values on the faces by averaging,

e M A e e B e M LA Wt ..or il il M

e.g.,
n+l n+l n+1
(hu)E = [(hu)NE + (hu)SE ] 2
} Now if one substitues into Equation 39 for the values of (uh)n+1 and

% . (vh)n+1 on the faces (from Equations 40 and 41 with appropriate averag-
ing) an equation containing only ¢ at the (n+l) time level results.
This equation is then solved fer ¢C by using the Accelerated Gauss-

2 Seidel solution technique.

T 49. After the water surface elevation at the center of each cell
{ is determined at the (n+l) time level, values of un+1 and vn+1 at
4 the cell corners are explicitly determined from Equations 40 and 41

using the new ¢'s at the (n+l) time level. It might be noted that

the expressions for ¥ and G in Equations 42 and 43 are only computed

once during each time step. These values are then used in first the

iteration on the water surface and then in the velocity computations.
50. 1In the computation of ¢ , u, and v , the density is

taken at the old time level. 1Its value at the new time level is computed

from the equation of state relating the density to the salinity at the

new time level. New salinities are computed from an explicit representa-

tion of the salt transport Equation 37, The difference form becomes
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51, In summary, the computation cycle is as outlined below.

Step 1: Compute the terms labeled F and G in t“e x and
y momentum equations at the cell corners fi..1 Equa-
tions 4z and 43.

Step 2: Using the Accelerated Gauss-Seidel solution technique,
implicitly solve for the water surface elevation at
the center of each cell.

R el P IS, T . S N i S S
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Step 3: Using the new water surface elevations and values
of F and G from Step 1, explicitly solve for the
velocity components, u and v , from Equatrions 40
and 41,

Step 4: Explicitly compute the salinity field from Equation 44.

Step 5: Using the new salinities from Step 4, compute the
water density from the equation of state.

Step 6: Update all arrays, increment the time, and return to
Step 1.

52. This solution scheme removes the gravity wave stability
criterion from consideration, although it should be noted that other
stability criteria still control the size of the computational time step
allowed. These criteria have not been derived for the transformed equa-

tions; however, for the cartesian form of the equations they are

v

sz Ayz
At < min(—ﬁ-—-— ' 55 > (45)
xx yy

At < min <é§ , Ay )

In other words, the time step must be small enough so that a fluid
particle does not move more than one grid spacing during the time step.

This basic criterion is not nearly as severe as the gravity wave criterion

At < min(—Al‘-— , 9-"-—) (46)
/gh  Vgh

for most practical problems.

Boundary Conditions

53. Three types of boundaries are allowed in VAHM; walls, oceans,
and rivers. Wall boundaries are characterized by the specification of a

no-slip condition, i.e., the velocity components u and v are set to
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be zero at walls. Although, physically, the flow must be zero at a
solid boundary, slip conditions on the velocity at a wall often give
more realistic results if the grid spacing is too large near the wall.
Slip conditons would be implemented by setting the normal component of
the velocity equal to zero with the tangential component computed from
the expression for zero vorticity. At the present time, only the no-
slip condition is allowed in VAHM.

54. Ocean boundaries are characterized by the specification of a
time varying water suface elevation at the boundary. Velocities on the
ocean boundary are then computed from a simplified form of the momentum
equation where the diffusive terms have been neglected. One-sided
differences are used to replace derivatives that need points outside the
field. As an example, consider the computation for v on an ocean

boundary that lies on the bottom of the transformed plan.

|
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An inspection of Equation 47 reveals that in order to be able to compute
+ +
Ve 1 , values of ¢n 1 at the center of the first cell must be known.

These are determined by setting them equal to the boundary values of ¢ ,
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but lagged by the time required for a frze surface gravity wave to

traverse the distance from the boundary to the interior point, €eey

d

bue®) = 5t - =)
E

55. When the flow is directed into the computational fieid, the
boundary condition on the salinity is prescribed as that of the ocean.
However, when the flow is moving out of the computational field, the
salinity at an ocean boundary is set to be equal to its value at the
next point inside.

56. River boundaries are characterized by the specification of
the velocity. The salinity 1s set to be zero and the water surface
elevation at the center of a river boundary cell is computed as in any

interior cell.

(48)
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PART V: MODEL APPLICATIONS

57. In order to demonstrate the versatility of VAHM in its ability
to model flows in rather general multiply-connected regions containing
both river and ocean boundaries, three applications have been made using

the physical geometry in Figure 3.

Generation of Boundary-Fitted Coordinates

©

58. The first step in the application of VAHM is the generation
of the boundary-fitted coordinates. This is accomplished through a
coordinate generation code developed by Thompson. Output from the co-
ordinate code is saved on a file for subsequent use by VAHM. The basic
input to the coordinate code is the specification of the (x,y) co-
ordinates of the boundary points noted on Figure 3. Although various
degrees of coordinate control can be exercised, the boundary-fitted
coordinates shown in Figure 3 were computed using no control. Figure 4
illustrates the actual computational grid network that is used in VAHM,
where velocities are computed at the cell corners and salinities and
water elevations at the cell center. However, it should be remembered
that VAHM requires that the (x,y) coordinates be specified at not only
the corners and center of a computational cell but also on the cell
faces. 'The reason for thisg is because of the f:7ly geometrically con-
servative transformation of the mass, momentum and calinity equations to
be solved. With such a transformation, one should never use averaged
values of the geometrical derivatives since this can result in the loss
of conservation of the properties being computed. This is the reason
for computing the coordinate system illustrated in Figure 3.

59. The coordinate system plotted in Figure 3 was the third at-
tempt at generating a useful grid system. Through the movement of bound-
ary points and/or coordinate control one attempts to compute boundary-
fitted coordinates such that the grid spacing does not vary rapidly and
such that (£,n) lines never approach being parallel to each other. The
cnordinate system in Fipure 3 satisfies both of these criteria and thus

is considered to be adequatc.
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Flow Through Problem

60. Before applying the model for the case of time varying bound-
ary conditions, various "debugging' applications were made. Perhaps the
most important of these was a '"flow through" problem. In a flow through
test all velocities are set to be equal, but non zero, (even on the
walls), the water surface elevation is constant, but non zero, over the
field, and the salinity is set to be a non zero constant over the field.
If the coding is correct and all external forces have been set to zero,
the initial state should never change. Such tests have helped to correct

many errors that might otherwise have gone undetected.

Case 1 - Sloping River

61. The first application was one in which a river bohndaty with
a constant velocity of 0.4 m/s was prescribed at the top with the water
sucface elevation at the bottom being held constant at 1.0 m. The bottom
was assumed to have a slope of 0.005 m/grd cell and the initial depth was
set to be 11.0 m. The initial velocity field was set to zero as was the
salinity concentration. The Chezy coefficient was set to 35 ml/z/s and
a time step of 600 sec was prescribed. These plus other input data are
presented in Table 1.

62, Three separate runs were made in which the influence of using
a form of Roache's second upwind differencing for the corvective terms
in the momentum equations (CONVEC = UPWIND) as opposed to centered
differencing (CONVEC = CENTER) and the influence of increasing the di-
agonal components of the eddy viscosity from 0.01 mz/s to 10 mzs were
investigated.

63. Figures 5-8 illustrate the type of phernomena that can occur
when using centered differences to represent the convective terms. After
12 hours, a "zig zag" pattern has become well defined. Figures 9-12
demonstrate the effect of using a form of Roache's second upwind differ-
encing. Although a slight pattern can be seen after 12 hours, it isn't

nearly as pronounced as when using centered differences. Figures 13-16
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Table 1 - Input Data to VAHM

=

TR TR~

L
9 Variable Case 1 Case 2 Case 3
i

Y. At (sec) 600 600 600

1 D (m2/s) 0.01 10 10

¢ XX

A 10

i 2

L D (m“/s) 0.01 10 10

! yy

o 10

3 b, (/) 0.0 0.0 0.0

3 2

; Dyx (m%/s) 0.0 0.0 0.0

* 2

i E, (n%/s) 0.01 0.01 0.01
b

= by m%/s) 0.01 0.01 0.0:
F ; ¢ (m'/%/s) 35 35 35

| Initial depth, m 11.0 11.0 11.0

; Bottom slope/cell 0.005 0.0 0.0

g CONVEC CENTER

- UPWIND UPWIND UPWIND
R

; Initial Velocity, m/s 0.0 0.0 0.0

: Conv Tolerance 0.005 0.005 0.005

v
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show that by increasing the eddy viscosity, along with upwind differenc-
ing, essentially all of the "roughness'" in the computed velocity field
has been removed. Figure 17 presents a time history of the water surface

profile along the § = 6 line.

Case 2: Closed at Top, Ocean on Bottom

64. The second application was for the case of a closed boundary
at the top and an ocean boundary on the bottom. Once again the initial
velocity and salin ty fields were set to zero and the initial depth was
11.0 m. Unlike the previous application, the bottom was assumed flat.

65. The water surface elevation curve, relative to a depth of
10 m, presented in Figure 18 was prescribed at the ocwan boundary along
with a salt concentration of 30 ppt. As in the previous application,
CONVEC = UPWIND, Dxx = Dyy = }92m2/s , 4Ot = 600 sec and the value of
the Chezy coefficient was 35 m ' “/s (see Table 1).

66. The vector plots of the flow field presented in Figures 19-30
illustrate quite clearly the effect of the time varying ocean boundary
which first drives water into the field with water flowing out on the ebb
portion of the tidal cycle. The channelizing effect of the island is
also quite clearly shown. TFigure 31 presents a time history of the water
surface protile alung the § = 6 line, whereas Figures 32, 33 and 34
dare plots of the water surface at particular points,

67. From an inspection of Figures 26-30 it can be seen that an
oscillation ia the flow field has developed in the upper portion of the
modeled area when the flow is pushed toward the boundary. This is
probably due to the influence of the upstream boundary, although the
tolerance on the iterated water surface may also be a factor. The con-
vergence tolerance was set to be 0.005 m in all the runs.

68. Figure 35 demonstrates the movement of the salinity field
over a tidal ¢ycle. As the flooding cycie of the tide curve is experi-
enced, saline water at a concentration of 30 ppt moves into the region.
As the flow reverses at the ocean boundary (see Figure 23), the salinity

at the boundary is set to its value immediately inside to reflect an
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outflow boundary. This is the reason for the decrease in salt concentra-
tion at the boundary after 5 hours. Figure 36 gives a time history of

the salinity at a point about 12 miles from the ocean boundary.

Case 3: River on Top, Ocean on Bottom

69. The third application was identical to the second except that
a river boundary with a constant velocity of 0.4 m/s in the n-component
was assumed at the top as opposed to the closed boundary in Case 2.

70. Figures 37-49 present "snap shots" of the computed flow field
for 16 hours. With the flow field initialized to zero at a constant
depth of 11.0 m, it can be seen that the influence of the incoming tide
and the river meet after about 4 hours. As in the previous application,
an oscillatory pattern occurs in the upper portion between hours 8 and
12. However, as revealed in Figures 48 and 49, this irregularity is re-
moved as the influence of the ebb portion of the tidal cycle is felt in
the upper reach.

71. Figure 50 is a plot of the time history of the water surface
profile along the § = 6 1line and Figures 51-53 give the time history
of elevations at particular points. Figure 54 presents the time history
of the salinity at a point about 12 miles from the ocean boundary. Com-
paring Figure 54 with Figure 36, it can be seen that the salinities are
essentially the same after 16 hours. Therefore, the influence of the

river has not been felt in the lower reach after this length of time.

Computing Costs and Times

72. Previously it was noted that the major advantage of the FEM
over the FDM was its ability to more accurately handle irregular bound-
aries, whereas its major disadvantages were increased complexity in
coding and perhaps increased computational costs. A finite difference
model such as VAHM which makes computations on a boundary-fitted co-
ordinate system removes the boundary representation advantage of the FEM

in many problems. Although no direct comparison can be made between
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VAHM and the FEM in the areas of complexity of coding and computational
costs, some rather general comparisons can be made.

73. Since VAHM's computational scheme retsins much of the charac-
ter of explicit finite difference schemes, it would appear that VAHM's
coding should be much less complicated than any finite elemeat model.
With simpler coding, future modifications should be much easier to make,
e.g. flooding of boundaries, higher order representation of the advective
terms, etc.

74. An approximate comparison of computing costs can be made with
a vertically averaged finite element model called RMA-2]3. This is a
flow model that does not include the modeling of salinity and its effect
upon the flow field. The model was developed by Resource Management
Associates and is currently being used by the Estuaries Division of the
Hydraulics Laboratory at WES.

75. The time step employed in the previously presented runs of
VAHM was 600 sec, which compares with a time step of perhaps 30 sec that
could be employed in a fully explicit finite difference model. With a
computational grid that contains 363 velocity points (1365 coordinate
points) 12 hours of computations required 43 sgec of CPU time at a cost of
$21 on a CRAY I computer for the first application presented. The second
and third applications required approximately twice as much CPU time at
about twice the cost. However, later experimentation with VAHM revealed
that stable computations could be achieved using a time step of 1500 sec.
Therefore, if such a time step had been used in the cases presented the
costs would have been reduced by a factor of about 2.5, The increased
time of the last two applications was because of the more rapidly varying
water surface. Only one or two iterations each time step were required

to achieve a convergence tolerance of 0.005 m in the first case, whereas
an average of seven or eight iterations were required in the last two
applications.

76. As a comparison, RMA-2 applications to grids containing ap-
proximately the same number of net points for a 12 hour tidal cycle, using
an 1800 sec time step, cost about $40 on the same CRAY I computer.14

However, it should be remembered that RMA-2 makes computations for only
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the flow field, whereas VAHM also computes the salinity field and its
coupling with the flow field through a relationship with the water
density. Based upon these approximate costs, it woul/ appear that the
FEM, as reflected by RMA-2 costs, is about 3 times more expensive than
VAHM for tidal problems and perhaps 6 times more expensive for river
problems. As a final note, it is believed that after VAHM has been
"cleaned up" to better utilize the vector processing features of the

CRAY I its computational costs will decrease significantly.

e Ml TP et

JPROCT .

el Ll

— i




e TRTET

PART VI: SUMMARY AND RECOMMENDATIONS

77. A numerical model for computing vertically averaged velocities

and salinity plus water surface elevations has been developed. By em-

ploying the concept of boundary-fitted coordinates, irregular boundaries

can be accurately modeled in either simply or multiply-connected regions.

‘. Even though the numerical grid is a nonorthogonal curvilinear grid in the

physical region being modeled, all numerical computations are carried out
in a transformed rectangular grid with square grid spacing.

78. A feature of the model is the particular solution technique

i employed to numerically solve the governing equations. A combination

implicit-explicit finite difference scheme, patterned after work by

! Edinger and Buchak11 in their development of a laterally averaged reser-
| voir hydrodynamic model, has been developed to remove the speed of a
gravity wave from stability restrictions on the computational time step
while still retaining some of the advantages of explicit schemes. With
;! such a scheme, the water surface elevation is computed implicitly using

; the Accelerated Gauss-Seidel solution technique while the velocities and

- T T— e —
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salinity are computed in an explicit fashion. i

79. The model has been developed for general applications. Any

——

number of river and/or ocean boundaries can be arbitrarily located on

the transformed rectangular plane, as can the placement of islands in

e

the interior of the computational field. Even though a great deal of
; generality does exist, there are restrictions. For example, only no-slip
‘ boundary conditions are currently treated at solid boundaries and no

flooding of those boundaries is allowed.

et I e

L' 80. Although VAHM has been developed to the point where results

from the test applications presented are encouraging, additional work is

L S b

j needed before VAHM can be considered fully operational. Recommendations

for additional development are listed below.

}
[} -~ In order to expand VAHM's capabilities into the water quality
- area, it is necessary to devise a scheme for solving the
transport equation that accurately transports a "spike' concen-
tration distribution. The present scheme employed in VAHM for
computing salinity is sufficient when distributions are fairly

3
I
3
3
b
i
i
1

49

e e ey s o

S M T i T e

L ! . N [ eI SR T
¥ VIR 4 Vo % ekl e S it T R
VIR AR, IR SYOATI ) SR ER RPTL SV SR RN




L R i o el e e T T TR R Ry T T T T oRETRE T et o

smooth. However, it will not do a good job on a spike distri-
bution. Therefore, a major task to be accomplished is the
modification of VAHM to allow such computations to be ac-
curately made.

4s previously discussed, at the present time only no-slip
conditions are allowed at solid boundaries. Unless a small
grid spacing is used nsar the boundaries, slip conditions may
be more appropriate. The slip boundary conditions will be
determined »y requiring the normal component of the velocity
and the vorticity to be zerc at a wall. Many of the checks
in the baric model have been coded to allow for slip condi-
tions; however, the slip subroutine remains to be developed.

The capability of handling flooding boundaries is needed
in VAHM. 5Some ideas for incorporating such a capability into
VAHM have been considered in the basic coding.

VAHM uses the Accelerated Gauss-Seidel solution technique to
implicitly compute the water surface elevation., At the pres-
ent time, a constant acceleration parameter is employed. The
use of variable acceleration parameters for the purpose of
speeding up the computations should be investigated.

At the present time, a 2D vector plotting program developed
by S. A. Adamec of the Hydraulics Laboratory at WES has been
coupled with the grid genevation code and VAHM to provide
plots of the velocity field. Additional plotting capability
needs to be coupled with VAHNM.

As noted, the basic ceding has been written to allow for an
extremely general representation of a physical problem, e.g.
specification of islands, r'ver inlets, etc. However, many
of these options have not been "debugged." In addition,
although VAHM is being run on a CRAY-I computer no attempt
at "cleaning up" the code to take advantage of the CRAY's
vector processing has been made.
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Figure 21, Velocity field after 3 hours with an ocean boundary
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Figure 23, Velocity field after 5 hours with an ocean boundary
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Figure 28. Velocity field after 10 hours with an ocean boundary
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Figure 37. Velocity field after 1 hour with an ocean and a river boundary
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Velocity field after 2 hours with an ocean and a river boundary
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Figure 40. Velocity field after 4 hours with an ocean and a river boundary
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Figure 42, Velocity field after 6 hours with an ocean and a river boundary
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Figure 45. Velocity field after 9 hours with an ocean and a river boundary
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APPENDIX A: NOTATION

Eddy diffusivity tensor

Eddy dispersion tensor

Constant

Chezy coefficient

Constant, distance

Molecular diffusivity

Diagonal components of eddy viscosity temsor
Off diagonal components of eddy viscosity tensor
Components of eddy dispersion tensor
Arbitrary function

Derivatives

Acceleration of gravity

Water depth

Jacobian of the transformation
Coordinate control functions
Pressure

Atmospheric pressure

Cylindrical coordinates

Salinity

Temperature

Time step

Components of velocity

Tensor notation for velocity
Time averaged velocity

Random time varying component of velocity

Time and depth averaged velocity

Random depth varying component of time averaged velocity

Wind speed
Cartesian coordinates
Boundary-fitted coordinates

Spatial grid steps

Al

e e A




N —— e e . e e

p Water density

P, Reference water density
a Density of air
n Mclecular viscosity
&ij Turbulent viscosity tensor
Sij Eddy dispersion viscosity tensor
0} Water surface elevation; arbitrary variable
tij Stress tensor
Sijk Cylic tensor
6ij Kronecker delta
a/at Time derivative
8/8xi,8/8xj Space derivatives
IS ,IS Components of bottom shear stress e
X y
g 1 Tp Components of bottom shear stress/Q )
| Xy ;
} o Wind direction f
| A Latitude of center of modeled area !
W, Earth's angular velocity
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In accordance with letter from DAEN-RDC, DAEN-ASI dated
22 July 1977, Subject: PFacsimile Catalog Cards for
Laboratory Technical Publications, a facsimile catalog
card in Library of Congress MARC format is reproduced

below.

Johnson, Billy H

VAHM - A vertically averaged hydrodynamic model
using boundary-fitted coordinates / by Billy H. Johnson.
Vicksburg, Miss. : U. S, Waterways Experiment Station ;
Springfield, Va. : available from National Technical

Information Service, 1980.
52, [56] p. : 411, ; 27 em. (Miscellaneous paper -

U, 8. Army Engineer Waterways Experiment Station ; HL-80~-3)
Prepared for Assistant Secretary of the Army (R&D),
Depsitment of the Army, Washington, D, C., under Project
4LA0S1101491D.
References: p. 51-52.

1. Computerized models. 2. Coordinates. 3., Hydrodynamics,
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7. VAHM (Vertically Averaged Hydrodynamic Model). I. United
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Development). II. Series: United States. Waterways Experiment
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