A COMPUTER BASED IONOSPHERIC SOUNDING AND HF NOISE MEASURING SYSTEM
DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
ELECTRONICS RESEARCH LABORATORY
DEFENCE RESEARCH CENTRE SALISBURY
SOUTH AUSTRALIA

TECHNICAL REPORT
ERL-0146-TR

A COMPUTER BASED IONOSPHERIC SOUNDING AND HF NOISE MEASURING SYSTEM

G.F. EARL

Approved for Public Release
Commonwealth of Australia
SEPTEMBER 1980

COPY No. 24

COPY No. 24

DTIC ELECTED
JAN 28 1981

THE UNITED STATES NATIONAL TECHNICAL INFORMATION SERVICE IS AUTHORIZED TO REPRODUCE AND SELL THIS REPORT

81126179
A computer based ionospheric sounding and HF noise measuring system.

S U M M A R Y

A system for the automated collection of ionospheric backscatter sounding and HF noise measurement data is described. The system was configured around a PDP 11/40 minicomputer and modified Barry Research FMCW sounding equipment. The real time digital signal processing associated with the backscatter sounder and noise measurement systems is discussed. The data are displayed and recorded in a calibrated mode, and examples are presented. Deficiencies noted in the operation of the system, and plans for the introduction of oblique and vertical incidence sounding conclude the report.

POSTAL ADDRESS: Chief Superintendent, Electronics Research Laboratory, Box 2151, G.P.O., Adelaide, South Australia, 5001
A COMPUTER BASED IONOSPHERIC SOUNDING AND HF NOISE MEASURING SYSTEM

PERSONAL AUTHOR(S):
G.F. Earl

DOCUMENT DATE:
September 1980

TOTAL NUMBER OF PAGES: 18

CORPORATE AUTHOR(S):
Electronics Research Laboratory

DOCUMENT SERIES AND NUMBER:
Electronics Research Laboratory 0146-TR

IMPRINT (Publishing organisation):
Defence Research Centre Salisbury

RELEASE LIMITATIONS (of the document):
Approved for Public Release

REFERENCE NUMBERS
a. Task: DEF 77/036

COST CODE:

Security classification of this page: **UNCLASSIFIED**
A system for the automated collection of ionospheric backscatter sounding and HF noise measurement data is described. The system was configured around a PDP 11/40 minicomputer and modified Barry Research FM/CW sounding equipment. The real time digital signal processing associated with the backscatter sounder and noise measurement systems is discussed. The data are displayed and recorded in a calibrated mode, and examples are presented. Deficiencies noted in the operation of the system, and plans for the introduction of oblique and vertical incidence sounding conclude the report.
TABLE OF CONTENTS

1. INTRODUCTION

2. EQUIPMENT DESCRIPTION
 2.1 Transmitter Site
 2.2 Receiver Site
 2.2.1 Sounder Mode
 2.2.2 Surveillance Mode

3. ON-LINE PROCESSING
 3.1 Sounder Processing
 3.2 Surveillance Processing

4. SYSTEM FEATURES AND DEFICIENCIES
 4.1 Features
 4.2 Deficiencies

5. FUTURE PLANS

6. ACKNOWLEDGEMENTS

LIST OF FIGURES

1. Transmitter site equipment configuration
2. Receiver site equipment configuration
3. Receiver site equipment
4. Sounder processing
5. Backscatter ionogram
6. Surveillance FFT details
7. Surveillance processing
8. Atmospheric noise
9. System features
10. System deficiencies
1. INTRODUCTION

The ionospheric sounding and atmospheric noise measuring system described in this report was used to collect data in support of an Australian over-the-horizon radar program. The objectives of the experimental program were:

(i) to collect backscatter sounding data for a synoptic study of propagation conditions,
(ii) to collect noise data for a synoptic study of the HF noise background,
(iii) to collect data on RFI, in particular the large signal environment.

Each of the above objectives was characterised by continuous (24 hour/day) data collection of calibrated estimates on magnetic tape for off-line analysis at DRCS. Backscatter sounder data could be collected between nominated lower and upper frequencies. In practice, data were routinely gathered between 6 and 29 MHz. Likewise, while the atmospheric noise data could be collected between nominated frequencies, in practice limits of 6 and 30 MHz were generally employed. The data on large signal RFI environment were required to define receiver design requirements.

2. EQUIPMENT DESCRIPTION

2.1 Transmitter Site

Figure 1 is a block diagram of the transmitter site control computer, and of the equipment associated with backscatter sounding.

The roles of the items of equipment shown in Figure 1 were as follows:

Log-periodic Antenna
- A single TCI model 547 log-periodic antenna used for backscatter sounder transmissions.

Power Amplifier
- A Servo-tuned Collins 208U-10 power amplifier provided a nominal 5 kW output.

FMCW Waveform Generator
- A Barry Research model 1022 FMCW waveform generator, modified in order that sweep limits were controllable, generated an FMCW signal sweeping at a 2 MHz/min rate.

Reference Frequency Source
- Hewlett Packard 105B reference oscillator used to provide site with reference frequencies of 5 and 10 MHz. All synthesizers, FMCW waveform generators etc. were driven from this unit.

Equipment Status
- Enabled monitoring of equipment status eg.
 (i) what equipment was in manual or computer control,
 (ii) various status signals associated with the power amplifier - tuning complete, VSWR, etc.
Input/Output Interface - Enabled the computer to control all equipment, so that no manual intervention was necessary during routine operations. All of the equipment could be switched to manual control if necessary, e.g., for maintenance.

PDP11/10 CPU - Fitted with 16K of core memory. Responsible for equipment control and monitoring. Transmitter site program was coded entirely in assembly language.

Terminal - An 'LAI6 Decwriter' combination keyboard and printer.

Serial data I/O interface and VHF Link - Handled messages to and from receiver site

This site operated as a slave to the receiver site, with messages being passed over the VHF data link. Upon receipt of a message, any necessary changes to the equipment were implemented under computer control via the input/output interface. For instance, prior to a backscatter sounder run the computer would be required to:

(i) load the upper and lower frequency limits into the FMCW waveform generator,

(ii) retune the power amplifier to the lower limit,

(iii) enable a gate causing the FMCW waveform to be reset in synchronisation with the corresponding waveform at the receiver site.

A third mode of operation i.e., aside from normal computer control, or the manual alternative, allowed the equipment to be controlled by the computer, but with data entered via the keyboard as opposed to the VHF data link.

2.2 Receiver Site

Figure 2 depicts the equipment configuration at the receiver site. The roles of the items of equipment shown in Figure 2 were as follows:

Calibrated noise source - provided broadband HF noise at a known spectral density.

Sounder calibration unit - provided an FMCW signal of known power level.

Receiver input unit - enabled a variety of antennas, noise source and 50 ohm termination to be selected as receiver input.

Receiver - used to receive signals for both backscatter sounding and noise measurements. It was a modified Barry Research receiver.

FMCW waveform generator - provided a VHF local oscillator signal for 'deramping' backscatter sounder signals. (Deramping is the term used to describe the process whereby received FMCW signals are mixed with a local oscillator FMCW signal in order to produce beat frequencies, the beat frequency being proportional to the group delay of the received signal).
The system alternated between two data gathering modes viz 'sounder' for backscatter sounder data, and 'surveillance' for HF noise data. Using the standard frequency limits discussed previously, the system would remain in each mode for approximately 15 minutes.

2.2.1 Sounder Mode

In this mode the receiver input unit selected the antenna used to collect backscatter sounder data as the signal source. This antenna was a broadside array, 160 m in length, of 'dual whip' elements having a single beam in the required direction. The received signal was demodulated within the receiver using the FMCW waveform generator to provide the variable
frequency oscillator signal to the first mixer. Following two further stages of frequency translation and amplification, the received signal was translated to baseband and passed to the A/D converter. A calibration signal was injected within the receiver input unit. This signal was synthesised in such a manner as to cause it to appear at the receiver output at a fixed frequency. The strength of other signals appearing at the receiver output could be inferred by reference to the calibration signal. The processing of the sounder signals is discussed in Section 3.1.

2.2.2 Surveillance Mode

As was the case in the sounder mode, the receiver input unit was used to select the desired signal source. A variety of antennas, differing in directivity were available for selection. In surveillance mode the FMCW local oscillator signal was replaced by a CW signal generated by a 'Fluke' 6100B synthesiser. When in surveillance mode the same sections of the receiver were used up to and including the second mixer. The increased bandwidth of the surveillance mode (viz 20 kHz compared with 2 kHz in sounder mode) then demanded a separate receiver channel, including further amplification and translation to baseband. A multiplexer was used to access the same A/D converter as was used in sounder mode. Calibration of the surveillance data was achieved by substituting the calibrated noise source in place of the antenna on which data had been collected.

A photograph of the receiving system is included as Figure 3. The modified Barry Research sounder system is housed in the right hand rack. The facsimile recorder was included to support a manual 'back-up' mode of operation, but apart from its use in the commissioning of the present system, it was not used. The left hand rack contains equipment developed within ERCGS to support the sounder and surveillance systems, together with commercial equipment including the Fluke synthesiser, general purpose HF communications receiver, and monitor oscilloscope.

3. ON-LINE PROCESSING

3.1 Sounder Processing

The FMCW sweep rate afforded by the Barry Research sounding equipment was 33.33 kHz s⁻¹. The required range coverage was 0 to 9000 km at a nominal slant range resolution of 50 km. The range coverage of 9000 km corresponds to a time delay of 60 ms, which at the sweep rate of 33.33 kHz s⁻¹ determines that the deramped signals will occupy a bandwidth of 2.0 kHz. A coherent integration time of 0.1 s was chosen since it provided an r.f. bandwidth of close to 3 kHz, consistent with the slant range objective. Details of the sounder processing are included in Figure 4. The backscatter sounder data of interest is contained within the frequency limits 2.0 to 4.0 kHz, corresponding to the range coverage of 0 to 9000 km. The frequency ranges dc to 2.0 kHz and 4.0 to 5.0 kHz are used as guard bands to prevent spectral aliasing i.e. the 'folding' of unwanted signals into the band of frequencies occupied by the backscatter sounder signals. While the size of the guard bands may appear excessive (only 40% of the processed data contains useful information), in practice no significant penalty is paid since the time required to process the data was considerably less than the 0.1 s spent acquiring it. The advantage of such a scheme is the ability to relax the specifications of anti-aliasing filters within the receiver.

The calibration signal is located at 1953.125 Hz (the precise location of an
As discussed previously, absolute power levels of backscatter signals were inferred by comparison with the calibration signal.

Thus, the spectral processing yielded absolute estimates of ground backscatter signal strength at 44 km separation. These raw estimates pertained to 3.3 kHz of the HF spectrum. In order to decrease the variance of the results, and at the same time reduce the volume of data, the data in 200 kHz bands of the HF spectrum were then averaged to yield backscatter signal strengths corresponding still to 44 km spatial separation, but averaged over 200 kHz. This is equivalent to assuming that structural changes in ionospheric ground backscatter are insignificant when considered in terms of HF frequency changes of 200 kHz, and recorded data has validated this assumption.

When using the standard frequency limits of 6 to 29 MHz, a matrix of 115 (frequency) by 200 (range) points was used to define an ionogram, and this volume of data was recorded on magnetic tape. A data file of the most recent ionogram was also maintained on the disk. This data could be displayed on the Tektronix terminal on demand, to a maximum group range of 3000 km. Hard copies could be made using the electrostatic printer attached to the main radar. An example is shown as Figure 5. Absolute signal strengths can be inferred by reference to the information supplied at the top of the ionogram. Note the presence of RFI due to the 15 and 17 MHz broadcast bands.

3.2 Surveillance Processing

Before proceeding to details of the analysis of this data, Figure 6 is included to provide details of the surveillance processing on a single 20kHz band of frequencies. The coherent integration time of 5 ms yielded raw spectral estimates at a frequency separation of 200 Hz. In order to stabilise these estimates (i.e. reduce their variance), 10 raw estimates were used in order to form averages at 2 kHz separation.

The surveillance processing may be understood with reference to Figure 7. Suppose the receiver was tuned (using the Fluke synthesizer) to acquire data in the 20 kHz band indicated. Then the data entering the A/D converter was a result of the amplification and frequency translation of the 20 kHz band of the HF spectrum to which the receiver was tuned eg. 17.460 to 17.480 MHz. This data was stored in the right hand section of dual port memory. Concurrent with the collection of this data, the Programmable Signal Processor was used to process data located in the left hand section of dual port memory, which had previously been collected when the receiver had been tuned 20 kHz lower in frequency ie. 17.440 to 17.460 MHz in the present example.

When the processing was complete the results were written into memory, the processor began processing the newly acquired data, the receiver was retuned 20 kHz higher in frequency, and new data was acquired via the A/D converter. This "inner loop" of processing was carried out across 1 MHz of bandwidth ie. 17.0 to 18.0 MHz in the example quoted.

The end result of the processing described above resulted in 10 spectral estimates (at 2 kHz resolution) being written into memory. The "inner loop" of 1 MHz could be scanned a specified number of times. The normal number of scans employed was 10, requiring approximately 10 s, and on each pass a running sum of the spectral estimates was computed in order that a final average value could be determined. In addition, maximum and minimum values were updated on each pass in order to gain some appreciation of fluctuations about the average. When an "inner loop" of 1 MHz had been
scanned the prescribed number of times, data pertaining to that 1 MHz band were transferred from memory onto disk. Exactly the same processing as described for the 1 MHz band cited above was then repeated on the next 1 MHz band in an "outer loop", the limits of which could be controlled, and which were normally set to 6.0 and 30.0 MHz.

Thus, at the completion of the data gathering phase of a surveillance run, the HF spectrum was specified at 2 kHz resolution by an array of floating point numbers, which following calibration would yield absolute values of spectral density. For the standard limits of 6 and 30 MHz, 12000 numbers were stored on disk.

The receiver input unit then selected the calibrated noise source, and data was acquired at a fixed frequency and processed in the same manner as described for data acquired using an antenna. The data collected using the noise source was then used to convert the spectral estimates derived using an antenna into absolute units (dBw/2 kHz). The calibrated data (typically 12000 estimates) replaced the uncalibrated data as disk files and were also recorded on tape for off-line analysis.

At this stage of the processing no attempt had been made to distinguish clear channels (from which background noise estimates could be derived), from occupied channels (Radio Frequency Interference). A number of algorithms were evaluated, both on-line and off-line, for estimating background noise spectral density from data contaminated by RFI. The most successful algorithm, in the sense of providing estimates closest to those resulting from an observer 'eye-balling' the data, consisted of estimating the lower decile of the spectral estimates pertaining to 0.5 MHz bands of the HF spectrum. Under most conditions the lower decile was found to be a good estimate (±2 dB) of the median noise except for the international broadcast bands where the estimate was consistently high. In fact the dynamic range of the measuring system, both analogue and digital aspects, was inadequate to allow background noise estimates to be made in the presence of the strong interference prevalent in these bands. Accordingly, the broadcast bands were deleted in the analysis of background noise levels. Figure 8 is an example of noise data measured on a 5.4 m omnidirectional whip antenna. The data as presented is relevant to the whip antenna, without the known corrections having been made for mismatch loss, cable attenuation etc. as would be required before a comparison with CCIR noise data could be undertaken.

4. SYSTEM FEATURES AND DEFICIENCIES

4.1 Features

Features of the system are set out in Figure 9.

Unmanned operation

- allowed synoptic data gathering program to run 24 hours/day.

Flexibility

- software changes allowed the equipment to be controlled in response to new data gathering programs.

- Disk data files enabled on line processing and data display.

- Magnetic tape data provided permanent retention of data and off-line processing including statistical analysis.
Displays and hard copies

- these were to facilitate the interpretation of data in real time, but caused difficulty operationally, the nature being discussed in the next section.

On-line routine checkout

- when the calibrated noise source was selected and the receiver gain set to a constant value, the results of the spectral processing yielded a result which could be compared with a reference value in order to validate the receiving and processing system. A tolerance of +2 dB was allowed for drift in receiver gain, and if this tolerance was exceeded the operators were informed via the visual display unit (VDU) and an external status display. This feature allowed the real time identification of equipment faults or equipment which had inadvertently been left in manual control, and considerably reduced the possibility of inadvertently recording long periods of invalid data.

Parameter definition under keyboard control

- if required, in order to suit the demands of the experimental program, various experimental parameters could be redefined via the keyboard. For instance, the frequency limits of the backscatter sounder and noise measuring systems could be set as desired. Antennas used in the noise measuring program could be either included or excluded.

5 dB receiver noise figure

- high sensitivity.

Ability to measure large signals

- if necessary an attenuator at the front end could be used to attenuate large signals, albeit with a degraded noise figure.

4.2 Deficiencies

Deficiencies which became apparent in the operational use of the equipment are listed in Figure 10.

Inadequate visual display capability

- the Tektronix 4012 display unit was the only display unit/keyboard attached to the system. Consequently displays that should be available continuously, eg. backscatter ionograms, system configurations, were not available while another display was presented. Since some displays took several minutes to present, this was at times particularly frustrating. At least two other VDUs could have been profitably used, each assigned a specific display/monitor role.
Difficulty in obtaining hard copies - hard copies could only be obtained by transferring files to the radar computer and requesting copies be made on the electrostatic plotter attached to that computer. The hard copy procedure was time consuming on the radar computing system. The ideal solution would have been a hard copy unit directly attached to the VDU.

RFI in night time ionograms - RFI in night time ionograms frequently rendered them useless. Algorithms to prevent this contamination were required on-line, but the effort to implement them during the experimental program was not available. Algorithms designed to contend with RFI were successfully implemented off-line in a statistical analysis of daytime data, and it is intended to incorporate this feature on-line in the system outlined in the following section.

Site synchronisation at night - at night the problem of enhanced RFI and background noise aggravated the problem of detecting the weak ground wave signal from the transmitter site which was used in order to synchronise the FMOW waveforms of the sounder system. If for any reason synchronisation was lost at night, difficulty was experienced in re-establishing synchronisation. An independent 'keep alive timing system' at each site, providing synchronised timing pulses, would have been preferable.

Lack of transmitter power monitor - the transmitter site lacked a monitor of the power actually being radiated by the backscatter sounder. Thus there was some uncertainty at any given time as to the discrepancy between actual and nominal radiated power levels. A directional coupler in the antenna feeder would have enabled actual power levels to have been deduced and recorded.

5. FUTURE PLANS

The system described in this paper was decommissioned in December 1978. A new system is currently under development. In addition to overcoming all of the deficiencies noted in the previous section, the new system will feature an oblique sounding system. Vertical incidence sounding between the transmitter and receiver sites will also be introduced.

6. ACKNOWLEDGEMENTS

The author wishes to thank his colleagues within Radar Division, Electronics Research Laboratory for their support in the development of the hardware and software systems discussed in this report.
Figure 1. Transmitter site equipment configuration
Figure 2
Figure 3. Receiver site equipment
Sounder Processing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMCW sweep rate</td>
<td>33.3 kHz/s</td>
</tr>
<tr>
<td>Coherent integration time</td>
<td>0.1 s</td>
</tr>
<tr>
<td>A/D rate</td>
<td>10 kHz</td>
</tr>
<tr>
<td>Number of points in FFT</td>
<td>1024</td>
</tr>
<tr>
<td>Fundamental frequency separation</td>
<td>9.77 Hz</td>
</tr>
<tr>
<td>Slant range separation</td>
<td>44 km</td>
</tr>
<tr>
<td>Total range coverage (magnetic tape output)</td>
<td>9000 km</td>
</tr>
<tr>
<td>Total range coverage (real time display)</td>
<td>3000 km</td>
</tr>
</tbody>
</table>

![Calibration Signal Diagram](image)

Figure 4. Sounder processing
Figure 5. Backscatter ionogram
SURVEILLANCE PROCESSING

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/D rate</td>
<td>51.2 kHz</td>
</tr>
<tr>
<td>Integration time</td>
<td>5.0 ms</td>
</tr>
<tr>
<td>Number of points in FFT</td>
<td>256</td>
</tr>
<tr>
<td>Fundamental frequency separation</td>
<td>200 Hz</td>
</tr>
<tr>
<td>Resolution used to define spectra</td>
<td>2 kHz</td>
</tr>
</tbody>
</table>

Figure 6. Surveillance FFT details
Figure 7. Surveillance processing
Figure 8. Atmospheric noise
SYSTEM FEATURES

Unmanned operation

Flexibility
- all equipment under computer control
- disk data
- magnetic tape data

Displays and hard copies

On-line routine checkout

Parameter definition under keyboard control
- frequency limits
- antenna selection
- etc.

5 dB noise figure

Ability to measure large signals

Figure 9. System features
SYSTEM DEFICIENCIES

- Lack of visual display units
- Difficulty of obtaining hard copies
- RFI in night time ionograms
- Site synchronisation at night
- Lack of transmitted power monitor
DISTRIBUTION

EXTERNAL

<table>
<thead>
<tr>
<th>In United Kingdom</th>
<th>Copy No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defence Scientific and Technical Representative, London</td>
<td>1</td>
</tr>
<tr>
<td>British Library Lending Division, Boston Spa, Yorkshire</td>
<td>2</td>
</tr>
<tr>
<td>In United States of America</td>
<td></td>
</tr>
<tr>
<td>Counsellor, Defence Science, Washington</td>
<td>3</td>
</tr>
<tr>
<td>National Technical Information Services, Springfield, Va.</td>
<td>4</td>
</tr>
<tr>
<td>NASA Scientific and Technical Information Office,</td>
<td></td>
</tr>
<tr>
<td>Washington DC</td>
<td>5</td>
</tr>
<tr>
<td>Engineering Societies Library, New York, NY</td>
<td>6</td>
</tr>
</tbody>
</table>

In Australia	
Chief Defence Scientist	7
Deputy Chief Defence Scientist	8
Superintendent, Science & Technology Programmes	9
Director, Joint Intelligence Organisation (DDSTI)	10
Defence Information Services Branch (for microfilming)	11
Defence Information Services Branch for:	
United Kingdom, Ministry of Defence, Defence Research Information Centre (DRIC)	12
United States of America, Department of Defense, Defence Documentation Center	13 - 24
Canada, Department of National Defence, Defence Science Information Service	25
New Zealand, Ministry of Defence	26
Australia National Library	27
Defence Library, Campbell Park	28
Library, Aeronautical Research Laboratories	29
Library, Materials Research Laboratories	30
Document Exchange Commission for:	
United Kingdom, representative Canberra	31
United States, representative Canberra	32
Canada, representative Canberra	33
New Zealand, representative Canberra	34

WITHIN DRCS

| Chief Superintendent, Electronics Research Laboratory | 35 |
| Superintendent, Radar Division | 36 |