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SECTION 1

INTRODUCTION

This is the Second Quarterly Progress Report on "Advanced Target Tracker

Concepts, " NV&EOL Contract No. DAAK70-79-C-0150. It reports the

results of the work performed between 28 December 1979 and 30 March

1980.

Tracking targets in video from TV and FLIR sensors is essential for fire

control in weapon systems using electro-optical target acquisition.

Figure 1 shows typical Army applications: a remotely piloted vehicle

(RPV), an advanced attack helicopter (AAH), and a combat vehicle (CV).

Target tracking in these applications yields the target position for accurate

pointing of a laser designator for a smart munition, such as Hellfire and

Copperhead, or for fire control of conventional weapons.

Currently fielded trackers rely on numerical correlation over successive

frames on a window around the target to be tracked. Several variations

of the basic correlation scheme exist, and a detailed survey can be found

in "Assessment of Target Tracking Techniques. ill Conventional trackers

are capable of tracking a manually acquired single target in relatively

clutter-free backgrounds. However, target tracking requirements in the

increasingly sophisticated weapon systems have grown beyond the capa-

bilities of the current correlation trackers. 1

1Reischer, B., "Assessment of Target Tracking Techniques," Proceedings
of SPIE, Vol. 178, Smart Sensors, pp. 67-71, 1979.
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RPV AAH

Figure 1. Typical Army Scenarios Which Require Advanced
Multiple-Target Tracking Through High Clutter

Among these requirements are:

" Automatic target detection (acquisition), recognition, and

prioritization

" Simultaneous tracking of multiple targets in the presence of

clutter, obscuration, and low contrast

" Critical aimpoint selection

In this program Honeywell Systems and Research Center is developing

an advanced target tracker approach, based on dynamic scene analysis,

which will satisfy these requirements. This approach integrates the
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target screening and tracking functions which can provide automatic

acquisition and multiple-target tracking through low signal-to-noise and

high clutter conditions. This is done with minimal additional hardware

to a target screener.i
Figure 2 is an overview block diagram of the basic approach which builds

upon the scene analysis functions performed by the target screener to

perform the advanced tracking function. The basic premise is very simple:

the target screener segments and classifies significant objects (targets

and clutter) in real time on a frame-by-frame basis. The symbolic

descriptions of the objects in each frame are used to find the corresponding

objects in previous frames encompassing the history of the scene. Once

the corresponding object matches are made, the scene model, which

PREDICTED INFORMATION

MATCH NEW OBJECTS UPDATE
SEGMENT TO SCENE MODEL SCENE
INTO OBJECTS FROM THE PAST MODEL TA

NEW IMAGE HISTORY TRACK

FRAME INFORMATION

" UPDATE OBJECT CLASS

" PREDICT NEW SIGNATURES

rc, - - & UPDATE STATE VECTOR

Figure 2. Overview of the Advanced Target-Tracking Approach
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includes the sensor and object dynamics as well as the target classes, is

updated. Because we are keeping track of the positions of all the objects

in the scene (targets and clutter), we can predict impending occlusion

and future target/background signatures. Multiple-target tracking, of

course, comes free. The scene model, based on the past history of the

scene, can extend beyond the current field of view. This allows reacqui-

sition and tracking of targets which wander in and out of the field of view

because of sensor platform motion.

A complete block diagram of the major functions necessary to implement

the advanced target-tracker concept is shown in Figure 3.

TARGET/
BACKGROUND
PREDICTION
TECHNIQUES

ENHANCED OBJECT- IIBETADPAFRI_~JRCGIIN
IMAGE MATCHING OBJENAMC AND PLATFPRORM RCGITION N
SEGMENTATION TECHNIQUES DYAISADPORTZ INAD TAC
SCHEMES / OBSCURATION I I CRITICAL AIMPOINT AN

SELECTIO CLASSIFI-
ICATION

Figure 3. Advanced Target Tracker Program Overview with
the Key Functions
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These functions represent the major thrusts of the current program.

They are:

* Efficient motion-enhanced scene segmentation schemes

* Object-matching techniques capable of precise matching

of objects in the new frame to the scene model derived

I from previous frames

e A scene model capable of characterizing object and platform

dynamics, target /background signatures, and object occlusion

* Target/background signature prediction techniques to improve

the probability of target acquisition in low signal-to-noise

ratios

e Advanced target detection/recognition/prioritization and

critical aimpoint selection algorithms which can exploit

the dynamic multiframe informationi
Each of these functions is introduced briefly below.I
MOTION-ENHANCED SEGMENTATION SCHEMES

Object extraction (segmentation) in the integrated tracker/screener

japplication is unique in that each frame is being analyzed in the context

of the previous frames. However, conventional techniques for image

j segmentation do not use information from the previous frames to segment

objects in the current frame. The current program uses the Honeywell

Prototype Automatic Target Screener (PATS) segmentation algorithm

as the baseline segmentation approach. This segmentation technique will

!5
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be modified to incorporate the a priori predicted information on object/

background signatures for more optimal segmentation. This effort

will be directed at incorporating the interframe knowledge of the target

shape and intensity signatures, as well as background characteristics

expected at various locations in the frame as predicted by the scene

model below.

OBJECT- MATCHING TECHNIQUES

The key to successful tracking of multiple targets in our approach depends

on precise matching of segmented objects in the current frame with

the scene model derived from previous frames. This allows the precise

tracking of the object positions for laser designation or for hand-off

to other subsystems. Key issues in object-matching techniques are

unambiguous matching in the presence of occlusion, segmentation differences

due to noise, and computational efficiency of the algorithm.

SCENE MODEL

The scene model is a collection of information from previous frames

against which the new frame can be compared. It consists of the object

shapes and positions from previous frames, the object dynamics

(object positions and velocities), and the sensor/platform motion dynamics

(position and velocity). In addition, the scene model must be capable of

predicting occlusion and signature change of a target as it approaches

occluding objects.

6
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TARGET /BACKGROUND SIGNATURE PREDICTION TECHNIQUES

The purpose of this effort is to use the multiframe information on the

target position and dynamics to predict the target shape, intensity

j signatures and position, and background characteristics expected at

various locations in the frame. This information is used by the motion-

enhanced segmentation scheme to increase the probability of target

acquisition in the presence of low signal-to-noise ratios and high clutter.

ADVANCED ALGORITHMS FOR TARGET DETECTION/RECOGNITION/
PRIORITIZATION AND CRITICAL AIMPOINT SELECTION

Detection/recognition functions are performed in current target screeners on

a frame-by-frame basis. The purpose of this task is to use the multiframe

information to improve the performance of these functions in the integrated

system. This improvement will be brought about in two ways: 1) by

accumulating multiframe decisions of corresponding objects to improve

the classification accuracy over single-frame analysis; and 2) by taking

advantage of the fact that moving objects will, in general, be targets.

Thus, the problem of target recognition can be improved by a moving-

target detection algorithm. Critical aimpoint selection is an important

function required in terminal homing munitions, and its implementation

with syntactic techniques will be addressed in subsequent reporting

periods.
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SUMMARY OF PROGRESS

Several accomplishments toward the program objectives were made during

this reporting period:

" A noniterative, fast silhouette-matching algorithm was developed

in addition to the iterative algorithm developed in the last reporting

period. This algorithm is independent of the starting point of the

search and finds the best match of extracted object outlines

without multiple iterations.

" Analysis of both fast silhouette-matching algorithms has started

in order to characterize their performance.

* A flexible scene model data structure was developed to represent

objects from multiple frames and their relationships to one another.

It can represent several tracking problems such as occlusion,

missegmentation, multiple component objects, etc. It will prove

to be a considerable aid in the resolution of these problems.

" The system simulation was modified to incorporate the new

data structure above.

* The PATS simulation software converted to the EIKON data

handling system was transferred and installed at the IBM

360 based image processing facility at NV&EOL. An extensive

documentation and user manual were prepared (see Appendix A).

8
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REPORT ORGANIZATION

IThe remaining sections of the report are organized as follows:

* Object-Matching Algorithms

e Scene Model

* System Simulation

* PATS Simulation Transfer

* Plans for the Next Reporting Period

9I



SECTION 2

OBJECT-MATCHING SCHEMES

Object matching is performed on the output of object segmentation. Its

purpose is to find the positions of corresponding objects in successive

frames. It is, therefore, the key to tracking the object positions as the

sensor and the targets move from one frame to the next. Object matching

not only finds the positions of the moving targets in successive frames

but also identifies corresponding stationary (clutter) objects in the scene.

The positions of these corresponding stationary objects are input to the

scene (sensor/platform) dynamics model for computing the platform

motion.

The key issues to be addressed in the development of successful object-

matching algorithms are:

* Occlusion

* Inconsistent segmentation

These issues were addressed in detail in the first quarterly report. 2

2 P. M. Narendra and B. L. Westover, "Advanced Target Tracker Concepts,"
First Quarterly Report, Honeywell Systems and Research Center,
Minneapolis, Minnesota, January 1980.
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IThe principal effect of object occlusion (partial or total) is that the object

shape descriptors change, making it difficult to match objects in successive

I frames. For example, when a target goes behind concealing background,

the leading edge of the target disappears. Inconsistent segmentation

I usually results from poor signal-to-noise ratio and segmentation algorithm

anomalies. For example, objects extracted in one frame may not appear

in the subsequent frames; an object extracted as one segment in one

frame may appear as multiple segments in the subsequent frames or

vice versa. The outlines of the segments extracted may change shape

drastically because of change in target/background contrast from one

frame to the next.

In the previous reporting period, two object-matching algorithms were

developed. One is the simple feature-based, object-matching technique

I which finds corresponding objects based on simply derived object

descriptors such as contrast, shape, etc. It succeeds in finding initial

matches of corresponding objects with consistent segmentations. To

handle inconsistent segmentations and to obtain precise positions of

objects in successive frames, a fast iterative, silhouette-matching

algorithm was developed. This algorithm works on the segmented outlines

of the objects and rapidly converges to a precise registration of objects

in successive frames. The nature of this algorithm allows it to handle

I inconsistent segmentations which result in one-to-one, one-to-many,

many-to-one, and many-to-many object matches. In this reporting period,

a noniterative silhouette-matching algorithm was developed. This

algorithm, although similar to the fast silhouette-matching algorithm,

I requires only one iteration to find a precise registration of the object

outlines.

I1



NONITERATIVE SILHOUETTE-MATCHING ALGORITHM

The iterative, fast silhouette-matching algorithm described in the last

quarterly progress report, iteratively shifts an object outline from the

old frame until a precise match with an object outline in the current

frame is found. The amount of the shift is determined by a one-

dimensional histogram of the differences in the positions of the edge pixels

in the old frame and current frame. The peak in this histogram gives the

desired shift. The histograms are first computed for horizontal differ-

ences. Then the required shift is added to the old object outline. In

a similar fashion, the vertical shift required to align the objects is found

and applied to the old object outline. This procedure is iterated

until no translation of the old object outline in either the horizontal or

vertical direction will improve the registration.

This algorithm shares a few issues with all iterative algorithms. First,

what is the impact of the convergence properties of this iterative technique

on real-time implementation? Second, is the algorithm sensitive to

initial starting points ? The noniterative algorithm removes both of

these potential problems. It will find the best match of two silhouettes

in one iteration, independent of the starting location. The algorithm

determines both the best horizontal shift and best vertical shift of the

old object outline simultaneously. The technique is similar to the fast

silhouette-matching algorithm (FSMA) developed last reporting period,

but it uses two-dimensional histograms instead of one-dimensional

histograms. It is described in the following paragraphs.

12
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The FSMA computes the best one-dimensional (horizontal or vertical)

shift by computing a one-dimensional histogram of differences in the

locations of edge pixels. 2 In a similar fashion, the two-dimensional

histogram algorithm computes the best two-dimensional shift (horizontal

and vertical) by computing a two-dimensional histogram of edge pixel

differences. For every pair of points, from the object model outline

j and from the new object outline, we can find a translation which exactly

aligns the two points. If the point in the object model has line and column

I numbers given by (L( ° ), C( ) and the point in the new frame is determined

by (L(n), C(n)) , then the translation required to correctly align these

two points is given by (L ( n ) - L ( 0 ) , C ( n ) - C ()). If we crea4e a

histogram of these differences for all pairs of points in the two outlines,

j then the peak in this histogram will yield the translation which exactly

aligns the most pixels in the two outlines.I
This technique is illustrated in Figure 4. In this figure we see an object

I silhouette from the scene model from the previous frame and a segmented

object outline from a new frame. Note how the segmented object does

not exactly fit the object model. The two-dimensional, silhouette-

matching algorithm aligns the corresponding edges of the two outlines.I
In Figure 4b the differences of the edge pixel locations for each pair of

I points in the left and right edges have been computed and histogrammed.

Both left and right edge difference histograms have peaks at (2, 2). This

peak equals the translation of the object model in the current frame. The

result of applying this translation to the object model is shown in Figure 4c.

Note the exact alignment of the right edge and the alignment of corresponding

parts of the left edge.

I
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OBJECT OUTLINE FROM SCENE MODEL

123456789

1 LEFT EDGE RIGHT EDGE

2 - (2,2) (2,5)
3 >( 3,1) (3,6)
4 (4,1) (4,5)
5 - - (5,1) (5,4)

6
7
B
9

SEGMENTED OBJECT OUTLINE FROM CURRENT FRAME

1 2 34 56 7 8 9

1 LEFT EDGE RIGHT EDGE
23 (4,4) (4,7)

(5,3) (5,8)
( (6,3) (6,7)

5 (7,2) (7,6)
6
7 -
8

9

Figure 4a. Object Model and Segmented Object Outlines with Endpoint
Coordinates (Note that the segmented object does not
exactly fit the object model.)
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LEFT EDGE DIFFERENCES RIGHT EDGE DIFFERENCES

(4,4) - (2,2) =(2,2) (4,7) - (2,5) =(2,2)
(4,4).- (3,1) = (1.3) (4,7) - (3,6) = (1,.1)
(4,4) - (4, 1) = (0.3) (4,7). (4,5) = (0,2)
(4,4)1- (5,1) = (-1,31 (4,7) .(5,4) = (-1,3)
(5,3) - (2,2) = (3.1) (5,8) (2,5) = (2,3)

I(7,*2) (4,1) = (3,1) (7,6)- (4,5) = (3, 1)
(7.2)- (5,1) =(2.1) (7.6) - (5,4) =(2,2)

IHISTOGRAM OF HISTOGRAM OF
LEFT EDGE DIFFERENCES RIGHT EDGE DIFFERENCES

COLUMN SHIFT COLUMN SHIFT
-2 -1 0 1 2 3 4 5 .2-2 -1 0 1 2 3 4 5

1 1 221..........

2 3311..
2 2 1 42 -

IFigure 4b. Left and Right Edge Differences Computed for Each Pair of
Endpoints from Figure 4a (Histograms of these differences
have peaks at (2, 2), the value of the translation of the object

model.)

g1 12 34 5 678 9

2

I 3
4
5
6
7

Figure 4c. Results of the Two-Dimensional Silhouette Matching (Note
the alignent of the two object outlines after shifting the

object model. )
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As in the FSMA, separate histograms are computed for the left and right

edges of the object. The edge which gives the greatest peak will be used

to determine the correct translation. Since we consider all pairs of

points from the object outlines, this method (unlike the FSMA) is inde-

pendent of the starting positions of object outlines. The two-dimensional

histogram algorithm requires only one iteration to find the best regis-

tration of the two outlines.

The noniterative technique has been applied to several frames from the

data base. The results of matching two of the objects from the frames

are shown in Figures 5 and 6. A partial view of each histogram is also

shown in the figures. Note that the histograms for Figure 5 have peaks

at different locations, indicating that only the right edge has been matched

exactly. On the other hand, the peaks in the histograms for Figure 6 both

fall at the same location, indicating both edges have been matched.

The results of the noniterative scheme compare favorably with those of the

iterative scheme presented in the last report. Furthermore, the noniterative

technique is computationtlly less complex than the iterative technique.

When we compute the two-dimensional histogram for the noniterative scheme,

we require N*M operations, assuming there are N lines in the first object

and M Lines in the second. (Note that operation in this sense may imply

several arithrretic operations. ) In order to compute the one-dimensional

vertical displacement histogram used by the iterative scheme, it is also

necessary to make N*M operations; since for each endpoint in the first

object, we must see if any endpoint in the second object is in the same

16
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LEFT EDGE HISTOGRAM RIGHT EDGE HISTOGRAM

-5 -4 -3 .2 -1 0 1 2 3 45 -5 -4-3 -2 -1 0 1 2 3 4 5
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I2 . .. 2 2 - 2. • - • •
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4 21 4 2.............
5 * 1 1....... . . 3 .........

I

I Figure 5. Two Object Outlines After Alignment (The proper alignment
was determined by the peak in the right edge histogram.)

I LEFT EDGE HISTOGRAM RIGHT EDGE HISTOGRAM

5-4 3 2 10 1 2 3 4 5 5 432-10 2 3 4 5

5 2 6 6 6 .5 2 2 1 1 2 •

3 . . 2 2 2

. . . . . . 3 5 6 7 2 3 . . 1 2 2 1 3

2. . . . . . 5 6 10 5 3 . . . 16 5 4 1 5

.1. I 7 8 11 2 2 1 1 3 11 6 1 4 1

0 3 8 11 10 . . 1 , 1 2 4 1 11 2 2 2

1 )3 Z 2 3 3 60E)3 1 1

3 5 11 11 3 3 2 1 1 1 3 4 11 5

4 1 1 9 10 9 . 42 . 1 2 5 8 4 2

5 1 2 11 11 3 . .L2 1 2 1 2 3 6 5 3

Figure 6. Two Object Outlines After Alignment (The proper alignment
was determined by peaks in both the left and right edge histograms.)
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column. If there is an endpoint in the same column, then the vertical

displacement required to align those points is determined and added to

the histogram. In addition to the vertical displacement histogram, we

must compute a horizontal displacement histogram as well. This can be

done in N operations. Therefore, the complexity of one iteration of the

iterative scheme is N : M + N = N * (M + 1) operations.

Since each iteration requires computing a vertical and horizontal displacement

histogram and we may require as many as four iterations to find the precise

alignment, the noniterative technique could reduce the computational load

by as much as a factor of 4.

Both these algorithms, the FSMA and the two-dimensional silhouette-matching

algorithm, are being £mplemented in the tracker simulation. The speed

and accuracy of the two algorithms will be compared using the analysis

program described in the following paragraphs, in order to find which

algorithm satisfies the requirements outlined at the beginning of this section.

OBJECT-MATCHING ANALYSIS PROGRAM

In order to characterize the performance of the three object-matching schemes,

an analysis program is being developed. The program uses the simple feature-

matching algorithm and both the iterative and noniterative silhouette-

matching algorithms to match two sets of objects. The objects in the two

sets will be selected so that for each object in the first set there will be a

matching object(s) in the second set. We will attempt to match each object

18

t "L



I
I

in the first set with all of the objects in the second set. By collecting

intermediate results of the matching process, we will be able to determine

I how the algorithms perform when matching not only similar objects but

also when attempting to match non-matching objects.I
As previously mentioned, the analysis program will require two sets of

objects. The objects in the first set will be chosen from several frames

to present a variety of shapes, sizes, and intensity characteristics to the

matching programs. The second set of objects will consist of all the objects

from subsequent frames which have been determined to match those in the

first set. The objects will be chosen so that all match types are represented

one-to-one, one-to-many, many-to-one, anJ many-to-many.I
Once these data sets have been created, the silhouette-matching algorithms

i will be applied to the two sets of objects. We will attempt to match each

object in the first set with each object in the second set. For each itera-

I tion of the silhouette-matching algorithms, the following data will be col-

lected:

1. The location of the peak of the difference histogram

1 2. The size of the peak

3. The size of the objects being matched

4. The size of the histogram

5. The shift determined by the algorithm

1
I
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By comparing the expected sizes of the peaks in the difference histograms

for the matching and non-matching objects, we will be able to set thresholds

for these algorithms to provide accurate matches and low false match rates.

We will also have empirical results concerning the convergence properties

of the iterative algorithm.

The analysis program will also incorporate the simple feature-matching

algorithm. This will allow testing of different feature sets and thresholds

to determine the best feature-matching scheme. Results from the analysis

program will be reported in subsequent progress reports.

20
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i SECTION 3

i SCENE MODEL

The primary function of the scene model is to keep track of and infer

information about objects in the scene as well as the platform dynamics

derived from the analysis of the previous frames. More specifically,

i the scene model comprises:

* Platform dynamics (position and velocity)

* Object dynamics

* Object shapes and classifications

e Occlusion prediction

I * Shape prediction

* Background prediction

The platform dynamics correspond to the motion of the sensor and the

RPV (or the AAH) and its impact on the received image. Knowledge of

the platform dynamics is useful both in finding the relative motion of

targets with respect to the scene and in providing scene-track information

to the platform gimbals if scene stabilization is required. Platform

dynamics are computed from the positions of corresponding clutter

(stationary) object matches.

I
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Individual object positions computed by segmentation and object matching

are used to compute the individual object dynamics over several frames.

Object dynamics can be represented either relative to the sensor field

of view or relative to the scene after the platform dynamics have been

accounted for. The former is useful for multitarget tracking (say for

laser designation) where only the positions of the target relative to the

current field of view are desired. The latter also estimates the motion

of the target relativc to the scene (independent of the sensor motion)

and permits target/clutter discrimination based on motion.

Because the scene model keeps track of all the object positions as well

as the background characteristics in different regions of the image, it can

be used to predict the occlusion of objects that are moving toward each

other, an object which moves into a low-contrast background, etc. The

shapes of occluded objects can also be predicted so that the object matcher

can use the predicted shapes to perform better matches in successive

frames. Furthermore, the artificial intelligence capability of the scene

model will allow inference of the target shape from its segmentations in

previous frames. For example, if multiple segments of an object appear

to move together over several frames, then the inference is that they

belong to the same object.

During this reporting period, a data structure for representing the

segmented objects and the relationships between the objects was developed.

Within this data structure, the problems of occlusion and missegmentation

can be represented so that the object matcher can efficiently deal with

them. The data structure also allows for new interobject relationships

to be defined and incorporated into the tracker.
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ISCENE MODEL DATA STRUCTURE

I The data structure used to represent the objects will be used to satisfy

the requirements listed in the introduction to this section. It must be

able to represent all the relationships between objects. Furthermore,

since the scene model development is an evolving process, the model

must be able to adapt as more capabilities are required from it.

The data structure represents object models and segmented objects as

nodes in a graph. Each node contains fields which describe the object

and its relationship to the other objects in the scene. The relationships

can be viewed as edges in the graph.

The general data structure is illustrated in Figure 7. Extracted objects

from a given frame are represented by the circles, and the relationships

between the objects are represented by the arrows. Note that objects

can be linked to objects in the same frame or to objects in subsequent

frames. Interframe links are determined by the matching algorithms.

Intraframe links are used to point to different components of the same

object, such as the tread, motor, and barrel of a tank or the several

components of an extended background region.

The application of this data structure to the matching problem is

straightforward. If object A in frame 1 matches object B in frame 2,

we will set up a link between A and B as shown in Figure 8. Similarly,

many-to-one and one-to-many matches can be represented by several

2
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FRAME I

FRAME 2

FRAME 3

Figure 7. Example of the Scene Model Data Structure Showing
Interframe Object Matches and Intraframe Object
Relations

Figure 8. Representation of One-to-One, One-to-Many, Many-to-One,
and Many-to-Many Matches with the Scene Model Data Structure
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links as shown in Figure 8. These links can be used to find all the

different ways this object has been segmented over several frames. This

gives us a better chance of finding a matching object in the current frame

by not only allowing matching between the current frame and the last

I frame but also between the current frame and several previous frames.

I The problem of occlusion can also be represented in this structure;

it is a special case of the many-to-one match. This is illustrated in

I Figure 9. The object C will be identified as an object composed of two

object models, that is, the result of A moving as to occlude B. There-

I fore, matching in the next frame will not be done using object C, since

that object will have changed shape due to the further motion of A. How-

I ever, matching will be done using the unobscured edges of A and B, which

are the components of object C. In this manner occlusion can be recog-

i nized and resolved by the matching function.

IA

j FRAMEn- 1

!C

CFRAM, 0
I Figure 9. Scene Model Data Structure Representation of Occlusion
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Furthermore, the graph structure is very flexible. The nodes can be

allowed to grow as required and to accommodate additional interobject

relationships which will be implemented.

The implementation of this data structure in the system software is

discussed in the next section.
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SECTION 4

SYSTEM SIMULATION

The techniques which have been developed during this reporting period have

been incorporated into a complete system simulation of the advanced

target tracker system in the Honeywell Image Processing Facility. This

simulation allows the evaluation of the algorithms as they are developed

in the system context. This system simulation will be expanded as new

algorithms and software are developed for such factors as occlusion

prediction, target/background signature prediction, and advanced scene

models.

A block diagram of the current system simulation is shown in Figure 10.

The simulation currently consists of the following software modules:

" PATS segmentation

* Simple object-matching

" Fast silhouette-matching

In the system simulation, the PATS segmentation is applied to the two

input frames. This produces a list of object outlines and features which

will be matched. The object-matching algorithms match objects between

the two frames to find the interframe scene motion. The silhouette-

matching algorithms match all the objects which are present in both

scenes to find their exact displacement. The results of scene motion

model and object matching are then combined to yield an estimate of the

interframe object motion.
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PATS II Finds object outlines
SEGMENTATION and object features

in previous and
current frames.

1) Provides matching-
SIMPLE OBJECT- object pairs to
SMPLE OBJ - find approximate
MATCHING interframe scene

motion.

FAS T 1)I Finds all object
SILHOUETTE- matches (1-to-I,
MATCHING 1-to-many, etc.).

2) Finds precise
object location.

3) Finds precise interframe
scene motion.

4) Finds interframe
object motion.

Figure 10. System Simulation Block Diagram

During this reporting period, the scene model data structure described

in the previous section was incorporated into the system simrelation. In

order to efficiently implement the data structure, a dynamic memory

allocation scheme was designed. It allows a large portion of memory

to be divided into small blocks and allocated to the simulation. The small

blocks are used to represent the objects and links within the data structure.

This section discusses the implementation of the scene model data

structure and dynamic memory allocation scheme.
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SCENE MODEL IMPLEMENTATION

jAs mentioned in the previous section, the object models and segmented

objects are represented as nodes in a graph and relationships between

objects as edges in the graph. Each node in the graph consists of a

number of fields. These fields contain information concerning the object

such as area, contrast, location, and shape. The edges of the graph

are represented as pointer fields within the nodes. They point to the

node on the other end of the edge.

In general each object (node) will have a different number of edges entering

it. Furthermore the number of edges entering a node may change as more

jinformation about an object is gathered. Therefore, there is no fixed size

for an object node. The size of the nodes must be allowed to increase as

jrequired. In addition, some nodes may become inactive as object models

are updated and replaced. This implies that we must have the capability

of reusing inactive nodes, or we would soon exhaust our node storage.

The previously mentioned requirements (variable-sized nodes and reuse of

inactive nodes) can be implemented using a dynamic memory allocation

scheme. These algorithms create a structure within a block of memory

which allows the user to satisfy these requirements. The algorithms we

I1 have implemented are modified versions of those found in reference 3.I __ _ _ _ __ _ _ _ _

3 Ellis Horowitz and Sartaj Sahni, "Fundamentals of Data Structures,"
Computer Science Press, Inc., Woodland Hills, California, 1976.
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Those algorithms provide for the reuse of inactive nodes. We have

added several routines to allow variable-sized nodes to grow as the

simulation progresses. The algorithms are currently implemented in

FORTRAN in the tracker simulation. However, these algorithms are

independent of a particular programming language or computing hardware.

Therefore, they would be suitable for implementation in any processor.

The following paragraphs describe the dynamic memory allocation

algorithms.

DYNAMIC MEMORY ALLOCATION

The dynamic memory manager is a set of utilities which allocate blocks of

memory to the requesting routines, read and write locations within the

memory block, and return blocks of memory to a pool of available memory.

These routines also have the capability to allow the allocated blocks of

memory to grow as a routine requires more storage. This allows efficient

use of a limited amount of main memory.

The memory manager maintains a linked list of all the blocks of memory

that are currently unused as shown in Figure 11. An expanded view

of one of the unused blocks is shown in Figure llb. The first and last

words contain the size of the block of memory. The second and third

words contain pointers to the next and previous entries in the list.

The forward and backward links, stored in the second and third words,

are required in order to add and delete memory from the available space

list. When a request for memory is received, this list is searched until

a block is found that can fill the request. The requested memory is given

to the user from that block. If a sufficient portion of that block is left

after the allocation, it remains in the list of available memory.
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SIZE IFigure 11a. Structure of the Available Blocks
of Memory within the Memory

/Z Pool (The available blocks are
U ED organized into a doubly linked
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SIZE OF THIS BLOCK

NEXT AVAILABLE BLOCK

LAST AVAILABLE BLOCK

SIZE 2 AVAILABLE
MEMORY

TSSIEEOFTHISBLOC I

US EB Figure lib. Expanded View of an Available
Block of Memory Showing thejLinks and Fields Used b h

Dynamic Memory Manager
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The user is able to access the allocated memory by retaining a pointer

which identifies the allocated block as shown in Figure 12. The user

program pointers are indices into a user connection table which gives

the actual memory location of the block. The user connection table is

required so that the memory manager can change the location of a given

block of memory without informing the user. When a block is moved,

the memory manager simply updates the connection table using the link

stored in the second word of the used block. Then the next time the user

references that block, the new memory location can be found. Since the

number of pointers in the user program is variable, the user connection

table must be of variable size. For this reason the connection table itself

is stored within the memory pool.

When a user is finished with a block of memory, it can be returned to

the available memory pool. A check is made to see if any of the adjacent

memory is also free; if so, the returned block is merged with all

adjacent free blocks to form a larger free area. The new free area

is then added to the list of unused memory blocks.

If the memory manager receives a request for memory which is larger

than any of the available blocks, it attempts to create a large enough

block through a process known as garbage collection. This process moves

all the used blocks of memory to the lower portions of the memory pool.

This creates one large available block of memory at the upper end of the

memory pool. If this block cannot satisfy the request, then it cannot be

honored until the user returns more of the blocks.
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USER DYNAMIC MEMORY
PROGRAM MANAGER

USER CONNECTION
TABLE

/,FREE,/

PTR I ///

PTR 2 : TR I

PTRR

4SIZE 4

UNUSEDPTR43

SIZE 6

-40 SIZE 6
PTR 4

SIZE 6

Figure 12. Structure of the Used Portions of the Memory Pool (The user
references data stored in the pool by retaining a pointer into
the user connection table. The entry in this table allows the
memory manager to locate the requested block of memory.)
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The memory manager can expand an allocated block of memory at the

request of the user in two ways: 1) by using an adjacent free block of

memory, or 2) if one is not available, by transferring the block to a

different, and larger, unused block of memory.
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SECTION 5

PATS SIMULATION

The baseline segmentation approach for the advanced target tracker simulation

is the Honeywell PATS. The PATS simulation duplicates the detection and

recognition phases of the PATS hardware. As part of the Advanced Target

Tracker Concepts contract, this simulation was transferred to an IBM

360 at NV&EOL. The conversion of the program to use NV&EOL's EIKON

image file system was completed at Honeywell's Image Processing Facility.

The final program modifications and program checkout took place at

NV&EOL during this reporting period.

Also during this period the PATS algorithms have been modified to prevent

the breakup of extended targets. Previously, the PATS simulation and

hardware would break large objects into several smaller segments.

Often this breakup would not be consistent between frames. This made

interframe matching very difficult. The algorithms were modified to

combine objects which had been incorrectly broken up.

PATS SIMULATION TRANSFER

Appendix A describes the PATS simulation routines and provides operating

instructions.

i

~35



CHANGES TO THE PATS SIMULATION

As described in the previous section, PATS generates object intervals based

on the bright, cold, and edge signals. These intervals are then combined on

a line-by-line basis to form object bins. If no intervals are added to a bin

after a given number of lines, then the bin is closed. This strategy will

break up large, irregularly shaped objects such as the one in Figure 13a.

The object intervals for that object are shown in Figure 13b. As these are

processed line by line, two bins will be generated, one for each hump in the

object. When the interval in the fourth line is proce-sed, it will not match

any of the existing bins due to the great difference in width between the

interval and the bins. This is also true for the intervals in lines five and

six. The resulting objects are shown in Figure 13c. The original object

has been broken into three smaller objects. The smaller objects are more

likely to be misclassified as targets than the large object shown in Figure

13d which has been correctly segmented.

The breakup of objects, such as the one in Figure 13, obviously distorts the

shape of the silhouette. This causes the silhouette matching programs to

either fail to find a match or to incorrectly align the objects and generate

false moving objects.

The solution to this problem is to verify, before closing a bin, that there are

no adjacent bins with similar characteristics. For example, before closing

bin no. 1 in Figure 13c, we would search for adjacent bins. Bin 3 would

satisfy the requirements, and bins 1 and 3 would be combined. Similarly,

before closing bin 2 we would search for adjacent bins, and bins 2 and 3

36
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I

I Figure 13a. Original Object Outline Presented to PATS Simulation

I

I

Figure 13b. Object Intervals Found by the Simulationt

I
i$2

Figure 13c. Segmented Object Outlines Found by the Simulation (Notej the breakup of the original object.)
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Figure 13d. Correct Segmentation of Original Object

Figure 1 3e. Segmentation Found by the PATS Simulation After
Modifications to Prevent Large Object Breakup
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would be combined. Due to the nature of the form in which objects are

represented in PATS (that is, as start and end points of unbroken horizontal

intervals), the concavity of the object in Figure 13a cannot be represented.

Therefore, the result of the PATS segmentation will be as shown in

Figure 13e.

The results of the simulations, before and after modification, are shown in

Figures 14, 15, and 16. Figure 14 is the FLIR frame. Figure 15 shows

the PATS segmentation before the modifications to prevent the object

breakup. Figure 16 shows the segmentation after modification. The affect

of the modifications is clearly seen in the outlined regions of the segmented

frames.

3
I
I
I



Figure 14. FLIR Image Used to Illustrate PATS
Segmentation Improvements
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SECTION 6

PLANS FOR FUTURE REPORTING PERIODS

This section outlines the program plans for future reporting periods.

Particular emphasis will be placed on:

* Scene model

* Target recognition and homing techniques

0 Data base expansion

SCENE MODEL

The scene model which now contains a platform displacement estimator

and a flexible data structure for representing object relationships will be

extended to include object occlusion prediction and resolution. Also,

Kalman filtering techniques will be employed to give robust estimators of

scene and object motions. Multiple component association rules will be

derived.

TARGET RECOGNITION AND HOMING TECHNIQUES

The baseline PATS segmentation simulation has been changed to give

better segmentation results for input to the classification algorithms. In

future periods syntactic techniques will be explored for close-in objects,

using multi-components which are obtained by sequential refinement of

single frame segmentations.
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DATA BASE EXPANSION

The data base will be continually expanded to Include challenging examples

of occlusion and varied background signatures.

44
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APPENDIX A

PATS SIMULATION ROUTINES

AND OPERATING INSTRUCTIONS
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APPENSIX A

PATS SIMULATION ROUTINES AND OPERATING INSTRUCTIONS

The PATS is an automatic target screener that can operate with first

generation thermal imagers employing common module components.

PATS will reduce the task loading on the thermal imager operator by

detecting and recognizing a limited set of high priority targets at ranges

comparable to or greater than those for an unassisted observer. A

second objective is to provide enhancement of the video presentation to

the operator.

The PATS simulation is a set of FORTRAN routines which simulate the

detection and recognition phases of the PATS hardware. The simulation

consists of a main program which calls one of the four subprograms which

perform the segmentation and classification of an input EIKON4 image.

A block diagram of the simulation appears in Figure A-i. A description

of each of the four subprograms follows.

SUBPROGRAM DESCRIPTIONS

PATS1

The input to this routine is an EIKON image. The program uses a two-

dimensional recursive background estimator to find the expected value of

4,
"Introduction to EIKON, Night Vision Laboratory Image Processing
System, " Research and Development Technical Report, ECOM-7058,
United States Army Electronics Command, Fort Monmouth, New Jersey,
November 1976.
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the background at a given pixel. Those pixels which are significantly

hotter (brights) or colder than the background are found. A vertical edge

operator similarly finds those pixels which are located near significant

edges. The bright, cold, and edge pictures are scanned from left to

right and right to left in order to find object intervals. An interval begins

at a pixel which shows both significant edges and either brights or colds.

The interval is turned off when there are no longer bright or cold pixels.

The output of PATS1 is an EIKON image containing four-bit pixels

corresponding to the binary edge, bright, cold, and interval images which

can be displayed. Also, a file of the line number, coiumn number,

width, and other features for each interval is created.

PATS2

The inputs to this routine are the file of interval features produced by

PATS1 and the original EIKON image.

The program reads intervals from the interval tape and associates similar

intervals. A collection of similar intervals is known as a bin. If no

intervals are added to a bin after a certain number of lines, the bin is

closed and bin features are calculated. These include the outline, moments,

Fourier descriptors, etc. These features are then output to the BINS tape.

PATS3

The inputs to this routine are the BINS tape created by PATS2 and a PATS

training tape created by PATS4. The program also needs a set of four

cards describing the training tape.
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The program first reads the cards and training tape and then stores the

selected object features and object classes. Then the BINS tape is read.

Each bin is first converted to the format used by the classification sub-

programs. Then it is passed through the clutter rejection classifier.

If the object passes this test, it will be classified as a target; if not,

it will be clutter. Those objects which pass the clutter rejection classi-

fier are run through the K-nearest neighbor (KNN) classifier to determine

the target class, either tank or APC. The KNN classifier finds the K-

nearest neighbors from the training tape in the selected feature space.

The target class is determined by polling the K-nearest neighbors. The

results of the classification is displayed at the line printer.

PATS4

This routine operates on a BINS tape created by PATS2 and a set of cards

to generate a training tape. Each card consists of a bin number and

target class. As a card is read, the bins tape is searched (only in a

forward direction) until that bin is found. The bin is converted to the

classifier format and then written to the training tape. The output then

is a tape of classified objects and features to be used for input to PATS3.

DESCRIPTION OF DATA FILES

jEIKON Image File

This is the frame to be segmented and classified. The whole frame or any

subframe may be processed and is controlled by the EIKON INPUT control

g card.
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Binary Image File

This is one of the outputs of the PATS1. It is an EIKON image, and its

size must be the same as the subframe processed by PATSI. That is, if

a 100 x 100 subframe of a 512 x 512 image is processed by PATS1, the

output image size determined by the EIKON OUTPUT control card must

be 100 x 100. The four binary images are coded into a four-bit pixel

as follows:

Bit Contents

I Edge

2 Bright

3 Cold

4 Interval

The word length of the EIKON image is 16 bits even though only the least

significant four bits are used.

Interval Tape

This output of PATS1 contains one record for each interval found by the

PATS1 program. Each record is written in (1X, 1014) format. The 10

fields are defined as follows:

1. Absolute line number of interval

2. Absolute starting column number

3. Width of the interval

4. Number of edges in expanded interval where the expanded

interval extends 2 pixels in both directions over the given

interval
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5. Number of brights (- [minus] for colds) in the interval

6. Background value at left endpoint

7. Average interval intensity

8. Peak interval intensity

9. Minimum interval intensity

10. Edge at Start; Edge at End

This word indicates if a significant edge occurs at the

start, end, or both of an interval as follows:

Bit Contents

1 Edge at Start

2 Edge at Middle

3 Edge at End

The last record in the file contains 999 in all data fields. This is followed

by an end-of-file mark.

BINS Tape

This output of PATS2 contains one record for each bin (object) found

by the program. The record is written as a 300-word real array and

a 74-word real array (that is, WRITE (10) (DAT(K), K = 1,300),

(RDA(K), K = 1, 74). The contents of the array are given in a later

section titled BINS TAPE DATA. The last record in the file contains 999

in the first 100 words. This is followed by an end-of-file mark.
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Bin Selection Cards

The purpose of these cards is to select certain bins from a given bin file

and to transfer these to a training tape for use by the nearest neighbor

classifier. The cards are inserted after the GO card for PATS4.

Each card is in 214 format. The first field is the bin number, and the

second field is the bin type.

Only those bins selected by the cards will be converted to the classifier

format. The given bin type is included in the classifier format. Note:

the number of a bin is implicitly defined by its position in the file with

the first bin of the file being bin no. 1, second being bin no. 2, etc.

PATS Training Tape

This is a file of bins, in classifier format, which have been manually

identified as targets. These objects and features are written using an

unformatted write of a 300-word integer array. The contents of the

300-word array are given in a separate subsection titled Classifier Format.

Training Tape Descriptor Cards

This input to PATS3 consists of exactly four cards. All the cards are

written in 2014, although not all 20 fields are used. The first card is

a type-to-class conversion card. This card maps bin types stored on

the training tape to target classes. This allows the user to try a variety
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of classification schemes. For example, he can try to classify tanks,

APCs, and trucks separately, or perhaps tanks and APCs as one class

and trucks as another. The current training tape only contains two classes

of targets. The first field of the type-to-class conversion card contains

the number of classes (NCL), and the second entry contains the number

of types (NT). Following the second entry are NT more entries. Each

of these NT values are in the range [0, NCL]. The first of these is the

class corresponding to type 1. the second to type 2, etc. If a certain

type has no class, then a 0 is entered.

The second card is the sample description card. The first entry is the

number of samples (NS) on the training tape. The training tape will be

read until NS samples are read or until an end of file is encountered.

The second entry is the number of features (NF) to be taken for each

object. This represents the maximum dimension of the feature space.

The next NF entries are the numbers of the features to be used. The

feature numbers are listed in the description of the classifier format.

The third card is a feature subset selection card. This card selects

a subset of the features indicated on the second card to use in the KNN

classifier. The first entry is the number of features (NSS) which must

be less than NF. Following the first entry are NSS entries which point

to features listed on the previous card. The fourth card specifies the

number of neighbors to use in the classification (KNEI). This number

must be less than NS, the total number of training samples.
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The deck in Figure A-2 specifies two target classes from nine bin types.

Types 1, 5, and 9 correspond to Target Class 1. Types 2 and 6

correspond to Target Class 2. Types 3, 4, 7, and 8 do not correspond

to either target class. The second card specifies that the size of the

training data base is 227. Six features will be retrieved from the tape

those corresponding to features 179 to 184. However, only four will be

used in the classification, the first, second, fourth, and sixth, or 179,

180, 182, and 184. Ilie fourth card specifies that the eight nearest

neighbors will be polled to determine the class of a given object. This

sample is the recommended set to use when the training tape supplied by

Honeywell is used.

8
4 1 2 4 6

/227 6 179 180 181 182 183 184
2 9 1 2 0 0 1 2 0 0 1

Figure A-2. Example of Training Tape Descriptor Cards
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List of Classified Objects

This is the output from the PATS3 program. Two lines will be output to

the line printer for each object in the input bin file. The first line gives

the result of the clutter rejection classifier in the following format:

OBJECT NO. n CLUTTER REJECTION RESULTS q

where n is the object (bin) number and q is the classification

results

1: target

2: clutter

The second line gives the result of the target classification in the following

format:

OBJECT NO. n TARGET CLASSIFICATION RESULTS r

where n is the object number and r is the classification results

as determined by the training tape supplied and deck shown

in Figure A-2

1: tank

2: APC

3: Unused

4: Clutter

Note that the object number is implicitly defined by that object's position

within the bin file. Also, these target classes can be modified by using

different training sets containing different target types or by using a

different type-to-class conversion card in the training tape descriptor

deck.
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RUNNING THE SIMULATION

System Job Control Cards

ASSGN cards are needed to associate the FORTRAN reads and writes

with the correct data set. These are described as follows:

II ASSGN SYS005, SYSLST--This causes writes to unit 8 to appear

at the line printer; Units 8 and 6 are used by the simulation

to produce hard copy output. This card is needed for all PATS

simulation runs.

II ASSGN SYS006, TAAAAA, T--This assigns the FORTRAN unit

9 to tape AAAAA. This should be the PATS interval tape. This

card is needed when running PATS1 or PATS2.

I ASSGN SYS007, TBBBBB, T--This card assigns FORTRAN unit

10 to tape BBBBB. This tape should be the BINS tape. This

card is required when running PATS2, PATS3, or PATS4.

// ASSGN SYS008, TCCCCC, T--This card assigns FORTRAN unit

11 to tape CCCCC. This tape should be the PATS training tape.

The card is required when running PATS3 or PATS4.

// ASSGN SYS011, TDDDDD, T--This card assigns tape DDDDD to

EIKON unit 1. This tape should be the input image; although

if the user wishes, the INPUT control card can specify input/

output from any units without altering program performance.
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// ASSGN SYS012, TEEEEE, T--This card assigns tape EEEEE

to EIKON unit 2. This tape should be the binary output image;

although if the user wishes, the OUTPUT control card can

jspecify output to any of the other EIKON units without altering

program performances.

EIKON JOB CONTROL CARDSI
When running PATS1, both INPUT and OUTPUT control cards are re-

quired. The LOC field on these cards must agree with the ASSGN job

control cards. That is, if the input tape is assigned to SYS011, then the

INPUT control card should have a I in the LOC field. The extent

specifications on the INPUT card can be used to process the whole frame

or any subframe included within the frame. The increment fields IDX

and IDY must be one for proper program execution.I
The OUTPUT control card defines the binary images EIKON file. The

size of this file must be identical to the size of the frame to be processed;

that is, IXC = JXC and IXC JYC.

All four of the PATS routines are loaded in a single phase when the

phase name card PATS is processed. In order to run one of four

routines, the 10th field of a GO card should contain a number in the

range [1,41 which identifies the particular routine to run. The other

fields of the GO cards are explained in the following paragraphs.
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GO Card Fields for PATS1

As previously explained, the 10th field must contain a 1. The seventh

to ninth fields are not used by the PATS1 program. The first six

fields are used to control six logical variables as follows:

SS1 = IGO(1). EQ. 1

SS2 = IGO(2). EQ. 1

SS3 = IGO(3). EQ. 1

SS4 = IGO(4). EQ. 1

SS5 = IGO(5). EQ. 1

SS6 = IGO(6). EQ.1

If SSI is true, then each time an interval is added to the interval tape

the 10 interval features are also printed on the line printer. Each

feature is preceded by a four-character label describing the field. If

SS1 is false, this line printer output is suppressed.

If SS2 is true, then the program will use a set of default filter constants

and thresholds. The parameters and default values are listed below:

Variable Name Function Default Value

ALP, BET Background filter constants (0.9)

K Lines and columns required

to initialize background filter (20)

C Hot/cold threshold (1.5)

7i
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Variable Name Function Default Value

A Upper hot/cold threshold (1000.0)

EC Edge threshold (1.5)

EA Upper edge threshold (100.0)

W, H Width and height of edge
operator (3,1)

SON Edge threshold for interval turn
on (3)

TON Bright threshold for interval
turn on (2)

SOFF Size of window for turn off (4)

TOFF Threshold for turn off (3)

ALFA Edge filter constant (0.9)

If SS2 is false, the program expects a data card immediately following the

GO card. This card is punched in 1414 format and contains 14 integer

values, 11 to 114, which will be multiplied by an appropriate scaling

factor and used by PATS1. (Note that these values become the new de-

fault parameters if PATS1 is executed again without reloading the phase

PATS.) The filter constants and thresholds are determined as follows:

ALP = 11/100.0

BET = 12/100.0

K = 13

C = 14/100.0

5
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A = 15/10.0

EC = 16/100.0

EA = 17/10.0

W =18

H = 19

SON = 110

TON =11

SOFF 112

TOFF -113

ALFA = 114/100.0

If SS3 is true, then for each line of the input image the following line

printer output appears:

1. The line number relative to the first line processed

2. The value of the background estimator for each pixel in the

current line

3. The intensity of each pixel in the current line

4. The bright signal for each pixel from the current line

5. The cold signal for each pixel from the current line

6. The edge signal for each pixel from the last line

7. The interval signal for each pixel from the last line
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If SS3 is false, this output is suppressed. (Note that when SS3 is true

there is considerable line printer output. )

If SS5 is true, then for each line of the input image the following line

printer output appears:

1. A header containing the absolute line number of the current line

2. T"he forward (left to right) and backward (right to left)

interval signal; for each pixel in the input line, the

value of the interval signal at that point is printed:

0--no interval

1--hot interval

-1--cold interval

Note that the backward interval signal is displayed in reverse order; that

is, the first pixel printed corresponds to the last pixel in the picture.

If SS5 is false, this output is suppressed.

If SS6 is true then after every 10 lines the following output appears at

the line printer:

1. The average absolute difference of the input intensities and the

background estimator computed after processing each line

2. The standard deviation of the edge operator in each of the last

10 lines

3. The filtered second moment of the edge operator in each of the last

10 lines

4. The value of the edge threshold for each of the last 10 lines
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If SS6 is false, then this output is suppressed.

GO Card Fields for PATS2

Only the EIKON INPUT control card is needed when running PATS2. The

parameters contained on the INPUT card should be the same as on the

INPUT card for PATS1.

The GO card parameters for PATS2 are as follows:

IGO(l) Number of missing intervals in order to close a bin

IGO(2) Edge discontinuity threshold

IGO(3) Minimum length -'f a bin

IGO(4) Minimum length of an Interval

IGO(5) Maximum length of an interval (not used)

IGO(6) Maximum difference in interval widths

IGO(7) Display flag:

0 = no line printer output

1 = line printer output of object outlines and

calculated features

IGO(8-9) Unused

IGO(10) Must be set equal to 2 in order to run PATS2

62

B



Since there is no default option in PAY'S2, each parameter must be

specified on the GO card. The following is a list of recommended values:

1. Number of missing intervals 4, 5, or 6

2. Discontinuity threshold 3

3. Minimum bin length 4, 5, or 6

4. Minimum interval length 3, 4, 5, or 6

Note: larger values for items 3 and 4 result in fewer

extracted objects.

5. Not used in the program

6. Maximum difference in interval widths 18, 19, 20, 21, or 22

7. Display flag 0 or 1

The line printer output from PATS2 (when the seventh GO parameter

is a 1) consists of a portion of the original frame around the target or

the message BAD RETURN FROM MMCALC. When the message appears,

J the extracted object was too large to calculate moments. In that case,

all moment features will be set to zero. When the subframe appears,

the column and row of the upper left corner of the subframe will be

output also. Following the subframe will be a list of features and values.

A full description of these features is given in the description of the BINS

tape. If the BINS ARE FULL message appears at the line printer,

it signals that all 50 bins are active and the input interval does not match

any of the active bins. Normally this would result in opening a new bin.

However, if all bins are active, the interval is simply discarded and the

next interval is processed.
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GO Card Fields for PATS3

Since there are no EIKON input or output files associated with PATS3,

no EIKON control cards are necessary except those which load the

PATS phase and the GO card to execute PATS3.

As previously described, the tenth field of the GO card to execute PATS3

must be a 3. The other fields are used as follows:

1 to 3 Unused

4 IGO(4) controls a logical variable as follows:

SS4 = IGO(4).EQ. 1

5 to 9 Unused

10 Must contain a 3

If SS4 is true, then the KNN classifier uses a City Block distance

calculation. If SS4 is false, the Euclidean distance is used. The

recommended value for IGO(4) is 0 (zero).

GO Card Fields for PATS4

Since there are no EIKON input or output files associated with PATS4,

no EIKON control cards are necessary except those which load the PATS

phase and the GO card to execute PATS4.

The only GO card parameter needed to execute PATS4 is in the tenth

field. This field must contain a 4.
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Sample Deck to Run PATS1

/JOB (Accounting Data)

I // ASSGN SYSOO5, SYSLST
/1ASSGN SYSOO6, TAAAAA,T (Insert correct interval tape

number)

IIASSGN SYS0l 1 TDDDDD,T (Insert correct input tape
number)

I/ASSGN SYS0l2, TEEEEE. T (Insert correct output tape
number)

/EXEC EIKON

jREWIND 1 (Insert correct EIKON tape
REWIND 2 positioning commands)

J PATS
GO 0 1 0 1 0 0 0 0 0 1

IREWINDi1
REWIND 2I END
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Sample Deck to Run PATS2

II JOB (Accounting Data)

II ASSGN SYS005, SYSLST

/ ASSGN SYS006, TAAAAA, T (Insert correct interval
tape number)

// ASSGN SYS007, TBBBBB, T (Insert correct BINS
tape number)

// ASSGN SYS011, TDDDDD, T (Insert correct input
tape number)

// EXEC EIKON

REWIND 1 (Insert correct EIKON
tape positioning com-

mands)

PATS

GO 6 3 6 4 30 18 1 0 0 2

REWIND 1

END

/*
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K I
Sample Deck to Run PATS3

I / / JOB (Accounting Data)

II ASSGN SYS005, SYSLST

// ASSGN SYS007, TBBBBB, T (Insert correct BINS tape
I number)

// ASSGN SYS008, TCCCCC, T (Insert correct training
tape number)

I/ EXEC EIKON

PATS

GO 0 0 0 0 0 0 0 0 0 3

2 9 1 2 0 0 1 2 0 0 1

227 6 179 180 181 182 183 184

4 1 2 4 6

8

END
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Sample Deck to Run PATS4

II JOB (Accounting Data)

// ASSGN SYSOO5, SYSLST

If ASSGN SYS007, TBBBBB, T (Insert correct BINS tape
number)

II ASSGN SYS008, TCCCCC, T (Insert correct training
tape number)

II EXEC EIKON

PATS

GO 0 0 0 0 0 0 0 0 0 4

3 1

7 2

15 1

21 1

-1

END
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jBINS TAPE DATA

As previously mentioned, the BINS tape consists of one record per bin.

This record is written as a 300-word real array followed by a 74-word

I real array.

Part 1, 300-Word Real Array

1 1. TOTAL LENGTH

L n - L1 +1

I Where:

L = Last line number
nI
L,= First line number

2. ACTIVE LENGTH

The number of active intervals

1 3. ACTIVE AREA

E iil I
im1

Where:

W = Width of ith active interval

I m = Active length
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4. CENTER COLUMN
1 E C.
m m1n

Where:

C. = Center of ith active interval
I

n = Active length

5. STRAIGHTNESS

Let S = Ebi2- 2b i + b + e,- 2 -2e e. 1 + ej

Where:

b. Beginning of ith active interval1

e. = End of ith active interval
1

m = Active length

Then the straightness is:

1000 * S
(m-2)

6. EDGE DISCONTINUITY

S = F W i - W il1 Where 1Wi - Wi_1 >.E
i=2, m

Where:

Wi = Width of ith active interval

E = Edge discontinuity threshold

Then the edge discontinuity is:

1000 * S
(m-l)
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I 7. EDGE COUNT

1 Ei E.* 000m i=1, m

Where:

W rE i = Edge count for ith interval

I m = Active length

8. BRIGHT COUNT

I B. i 10001m
Where: il, B

Bi = Bright count for ith interval

A = Active areaI
9. AVERAGE BACKGROUND

lz z
m i=l,rm

Where:

Z. = Value of the background estimator at the beginning of the

ith interval

m = Active length!
10. AVERAGE TARGET

11 Ti.,Ai1l,m t

I Where:

T = Average target value in ith interval
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W = Width of ith interval

A = Active area

11. PEAK TARGET INTENSITY

Max (PA

Where:

P. Peak intensity of the ith interval

12. FIRST LINE NUMBER

Line number of first interval

13. and 14. Beginning and ending column numbers for first interval

15. and 16. Interval endpoints for second interval

11 + 2 * land

12 + 2 1. Interval endpoints for ith interval (I ! 70)

151. and 152. Interval endpoints for 70th interval (if necessary)

(maximum of 70 intervals per bin)

153. to 240. Unused

241. LENGTH/AVERAGE WIDTH

1000 * L/W

Where:

L = Total Length

W = Average Width
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242. AVERAGE WIDTH

A/rn

Where:

A = Active area

m = Number of active intervals
(active length)

243. LEFT EDGE STRAIGHTNESS

Let S (bi - A L i - B)
iPl, M

Where:

b. = Beginning of the ith interval1

(after median filtering)

A l , B1 = Coefficients for least square linear fit

for data points of the form (Lis bi)

L i = Line number of the ith interval

m = Total length or 70, whichever is less (maximum of 70

intervals can be stored)

Then left edge straightness is:

1000 * S/ m

244. RIGHT EDGE STRAIGHTNESS

LetS = (i - Ar L. -B

im \1 r)

Where:

e, = End of ith interval after median filtering

Ar B = (as in feature 243) for the interval endpoints
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m - (as in feature 243)

Then right edge straightness is:

1000 '." S/m

245. to 256. Unused

257. LEFT EDGE FEATURE
1 , ES. - 1000

m i=l, m

Where:

m = Active length

ES. 1 if the ith active interval contains an edge at1

its left endpoint (edge at start), 0 if otherwise

m = Active length

258. RIGHT EDGE FEATURE
1 EE. *,- 1000

m i=,

Where:

m = The number of active intervals

EE. = 1 if the ith active interval contains an edge at its1

right endpoint (edge at end)

m = Active area

259. to 300. Unused
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Part 2, 74-Word Real Array

1. to 6. HARMONIC AMPLITUDES OF FOURIER BOUNDARY DESCRIPTORS

7. to 11. PHASE ANGLES OF THE FIRST FIVE FOURIER BOUNDARY
DESCRIPTORS

12. to 14. FORM INVARIANT CROSS TERMS

Moment Features

Intensity Silhouette Boundary

15. p 00 25. g00 35. g00

16. 1420 26. p 20 36. IA20

17. 14i1 27. 1AII 37. 141,

18. JA 02 28. g 02 38. 1$02

19. jA 30 29. $30 39. 1430
20. 1 21 30. g 21 40. A$21
21. 1A 12 31. JA 12 41. g 12

22. g. 03 32. ; 03 42. 1A03

23.x 33. x 43. x

2 4 . y 3 4 . y 44. y

1

Aoo Z I(m, n)
m n

I Where :
m, n * A point within the object outline

P The number of points in the summation



iS00

-~~ 1(m ,. n), n
y" m n

J"00

0 I Z l(m,n)(n - x)2

20= P m n

I i E E
JA,, : m n 1(m. n) (rn - x) (n -y)

Z Z I(m,n) (n -)2
02= P m n

JA 1 Z Z I(mn)(m -X)P (n- y)q
pq P mn

|-: ' --1 '-. I(m,n) (n- _3)-3
A03 P m n

p +q

All moments are normalized with respect to (g + a 2

Iand AO02 
0

Thus: 2 + 0

I20 =  201 [ 02 +  2 " +001S1 + 1) 1

11 = [(102 + 5 2 2 0
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0+2

%02 I02 [Q02 + 0  + 2 .00*

pq 21
P +q

p q l/ p q / [ '0 2 +  J 2 " p + q 0 0

0+3

03 0 3  ( 02 + 20

For the Intensity Moments:

[(m, n) = the intensity of the point

m, n in the original image

F r Silhouette Moments:

I(m, n) = 1 if m, n is in an object interval

I(m, n) = 0 otherwise

For Boundary Moments:

I(m. n) = 1 if

a. m,n is in an object interval and

b. one of the four orthogonal neighbors of m, n is not in

an interval

I(m, n) = 0 otherwise

45. to 46. Unused

47. and 48. A I & B

Coefficients of the least square linear fit to the left endpoints
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49. and 50. A & B

r r

Coefficients of the least square linear fit to the right

endpoints

51.

tan- 1. 0/A in radians (The angle is adjusted so that

0< 01 < r.)

52. rr
-1

tan (-1.0/A ) in radians (The angle is adjusted so that

0 .9er!9r
r

53. to 74. Unused

CLASSIFIER FORMAT

The format of the training tape and the format required by the classifier

program (PATS3) consists of a 300-word integer array written and read

with FORTRAN unformatted I/O. Each word consists of 32 bits. The

contents of each word and scale factor are given in the following list:

Word Contents Scale

1 Not used -

2 Bin number -

3 Target type -

4-10 Not used -

11 Total length -

12 Active length -
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Word Contents Scale

13 Total area

14 Center column

15 Straightness

16 Edge discontinuity

17 Edge count -

18 Bright count -

19 Average background intensity -

20 Average target intensity -

121 Peak target intensity

22 First line number

23-162 Interval columns

163 Ao Fourier boundary

164 A1  Descriptors S2

165 A2  S2

166 A3 Amplitude S2

167 A4  S2

168 A S2169 

S1 41 170 Fourier boundary S4
170 

02 Descriptors 
S4 

i

171 03 S4

172 Phase S4

173 5 S4

174 F21 Fourier boundary S4

175 F32 Descriptors S4

1 176 F31j Cross terms S4I
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Word Contents Scale

177 JA 00 3

178 1A2 0 S5

179 J1 1  S5

180 AA02 Intensity S5

181 A3O0 moments S5

182 0 2 1  S5

183 IA2S5

184 JA 3 S5

185 x S2
186 y S2I
187 IAO0 S5

188 1A2 0 S5

189 Jul 1  Silhouette 5

190 AL2  moments S5

191 PA30  S5

192 $A2 1  S5

193 'A12  S5

194 IA03  S5

195 x S2

196 y S2

197 JAL0  S5

198 A2 0  Boundary S5

199 As11  moments S5

200 'A02  S5

201 A30 1 S5

80



Word Contents Scale

202 021 S5
203 i 1 2  Boundary S5j 204 M0 3  moments S5

205 x S2
206 y S2
207 Length/average width

208 Average width

209 Left edge straightness

210 Right edge straightness

211 Aleft S4

212 Bleft S2

213 Aright S4
214 Bright 

52

215 a1eft 54

1 216 eright S4
217 Minimum target

I intensity _

218 Peak target intensity -

219 Average target contrast -

220 Average absolute
contrast _

221 Perimeter / area S4

222 1: Bright
-1: Cold

223-224 Not used
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Word Contents Scale

225 Left edge feature

226 Right edge feature

227-300 Not used

The calculation of these features is described in the BINS TAPE section.

The following scale values have been used in order to preserve the

significance of the features when converting to integer format:

Scale Multiplier

S1 300

S2 1,000

S3 10,000
S4 100,000

S5 1,000,000
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