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INTRODUCTION

The present study considers both laminar and turbulent flow in curved ducts,
pipes, and channels of constant cross sectional area and shape. The partiéular flows
considered here, as well as similar flows in related geometries, are very common in
-internal flow applications. They are of interegt in connection with flow degradation
and their strong influence on flow losses and heat transfer dlevels. '

The general character of flow in curved ducts and pipes is known to differ
fundamentally from that in straight flow geometries, due to the presence of large
secondary flows which distort the primary flow. Since strong deflections may occur
over a short distance, such flows are usually of a transition type and seldom become
fully developed or assume any convenient simila*ity form, By analogy with external
flows, the flow often behaves as an inviscid flow in a central core region, with
viscous effects limited to regions near solid boundaries, Unlike most external flow
problems, however, the inviscid core region is often not an irrotational potential
flow but is rotational with interaction between the viscous and rotational inviscid
flow regions. Furthermore, as the flow passes through successive flow passages, new
viscous and thermal boundary layers develop beneath previous boundary layers, and the
distinction between rotational inviscid and viscous boundary layer regions can become

tenuous.

The underlying physical mechanisms present in flows of this type are clearly
elucidated by secondary flow theory (reviewed for example by Horlock & Lakshminarayana [1]).i
In its most common and perhaps simplest form, the secondary flow is generated by turning »
a primary flow in which viscous or other forces upstream have produced a non-zero
velocity gradient normal to the plane of curvature. Fluid with above (/below) average
momentum migrates to the outside (/inside) of the bend as a result of the radial
pressure gradients produced By turning the flow. This phenomenon is quantified by
secondary flow theory as the generation of streamwise vorticity from transversé
vorticity which has been produced upstream. Although the secondary flow is generated
'by an inviscid mechanism, its strength and subsequent development are influenced in
varying degrees by viscous effects. In any event, the secondary flows are often
‘quite large and the flow patterns are thus complex and highly three-dimensional.
Two-dimensional flows in curved channels do not behave in this manner (provided the

flow remains two-dimensional), since there can be no streamwise vorticity component

in a two-dimensional flow.
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Previous Work

Much of the early work on flow in curved ducts and pipe bends can be traced
from the reviews of Hawthrone {2, 3]. Of primary interest here are methods for
computing such flows and experimental work which may be useful in evaluating the
numerical predictions. Only three-dimensional developing flows in curved ducts and
pipe bends are considered. Two-dimensional flows and flows which are fully developed

and thus do not vary with an axial coordinate are excluded from consideration,

Flow in Curved Ducts

Pratap and Spalding [4] have considered turbulent flow in a strongly curved duct

using their "partially parabolic" calculation procedure and a two-equation/wall-function

" turbulence model. Ghia and Sokhey [5] have computed laminar flow in ducts of strong

curvature using a parabolized form of the Navier-Stokes equations. Kreskovsky, Briley,
and McDonald [6] have recently applied an approximate initial-value analysis for
viscous primary and secondary flows to laminar and turbulent flow in strongly curved
ducts, using a one-equation turbulence model with viscous sublayer resolution.
Humphrey, Taylor and Whitelaw [7] have obtained laser-Doppler anemometry measurements
of laminar flow in a square duct of strong curvature, for the case of fully developed
flow in the straight section upstream of the bend. For comparison, then also performed
numerical calculations for this flow using a version of the fully-elliptic calculation
procedure developed at Imperial College by Gosman, Pun, Patankar and Spalding.

Further extensive calculations including heat transfer effects have been made recently
by Yee and Humphrey [8]. Finally, Taylor, Whitelaw and Yianneskis [9] have recently
made extensive measurements of both laminar and turbulent flow in a strongly curved
square duct with moderately thin boundary layers at the entrance to the bend. The
present study concentrates heavily on numerical solutions of the Navier-Stokes
equations for the flow conditions of these measurements of Taylor, Whitelaw and

Yianneskis.

Flow in Pipe Bends

Rowe [10] has taken total pressure measurements for turbulent flow in a pipe
bend of small curvature. For comparison, he also performed flow calculations based
on the Squire-Winter inviscid secondary-flow approximation. Patankar, Pratap and
Spalding [11, 12] have performed calculations for both laminar and turbulent flow
in pipe bends of small curvature, using their "parabolic flow" calculation procedure
and a two-equation/wall-function turbulence model. Agrawal, Talbot and Gong [13]




have obtained detailed measurements of laminar flow development in curved pipes with

uniform velocity at entry. These measurements would be useful for evaluation of

numerical computations.
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THE PRESENT APPROACH

The present objective is to explore and evaluate a method for predicting turbulent
flows in ducts and pipes of strong curvature by numerical Qolution of the Navier-Stokes
equations. A time-dependent formulation is used as an iterative means of obtaining
steady solutions, and the compressible form of the equations are solved in the low
Mach number regime (M = 0.05), which closely approximates an incompressible flow.

The governing equations are solved using a consistently-split linearized block
implicit (LBI) scheme developed by Priley and McDonald [14, 15]. With proper treatment

‘of boundary conditions, this algorithm provides rapid convergence which is not signifi-

cantly degraded by the extreme local mesh resolution which is necessary for the near-
wall sublayer region in turbulent flows. The turbulence model used is a one—equatibn
model recently explored by Shamroth and Gibeling [15]. This model requires solution

of a single equation governing turbulence kinetic energy qz, in conjunction with an
algebraically specified length scale. The turbulent effective viscosity Mo is obtained
from the Prandtl-KolomogO{pv constitutive relationship M, = l(qz)l/z. The model also
includes representation of the influence of turbulence Reynolds number on turbulent
stress levels and provides for resolution of the near-wall viscous sublayer region.

The present effort concentrates on the geometry and flow conditions for which
detailed ‘measurements have been obtained recently by Taylor, Whitelaw, and Yianneskis [9].
This geometry is shown to scale in Fig. 1 and consists of a square duct with a 90 degree
circular arc bend and with straight sections both upstream and downstream of the bend.
The ratio of bend radius R to duct width W is 2.3. The measurements were taken for
Reynolds numbers based on mean velocity and duct width of 790 (laminar flow) and
40,000 (turbulent flow). In each case, moderately thin shear layers (20 - 30% of
duct width) were present at the start of the bend. The present study considers both
of these measured flows and in addition the corresponding two-dimensional channel
flows having the same Reynolds numbers, shear layer thickness and ratio of '‘bend
radius to duct widch. The two-dimensional channel flows are computed to establish
their flow structure for comparison with the three-dimensional duct flow solutions.
Tesf calculations are performed to establish grid independence and to verify the

treatment of inflow/outflow conditions for the two-dimensional channel flows.

‘'The laminar and turbulent duct flow solutions are compared with the flow measurements

and with the channel flow results to provide an evaluation of the flow predictions -
obtained by the present computational procedure. Finally, turbulent flow in a curved
pipe with radius ratio of 24 and Reynolds number of 2.36 x 105 is compufed and
compared with the measurements of Rowe [10].




Coordinate System

r

The compressible Navier-Stokes equations in general orthogonal coordinates are
solved using analytical coordinate data for a system of coordinates aligned with the
duct geometry. The coordinate system is shown in Fig. 2 agd consists of an axial
coordinate X parallel to a curved duct centerline (which lies in the Cartesian x-y
plane), and general orthogonal coordinates Xys Xq in transverse planes normal to the

centerline. If the axial coordinate X denotes distance along the centerline and if

K(xl) = l/R(xl) is the centerline curvature, then the metric scale factor h1 for the
axial coordinate direction is given by h1 =1 4 K(xl) AR(xZ, x3), where AR £ r-R is
independent of Xy The transverse metric factors are given by h2 = h3 =1 for

rectangular (Cartesian) cross sections and by h2 =1, h3 =X, for circular (polar)
cross sections. The quantity AR is given by AR = Xg and AR = X, cO8 Xq for Cartesian
and polar cross sections, respectively., The centerline curvature K is discontinuous
when a straight segment of a duct joins a constant radius segment. To remove the
associated coordinate singularity, the flow geometry is smoothed over an axial
distance of one duct diameter. This is accomplished using a cubic polynomial varia-
tion in K which matches both function value and slope of K at the end points of the

smoothing region.
Boundary and Initial Conditions

The computational domain is chosen to be a region in the immediate vicinity of
the duct bend (cf. Fig. 1) embedded within a larger overall flow system upstream and
downstream of the bend. This choice of computational domain requires inflow and
outflow boundary conditions which adequately model the interface between the computed
flow and the remainder of the flow system. The inflow/outflow conditions used are
derived from an assumed flow structure and are chosen to provide:

(a) inflow with prescribed stagnation pressure and temperature in an

inviscid core region, and with a given axial velocity profile shape in

shear layers, and

(b) outflow with a prescribed static pressure distribution.
These boundary conditions are chosen following consideration both of a one-dimensional
inviscid characteristics analysis and of the physical process by which many duct flows
are established. For subsonic flow, a characteristics analysis of the one-dimensional
inviscid Ruler equations indicates that two boundary conditions are required at an

'“l‘ i o




inflow boundary and one additional boundary condition is required at outflow. Physically,
a duct flow is ogten established by supplying air of a given stagnation pressure and
temperature and exhausting the duct at a given static pressure. The mass flux through
the duct may then vary with time until a steady state is achieved, at which the mass
flux is determined as a balance between these inflow/outflow quantities and viscous

and thermal effects within the duct. By choosing stagnation pressure and temperature
at inflow and static pressure at outflow as the dominant boundary conditions, the
present solution procedure allows both velocity and density to vary with time, as is
consistent with this physical process. As a consequence, pressure waves can be trans-
mitted through the inflow boundary during the transient flow process and are not
reflected back into the computational domain. The reflection of pressure waves at

an inflow boundary where velocity and density are fixed in time has often been cited
as a cause of either instability or slow convergence in other investigations. The
specific treatment of initial and boundary conditions used here is outlined below.

The initial and boundary conditions are devised from estimates of the potential
flow velocity ﬁI(xl, Xys x3) for the duct, a mean boundary layer thickness 6(x1) for
shear layers on transverse duct walls, and finally from an estimate of the blockage
correction factor B(xl) for the core flow velocity due to the boundary layer growth.

The potential flow velocity is approximated as uniform flow in straight segments of
the duct and as proportional to r-1 in curved segments. The constants (Ro-Ri)/zn(Ro/Ri)
and R02/2 (R- R2

sections, respectively. Here, R

-Roz) lead to a unit mass flux for rectangular and circular cross
i and Ro are the radii to the inner and outgr walls of
the duct, and R = (Ri + Ro)/2 as in Fig. 1. Distributions of G(xl) and B(xl) are
determined by recourse to a simple one~dimensional momentum integral analysis using a
fixed velocity profile shape and an approximate relationship between B and mean
Qisplacement thickness 6*(x1). Details of this procedure are not important, as the
results serve mainly as a convenient method of setting approximate initial conditionms.
Finally, a shear layer velocity profile shape f(;/&), ozf<l is chosen for each problem,
where y is a parameter indicative of distance from a wall. The initial values of

velocity components Ups Uy, U4 are given by

uy = U B(x)) £ly/6(x)] u, = uy = 0




A reasonably accurate estimate for the pressure drop which will produce the desired
flow rate must be made using any convenient source, such as a Moody diagram, data

correlations, momentum integral analysis, or other computed results., A smooth axial

distribution of pressure which matches this pressure drop is then assigned and

adjusted to approuximate local curvature of the flow geometry. This completes speci-
fication of the initial conditions. It is noted that although these initial conditions
do take into account several relevant features of the flow, the important effects of
strong secondary flows and their distortion of the primary flow are completely
neglected. The resulting initial flow is thus a simple but relatively crude approxi-

mation to the final flow field.

P P < S S R

At the inflow boundary, a "two-layer" boundary condition is devised such that

stagnation pressure P, is fixed in the core flow region and an axial velocity profile

shape ul/ue = f(y/8) is set within shear layers. Here, u, is the local edge velocity

F- X0

which varies with time and is adjusted after each time step to the value consistent
with P, and the local edge static pressure determlned as part of the solpt1on. The
remaining inflow condltlons are 82 u /8n = 2 u /an = 0 and 32 c /an =g (xz, x3),

where n denotes the normal coordinate direction and Cp is pressure coeff1c1ent. The

quantity g is computed from the initial conditions with cp defined as 1-(BUI) , its

value from the potential flow corrected for estimated blockage. For outflow condi-

tions, the static pressure is imposed, and second normal derivatives of each velocity

component are set to zero. At no-slip walls, all velocity components are set/to zero,
and the remaining condition used is 3p/3n = 0, where p is pressure. The condition

dp/3n = 0 at a no-slip surface approximates the normal momentum equation to order Re

2
1
!
i

for viscous flow at high Reynolds number. Finally, the three-dimensional flow cases
are assumed to be symmetric about the plane containing the curved duct centerline,

and symmetry conditions are imposed on this boundary. '

Governing Equations and Differencing Procedures

ok e e

The differencing procedures used are a straightforward adaptation of those used
by Briley and McDonald {14) in Cartesian coordinates for flow in a straight duct.
The compressible time-dependent Navier-Stokes equations are written in orthogonal 4
coordinates in the form given by Hughes and Gaylord [17]. The first-derivative
flux terms are written in conservation form, and for economy the stagnation enthalpy
is assumed constant. The definition of stagnation enthalpy and the equation of state

for a perfect gas can then be used to eliminate pressure and temperature as dependent

variables, and solution of the energy equation is unnecessary. The continuity and




and Gibeling [15]. This model requires solution of a single equation governing

three momentum equations are solved with density and the three velocity components
aligned with the coordinates as dependent variables. Three-point central differences
were used for spatial derivatives, and second-order artificial dissipation terms are
added as in [14] to prevent spatial oscillations at high cell Reynolds number. This
treatment lowers the formal accuracy to first order but does not seriously degrade
accuracy in representing viscous terms in thin shear layers. Analytical coordinate
transformations due to Roberts [18] were used to redistribute grid points and thus
improve resolution in shear layers. Derivatives of geometric data were determined
analytically for use in the difference equations.

The turbulence model used is a one-equation model recently explored by Shamroth

turbulence kinetic energy q2, in conjunction with an algebraically specified length
scale 2. The equation governing the balance of turbulence kinetic energy, q2, in
curvilinear orthogonal coordinates was derived from the Cartesian tensor form of this
equation given by Launder and Spalding [19]. For the present application, a very
simple three-layer length scale was constructed with the outer or wake scale determined
by a one~dimensional estimate of the growth of this wake length scale from its value

on inlet. This growth rate was essentially obtained from the Von Karman momentum !

integral equation assuming the wake length scale would grow roughly as the boundary

layer thickness. Near the nearest wall the length scale was assumed to vary in
accordance with Von Karman's linear relationship %=xy. 1In the viscous sublayer the
length scale was damped by viscous effects according to Van Driest's formulation. ?
Finally, the turbulent effective viscosity u_ was obtained from the Prandtl-Kolomogorov
constitutive relationship_ut o l(qz)l/z. The turbulent viscosity was then supposed
isotropic and the stress tensor in the ensemble averaged equations determined by

adding the turbulent viscosity to the kinetic viscosity. The turbulent kinetic energy

near the wall was damped out according to the suggestion of Shamroth and Gibeling (Ref. 15).
Split LBI Algorithm

The numerical algorithm used is the consistently-split "linearized bicok implicit"
(LBI) scheme developed by Briley and McDonald [14, 15) for systematic use in solving
systems of nonlinear parabolic-hyperbolic partial differential equations (PDE's),

To illustrate the algorithm, let

(¢n+l n

~o")/ac = gp(e™H?

) + (1-8) D (4™ (2)
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approximate a system of time-dependent nonlinear PDE's (centered about tn+BAt) for

the vector ¢ of dependent variables, where D is a multidimensional vector spatial

differential operator, and t is a discretized time variable such that At-tn+1-tn.

A local time linearization (Taylor expansion about ¢n) is introduced, and this serves

to define a linear differential operator L such that

n+l n+l .n (3)

D (0" = b (¢ + L7 ("o + 0 (atd)

Eq. (2) can thus be written as the linear system

+1
n _¢n

(1 - BAtL™ (o ) = AtD (4™ (4)

without lowering the formal accuracy.

The multidimensional operator L is divided into three "one-dimensional" sub-operators

L=L1+-L2+L3 (associated here with the three coordinate directions), and Eq. (4) is

split as in the scalar development of Douglas & Gunn [20] and is written as

(1 - gaeL,™ (4"-o™ = aed (M) (5a)
(1 - BALL,™) (""=0") = ¢"-¢" (5b)
(1 - gatL,™) (670" = ¢™e" (5¢)

o™ = ™o (acd) (5d)

If spatial derivatives appearing in L are replaced by three-point difference formulas,
then each step in Eqs. (5a-c) can be solved by a block-tridiagonal "inversion".

Eliminating the intermediate steps in Eqs. (5a-d) results in

(1 - BAtLln) I - BAthn) (I - eAcL3“) 6"1oe™) = aep(s™) (6)

which approximates Eq. (4) to order At3. Complete derivations are given by the
authors in [14, 15]. It is noted that Warming and Beam [21] have suggested an
alternate derivation for this and other related algorithms, based on the approximate
factorization approach of Yanenko and D'Yakonov [22]. Their derivation is equivalent
up to Eq. (4) and proceeds immediately to Eq. (6) by observing that Eq. (6) is a
"delta form" approximate factorization of Eq. (4). Eq. (6) is then solved by intro-

*
ducing intermediate quantities (¢ -¢n) and solving Egqs. (5a-~c).
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COMPUTED RESULTS

Extensive calculations were made for the flow geometry in which detailed measure-
ments were obtained by Taylor, Whitelaw, and Yianneskis [9]. This geometry 1s shown
in Fig. 1 and consists of a square duct with a 90 degree circular-arc-bend and with
straight sections both upstream and downstream of the bend. The ratio of bend
radius to duct width is 2.3. The measurements were taken for Reynolds numbers based
on mean velocity and duct width of 790 (laminar flow) and 40,000 (turbulent flow).

In each case, moderately thin shear layers (20-30% of duct width) were present at the i
start of. the bend. Both of these measured flows were computed. In addition the
corresponding two-dimensional channel flows having the same curvature, Reynolds
number and shear layer thickness were computed for comparison with the three-

dimensional duct flow solutions.
Mesh Refinement and Other Validation Tests
Test calculations were first performed for the two-dimensional channel flows

to establish grid independence and to verify the treatment of inflow/outflow conditions.
The results are shown in Figs. 3-5. 1In Fig. 3, axial velocity profiles at the 60°

location are shown for both laminar and turbulent flow and for three radial grid
densities. With the 26 x 28 grid, the mesh spacing (in channel widths) adjacent

to the wall is 0.0026 (turbulent) and 0.0087 (laminar). The results in Fig. 3 indicate
that 26 radial grid points are sufficient to resolve this flow. In Fig. 4, the wall
pressure coefficient cp is shown for both laminar and turbulent flow and for two

axial grid densities. Here and elsewhere in this report, the axial coordinate is

given in degrees of turning within the bend and in duct widths upstream or downstream
of the bend. The results in Fig. 4 are not sensitive to the axial grid used. Note
that at the inflow boundary, a transverse pressure gradient is permitted by the imposed
inflow boundary conditions and does occur in Fig. 4. The static pressure is assumed
constant at the downstream outflow boundary. In Fig. 5, the effect of extending the
straight segments to a length of 3.5 channel widths both upstream and downstream of

the bend is shown. Although the extensions had no observable effect on the turbulent
flow results, there is a noticeable effect near the 90° location for the laminar flow.
This sensitivity of the laminar flow can be explained by the occurrence of a very

small flow separation on the inner wall in this region. Evidently, although the

solutions are insensitive to the axial grid, the downstream boundary is apparently




located too close to this flow separation unless extensions are added. This flow
separation did not occur in the three~dimensional square duct analog of this flow,
however, and the extensions were not included in these latter calculations.

On balance, 1t is concluded that a 26 x 28 grid, distributed to provide local
resolution for the near-wall region, was sufficient to achieve grid independence for
the two-dimensional channel cases. This same grid was used for the three-dimensional
duct calculations, and the mesh distribution for the third coordinate was chosen with
the two-dimensional results as a guide. Taking advantage of symmetry about the plane
midway between the endwalls, a 26 x 28 x 13 grid was used, with mesh spacing adjacent
to the endwall of 0.0028 (turbulent) and 0.0091 (laminar) duct widths. Since the two-~
and three-dimensional flows have a different structure, the resulting grid does not
guarantee accuracy in three dimensions. Nevertheless, knowledge of the two-dimensional
accuracy is very useful in evaluating the three-dimensional results, for which
extensive mesh refinement results were not feasible.

Finally, it is necessary to establish and document both the degree and rate of
convergence obtained in the computed solutions. The behavior of maximum change in
computed streamwise velocity with nondimensional time is shown in Fig. 6 for the
two-dimensional turbulent channel flow. These results are typical of those obtained

in both two- and three-dimensions and for both laminar and turbulent flow. Also

shown in Fig. 6 is the time step number. Here, the particle residence time of 6.75
represents the nondimensional time required for a particle travelling with the
reference (mean) velocity to traverse the duct centerline (6.75 duct widths) from
inflow to outflow. In this calculation, the initial time step was increased gradually
from 0.02 to 0.5 in the first 15 steps, held constant at 0.5 for the next 15 steps,
and thereafter a sequence of 5 time steps in equal logarithmic increments between

0.01 and 0.5 was used cyclically. The normalized maximum increment in velocity shown
in Fig. 6 is shown only for the maximum time step of 0.5. It should be emphasized
that Fig. 6 would not be meaningful if the increment were not taken at a large time
step, since the temporal increment can be made arbitrarily small by taking a small

time step. With 10-4 as the criterion, convergence to the steady state was usually

obtained at around 80 time steps in both two~ and three-dimensional flow. Residuals
in the governing equations were also examined at convergence and noted to be small in
comparison to the other terms in the governing equations. As a final observafion,
with 10—4 as the criterion, the plotted results exhibited little or no discernable
change with further iteration. The behavior observed in Fig. 6 does represent rapid
convergence for a problem of this complexity, and this is attributed in part to the
use of an implicit algorithm (including boundary conditions) and in part to the

11 j
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selection of inflow/outflow boundary conditions. The specification of total pressure
at inflow and static pressure at outflow allows pressure waves to be transmitted
through the inflow boundary during the transient process, and this avoids the
instability or slow convergence often attributed to reflection of pressure waves and

an inflow boundary with fixed velocity and density.
Three-Dimensional Curved Duct and Pipe Flows

Axial velocity profiles for turbulent flow in both the two-dimensional channel
and in the symmetry plane Xy = 0 of the three-dimensional duct are shown at selected
locations in Fig. 7. Also shown are the duct flow measurements of Taylor, Whitelaw &
Yianneskis [9]. The two-dimensional turbulent channel flow was not compared with
experimental measurements, although as mentioned they were shown to be essentially
grid independent. The computed flow structure for the channel flow consists of an
inviscid core flow with acceleration near the inner wall of the bend, and with shear-
layer velocity profiles characteristic of turbulent flow. For comparison, also shown
in Fig. 7 are velocity profiles in the symmetry plane for the three-dimensional duct
flow. Here, there is evidence of considerable flow distortion as a result of secondary

fﬁ flow, which is directed toward the inner wall near the endwalls (x3 = + 0.5) and toward

the outer wall near the symmetry plane (x3 = 0). Although the axial velocity in the
symmetry plane initially accelerates near the inner wall up to the 30° location
(duplicating the channel flow behavior), beyond this point the peak velocity shifts
toward the outer wall. This pattern is also present in the data of Taylor, Whitelaw and

. Yianneskis [9], and the level of agreement shown in Fig. 7 is generally good except

s near the inner wall near the end of the bend. Radial velocity profiles at the

; 77.5 degree location are shown in Fig. 8 and display a very strong secondary flow near
z the endwall with peak velocity up to 407 of the mean axial velocity, located very near
the endwall surface. Near the symmetry plane, the radial velocity is of order 20% of
? the mean axial velocity and is directed toward the outer wall. The computed radial

: velocity is in very good agreement with the measurements except in the region near

the symmetry plane and inner wall. On balance, the level of agreement between predic-
tion and experiment is good; the discrepancy may be due to the turbulence model, but
other factors such as grid resolution may still be present. In fact, for a three-
dimensional sublayer-resolved turbulent flow calculation with relatively coarse grid,

! - the level of agreement is perhaps better than might be anticipated.

12




v e Wie le e A )

To explore further the accuracy of the predictions, laminar flow in the same

geometry was also considered. Computed results for laminar axial and radial velocity
profiles corresponding to those given for turbulent flow are shown in Figs. 9 and 10.
The two-dimensional laminar flow in Fig. 9 resembles the corresponding turbulent flow
in that the flow accelerates near the inner wall of the bend. The velocity profiles
are characteristic of laminar flow, however, and since the growth rate of laminar shear
layers is greater than that of turbulent flow, there is less evidence of an inviscid

core region in the downstream profiles. In addition, laminar flow is less resistant

to separation in an adverse pressure gradient, and there is a very small flow separa-
tion at the inner wall just downstream of the +0.25 location (not actually shown in
Fig. 9a, but also mentioned earlier in the discussion of Fig. 5). The three-dimensional

laminar duct flow profiles in Fig. 9b display even more distortion downstream due to

secondary flow than the turbulent case in Fig. 7b. Although very good qualitative
agreement with the Taylor, et al measurements is obtained, there is quantitative dis-
agreement, particularly near the 30° location. The radial velocity profiles at 77-1/2°
are shown in Fig. 10, and although qualitative agreement is obtained, there is quanti-
tative disagreement similar to that observed in Fig. 8 for turbulent flow but of
greater extent. Since the turbulence model has been removed as a factor in the

laminar flow calculations, and since there is no reason to suspect the experimental
data, the source of disagreement between prediction and e¢xperiment is believed to be
mesh related. The two-dimensional mesh refinement tests appear to have been inadequate

as a guide for the more complicated and extensive three-dimensional flow structure. 1

One additional set of experimental comparisons shown in Figs. 11 and 12 provides
further clarification of these flow predictions. These two figures show the axial
development along the duct centerline of the axial and radial velocity components
for each of the four solutions (2D/3D and laminar/turbulent). In each of the two-

dimensional channel flows, the axial velocity (Fig. 11) undergoes a mild streamwise

4 T AR ST

acceleration due mainly to blockage caused by shear layer growth, and this acceleration
is larger in the laminar flow because of the higher growth rate of laminar flow at
these respective Reynolds numbers. In the three-dimensional duct flows, the initial
(inlet) velocity is higher than the corresponding channel flow because the endwall
shear layers of the duct flow (not present in the channel flow) require higher

blockage to give the same mean flowrate. The subsequent downstream decreases in

axial velocity for the duct flows are a direct consequence of the radial secondary
flow, which convects low velocity fluid toward the ceaterline, This same behavior is

also present in the experimental measurements, although the distortion due to

13




secondary flow is less severe in the calculation than that observed experimentally.

In Fig. 12, the corresponding radial velocities are shown with a sign convention

such that negative velocity denotes flow toward the inner wall of the bend. In the
two-dimensional channel geometry, the behavior is very similar for both laminar and
turbulent flow. There is radial flow toward the inner wall near the start of the

bend (0°) and toward the outer wall near the bend exit (90°). 1In the three-dimensioanl
duct geometry, the flow is primarily radially outward within the bend, and the radial
flow is significantly stronger in the laminar case, as is consistent with the develop-
ment of the axial velocity in Fig. 11. This same flow behavior is evident in the
experimental measurements, and although the peak radial velocity is underpredicted

in the laminar case, the agreement with experiment is remarkably good in the turbulent

case. The stronger secondary flows observed in the laminar case are believed to be
the result of the different axial velocity distributions entering the bend. The
laminar velocity distribution contains larger transverse (radial) vorticity than the
turbulent case except in the viscous dominated region near the walls, and based on
secondary flow theory, this should lead to stronger secondary flows. The laminar
case thus proved to be a more difficult prediction than the turbulent case.

Finally, total pressure contours computed for turbulent flow in a mildly curved
circular pipe are compared with the experimental measurements of Rowe [10] in Fig. 9.
Shown are contours of total pressure difference (pt-pr)/% prurz, where P, is total
pressure and Pos Pps and u_ are reference values of static pressure, density, and
velocity, respectively, taken as their values at the pipe centerline at 0°. The
total pressure contours are a sensitive indicator of the distortion which occurs as a

result of both viscous losses and secondary flow. 1In general there is good qualita-

tive agreement between prediction and measurement. Again, the quantitative disagree-
ment which is present is believed to be mesh-related. A 30 x 19 x 15 grid was used
for the axial, circumferential and radial directions, respectively. The minimum
radial mesh increment at the pipe wall is 0.000765 diameters, and the maximum radial
mesh increment at the centerline is 0,12 diameters. This high degree of mesh :
nonuniformity was needed to provide viscous sublayer resolution at the Reynolds number
(Rea = 2,36 x 105) of this case; the use of only 15 radial grid points under these

circumstances may be inadequate.

14
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SUMMARY AND CONCLUSIONS

TS

A solution methodology is described for treatment of flow in curved ducts and
pipes, and it is demonstrated that rapid convergence (= 80 noniterative time-steps) :
can be obtained for three~dimensional turbulent flows, with sublayer resoltuion. g

A series of solutions for both laminar and turbulent flow and for both two and

three-dimensional geometries of the same curvature are presented. The accuracy of

these solutions is explored by mesh refinement and by comparison with experiment.

In summary, good qualitative and reasonable quantitative agreement between ]

solution and experiment was obtained. Collectively, this sequence of results serves

" to clarify the physical structure of these flows and hence how grid selection procedures
might be adjusted to improve the numerical accuracy and experimental agreement. For a
three-dimensional flow of considerable complexity, the relatively good agreement with
experiment obtained for the turbulent flow case despite a coarse grid must be regarded h
as encouraging. These results seem to warrant further study to clarify the sources of i
error present and also to perform calculations for additional geometric configurations

and flow conditions.
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Fig. 1 - Geometry of Square Duct (to scale),
R/W = 2.3, H/W = 1.0.
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Fig. 2 - Schematic of Coordinate System.

19




3
]

Axial Velocity u, at 60°

ARSI V- RS SBEraiI - .o~ Al o v W

1.0 Turbulent

Laminar

0.5 0 -0.5
(Outer Wall) (Inner Wall)

Radial Coordinate, X,

Fig. 3 - Radial Mesh Refinement for Two-Dimensional
Channel.

20




P

Wall Pressure Coefficient, C

-1.0

Lamiaar

- —— 26 x 28

o— O 26 x 18

Turbulent

.| 1 J 1 | |

7!

~1.0 0° 30° 60° 90° +1.0

Axial Location

Fig. 4 ~ Axial Mesh Refinement for Two~Dimensional Channel.




o Outer
O

- - Laminar '
v !
gLor |
RN
Yt
v L —— With Extensions

o .
© - O Without Extensions

o

3

w

)]

g 0
[« 9
i
4

«
=

-]_,O e . b 1 i e, -4 —a J A

-3.0 -2.0 -1.0 0° 30° 60° 90° +41.0 +2.0 +3.0

Axial Location

Fig. 5 =~ Effect of Extending Upstream and Downstream Segments of
Two-Dimensional Channel.




T Do 2 Y

Maximum Change in Solution [un+1-unf/umax at At = 0.5

AR P AT AIAD SEYN Y I ROR VS ROAATTI  T T AR Y

{p 5
=2
10 Elo
t 020 Time Step
| Number
-
3 0 30
10 -
L O 40
A
L
6.75
- 050 ' r
s Particle Residence
O 60 Time
070
1L
[ ‘090
C 0 100
y-
5
O 150
167 0 200
E O 250 300
f I [ A N 1 A —_— 4 i — o
0 10 20 30 40 50

Nondimensional Time, t ullw

Fig. 6 - Convergence Rate for Two-Dimensional Turbulent
Channel Flow.

23

(R APV T P




Axial Velocity, u

1
0 1.0
0.5 1 a 1 | =l 4 4 et L 4«3
. :
N - ) f
R :
m i
5 ot -1.5) -0.5|  30° 60° \77-1/2°\ +0.25| +1.65| | & |
<} © '
O -
o 1 i
o T - !
.g i
o i ] }
- / 3 ;
-0.5 2 T e - f
(a) Two-Dimensional Channel :
;
Axial Velocity u, at Symmetry Plane
0.5 ?
~ [~ n
x -
|
g | -1, ]
.E 8 +1 65 ‘1 [=] ]
a !
T oL 18 |
g ~—— Computed 1 :
5] " .
& - Taylor,
k] B et al )
- ] !
% -4
.S W

(b) Three-Dimensional Square Duct

Fig. 7 - Axial Velocity Profiles for Turbulent Flow in Two and .
Three Dimensions. (Curves are Labeled bv Axial i
Location; Xy = -0.5 is Inner Wall). ‘




Transverse Coordinate, Xy

—— Computed O Data of Taylor, et al
r=0.4 0.2 -0.4

o 0 o ¢
+ O (o] (e] (0]

O o) (o] (o]
+1 o (0] O (o]

o o
+ o 0
L. (o] (o]

\
ha 3 e C O
- o8 o
-0.5 -é | p— T
0 0.4
Scale

Radial Velocity u, at 77-1/2°

2

Fig. 8 - Radial Velocity Profiles for Three-Dimensional Turbulent
Duct Flow (Inner Wall to Right).

25




Axial Velocity, u1
1.0

0.5 ‘an
~ g N
» B -
N. -
Ly o -
o
£ .
B! i a
§ oL . T E

F © 77-1/29 40.25 +1.65

- F

k o -

L] -

. o -

4 ]

! o u -

‘: ‘0-5 * L g f ;

3‘ ’ (a) Two-Dimensional Channel

{. Axial Velocity u; at Symmetry Plane

¥

i 1.0

4 0.5 L a1

]

: o 4
L k
©
£
ke
0 8
] — Computed s
: o & Data of 3
o Taylor, et al :

" ol

! ) J

! o :

‘\ -OOS 2

;

J (b) Three-Dimensional Square Duct

) Fig. 9 - Axial Velocity Profiles for Laminar Flow in Two and Three
Dimensions (Curves are Labeled by Axial Location;
x, = -0.5 is Inner Wall). :
f 26

e 7, T AR YW R O AT T TIET ey g Wi T O SR T e e AT g AN o e YT ST T N ey




—— Computed

o Data of Taylor, et al

__ - —————
r=0.2 © 0.4 o |o. -0.2

% o o o
o o o)
z d
E o o
B 0
; ° q
5] } o
%
5 [ o o o)
> L
E 1 O
= i (o] o

3 — T T T E—

0 0.4
Scale
Radial Velocity u, at 77-1/2°

2

Fig. 10 - Radial Velocity Profiles for Three-Dimensional Laminar Duct
Flow (Inner Wall to Right).




4
4
b
1.8
% o o .
i R o Laminar
s i
~ :
o 3
] 5 ;
X - 1
1 § o]
. e
i S
L o
E 3] o
a o P
i 8 L 3D Duct
i -
i 2
; > - = = == 2D Channel
g - O 3D pata [9]
L - o
} 9 A
3 0 *
g owd
. & l? Turbulent
1.2
- —- o 9 o
NS — ———— Cwmm T S— S—
1.0- —nmp cmmm S et D SR D Gm—  ew— — 13
F \ !
: 0.8L
4
: 1 1 1 1 1 1 1
b -1.0 0° 30° 60° 90° +1.0 +2.0
Axial Location

Fig. 11 - Axial Development of Axial Velocity at Duct Centerline.

PP e

28




LS L Wikt £

i g1

L84

Radial Velocity u, at Duct Centerline

Laminar

/
\

3D Duct

o= eme= 2D Channel Turbulent

O 3D Data [9]

1
-1.0 0° 30° 60° 90° +1.0
Axial Location

Fig. 12 - Axial Development of Radial Velocity at Duct Centerline.

29

+2.0




Computed

Data of
Rowe

(b) 30°

] e
l’

Fig. 13 - Total Pressure Contours for Turbulent Flow
’ in a Pipe Bend with Re = 2.36 x 107, R/D = 12
(Inside of Bend is to Right).

30




|

ONR DISTRIBUTION LIST FOR UNCLASSIFIED
TECHNICAL REPORTS AND REPRINTS ISSUED UNDER CONTRACT N00014-79-C-0713

All adéressees receive one copy unless otherwise specified.

Defense Documentation Center
Cameron Station
Alexandria, VA 22314 12 copies

Professor Bruce Johnson
U.S. Naval Academy
Engineering Depertment
Annapolis, MD 21k02

Lidbrery
U.S. Naval Academy
Annepolis, MD 21Lk02

Technical Lidbrary

David W. Taylor Naval Ship Research
and Development Center

Annapolis Laboratory

Annepolis, MD 21402

Professor C. -8. Yih

The University of Michigan
Depertment of Engineering Mechanics
Ann Arvor, MI L8109

Professor T. Francis Ogilvie

T™he University of Michigan

Departcent of Navel Architecture
and Marine Engineering

Ann Arber, MI L8109

Office of Naval Research
Code 211

800 N. Quincy Street
Arlingten, VA 22217

O0ffice of Navel Research

Code 138

800 N. Quincy Street

Arlington, VA 22217 3 copies
O0ffice of Kavel Research

Code =73

820 . Quincy Sireet
Ariingten, VA 22217

NASA Scientific and Technical
Information Fecility

P. 0. Box 8757

Baltimore/Weshington Interpational
Airport

Meryland 2120

Professor Paul M. Naghdi

University of Celifornia

Depertment of Mechenical Engineering
Berkeley, CA 94720

Librerian

University of California
Department of Navel Architecture
Berkeley, CA 94720

Professor John V. Wehausen
University of Celifornia ]
Department of Naval Architecture :
Berkeley, CA 94720

Lidbrary

David W. Taylor Naval Ship Fesearch
and Developrment Center

Code 522.1

Bethesda, MD 2008k

Mr. Justin H. McCarthy, Jr.

Tevid W. Teylor Naval Ship Nesearch
and Deveiopment Center

Code 1552

Eethesda, MD 2008b

Pr. Willijem B. Mcrgan
David W. Taylor Naval Ship Research

anéd Develcpment Center 3
Code 15L0 4
Sethesée, MD 2008k ;

Directcr

0%fice of Haval lesearch 2ranch Cffice
Building ilk, Section D

6€€ Sizzmer Street

3csten, MA 02218




Bl &

Page 2

Livrary
Raval Weepons Center
China Lake, CA 93555

Technical Lidbrary

Neval Surface Weapons Center
Dehlgren Leboratory
Dahlgren, VA 22L18

Technical Documents Center

Army Mobility Equipment Research Center
Building 315

Fort Belvoir, VA 22060

Technical Library
Webdd Ipstitute of Naval Architecture

Glen Cove, NY 1152

Dr. J. P. Breslin

Stevens Institute of Technology
Davidéson Laboratory

Castle Point Station

Hobcken, NJ 07030

Professor Louis Landweber

The University of Iowa
Institute of Hydraulic Reseerch
Iova City, IA 52242

R. E. Gibson Library

The Johns Kopkins University
Appliec¢ Physics Leboratory
Jchns Hopkins Road

Laurel, M 20810

Lorenz G. Streudb Library

University of Minnesota

St. Anthony Falls Eydreulic Laboratory
Mirneepolis, MN 55L1k

Livrary
Waval Postgreduate School
Menterey, CA 939k0

Technicel Library
Kaval Undervater Systems Center
. Siewport, RI 028LO

Zngineering Sccieties Livrary
2Ls Zast L74n Street
wev Yerk, Y 1CCL7

The Society of Naval Architects and
Marine Engineers

One World Trade Center, Suite 1369

Nev York, NY 10048

Tecanical Library
Naval Coestal System Ladboratory
Parama City, FL 32401

Professor Theodore Y. Wu
California Institute of Technology
Engineering Science Department
Pasadena, CA 91125

Director

Office of Naval Research Brench Office
1030 E. Green Street

Pasadene, CA 901101

Technical Librery

Nevel Ship Engireering Center
Philadelphia Division
Philadelphia, PA 19112

Aroy Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709

Editor

Apvplied Mechanics Review
Southwest Research Institute
8500 Culetrs Roed

San Antonio, TX 78206

Technical Libtrery
Kaval Oceen Systems Center
Sen Diego, CA 92152

ONR Scientific Lieiscn Group
American Imbassy - Rocm A-LO7
APO Sen Frencisco 96503

Litrarian

Kaval Surface Weapons Center
White Oak Leboratery

Silver Spring, MD 209010

Defense Resesrch ené Develorment Attache
sustrelier Ixtessy

€01 Massachuse<ts Averue, W
Weskingten, DC 2202€




e

ST YT

Page 3

Librarien Station 5-2
Coast Guard Headquarters
RASSIF Building

L0OO Seventh Street, SW
Washington, DC 20591

Library of Congress
Science and Technology Division
Washington, DC 20540

Dr. A. L. Slefkosky

Scientific Advisor

Cormandant of the Marine Corps
Code AX

Weshington, DC 20380

Meritime Administration
Office of Maritime Technology
1kth & E Streets, NW
Weshington, DC 20230

Marjtime Administration
Division of Naval Architecture
1hth & E Streets, NW
Washington, DC 20230

Dr. G. Kulin

Netional Bureau of Stendards
Mechanics Section
Washington, DC 2023k

Navel Reseerch Laboratory
Code 2627 )
¥ashington, DC 20375 6 copies

Lidbrary
Neval Sea Systems Command

Code 09GS

_ Weshipgton, DC 20362

My, Thomes E. Peirce
Navel Sea Systems Commend
Ccde 03512

Vaskington, DC 20362

Deputy Director

Tectical Technology O’fice .

Defense Advanced Fesearch . ;
Projects Agency ' 1

1400 Wilson Boulevard

Arlington, VA 22209

Professor Alexandre J. Chorin

University of California

Center for Pure and Applied
Hethematics .

Berkeley, CA 9L720

Professor Joseph L. Hammack, Jr.
University of Celifornia
Department of Civil Engineering
Berkeley, CA 9k720

Professor Paul Lieber

University of Celifornia

Depertment of Mechanical Engineering
Berkeley, CA 94720

Dr. Harvey R. Chaplin, Jr.

David W. Taylor Naval Ship Research
and Development Center

Code 1600

Bethesda, MD 2008k

Dr. Francois N. Frenkiel

David W. Taylor NHaval Ship Research
and Development Center

Code 1802.2

Bethesda, MD 2008k

Mr. Gene H. Gleissner

David V. Taylor Naval Ship Research
and Development Center

Code 1800 .

Eethesda, M 2008k

Pr. Pao C. Pien

David V. Teylor Favel Ship Research
ené Develcpzent Center

Code 1521

Eeireséa, MD 2008k




Page 4

Professor Francis Noblesse

Massachusetts Institute of Technology
Depertment of Ocean Engineering

Cambridge, MA 02139

Professor Ronald W. Yeung

Massechusetts Institute of Technology
Depertment of Ocean Engineering

Cardbridge, MA 02139

Professor Allen Plotkin
University of Maryland

Department of Aerospace Engineering

College Park, MD 207k2

Professor J. M. Burgers
University of Marylend
Institute of Fluid Dynerics
and Applied Methematics
College Park, MD 20742

Professor S. I. Pai
University of Maryland
Institute of Fluid Dynamics
end Applied Mathematics
College Park, MD 207L2

Computation and Analyses Laboratory

Navel Surface VWeepons Center
Dehlgren Laboratory
Dehlgren, VA 22418

Dr. Rorert K. ~C. Chan
JAYCOR

1401 Cerino Del Mar
Del Mer, CA 9201k

Dr. Robert H. Kreichnan
Dublin, NH 03kklk

Mr. Tennis Bushnell

sASA Lengley PReseerch Center
Lerngley Stetion

Ta=zton, VA 23365

Tecltnicel Lidrary
Liaval Orérence Stetion
Inéier Fead, MD 20640

Professor £. F. Eren

Cernell Uriversity

E£idley Schrool of !‘echanical
and Aerospace Engineering

Ithaca, Y 1L853

Professor K. E. Shuler
University of California, San Diego
Department of Chemistry

La Jolla, CA 92093

Dr. E. W. Montroll
Physical Dynemics, Inc.
P. 0. Box 556

La Jolla, CA 92038

Mr. Marshall P, Tulin
Bydronauties, Incorporated
7210 Pindell School
Laurel, MD 20810

Dr. J. C. W, Kogers

The Johns Hopkins University
Applied Physics Laboratory
Johns Hopkins Road

Laurel, MD 20810

Dr. Steven A. Orszag
Cambridge Kydrodynemics, Inc.
Sk Baskin Road

Lexington, MA 02173

Professor Tuncer Cebeci
California State University
Mechanical Engineering Department
Long Beach, CA 908k0

Mr. John L. Hess
Douglas Aircraft Company
3855 Lakewood Bouleverd
Long Beach, CA 90801

Dr. C. W. Hirt

University of California

Los Alemos Scientific Letoratory
P. 0. Box 1663

Los Alamos, NM 875kl

Dr. H. K. Cheng

University of Southern Cealifornia
University Perk

Department of Aerospace Engineering
Los Angeles, CA 90007

Professor J. J. Stoker

Rew York University

Courant Institute of Mathersticel
Sciences

251 Vercer Street

liew York, I'Y 1C003




g
A

25 P e

Page 5

Professor Harry E. Rauch

The Graduate School and University
Center of the City University of
New York

Graduate Center: 33 West U2 Street

New York, NY 10036

Librerian, Aeronautical Laboratory
Fational Research Council

Montreal Road

Ottewa 7, Ceneda

Professor R. W. Liepmann
California Institute of Technology
Greduate Aeronauticel Laboratories
Pasadene, CA 91125

Professor XK. M. Agraval
Virginia Stete College
Department of Mathematics
Petersburg, VA 23803

Professor Norman J. Zabusky
University of Pittsburgh
Department of }athematics
and Statistics
Pittsburgh, PA 15260

Technical Library
Naval Missile Center
Point Mugu, CA 930L1

Dr. Hervey Segur

Aeroneuticel Research Associates
of Princeton, Inc.

50 Washington Road

Princeton, NJ 085k0

Professor S. I. Cheng

Princeton University

Departnent of Aerocspece and
Mechanicel Sciences

The Tngineering Quacrangle

Princeton, ®J CE540

Professcr J. T. C. Liu
Brown Urniversity
Division of Ergineering
Prcvidéence, BRI 02912

Chief, Docurert Section

Reédstone Scientific Infcrmation Center
Arzy Missile Cc—rand

Pedstone Arsenal, AL 35809

Mr. J. Enig

Raval Surface Weapons Center 1
¥hite D2k Leboratory ;
Room 3-252

Bilver Spring, MD 20910

Professor J. F. Thompson

Mississippi State University

Department of Aerophysics and
Aerospace Engineering

State College, MS 39762

AFDRD-AS/M

U.S. Air Force

The Pentegon
Washington, DC 20330

Air Force Office of Scientific
Research/RA

Building L10

Bolling AFB

Washington, DC 20332

Naval Air Systems Cormand
Code 03
Weshington, DC 20361

Naval Air Systems Command
Code O3B
Washington, DC 20361

Naval Air Systems Cormmand

Code 310
Washington, DC 20361

Mr. Reymcnd F. Sievert
Naval Air Systems Cormend
Code 320D

Vashington, DC 203€1

Navel Air Systems Command
Code 5301
Washington, DC 203€1

Mr. Rotert J. Hensen
Naveal Research Laboratory
Code BLL)

Vieshington, DC 20375

Vr. Welter Engle

llavel See Systems Corzend
Code 08

Weshington, DC 20362




T I SR ik it o, e At R o e A

Page 6

Dr., ¥ils Selvesen

David V. Tevlor Naval Ship Research
and Develcrment Center

Code 1552 .

Bethesde, MD 2008k

Mrs. Joenna W. Schot

Devid W. Teylor Naval Ship Research
and Development Center

Code 18L3

Bethesda, MD 2008k

Dr. George R. Inger

Virginia Polytechnic Institute
and State University

Department of Aerospace and
Ocean Engineering

Blacksburg, VA 2Lo61

Dr. Ali H. Nayfeh
Virginia Folytechnic Institute
and State University
Department of Engineering Mechenics
Blacksburg, VA 24061

Professor C. C. Mei
Massachusetts Institute of Technology

Department of Civil Engineering
Carmbridge, MA 02139 '

Professor David J. Benney
Messachusetts Institute of Technclogy

Departrent of Methematics
Cexbridge, MA 02139

Professor E. Mollo-Christensen
Macsachusetts Institute of Technology
Depertrent of Meteorology

Rocm SL-1722

Cembridge, MA 02139

“Professor Fhillip Mancel
Messachusetts Institute of Technology
Departrent of Oceen EIngineerirns
Certridge, M2 02139 )

Professcr J. Nickoles llew=en
Messechusetts Institute of Technclozy
Depertnent of Ocean Engineering

Rooz: 5-32LA

Cextridge, MA 02139

Dr. Denny R. S. Ko

Dynamics Technology, Inc.
3838 Carson Street, Suite 110
Torrance, CA 90503

Professor Thomas J. Banratty )

University of Illinois at Urdbena-
Chempaign

Department of Chemical Engineering

205 Roger Adems Leboratory

Urbana, IL 61801

Air Force Office of Scientific
Research/RA

Building 410

Bolling AFB

Washington, DC 20332

Professor Hsien-Ping Pao

The Catholic University of America
Department of Civil Fngineering
Weshington, DC 2006k

Dr. Phillip S. Klebanoff
Rational Bureau of Stendards
Mechanics Section
Vashington, DC 2023k

Dr. G. Kulin

National Bureau of Standards
Mechanics Section
Viashington, DC 2023k

Dr. J. 0. Elliot

Raval Research Laboratory
Coce 8310

Veshington, DC 20375

Mr. R. J. Bansen

Navel Reseerch Leboratory
Code 8LL1

VWashington, DC 20375

Professor A. Roshko
California Institute of Technology
Graduate Aeronauticel Laboratories
Pasadena, CA 91125

Dr. Leslie ). Mack

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91103

e —— '”*:=========u=-q1!




At ey s

L T m——_—

PO

4
3

Page 7

Professor Frederick K. Browend
University of Southern California
University Perk

Department of herospece Engineering
Los Angeles, CA 90007

Professor John Lezufer

University of Southern Calirornia
University Perk

Depertment of Aerospece Engineering
Los Angeles, CA 90007

Professor T. R. Thomas

Teesside Polytechnic’

Deperirent of Mechenical Engineering
Middlesbrough TS1 3BA, Englend

Dr. Arthur B. Metzner

University of Delaware

Depariment of Chexzicel Engineering,
Kewerk, D 19711

Prefessor Eerry E. Rauch

The Graéuete School end University
Center of the City University of
iew.-York . .

Graéuete Center: 33 West L2 Street

Rew York, NY 10036

¥r. jlormen M. Nilsen

Dyntec Corpeny

5301 Lzurel Cenycn Blvd., Suite 201
Forih Follywood, CA 91607

Frofessor L. Gery Leel

Celifcrrnie Institute of Technology
Division of Crhenictry and Cherzical
Ecgineering

Pasadena, CA 91125

Professor Eobert E. Falco

Kichigan State University

Depertment of Mechenical Engineering
Eest lLansing, MI L882)

Professor E. Rune Lindgren
University of Florida

Depertrent of Engineering Sciences
231 kerospace Engineering Builéirng
Ceinesville, FL 32611

UL el A B 0 A At S . i A LG i 154 1 RN, e %R o i £

Technical Librzry
Raval lissile Cernter
Point Mugu, CA 9304

Professor Frencis R. Hema
Princeton University
Department of Mechanical and
Aerospace Engineering
Princeton, NJ 085L0

Dr. Joseph H. Clarke
Brown University
Division of Engineering
Providence, RI 02912

Professor J. T. C. Liu
Brown University
Division of Engineering
Providence, RI 02012

Chief, Document Section

Feéstone Scientific Informetion Cente:

Arry Missile Cormend
Reéstone Arseral, AL 35809

Dr. Jack W. Koyt

Navel Ocean Systers Center
Code 2501

Sen Diego, CA 92152

Professor Richerd L. Pfeffer
Floride State University

Geophrysical Flui@ Dynexics Ipstitute
Tallehessee, FL 32306

Dr. Gary Chapman

Ames Research Center
Mail Srop 227-4

Moffett Field, CA 94035

Dr. S. Beus

Bettis Atomic Power lLaboratory
P.0O. Box 79

West Mifflin, PA 15122

Dr. M. Lubert

General Electric Company
Knolls Atomic Power Laboratory
P.0. Box 1072

Schnectady, NY 12301

aiaia b el d

AR T I N A, g ey ot




¥
¢
2]
'
3
f
8. -
p!
!
41
H
A3

SR e iR
.

Page 8

Dr. A. X. M. Fazle Hussain
University ol Bcustorn

Depertnent of Mechanical Engineering
Houston, TX 7700k

Professor John L. Lumley

Cornell University

Sibley School of Mechenicel
end hAerospace Engineering

Iihace, XY 1L853

Professor ¥. E. Shuler
University of Celifornie, Sen Diego

"Departrent of Chemisiry

La Jolle, CA 92093

Dr. E. W. kontroll
Prysical Dyrerics, Inc.
P. 0. Box 556

La Jolle, CA 92038

Professor Fetrick Leehey
Messechusetis Institute of Tecknolcgy
Derartzent of Oceen Engireering
Cerdridége, MA 02139

Professor F1i Reshotko

Case Western Feserve University

Deperircent of Mechanicel and
Aerospece Engireering

Cleveland, OF L1106

Professor P. S. Virk

}essachusetts Institute of Technology
D=perimeni of Chemical Engineering
Cembridge, MA 02139

Frofessor E. Mollo-Cnristensen
Messachusetts Institute of Tecknology
Derertrert of leteorology

.Sioom Sk-1722

Cacbriége, MA 02139

Professor Y. ¥. Willmerth

The University of Michigan
Depertment of Aerospece Engineering
Arnn Ardor, M1 LB109

Office of Nevel Reseerch
Code 181

€00 R. Quincy Street
krlington, VA 22217

Professor Richard W. Miksad

The University of Texas at Austin
Department of €ivil Engineering
Austin, TX 78712

Professor Stanley Corrsin
The Johns Hopkins University
Department of Mechanics and
Materials Sciences
Baltimore, MD 21218

Mr. M. Keith Ellingsworth
Pover Program

Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

Professor J. A. C. Humphrey
Department of Mechanical Engineering
University of California, Berkeley
Berkeley, CA 94720

Professor Brian Launder

Thermodynamics and Fluid Mechanics Divisiom|;

University of Manchester
Institute of Science & Technology
P088 Sackville Street

Manchester M601QD, England

Dr. Simion Kuo

Chief, Energy Systems

Energy Research Laboratory

United Technology Research Center
East Hartford, CT 06108

Soama




