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- immediately to Q; and those departing Q; leave the network. For different

parameter settings, the network 1s simulated and the sojourn times at each
of the queues are recorded. Due to the structure of the network, a simple
simulation which correctly models the network can be constructed. It is

known from Simon and Foley (1979), that the sojourn times of a customer in

r
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Q1 and Q;‘are dependent. It is shown, that, except for extremely large
sample sizes, 5000, that the correlation between the sojourn times in Qi

and Qg is not significant. However, in the case of 5000 observations, this
correlation is shown to be significantly greater than zero for certain
parameter settings. Finally, the sample total sojourn time distribution is
compared to one assuming independence of the sojourn times at each of the
queues. It is shown that the sample distribution and the total sojourn time
distribution assuming independence are not significantly different, except

for p=0.
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CHAPTER I

INTRODUCTION

1.1. Queueing Networks.

1.1.1. Single Queueing System.
In a queue one has an entity capable of performing service - a
service system. The service is provided to a stream of customers. The

service system has m servers if the system can service a maximum of m

customers simultaneously, The time to service a given customer is a
random variable. The sequence of service times is called the service
process. The demand process is usually specified by the length of the
interval between consecutive arrivals. Each interval is a random
variable and the sequence of intervals 1s called the arrival process.
The described system is a single queueing system and is referred to as
a queue (figure 1.1).

Customers that arrive for service when the service system is busy
(I.e., all m servers are busy.) may either wait their turn to be served,
depart immediately, or wait some amount of time then depart. We assume
that every arriving customer waits until served. (I.e., there are no
early departures,) The maximum number of customers that are allowed to
wait for service is the queue capacity. We assume the queue capacity is
infinite. The order in which customers are served is the queue discipline.
While many disciplines can be and have been studied we will assume that
customers are served in the order of their arrival. Such a discipline is
called First-Come-First-Served (FCFS).

We assume that the intervals between consecutive arrivals are




. Departure Process ‘J

Arrival Process

Figure 1.1. A Single Queue with m Servers
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mutually independent and identically distributed, a renewal process.
Such a process i1s called a GI process. A special case of the GI
process is a Poisson process, designated as an M process, in which the
intervals have an exponential probability distribution. The mean time
between arrivals is designated as k-l.

The service times of the customers are mutually independent and
identically distributed random variables. Such a process i1s denoted
by GI. A special case of the GI process is designated as an M process,
in which the service times are exponentially distributed random variables.
The mean service time for each of the m servers is usually designated as
wl,

GI/GI/m will denote a queue when the first GI implies a renewal
arrival process, the second GI a renewal service process, and the m the
number of identical servers. These queues will have FCFS queue
discipline and infinite queue capacity. Thus, M/M/m denotes a queue
with a Poisson arrival process with mean interarrival time A-l, a service

process with exponential distribution with mean u-l, and m identical

servers.

1.1.2. Queueing Networks.

A queueing network is an aggregation of queues. For a survey on
queueing networks see Disney (1975). The network's queues are intercon-
nected by arcs on which customers travel. Customers that arrive from
outside the network are called exogenous arrivals. Customers which
travel from a queue to itself are called feedback customers. Customers

which leave a network from a queue are called departures. All customers

a ey itk
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I
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entering a queue (i.e., the exogenous arrivals plus the arrivals from
other queues) are called inputs. All customers leaving a queue are

called outputs.

1.2, Sojourn Times in Queueing Networks.

For a single queue a customer's sojourn time consists of the time
he spends waiting for service plus the time he spends receiving service.
For the M/M/1 queue, with an arrival process with mean A_l and a service
process with mean u_l, the sojourn time, S, of a customer has the

distribution

Ps<t}l=1-~ e~ (=Mt

when the queue is in equilibrium, Kleinrock {(1973), pg. 202}.
We consider a queueing network with N queues, Ql,---,QN. A route

% 1s a sequence of queues a customer visits. We let L={% +++} be

1%

the sets of all possible routes. Suppose a customer takes the route

g = {Qi ,"',Q1 }. Let S k=1,-,m(2), be the customer's

9
1 n(2) L
sojourn time at Qi . Let Ti » 3= 1,°++,m(2)-1, be the customer's
k k|
transition time from Q, to Q . Then the customer's total sojourn
ij ij+1

time is given by

m(L) m()-1

£Ls + I T, . (2.1)
k=1 ik i=1 1j

S =

The conditional distribution of the customer's total sojourn time given

he takes route £ is given by

n(L) n(L)-1
P{S < t|2} = P{ S, + T, < t|g) (2.2)
- I kEl 1k 151 ij - '

-

.
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provided p(2) > 0 where p(2) is the probability of the customer taking
route £. Multiplying (2.2) by p(2) and summing over all £ ¢ L such that

p(L) > 0 yields

m(2) m(2)-1
Ps<tl= I P{LIS + I T < t]|elp(n) (2.3)
gl k=1 Y y=1 1y

p(R)>0

the total sojourn time distribution,

1.3. The Three Queue Network.

We consider a specific network which consists of three queues,
Ql’QZ’Q3’ figure 3.1. The exogenous arrivals to Ql form a Poisson
process with mean A-l. For k = 1,2,3, Qk consists of a single
server who services customers according to an exponential
distribution with mean u;l. Outputs from Ql go immediately to Q2 with
probability p or immediately to Q3 with probability (1-p). Outputs
from Q2 go immediately to Q3 with probability 1. All outputs from Q3
are departures.

The following two observations concern the total sojourn time
distribution in the three queue network. First, transitions from one
queue to another are instantaneous. Second, there are only two routes

a customer may take. If & 1s the route Ql’QZ’Q3 and %, is the route

1 2

Ql,Q3, then the total sojourn time, S, is given by

S, +8, + 8§

1 2 3 with probability p

S, +8§

1 3 with probability (1 - p) (3.1)

where S1 is the sojourn time at Qi‘ From equation (2.1) the conditional




Figure 3.1. The Three Queue Network
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sojourn time distributions are

P{s < clzl} = P{S; +5, +5; < :|zl}

and

P{S < t]e,} = P{s; + 55 < ts,}.

Then since p(zl) = p and p(zz) 1 - p, the total sojourn time

distribution is

P{S < t} = pP{s1 +8, + 8,

A

clzl} + (1~ p)P{S; +8, < tl2,}. (3.2)

The difficulty with evaluating equation (3.2) is that given that a
customer takes the route Ll’ his sojourn times in Q1 and Q3 are not
independent. This will be discussed in detail in section (2.5). It is
this dependence which makes determining the total sojourn time distribu-

tion difficult.

1.4. Purpose.

This thesis 1s concerned with a simulation study of the three queue
network. The dependence of a customer's sojourn times in Q1 and Q3

given he takes the route &,, will be analyzed.

1

1.5. Summary of Results.

It 1is shown that for sample sizes of 1000 the correlation between
S1 and 83 is not significantly different from zero. Further, the
sample distribution of the total sojourn time, taken from the 1000
observation, is not significantly different from a distribution assuming

81,82, and 53 are mutually independent. Thus for applied modeling




purposes one can assume that S1 and S3 are uncorrelated and independent.

1.6. Organization.

This thesis consists of six chapters and two appendices. Chapter 2
consists of sojourn time and queue length results in Jackson networks.
The major result, with respect to this thesis, is the theorem of Simon
and Foley section (2.5) in which S1 and S3 are shown to be dependent

given the customer takes route £ In Chapter 3 the three queue network

1
is put into the Markov framework. Once put into that structure, many
of the properties of the network become apparent and thus, can be used
for setting up the simulation.

Theorem (3.5) i1s of importance to the simulation study. Let

Y = {Yt; t‘i 0} be the queue length process at any t > 0 and

Z= {Zn; n ¢ N} be the queue length process just before the nth arrival
to Ql' For computing the equilibrium sojourn time of a customer the Z
process must be in equilibrium. Theorem (3.5) shows that if Y has an
equilibrium distribution at time t, then the next arrival to Q1 does

not see the equilibrium distribution of Z. Thus, in simulating the
network to find a customer's equilibrium sojourn time one must generate
the equilibrium distribution of Z and then immediately add the tagged

customer. Further, if the initial distribution is generated according

to the equilibrium distribution of the Y process and the network is
simulated until the next arrival to Ql’ then this customer does not see
ﬁ‘ the equilibrium distribution of the Z process. Thus, this customer's
sojourn time is not the sojourn time of a customer who finds the network

| in equilibrium.




In Chapter &4, the method of the simulation is explained. That
chapter explains the initialization of the simulation and the next event
generator. Chapter 5 contains the analysis of the simulation. Two
basic tests are done. First, a test is made to determine whether the
correlation between S1 and 83 is significant. The second test determines
whether the total sojourn time distribution is statistically different
from a distribution assuming Sl,Sz, and S3 are mutually independent.
Chapter 6 contains the conclusions.

Appendix Al contains flowcharts, a source listing of the program,
and discriptions of the programs. Appendix A2 contains listings of the
output. These listings consist of expected values and variances of
sojourn times, correlation coefficients, and plots of the distributions.

Chapters are assigned an Arabic number. Each chapter is divided
in sections and sections, when needed, into subsections. Sections are
labeled by two Arabic numbers, one for the chapter and one for the
section. Thus, the third section of Chapter 2 would be labeled 2.3. If
this section has subsections, the second subsection would be labeled
2.3.2. Theorems, definitions, equations, tables, and figures within a
section are labeled n;,0,, where ny and n, are Arabic numbers. Inside a
chapter, the chapter number is suppressed. Thus, one would refer to

Theorem (2.1) from inside Chapter 3, but Theorem (3.2.1) from outside

Chapter 3.
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CHAPTER 2

QUEUE LENGTH AND SOJOURN TIME RESULTS IN JACKSON NETWORKS

2.1. Jackson Networks.

A Jackson network consists of N queues, Ql,"-,QN. For each n,
n=1,""",N, Qn consists of L identical servers. Servers at Qn service
customers according to an expomential distribution with mean ugl. The
queue discipline at Qn is FCFS and its queue capacity is infinite.
Exogenous arrivals to Qn form a Poisson process with mean A;l. Upon
completing service at Qn the departing customer goes instantaneously to
Qk’ k=1,--+-,N, with probability enk or leaves the system, never to

N
return, with probability P, = 1- kzlenk.

The matrix O with elements ejk, j,k=1,°<,N, is substochastic since

for each j,j=1,°°°,N,

o, <1.
k=1 Jk =
Form a matrix 0 by appending to O an extra row and an extra column as

follows. The element in column N+1 for row j, j=1,... N, is pj. The

elements in row N+1 are given by

0 for j=1,+--,N

-~

Oty ~
1 for i =N+1.

The matrix,
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11 12 1IN Py

21 22 ®*°* 6,

nl ha e®ee Oy Py

Lo 0 eee O 1

We will denote by X the row vector (Al,'°°,AN), by m the row vector

(ml,°~-,mN), and by p the row vector (ul,’-°,um). "kl""’kN is the

1 customers in Ql,---,kN

customers in QN‘ The quintuplet N, A\, m, p, © plus the initial distribu-

probability that initially, t=0, there are k

tion "k kN completely specifies the Jackson network. We will denote
1’ »

a Jackson network specification by JN = (N, A, m, y, @) with initial

distribution L When the initial distribution is not relevant
1’ 7N
it will be deleted from the specification.

Definition 1.1. A Jackson network specified by JN= (N, A, m, y, 6)

is open if for every j e {1,---,N} the probability of never departing
the network starting from j is zero.

Let JN = (N, 1\, m, u, 0) specify a Jackson network., If the input

L process to Qn, n=1,-++-,N, has rate I'n, then when the network is in

equilibrium, (I.e., the joint queue length distribution is time invariant.)

N
c)

P I'n = An + kEI knrk'

(1.2)

This equation is known as the traffic equation. An intuitive explanation

for this equation is as follows. In equilibrium it is known that the
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rate of flow into a queue equals the rate of flow out of a queue. Thus,

for k=1,+++,N, the rate of flow out of Qk is I‘k. So the flow into Qn
becomes the portion of flow out of Qk’ k=1,.-+.,N, which goes to Qn’

)
eknrk’ plus the rate, )‘n’ of Qn s exogenous arrival process yielding

equation (1.2). In matrix form equation (1.2) becomes

where I' = (l‘l,'-',l‘N).

Let JN= (N, A, m, y, 6) specify an open Jackson network. Melamed

(1976) shows that equation (1.3) has an unique solution given by

T o® (1.4)

' = A
~ ~n=0

where 6° 1s the idenity matrix.

Let JN=(N, A, m, u, ©) specify an open Jackson network. Jackson
(1957) derived the equilibrium distribution for the queue length vector
k= (kl,---,kN) where ki’ i=1,°++,N, is the number of customers at Qi'

Define Pl(cn) (n=1,*++,N, k=0,1,-+*) by the following equations

(n) k
P (r /u) /kt k=0,°+,m
Plin) = ((’) i nk y " (1.5)
n -m
Po (l"n/un) /mnlm“ n k=mn,mn+1,“-

(n)

(-]
o can be determined by the equations I P(n) =1, Jackson shows

k=0 k
that the equilibrium distribution of the queue length vector in an open

where P

Jackson network is given by

- pD...pM)
P = PP

provided that l"l <mou, for n=1,-*+ N,
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2.2, Acyclic Jackson Networks.

A Jackson network is said to be acyclic if it has the additional
property that once a customer departs from Qn,11=l,---,N, he may never
return to Qn' The following result is concerned with the switching
matrix, 0, of an acyclic Jackson network.

Theorem 2.1. Let JN= (N, A, m, E,'O) specify a Jackson network.
Then JN specifies an acyclic Jackson network iff O can be put into upper
triangular form.

Proof. (e==) Suppose O is a switching matrix of an acyclic
Jackson network. Then there is a row il consisting of all zeros. For
if not, for each i ¢ {1,-+-,N} there would exist an n ¢ {1,2,---} such
that 5:1 > 0, Thus © is not the switching matrix of an acyclic Jackson
network. Similarly, there exists a colummn j of 9 consisting of all zeros.

th

Form a matrix él by deleting the 11 row and 1Ih column of the

matrix ©. Then 01 has a row 12 consisting of all zeros by the same

reason as above. Continuing in this manner we get matrices ék with row

1k+1 consisting of all zeros. Let O be the matrix formed by the row

and column ordering iN,"',il. Then © is in upper triangular form.
(==) Suppose © is in upper triangular form. Then for each

n

ie{1,°°°,N}, Gi1 =0 for alln >1. Q

Using this result it follows that an acyclic Jackson network is an
open network.

Theorem 2.2. Let JN= (N, A, m, u, ©) specify an acyclic Jackson
network. Then JN specifies an open network.

Proof. Consider the matrix é formed from the matrix © as in

equation (1.1). Since © is in upper triangular form it follows that for

cr e e e
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any i, £ ¢ {1,+-+,N}, that

ANH1-1
On1 =10 O

The three queue network, section (1.3), is an acyclic Jackson network

with switching matrix

0= 0 0 1{ . 2.1)

Since the three queue network is an open network, it follows that in
equilibrium the solution to the traffic equation (1.3) is given by

equation (1.4). Thus, it follows that

r=xrz: o
® neo
n
0 P q
= (1,0,0) T 0 0 1
n=0
0 0 0
1 P 1
= (1,0,0) 0 1 1
0 0 1
= (A,PA,A)- (2.2)

For the three queue network, the equilibrium queue length vector is given

by equation (1.5) as

ky ky ky
Pikgoie, ™ 17 M) O/vp) =P (3 2= M Gy * 2.9
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for kl,k k., =0,1,+-+, provided A/ul, pA/uz, )./u3 < 1.

2’73

i

|

j 2.3. Sojourn Times in Acyclic Jackson Networks. i
g Let JN= (N, 5, m, ¥, 0) specify an acyclic Jackson network in

F

< equilibrium. Suppose a customer, c, takes the route £ = {!.1,-°~,2.m}.

The probability that c takes the route ¢ is

I A’ll
: p(2) = ] RRY: P, .
N
112'2 "m—l"m !'m

(3.1)

R ——

LA
{=1 Ei

So by equation (1.3.3), c's total sojourn time distribution is given by

A

P{s<t}= L o , -0 P, ). (3.2)

dre oo
+5, <t|R)( 5

I P{s
gel %4 -

i=1 %

If for each route & = {21,"',£m} € L, the Sz , 1=1,--+,m, are mutually
i

independent random variables then the total sojourn time distributiomn is

given by

A
L
1
P{Sit}SQEL(FE koo odF) )R B o "0 ) (3.3)

1 m § A 172 "m—lmm

' i=1 %4

where F, is the distribution of §,, 1={1,<++,N}, and F * G denotes the

i i’
convolution of F and G.
Let JN=(N, A, 1, y, 0) specify an acyclic Jackson network in
equilibrium where 1 = (1,-+-,1). Beutler and Melamed (1979) show that

the traffic on the arc connecting Qi’ and Qj' i,y =1, ,N, forms a

Poisson process with mean ”101 j)_l, and is independent of all other

R BN AT S iR« e, e 1 e e AR AR - ———— )

= -
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traffic in the network. Thus, the input process to Qj’ J=1,-+,N, is
the superposition of mutually independent Poisson processes. Therefore,

the input process to Q, 1s a Poisson process with mean

3

)-1, (cf. Ginlar (1975) pg. 87). Further, the input

rlaa, lgre

3

process to Qj’ j=1,--+,N, is independent of its service process. So it

follows that Q,, j = 1,°-*,N, 1s a M/M/1 queue. It follows from equation

3
(1.3.1) that Qj's sojourn time distribution is exponential with mean

(u. - T )_1. Thus, if for each route £ = {2,,°**,2 }, the §_,
h| h| 1 m &

i=1,",m were mutually independent, the total sojourn time distribu-
tion would be the sum of convolutions of exponential distributions.

In general the S, are not mutually independent random variables.

1

Thus, equation (3.3) does not hold. However, there are some types of

networks in which equation (3.3) holds.

2.4. Sojourn Times in Tandem Queues and Tree~like Networks.

JN=(N, A, m, u, 6) specifies a Jackson network of tandem queues,

figure 4.1, if

— -y
0o 1 0
Y ®
® ®
- ° b
e o ° L
o ®
0
L -
and A = (1,0,--+,0). JN specifies a tree-like network, figure 4.2, if
for any 1,j ¢ (1,---,N}, there is at most one sequence {i,kl,---,kn,j}

such that oik -'~0k j > 0.
1 n




N-1

) Figure 4.1. N Queues In Tandem
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Figure 4.2. A Tree-like Network

|
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Let JN= (N, A, 1, u, O) specify a Jackson network of tandem queues
in equilibrium. Since the only route, £, a customer, c, may take is

2 = {1,+-+,N}, equation (1.2.3) becomes

P{S < t} = P{Sl+"'+s <t} (4.1)

N

Reich (1963) shows that the Si, i=1,--,N, are mutually independent.

Thus, from equation (3.3)
P{S < t} = (F *---xFp)(t)

where each of the Fi’ i=1,++,N, are exponential distributions with
mean (p, - A)-l.
i
Melamed (1979) extends Reich's result to single server tree~like
networks. Let JN= (N, 5, 1, u, 9) specify a tree-like Jackson network
in equilibrium. Melamed shows that for each route, £ = {zl,'--,zm} e L,

the S2 are mutually independent and thus the total sojourn time
i

distribution of a customer is given by equation (3.3).

So far we have examined Jackson networks of tandem queues and
Jackson tree-like networks with single server queues. What happens if
these networks have queues with multi-servers? Burke (1968) shows that
for two multi-server queues in tandem, the sojourn times of a customer
14 the first queue and the s;cond queue are independent. However, mutual
independence of the sojourn times of a customer is not the case when one
tries to extend the result to Jackson networks of multi-server tandem
queues of three or more queues.

Burke (1969) constructs a network of three queues in tandem, see

® 4

|
4
3
i
;




Figure 4.3.

T

20
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The Burke Network




21

B R et DAL Gl d

figure 4.3, such that the sojourn times at the separate queues are not
mutually independent. Let JN= (N, A, m, }, ©) specify a Jackson network

of tandem queues in equilibrium with N=3, m=(1,2,1), and ¥ =(u,u,u).

Let a customer, c, have a sojourn, 815 in Ql' Let 8y be large enough as
to guarantee the arrival of another customer to Q1 before c's departure
from Ql' Burke shows that c¢'s expected sojourn time in Q3 conditioned

1 . on s, can be bounded below by 1/8u + 1/u. However, the unconditioned
expected sojourn time of a customer at Q3 is given by A/A+ﬁ~ 1/u+1l/u.
Thus, choosing A/A+u < 1/8 the conditional and unconditional sojourn
times at Q3 cannot be equal proving the dependence of sojourn times at

Ql and Q3.

2.5. Sojourn Times in the Three Queue Network.

Simon and Foley (1979) show that for their three queue network in

equilibrium, section (2.2), the sojourn times of a customer in Q1 and
Q3 are dependent given that the customer takes the route QI’QZ’QS' Their
result is shown in a manner similar to Burke (1969) discussed in the
previous section.

Simon and Foley show that for any fixed r > 0O, My and s can be

chosen so that

E{s,|s; = s} > r.

The unconditioned expected sojourn time of a customer in Q3 is ("3- A)-l.

Choosing r > (p3- A)-l one obtains

§
|
¥
§
:
!
H
f.,
%
g
g
;

E ) E{83|Sl =8} >ES,

!
! proving the dependence of S, and S,.

i T P e et - [T
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The following is an intuitive explanation for the dependence of Sl

and S3. In the three queue network a customer, c, may either go from

Q1 to Q3 directly or from Q1 to Q2 then to Q3. The number of customers,

n,, at c's departure time, t, from Q1 depends on Sl' If c goes to Q2
from Ql’ some of the n, customers may bypass c by going directly to Q3.
Thus, when c arrives at Q3, the queue length there, na, is dependent on

Then since S3 is dependent on n3, n, on n,, and n. on S., S_ 1is

By 1 1* °3

dependent on Sl'

1

2.6. Summary.

In section (2.1) we defined a Jackson network and discussed the
switching matrix ©. Further, the traffic equation [ = A+ T0wvas
defined and the solution to this equation for an open network was
discussed. In section (2.2) we defined an acyclic network. We showed
for acyclic networks © could always be put in upper triangular form.
Thus, an acyclic network is an open network. In section (2.4) we
discussed sojourn times in Jackson networks of tandem queues and Jackson
tree-like networks. For the cases of networks of single server queues or
two queues in tandem we had mutual independence of sojourn times. How-
ever, this result could not be extended to these networks in genmeral.
Finally, in section (2.5), Simon and Foley showed that for the three
queue network we did not have independence of the sojourn times.

In the next chapter we discuss some properties of the three queue

network's queue length process which are needed in the construction of

the simulation.




v

1 CHAPTER 3

PROPERTIES OF THE QUEUE LENGTH PROCESS

3.0. Introduction.
In this chapter we will study four vector valued queue length pro-
i cesses, Y, X, X, Z. The process Y = {Yt: t > 0} 18 the queue length (at

each server) process at t ¢ R, The process X = {Xn: n=0,1,2,---} 1is 1

4

the queue length process at the time of the nth jump in the Y process.
The process R = {ﬁn: n=20,1,2,**} is the queue length process at the
time of the nth jump in a Poisson process that is independent of Y. The
process Z = {Zn: n=0,1,2,-+} is the queue length process at the time
of the nth arrival (Tne) to the network.

We will:

1. define the Y process and discuss a few of 1ts properties

(section 3.1);

¢ 2. define the X process, show that it is a Markov chain, find its
one step transition probabilities and from these find the infinitesimal
generator of Y (section 3.2);

3. define a process X that is useful in the study of the queue
length process embedded at arrival times (i.e., Z). We show that % and

Y have the same invariant distributions;

; 4, define the queue length process embedded at arrival times and

show 1t has the same invariant distributions as X (and thus of Y):

_

5. show that 1f Y is in equilibrium at some time to then Z at the
first arrival after t, i8 not in equilibrium.

All of these properties are important to the simulation methods used

23
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in Chapter 5 as we discuss in the summary to this chapter.

3.1. The Queue Length Process, Y, of the Three Queue Network.

Let JN = (N, A, m, y, 0) where:

(1) N = 3;
(i1) A= (1, 0, 0);
(111) m= (1, 1, 1);

(iv) u = (”1’ Hys u3);

(v)
0 P 1-p)
o= |o 0 1 .
0 0 0

Then JN specifies the three queue network.

Let Y = {Yt; t > 0} be a stochastic process taking values in the
state space E= N x N x N, where N = {0,1,°*}. Assume that Y is a
right continuous pure jump process with jumps of the following form. If
T > 0 is the time of a jump in the process Y and if Yo = (11, i,, 13),
then Y.+ can take the values:

1) (i1 +1, 12, 13);
(i1)

-1,1, +1, 13) provided 11 >1;

1 2

(i11) (1, -1, 1,, 13+ 1) provided 1, > 1;

(iv) (11, 12'- 1, 13 + 1) provided 12 >1;

v
P
.

) 1y, 1,5, 1, - 1) provided 1, >

K The stochastic process Y defined above is the queue length process of

JN. It can be shown from Jackson (1957) that Y is a irreducible recur-

rent homogeneous Markov process.
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Suppose at time t, Yt = (il, 12, 13). Let T be the time from t

until the next jump of the Y process. Then

T T T

T
Pi{T > g} PE{A >s, D/ >8, D) >s, Dy > 8}

where

f
i
¥
v

P%{-} = P{’IYu; u<e, Y= 1k

AT is the time from t until the next arrival to Ql;

DI is the time from t until the next departure from Q, 1 = 1,2,3.

Now,

T T T

T _ T T T
Pi'{A >s, D >s, D2>s, D3>s} = PE{A >s}P1_{D1>s|A >3)

>8, AT>s}.

T T T T T T
Pi{D2>s|D1>s, A >s}P1_{D3>s|D2>s, D,

First,

’ PE{AT > 8} = e '8

F since the arrival process is Poisson with mean A-l. Second,

1 if 11 =0

T T
PE{D1>9|A >g} = -u s (1.1)

e if 1131;

1 1f 1, + 0 o
(1.2)

>1; {

T T T
PE{D2>le1>s, A" >s} s
e if 12

1 ifi3-0

T T T T
P~{D3>s|D2>s, D,>s, A" >8} = -
e if 1

(1.3)

331.
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Equations (1.1), (1.2), and (1.3) are explained as follows. If ik = 0,
k = 1,2,3, and the next arrival to Qk is after t + 8 then there cannot
be a departure from Qk until after t + s. If ik > 1, then the remaining
service time of the customer at Qk has exponential distribution with

mean uk-l. Thus,

-+ u (L) + ou, (1) + u,(iy))s
P{T>s} = e 1717 22 T3 (1.8)

where
0 ik =0
w (1) = for k = 1,2,3.

e Iy

fv
(=

3.2. The Queue Length Process X.

: It is shown below that the queue length process X, which is the
process embedded at jump points of Y, 18 a Markov chain. Its one step
transition probabilities are found, equation (2.1), which lead directly
to the infinitesimal generator of the Y process, equation (2.2).

Let Tn be the time of the nth jump of the Markov process Y. It
then follows that the process X = {Xn; n ¢ N} =»{Y(Tn); n e N} is a

Markov chain (cf. Ginlar (1975) pg. 247, 254). Now
: P{X“+1 =1, +1, 4, 13) Ixn- (15, 1., 1,)}

=P{A<D,, A<D,, A<D3|Xn= (11, 1, 1}

where A is the next arrival to Ql after Tn and D1 1s the next departure

B from Qi’ 1=1,2,3, after Tn'
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P{A<D;, A<D,, A< 1>3[xn =(1,,1,, 1)}
= E{P{A <D, A <D,, A<D3|Xn- (1,1, 14, A= :}lxn- 1,1, 1}
i /‘“’ =(uy (1)) +u, (1)) +uglE e 0
= e Ae dt
& 0
; -
i (1)
where y(é) = ).+u1(11) +u2(12) +u3(i3). In a similar manner the other
3
transition probabilities of X are found as:
: - j= U+, 4,,1,);
L} Y(~) l ’ 2’ 3 ’
pul(il)
—‘@"' _1 = (il-l, 12+1, 13),
(1-p)u, (1))
T _"i.=‘ (il-l, 12, 13+l),
Q(i-:.j) = (2.1)
u,(1,)
272 .
'Y({) _1 (11, 12-1, i3+1),
u (i)
] 33 - _1y.
0 otherwise.
’
b From Ginlar (1975, pg. 254) the infinitesimal generator of Y is
-y({1) 1f 1 = 3,
& ' A(L,5) = (2.2)
f y()Q(L,3)  4f 1 ¥ §.
4 i
L SINEIG LGRS G DR g IR S £ 200N 1 6 i SN LA 0 A /IS S TR B e o
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3.3. The Queue Length Process X.

It is shown below that the queue length process, ﬁ, embedded at the
instants of jumps of a Poisson process independent of Y is a Markov chain
with the same invariant distribution as Y.

Let N = {Ni; t > 0} be a Poisson process with mean A-l independent
of Y. Note that N® is not the exogenous arrival process to Ql' The
following lemma shows that the process (Y,Ne) = {Yt’N:; t > 0} is a
Markov process on the state space E x WIN.

Lemma 3.1. The process (Y,N%) = {Yt,Nt; t > 0} is a Markov process.

e e e e_ e
Proof. P{Y , =1,N jlYu,Nu, u<tel=P{y =1,N  -N =k|Y ,N;u<t}

for Yt=!,, N =h=k-j

e e _ ]
PY iIYu, u<t}P {Nt+s-Nt-k]Nu, u<t}

by the independence of Y and N®

Py =i]Y =2}P (N -N k|N_ =h}

since Y is Markov and N¢ Poisson

e e e _
P{Y_=1|Y L}PAN_- N k[No—h}

by the homogeneity of Y and Ne

e e
P{Ys=i,Ns=2|Y°=k,N°=h}. 0

Let Tﬁ be the time of the nth jump of . 1t is apparent that Tz

is a stopping time of (Y,N®)., Let & = {ﬁn; ne Nl= {Y(Tns); n e NJ}.

Then the following theorem shows that X 1s a Markov chain.
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Theorem 3.2. {ﬁn; ne N}= {Y(Tng); n € N} is an homogenous,

irreducible, recurrent Markov chain with transition matrix given by

. w0
: -X
: P(1,9) = AM(L,9) -/ re MU (e, 1)de
. b 4 o 0
E ®
i for 1, € E, where AUx(i,j) = AJ('Pt(i,j)e-Atdt (¢inlar (1975) pg. 256).
~'% b 0 =2
Further, X and Y have the same invariant distribution.
Pt - - s e e e
X Proof. P{xnﬂs!fxo,---,xns5}-P{Y(Tn+I -;_;[Y(ro—),---,v(Tn—)sg}
FL
e e
=P{Y(T,) = §|¥(T =) =1}
by the strong Markov property and homogeneity of Y
-p{x1=j~lx°-{}.
Thus, Xis a homogeneous Markov chain.
Since any state i is recurrent in Y, the amount of time spent in j
_ is infinite with probability 1, i.e., the set 5 = {t; Y = ]} has

-

infinite length a.s. Therefore the number of Tﬁ that fall in Gj must also
be infinite. Thus, the number of times Xn =] 1s infinite a.s. So X
is recurrent. A similar argument shows X is irreducible.

For any i,j € E,

P{X =[x =1} = P{Y(Tl-g) =3y, =1}
o0 e e

-/; P{YE=4|TI- t,Yo-g}dP{Tl-tIYo-g}
® e

-/; P{¥;=3|Y_=i}dP{T; =t}

since Tl and Y are independent
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-/ Pt(i,j)xe'"d:
o et

= WL, ).

Thus, X has transition matrix defined by AUA(i,j), where Ux is the A

potential of the process Y. It is known (cf. ¢inlar (1975) pg. 265) that

mA = (O 1ff n).UA = 1

where A is given by equation (2.2). Thus, Y and X have the same invariant

distribution. (m]

3.4. The Z Process.

F It 1s shown below that the Z process, which is the queue length

process embedded at arrivals to Ql’ 1s a Markov chain, theorem (4.1). It
is also shown that the Z process and the X process have the same limiting

distribution, theorem (4.3).

a a

Let N {Nt

; t > 0} be the Poisson arrival process to Ql’ and let
T = {T:; n € N} be the sequence of arrival times. It is apparent

that, for each n ¢ N, T: is a stopping time for Y. Let Z = {Zn; n ¢ N}
= ({(T }); n ¢ N}. Thus, Z is the state of Y the instant before the nth
arrival to Ql' It follows that Z is a Markov chain,

Theorem 4.1. 2 = {Zn; n € N} 1is an irreducible, homogeneous

Markov chain.

Proof. Pz, =3lz . ++2 =1} =PI D) =JlY(T D), -, (T S =1}

» =P{Y (T, = Yt = 1)

by the strong Markov property and the homogeneity of Y




P T ST T

= P{zlsglzo- i}.

Thus, Z is a homogeneous Markov chain.

For any state j € E, the expected number of returns to j starting

-~

from _'l is,

E{z1
n=1

> a a .
IPIV(T ") =4, T eT Y, =3}

a
yETE) L (T Y =4} = z

{j
by the monotone convergence theorem;

L QU1 ——
29 3y

n
since, for all j e E, ;{3—) > 0 and j recurrent in Y implies I Q@,1)
n=l ~ ~

-

= o, Thus, all states j are recurrent, Y irreducible implies tnat,

n
for all 1,j ¢ E, there exists an n € N such that Q(i,;l) > 0. Thus,

n
there is an n ¢ IN such that Q(i,j)Y(Ai) > 0. Therefore Z is irreducible. O

Theorem 4.2. The processes N and N® are independent.

Proof. For any 1,j ¢ N,

a e a, . e
P{Nt-i,Nt-j} = E{l{i)(Nt) 1{3)(Nt)}

a, . e .
= E{E{1,,(N)) l{J}(NtHYu, u < th

a e .
= E{1 }(ut)su }(ut)lyu, u < t}}

{1 {3

since N: is completely determined by {Yu; u <t}
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a e
" E{l{i}(Nt)}E{l }(Nt)}

{3

since N: 1s independent of {Y ; u < t}
a e
= PN =1}P{N_=3}. ©

Theorem 4.3. P {Z =j}= Pu{in =3} vhere P_{-}= iﬁzl’{' IYO =i}m(1).

Proof. Let T°= {T:}, T°= {Tz}, and T=T2U T = {'i‘n} where

T, = min{Ti,T:} and T, < T, <***. Since N? and N® are independent

1 2
Poisson processes each with mean A-l, it follows from Cinlar (1975, pg.

87) that N, the superposition of N? and Ne, is a Poisson process with

mean (2))-1. Let ?n = Y(TE). Then
Pt =3r=p (¥ = 1}P"{1Ta(Tn) ¥, = 3} +P (Y =) {1 (T) Y =3}

since by construction of N, the nth jump of fn cannot be at both N and

N2, By counstruction of N,

P“{lTa(Tn) ¥ =3} = rque(Tn)IYn-;} = 1/2.
Thus, for all n,
P"{Yn-;]_, lTﬂ(Tn)} = Pw{an. lTe(Tn)}.
Since,
P“{ITB(T“)} = Pw{lTe(Tn)} =1/2,

if follows that,

-

o

D et €Ty A e, ey e i T T
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Pw{Yn - 1|1Ta(rn)} = P‘N{Yn = 1|1Te(rn) },
or
Pw{zﬂ-i} = P“{Xn-,j_}. o
As a consequence of this result it follows that Z and X have the

same invariant distribution.

3.5. A Nonequilibrium Distribution.

It is shown below that if the Y process is in equilibrium at some
time to and 1if T: is the first arrival epoch after to’ then P{Y(Tﬁg)-=§}
is not equal to the equilibrium probability. This result has implica-
tions to the way the system is simulated as discussed in the summary.

Suppose at to’ Y is in equilibrium. Let T be the time of the next
arrival to Ql' Define Yt to be the queue length in Qi at time t. In
order for Y to be in equilibrium the instant before the next arrival to
Q> for every 1 € N, P{Yt°~5 i} = P{Yt—.ﬁ i}. For every sample path w,
we have that Yto(m) < YTl(u). Thus, for each 1 ¢ N,

{w; Y:o(m) <1} fo; vAW <1

Therefore,
Plo; Y5 (w) <1} < Plo; Y. A(w) < 1). (5.1)
to T

In order for equation (5.1) to be an equality,

P({w; Y.rl(w) <1} - {w; Ytl(w) <i}) = 0.
[o]

However, this implies that
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0 = P({w; YA <1} N {w; ¥, () > 1)

1
o)
> P({w; Y@ <1} N ey v, M) = 141D
o

P({w; YA < ¥, @) Niw; v, W) = 141D
o o

(1- e-ult)pi +1

(1-p) where p = )t/ui
>0 for all t >0, i ¢ N, a contradiction.
Thus,
1 1
Plu; Y "(w) <1} < Plu; Y~ (w) < 1},
(°]

Therefore, if at to, Y is in equilibrium, then the distribution of Y at
TnE is not the equilibrium distribution. This result makes intuitive

a
sense, since between to and Tna departures from Q1 can occur.

3.6. Summary.

In section (3.1) we showed that the queue length process, Y, of the

three queue network i1s an irreducible, recurrent, Markov process. Thus,
simulating the three queue network in equilibrium is done by simulating
the Markov process, Y, in equilibrium, The distribution of time spent
in a state is given by equation (1.4), 1In section (3.2) the transition
probabilities of the underlying Markov chain, X, of Y are developed,
equation (2.1). Equations (1.4) and (2.1) are important in constructing
the next event generator of the simulation, as will be shown in section
(4.4).

In section (3.4) it was shown that the queue length process embedded
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at arrival epochs, Z, 1s a Markov chain with the same equilibrium

distribution as Y. In section (3.5) we showed that if Y is in
equilibrium at an arbitary time to’ then the queue length distribution
the instant before the next arrival to Ql is not the equilibrium

distribution. The results of section (3.4) and (3.5) are important in ]

initializing the simulation, as will be shown in section (4.2).




e

hubiohanbiht i of

CHAPTER 4

THE SIMULATION APPROACH

4.1. Introduction.

In this section we will comstruct an efficient simulation of the i

three queue network from which the correlation between S1 and S3 can be
correctly analyzed. In constructing such a simulation, we take
advantage of the properties of the Markov process, Y, developed in
Chapter 3. The method of initializing the simulation, discussed in
section (4.2) is correct, as well as, efficient. We force a tagged
customer to take the route Ql’QZ’Q3 and calculate his sojourn times at
these queues. In section (4.3) why the tagged customer is forced to take
the route Ql’Qz’Q3 is discussed. After the tagged customer leaves the
network, we stop the simulation, reinitialize it, and run it again.

Also in section (4.3) we explain why the simulation is reinitialized

each time the tagged customer leaves the network. Finally, in section
(4.4) the simulator's next event generator 1s discussed. In that section

we use the results of section (3.2).

4.2. 1Initialization of the Simulation.

For each iteration of the simulation the queue length at each queue
is initialized according to the network's equilibrium queue length
distribution, equation (2.2.3). Thus, the initial distribution of
customers at each queue is geometric. For each i, i=1,2,3, to generate
the initial queue length at Qi it suffices to use a geometric random
number generator with parameter Pys where " A/ul, Py = pA/uz, and

Py = A/u3. In this simulation the geometric random number generator

36
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used is the IMSL routine GGEM.,

One has two choices as to when to add the tagged customer to Ql'
One can either add the tagged customer to Ql and then start the simula-
tion or one can start the simulation, wait until an arrival to Q1 is
generated, and let this arrival be the tagged customer. In section (3.2)
it was shown that the queue length process embedded just before arrivals
to Ql’ Z, is a Markov chain with the same equilibrium distribution as Y.
Thus, it is sufficient to add the tagged customer to Q1 and then start
the simulation. In section (3.5) it was shown that if at some time, to’
the network is in equilibrium, then the next arrival to Ql does not see
an equilibrium queue length distribution at Ql' Thus, if one starts the
simulation and calls the next arrival to Q1 the tagged customer, then one
will not be simulating a network in equilibrium. Thus, it is necessary
and sufficient to add the tagged customer to Q1 and then start the

simulation.

4.3. Independence of Output and Customer Routing.

In section (4.1) it was stated that the simulation was reinitialized
each time a tagged customer left the network. So, for each tagged
customer, ci, i=1,.-+,M, we are simulating a segment of a distinct
sample path, Wy of Y. Thus, if we take observations x; on uw,,
i=1,++-,M, the x, are mutually independent. Further, since each ey
sees Y in equilibrium at their arrival to Ql’ the observations x, are
identically distributed. The fact that the x, are observations on a

sequence of independent identically distributed random variables is

required to compute and to analyze the statistics of the simulation,
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Chapter 5.
The purpose of the simulation is to determine the correlation
between S1 and 83 glven the tagged customer takes the route 21-‘Q1Q2Q3.

It can be shown from Simon and Foley (1979) that S. and S3 are

1
independent given the customer takes the route 22 = Q1Q3. Thus, we are
interested in only those tagged customers which take the route 21. By
forcing the tagged customers to take the route 21, the number of
iterations the simulation requires over the number of iterations the
simulation would require if we let the tagged customer choose which

path to take, is reduced. For example, for a sample of 1000 tagged
customers who take the route 21, in a network with switching parameter

p = .01, by forcing the tagged customers to take route zl the simulation
requires only 1000 iterations. However, by not forcing the tagged

customers to take the route zl the expected number of iterations the

simulation requires is 100,000.

4.4, Generation of the Next Event.

Let Tn’ n ¢ N, be the time of the nth jump of the process Y and
xn; n € N, be the state Y enters at Tn. Then from Ginlar (1975, pg.

247). ok

= - se0 = R = _Y(i)t ;
PAX = ds Togg =Ty > tlXpseeonX =4, T 00, T 1=Q(d, e (4.1) ;

where Q(1,j) is given by equation (3.2.1) and e-Y(E)t by equation (3.1.4).

It follows that the process X = {xn; n € N} is a Markov chain with

transition probabilities given by the Q(1,j), see section (3.2). So the

next event is determined by the Markov chain X. Thus, to generate the
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type of the next event it suffices to generate a uniform random number,

r, such that:

A
i —_ .
(1) 1f0<r < Y(f) the next event is an arrival to Ql’

A (Mpu, (1,))
(11) 1if Y(i)'i r < ETO N the next event is a departure

from Q1 who goes to QZ;

(A+pu1(11)) (4 (1))
(111) {if ——F~+—=— < r < —+——— the next event is a
y({1) y(1)

departure from Q1 who goes to Q3;

Atu, (1) Ay, (1,)+u,(1,)
(1v) if ——;%Ijl‘ <r < 1 1(1)2 2 the next event is a

departure from Q, who goes to Q,;
2 3

A+u1(11)+u2(12)
y(1)

(v) if < r <1 the next event is a departure

from Q3 who leaves the network.

The uniform random number generator used is the ISML routine GGUM.

Further, from equation (3.1), it follows that

-y(i)e

P{T - T > tlxo,---,xn =4, X =4 T, T =e

-~

n+l

Thus, if at the last event Y is in state i the time until the next event
is determined by an exponential distribution with mean y(})—l. Thus, to
generate the time of the next event it suffices to use an exponential

random generator with mean Y({)_l. The exponential random number

generator used is the IMSL routine GGEXP.
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4.5. Summary.

In this chapter, important concepts of the construction of the
simulation were discussed. First due to the construction of the
simulation the data are independent and identically distributed. This
1s necessary for the analysis done in the next chapter. Since the
equilibrium distribution of Y is known, the initial distribution of
customers can be calculated directly instead of by simulating the
network for a period of time to approximate an initial distribution.
Since we are trying to gather data concerning a customer's total sojourn
time distribution in a network in equilibrium it is essential that the
network be in equilibrium when the tagged customer arrives. In section
(4.2) it was explained when the queue length distribution was and was
not in equilibrium with respect to the arrival of the tagged customer.
Finally, since the queue length process is Markov, instead of creating
a large next event file one needs the transition probabilities and the
exponential distribution of time the process spends in state of E. Flow

charts, program listings, and program discriptions are listed in appendix

1.
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CHAPTER 5

ANALYSIS OF THE SIMULATION

5.1. Introduction.

For a given set of parameter settings we simulate the three queue
network of section (1.3). The simulation is run for 1000 iterationms.
For each iteration, i, the network is initialized according to it's
equilibrium queue length distribution. Next, a tagged customer is
added to Ql' The simulation is run with all customers, except the tag-
ged customer, moving through the network according to it's parameter
settings. The tagged customer always takes the route Ql’QZ’QB’ The

i 1.4

sojourn times, 51,52,83, of the tagged customer in each queue, and his

total sojourn time Tsi are recorded. Once the tagged customer leaves
the network, an iteration of the simulation is complete. Details of this
procedure are found in Chapter 4.

For A = 4.0, uo= 5.0, 1 =1,2,3, the simulation is run for p = 0.00,
0.01, 0.05, 0.10, 0.25, 0.50, and 1.00. For p = 1.00, we have a network
of three tandem queues. For this case, we should have that 51'82’ and 83
are mutually independent random variables, Reich (1963). For p = 0.01,
0.05, 0.10, 0.25, and 0.50, according to Simon and Foley (1979), section
(2.5), S1 and S3 are dependent. One purpose of this simulation study is
to determine how S1 and S3 are correlated for these values of p. For
P = 0.00 we are not simulating two tandem queues since the tagged
customer still takes the route Ql’QZ’Q3' For this value of p we are

trying to determine the correlation between S, and S3 as p decreases to

1

zero.

R
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The analysis of the simulation consists of two parts. First, a
test is done to determine whether the correlation between S1 and S3 is
significant. Second, a test is run to determine whether the sample
distribution of the total sojourn time is different from one which sup-

poses that S1 and S, are independent.

3

5.2. Analysis of Correlation.

The statistic used to determine the correlation of a customer's
sojourn times in Q1 and Q3 is the correlation coefficient. The correla-
tion coefficient is a descriptive index on two sets of data, (X,Y), the
value of which serves to specify the dependence exhibited by the data
between the variables X and Y. Mathematically the correlation coefficient,

r, between two sets of data (Xi’Yi) i=1,.-..,N 1s given by

N

N 2
£ Y5/,

/N N N N , N, 2
r= (1£1X1Y1‘ (1£1Xi)(i£1Yi)/N)/ (1£1xi - (1£1x1) /N)(iEIYi -(i
The coefficient, r, must have the property that -1 < r < 1. A positive
value of r implies positive correlation, that is, a large value in X
implies a large value in Y. A negative value for r implies negative
correlation, that is, a large value in X implies a small value in Y. A
value of r = 0 implies that there is no correlation. This does not imply,
however, that X and Y are independent sets of data. However, a value of
r that is not zero implies that the data sets X and Y are correlated and
thus cannot be independent.

Let,

xi be the sojourn time of the ith customer in Ql;

Yi be the sojourn time of the ith customer in Q3 3
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Zi be the sojourn time of the ith customer in Q3;

Ty be the correlation coefficient between the data sets (Xi,Yi);
T, be the correlation coefficient between the data sets (Xi’zi);

r, be the correlation coefficient between the data sets (Yi,zi).
In this section we will show that r, and T, are not statistically

greater than zero.

To test the hypothesis r, = 0, i = 1,2,3, Fisher's Z transformation

i

is used to change the correlation coefficient, into a normal 2

T,
statistic. This relationship is given by

14rx

1—r1)°

Z=1/2 In(

The standard deviation of the Z statistic is given by
GZ = 1/v n-3.

Thus, our test of hypothesis becomes:

(1) HO: r, = 0 1i=1,2,3 (null hypothesis);

(ii) le r, 40 1=1,2,3 (alternative hypothesis);

(111) Critical region, o = ,05;

(iv) Test statistic

1+r
Z= Z/dz = 1/2 ln(l_

T

/a3 5
1
(v) Conclusion: Accept H 1if Z < 1.96 otherwise accept H,.

1-a confidence interval for the Z statistic is given by the formula
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z z
z - 22 7482
/n-3 Vn-3

To get the corresponding interval for the correlation coefficient insert

the left and right hand limits of the above interval into

e +1
For a = .05 if 0 does not lie in the interval one can be 95% certain that
r, is nonzero. If the interval is positive then one can be 95% certain

that Ty is positive.
Since each run consists of 1000 observations, it follows that if
Iril > .062, i = 1,2,3, then the null hypothesis is rejected. To see

this, note that the null hypothesis is rejected if

1+ri 1+r1
= )Y n-3 or Z > -1/2 1a( )Y n-3 .
i

Z<1/2 ln(l_ l-ri

Thus, we reject the null hypothesis if

1+r1
) > 2Z/Y n-3 .
Ty

ln(l_

So, we reject the null hypothesis if

Mr, ) 22/ 13
l-r1

or

eZZ// n-3 _ 1
r, > .
i e22//6:3 +1

Inserting in Z = 1.96 and n = 1000 we obtain the desired result. The
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1 - a confidence intervals for o = .05 are given by Z + .062 where
z=1/2 ln(-i*f—:)v/—n_-— .
Putting the limit points of the above interval into
T = e22-1/e22+1

yields the 1 ~ o confidence interval for r. The results of the tests

are listed in Table 2.1, Table 2.2, and Table 2.3.

From Table 2.1 the only significant correlations between sojourn
times in Ql and Q2 oocur when p (the switching probability) takes the
values .01 and .05. In each case significant correlation occured for
just one of the five runs. From Table 2.2 there were no significant
correlations between sojourn times in Q2 and Q3. However, for all values
of p except .05 and 1.0 there were runs with significant correlation
between sojourn times in Q1 and Q3. Since, for each case in which there
were runs of significant correlation there were also runs in which the
correlation was not significant further testing needed to be done.

To further test for significant correlation between the sojourn
times in Ql and Q3 the same z-transformation test described above was
used with the following modification. Instead of testing the correla-
tion coefficient for each run separately the average over the five runs
was taken. For example, from Table 2.3 for p = 0.0 the new r value

would be
r = {.0582 + .0532 + (~.0209) + .0708}/5 = ,03226.

Note that the sample size of this test is n = 5000 rather than n = 1000.
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TABLE 2.1
ANALYSIS OF CORRELATION BETWEEN QUEUE 1 AND QUEUE 2

P r sig. con. 1nt.
i 0.00 -.0591 no (-.0121,.0029)
i 0.00 -.0237 no (~.0857,.0383)
i 0.00 .0030 no (-.0590,.0650)
0.00 -.0304 no (-.0924,.0316)
0.00 -.0187 no (-.0807,.0433)
0.01 -.0019 no (-.0639,.0601)
0.01 -.0759 yes (~.1378,-.0139)
0.01 -.0253 no (~.0873,.0367)
0.01 .0027 no (~.0593,.0647)
0.01 -.0435 no (-.1055,.0185)
0.05 -.0189 no (-.0809,.0431)
0.05 -.0177 no (-.0797,.0443)
0.05 .0123 no (-.0497,.0743)
0.05 ~-.0240 no (-.0860,.0380)
0.05 .0165 no (-.0455,.0785)
0.10 -.0225 no (-.0845,.0395)
0.10 .0061 no (~.0559,.0681)
0.10 .0295 no (-.0385,.0915)
0.10 ~.0075 no (-.0695,.0545)
0.10 .0357 no (-.0263,.0977)
0.25 -.0431 no (-.1051,.0189)
0.25 .0288 no (-.0332,.0908)
0.25 -.0169 no (-.0789,.0451)
0.25 .0292 no (-.0328,.0912)
0.25 .0225 no (-.0395,.0845)
0.50 -.0499 no (-.1119,.0121)
0.50 -.0095 no (-.0715,.0525)
: 0.50 .0728 yes (.0108,.1348)
‘ 0.50 -.0329 no (~.0949,.0291)
ﬁ 0.50 .0150 no (~.0470,.0770)
1.00 -.0604 no (-.1224,.0016)
1.00 .0206 no (-.0414,.0826)
1.00 -.0184 no (-.0804,.0436)
1.00 .0512 no (~.0108,.0512)
1.00 -.0432 no (-.1052,.0188)
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’
TABLE 2.2
ANALYSIS OF CORRELATION BETWEEN QUEUE 2 AND QUEUE 3
r
E 2 P r sig. con. int.
| 0.00 -.0260 no (-.088,.036)
0.00 -.0261 no (-.0881,.0359)
. 0.00 .0030 no (-.0650, . 0590)
s 0.00 -.0193 no (-.0813, .0427)
0.00 -.0461 no (-.1081, .0159) §
0.01 .0061 no (-.0559, .0681) 3
0.01 -.0431 no (-.1051, .0189) B
0.01 -.0200 no (-.0820, .0420) i
0.01 -.0294 no (-.0914,.0326)
0.01 -.0267 no (-.0887,.0353) 7
0.05 -.0027 no (-.0647, .0593) i
0.05 .0023 no (-.0597, .0643) |
0.05 ~-.0068 no (~.0688, .0552) ?
0.05 .0269 no (-.0351, .0889) |
0.05 .0459 no (-.0161,.1079) i
0.10 .0062 no (-.0558,.0682) !
0.10 -.0343 no (-.0963, .0277) !
0.10 .0067 no (-.0553,.0687) ;
0.10 -.0369 no (-.0989,.0251) :
0.10 ~.0285 no (-.0335,.0905)
0.25 .0237 no (-.0383,.0857)
0.25 -.0353 no (-.0973,.0267)
0.25 .0394 no (-.0226,.1014)
0.25 .0054 no (~.0566,.0674)
‘ 0.25 -.0205 no (-.0825, .0485)
: 0.50 .0198 no (-.0422,.0818)
0.50 0174 no (-.0446, .0794)
. 0.50 -.0216 no (~.0836, .0404)
“ 0.50 -.0217 no (-.0837,.0403)
0.50 -.0294 no (-.0326,.0914)
1.00 .0079 no (-.0541, .0699)
1.00 .0080 no (-.0540, .0700)
1.00 -.0144 no (-.0764, .0476)
' 1.00 -.0126 no (-.0746, .0504)
1.00 -.0434 no (-.1054, .0186)
{ ] ;
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TABLE 2.3 !
ANALYSIS OF CORRELATION BETWEEN QUEUE 1 AND QUEUE 3 1

P T sig. con. int.

0.00 .0582 no (-.0038,.1202)

0.00 .0532 no (-.0088,.1152)

0.00 -.0209 no (-.0829,.0411)

0.00 .0708 yes (.0088,.1328)

0.00 .0347 no (-.0273,.0967)

0.01 .0735 yes (.0115,.1355)

0.01 .0528 no (-.0092,.1768)

0.01 -.0080 no (-.0700,.0540)

0.01 .0546 no (-.0074,.1166)

0.01 -.0246 no (-08660,.03774)

0.05 .0599 no (-.0021,.1219)

0.05 .0651 yes (.0031,.1271)

0.05 .0616 no (-.0004,.1236)

0.05 .0085 no (-.0535,.0705)

0.05 .1034 yes (.0414,.1654)

0.10 .0252 no (~.0368,.0872)

0.10 .0439 no (-.0181,.1059)

0.10 .0308 no (-.0312,.0928)

0.10 ~.0314 no (-.0934,.0306)

0.10 .0400 no (-.0220,.1020) ,
0.25 -.0310 no (-.0930,.0310) ;
0.25 .0023 no (-.0597,.0643)

0.25 .0520 no (-.0100,.1140)

0.25 .0758 yes (.0138,.1378)

0.25 .0915 yes (.0295,.1535)

0.50 -.0074 no (-.0546,.0694)

0.50 .0524 no (-.0096,.1144) i
0.50 .0043 no (-.0577,.0663)

0.50 -.0182 no (-.0802,.0438)

0.50 .0252 no (-.0368,.0872)

1.00 .0140 no (-.0480,.0760)

1.00 .0427 no (-.0193,.1047) :
1.00 -.0440 no (-.1060,.0180) b
1.00 -.0111 no (-.0731,.0509) !
1.00 -.0086 no (-.0706,.0534)

Sy
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i 4
. TABLE 2.4
ANALYSIS OF CORRELATION BETWEEN QUEUE 1 AND QUEUE 3
WITH RESPECT TO THE AVERAGES OF THE RUNS
P r sig. con. int.
0.00 .03226 yes (.0049,.0603)
0.01 .02966 yes (.00196,.05736)
0.05 .05970 yes (.0320,.08740)
0.10 .02170 no (-.0060,.04940)
0.25 ,03812 yes (.01042,.06582)
0.50 .00622 no (-.02148,.03392)
1.00 -.0014 no (.0291,.0263)
K4
3

‘9
§
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It follows from the formula that
r = eaz-lleaz+1 a=2/Yn-3, Z=1.9

that if r > .0277 then the null hypothesis r, = 0 1s rejected. The
results of this test are listed in Table 2.4.

In the cases of p = 0.00, 0.01, 0.05, and 0.25 the tests show that
the correlation is significant. Further, the confidence intervals show

that correlation is positive in these cases.

5.3. Testing the Total Sojourn Time Distribution.

Let JN specify the three queue network, see section (3.1). Suppose
that for a customer, c, ¢'s sojourn time in Q1 and Q3 are independent
given he takes the route Ql’QZ’Q3' What would c¢'s total sojourn time

distribution be? Let

-at
¢, (t) = P{Sl_§ t}=1-e where a = u, - A;

bt

¢2(t) = P{SZ t} =1- e—

|A

where b = ¥y = PA;

ct

03(t) = P{S3 <tl=1-~ e where ¢ = My - A.

Proposition 3.1. If the total sojourn times at the three queues
were mutually independent, which they are not, then the total sojourn
time distribution of a customer taking the route Ql’QZ’Q3 where a = ¢,

a and ¢ defined above, would be

2 2 _
P{Sl+sz+s3£t} -] - a 5 e bt - [b +ba((b~a)t 2)] N at

(b-a) (b-a)2
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Proof. From equation (2.3.3)

B{S, + Sy + 55 < tlzll = (4; * 9, * ¢5)(¥)

- ¢, (t-x~y) ¢, (dy) ¢, (dx).
'/[.OQt] -/[‘O,t-x] 3 2 1

We first evaluate

¢, (t-x-y) ¢,(dy).
~/[‘0:t—x] 3 2

let u=t - x, then

u
¢,(t-x-y)¢,(dy) = f ¢, (u-y) ¢, (dy)
S taxnnn = [ e,

u
- / (1-e 3y by,
0

=bu b -au, -(b-a)u
= 1 -e + (b-a) [e ]

-bu b ~-au

a
"1tEa TG

Thus, the total sojourn time distribution is

t
a -b(t-x) _ _b -a(t-x), -at
A Q * ooay © T-a) © Yae dt

.- e8t, aZe ®t a2 -bt _ _bat oot
(b-a)

(b-a)%  (b-a)?

2 2
a e—bt _ {b +ba((b-a)t-2)]e-at.

{b-a) 2 (b-a) 2

] -
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Figure (3.1) gives one graph of formula (3.1). We have superimposed

the corresponding distribution function of S1 + S2 + S3 on that graph.
Differences of the two plots appear to be minor, but one notes that the
tails are somewhat different. To further illustrate this discrepancy,
the difference between the two distributions is shown in figure (3.2).
It would appear from this, that the two distributions are not the same
but the differences are small. A Kolmogorov-Smirnov goodness of fit test
was run to try to substantiate the visual impression that the sample
total sojourn time of the simulation differs from the distribution given
by Proposition (3.1).

The Kolmogorov-Smirnov test depends on the statistic

D = -:sﬁlwan(x) - Fo(x)|
where Fn(x) is the sample distribution and Fo(x) is the distribution of
Proposition (2.1). 1If the null hypothesis is HD: Fo = Fn and the

alternative hypothesis is H,: F° ¥$ Fn. With a critical region of a,

1
a=,20, .15, .10, .05, .01, the null hypothesis is accepted if Dn < Du
otherwise it is rejected. For the case of large n, n > 80, Da is given
by

a .20 .15 .10 .05 .01

D, 1.07/vn 1.14/vn 1.27/va 1.36/vn 1.63/vn .

For the case a = .05 and n = 1000, Da = ,04030. The result of this
test are listed in Table 3.1. For the case where a = .05 and p ¥ O for
all runs, buy two, the null hypothesis was accepted. However, for the

case where p = 0.0 the null hypothesis was rejected three of the five rums.
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Figure 3.1. A Comparison Between a Sample Distribution, S, and
one Assuming Independence, T, for p = .1
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TABLE 3.1
ANALYSIS OF TOTAL SOJOURN TIME DISTRIBUTION

D
n
.0529
.0256
.0441
.0461
.0255
.0281
.0258
.0392
.0251
.0277
.0163
.0291
.0426
.0352
.0335
.0251
.0243
.0194
.0311
.0307
.0294
.0154
.0393
.0421
.0467
.0325
.0341
.0513
.0312
.0141
.0238
.0235
.0200
.0401
.0293

sig.

yes

no

yes
yes

no
no
no
no -
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no

yes

no
no

yes

no
no
no
no
no
no
no
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Thus, based on this Kolmogorov-Smirnov test, we are unable to verify
our visual impression. This is not conclusive evidence that the sample
distribution is different from the one assuming independence. However,

in view of the results obtained in section (4.1) one is led to believe

this is quite likely the case.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

Chapter 1 introduced the sojourn time problem. An informal defini- 3

tion of queueing networks was given, as well as, one for the three queue

network. Chapter 2 defined Jackson queueing networks and discussed many
of their known properties. The most important result concerning this
thesis {s the Simon and Foley (1979) result in which the authors showed
that for the three queue network the sojourn time of a customer at Ql

and his sojourn time at Q3 are not independent.

Chapter 3 showed that the queue length process, Y, of the three
queue network is a Markov process. The infinitesimal generator, A, of
Y was found. The transition matrix of the underlying Markov chain was
determined, as well as, the distribution of time spent in a state.
Further, it was shown the Y process embedded at arrival instants to Q1
is a Markov chain with the same equilibrium distribution as Y. Finally,

it was shown that if at time to Y i8 in equilibrium then Y will not be

in equilibrium at the time of the next arrival to Ql'

In chapter 4 the simulation was constructed using the properties
of the Markov process Y. The simulation was constructed so that the : ?
output was a sequence of independent identically distributed observa-
tions. The simulation was initialized so that the tagged customer saw
a network in equilibrium upon his arrival to Ql' Finally, the next
event generator was constructed using the transition probabilities of

the underlying Markov chain of Y, together with the exponential distribu-

sl e 1 b <




tion of time Y spends in a state.

Chapter 5 consisted of the analysis of the simulation. A Fisher

Z test was run to determine whether the correlation between S1 and 83
was significant. For sample sizes of 1000 we found that the correlation
was not significant. A Kolmorgov-Smirnov test found that the sample
distribution of the total sojourn time was not significantly different
from one assuming that Sl,Sz, and S3 are mutually independent. Thus,

in applications one attempting to model such a network can do so assum-

ing independence. |

6.2. Conclusions,
Simon and Foley (1979) show that there is correlation between Sl
and 52' The tests on the modified Z test in section (5.2) provided

evidence that the correlation is small, positive, and a decreasing

function of the switching parameter p. Further, graphs of the sample
distribution versus the distribution assuming independence show that 3
the sample distribution usually had more mass in its tails providing
more evidence that S1 and S3 are positively correlated, although the
differences were émall enough to pass a Kolmorgov-Smirnov test on a

sample of size 1000.

] 6.3. Further Research.

Areas for further research fall into two main categories. First, :
the simulation needs to be extended to more general acyclic networks.
[ From this extension one can determine whether or not the distribution

assuming independence can be substituted for the true, unknown distribu-

tion, for modeling purposes. Secondly, analyic work needs to be done to
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determine the correlation between sojourn times in Q1 and Q3, and more

importantly the total sojourn time distribution.
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APPENDIX Al

THE COMPUTER PROGRAM

Al.0. Introduction.

In this appendix the simulation program is described. In section
(Al.1) a brief discription of the main program and each subprogram is
given. Section (Al.2) contains flowcharts of the programs. Section

(Al.3) contains source listings of the programs.

Al.1. Discription of Computer Routines.

1. Main Program,
The main program calls the subroutines used in the simulation.
2. Subroutine PAR1 and PAR2,

These two subroutines read in the parameters. The parameters

i

include (p,A,ul,uz,u3), the number of iterations, the seed numbers plus

the dimensions of many of the vectors.
3. Subroutine INTL.
This simulation initializes the simulation's variables. The queue

lengths are initialized by the use of a geometric random number generator,

section (4.2). The tagged customer is added to the first queue and his 3
position in the queue recorded. The clock and the sojourn time variables
1 are initialized to zero.

4. Subroutine CHECK.

: This subroutine checks the queue lengths of the three queues., For
¥ i=1,2,3, if the queue length at Q1 is zero, then service rate at Q1 is

set equal to zero. Otherwige Qi's service rate is set to equal ui.
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5. Subroutine NEXT,

This subroutine generates the next event. Also it updates the
queue length vector, as well as, the queue and the position in the queue
of the tagged customer,

The time and the type of the next event are determined by two
random generators. The time of the next event is determined by
exponential random number generator., This time is added to the clock.
An uniform random is generated to determine the type of the next event.
Depending on the interval in which the number lies the type of the next
event is determined, section (4.3).

A subroutine depending on the type of the next event is called to
update the queue length vector, as well as, the queue and the position
in the queue of the tagged customer. The subroutines and their functions
are listed below.

5.1. Subroutine ARR.

This subroutine is called when the next event is an arrival to Ql'
This routine adds one to the queue length at Ql‘

5.2. Subroutine DEPAB.

This subroutine is called when the next event is a departure from
Q1 who goes to Q2. First, one is subtracted from Q1 and one is added to
Q2' 1f the tagged customer is in Ql’ but not in service there, his
position in the queue is moved forward one. If he is in service at Ql’
then he moves to the last position in Q2. His sojourn time at Q1 is
set equal to clock.

5.3. Subroutine DEPAC.

This subroutine 1is called when the next event is a departure from
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Q1 who goes to Q3, provided he is not the tagged customer. In this case,
one 1s deleted from Q1 and one is added to Q3. If the tagged customer is
in Q2, but not in service there, his position is moved forward one. If
the departure was the tagged customer, one is deleted from Ql’ one is
added to Q2' and the tagged customer becomes the last customer in Q2'
His sojourn time is set equal to clock.

5.4. Subroutine DEPBC.

This subroutine is called when the next event is a departure from
Q2 who goes to Q3. One is deleted from Q2 and one is added to Q3. If
the tagged customer is in QZ’ but not in service there, his position in
Q2 is moved forward one. 1If he is in service there, he moves to the end
of Q3 and his sojourn time in Q2 is calculated as clock minus his sojourn
time in Ql'

5.5. Subroutine DEPC.

I1f the next event is a departure from Q3, this subroutine 1is called.
One is subtracted from Q3. If cthe tagged customer is in Q3, but not in
service, his position in Q3 is moved up one. If the tagged customer is
in service at Q3, his sojourn time at Q3 is calculated as clock minus
the sum of his sojourn times in Q1 and Q2' The total sojourn time is
calculated as clock. An iteration of the simulation is completed.
» 6. Subroutine STAT.
This subroutine calls the IMSL routine, BECORI, which determines
i; the expected sojourn time and the variance in each queue. It also
calculated the matrix of correlation coefficients.

7. Subroutines GRPH1 and GRPH2.

! ,
i GRPH1 plots the logs of the tagged customer's sojourn times in Q1
By
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§
: ; versus the logs of their sojourn time in Q3. GRPH2 plots the sample
distribution versus the distribution assuming independence, section
(5.2).
’
B
!
'
;
i
;
§ {
) |
g “
)
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Al.2. Flowcharts.

Call PARL

Call PAR2

[

Set [ =1
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' Start
i
f . . Initialize
? Variables
:
'g
Set
Means
Call GGEOM
Call GGEOM
Call GGEOM
Initialize ;
Queue Lengths :
Return 1
3 %
!
r %
¢
L Subroutine INTL !
|
i {
; {
{ !
] R




DU(J) =U(J)

no
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Start

g

Set J =1

yes

pU(J) =0

JGT 3

no

yes

Subroutine CHECK
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Updata Clock
R=RR(1)

ocrex ST cuam

Call DEPAB [ pacr<xB

XB<R<XC Call DEPAC
Call DEPBC 2 WR<D | cal1 DEPC
Racurn

Subroutine NEXT
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Start

TIQL(1)=IQL(1)+}]

‘ Return >

Subroutine ARR
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Start

Update
Queue Lengths

T(1)=1
LT(2)=1

no

LT(1)=1 yes LT(1)=1
LT(2)=LT(2)-1 | LT(2)>1

-

no

yes

LT(1)=2
LT(2)=IQL(2)
$0J(1)=CLOCK

‘ Return >

Subroutine DEPAB




( Start )

IQL(1)=IQL(1)-Y

IQL(2)=IQL(2)+1
Update LT
&
SOoJ

yes

IIQL(3)=IQL(3)+1]

LT(1)=1
LT(2)>1

Return

Subroutine DEPAC
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Update LT
&
S0J

!
f
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4
y
Start
Update
Queue Lengths
yes LT(1)=2
t
l Update LT(2)>1
i
: Return
‘ ’
Subroutine DEPBC
»

e i

e pes




LT(1)=3

LT(2)=LT(2)-1 |

-
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Start

F;L(3)'IQL(3)-1

Calculate
S0J(3) & S0J(4)
IFLAG = 1

LT(1)=3
LT(2)>1

‘ Return ’

Subroutine DEPC
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Al. 3.

Program Listings.
1. Definition of Variables.

1.1. Network Parameters.
P - the switching probability.
A - the arrival rate to Ql'
U - a three dimensional vector where U(1), 1 = 1,2,3, is
the service rate at Qi'

DU - a three dimensional vector where DU(1), 1 = 1,2,3, is
either 0 or U(1) depending on whether Q(i) is empty or
not.

1.2. Seed'Numbers.
ISA - seed for generating initial queue length at Ql‘
ISB - seed for generating initial queue length at Q2.

ISC

seed for generating initial queue length at Q3.

ISD - seed for generating the time of the next event.
ISE - seed for generating the type of the next event.

1.3. Network Variables.

IQL - a three dimensional vector, where IQL(i), 1=1,2,3,
is the queue length at Qi'

LT - a two dimensional vector, where LT(1) is the queue
of the tagged customer, and LT(2) is the tagged
customer's pogition in the queue.

S0J - a three dimension vector, where S0S(i), 1 = 1,2,3,
is the tagged customer's sojourn time in Qi'
TSOJ - the tagged customer's total sojourn time.

e R R A o ¢ = gy s —gib g rme AP P
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CLOCK - running time of the customer's sojourn time in the

network.
IFLAG - tells the simulation when the last tagged customer

leaves the network by going from zero to onme.

1.4, Statistical Variables.
Z - a (1000 x 4) dimension array where 2(1,j),

i =1,:-4,1000, is the ith tagged customer's total

sojourn time.

XM - 4 dimensional vector where XM(1i) is the expected value
of Z(+,1), 1 = 1,--+,4.

S - 4 dimension vector where S(1) 1s the variance of
2(.,1), 1 = 1,%++,4.

2, Program Listings.

On the following pages are listings of the computer routines.
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APPENDIX A2

THE OUTPUT OF THE SIMULATION

A2.1. Listings of the Output.

The following pages consist of the simulations output. There are
four tables and 15 graphs. Table 1.1 consists of the seed numbers and
the correlation coefficients. Table 1.2 consists of the seed numbers
used in the random number generators. Table 1.3 consists of the
expected values of the sojourn times in Ql’QZ’Q3’ and the total sojourn
time. Table 1.4 consists of the standard deviations of the sojourn
times in Ql’QZ’Q3’ and the total sojourn time. There are five graphs
in which the sample distribution and a distribution of the total sojourn
time, assuming sl’SZ’ and 53 are independent, are superimposed. There
are five graphs which plot the difference between these two
distributions. Finally, there are five scatter plots which plot the

log S1 vs. log S3. All plots are for the case where the switching

parameter, p, is .l.

92
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TABLE 1.1
LIST OF SWITCHING PARAMETERS, p, AND CORRELATION COEFFICIENTS
run # p ry r, r,
1 0.00 -.0591 -.0260 .0582 ;
2 0.00 -.0237 -.0267 .0530 -
4 3 3 0.00 .0030 -.0421 -.0210 {
4 0.00 ~.0304 -.0193 .0708 f
5 0.00 -.0187 -.0461 .0341 ’
6 0.01 .0027 -.0219 .0546 |
A 7 0.01 -.0019 .0061 .0735 ‘
: 8 0.01 ~.0758 -.0436 .0528
; ¥ 9 0.01 -.0273 -.0199 -.0080
4 10 0.01 -.0435 -.0261 -.0247
K 11 0.05 -.0189 -.0027 .0599
12 0.05 -.0176 .0023 .0651
> 13 0.05 .0123 -.0068 .0616
i 14 0.05 -.0240 .0269 .0085
ks 15 0.05 .0162 .0456 .1034
16 0.10 -.0226 .0062 .0252
17 0.10 .0065 -.0343 .0308
{ 18 0.10 .0295 .0070 .0439
19 0.10 -.0075 -.0368 -.0317
) 20 0.10 .0357 .0399 -.0029
: 21 0.25 -.0431 .0236 -.0310
22 0.25 .0288 -.0354 .0023
23 0.25 .0394 -.0169 .0520
; 24 0.25 .0292 .0054 .0758
: 25 0.25 .0225 -.0205 .0915
: 26 0.05 -.0150 .0294 .0252
C 2 27 0.05 -.0329 -.0217 -.0182
28 0.05 .0728 -.0216 .0040
29 0.05 -.0092 .0174 .0524
30 0.05 -.0499 .0198 -.0074
31 1.00 -.0432 -.0435 -.0089
32 1.00 .0051 .0168 -.0111
' 33 1.00 ~.0184 -.0144 -.0440
34 1.00 .0206 -.0081 .0403
35 1.00 -.0604 -.0079 .0140

U D Aot s ~esn
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TABLE 1.2
LIST OF SEED NUMBERS FOR THE RANDOM NUMBER GENERATORS

run # ISA ISB IsC IsD ISE

1 5686505 6075695 9022909 6656611 7408799
2 3886767 4756481 7698813 6095261 3997223
3 5774081 6769993 8314997 4583415 3793763
4 9459553 3632017 1859429 9434227 3283261
3 5 7119413 1866371 5532247 7646822 8976881
6 9396535 4884063 2084713 6525565 6646201
7 4934033 6004515 6827285 8503051 5691217
8 7134157 1256655 2635885 6435093 4113511
9 4968463 1798315 8597729 4610481 6765833
10 1505321 3159501 5390073 2217837 1478013
11 4439443 9161075 7560147 9990439 7966695
12 1063411 3370395 5594455 9690947 8042825
13 4250833 3061375 9274763 1829629 9609691
14 1558555 2997589 3515635 3618813 3469395
15 1859363 2855199 2562553 5072091 6784469
16 9396535 4401349 5218021 6118865 5815067
17 4934035 6004517 3001501 7158585 3580603
18 7134157 1256659 2151127 2349565 4655741
19 4968461 1798313 9773585 5185147 5000167
20 9065515 3159501 4944253 5919325 7679713
21 3947547 1662251 7498871 4349879 1795951
22 3699067 9352671 2316749 1740353 8702517
23 4098007 2049239 2379215 2363227 2650441
24 8397429 4153539 5900995 7047717 9820971
25 4694981 6631119 2669459 9243109 6357417
26 2205089 7295829 8592233 2740853 4753903
27 8319733 8394441 4241653 2401025 6133701
28 9932451 3911789 4658309 8390317 6062737
29 3193527 1111339 9254679 5418397 4142617
30 8872083 3333931 6552091 4255979 4397211
31 2669567 9496487 3413679 1538715 5575893
32 6988261 6568043 6992771 6564817 1627501
33 6590997 5266761 3120439 1707527 8778567
34 4005567 5541763 9081617 1229307 6565111
35 2707235 6300393 1497293 2839511 1214349
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LIST OF EXPECTED SOJOURN TIMES IN QI’QZ’QB’ AND TOTAL SOJOURN TIME

run # ESl
1 .969
2 .991
3 1.039
4 .982
5 1.020
6 1.000
7 .995
8 .978
9 1.030
10 1.027
11 1.037
12 1.017
13 1.015
14 1.025
15 .978
16 1.018
17 .977
18 .998
19 .969
20 1.004
21 .974
22 1.023
23 .994
24 1.032
25 .956
26 1.019
27 .997
28 .992
29 976
30 1.019
31 .958
32 .999
33 .954
34 1.011
35 .950

TABLE 1.3

ESZ

.194
.208
.206
.201
.197
.199
.198
.199
.198
.197
.206
.211
.204
.203
.208
.220
.219
.228
.215
.208
244
.259
.237
. 247
.233
.340
.322
.322
.337
.351
.999
. 960
.973
1.005
.978

ES, ETS
.958 2.121
.956 2.154

1.022 2.267
.955 2,139
.954 2.172
.951 2.150

1.022 2.216
.930 2.107
.987 2.216

1.026 2.250
.982 2.224

1,041 2.269
.990 2.210 |

1.057 2.285 '
.988 2.174
.994 2.231

1.039 2.235

1.002 2.229
.951 2.135

1.034 2.246
.980 2.120
.972 2.254

1.021 2.251

1.007 2.229
.948 2.137

1.013 2.373

1.057 2.376
.937 2.250
.959 2.271
.959 2.233

1.012 2.969
.997 2.957

1.024 2.951
944 2.960
.987 2.915

T R ——




TABLE 1.4

STANDARD DEVIATIONS OF THE SOJOURN TIMES IN Ql’QZ’Q3’ AND THE
TOTAL SOJOURN TIME

1 .989 .190 .949 1.411
2 .955 .204 .922 1.371
3 1.008 .190 971 1.393
4 .979 .193 .973 1.435
5 1.024 .189 - 946 1.422
6 . 946 .186 967 1.398
7 1.011 .202 1.035 1.513
8 .940 .199 .918 1.347
9 1.026 .193 .954 1.403
10 1.008 .194 1.016 1.418
11 1.039 .203 .938 1.452
12 . 966 .213 1.008 1.455
13 1.079 .204 1.024 1.547
14 1.024 .207 1.003 1.455
15 .944 .202 .979 1.450
16 .991 .216 .953 1.406
17 .991 .217 1.019 1.455
18 .986 .230 1.074 1.512
19 .991 .220 .927 1.347
20 1.001 .227 .969 1.444
21 .988 .242 .977 1.385
22 1.064 .257 .950 1.451
23 .977 .238 1.081 1.516
24 1.037 .242 1.004 1.522
25 .946 .237 .948 1.420
26 1.028 .323 1.023 1.507
27 1.032 .328 1.021 1.463
28 1.042 .313 .952 1.460
29 1.006 .336 .929 1.447
30 1.050 .352 .938 1.438
31 1.001 971 1.021 1.673
32 .977 .910 1.035 1.678
33 .970 .939 .973 1.620
34 1.082 1.015 .968 1.803

35 .933 .972 .975 1.633
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Figure 1.1. A Comparison Between a Sample Distribution, S, and one
Assuming Independence, T
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