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ABSTRACT

Automatic classification of targets viewed by radar is
complicated by variations in target aspect relative to the radar
line-of~sight (RLOS). This report investigates the possibility
of reducing the effects of target aspect by using the scale
invariance of the Mellin transform. The properties of the
Mellin transform are develuped in analogy with the Fourier trans-
form and illustrated using simple test functions and digitally
implemented transforms. Simulated radar ship profiles demonstrate
that a change in aspect is not equivalent to a change in target
scale for realistic targets, however. Automatic classification
results, for both simulated and actual radar ship profiles,
confirm that using a combination Fourier-Mellin transform for
feature selection appears at best comparable to the results
obtained using the Fourier transform alone for feature selection.
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1. INTRODUCTION
Identification of targets is a significant problem facing
the defense community. Current weapon systems are capable of

3
engaging targets at ranges far in excess of those as which the f
targets may be identified. Amelioration of the problem through ;
the application of long range sensors and the development of g
identification techniques is being actively pursued. g
3

This report is concerned with automatic classification of

ship targets sensed by radar. In particular, it is one attempt

to address the difficulties encountered when the relative aspect

is varied between a ship and the radar line-of-sight (RLOS).
This is done by considering a scale invariant Mellin transform
applied as a feature selector for automatic ship classification.

Figure 1 shows schematically the general pattern recognition
process, Data provided by sensors is preferentially selected
or otherwise manipulated by a feature selection technigue. The
selected features are then combined with other knowledge and
used to make a decision as to the most rep-esentative class. The
class decision is the identification desired.

Radar cross section (RCS) vs range profiles of ships have
been provided by the Naval Weapons Center, CThina Lake, California.
Averaged profiles are available at approximately one degree aspect
increments. This data is divided into training and testing sets.
The training set 1s used to train a classifier while the testing
set tests its performance. Both data subsets pass through the
same feature selection process.

Automatic classification of a target into one of several

possible classes is complicated by allowing the viewing aspect

e et i st oo ol s L . o T+ o v e

to vary. This is due to induced variations in the perception

of that target. For one dimensional targets, changing the

viewing aspect is equivalent to scaling of the length by the

cosine of the aspect angle. Three-dimensional targets behave
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in a more complicated manner since typically only a two dimensional

projection is available. 1In this case, besides being scaled,
portions of a target may appear or disappear.

A possible solution to this problem is to construct a large
number of projections of training targets at many different
aspects. Classification may then be performed by comparing a
test target with all projections. The class of the projection
with the "closest" match could be taken as the class to which
the test target is assigned,

An alternative solution, at least for one dimensional targets,
is to perform a transformation of a target to a new space which
is independent of viewing aspect. Target classes must remain
distinct, of course. Classification should now be considerably
easlier since aspect complications are removed. The transformation
would be most userful if no a priori knowledge of aspect angle is
required.

This second approach is investigated in this report using the
mathematical operation known as the Mellin transform. The trans-
fcrm has thio desirablic propercy that its magnitude is invariant
under scaling ¢of the function which is being transformed. This
is analagous to the invariance of the Fourier transform under
translation. The scale invariance of the Mellin transform should
completely remove aspect angle dependencce for Gue dimcusicnal
targets with multiple scattering and interference excluded.
However, only approximate scale invariance can be expected for
three dimensional targets.

A combination Fourier and Mellin transform can also be
considered. This Fourier-Mellin transform should be invariant
under both shift and scale operations. The utility of the Fourier-
Mellin transform as a feature selector is judged by comparing its
classification performance with that of a classifier using only
the Fourier transform for feature selection.
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In the following sections the Mellin transform and some of
its properties are presented. In all cases comparisons with the
Fourier transform are made. Transforms of simple test functions
are presented next to illustrate the operation of the transforms.
Fourier-Mellin transforms of simulated radar ship profiles are
then investigated. These profiles emphasize that for realistic
targets a change in aspect is not equivalent to a change in
scale. Finally automatic classification results are compared

for two cases using either the Fourier-Mellin transform or the
Fourier transform for feature selection. Both simulated and
actual radar ship profiles are used.

Throughout the report emphasis is not on the formal mathe-
matical properties of the Mellin transform. Instead the emphasis
is on digital implementation and insight into the physical
operation of the transform.
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3 2. MELLIN TRANSFORM
Mellin transforms are discussed in many books dealing with 3
4 mathematical transformsil'z}The usual definition is E
E i s-1 ;
! M(s) = f(x)x ax (1) 3
{ 0 3
! 3
t where s=g+i1. Here, the real part of s, o, is chosen to be a E
f constant whose value is partially determined by the function g
: f (x) such that the integral converges. The imaginary part of :
E s, 1, 1s the transform variable. 2
| The scale invariance of the Mellin transform is easily 3
shown by considering a function f(ax). Then
] © E
f M(s,a) =G/~ f(ax)xb-ldx = a SM(s) (2) 3
X In a similar way the Fourier transform f
t
: F(v) = mef(x)e-lz“vxdx (3)
—e i
. can be shown toc be shift or translation invariant by considering %
f (x-a) é
@
F(v,a) =ff(x-a,‘e-12‘"vxdx - e-lvaaF(v) (4) F
§ Clearly, for the Fourier transform under translation }
I
3
: |F(v,a)| = |F(v)]| (s) .
|
: while for the Mellin transform under scale ;
E
P 1
| -3
| |M(s,a)| = a |M(s) | (6)

e g . = A -
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In general there is a multiplicative factor relating the two
Mellin transforms. When comparing two Mellin transforms, this
factor is easily removed by normalization. On the other hand,
the multiplicative factor may be used directly to find the
relative scale between the two functions. Consider now the
Fourier transform of a function f(ax-b).

00

F(v,a,b) :/r f(ax-b)e-iznvxdx (7)

Letting y=ax-b this becomes

{
i

v w v
F(v,a,b) = & e-lznab./ﬂ f(y)e-lznaydy

oy (8)
1 -i2n3b F (Y
lal a
Finding the absolute magnitude

= 4 Y
|rv.am| = FEiIF(a)| (9)
Note that in addition to the multiplicative factor 1l/a, the
frequency, v, has also been scaled by 1/a. The Mellin transform
should be capable of removing the scale dependence.

Thus consider the Mellin transform of Eqg. (9) with aso

M (s, a) i/'ég P& VSl = a7 a(s) (10)
[e]
M (s,a)| = a% " M (s) | (11)

This Fourier-Mellin transform is independent of the position b of
f (ax-b) (translation invariant) «nd except for a multiplicative
factor is independent of the scale a of £ (scale invariant).
Indeed, if ¢ can be chosen equal to 1, the multiplicative factor
also disappears.
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Unfortunately, each time the magnitude of one of the trans-

forms is taken, all phase information present in that transform
i . is lost.

An important question is then whether sufficient
information remains from the two successive transforms to make
this Fourier-Mellin transform useful.

b

Two other facts concerning the Mellin transform are its

. relation to the Fourier transform and the inverse Mellin transform.
] Equation (1) can be rewritten as

M(s) =~/ﬁ [f(x)xc-l] eltlogx 4o (12)

w
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This form is similar to the Fourier transform in Eg. (3). The
!

argument of the phase factor is now a nonlinear functio- of x,
i however.

Also notice that the range of integration for the
Mellin transform is only over non-negative X.

The Mellin transform can be converted to a Fourier transform
¥
by making a change of variable

[——

(13)

5 g—
X
n
(11}
<

Then

M(s) =f [f(ey)e"y] el ay (14)

-0

e AT

This is a Fourier transform of the distorted function f(ey)
. weighted by e, Eguation

oy

(14) is particularly important in
. implementing the Mellin transform.

This is discussed more fully 3
in the next section.

Further insight into the effects produced by tne application

of Fourier or Mellin transforms can be gained by considering the
inverse transforms.
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M T (x) = i g(s)x “ds (16)
g-ie

The utility of these transform pairs becomes apparent when
the effects of filtering in the transform variable (frequency)
domain are investigated. A resultant filtered function produced
by a forward transform, multiplication by a filter function, and
an inverse transform back to the space domain may be easily
compared to the original, unfiltered function. Note that in this
procedure the transform phase information is not discarded. This
implies that in the case of the combined Fourier-Mellin transform
as defined above it is not possible to return to the original
input function. This is due to removal of the Fourier phase
information before the Mellin transform is performed.

Finally, a function and its Fourier transform satisfy
Parseval's theorem.

f l£0x) | ax =[[F(v)|2dv (17)

-

A simila. relation may be found for the Mellin transform,

f £0x) |2 x%9 lax = /|M(u) 12 av T = 2mv (18)

=% -

These relations may be useful when transform coefficients are
used as components of feature vectnis in pattern recognition
technigques. Since the dimension of the feature vectors may be
much less than the number of transform coefficients available,

Eg. (17) or (18) may give a relative approximation to the amount
of information retained in the feature vectors.




LT e n———

3. MELLIN TRANSFORM IMPLEMENTATION

The Mellin transform can be implemented in several ways.
The ability of lenses to perform Fourier transforms implies that
the Mellin transform can also be performed optically by making
use of Eq. (l14). The requirement for processors of this type
is to sample the input function at spacings x=e¥. Scale
invariant optical Mellin transforms have been sucessfully per formed
(see Refs. {3} and {(4}).

Mellin transforms can also be performed digitally. Suppose

that a function f(x) is defined by values taken at equal incre-
ments, AX.

f(x) = {£(3ax) 3 =0,1,...,N-1} (19

Then Eq. (1) becomes
N-1

M(s) = & £(iax) (5ax) S Lax (20)
j=0

This form of the Mellin transform suffers from computation
restrictions similar to those found in calculating the "slow"
Fourier transform.

A better approach is to use the Fourier equivalent of the
Mellin transform, Eq. (14). This integral is evaluated by summing
contributions at equal increments in y. Rewriting Eq. (13)

x=axe 0¥ (21)

Equation (14) becomnes

o

M(1) =(ax) iy 2

j==eo

f(AxeMy)eJOAyeleAy (22)

fﬂh‘uME’HMHH&H‘-“ e
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Two questions r 1st now be addressed. What upper limit L
should be taken for j? What frequency values, 1, should be
calculated? For the first question assume that the N values of
f (x) adequately sample that function. Then, since nonuniform
sampling is used to evaluate Eg. (22), choose the largest increment
in y to be less than or equal to Ax. This should ensure that

f is adequately sampled in the "y" space. The largest increment
occurs for maximum j so with

(N~1) ax = axe(E=1)oy (23)

the largest increment becomes

Ax = Axe LmLIAY _ o (Lm2) By (24)
Combining these equations
L =1+ 1ln{N-1)/1n ((N-1)/(N=-2)) (25)
Ay = 1ln((N~-1)/N-2)) {26)
For later convenience choose L instead to be
L=2" (27)
where n is chosen sufficiently large to satisfy Eq. (25).
Equation (26) then becomes
1
Ay = —1 1n(N-1) (28)
27-1

The second guestion can be answured by rewriting Eq. (22)
in the form of a discrete Fourier transform. To do this the
argument of the phase factor must be altered to

jtAy = 2njk/L (29)
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: Thus
i T = 2nk/LAy |kj< L-1 (30)

are the desired frequencies with increment

i AT = 21 /LAY (31)
The Mellin transform from Eq. (22) can now be written as the
discrete Fourier transform
L-1
. o+ikAT 2: f(AerAy)eJOAYelZNJk/L (32)
M(k) =(Ax) a 3= L~-1)

el il ~nmmwmmmmwwmwwwwmmmmmmmwMMMM

Db i

When j 1is zero in Eqg. (21), x becomes Ax. The sum in Eq. (32)

)

|

can then be broken into two parts corresponding to 3<0 and j>0.
The second part requires sampling f({x) for Ax<x<(N-1l)Ax. Since

egual increments in y do not correspond to values jax, f(x) must

be interpolated. The interpolation can be performed by fitting
a parabola to three successive values of f(jAx). The desired
value f(x) is found by evaluating the parabola at x. A sequence
of numbers is thus formed which can be Fourier transformed using
the Fast Fourier Transform (FFT) algorithm with its associated
computational advantage.

The first part of the sum in Eq. (32) may be evaluated in a
similar manner. Here, however, the interpolation is performed
for ijiAx- The only data values available are £(0) and f(ax).
The final desired transform is the Fourier-Mellin transform.

g udda) bt S, a

This uses the magnitude of the Fourier transform as the input

to a Mellin transform., The magnitude of the Fourier transform

1s real and symmetric about zero, however. Therefore, again use
a parabola as the interpolating function but force it to be
symmetric about zero. To do this use the three successive valuesg

(-ax,£(sx)), (0,£(0)), (ax,f(Ax)). By using a single interpolating

11
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function over the entire range, the sum over negative j in

Eq. (32) may be computed analytically and merely evaluated at
the appropriate frequencies t. The Mellin transform in Eqg. (32) 7
-is tnen the sum of the two parts described above.

L Wttt e - o L

An alternative method of approximating the Mellin transform
is given in Ref. {5}. They also divide Egq. (32) into two parts
and treat the second part essentially the same as described

above. To evaluate the first part they assume that f(x) can be

approximated by a constant

£(x)=£(C)  0<x<dx

(33)
Then from the definition
Ax s :
Ml(s)=f(0)f x5 lax=£(0) (&%) (34)
0

;
i
|
. 13
1
1
i
E |
E
3
1
§
1
E|
3
i
3
]

where My is the contribution from the sum over negative j.

Casasent and Psaltis(s' 7] discuss the space bandwidth

requirements to implement the Mellin transform.

They consider
an input function defined over Oﬁxixmax' Using Eq. (13) this is

equivalent to —m<y§ln(xmax). Instead let XinS X< X o to avoid
the problems introduced near y=-«. Also, assume that x

min=kAx
and x

maX=NAx where Ax is the sampling increment in x space.
In other words, the first k samples of the input function are
excluded.

To find the resolution or sample increment in y space

py = 4 Anx) 5y = AX

(35)
dx

The worst case in terms of the required number of samples in y
space is

py = 8% = A% _ 1 (36)
max NAX N

12
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The required number of y samples (space bandwidth) is then given
by

L=V pax Ymin! /8Y

=N [ln (Nax) -1n(kax)] = Nln(N/k) (37)

Recall that the Mellin transform is to be used with scaled functions
f(ax) where a is the scale factor. The number

are effectively excludkd is proportional to a.
number of excluded samples when a=1l,

of samples k that
Letting kl be the

k=akl (38)

The required space bandwidth is then

L=N1n(N/kl)=Nln(aN/k) (39)
with k/N considered to be proportional to the accuracy.

Table 1 lists a few space bandwidths L calculated from
Egq. (39). Also shown are the number of sample points calculated

using Eqgs. (25) and (27). The values from Egs. (25)
much larger than those from Eq.

and (27) are
{39) for the cases shown. Using
L=4096 and an accuracy k/N=0.01, scale factors of nearly 30

should be possible. Equivalently with a scale of a=3 the accuracy

may be k/N=0.001.
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TABLE 1
SPACE BANDWIDTHS REQUIRED TO EVALUATE THE MELLIN TRANSFORM 4
N k/N a L L L
Accuracy Scale (39) (25) (27)
512 lg 2 2713 3185 4096
512 1lg 3 2920 3185 4096
512 2% 2 2358 3185 4096
512 2% 3 2566 3185 4096
14
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4. TRANSFORMS OF TEST FUNCTIONS

This section presents examples of Mellin and Fourier-Mellin
transforms of simple test functions. Rectangle and gaussian
functions are chosen to provide better physical understanding of
the transform operation. The test functions are easy to visualize
but yet can be considered as fundamental components of more
complicated functions. The real part of s, o, is chosen egqual to
1 for all examples.

First consider the Mellin transform of a rectangle function.
Using 128 sample points, the magnitudes of Mellin transforms are
shown in Fig. 2. Two rectanglcs are transformed separately, one
of width 20 sample points and the other of width 60.

f(x)

8 0<xX<WAX
- w=20,60 (40)

0 WAX<X<X
Ax<x< max

Figure 2 includes both analytic and digitally implemented trans-
forms for both rectangle sizes. The analytic transform is

performed over the range XninSX<Xpax to correspond to the digital
implementation, Eq. (32), and to avoid the difficulties near x=0.
X
max .
M(v) = ./' £(x) x%Vax (41)
“min

Using Egs. (25) and (27), L=1024,

X
1]

min Ax exp(-(L-1)Ay) (42)

and
M(v)

[(wa>1+12"V—<xmin)1+i2"V]/(1+iznv) (43)
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FREQUENCY F (F =K DF)

Fig. 2. Magnitudes of Mellen transforms of rectangle test
functions, one three times wider than the other. Note the close
agreement between the analytic and discrete transforms. The
rectangle widths are evident in the factor of 3 or 4.77 dB
difference in transform magnitudes.
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Figure 2 shows the close agreement between the two transform

methods. Also shown is the effect of the factor of three scaling

between the two test functions, evident here as a constant addi-

tive factor due to the logarithmic scale. This is consistent with

Eq. (6) where a=1/3 and ¢=1 and illustrates the scale invariance
of the Mellin transform,

There are small deviaticns between the analytic and digital

results. This is to be expected since the discrete implementation

in Eq. (32) is an approximation. Indeed, the approximation is

equivalent to the rectangle rule for numcrically evaluating an
integral. There are higher order methods available for approxi-
mating integrals, but Eq. (32) is convenient and relatively
efficient since the FFT algorithm is applicable.

Figure 3 shows Fourier and Mellin transforms of rectangle

functions. Magnitudes of the transforms are plotted on linear

scales. In Fig. 3a the left edge of the rectangle is located at

Figure 3b shows the rectangle shifted to the right
but with the same width.

the origin.

The magnitude of the Fourier transform,
being shift invariant, is identical to that in Fig. 3a in agree-
ment with Eq. (5). The magnitude of the Mellin transform is
clearly different for the two cases illustrating that the Mellin
transform is not shift invariant.
a rectangle three times as wide.

all divided by three.

Figure 3c shows transforms of
The transform magnitudes are
The Mellin transform is now identical to
that in Fig. 3a again illustrating scale invariance. The Fourier
transform is compressed in frequency by a factor of three ccn-

sistent with Eq. (9) and is not scale invariant.
Next consider transforms of gaussian shaped test functions.

This is again a case where the Mellin transform can be performed
analytically.
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1 1 | 1
o -
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0 ‘Fosttion
! | 1 1
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Pt D e NS
0 Frequency
1 ] 1 i
-
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- e
g _ i
0 Frequency

Fig. 3.

Function

Fourier
Transform
Magnitude

Mellin
Transform
Magnitude

Fourier and Mellin transforms of a rectangle test

function illustrating how the magnitude of the Fourier transform
is shift invariant while the magnitude of the Mellin transform

is not.

Similarly the Mellin transform magnitude is scale

invariant while the Fourier transform magnitude is not.
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Fig. 3 (CONT'D)
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2
M(s) =f e * x5 1gx = %r(%s) Re s>0 (44)

With s=1+i2nv

M(v) = r(S+inv) (45)

X
IM(v) | = %‘[n/coshnzv] (46)

Figure 4 shows the results of analytic and discrete Fourier-

Mellin transforms of two gaussian test functions, one four times

wider than the other. Analytic results are independent of width

consistent with the Mellin scale invariance.

The hyperbolic
cosine in Eq. (46)

causes the transform magnitudes to fall
exponentially with frequency.

The constant increment used to sample the test functions

causes the difference between the analytic and discret= calcu-

lations. 1In the discrete case the functions are approximated

as series of rectangles. The Mellin transform is then a complex

snperposition of Mellin transforms of these rectangles. The
larger number of finlte samples from the wider test function is

equivalent to using a smaller increment for the narrower function
and leads to more accurate results.

Gaussian functions are also used in Fig. 5. Here the location

and width of the gaussian are varied. The magnitudes of the

Fourier and Fourier-Mellin transforms are shown along with the

gaussian function. The Fourier transform is invariant to shift

but not to scaling of the function width.
illustra‘e this behavior as well

Figures 5a and 5b

8 the combined shift and scale

invariance of the Fourier-Mellin transform. The Fourier-Mellin

transform is the same as the width=4 transform in Fig. 4. The
kink ir the transform near -40 dB is caused by not allowing the
magnitude to be less than -40 dB for plotting.
scaled by 2 relative to Fig. 5a.

Figure 5b is
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Figure 5c is scaled by a factor of 5.76. This makes the
test function narrower than the width=1 in Fig. 4. As expected
the effectively lower sampling rate results in less accurate
transform values. Also notice that in this case the frequency
bandwidth of the input function exceeds the folding frequency
of the Fourier transform. The Mellin transform is performed on
the Fourier spectrum as shown. Since this spectrum is not a
scaled version of the two previous spectra due to the finite value
at the highest frequency, the Mellin transform values should not
be identical.,

The last series of calculations was also used to check
Parseval's theorem between a function and its transform, Egs. (17)
and (18). The results are summarized in Table 2. Egquation (17)
for the Fourier transform holds for all cases. The approximation
inherent in Egq. (32) is zgain evident for the Mellin transform
in Eqg. (18). An analytic calculation shows that both sides of
Eg. (18) should equal 7.9577. The discrepancy between this value
and those found using the discrete transform led to interpolating
the Fourier frequency spectrum. This is done by appending zeros
to the input function and performing a lengthened transform. The
interpolation decreases the size of the frequency increment
while increasing the numler of increments. This should increase
the accuracy attained in evaluating the Mellin transform using
Eg. (32). 1Increasing the number of samples taken from the input
function would be better, but is not always possible due to
hardware constraints.

The energy of the weighted Fourier transform, the left-hand
side (LHS) of Eg. (18), may be made to closely approach the
analytic value. Summing the energy of the Mellin transform only

over the first 65 cvefficients led to consistently higher values
for the right-~hand side (RHS) of Eq. (18). Since only a portion
of the total nuwber of Mellin coefficients was summed, the
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PARSEVAL'S THEOREM

Scale Fourier
Factor Transform
Eq. (17)

1.00 249.97
1.31 191.49

2.00 124.99

5.76 43.50

TABLE 2
FOR FOURIER AND MELLIN TRANSFORMS

LHS*

7.9531
7.9550
7.9566
8.0178

Mellin Transform Eg.

RHS*

8.0815
8.0816
8.0817
8.1389

Interpolate to % the sample increment

1.00 249.97
1.31 191.49
2.00 124.99
5.76 43.50

7.9566
7.9571
7.9575
8.0174

8.0198
8.0198
8.0198
8.0768

Interpolate to % the sample increment

1.00 249.97
1.31 191.49
2.00 124.99
*LHS = Left-Hand Side

RHS = Right~Hand Side

7.9575
7.9576
7.9577

27

7.9888
7.9888
7.9888

(18)

RHS/LHS

1.0161
1.0159
1.0157
1.0151

1.0079
1.0079
1.0078
1.0074

1.0039
1.0039
1.0035
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resulting energy should be less than the LHS of Eq. (18). The
difference is apparently due to the approximation in Eq. (32).
This is unlike the Fourier case where Eg. (17) can be proven
to hold exactly in the discrete case as well. The last column
in Table 2 lists the ratio RHS/LHS for Egqg. (18). This ratio is
seen to approach one as the Fourier transform is smoothed by

increasing the number of interpolating points. Increasing the

number of Fourier frequency samples through interpolation improves

the accuracy of the discrete Mellin transform of that Fourier
spectrum.

The difficulties described above imply that the relative
energy contributed by the first N Mellin coefficients can only
be determined by first finding the energy of all the coefficients.
This may be computationally expensive for pattern classification
where only a few coefficients may be desired.

Finally in Fig. 6, results of ideal low pass filtering in
the freguency domain are showl.. The top panel shows the input
function. The middle and lower panels show the results of
filtering in the Fourier and Mellin frequency domains, respec-
tively. For both cases a forward transform is performed.
Filtering is done by retaining the first N complex coefficients
and zeroing all higher ones. Finally an inverse transform is
performed to return to the space domain. Note that the phase
information associated with those N coefficients in the frequency
domain is not discarded as it is in performing the Fourier-Mellin
transform, The ringing near the origin in the Mellin results
arises in the inverse Mellin transform and does not affect the
results presented next.

As expected increasing the number of coefficients retained
by the filter increases the fidelity of the resulting space
functions. The fidelity for the Fourier case is independent of
the pcsition of the rectangle pulse. This is not true for the
Mellin case. Here the fidelity is highest near the origin and

becomes progressively worse for positions away from the origin,

28

ki il R Etn T P o _‘ i - L=

ol Pl b W B et

sl




g e ‘”W“WMW ‘\',v

| rsT-5 (8) |

10 COEFFICIENTS

1 Transform
Magnitude

Transtorm
Magnitude

b i B
. 5 } 1 Function
o i (.
2 0 Position
T L T
13
: |
| \ Fouries
g | i 4 Transform
; I Magnitude
. A L Y
{ ; o Frequency
E : T o
i ! .
Mellin
L o //\/\\ Transtorm
E M \f\._ Magoitude
B - AL - i
Frequency

Fig. 6.

g |, A !

better reproduction fidelity.
depends on the function position.

50 COEFFICIENTS

Transtform

o Maairoce

Frequency

T - v
1 stetn
Transt~em

N‘Mar.udn

-
0 Frequency

50 COEFFICIENTS

e T T

-] Function

Fourier

Yransform
. Magnitude

Frequency

T

e L

"

| Transtorm
Magnitude

Frequency

Effects produced by rectangular low pass filters. The
filters are applied in the Fourier and Mellin frequency domains.
hs expected, retaining higher frequency components results in

The fidelity in the Mellin case



These effects are due to fundamental differences in the two
transforms (see Egs. (3) and (12)). The Fourier transform may be
thought of as a method to calculate the coefficients required
to expand a function in a sinusoidal (i.e. Fourier) series.

For a constant frequency the argument of the sinusoids increases
linearly with xX. Looking at the Mellin transform in the same
manner, one finds that the argument of the corresponding sinusoids
does not increase as x but rather as 1ln x. The fineness of
detail that may be represented in both cases is roughly the
oscillation period of the approximating functions. The constant
period in the Fourier case means that a function may be approxi-
mated equally well regardless of the location of that function.
This is not true in the Mellin case where a particular oscillation
period near the origin can only be reproduced away from the origin
by going to higher transform frequencies to compensate for the

ln x term.

This section has considered applying Fourier, Mellin, and
Fourier-Mellin transforms to relatively simple test functions.

The exercise has provided insight into the physical operation of
the transforms and their differences. The next secticn will
consider transforms of more complicated functions more similar

to those encountered in the real world.
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5. TRANSFORMS OF SIMULATED SHIP PROFILES

In the previous section transforms of simple test functions
were considered. Now more complicated functions will be used.
These functions are computer generated, amplitude vs slant range,
radar profiles of a simulated ship. The ship consists of 49 unit
amplitude point scatterers located at representative three-
dimensional positions. The radar is assumed to be viewing the
ship at zero elevation angle but differing aspects. With this
geometry the simulated radar profiles are independent of the
height of the scatterers. Various aspects are found by
effectively rotating the ship about a vertical axis through its
center while keeping the radar position fixed. All distances are
slant ranges along the RLOS and are measured relative to the
rotation axis of the ship.

Several assumptions are made when using this model. No
interference between scatterers occurs in the received waveform.
There is no shadowing of scatterers by others, thus 49 point
scatterers are always visible. Each scatterer is assumed to be
represented by a guassian pulse in the received waveform. Cor-
responding to the unit amplitude of the scatterers, each gaussian
has unit amplitude and all gaussians have identical width.

For a first example consider Fig. 7. Here the model has
been further simplified by assuming that all scatterers lie
along the centerline of the ship. The radar +hen views only a
line of point scatterers. As the viewing aspect between the radar
and the ship is altered, the scatterers remain in the same
positions relative to each other but their absolute locations
are scaled as the cosine of the aspect angle, o. One additional
assumption made is that the width of a point scatterer return is
also scaled by cos o. Then as the perceived length of the ship
shortens, for example, the width of each scatterer return becomes

narrower. This is done to make each profile a scaled version of
the others.
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The top panel of Fig. 7a shows the ship at zero aspect or
along the length. The ship profile is merely the sum of the
returns from all scatterers. The magnitude of the Fourier
transform is plotted in the middle paunel on a linear scale. The
bottom panel shows the magnitude of the Fourier-Mellin transform
with the vertical axis in dB.

Figure 7b shows the ship at a 60° aspect. The scatterer
width is 0.5 (cos 60°) that at a=0°. The profile is thus a scaled
version of the one at a=0°. The Fourier transform is stretched
relative to a=0° but all of the structure remains. The Fourier-
Mellin transform is nearly identical to the one at 0=0° for the
portion shown. Only minor differences appear near the 60th
coefficient, This Fourier-Mellin transform is nearly invariant
to a scale change of a factor of two.

Figure 7c¢ is at an 80° aspect. Even at a scale factor of
nearly six, the Fourier-Mellin transform begins to deviate from
the one at a=0° only near the 42th coefficient. Some deviation
1s expected since the individual gaussian widths are now on the
same order as the sampling increment. The ship profile is more
nearly a series of rectangular pulses than smooth gaussians.

In actual practice the radar return from a point target
does not change as the aspect angie is varied, as is assumed in
Fig. 7. Rather the return from a point target is constant in
width regardless of the aspect angle due to the fixed range
resolution of the radar. The locations of scatterers will scale
with aspect but the scatterer widths will not. Since there is
no longer pure scaling of the target, the Fourier-Mellin transform
should not be invariant. This is seen in Fig. 8 where the
same target is used as in Fig. 7, but the scatterer widths are
not scaled. Comparing Fig. 8 at a=60° with Fig. 7a at a=0°,
the individual scatterers have coalesced producing a profile
different from the one at a=0°. Comparing the Fourier-Mellin

transforms, significant differences appear even in the second

coefficient.
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Fig. 7. Fourier and Fourier-Mellin transforms of simulated ship
profiles are shown at three aspect angles, a. The simulated

ship consists of 49 colinear point scatterers along the centerline
of the ship. The simulated radar range resolution is scaled by
cosa. The profiles are scaled versions of each other and show

the near scale invariance of the Fourier-Mellin transform.
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Effects of constant radar range resolution are shown

for an agspect of 60°.
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Torditions actually encountered are generally worse than
those considered so far.
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Targets are rarely arrays of colinear
point scatterers. Instead the scatterers are distributed in
three dimensions, there is interference between scatterers,

and
it is possible to shadow scatterers by others. Figure 9% shows

the same ship profile as before at =602 but with the scatterers

in three dimensions. There is still no interference or shadowing

allowed. Clearly this profile is not a scaled version of the
profile in Fig. 7a. 1t is not easy to identify this profile as
being from the same ship. As expected the Fourier-Mellin trans-
forms differ substantially even in the first coefficients.

For more complicated profiles such as those considered here,
the Fourier-Mellin transform as implemented is scale invariant
to a good approximation so long as the profiles are actually
scaled. When effects typical of more realistic profiles are
included, scaling does not apply and the Fourier-Mellin transforms
of these profiles are not scale invariant.
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Fig. 9. The effects of using constant radar range resolution and

~a three-dimensional distribution of point scatterers are shown
for an aspect of 60°. The profile and its transforms differ
significantly from those in Figs. 7b and 8. This emphasizes that
agpect is not equivalent to scale for these conditions.
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6. AUTOMATIC SHIP CLASSIFICATION

It was indicated in the previous section that realistic radar
ship profiles do not merely scale by the cosine of the aspect
angle. Both the Fourier and the Fourier-Mellin transforms there-
fore depend on aspect. The guestion is then whether the Fourier-
Mellin transform is able to achieve at least partial aspect
independence and result in ship classification performance better
than that achieved using the Fourier transform. Using the
magnitude of the Fourier-Mellin transform for feature selection,
simple linear and guandratic classifiers are used on both
simulated and real ship profiles. For comparison the same
classification techniques are repeated using the magnitude of the
Fourier transform as the feature selector. Better classification
in terms of lower egual error rates* is the criterion used in the
comparison.

Profiles for each degree of aspect (0° to 180°) are generated
for two ships using the simulated model. The two groups of
profiles are then each divided into a training and a testing
set using alternate profiles. The training sets are used to
train the linear and quadratic classifiers. The classifiers are
tested using both the training and testing sets independently.
Classification results obtained from the training sets should
be optimistic. Results obtained from the testing sets are also

probably biased since the training and testing sets are constructed

*The measure of performance is the equal classification
error probability as derived from the operating characteristic
curve. This O~C curve is a plot of the probability of incorrectly
classifying class 1 vs the probability of incorrectly classifying
class 2 and is obtained by calculating these probabilities as a
function of a threshold and then varying the threshold. The
point where these probabilities are equal is called the equal
classification error prcbability and is often used as a sim-
plified measure of the operating characteristic.
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uging alternate profiles which are unlikely to be totally
independent. The conditions for the comparison between the
Fourier—~Mellin and the Fourier transforms are identical, however,
so the relative performance of each transform should be valid.

Figures 10 and 1l show the classification results for the
two trangforms as a function of the number of transform coefficients
used. The linear classifier results in Fig. 10 are very compar-
able. Neither technique is consistently better than the other.
The quadratic classifier results in Fig. 1l are similar. Again
neither technique outperforms the other. The overall classifi-
cation performance on the simulated ship profiles is better
using the quadratic rather than the linear classifier.

Next the same technigues are applied to actual radar ship
profiles. Data from two ships, an FF, and a DD, are used.
Profiles from each ship are available at approximately one degree
aspect increments. One training and two testing sets are formed
for each ship by assigning every third profile to the same set.
Training and testing are repeated as above. The statements
concerning set independence also apply here. Using two testing
sets provides an indijcation of the spread to be expected in the
classification rates.

Figure 12 shows the linear classifier results. The Fourier
transform performs better by several percent. The spread in
classification rates is smaller for the Fourier transform. Even
larger differences appear using the guadratic classifier as
seen in Fig. 13. The Fourier transform outperforms the Fourier-
Mellin by 5 to 15¢%.

From these examples it appears that the Fourier-Mellin
transform does not provide significantly improved classification
to justify the additional computational expense required. Indeed,
for the actual ship data, the Fourier~Mellin transform performs
significantly poorer than the Fourier transform alone.
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7. SUMMARY AND CONCLUSIONS

This report summarizes the investigation into the Mellin

transform and its possible use in pattern classification of radar

ship profiles. The emphasis is on digital implementation and

insight into the physical operation of the transform rather than

its formal mathematical properties. A combination Fourier-

Mellin transform invariant under both shift and scale operations
is studied in the same manner.

A change of variable converts a Mellin into a Fourier

transform but with a distorted input function. For discretely

sampled functions the Fourier transform may be evaluated using
the FFT algorithm.

This requires resampling of the function,
however,

at nonuniform intervals via interpolation. Evaluation
of the discrete Fourier transform is equivalent to numerically

approximating an integral with an accuracy related to the
sampling rate of the function.

Mellin and Fourier-Mellin transforms of test functio. -
shown. The scale invariance of the Mellin and the shift and

are

scale invariance of the Fourier-Mellin transform are illustrated.

The scale invariance exhibited is shown to be related to the

sampling rate. Transforms of simulated radar ship profiles are

presented. The profiles emphasize that changes in aspect are not
equivalent to scaling of the target.

Neither Fourier nor Fourier-Mellin transforms are invariant
to target aspect changes. The utility of each transform as a

feature selector in ship classification is investigated by

comparing classification perxformance. Linear and quadratic

classifiers are applied to both simulated and actual radar ship
profiles. In the cases tested, the Fourier-Mellin classifica-

tion appears to be no better and possibly worse than Fourier
classification.
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The Fourier-Mellin transform can be potentially useful for
problems involving shift and scale operations. Based upon the
cases tested, the transform appears to be no more useful than
the Fourier transform alone for automatic classification of
radar ship profiles.
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FFT
LHS
RCS

RLOS

GLOSSARY

Fast Fourier Transform
Left-Hand Side

Radar Cross Section
Right~Hand Side

Radar Line-of-Sight
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