A NOTE ON A DIFFICULTY INHERENT IN ESTIMATING RELIABILITY FROM --ETC(U)

OCT 80 B HARRIS; A P SOMS

UNCLASSIFIED NRC-TSR-2123

END
A NOTE ON A DIFFICULTY INHERENT IN
ESTIMATING RELIABILITY FROM STRESS-
STRENGTH RELATIONSHIPS

Bernard Harris and Andrew P. Soms

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706

October 1980

(Received September 8, 1980)
A NOTE ON A DIFFICULTY INHERENT IN ESTIMATING RELIABILITY FROM STRESS-STRENGTH RELATIONSHIPS

Bernard Harris and Andrew P. Soms

Technical Summary Report #2123

October 1980

ABSTRACT

This note calls attention to a difficulty which arises frequently in the application of stress-strength methods in reliability theory. This difficulty has led to unanticipated catastrophic failures in a number of applications.

AMS (MOS) Subject Classification: 62N05, 62F35

Key Words: Modelling, Reliability, Stress-strength

Work Unit Number 4 (Statistics and Probability)

SIGNIFICANCE AND EXPLANATION

Stress-strength models in reliability theory are highly sensitive to small perturbations in the extreme tails. Failure to take this into account has resulted in conclusions which differed substantially from subsequent experience. This note points out the sensitivity to model assumptions and indicates the difficulty in verifying these assumptions experimentally.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the authors of this report.
A NOTE ON A DIFFICULTY INHERENT IN ESTIMATING RELIABILITY FROM STRESS-STRENGTH RELATIONSHIPS
Bernard Harris and Andrew P. Soms

Introduction. Let X and Y be independent random variables with cumulative distribution functions $F_X(x)$ and $G_Y(y)$ respectively. The objective is to estimate

$$R = P(Y < X).$$

This problem arises in the following physical context. Suppose that X is the strength of a component which is subjected to a stress Y. Then the component fails whenever $X < Y$ and does not fail when $Y < X$. For purposes of this exposition, it suffices to assume that X and Y are continuous random variables with probability density functions $f_X(x)$ and $g_Y(y)$.

It is easily established that

$$R = E_X[G_Y(X)],$$

and in many of the references given below, specific parametric models are employed, such as assuming that $F_X(x)$ and $G_Y(y)$ are both normally distributed. In this case

$$R = \phi \left(\frac{\mu_Y - \mu_X}{\sqrt{\sigma_X^2 + \sigma_Y^2}} \right).$$

The purpose of this note is to examine the consequences of such parametric assumptions.

A number of examples have come to the attention of the authors, in which estimates using such parametric assumptions produced results which were significantly contradicted by subsequent experience. In this note, we exhibit a model, which illustrates how such departures from theory occur, yet still provide conformity with the experimental data. In some of these examples, the discrepancies have caused catastrophic results. For this reason, we feel that the publication of this note is warranted, despite its elementary nature.

2. The Normal Stress-Strength Model. To motivate the subsequent material, we present an example in which the normal model was employed. To simplify the discussion, without affecting any of the conclusions to be obtained, we will specify the parameters $\mu_X, \mu_Y, \sigma_X, \sigma_Y$. In practice these will naturally be
estimates and sampling errors will have to be accounted for in any inferential statement.

Example. Let $\mu_X = 84.6$, $\mu_Y = 53.7$, $\sigma_X = 6.0$, $\sigma_Y = 1.5$. Then from (3),

$$1 - R = 3.036 \times 10^{-7},$$

which naturally suggests a highly reliable component.

The normal model is justified on the basis of the central limit theorem. Clearly, the physical properties of stress and strength appear to satisfy the usual intuitive requirements for approximate normality. However, the mode of convergence implied by the central limit theorem is of the

$$\lim_{n \to \infty} F_n(u) = \Phi(u),$$

where $\Phi(u)$ is the standard normal distribution and $u = (x - EX)/\sigma_X$. This does not preclude "large" relative errors in the tails.

As indicated by the above example, the computation of the reliability R is determined almost entirely by the lower tail of $F_X(x)$ and the upper tail of $G_Y(y)$. Further, since experimental data obtained from random samples of strength and stresses (whether paired or two independent samples) is collected primarily from the "center" of the distribution, little experimental information about the tails tends to be available. As is exhibited in the next section, relatively small perturbations to the tail of the strength distribution can make the failure probability far higher than may be regarded as desirable, particularly in the case where failures can be catastrophic. We exhibit this phenomenon for the example given above.

3. A Model For Stress-Strength Data Which Conforms to Many Practical Situations.

For the equipment whose data is given in the example in Section 2, when it was placed into service, approximately one device in 1000 failed, contradicting
the results of the example in Section 2. A proposed explanation is given below.

Let $0 < \varepsilon < 1$ be given and let

$$F_X(x) = (1-\varepsilon)H(x) + \varepsilon K(x),$$

(4)

where $H(x)$ is a normal distribution function and

$$P\{U < Y\} > 1 - \eta,$$

(5)

$0 < \eta < 1$ and U is distributed by $K(x)$. The case of interest occurs when ε and η are both small. Physically, we may regard this as follows. With probability $1-\varepsilon$, the customary properties of the strength distribution hold, but with probability ε, a "flaw" is present and the device fails when subjected to a random stress distributed in accordance with $G_Y(y)$. Then, if a random sample of N_X strengths is observed, the probability that no device with a flaw is observed is

$$N_X \varepsilon
\begin{array}{c}
N_X \\
(1-\varepsilon)^{-1} \varepsilon
\end{array}
(1-\varepsilon) - N_X \varepsilon.$$

(6)

and

$$(1-R) > \varepsilon(1-\eta) \sim \varepsilon.$$

(7)
To see how this behaves numerically, we return to the previous illustration and suppose \(\varepsilon = .001, N = 100 \). Then the probability that no flaw is detected is .905 and the failure probability of the device is .001 and not \(3 \times 10^{-7} \) as obtained earlier. Consequently, a naive application of inferential procedures based on (3) is highly likely to drastically overestimate the reliability (in the sense of a large relative error in the failure probability), since the presence of the alternate mode of failure (a flaw) is not likely to be detected during the experiment.

4. Concluding Remarks. This note is intended to exhibit a serious problem in the use of stress-strength relationships in the estimation of reliability. This problem is not artificial; it has actually occurred in a number of instances that have come to the attention of the authors. Further, it is clear that the usual types of experiment in which a random sample of \(N \) strengths and \(N \) stresses is observed or \(N \) pairs of strength and stresses are observed will not eliminate the difficulty, unless astronomically large sample sizes are employed. Unfortunately, testing strength is frequently destructive of the item being tested so that increasing the sample size is economically infeasible.

In the example given in Section 2, the population parameters were assumed known. However, if sample estimates for \(N_x = N_y = 100 \) are used, a 90% upper confidence limit for \(1-R \) is easily seen to be about \(7 \times 10^{-7} \). Thus the effect of not knowing the parameter changes the estimate from one failure in 3,000,000 to about one failure in 1,400,000. However, the introduction of the perturbation \(cK(x) \) changed the probability of failure to one on 1000. In addition, the difference between \(F_{X}(x) \) and \(H(x) \) will not be detected.
by goodness-of-fit tests, thus giving the experimenter false confidence in the results given by the example of Section 2.

While the preceding discussion has treated the case of normally distributed stresses and strengths, the same kind of problem arises in other parametric models.

One way to proceed in circumventing this difficulty is to devise models for the existence of flaws, which can be tested statistically. Such studies are presently underway and some partial results have been obtained.
REFERENCES

Church, F.D. and Harris, B. (1970). The estimation of reliability from stress-strength relationships. Technometrics, 12, 49-54.

Owen, D.B., Craswell, K.J., and Hanson, D.L. (1964). Nonparametric upper confidence bounds for $Pr(Y < X)$ and confidence limits for $Pr(Y < X)$ when X and Y are normal. J. Amer. Statist. Assoc., 59, 950-951.

This note calls attention to a difficulty which arises frequently in the application of stress-strength methods in reliability theory. This difficulty has led to unanticipated catastrophic failures in a number of applications.