SMOOTHING ESTIMATION OF
STOCHASTIC PROCESSES - PART I:
CHANGE OF INITIAL CONDITION FORMULAE

V. Solo

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706

September 1980

(Received May 20, 1980)

Approved for public release
Distribution unlimited

Sponsored by
U. S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709
UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

SMOOTHING ESTIMATION OF STOCHASTIC PROCESSES - PART I:
CHANGE OF INITIAL CONDITION FORMULAE

V. Solo

Technical Summary Report #2119
September 1980

ABSTRACT

The change of initial condition (CIC) problem in the theory of smoothing in linear estimation is formulated in terms of a fixed rank perturbation to a covariance kernel. The CIC or partitioning formulae are then shown to apply for general nonstationary processes. It becomes clear that the formulae involved derive from inversion formulae for fixed rank modification of a positive definite kernel or matrix.

AMS(MOS) Subject Classifications: 93E10, 60G35

Key Words: Linear Estimation, Smoothing, Filtering, Covariance Kernel, Hilbert Space

Work Unit Number 4 - Statistics and Probability

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
SIGNIFICANCE AND EXPLANATION

The estimation of one process from measurements on another related process is a problem that arises in many areas such as Time Series Analysis, Econometrics, Communications Engineering and Control Engineering. Particularly in the Engineering Applications there is a great interest in various computational forms of the algorithms proposed to solve the above problem. One important question concerns the effect of perturbations, in the initial conditions of the process statistics, on the algorithms. This article discusses such effects for general process models and relates the results to the inversion of perturbed matrices or kernels.

The responsibility for the wording and views expressed in this descriptive summary lies with MPC, and not with the author of this report.
SMOOTHING ESTIMATION OF STOCHASTIC PROCESSES - PART I:
CHANGE OF INITIAL CONDITION FORMULAE

V. Solo

Introduction. Recently a great amount of attention has been focused on various
algorithms for solving the smoothing problem of linear estimation theory; see Ljung
and Kailath [11], Lainiotis [10], and references in these. The main algorithms
include the two-filter formulae, Mayne [13], Fraser [3], Mehra [14]; the innovations
formulae, Kailath and Frost [7]; and the partitioned algorithms, Govindaraj and
Lainiotis [4].

This work is the first part of a two part investigation of these algorithms.
In Part I it is shown how change of initial condition (CIC) or partitioning formulae
hold in a very general setting (the CIC problem is shown to involve fixed rank
perturbation in matrix inversion). In Part II the nature of the two-filter algorithms
is explored by providing a simple derivation that shows to what extent the formulæ
hold generally and so reveals exactly how a wide sense Markovian assumption in necessary
for their full utility.

The remainder of the paper is structured as follows. Section I contains a
discussion of CIC formulæ for discrete observations. Section II concerns CIC
formulae for continuous observations (actually the formulæ are the same). Section III
discusses the relation with other work.

Before continuing recall the matrix inversion lemma (MIL). Let , , T, be matrices related by

\[Z = T + D, \]

then

\[Z^{-1} = (T + D)^{-1} = T^{-1} - T^{-1}(C^{-1} + D^{-1}C^{-1})^{-1}C^{-1} \] (MILa)

The following consequences are well known

\[Z^{-1} = T^{-1} - Z^{-1}D^{-1}T^{-1} \] (MILb)

Sponsored by the United States Army under Contract No. DAMO29-80-C-0041.
\[a^{-1} \cdot a \cdot (a^{-1}) = a^{-1} \]
\[a^{-1} = -1 \quad (z = -\nu \cdot \epsilon) \]

The next two relations are less often used. By comparing (III11), (III3) it follows that:

\[(z - \nu - \epsilon) \cdot (z - \nu - \epsilon) = z - \nu - \epsilon \]

or:

\[(z - \nu - \epsilon) \cdot (z - \nu - \epsilon) = z - \nu - \epsilon \]

Now let us call in (III10) to see:

\[(z - \nu - \epsilon)^{-1} = (z - \nu - \epsilon)^{-1} \]
I. Change of Initial Condition Formulae.

Consider the linear estimation of an \(n \) dimensional process \(\chi(t) \) from measurements on a related \(n \) dimensional process \(y(t) \). We deal firstly with discrete measurements (at times \(t_1 < t_2 < \ldots < t_N = T \) in an observation interval \(0 < t < T \)) which we collect into a vector \(\hat{y} \). Suppose the process \(y(t) \) is composed of a zero mean process \(\chi_a(t) \) plus a transient component of the form \(y(t,0) \dot{z} \) where \(y(t,0) \) (henceforth denoted \(\dot{z} \)) is a deterministic transition matrix (with \(\text{viz: } 0(0,0) = I \) and \(\dot{z} \) is a random vector uncorrelated with \(\chi_a(t) \)). It is supposed that the transient has induced a perturbation within the measured process \(\chi(t) \) so that \(\chi(t) \) is of the form \(\chi(t) = \chi_a(t) + g(t,0) \dot{z} \) where \(\chi_a(t) \) is a zero mean process and \(g(t,0) \) a deterministic function. Thus the measurement vector has the form

\[
\hat{y} = \chi_a + \dot{z} \dot{z}^T
\]

The setting described here has been used by Aasnaes and Kailath [1] to study the robustness of filtering algorithms to initial-condition perturbations.

1a. A basic CIC Formulae.

Consider now the linear estimation of \(\chi(t) \) from the measurements \(\hat{y} \) under varying assumptions for the statistics of the \(\dot{z} \) vector i.e. the initial conditions for \(\chi(t) \). Under condition “0” let \(F_0(z) \) be the distribution function of the vector \(\dot{z} \) and suppose

\[
F_0(z) = z_0 + F_0(z - z_0)(z - z_0)' = z_0
\]

where \(z_0 \) denotes integration with respect to the distribution \(F_0(z) \). We have for example

\[
F_0(\chi(t)) = \int_{-t=0}^t \chi_0
\]

From this we can compute the linear least squares estimate
\[
\begin{align*}
\mathbf{z}(t) &= \mathbf{x}(t) - \mathbf{x}(0) = \mathbf{x}(t) - \mathbf{x}(0) \\
\mathbf{z}_0 &= \mathbf{z}(0) = \mathbf{x}(0) - \mathbf{x}(0) \\
\mathbf{u}(t) &= \mathbf{u}(t) - \mathbf{u}(0) = \mathbf{u}(t) - \mathbf{u}(0)
\end{align*}
\]
No subscript is given to this last expectation since the same result is obtained under "0" or "1" Similarly

\[Y_0 = E(x_0(t)|x_0^t) + \zeta_t \cdot \mathcal{O} \]

(6b)

Thus

\[Y_1 = Y_0 + \zeta_{1} \cdot \mathcal{O} \]

(6c)

Similarly

\[S_1 = S_0 + \zeta_{1} \cdot \mathcal{O} \]

(6d)

Thus \(Y_1, S_1 \), are perturbations of \(Y_0, S_0 \). When further observations are added \(S_1 \) remains a fixed rank perturbation of \(S_0 \). This point is the essence of the ensuing formulae.

Returning to (5a) we have

\[\delta_{1}(t; t') = F_{1}(x(t)) = \mathcal{N}^{-1} \mathcal{L} \]

\[= \mathcal{N}^{-1} \mathcal{L}_0 - \mathcal{N}^{-1} \mathcal{L} (\Theta_1 - \Theta_0) \]

by (6d) and (6c)

\[= \mathcal{N}^{-1} \mathcal{L}_0 - \mathcal{N}^{-1} \mathcal{L} \left(\mathcal{N}^{-1} \mathcal{L}_0 - \mathcal{N}^{-1} \mathcal{L} (\Theta_1 - \Theta_0) \right) \]

or, recalling (3) we find

\[\delta_{1}(t; t') = \delta_{0}(t; t') - \left(\Theta_t - \mathcal{N}^{-1} \mathcal{L}_0 \right) \left(\mathcal{N}^{-1} \mathcal{L}_0 - \mathcal{N}^{-1} \mathcal{L} \right) \]

(6f)

Let us write

\[\delta_{0}(t; t') = \mathcal{N}^{-1} \mathcal{L}_0 \quad \text{(7a)} \]
and observe that
\[x(t, T) = x_0(x(t)) - x_1(x(t)) \mathcal{L}_1(x(t)) \mathcal{L}_1^T(x(t)) \]

where
\[x_0(x(t)) = x_0 \left(x(t) \right) = \begin{cases} 1 & \text{if } x(t) = 1 \\ 0 & \text{otherwise} \end{cases} \]

and
\[x_1(x(t)) = \begin{cases} 1 & \text{if } x(t) = 1 \\ 0 & \text{otherwise} \end{cases} \]

using the relations for \(t = 0 \)
\[x(t, T) = x_0(x(t)) - x_1(x(t)) \]

and
\[x(t, T) = x_0(x(t)) - x_1(x(t)) \]

For the interval from \(t = 0 \) to \(t = T \),
\[x(t, T) = \begin{cases} x_0(x(t)) - x_1(x(t)) & \text{if } x(t) = 1 \\ 0 & \text{otherwise} \end{cases} \]

This result shows that the least square estimation error is orthogonal to any linear function of the true source.

We observe
\[x(t, T) = x_0(x(t)) - x_1(x(t)) \mathcal{L}_1(x(t)) \mathcal{L}_1^T(x(t)) \]

where
\[x_0(x(t)) = x_0 \left(x(t) \right) = \begin{cases} 1 & \text{if } x(t) = 1 \\ 0 & \text{otherwise} \end{cases} \]

and
\[x_1(x(t)) = \begin{cases} 1 & \text{if } x(t) = 1 \\ 0 & \text{otherwise} \end{cases} \]

Using the relations for \(t = 0 \)
\[x(t, T) = x_0(x(t)) - x_1(x(t)) \]

and
\[x(t, T) = x_0(x(t)) - x_1(x(t)) \]

For the interval from \(t = 0 \) to \(t = T \),
\[x(t, T) = \begin{cases} x_0(x(t)) - x_1(x(t)) & \text{if } x(t) = 1 \\ 0 & \text{otherwise} \end{cases} \]

This result shows that the least square estimation error is orthogonal to any linear function of the true source.

We observe
\[x(t, T) = x_0(x(t)) - x_1(x(t)) \mathcal{L}_1(x(t)) \mathcal{L}_1^T(x(t)) \]

where
\[x_0(x(t)) = x_0 \left(x(t) \right) = \begin{cases} 1 & \text{if } x(t) = 1 \\ 0 & \text{otherwise} \end{cases} \]

and
\[x_1(x(t)) = \begin{cases} 1 & \text{if } x(t) = 1 \\ 0 & \text{otherwise} \end{cases} \]
\[\begin{align*}
I_1(t_0|T) &= P_1(t_0|T)_{-1}^{-1} = I_t - X_1 S_1^{-1} G
\end{align*} \]

Note that in formulae (8) the suffices 0,1 are dummy suffices and may be interchanged.

Since no relation has been specified between \(t \) and \(T \), equations (8) are both filtering and smoothing formulae. It is interesting that the data dependent portion of the correction term in (8) is the same for all \(t \).

Now let us turn to find a CIC formula for \(P_1(t_0|T) \) or \(\bar{V}_1(t_0|T) \). Since \(I_1(T) \) is of intermediate interest a CIC for this will be found too.

Ib. A CIC formula for \(P_1(t_0|T)_{-1}^{-1} \).

Consider then

\[P_1(t_0|T)_{-1}^{-1} = I_t - X_1 S_1^{-1} G \]

\[= I_t - X_0 S_1^{-1} G - I_t S_t^{-1} S_1^{-1} G \] by (6c)

\[= I_t (I - \Sigma S_1^{-1} G) - X_0 S_1^{-1} G \]

\[= I_t (I - \Sigma S_1^{-1} G) - X_0 S_0^{-1} G (I - \Sigma S_1^{-1} G) \] by (6d) and (MIII)

\[= (I_t - X_0 S_0^{-1} G) (I - \Sigma S_1^{-1} G) \]

\[= E_0(t_0|T)_{-1}^{-1} (I - \Sigma S_1^{-1} G) \] (9a)

let us call

\[I = I - \Sigma S_1^{-1} G = (I - \Sigma S_1^{-1} G) I \] (10a)

so that

\[P_0(t_0|T)_{-1}^{-1} = I_0(t_0|T) \]

\[= P_1(t_0|T)_{-1}^{-1} \] (9b)

In the other hand, guided by (MIII) we find via (6d) that
\[z^{-1} = (\frac{2}{h} - \frac{h'}{h^2}) z^{-1} = z^{-1} + \frac{h'}{h^2} z^{-1} \]
\[= z^{-1} + \frac{h'}{h^2} \]

Thus, recalling (7a) and (4):
\[\varphi_0 = \frac{2}{h} \left[z_0^{-1} - \frac{h'}{h^2} z_0 \right] \]
\[= \frac{2}{h} \left[z_0^{-1} - \frac{h'}{h^2} \right] \]

Again (7b) we can view φ_0 in another way by introducing
\[\varphi_0 = \frac{2}{h} \left[z_0^{-1} - \frac{h'}{h^2} \right] \]
\[= \frac{2}{h} \left[z_0^{-1} - \frac{h'}{h^2} \right] \]
\[= \frac{2}{h} \varphi_0 \]

Using (1d) we can write (7a) as
\[\varphi_1(t, \phi, \bar{\phi}) \]
\[= \varphi_0(t, \phi, \bar{\phi}) \]

Here is a new formula for φ_1. From (1a)
\[\varphi_1^{-1} \frac{\partial}{\partial \phi} \varphi_1^{-1} = \frac{\partial}{\partial \phi} \]
\[= \frac{\partial}{\partial \phi} \]

And (1b) (1c)
\[\varphi_1^{-1} \frac{\partial}{\partial \phi} \varphi_1^{-1} = \frac{\partial}{\partial \phi} \]
\[= \frac{\partial}{\partial \phi} \]

And, φ_1^{-1} we can use (1a) or (1c), (1d) to find φ_1.

--
10. CIC formula for \(\eta(t,T) \).

Now

\[
\eta(t,T) = C^* E_t^{-1} \eta_1
\]

\[
= B_t^* E_t^{-1} \eta_0 - B_t^* E_t^{-1} (B_1 - B_0)
\]

\[
= B_t^* E_t^{-1} \eta_0 - E_t E_t^{-1} (B_1 - B_0) \cdot \eta_1 (B_1 - B_0)
\]

by (11d) and (10d)

\[
= \eta_0 (t,T) - B_t^* E_t^{-1} \eta_0 (0,T) - \eta_1 (B_1 - B_0)
\]

\[
= (1 - B_t^* E_t^{-1} \eta_0 (0,T)) - \eta_1 (B_1 - B_0)
\]

by (10a)

\[
= \eta_0 (0,T) - \eta_1 (B_1 - B_0)
\]

However by (10c)

\[
\eta_0 (B_1 - B_0) = (1 - \eta_1 (B_1 - B_0)) \eta_1 = \eta_0 \eta_1
\]

Thus

\[
\eta_0 (t,T) = \eta_0 (0,T) - \eta_1 (B_1 - B_0)
\]

(11a)

Also observe that

\[
B_1 - B_0 = \eta_0 (0,T) + (1 - \eta_0 (0,T)) (B_1 - B_0)
\]

\[
= \eta_0 (0,T) + (B_1 - B_0)
\]

by (10a) (11b)

11. A CIC formula for \(\eta_1(t,t,T) \).

In Appendix A it is shown that

\[
\eta_1(t,t,T) = \eta_0 (t,t,T) + \eta_1 (t,t,T) - \eta_0 (0,T)
\]

\[
= \eta_0 (t,t,T) + \eta_1 (t,T) \cdot \eta_1 (t,t,T)
\]

(12a)
Application of (8) allows this to be written

\[
\tilde{X}_1(t,t') = \tilde{X}_6(t,t') + \tilde{X}_4(t,t') \tilde{X}_4^{-1}(t',0) T'
\]

(12a)

Finally, note from orthogonality

\[
\tilde{X}_4 = \tilde{X}_2(0,0,T') = \tilde{X}_4 - \tilde{X}_4(0,0,T)
\]

\[
\tilde{X}_4 = \tilde{X}_4 \text{ by } (10c)
\]

(12b)

Then by (12d)

\[
\tilde{X}_1^{-1} = \tilde{X}_1^{-1} \cdot (\tilde{X}_4^{-1} - \tilde{X}_4)^{-1}
\]

Similarly

\[
\tilde{X}_2^{-1} = \tilde{X}_2^{-1} \cdot (\tilde{X}_4^{-1} - \tilde{X}_4)^{-1} ; \tilde{X}_4 = \tilde{X}_4(0,0,T)
\]

Now since \(\tilde{X}_4 = \tilde{X}_6 \cdot \tilde{X}_6 \) (10f) implies by subtraction

\[
\tilde{X}_1^{-1} = \tilde{X}_1^{-1} - \tilde{X}_4^{-1} - \tilde{X}_4^{-1}
\]

(12c)

The full set of change of initial condition formulae are

Equations (8a), (8b) for \(\tilde{X}_1(t,t') \)

Equations (9b), (9c) for \(\tilde{X}_4(t,0,T) \)

Equations (12a), (12b) for \(\tilde{X}_1(t,t') \)

Equation (10c) for \(\tilde{X}_4 \)

Equation (10d) for \(\tilde{X}_1 \)

Notice that every quantity in these equations has a stochastic interpretation. This enables a rapid comparison with other work, see Section III. Also it is shown in Section II that these equations hold also for continuous time measurement.
Calculation of $\dot{z}(t,0|T)$ in continuous measurement State Space Models.

The quantity $z(t,0|T) = \dot{z}(t,0|T)$ has only appeared in earlier work with $T = t$ or $t = 0$. Here we derive a differential equation for $z(t,0|T)$. Begin with the usual State Space Model

$$\frac{dx}{dt} = F(t)x(t) + \nu(t)$$
$$y(t) = H(t)x(t) + v(t)$$

where ν, v are uncorrelated white noises with covariance matrix I. We use a formula of Rauch et. al., [21], (also Kailath and Frost [7, equation (34a)])

$$\dot{z}(t,0|T)/dt = \dot{z}(t)|T) + \dot{z}(t)|T)P^{-1}(t)(\dot{z}(t,T) - \dot{z}(t,T))$$

Thus

$$\dot{z}(t,0|T)/dt = \frac{d}{dt}E(x(t) - \dot{z}(t,T))x'(0)^{-1}$$
$$= \frac{d}{dt}E(x(t) - \dot{z}(t,T))x'(0)^{-1}$$
$$- \frac{d}{dt}(t)|T)P^{-1}(t)(\dot{z}(t,0|T) - y(t,0|T))$$

Thus

$$\dot{z}(t,0|T)/dt = (F(t) + \dot{z}(t)|T)P^{-1}(t))\dot{z}(t,0|T)$$
$$= (F(t) + \dot{z}(t)|T)P^{-1}(t))\dot{z}(t,0|T)$$

We need only augment this with an equation for $\dot{z}(t,0|T)$ which is easily shown to be the Kalman Filter transition matrix

$$\dot{\dot{z}}(t,0|T)/dt = (F(t) - \dot{z}(t)|T)P^{-1}(t))\dot{z}(t,0|T)$$

with initial condition $z(0,0|0) = I$.

7. CFC formula for a Gaussian likelihood.

Consider the log Gaussian likelihood which is, to within a constant

$$\ln L = \ln \left| \frac{1}{2} \nu' \nu \right| - \frac{1}{2} \nu' \nu \quad (13a)$$
Now
\[|s_1| = |s_0| \cdot |s_1| = |s_0| \cdot |s_0^{-1} s_2| \cdot |s_2| \cdot |s_2^{-1} s_1| \]
\[= |s_0| \cdot |s_0^{-1} s_2| \cdot |s_0| \cdot |s_2| \cdot |s_2^{-1} s_1| \]
\[= |s_0| \cdot |s_2| \cdot |s_2^{-1} s_1| \]

by (10c) \hspace{2cm} (13b)

Next
\[u_1^{-1} u_1 = (u_0 - \mathcal{E}(s_1 - s_0)) u_0^{-1} u_1 \]
\[= u_0^{-1} u_1 - (s_1 - s_0)^{-1} u_1 \]

where \(u_1 = s_1(0 \mid T) \); see (7a).

so
\[u_1^{-1} u_1 = (s_0^{-1} - s_1^{-1} s_0) u_0^{-1} u_1 = (s_1 - s_0)^{-1} u_1 \]

by (11lb). Continuing
\[u_1^{-1} u_1 = u_0^{-1} u_0^{-1} u_0 - s_1^{-1} s_0^{-1} s_0 \]
\[= u_0^{-1} u_0^{-1} u_0 - (s_1 - s_0)^{-1} u_1 \]

since \(u_1 = u_0 - \mathcal{E}(s_1 - s_0) \).

Thus
\[u_1^{-1} u_1 = u_0^{-1} u_0^{-1} u_0 - (s_1 - s_0)^{-1} u_1 \]
\[= (s_1 - s_0)^{-1} u_1 \]

Now denote
\[\hat{x}_1 = s_1(0 \mid T) \quad \hat{s}_0 = s_0(0 \mid T) \]
\[\hat{P}_1 = P_1(0, 0 \mid T) \quad \hat{P}_0 = P_0(0, 0 \mid T) \]

and set \(t = 0 \) in (8a) to see

\[\hat{x}_1 = \hat{x}_1(0 \mid T) \]

\[\hat{s}_0 = \hat{s}_0(0 \mid T) \]

\[\hat{P}_1 = \hat{P}_1(0, 0 \mid T) \]

\[\hat{P}_0 = \hat{P}_0(0, 0 \mid T) \]
also applying the inverse of (9b) with $t = 0$ gives

\[(9a)^{-1} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_0 \end{bmatrix} = \begin{bmatrix} p_1 \\ p_0 \end{bmatrix} \]

so

\[(9a)^{-1} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_0 \end{bmatrix} = (9a)^{-1} \begin{bmatrix} p_1 - p_0 \\ p_0 - \hat{x}_0 \end{bmatrix} \]

Thus

\[(9a)^{-1} (\hat{x}_1 - \hat{x}_0) = (9a)^{-1} \begin{bmatrix} p_1 - p_0 \\ p_0 - \hat{x}_0 \end{bmatrix} \]

However (12a) with $t = 0$ implies

\[L_1 - L_0 = L_1^{-1} \begin{bmatrix} p_1 - p_0 \\ p_0 - \hat{x}_0 \end{bmatrix} \]

Thus

\[L_1^{-1} (\hat{x}_1 - \hat{x}_0) = (L_1 - L_0)^{-1} \begin{bmatrix} p_1 - p_0 \\ p_0 - \hat{x}_0 \end{bmatrix} \]

so finally collecting (13a), (13b), (13c)

\[\ln L_1 = \ln L_0 + \ln \left(L_1^{-1} \right) - \ln \left(L_0^{-1} \right) \]

\[+ \frac{1}{2} \left(\hat{x}_1 (0|T) - \hat{x}_0 (0|T) \right)^T (P_1 (0|0|T) - P_0 (0|0|T))^{-1} \left(\hat{x}_1 (0|T) - \hat{x}_0 (0|T) \right) \]

\[= \frac{1}{2} \left(\hat{x}_1 (0|T) - \hat{x}_0 (0|T) \right)^T \left(\begin{bmatrix} p_1 - p_0 \end{bmatrix} \right)^{-1} \left(\begin{bmatrix} p_1 - p_0 \end{bmatrix} \right) \]

\[(14) \]
II. Continuous Time.

Let us retain the assumptions of Section I concerning the presence of the transient term in both x and y and suppose now that y is measured continuously over the interval $0 \leq t \leq T$. Introduce similarly to before the kernels $M_1, S_1, g'g', \cdots g'$ defined on $[0,T] \times [0,T]$ by

\begin{align*}
M_1(t,\tau) &= \mathbb{E}_1(x(t)x(\tau)) \quad i = 0, 1 \\
S_1(t,\tau) &= \mathbb{E}_1(y(t)y(\tau)) \quad i = 0, 1 \\
g'g'(t,\tau) &= f(t)f'(\tau) \quad i: g'(t,\tau) = i_{t+2}g'(\tau)
\end{align*}

where

\begin{align*}
x_1(t) &= x(t) - \mathbb{E}_1(x(t)) \quad i = 0, 1 \\
y_1(t) &= y(t) - \mathbb{E}_1(y(t)) \quad i = 0, 1
\end{align*}

Then it follows as in Section Ia that

\begin{align*}
S_1 &= S_0 + g'g' \\
M_1 &= M_0 + g'g'
\end{align*}

suppose too, without loss of generality that

\begin{equation}
\beta \quad \text{is positive definite}
\end{equation}

- recall $g(t)$ is an $n_y \times n_x$ matrix function. In the sequel $h(t), \xi(t)$ will denote general n_y-vector functions.

The appropriate setting for the further development of CIC formulae in a general fashion is the theory of Reproducing Kernel Hilbert Spaces (RKHS): See Parzen [16] and Mallat [1]. The idea in the RKHS approach is to provide a coordinate free representation of continuous time equivalents of discrete forms such as $h'_t \mathbf{h}_0$.

Now Parzen [16] only discusses RKHS's for scalar processes so it will be indicated briefly how to define an appropriate RKHS for vector processes.
Proposition 1. Existence and Uniqueness of a vector RKHS generated by an \(n_y \times n_y \) matrix covariance kernel (cf. Parzen [17, Theorem 3.1]). Let \(\chi(t), t \in [0, T] \) have covariance kernel \(\kappa(t, \cdot) \). Let \(H(\cdot) \) consist of all \(n_y \)-vector functions \(h(\cdot) \) on \([0, T]\) of the form

\[
h(t) = E(y(t)U)
\]

for some scalar \(U \) in \(SL_2(\chi(t), t \in [0, T]) \) where \(SL_2 \) is the (scalar) Hilbert Space of random variables that are finite scalar linear combinations of the form

\[
\sum_{i=1}^{n_y} \kappa_i(t) \eta_i \quad \text{for some } \eta_i \in \mathbb{R}^n
\]

where \(\sum_{i=1}^{n_y} \kappa_i(t) \eta_i \) is the \(\chi(t) \) of random variables \(\chi(t), t \in [0, T] \) or limits in mean square of such finite linear combinations. Define an inner product on \(H(\cdot) \) as follows. If

\[
h(t) = E(y(t)U) \quad f(t) = E(y(t)V)
\]

for \(U, V \) in \(SL_2 \), define

\[
(h', f) = E(UV)
\]

Then \(H(\cdot) \) is a Hilbert Space satisfying

(a) \(\sum_{i=1}^{n_y} (h^i, f) = h(t) \) where \(h(t) \) is the \(i \)-th column of \(h(\cdot, t) \)

(b) \((h', f) = E(y(t)Uy_i(t)) \)

Proof. Follows much as in the proof of Theorem 3.1 of Parzen [17]. Observe for example though that

\[
\sum_{i=1}^{n_y} (h^i, f) = E(y(t)U)
\]

where \(y_i(t) \) is the \(i \)-th component of \(y(t) \). Thus

\[
(f', h^i) = E(y_i(t)U) = f_i(t)
\]

Remark 1. Let \(F(t) \) be an \(n_y \times m \) matrix function on the form \(F(t) = (f_1(t) \ldots f_m(t)) \) where \(f_i(t) \) are \(n_y \)-vector functions. Also let \(G(t) \) be a similarly defined \(n_y \times n \) matrix function. With a slight abuse of notation denote by \((F, G) \) the \(m \times n \) matrix whose \(i, j \) element is \((F^i_j, G^i_j) \). Thus

\[
(h', F) = h(t)
\]
can be written

\[(h(t), z(t)) = h(t)\]

Also

\[(h_i(t), z_j(s)) = h_i(t,s)\]

reads

\[(z(t), z(s)) = \bar{z}(t,s)\]

Finally we denote

\[f_i \in H(z) \quad i = 1, \ldots, m\]

by

\[f \in H(z)\]

Remark 2. All the scalar RKHS theorems given by Parzen [16] apply to vector RKHS's.

The basic question in applying RKHS theory consists in finding computational expressions for the RKHS norm: for some concrete examples see Parzen [16] and Kailath et. al. [7]. To obtain results analogous to those of Section I we need a MIL for a RKHS. First however it is convenient to define the direct product of two vector RKHS's (cf. Parzen [17], also Kailath [6, p. 18]).

If \(Z, \bar{Z}\) are two \(m\)-dimensional positive definite kernels on \([0,T] \times [0,T]\) generating RKHS's \(H(Z), H(\bar{Z})\) respectively then the direct product \(H(Z) \otimes H(\bar{Z})\) is the space of \(m \times m\) matrix functions on \([0,T] \times [0,T]\) which are linear combinations of products of functions, one from \(H(Z)\), the other from \(H(\bar{Z})\) (of the form \(z(t,s) = i_j z_i(t) z_j(s)\)) on limits in the norm

\[\|z(t,s)\|_Z^2 = z_i z_j (z_i z_j)(z_i z_j)\]

of such linear combinations \((d_{i,j})\) are real scalars).

Proposition 2. MIL for RKHS's. Let \(Z, \bar{Z}\) be \(m \times m\) matrix kernels on \([0,T] \times [0,T]\) related by

\[Z(t,s) = z(t,s) + \bar{Z}(t) \bar{z}(s)\]
where \((t)\) is an \(m \times d\) matrix function and \(\gamma\) a \(d \times d\) positive definite matrix.

Let \(H(2), H(1)\) be the subspace's generated by \(Z, \ldots, Z\) respectively then \(H(1) = \bigcap_{i=1}^{d} H(\lambda_i)\). (i.e. \(\lambda_i \in \mathbb{R}\), \(i = 1, \ldots, d\) where \(\lambda_i(t)\) is the \(i\)th column of \(\gamma(t)\)) we have

(a) \(f : H(2) \iff f : H(1)\)

This does not mean \(H(2)\) is a subspace of \(H(1)\) or vice versa since that would entail equality of inner products.

(b) For \(\mathbf{h}, \mathbf{f} : H(2)\) the \(H(2)\) inner product is

\[
\langle \mathbf{h}, \mathbf{f} \rangle_{H(2)} = \sum_{i=1}^{d} \langle \mathbf{h}^{(i)}, \mathbf{f}^{(i)} \rangle_{\mathbb{R}^{m_i}}
\]

where \(\mathbf{z}^* = Z^{-1} \cdot (Z^* \cdot Z)^{-1}\)

Remark 1. Formula (b) was suggested by [Sla].

Remark 2. Note that \(\mathbf{z}\) is well defined iff \(\gamma \in H(1)\) i.e. \(\gamma \in H(1)\).

Proof. To see (a) we use a theorem of Aronszajn [1, 354] which implies that (a) holds if

(i) There are constants \(c_1, c_2\) such that \(c_1^2 - 1\) and \(c_2^2 - 1\) are positive semidefinite.

In fact (i) is true with \(c_1 = 1\) and

\[
c_2 = \sqrt{\text{tr}(\gamma^* \gamma)}
\]

where \(\gamma^*\) is largest eigenvalue of \(\gamma^* \gamma\). This claim is proven in Appendix B.

Now in view of (a), (b) is established if it is shown that

(ii) \(\mathbf{z}(\cdot, t) : H(1)\) for all \(t \in [0, T]\)

(iii) for all vectors \(\mathbf{h} : H(1)\)

\[
\langle \mathbf{h}^*, \mathbf{z}(\cdot, t) \rangle_{H(1)} = \mathbf{h}^*(t)
\]

Now (ii) is clearly true since \(\mathbf{z}(\cdot, t) : H(1), \mathbf{z} \in H(1)\) and \(\mathbf{z}(\cdot, t) = \mathbf{z}(\cdot, t) \cdot \gamma(t)\).

To see (iii) let \(\mathbf{h} : H(1)\) and compute
\[
(h', z(t), z(t))_2 = (h', z(t), z(t))_1 - (h', z(t), z(t))_1
\]
\[
= (h', z(t), z(t))_1 - (h', z(t), z(t))_1
\]
\[
= h'(t) + (h', z(t), z(t))_1
\]
Since, by definition of \(V\)
\[
V^{-1} - (h', z(t))_1 = 1
\]
The result is thus proven.

Remark 3. Since \(\mathbb{H}(G)\) and
\[
\mathbb{I}(t) = (d, d, d')_1(t) = (d, d, d')_1(t)
\]
it follows that \(\mathbb{H}(G) \cap \mathbb{H}(G)\) i.e. (iv) holds

(iv) \(\mathbb{I} = \mathbb{H}(G) \cap \mathbb{H}(G)\)

Now however according to a result of Godaira (15) (see also Kailath (6, p. 20)) (i),
(iv) are necessary and sufficient for the problem of “detection” between \(\mathbb{I}\) and \(\mathbb{I}\)
to be nonsingular. It is apparent that \(\mathbb{I} = \mathbb{H}(G)\) ensures this nonsingularity.

Remark 4. In a similar way other \(\mathbb{H}(G)\) expressions analogous to those of Section 1
(viz: \(\mathbb{H}(G) = \mathbb{H}(G)\)) can be obtained (iff \(\mathbb{I} = \mathbb{H}(G)\)).

Now these results can be applied to the present problem.

Proposition 3. Let \(\mathbb{H}_1\) be the \(\mathbb{H}(G)\) generated by \(\mathbb{H}_1(t, t), i = 0, 1\). Suppose that
\(\mathbb{I}\) is positive definite. Then iff \(\mathbb{I} = \mathbb{H}_0\) we have

(a) \(\mathbb{I} = \mathbb{H}_1\) iff \(\mathbb{I} = \mathbb{H}_0\)

(b) The \(\mathbb{H}_1\) inner product is given by
\[
(h', E)_{1} = (h', E)_{1} - (h', E)_{1}^{-1} (g', E)_{0}
\]
\[
= \mathbb{I}^{-1} + (g', E)_{0}
\]
Proof. Since Σ is assumed positive definite the result follows from Proposition 2.

Remark. For future use we state the result corresponding to (M1Lb). Under the conditions of Proposition 3

$$\left(H', Z \right)_1 = \left(H', Z \right)_0 - \left(H', Z \right)_1 \Sigma (Q', Z)_0$$

Finally we turn to consider the linear estimation problem. The RKHS framework allows a general solution to this problem: namely (Parzen [20])

$$\hat{x}_1(t,T) = E_1(x(t)) + U_1(t,T) \quad i = 0, 1$$

where $U_1(t,T)$ is the unique solution to the equation

$$E_1(U_1(t,T)Y_1(\cdot)) = \bar{Y}_1(t,\cdot) = E_1(x(t)Y_1(\cdot))$$

for all x in $[0,T]$ $i = 0, 1$ (18a)

where

$$Y_1(\cdot) = Y(\cdot) - \bar{X}(\cdot)$$

That is, $U_1(t,T)$ (the ith element of $U_1(t,T)$) is the unique member of $S_i(t)$ that satisfies (18a). We can write symbolically

$$U_1(t,T) \cdot Y_1(\cdot) \quad i = 0, 1$$

The equality is symbolic because $Y_1 \notin H_1$ (indeed $(Y_1, Y_1)_1$ has infinite variance--this is clear since the variance in the discrete case is $N(0)$. In any case we are now ready to establish the CIC formulae analogous to those of Section 1. To see the type of argument needed the following result is established (cf. the main result (6e), (7a) of Section 1a).

Proposition 4. For the situation referred to at the beginning of this Section and under the conditions of Proposition 3 (in particular that $q \in H_o$) we have

$$\hat{x}_1(t,T) = \bar{x}_0(t,T) + \left(Y_1(t,\cdot), q \right)_1 \left(\bar{Z}_0(0|T) + M_1 - E_0 \right)$$

where

$$\bar{Z}_0(0|T) \cdot (q', Z_0)_0$$
Proof. To simplify the argument and help reveal the basic idea we take \(z_1 = z_0 = 0 \) so that \(x_1(t) = x_0(t) = x(t) \) and \(y_1(t) = y_0(t) = y(t) \) and \(\phi_1(t,T) = \phi_1(t,T) \), \(i = 0, 1 \). Let us denote

\[
\hat{U}_1(t,T) = U_0(t,T) + \left(z(t) - \langle z_1, y \rangle \right) y_0
\]

where

\[
\mathcal{L}_0 = \left(0, 0 \right) - \left(g', x \right)
\]

We have then to show

\[
\hat{U}_1(t,T) = \hat{U}_1(t,T) - \left(\mathcal{L}_1, y \right)
\]

since \(\hat{U}_1(t,T) \) is unique this will follow if we establish

\[
E_1(z_1(t,T) y'(c)) = E_1(t,c) \quad \text{for all } c \text{ in } [0,T]
\]

Suppose it is shown that

(i) \(E_1(U_0(t,T) y'(c)) = \langle U_0(t,c), S_1(c, \cdot) \rangle_0 \)

(ii) \(E_1(U_1 y'(c)) = \langle g', S_1(c, \cdot) \rangle_0 \)

Then we can find

\[
E_1(\hat{U}_1(t,T) y'(c)) = \langle y_0(t,c), S_1(c, \cdot) \rangle_0 + \langle z(t) - \langle z_1(t,c), g \rangle \rangle y_0 \langle g', S_1(c, \cdot) \rangle_0
\]

\[
= \langle U_0(t,c), S_1(c, \cdot) \rangle_0 + \langle \Delta g', S_1(c, \cdot) \rangle_0 - \langle U_1(t,c), g \rangle \langle g', S_1(c, \cdot) \rangle_0
\]

\[
= \langle U_1(t,c), S_1(c, \cdot) \rangle_0 - \langle U_1(t,c), g \rangle \langle g', S_1(c, \cdot) \rangle_0 \quad \text{by (15e)}
\]

\[
= \langle U_1(t,c), S_1(c, \cdot) \rangle_0 \quad \text{by (17b)}
\]

\[
= E_1(t,c) \quad \text{by the reproducing property}
\]

Thus we have to prove (i), (ii).

Let \(P_1, P_0 \) be the probability measures induced on the space of sample functions of the normal process \(\chi(t) \) under conditions "1", "0" respectively. Now according to Remark 3 following Proposition 2 the assumption \(q \neq 0 \) ensures the problem of detection between "1" and "0" is nonsingular so that the Radon-Nikodym derivative

-20-
(i.e. likelihood ratio) $\frac{dP_1}{dP_0}$ exists (cf. Parzen: [19]). It follows then that

$$E_1(\mathcal{L}(t;T)\mathcal{L}'(\cdot)) = E_0(\mathcal{L}_0(t;T)\mathcal{L}_0'(\cdot)\frac{dP_1}{dP_0})$$

On the other hand

$$E_0(\mathcal{L}_0(t;T)\mathcal{L}_0'(\cdot)) = \mathcal{L}_0(t,\cdot)$$

by the definition of $\mathcal{L}_0(t;T)$. However

$$E_0(\mathcal{L}(t)\mathcal{L}'(\cdot)\frac{dP_1}{dP_0}) = E_1(\mathcal{L}(t)\mathcal{L}'(\cdot)) = \mathcal{L}_1(t,\cdot)$$

Now if we can show that

$$\mathcal{L}(\cdot)\frac{dP_1}{dP_0} < \mathcal{L}_2^0 \quad (19)$$

we will have the correspondences between \mathcal{L}_2^0 and \mathcal{L}_0

$$\mathcal{L}_0(t;T) = \mathcal{L}_0(t,\cdot)$$

$$\mathcal{L}_0'(\cdot)\frac{dP_1}{dP_0} = \mathcal{L}_1(t,\cdot)$$

Then it will be possible to apply the definition of $\mathcal{L}_0(\cdot,\cdot)$ to see

$$E_0(\mathcal{L}_0(t;T)\mathcal{L}_0'(\cdot)\frac{dP_1}{dP_0}) = \mathcal{L}_0(t,\cdot)\mathcal{L}_1(t,\cdot)$$

which is (1). Similarly (ii) can be established.

To see (19) observe

$$E_1(\mathcal{L}(\cdot)\mathcal{L}'(\cdot)) = \mathcal{L}_1(\cdot,\cdot) \quad H_1$$

So according to (a) of Proposition (3)

$$E_1(\mathcal{L}'(\cdot)\mathcal{L}'(\cdot)\frac{dP_1}{dP_0}) = \mathcal{L}_1(\cdot,\cdot) \quad H_0$$

Thus by the definition of H_1 (19) follows. The proof is complete.

Note now that by applying the basic MSE approximation theorem (Parzen [19]; also Parzen [17, Theorem 65]; Kailath '5, p. 541]) to the discrete likelihood ratio.

-21-
expression (14) of Section If we obtain the Radon-Nikodym derivative
\[\frac{dP_t}{dP_0} = \frac{1}{\sqrt{2\pi T}} \exp \left(\frac{1}{2} U \right) \]
where
\[U = \frac{1}{2} \left(x_1(0|T) - \bar{x}_0(0|T) \right)^T \left(\mathbf{P}_1(0,0|T) - \mathbf{P}_0(0,0|T) \right)^{-1} \left(x_1(0|T) - \bar{x}_0(0|T) \right) \]
\[- \frac{1}{2} \left(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_0 \right)^T \left(\mathbf{P}_1 - \mathbf{P}_0 \right) \]
III. Relation with other work.

Now we demonstrate how these general results include Lainiotis' Generalized Partitioned Algorithm (GPA) (see Govindaraj and Lainiotis, [4]) as well as work of Ljung and Kailath [11].

Consider the state space models

\[\dot{x}(t) = F(t)x(t) + g(t)w(t) \]
\[y(t) = H(t)x(t) + v(t) \]

or

\[x_{k+1} = F_k x_k + G_k w_k \]
\[x_k = H_k x_k + v_k \]

where in each case \(w, v \) are uncorrelated white noises.

Then each is of the form

\[x = x_a + \xi \]
\[z = z_a + \eta = (H_a + \xi) + H\xi \]

where \(x_a, z_a \) are zero-mean processes and \(\xi = x(0) \). Also in each case \(\xi \) is the transition matrix associated with \(F_k \). Thus the CIC formula derived above are applicable to these state space models.

IIIa. Relation to GPA.

The partitioning view of the CIC problem begins with condition "0" and imagine condition "1" as produced by adding a further transient to the signal and observation sequences. Thus in equation (3a) introduce \(\eta_1 = F_1 = \eta_0 \). Also recall (3b) and denote \(T_2(t, T) = \) to find

\[x_2(t, T) = x_1(t, T) + \eta_3(t, T)T_2(t, T)T_1(t, T)^{-1} \]

Then write the \(\eta_2 \) as

\[x_2(t, T) = x_1(t, T) + \eta_3(t, T) x_3(t, T) \]

(20a)
\[P(t,t|T) = P_0(t,t|T) + I_0(t,0|T) P_\tau(0|T) I_0(t,0|T) \] (27b)

where we have introduced
\[\mathcal{L}_e(0|T) = P_e(0|T) (I_0(0|T) + \mathcal{L}^{-1}_e) \] (27c)

Finally recall (10c) in the new notation
\[\mathcal{P}^{-1}_e(0|T) = \mathcal{Q}_0 + \mathcal{L}^{-1} \] (27d)

Now recalling the stochastic interpretation of all the terms in equations (20) set
\(T = t \) to see these equations can be compared with equations (41), (42), (43), (44)
of Govindaraj and Lainiotis [4] (in their notation take \(\mathcal{L} = 0, k = \mathcal{L} \); "m" \(= \) "\(\mathcal{Q} \"
and other obvious equivalences). Also equations (9c), (10f), (11a) can be compared to
equations (55), (56), (57).

The case \(\mathcal{Q}_0 = 0 \) is discussed, for completeness, in Appendix C.

IIIb. Relation to work of Ljung and Kailath [12].

Equations (9b), (10f) can be compared to Ljung and Kailath [10, equations 32, 33] if we make the equivalence \(\mathcal{W}(t) = \mathcal{Q} \); to see this recall the stochastic interpretation of \(\mathcal{Q} \) in (10d). (There thus appears to be a misprint of equation (33)). Also equation (8b) can be found in Ljung and Kailath [12] in two cases: for \(T = t \) see equation (14); for \(t = 0 \) see equation (26) and recall that
\[\mathcal{L}_e(0,0|T) = P_e(0,0|T) \mathcal{P}^{-1}_e \]
\[= 1 - \mathcal{P}_1 \mathcal{Q}_1 \] by (12c).
Conclusion. In this article change of initial condition formulae have been presented for linear estimates of general nonstationary processes perturbed by fixed rank transients. The formulae apply to discrete or continuous measurement and to estimation in continuous or discrete time. Also a CIC formula for a Gaussian likelihood has been given.

The derivations depend essentially on a simple Matrix Inversion Lemma.
Appendix A. A CIC formula for $P_1(t,t|T)$.

First observe

$$P_1(t,t|T) = E_1 [\hat{S}_1(t|T) - E_1 [\hat{S}_1(t|T)]]'$$

$$= E_1 [\hat{S}_1(t|T) - E_1 [\hat{S}_1(t|T)]]'$$

$$= \hat{S}_1(t|T)$$

The idea is to establish a relation with $\hat{S}_1(t|T)$. However let us calculate

$$P_1(t,t|T) = E_1 [\hat{S}_1(t|T) - E_1 [\hat{S}_1(t|T)]]'$$

by orthogonality

$$= E_1 [\hat{S}_1(t|T) - E_1 [\hat{S}_1(t|T)]]'$$

by orthogonality

Thus

$$P_1(t,t|T) = E_1 [\hat{S}_1(t|T) - E_1 [\hat{S}_1(t|T)]]'$$

Now if it is shown that

$$P_1(t,t|T) = E_1 [\hat{S}_1(t|T) - E_1 [\hat{S}_1(t|T)]]'$$

then the result (12a) will follow in view of (7c).

Consider then

$$\hat{S}_1(t|T) = E_1 [\hat{S}_1(t|T) - E_1 [\hat{S}_1(t|T)]]'$$

by (6b)

$$= \hat{S}_1(t|T)$$

by (6c)

$$= \hat{S}_1(t|T)$$
\[S_{i-1}^{-1}N_i + S_{0}^{-1}G_{i}^{-1}t_i + (s_i - S_{1}^{-1}G)LG_{i}^{-1}N_0 \]

\[= S_{0}^{-1}G_{i}^{-1}N_i + S_{0}^{-1}G_{i}^{-1}t_i + (s_i - S_{1}^{-1}G)LG_{i}^{-1}G_{0}^{-1}N_0 + (t_i - S_{1}^{-1}G)LG_{i}^{-1}N_0 \]

Now recall (9a)

\[:= S_{i-1}^{-1}G = (s_i - S_{0}^{-1}G)(I - LG_{i}^{-1}G) \]

which, by (10b) is also

\[= (s_i - S_{0}^{-1}G)(I - LG_{i}^{-1}G)^{-1} \]

Thus the sum of the second and third terms above is

\[S_{0}^{-1}G_{i}^{-1}N_i + (s_i - S_{0}^{-1}G)(I - LG_{i}^{-1}G)^{-1}LG_{i}^{-1}N_0 \]

\[= S_{0}^{-1}G_{i}^{-1}N_i + (s_i - S_{0}^{-1}G)(I - (I + LG_{i}^{-1}G)^{-1})(I + LG_{i}^{-1}G)N_0 \]

\[= S_{0}^{-1}G_{i}^{-1}N_i + (s_i - S_{0}^{-1}G)(s_i - S_{0}^{-1}G)N_0 \]

Thus

\[S_{i-1}^{-1}N_i = S_{0}^{-1}N_0 + t_i s_i - (s_i - S_{1}^{-1}G)LG_{i}^{-1}N_0 + (t_i - S_{1}^{-1}G)LG_{i}^{-1}N_0 \]

\[= S_{0}^{-1}N_0 + t_i s_i - (s_i - S_{1}^{-1}G)LG_{i}^{-1}N_0 \]

which is what was required to be established.

-27-
Appendix B. Derivation of (16).

Let \(\mathbf{a}_i = 1, \ldots, N \) be any \(m \)-vectors and \(t_1 < t_2 < \ldots < t_N \) be any \(N \) points in \([0,T]\). The claim is that

\[
E = \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbf{a}_i^T(t_j) D'(t_j) \mathbf{a}_j \leq \text{tr} \left(\sum_{i=1}^{N} \mathbf{a}_i^T(t) D'(t) \mathbf{a}_i \right)
\]

Now

\[
E = \sum_{i=1}^{N} \mathbf{a}_i^T(t) D'(t) \mathbf{a}_i
\]

where

\[\mathbf{u} = \mathbf{a}_1^T(t) \mathbf{a}_1 \]

Next apply the reproducing property to see

\[\mathbf{u} = \sum_{i=1}^{N} (\mathbf{u}^T \mathbf{a}_i) \mathbf{a}_i \]

Now \(\mathbf{u} \) has 1st element \(u_k \) where

\[u_k = (\mathbf{u}^T \mathbf{a}_k) ; \mathbf{a}_k \text{ is the } k\text{th column of } \mathbf{A} \]

Thus

\[u_k^2 = u_k^2 \leq \sum_{k=1}^{N} (\mathbf{u}^T \mathbf{a}_k)^2 \]

However

\[(\mathbf{u}^T \mathbf{a}_k)^2 = \sum_{i=1}^{N} \mathbf{a}_i^T(t) (\mathbf{a}_i(t_1) \mathbf{a}_i(t_2) \mathbf{a}_i(t_3) \ldots \mathbf{a}_i(t_N)) \]

by the reproducing property. The result is thus established.
Appendix C. Relation with partitioned algorithm for $z_0 = 0$.

Consider now the case that $z_0 = 0$. Then by (10a)

$$f(x | T) = \frac{1 + \varphi_0}{1 + \varphi_1} = \frac{1 + \varphi_0}{1 + \varphi_1} = P_1(0,0 | T) = P_1$$

Thus, since $P_1 = \frac{1}{2}$, (9b) becomes

$$\frac{1}{2}(t,0|T) \varphi_1 = \frac{1}{2}(t,c|T)$$

while (9d) reads

$$\frac{1}{2}(t,0|T) = \frac{1}{2}(t,0|T) - \frac{1}{2}(t,0|T) \varphi_0$$

Also (10c) becomes

$$P_1^{-1} = \varphi_1^{-1} + \varphi_0$$

When further $z_0 = 0$, (7b) implies

$$\frac{1}{2}(0|T) = 0$$

Thus for $t = 0$ (8a) becomes

$$\frac{1}{2}(0|T) = P_1(0,0|T)$$

The pair (C1), (C4) with $T = t$, are just a general version of Lainiotis' original partitioned algorithm: Lainiotis [9], equations (3), (4). Equations (C1), (C2) can be compared with Lainiotis [9] equations (20), (21).
REFERENCES

The change of initial condition (CIC) problem in the theory of smoothing in linear estimation is formulated in terms of a fixed rank perturbation to a covariance kernel. The CIC or partitioning formulae are then shown to apply for general nonstationary processes. It becomes clear that the formulae involved derive from inversion formulae for fixed rank modification of a positive definite kernel or matrix.